Mapping the magnetic transition temperatures for medium- and high-entropy alloys

Tailorable magnetic state near room temperature is very promising for several technological, including magnetocaloric applications. Here using first-principle alloy theory, we determine the Curie temperature (TC) of a number of equiatomic medium- and high-entropy alloys with solid solution phases. A...

Full description

Saved in:
Bibliographic Details
Published inIntermetallics Vol. 95; pp. 80 - 84
Main Authors Huang, Shuo, Holmström, Erik, Eriksson, Olle, Vitos, Levente
Format Journal Article
LanguageEnglish
Published Barking Elsevier Ltd 01.04.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tailorable magnetic state near room temperature is very promising for several technological, including magnetocaloric applications. Here using first-principle alloy theory, we determine the Curie temperature (TC) of a number of equiatomic medium- and high-entropy alloys with solid solution phases. All calculations are performed at the computed lattice parameters, which are in line with the available experimental data. Theory predicts a large crystal structure dependence of TC, which explains the experimental observations under specified conditions. The sensitivity of the magnetic state to the crystal lattice is reflected by the magnetic exchange interactions entering the Heisenberg Hamiltonian. The analysis of the effect of composition on TC allows researchers to explore chemistry-dependent trends and design new multi-component alloys with pre-assigned magnetic properties. [Display omitted] •The magnetic state of equiatomic HEAs depends sensitively on alloy components.•In general, early transition metals (e.g., Cr) decrease and noble metals (e.g., Pt) increase the TC of equiatomic fcc HEAs.•The magnetic order survives up to 400–500 K larger temperatures in the bcc phase than in the fcc phase.•For most of the HEAs, the ferromagnetic exchange interactions are more dominating in the bcc phase than in the fcc phase.
AbstractList Tailorable magnetic state near room temperature is very promising for several technological, including magnetocaloric applications. Here using first-principle alloy theory, we determine the Curie temperature (T-C) of a number of equiatomic medium- and high-entropy alloys with solid solution phases. All calculations are performed at the computed lattice parameters, which are in line with the available experimental data. Theory predicts a large crystal structure dependence of T-C, which explains the experimental observations under specified conditions. The sensitivity of the magnetic state to the crystal lattice is reflected by the magnetic exchange interactions entering the Heisenberg Hamiltonian. The analysis of the effect of composition on T-C allows researchers to explore chemistry-dependent trends and design new multi-component alloys with pre-assigned magnetic properties.
Tailorable magnetic state near room temperature is very promising for several technological, including magnetocaloric applications. Here using first-principle alloy theory, we determine the Curie temperature (TC) of a number of equiatomic medium- and high-entropy alloys with solid solution phases. All calculations are performed at the computed lattice parameters, which are in line with the available experimental data. Theory predicts a large crystal structure dependence of TC, which explains the experimental observations under specified conditions. The sensitivity of the magnetic state to the crystal lattice is reflected by the magnetic exchange interactions entering the Heisenberg Hamiltonian. The analysis of the effect of composition on TC allows researchers to explore chemistry-dependent trends and design new multi-component alloys with pre-assigned magnetic properties.
Tailorable magnetic state near room temperature is very promising for several technological, including magnetocaloric applications. Here using first-principle alloy theory, we determine the Curie temperature (TC) of a number of equiatomic medium- and high-entropy alloys with solid solution phases. All calculations are performed at the computed lattice parameters, which are in line with the available experimental data. Theory predicts a large crystal structure dependence of TC, which explains the experimental observations under specified conditions. The sensitivity of the magnetic state to the crystal lattice is reflected by the magnetic exchange interactions entering the Heisenberg Hamiltonian. The analysis of the effect of composition on TC allows researchers to explore chemistry-dependent trends and design new multi-component alloys with pre-assigned magnetic properties. [Display omitted] •The magnetic state of equiatomic HEAs depends sensitively on alloy components.•In general, early transition metals (e.g., Cr) decrease and noble metals (e.g., Pt) increase the TC of equiatomic fcc HEAs.•The magnetic order survives up to 400–500 K larger temperatures in the bcc phase than in the fcc phase.•For most of the HEAs, the ferromagnetic exchange interactions are more dominating in the bcc phase than in the fcc phase.
Author Vitos, Levente
Holmström, Erik
Huang, Shuo
Eriksson, Olle
Author_xml – sequence: 1
  givenname: Shuo
  surname: Huang
  fullname: Huang, Shuo
  email: shuoh@kth.se
  organization: Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm, SE-100 44, Sweden
– sequence: 2
  givenname: Erik
  surname: Holmström
  fullname: Holmström, Erik
  organization: Sandvik Coromant R&D, 126 80, Stockholm, Sweden
– sequence: 3
  givenname: Olle
  surname: Eriksson
  fullname: Eriksson, Olle
  organization: Department of Physics and Astronomy, Division of Materials Theory, Uppsala University, Box 516, SE-75120, Uppsala, Sweden
– sequence: 4
  givenname: Levente
  surname: Vitos
  fullname: Vitos, Levente
  email: levente@kth.se
  organization: Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm, SE-100 44, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-228144$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-66647$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-351640$$DView record from Swedish Publication Index
BookMark eNqNkcFuEzEURS1UJNLCLyBLbJn02Z7xzEgsqFooSEV0Udhajv2cOGTswfaA8vdMFGDRTSpd6W3OvYt3zslZiAEJec1gyYDJy-3Sh4JpwLLkwLolsDnyGVmwru0r4EyekQX0UlZ92zcvyHnOWwDWgmgW5P6LHkcf1rRskA56HbB4Q0vSIfviY6AFhxGTLlPCTF1MdEDrp6GiOli68etNhaGkOO6p3u3iPr8kz53eZXz1916Qbx8_PFx_qu6-3n6-vrqrTMO6Uglr-xq73rbcQtNz5zrRonUN9EJYgN5IzmHVrAxyJpyoO9eBQMN1uxKOO3FB3h53828cp5Uakx902quovbrx369UTGs1TUo0TNbwNDymSUkp63bGq9P4j7JRnHesrmf-zZEfU_w5YS5qG6cU5gcoDrKBpq2FnCl5pEyKOSd0_3cZqINLtVX_XKqDSwVszqH47lHR-KIPfmZTfne6_v5Yx1nIL49JZeMxmNlkQlOUjf7UxB-8i8Mp
CitedBy_id crossref_primary_10_1016_j_mattod_2021_03_018
crossref_primary_10_1103_PhysRevB_106_214422
crossref_primary_10_1063_5_0064617
crossref_primary_10_1063_5_0063367
crossref_primary_10_1016_j_commatsci_2021_110408
crossref_primary_10_3390_ma16041486
crossref_primary_10_1016_j_jmst_2020_06_040
crossref_primary_10_1126_science_abo4940
crossref_primary_10_1016_j_intermet_2021_107399
crossref_primary_10_1016_j_jallcom_2019_03_133
crossref_primary_10_1080_14786435_2023_2193911
crossref_primary_10_1016_j_jallcom_2021_163428
crossref_primary_10_1016_j_actamat_2022_118662
crossref_primary_10_1080_21663831_2019_1644683
crossref_primary_10_1002_adem_201801055
crossref_primary_10_1557_jmr_2018_168
crossref_primary_10_1557_jmr_2018_323
crossref_primary_10_1016_j_jnoncrysol_2019_119865
crossref_primary_10_1007_s11661_024_07514_5
crossref_primary_10_1063_5_0065067
crossref_primary_10_1007_s12274_021_3900_3
crossref_primary_10_1016_j_scriptamat_2020_02_037
crossref_primary_10_1016_j_jmmm_2020_167432
crossref_primary_10_1038_s41524_021_00617_2
crossref_primary_10_1063_5_0201591
crossref_primary_10_1016_j_matchar_2018_06_019
crossref_primary_10_1016_j_scriptamat_2019_06_019
crossref_primary_10_1016_j_jmmm_2019_01_096
crossref_primary_10_1016_j_intermet_2022_107581
crossref_primary_10_1063_5_0017989
crossref_primary_10_1126_sciadv_abo7333
crossref_primary_10_1016_j_mtener_2020_100621
crossref_primary_10_1103_PhysRevMaterials_3_124410
crossref_primary_10_1103_PhysRevMaterials_5_085003
crossref_primary_10_1103_PhysRevMaterials_4_014402
crossref_primary_10_1016_j_jssc_2019_05_003
crossref_primary_10_1557_jmr_2018_237
crossref_primary_10_3390_ma14195824
crossref_primary_10_1016_j_matlet_2020_128653
crossref_primary_10_1038_s41598_018_30892_x
crossref_primary_10_1103_PhysRevB_103_064407
crossref_primary_10_1002_adfm_202007668
crossref_primary_10_1016_j_intermet_2021_107298
crossref_primary_10_1016_j_intermet_2020_107050
crossref_primary_10_1016_j_commatsci_2021_110942
crossref_primary_10_2320_matertrans_MT_MA2024004
crossref_primary_10_1016_j_intermet_2020_106844
crossref_primary_10_1103_PhysRevMaterials_3_014411
crossref_primary_10_1016_j_intermet_2019_106672
crossref_primary_10_1038_s41598_018_30732_y
crossref_primary_10_3390_met9020254
crossref_primary_10_1016_j_jmst_2021_07_019
crossref_primary_10_1007_s12598_024_03052_6
crossref_primary_10_1063_5_0064308
crossref_primary_10_1103_PhysRevMaterials_2_094407
crossref_primary_10_1016_j_scriptamat_2019_04_008
crossref_primary_10_1016_j_actamat_2024_120569
Cites_doi 10.1109/LMAG.2016.2592462
10.1088/0034-4885/68/6/R04
10.1016/j.intermet.2014.08.008
10.1016/j.matdes.2016.12.079
10.1007/s10853-016-0609-x
10.1103/PhysRev.156.809
10.1016/j.msea.2012.03.080
10.1063/1.4918996
10.1016/j.jallcom.2008.07.124
10.1016/j.matdes.2016.01.149
10.1016/j.jallcom.2014.11.061
10.1016/j.intermet.2012.03.005
10.1002/adem.200300567
10.1038/srep26179
10.1016/j.actamat.2013.01.042
10.1016/j.jallcom.2016.08.326
10.1016/S1002-0071(12)60080-X
10.1016/S0081-1947(08)60518-4
10.1103/RevModPhys.82.1633
10.1088/0953-8984/20/31/315203
10.1016/j.intermet.2013.10.024
10.1103/PhysRevB.96.014437
10.1016/j.jallcom.2009.08.090
10.1016/j.pmatsci.2013.10.001
10.1038/srep15755
10.1080/21663831.2014.912690
10.1103/PhysRevLett.77.3865
10.1126/science.1254581
10.1002/adem.200700240
10.1016/j.msea.2003.10.257
10.1016/j.actamat.2016.08.081
10.1016/j.jmmm.2014.07.023
10.1088/0305-4608/15/6/018
10.1103/PhysRevLett.87.156401
10.1016/j.jallcom.2010.10.210
10.1016/j.matchemphys.2007.01.003
10.1016/j.intermet.2006.08.005
10.1016/j.intermet.2010.05.014
10.1103/PhysRevLett.113.107001
10.1063/1.4798340
10.1016/j.actamat.2016.12.021
10.1016/j.actamat.2015.08.050
10.1016/j.msea.2012.07.003
10.1007/s11665-017-2742-3
10.1016/j.msea.2008.12.053
10.1016/j.mattod.2015.11.026
10.1063/1.4938398
10.1103/PhysRevB.5.2382
10.1016/j.matdes.2013.12.048
10.1016/j.actamat.2012.06.046
10.1016/j.matdes.2016.04.053
10.1016/j.actamat.2017.03.013
10.1103/PhysRevB.64.014107
10.1038/ncomms7529
10.1103/PhysRevLett.93.137202
10.1063/1.4932571
10.1016/j.mseb.2009.05.024
10.1063/1.3538936
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Apr 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Apr 2018
DBID AAYXX
CITATION
8BQ
8FD
JG9
ADTPV
AOWAS
D8V
D91
DF2
DOI 10.1016/j.intermet.2018.01.016
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
SWEPUB Örebro universitet
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database



DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0216
EndPage 84
ExternalDocumentID oai_DiVA_org_uu_351640
oai_DiVA_org_oru_66647
oai_DiVA_org_kth_228144
10_1016_j_intermet_2018_01_016
S0966979517311688
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFJKZ
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SMS
SPC
SPCBC
SSM
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
8BQ
8FD
EFKBS
JG9
ADTPV
AOWAS
D8V
D91
DF2
ID FETCH-LOGICAL-c518t-3dd94e89d72d0592ff837edf50933d009c6220b5bce213f348f803ec2a7b3f2f3
IEDL.DBID .~1
ISSN 0966-9795
1879-0216
IngestDate Thu Aug 21 06:45:58 EDT 2025
Thu Aug 21 06:51:58 EDT 2025
Thu Aug 21 07:29:20 EDT 2025
Sun Jul 13 04:10:11 EDT 2025
Thu Apr 24 22:53:07 EDT 2025
Tue Jul 01 02:43:25 EDT 2025
Tue Dec 03 03:44:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords High-entropy alloys
Monte-Carlo simulations
First-principle calculations
Curie temperature
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-3dd94e89d72d0592ff837edf50933d009c6220b5bce213f348f803ec2a7b3f2f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2065057436
PQPubID 2045471
PageCount 5
ParticipantIDs swepub_primary_oai_DiVA_org_uu_351640
swepub_primary_oai_DiVA_org_oru_66647
swepub_primary_oai_DiVA_org_kth_228144
proquest_journals_2065057436
crossref_primary_10_1016_j_intermet_2018_01_016
crossref_citationtrail_10_1016_j_intermet_2018_01_016
elsevier_sciencedirect_doi_10_1016_j_intermet_2018_01_016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Intermetallics
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Yuan, Wu, Tong, Zhang, Wang, Liu, Ma, Suo, Lu (bib15) 2017; 125
Zhao, Qiao, Ma, Gao, Yang, Chen, Zhang (bib6) 2016; 96
Laplanche, Gadaud, Horst, Otto, Eggeler, George (bib49) 2015; 623
Vitos (bib27) 2001; 64
Kao, Chen, Chen, Yeh (bib22) 2009; 488
Zhang, Zuo, Tang, Gao, Dahmen, Liaw, Lu (bib2) 2014; 61
Gschneidner, Pecharsky, Tsokol (bib13) 2005; 68
Vitos, Abrikosov, Johansson (bib31) 2001; 87
Győrffy (bib30) 1972; 5
Sales, Jin, Bei, Stocks, Samolyuk, May, McGuire (bib36) 2016; 6
Huang, Li, Li, Schönecker, Bergqvist, Holmström, Varga, Vitos (bib17) 2016; 103
Lucas, Belyea, Bauer, Bryant, Michel, Turgut, Leontsev, Horwath, Semiatin, McHenry, Miller (bib18) 2013; 113
Győrffy, Pindor, Staunton, Stocks, Winter (bib33) 1985; 15
Bergqvist, Eriksson, Kudrnovský, Drchal, Korzhavyi, Turek (bib25) 2004; 93
Zhuang, Liu, Chen, Xue, He (bib45) 2012; 556
Huang, Vida, Molnár, Kádas, Varga, Holmström, Vitos (bib55) 2015; 107
Körmann, Ma, Belyea, Lucas, Miller, Grabowski, Sluiter (bib26) 2015; 107
Vitos (bib28) 2007
Yeh, Chen, Lin, Gan, Chin, Shun, Tsau, Chang (bib1) 2004; 6
Ye, Wang, Lu, Liu, Yang (bib3) 2016; 19
Guo, Huang, Huang (bib39) 2017; 26
Perdew, Burke, Ernzerhof (bib32) 1996; 77
Miracle, Senkov (bib4) 2017; 122
Tsai, Yeh (bib7) 2014; 2
Zhang, Fu, Zhang, Wang, Wang, Wang, Zhang, Shi (bib46) 2009; 508
Zhang, Zhou, Lin, Chen, Liaw (bib48) 2008; 10
Zuo, Li, Ren, Zhang (bib37) 2014; 371
Hemphill, Yuan, Wang, Yeh, Tsai, Chuang, Liaw (bib11) 2012; 60
Kao, Chen, Chen, Chu, Yeh, Lin (bib16) 2011; 509
Wu, Bei, Otto, Pharr, George (bib35) 2014; 46
Dong, Zhou, Lu, Gao, Wang, Li (bib5) 2014; 57
Skubic, Hellsvik, Nordström, Eriksson (bib58) 2008; 20
Yeh, Chang, Hong, Chen, Lin (bib34) 2007; 103
Wang, Wang, Wang, Tsai, Lai, Yeh (bib23) 2012; 26
Schneeweiss, Friák, Dudová, Holec, Šob, Kriegner, Holý, Beran, George, Neugebauer, Dlouhý (bib56) 2017; 96
Soven (bib29) 1967; 156
Jin, Mu, An, Porter, Samolyuk, Stocks, Bei (bib38) 2017; 117
Ji, Wang, Wang, Zhang, Wang, Zhang, Fu (bib57) 2015; 56
Niu, Zaddach, Oni, Sang, Hurt, LeBeau, Koch, Irving (bib20) 2015; 106
Zuo, Gao, Ouyang, Yang, Cheng, Feng, Chen, Liaw, Hawk, Zhang (bib40) 2017; 130
Belyea, Lucas, Michel, Horwath, Miller (bib14) 2015; 5
Cantor, Chang, Knight, Vincent (bib53) 2004; 375–377
Kurniawan, Perrin, Xu, Keylin, McHenry (bib52) 2016; 7
Senkov, Miller, Miracle, Woodward (bib59) 2015; 6
Koželj, Vrtnik, Jelen, Jazbec, Jagličić, Maiti, Feuerbacher, Steurer, Dolinšek (bib12) 2014; 113
Ma, Grabowski, Körmann, Neugebauer, Raabe (bib50) 2015; 100
Chou, Chang, Chen, Yeh (bib21) 2009; 163
Gao, Yeh, Liaw, Zhang (bib8) 2016
Liu, Zhu, Zhang, Li, Jiang (bib41) 2012; 548
Marshal, Pradeep, Music, Zaefferer, De, Schneider (bib43) 2017; 691
Gludovatz, Hohenwarter, Catoor, Chang, George, Ritchie (bib10) 2014; 345
Otto, Yang, Bei, George (bib47) 2013; 61
Sato, Bergqvist, Kudrnovský, Dederichs, Eriksson, Turek, Sanyal, Bouzerar, Katayama-Yoshida, Dinh, Fukushima, Kizaki, Zeller (bib24) 2010; 82
Gschneidner (bib60) 1964; 16
Li, Li, Zhao, Jiang (bib44) 2009; 475
Lucas, Mauger, Muñoz, Xiao, Sheets, Semiatin, Horwath, Turgut (bib19) 2011; 109
Jiang, Sun, Zhang, Wang, Zhao (bib42) 2017; 52
Senkov, Wilks, Miracle, Chuang, Liaw (bib9) 2010; 18
Guo, Liu (bib54) 2011; 21
Wang, Zhang, Qiao, Chen (bib51) 2007; 15
Bergqvist (10.1016/j.intermet.2018.01.016_bib25) 2004; 93
Győrffy (10.1016/j.intermet.2018.01.016_bib33) 1985; 15
Gludovatz (10.1016/j.intermet.2018.01.016_bib10) 2014; 345
Senkov (10.1016/j.intermet.2018.01.016_bib59) 2015; 6
Jiang (10.1016/j.intermet.2018.01.016_bib42) 2017; 52
Guo (10.1016/j.intermet.2018.01.016_bib39) 2017; 26
Niu (10.1016/j.intermet.2018.01.016_bib20) 2015; 106
Liu (10.1016/j.intermet.2018.01.016_bib41) 2012; 548
Chou (10.1016/j.intermet.2018.01.016_bib21) 2009; 163
Schneeweiss (10.1016/j.intermet.2018.01.016_bib56) 2017; 96
Cantor (10.1016/j.intermet.2018.01.016_bib53) 2004; 375–377
Perdew (10.1016/j.intermet.2018.01.016_bib32) 1996; 77
Guo (10.1016/j.intermet.2018.01.016_bib54) 2011; 21
Soven (10.1016/j.intermet.2018.01.016_bib29) 1967; 156
Jin (10.1016/j.intermet.2018.01.016_bib38) 2017; 117
Ye (10.1016/j.intermet.2018.01.016_bib3) 2016; 19
Laplanche (10.1016/j.intermet.2018.01.016_bib49) 2015; 623
Vitos (10.1016/j.intermet.2018.01.016_bib27) 2001; 64
Belyea (10.1016/j.intermet.2018.01.016_bib14) 2015; 5
Vitos (10.1016/j.intermet.2018.01.016_bib31) 2001; 87
Lucas (10.1016/j.intermet.2018.01.016_bib19) 2011; 109
Wu (10.1016/j.intermet.2018.01.016_bib35) 2014; 46
Zhao (10.1016/j.intermet.2018.01.016_bib6) 2016; 96
Huang (10.1016/j.intermet.2018.01.016_bib17) 2016; 103
Zhang (10.1016/j.intermet.2018.01.016_bib46) 2009; 508
Yuan (10.1016/j.intermet.2018.01.016_bib15) 2017; 125
Skubic (10.1016/j.intermet.2018.01.016_bib58) 2008; 20
Gschneidner (10.1016/j.intermet.2018.01.016_bib60) 1964; 16
Senkov (10.1016/j.intermet.2018.01.016_bib9) 2010; 18
Ma (10.1016/j.intermet.2018.01.016_bib50) 2015; 100
Dong (10.1016/j.intermet.2018.01.016_bib5) 2014; 57
Li (10.1016/j.intermet.2018.01.016_bib44) 2009; 475
Zhang (10.1016/j.intermet.2018.01.016_bib2) 2014; 61
Körmann (10.1016/j.intermet.2018.01.016_bib26) 2015; 107
Zuo (10.1016/j.intermet.2018.01.016_bib40) 2017; 130
Kurniawan (10.1016/j.intermet.2018.01.016_bib52) 2016; 7
Vitos (10.1016/j.intermet.2018.01.016_bib28) 2007
Sato (10.1016/j.intermet.2018.01.016_bib24) 2010; 82
Sales (10.1016/j.intermet.2018.01.016_bib36) 2016; 6
Wang (10.1016/j.intermet.2018.01.016_bib23) 2012; 26
Wang (10.1016/j.intermet.2018.01.016_bib51) 2007; 15
Otto (10.1016/j.intermet.2018.01.016_bib47) 2013; 61
Hemphill (10.1016/j.intermet.2018.01.016_bib11) 2012; 60
Ji (10.1016/j.intermet.2018.01.016_bib57) 2015; 56
Lucas (10.1016/j.intermet.2018.01.016_bib18) 2013; 113
Zhuang (10.1016/j.intermet.2018.01.016_bib45) 2012; 556
Zuo (10.1016/j.intermet.2018.01.016_bib37) 2014; 371
Yeh (10.1016/j.intermet.2018.01.016_bib1) 2004; 6
Marshal (10.1016/j.intermet.2018.01.016_bib43) 2017; 691
Zhang (10.1016/j.intermet.2018.01.016_bib48) 2008; 10
Győrffy (10.1016/j.intermet.2018.01.016_bib30) 1972; 5
Huang (10.1016/j.intermet.2018.01.016_bib55) 2015; 107
Tsai (10.1016/j.intermet.2018.01.016_bib7) 2014; 2
Gao (10.1016/j.intermet.2018.01.016_bib8) 2016
Gschneidner (10.1016/j.intermet.2018.01.016_bib13) 2005; 68
Yeh (10.1016/j.intermet.2018.01.016_bib34) 2007; 103
Kao (10.1016/j.intermet.2018.01.016_bib22) 2009; 488
Koželj (10.1016/j.intermet.2018.01.016_bib12) 2014; 113
Miracle (10.1016/j.intermet.2018.01.016_bib4) 2017; 122
Kao (10.1016/j.intermet.2018.01.016_bib16) 2011; 509
References_xml – volume: 68
  start-page: 1479
  year: 2005
  ident: bib13
  article-title: Recent developments in magnetocaloric materials
  publication-title: Rep. Prog. Phys.
– volume: 5
  start-page: 2382
  year: 1972
  end-page: 2384
  ident: bib30
  article-title: Coherent-potential approximation for a nonoverlapping-muffin-tin-potential model of random substitutional alloys
  publication-title: Phys. Rev. B
– volume: 10
  start-page: 534
  year: 2008
  end-page: 538
  ident: bib48
  article-title: Solid-solution phase formation rules for multi-component alloys
  publication-title: Adv. Eng. Mater.
– volume: 488
  start-page: 57
  year: 2009
  end-page: 64
  ident: bib22
  article-title: Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys
  publication-title: J. Alloy. Comp.
– volume: 125
  start-page: 481
  year: 2017
  end-page: 489
  ident: bib15
  article-title: Rare-earth high-entropy alloys with giant magnetocaloric effect
  publication-title: Acta Mater.
– volume: 100
  start-page: 90
  year: 2015
  end-page: 97
  ident: bib50
  article-title: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: importance of entropy contributions beyond the configurational one
  publication-title: Acta Mater.
– volume: 113
  year: 2014
  ident: bib12
  article-title: Discovery of a superconducting high-entropy alloy
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 1
  year: 2016
  end-page: 5
  ident: bib52
  article-title: Curie temperature engineering in high entropy alloys for magnetocaloric applications
  publication-title: IEEE Magn. Lett.
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: bib32
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– volume: 20
  year: 2008
  ident: bib58
  article-title: A method for atomistic spin dynamics simulations: implementation and examples
  publication-title: J. Phys. Condens. Matter
– volume: 508
  start-page: 214
  year: 2009
  end-page: 219
  ident: bib46
  article-title: Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys
  publication-title: Mater. Sci. Eng. A
– volume: 61
  start-page: 2628
  year: 2013
  end-page: 2638
  ident: bib47
  article-title: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys
  publication-title: Acta Mater.
– volume: 103
  start-page: 41
  year: 2007
  end-page: 46
  ident: bib34
  article-title: Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements
  publication-title: Mater. Chem. Phys.
– volume: 122
  start-page: 448
  year: 2017
  end-page: 511
  ident: bib4
  article-title: A critical review of high entropy alloys and related concepts
  publication-title: Acta Mater.
– volume: 57
  start-page: 67
  year: 2014
  end-page: 72
  ident: bib5
  article-title: Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy
  publication-title: Mater. Des.
– volume: 113
  year: 2013
  ident: bib18
  article-title: Thermomagnetic analysis of FeCoCrxNi alloys: magnetic entropy of high-entropy alloys
  publication-title: J. Appl. Phys.
– volume: 15
  start-page: 1337
  year: 1985
  end-page: 1386
  ident: bib33
  article-title: A first-principles theory of ferromagnetic phase transitions in metals
  publication-title: J. Phys. F Met. Phys.
– volume: 26
  start-page: 44
  year: 2012
  end-page: 51
  ident: bib23
  article-title: Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys
  publication-title: Intermetallics
– volume: 15
  start-page: 357
  year: 2007
  end-page: 362
  ident: bib51
  article-title: Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys
  publication-title: Intermetallics
– volume: 96
  start-page: 10
  year: 2016
  end-page: 15
  ident: bib6
  article-title: A hexagonal close-packed high-entropy alloy: the effect of entropy
  publication-title: Mater. Des.
– volume: 156
  start-page: 809
  year: 1967
  end-page: 813
  ident: bib29
  article-title: Coherent-potential model of substitutional disordered alloys
  publication-title: Phys. Rev.
– volume: 375–377
  start-page: 213
  year: 2004
  end-page: 218
  ident: bib53
  article-title: Microstructural development in equiatomic multicomponent alloys
  publication-title: Mater. Sci. Eng. A
– volume: 46
  start-page: 131
  year: 2014
  end-page: 140
  ident: bib35
  article-title: Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys
  publication-title: Intermetallics
– year: 2016
  ident: bib8
  article-title: High-entropy Alloys: Fundamentals and Applications
– volume: 5
  year: 2015
  ident: bib14
  article-title: Tunable magnetocaloric effect in transition metal alloys
  publication-title: Sci. Rep.
– year: 2007
  ident: bib28
  article-title: Computational Quantum Mechanics for Materials Engineers
– volume: 130
  start-page: 10
  year: 2017
  end-page: 18
  ident: bib40
  article-title: Tailoring magnetic behavior of CoFeMnNiX (X = Al, Cr, Ga, and Sn) high entropy alloys by metal doping
  publication-title: Acta Mater.
– volume: 6
  start-page: 299
  year: 2004
  end-page: 303
  ident: bib1
  article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv. Eng. Mater.
– volume: 556
  start-page: 395
  year: 2012
  end-page: 399
  ident: bib45
  article-title: Effect of elemental interaction on microstructure and mechanical properties of FeCoNiCuAl alloys
  publication-title: Mater. Sci. Eng. A
– volume: 475
  start-page: 752
  year: 2009
  end-page: 757
  ident: bib44
  article-title: Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys
  publication-title: J. Alloy. Comp.
– volume: 623
  start-page: 348
  year: 2015
  end-page: 353
  ident: bib49
  article-title: Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy
  publication-title: J. Alloy. Comp.
– volume: 52
  start-page: 3199
  year: 2017
  end-page: 3207
  ident: bib42
  article-title: Plastic deformation mechanisms of equiatomic Ni
  publication-title: J. Mater. Sci.
– volume: 106
  year: 2015
  ident: bib20
  article-title: Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo
  publication-title: Appl. Phys. Lett.
– volume: 82
  start-page: 1633
  year: 2010
  end-page: 1690
  ident: bib24
  article-title: First-principles theory of dilute magnetic semiconductors
  publication-title: Rev. Mod. Phys.
– volume: 61
  start-page: 1
  year: 2014
  end-page: 93
  ident: bib2
  article-title: Microstructures and properties of high-entropy alloys
  publication-title: Prog. Mater. Sci.
– volume: 60
  start-page: 5723
  year: 2012
  end-page: 5734
  ident: bib11
  article-title: Fatigue behavior of Al
  publication-title: Acta Mater.
– volume: 107
  year: 2015
  ident: bib26
  article-title: “Treasure maps” for magnetic high-entropy-alloys from theory and experiment
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 6529
  year: 2015
  ident: bib59
  article-title: Accelerated exploration of multi-principal element alloys with solid solution phases
  publication-title: Nat. Commun.
– volume: 163
  start-page: 184
  year: 2009
  end-page: 189
  ident: bib21
  article-title: Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤x≤2) high-entropy alloys
  publication-title: Mater. Sci. Eng., B
– volume: 6
  year: 2016
  ident: bib36
  article-title: Quantum critical behavior in a concentrated ternary solid solution
  publication-title: Sci. Rep.
– volume: 107
  year: 2015
  ident: bib55
  article-title: Phase stability and magnetic behavior of FeCrCoNiGe high-entropy alloy
  publication-title: Appl. Phys. Lett.
– volume: 16
  start-page: 275
  year: 1964
  end-page: 426
  ident: bib60
  article-title: Physical properties and interrelationships of metallic and semimetallic elements
  publication-title: Solid State Phys.
– volume: 21
  start-page: 433
  year: 2011
  end-page: 446
  ident: bib54
  article-title: Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase
  publication-title: Prog. Nat. Sci. Mater. Int
– volume: 96
  year: 2017
  ident: bib56
  article-title: Magnetic properties of the CrMnFeCoNi high-entropy alloy
  publication-title: Phys. Rev. B
– volume: 691
  start-page: 683
  year: 2017
  end-page: 689
  ident: bib43
  article-title: Combinatorial synthesis of high entropy alloys: introduction of a novel, single phase, body-centered-cubic FeMnCoCrAl solid solution
  publication-title: J. Alloy. Comp.
– volume: 87
  year: 2001
  ident: bib31
  article-title: Anisotropic lattice distortions in random alloys from first-principles theory
  publication-title: Phys. Rev. Lett.
– volume: 103
  start-page: 71
  year: 2016
  end-page: 74
  ident: bib17
  article-title: Mechanism of magnetic transition in FeCrCoNi-based high entropy alloys
  publication-title: Mater. Des.
– volume: 18
  start-page: 1758
  year: 2010
  end-page: 1765
  ident: bib9
  article-title: Refractory high-entropy alloys
  publication-title: Intermetallics
– volume: 345
  start-page: 1153
  year: 2014
  end-page: 1158
  ident: bib10
  article-title: A fracture-resistant high-entropy alloy for cryogenic applications
  publication-title: Science
– volume: 109
  year: 2011
  ident: bib19
  article-title: Magnetic and vibrational properties of high-entropy alloys
  publication-title: J. Appl. Phys.
– volume: 509
  start-page: 1607
  year: 2011
  end-page: 1614
  ident: bib16
  article-title: Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys
  publication-title: J. Alloy. Comp.
– volume: 64
  year: 2001
  ident: bib27
  article-title: Total-energy method based on the exact muffin-tin orbitals theory
  publication-title: Phys. Rev. B
– volume: 93
  year: 2004
  ident: bib25
  article-title: Magnetic percolation in diluted magnetic semiconductors
  publication-title: Phys. Rev. Lett.
– volume: 371
  start-page: 60
  year: 2014
  end-page: 68
  ident: bib37
  article-title: Effects of Al and Si addition on the structure and properties of CoFeNi equal atomic ratio alloy
  publication-title: J. Magn. Magn Mater.
– volume: 548
  start-page: 64
  year: 2012
  end-page: 68
  ident: bib41
  article-title: Microstructure and the properties of FeCoCuNiSnx high entropy alloys
  publication-title: Mater. Sci. Eng. A
– volume: 56
  start-page: 24
  year: 2015
  end-page: 27
  ident: bib57
  article-title: Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering
  publication-title: Intermetallics
– volume: 26
  start-page: 3071
  year: 2017
  end-page: 3078
  ident: bib39
  article-title: Microstructure and room-temperature mechanical properties of FeCrMoVTix high-entropy alloys
  publication-title: J. Mater. Eng. Perform.
– volume: 19
  start-page: 349
  year: 2016
  end-page: 362
  ident: bib3
  article-title: High-entropy alloy: challenges and prospects
  publication-title: Mater. Today
– volume: 2
  start-page: 107
  year: 2014
  end-page: 123
  ident: bib7
  article-title: High-entropy alloys: a critical review
  publication-title: Mater. Res. Lett.
– volume: 117
  start-page: 185
  year: 2017
  end-page: 192
  ident: bib38
  article-title: Thermophysical properties of Ni-containing single-phase concentrated solid solution alloys
  publication-title: Mater. Des.
– volume: 7
  start-page: 1
  year: 2016
  ident: 10.1016/j.intermet.2018.01.016_bib52
  article-title: Curie temperature engineering in high entropy alloys for magnetocaloric applications
  publication-title: IEEE Magn. Lett.
  doi: 10.1109/LMAG.2016.2592462
– year: 2016
  ident: 10.1016/j.intermet.2018.01.016_bib8
– volume: 68
  start-page: 1479
  year: 2005
  ident: 10.1016/j.intermet.2018.01.016_bib13
  article-title: Recent developments in magnetocaloric materials
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/68/6/R04
– volume: 56
  start-page: 24
  year: 2015
  ident: 10.1016/j.intermet.2018.01.016_bib57
  article-title: Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2014.08.008
– volume: 117
  start-page: 185
  year: 2017
  ident: 10.1016/j.intermet.2018.01.016_bib38
  article-title: Thermophysical properties of Ni-containing single-phase concentrated solid solution alloys
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.12.079
– volume: 52
  start-page: 3199
  year: 2017
  ident: 10.1016/j.intermet.2018.01.016_bib42
  article-title: Plastic deformation mechanisms of equiatomic Ni20Ti20Fe20Al20Cu20 high-entropy alloy at high temperatures
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-016-0609-x
– volume: 156
  start-page: 809
  year: 1967
  ident: 10.1016/j.intermet.2018.01.016_bib29
  article-title: Coherent-potential model of substitutional disordered alloys
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.156.809
– volume: 548
  start-page: 64
  year: 2012
  ident: 10.1016/j.intermet.2018.01.016_bib41
  article-title: Microstructure and the properties of FeCoCuNiSnx high entropy alloys
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2012.03.080
– volume: 106
  year: 2015
  ident: 10.1016/j.intermet.2018.01.016_bib20
  article-title: Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4918996
– volume: 475
  start-page: 752
  year: 2009
  ident: 10.1016/j.intermet.2018.01.016_bib44
  article-title: Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2008.07.124
– volume: 96
  start-page: 10
  year: 2016
  ident: 10.1016/j.intermet.2018.01.016_bib6
  article-title: A hexagonal close-packed high-entropy alloy: the effect of entropy
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.01.149
– volume: 623
  start-page: 348
  year: 2015
  ident: 10.1016/j.intermet.2018.01.016_bib49
  article-title: Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2014.11.061
– volume: 26
  start-page: 44
  year: 2012
  ident: 10.1016/j.intermet.2018.01.016_bib23
  article-title: Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2012.03.005
– volume: 6
  start-page: 299
  year: 2004
  ident: 10.1016/j.intermet.2018.01.016_bib1
  article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.200300567
– volume: 6
  year: 2016
  ident: 10.1016/j.intermet.2018.01.016_bib36
  article-title: Quantum critical behavior in a concentrated ternary solid solution
  publication-title: Sci. Rep.
  doi: 10.1038/srep26179
– volume: 61
  start-page: 2628
  year: 2013
  ident: 10.1016/j.intermet.2018.01.016_bib47
  article-title: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.01.042
– volume: 691
  start-page: 683
  year: 2017
  ident: 10.1016/j.intermet.2018.01.016_bib43
  article-title: Combinatorial synthesis of high entropy alloys: introduction of a novel, single phase, body-centered-cubic FeMnCoCrAl solid solution
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2016.08.326
– volume: 21
  start-page: 433
  year: 2011
  ident: 10.1016/j.intermet.2018.01.016_bib54
  article-title: Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase
  publication-title: Prog. Nat. Sci. Mater. Int
  doi: 10.1016/S1002-0071(12)60080-X
– volume: 16
  start-page: 275
  year: 1964
  ident: 10.1016/j.intermet.2018.01.016_bib60
  article-title: Physical properties and interrelationships of metallic and semimetallic elements
  publication-title: Solid State Phys.
  doi: 10.1016/S0081-1947(08)60518-4
– volume: 82
  start-page: 1633
  year: 2010
  ident: 10.1016/j.intermet.2018.01.016_bib24
  article-title: First-principles theory of dilute magnetic semiconductors
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.1633
– volume: 20
  year: 2008
  ident: 10.1016/j.intermet.2018.01.016_bib58
  article-title: A method for atomistic spin dynamics simulations: implementation and examples
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/20/31/315203
– volume: 46
  start-page: 131
  year: 2014
  ident: 10.1016/j.intermet.2018.01.016_bib35
  article-title: Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2013.10.024
– volume: 96
  year: 2017
  ident: 10.1016/j.intermet.2018.01.016_bib56
  article-title: Magnetic properties of the CrMnFeCoNi high-entropy alloy
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.014437
– volume: 488
  start-page: 57
  year: 2009
  ident: 10.1016/j.intermet.2018.01.016_bib22
  article-title: Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2009.08.090
– volume: 61
  start-page: 1
  year: 2014
  ident: 10.1016/j.intermet.2018.01.016_bib2
  article-title: Microstructures and properties of high-entropy alloys
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2013.10.001
– volume: 5
  year: 2015
  ident: 10.1016/j.intermet.2018.01.016_bib14
  article-title: Tunable magnetocaloric effect in transition metal alloys
  publication-title: Sci. Rep.
  doi: 10.1038/srep15755
– volume: 2
  start-page: 107
  year: 2014
  ident: 10.1016/j.intermet.2018.01.016_bib7
  article-title: High-entropy alloys: a critical review
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2014.912690
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.intermet.2018.01.016_bib32
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 345
  start-page: 1153
  year: 2014
  ident: 10.1016/j.intermet.2018.01.016_bib10
  article-title: A fracture-resistant high-entropy alloy for cryogenic applications
  publication-title: Science
  doi: 10.1126/science.1254581
– volume: 10
  start-page: 534
  year: 2008
  ident: 10.1016/j.intermet.2018.01.016_bib48
  article-title: Solid-solution phase formation rules for multi-component alloys
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.200700240
– volume: 375–377
  start-page: 213
  year: 2004
  ident: 10.1016/j.intermet.2018.01.016_bib53
  article-title: Microstructural development in equiatomic multicomponent alloys
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2003.10.257
– volume: 122
  start-page: 448
  year: 2017
  ident: 10.1016/j.intermet.2018.01.016_bib4
  article-title: A critical review of high entropy alloys and related concepts
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.08.081
– volume: 371
  start-page: 60
  year: 2014
  ident: 10.1016/j.intermet.2018.01.016_bib37
  article-title: Effects of Al and Si addition on the structure and properties of CoFeNi equal atomic ratio alloy
  publication-title: J. Magn. Magn Mater.
  doi: 10.1016/j.jmmm.2014.07.023
– volume: 15
  start-page: 1337
  year: 1985
  ident: 10.1016/j.intermet.2018.01.016_bib33
  article-title: A first-principles theory of ferromagnetic phase transitions in metals
  publication-title: J. Phys. F Met. Phys.
  doi: 10.1088/0305-4608/15/6/018
– volume: 87
  year: 2001
  ident: 10.1016/j.intermet.2018.01.016_bib31
  article-title: Anisotropic lattice distortions in random alloys from first-principles theory
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.156401
– volume: 509
  start-page: 1607
  year: 2011
  ident: 10.1016/j.intermet.2018.01.016_bib16
  article-title: Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2010.10.210
– volume: 103
  start-page: 41
  year: 2007
  ident: 10.1016/j.intermet.2018.01.016_bib34
  article-title: Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2007.01.003
– volume: 15
  start-page: 357
  year: 2007
  ident: 10.1016/j.intermet.2018.01.016_bib51
  article-title: Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2006.08.005
– year: 2007
  ident: 10.1016/j.intermet.2018.01.016_bib28
– volume: 18
  start-page: 1758
  year: 2010
  ident: 10.1016/j.intermet.2018.01.016_bib9
  article-title: Refractory high-entropy alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2010.05.014
– volume: 113
  year: 2014
  ident: 10.1016/j.intermet.2018.01.016_bib12
  article-title: Discovery of a superconducting high-entropy alloy
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.107001
– volume: 113
  year: 2013
  ident: 10.1016/j.intermet.2018.01.016_bib18
  article-title: Thermomagnetic analysis of FeCoCrxNi alloys: magnetic entropy of high-entropy alloys
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4798340
– volume: 125
  start-page: 481
  year: 2017
  ident: 10.1016/j.intermet.2018.01.016_bib15
  article-title: Rare-earth high-entropy alloys with giant magnetocaloric effect
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.12.021
– volume: 100
  start-page: 90
  year: 2015
  ident: 10.1016/j.intermet.2018.01.016_bib50
  article-title: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: importance of entropy contributions beyond the configurational one
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.08.050
– volume: 556
  start-page: 395
  year: 2012
  ident: 10.1016/j.intermet.2018.01.016_bib45
  article-title: Effect of elemental interaction on microstructure and mechanical properties of FeCoNiCuAl alloys
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2012.07.003
– volume: 26
  start-page: 3071
  year: 2017
  ident: 10.1016/j.intermet.2018.01.016_bib39
  article-title: Microstructure and room-temperature mechanical properties of FeCrMoVTix high-entropy alloys
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-017-2742-3
– volume: 508
  start-page: 214
  year: 2009
  ident: 10.1016/j.intermet.2018.01.016_bib46
  article-title: Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2008.12.053
– volume: 19
  start-page: 349
  year: 2016
  ident: 10.1016/j.intermet.2018.01.016_bib3
  article-title: High-entropy alloy: challenges and prospects
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2015.11.026
– volume: 107
  year: 2015
  ident: 10.1016/j.intermet.2018.01.016_bib55
  article-title: Phase stability and magnetic behavior of FeCrCoNiGe high-entropy alloy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4938398
– volume: 5
  start-page: 2382
  year: 1972
  ident: 10.1016/j.intermet.2018.01.016_bib30
  article-title: Coherent-potential approximation for a nonoverlapping-muffin-tin-potential model of random substitutional alloys
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.5.2382
– volume: 57
  start-page: 67
  year: 2014
  ident: 10.1016/j.intermet.2018.01.016_bib5
  article-title: Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2013.12.048
– volume: 60
  start-page: 5723
  year: 2012
  ident: 10.1016/j.intermet.2018.01.016_bib11
  article-title: Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2012.06.046
– volume: 103
  start-page: 71
  year: 2016
  ident: 10.1016/j.intermet.2018.01.016_bib17
  article-title: Mechanism of magnetic transition in FeCrCoNi-based high entropy alloys
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.04.053
– volume: 130
  start-page: 10
  year: 2017
  ident: 10.1016/j.intermet.2018.01.016_bib40
  article-title: Tailoring magnetic behavior of CoFeMnNiX (X = Al, Cr, Ga, and Sn) high entropy alloys by metal doping
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.03.013
– volume: 64
  year: 2001
  ident: 10.1016/j.intermet.2018.01.016_bib27
  article-title: Total-energy method based on the exact muffin-tin orbitals theory
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.64.014107
– volume: 6
  start-page: 6529
  year: 2015
  ident: 10.1016/j.intermet.2018.01.016_bib59
  article-title: Accelerated exploration of multi-principal element alloys with solid solution phases
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7529
– volume: 93
  year: 2004
  ident: 10.1016/j.intermet.2018.01.016_bib25
  article-title: Magnetic percolation in diluted magnetic semiconductors
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.137202
– volume: 107
  year: 2015
  ident: 10.1016/j.intermet.2018.01.016_bib26
  article-title: “Treasure maps” for magnetic high-entropy-alloys from theory and experiment
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4932571
– volume: 163
  start-page: 184
  year: 2009
  ident: 10.1016/j.intermet.2018.01.016_bib21
  article-title: Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤x≤2) high-entropy alloys
  publication-title: Mater. Sci. Eng., B
  doi: 10.1016/j.mseb.2009.05.024
– volume: 109
  year: 2011
  ident: 10.1016/j.intermet.2018.01.016_bib19
  article-title: Magnetic and vibrational properties of high-entropy alloys
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3538936
SSID ssj0017035
Score 2.4436707
Snippet Tailorable magnetic state near room temperature is very promising for several technological, including magnetocaloric applications. Here using first-principle...
SourceID swepub
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 80
SubjectTerms Composition effects
Crystal lattices
Crystal structure
Curie temperature
Dependence
Entropy
Entropy of solution
First principles
First-principle calculations
High entropy alloys
High strength alloys
Lattice parameters
Magnetic fields
Magnetic properties
Medium entropy alloys
Monte Carlo simulation
Monte-Carlo simulations
Organic chemistry
Solid solutions
Temperature effects
Title Mapping the magnetic transition temperatures for medium- and high-entropy alloys
URI https://dx.doi.org/10.1016/j.intermet.2018.01.016
https://www.proquest.com/docview/2065057436
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-228144
https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-66647
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-351640
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcoED4ikWSuUDcHM3fsR2jqtCtYBaIUFRb1ac2Mu2bHa1mxx66W_vTB6rRULsASmXJJ7IGY_tb-yZz4S8K0XMueGRZTJGpqIPLDeZZ0GEwoZYKKkxUfj8Qk8v1Zer9OqAnA65MBhW2Y_93Zjejtb9k3GvzfFqPh9_B_CtMwMIwUjOtcWEX6UMWvnJ3TbMg4NFt2GMUJhh6Z0s4esTpGRYLwLGVHLb0nfiued_n6B2AeguqWg7EZ09IY97BEknXSWfkoNQPSOPdngFn5Nv5znSLswooDu6yGcVZirSGqelNkKLIiFVz6a8oQBbKW6xNwtG86qkyGDMcNF3ubqluC9_u3lBLs8-_Tidsv7oBFak3NZMlmWmgs1KI0oAUCJGcERDGVNcwCgBVxVaiMSnvgiCyyiVjTaRoRC58TKKKF-Sw2pZhVeE8ph7rvPSB58rkwj4pk29TKWORVBRj0g66MsVPa84Hm_x2w0BZNdu0LNDPbuEwwVy463cqmPW2CuRDc3h_rARB8P_Xtmjof1c30s38F6jfwb2OCIfujbdVgVptz_Of07ccj1zN_UvJ4QF53NE3v-r4HLdOHAIldlTrmmcTMFTTV7_xz-9IQ_xrosjOiKH9boJbwEi1f647QPH5MHk89fpxT3VshY1
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECZSZ2g7FH2izqsc2m6sRVIPajSSBk4TGwWaFNkIUSIdp7Vs2NKQf987iTJcIKiHAppEnkAdH_cdefeRkI-FcBlPuGOpdI6FzliWJalhVthcWZeHMsZE4fEkHt2E326j2z1y2uXCYFilX_vbNb1Zrf2bgdfmYDmbDX4A-I7TBBBCIjmPlXpC9pGdKuqR_eHF5WiyOUyAQd1EMkJ9hgJbicL3X5CVYTW3GFbJVcPgiVefP26jtjHoNq9oY4vOX5IXHkTSYdvOV2TPlq_J8y1qwTfk-zhD5oUpBYBH59m0xGRFWqFlaoK0KHJSeULlNQXkSvGUvZ4zmpUFRRJjhvu-i-UDxaP5h_VbcnP-9fp0xPztCSyPuKqYLIo0tCotElEAhhLOgS9qCxfhHkYB0CqPhQhMZHIruHQyVE4F0uYiS4x0wsl3pFcuSvueUO4yw-OsMNZkYRII-KaKjIxk7HIburhPok5fOvfU4njDxW_dxZDd607PGvWsAw4PyA02csuWXGOnRNp1h_5rmGiwADtlj7r-036irqE8RhcNhmSffG77dNMUZN4-m_0c6sVqqn9Vd1oIBf5nn3z6V8XFqtbgE4bJjnp1rWUEzmpw8B__9IE8HV2Pr_TVxeTykDzDkjas6Ij0qlVtjwExVebEz4g_RSIY5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+the+magnetic+transition+temperatures+for+medium-+and+high-entropy+alloys&rft.jtitle=Intermetallics&rft.au=Huang%2C+Shuo&rft.au=Holmstrom%2C+Erik&rft.au=Eriksson%2C+Olle&rft.au=Vitos%2C+Levente&rft.date=2018-04-01&rft.issn=0966-9795&rft.volume=95&rft.spage=80&rft_id=info:doi/10.1016%2Fj.intermet.2018.01.016&rft.externalDocID=oai_DiVA_org_uu_351640
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0966-9795&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0966-9795&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0966-9795&client=summon