Mapping the magnetic transition temperatures for medium- and high-entropy alloys
Tailorable magnetic state near room temperature is very promising for several technological, including magnetocaloric applications. Here using first-principle alloy theory, we determine the Curie temperature (TC) of a number of equiatomic medium- and high-entropy alloys with solid solution phases. A...
Saved in:
Published in | Intermetallics Vol. 95; pp. 80 - 84 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Barking
Elsevier Ltd
01.04.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tailorable magnetic state near room temperature is very promising for several technological, including magnetocaloric applications. Here using first-principle alloy theory, we determine the Curie temperature (TC) of a number of equiatomic medium- and high-entropy alloys with solid solution phases. All calculations are performed at the computed lattice parameters, which are in line with the available experimental data. Theory predicts a large crystal structure dependence of TC, which explains the experimental observations under specified conditions. The sensitivity of the magnetic state to the crystal lattice is reflected by the magnetic exchange interactions entering the Heisenberg Hamiltonian. The analysis of the effect of composition on TC allows researchers to explore chemistry-dependent trends and design new multi-component alloys with pre-assigned magnetic properties.
[Display omitted]
•The magnetic state of equiatomic HEAs depends sensitively on alloy components.•In general, early transition metals (e.g., Cr) decrease and noble metals (e.g., Pt) increase the TC of equiatomic fcc HEAs.•The magnetic order survives up to 400–500 K larger temperatures in the bcc phase than in the fcc phase.•For most of the HEAs, the ferromagnetic exchange interactions are more dominating in the bcc phase than in the fcc phase. |
---|---|
AbstractList | Tailorable magnetic state near room temperature is very promising for several technological, including magnetocaloric applications. Here using first-principle alloy theory, we determine the Curie temperature (T-C) of a number of equiatomic medium- and high-entropy alloys with solid solution phases. All calculations are performed at the computed lattice parameters, which are in line with the available experimental data. Theory predicts a large crystal structure dependence of T-C, which explains the experimental observations under specified conditions. The sensitivity of the magnetic state to the crystal lattice is reflected by the magnetic exchange interactions entering the Heisenberg Hamiltonian. The analysis of the effect of composition on T-C allows researchers to explore chemistry-dependent trends and design new multi-component alloys with pre-assigned magnetic properties. Tailorable magnetic state near room temperature is very promising for several technological, including magnetocaloric applications. Here using first-principle alloy theory, we determine the Curie temperature (TC) of a number of equiatomic medium- and high-entropy alloys with solid solution phases. All calculations are performed at the computed lattice parameters, which are in line with the available experimental data. Theory predicts a large crystal structure dependence of TC, which explains the experimental observations under specified conditions. The sensitivity of the magnetic state to the crystal lattice is reflected by the magnetic exchange interactions entering the Heisenberg Hamiltonian. The analysis of the effect of composition on TC allows researchers to explore chemistry-dependent trends and design new multi-component alloys with pre-assigned magnetic properties. Tailorable magnetic state near room temperature is very promising for several technological, including magnetocaloric applications. Here using first-principle alloy theory, we determine the Curie temperature (TC) of a number of equiatomic medium- and high-entropy alloys with solid solution phases. All calculations are performed at the computed lattice parameters, which are in line with the available experimental data. Theory predicts a large crystal structure dependence of TC, which explains the experimental observations under specified conditions. The sensitivity of the magnetic state to the crystal lattice is reflected by the magnetic exchange interactions entering the Heisenberg Hamiltonian. The analysis of the effect of composition on TC allows researchers to explore chemistry-dependent trends and design new multi-component alloys with pre-assigned magnetic properties. [Display omitted] •The magnetic state of equiatomic HEAs depends sensitively on alloy components.•In general, early transition metals (e.g., Cr) decrease and noble metals (e.g., Pt) increase the TC of equiatomic fcc HEAs.•The magnetic order survives up to 400–500 K larger temperatures in the bcc phase than in the fcc phase.•For most of the HEAs, the ferromagnetic exchange interactions are more dominating in the bcc phase than in the fcc phase. |
Author | Vitos, Levente Holmström, Erik Huang, Shuo Eriksson, Olle |
Author_xml | – sequence: 1 givenname: Shuo surname: Huang fullname: Huang, Shuo email: shuoh@kth.se organization: Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm, SE-100 44, Sweden – sequence: 2 givenname: Erik surname: Holmström fullname: Holmström, Erik organization: Sandvik Coromant R&D, 126 80, Stockholm, Sweden – sequence: 3 givenname: Olle surname: Eriksson fullname: Eriksson, Olle organization: Department of Physics and Astronomy, Division of Materials Theory, Uppsala University, Box 516, SE-75120, Uppsala, Sweden – sequence: 4 givenname: Levente surname: Vitos fullname: Vitos, Levente email: levente@kth.se organization: Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm, SE-100 44, Sweden |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-228144$$DView record from Swedish Publication Index https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-66647$$DView record from Swedish Publication Index https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-351640$$DView record from Swedish Publication Index |
BookMark | eNqNkcFuEzEURS1UJNLCLyBLbJn02Z7xzEgsqFooSEV0Udhajv2cOGTswfaA8vdMFGDRTSpd6W3OvYt3zslZiAEJec1gyYDJy-3Sh4JpwLLkwLolsDnyGVmwru0r4EyekQX0UlZ92zcvyHnOWwDWgmgW5P6LHkcf1rRskA56HbB4Q0vSIfviY6AFhxGTLlPCTF1MdEDrp6GiOli68etNhaGkOO6p3u3iPr8kz53eZXz1916Qbx8_PFx_qu6-3n6-vrqrTMO6Uglr-xq73rbcQtNz5zrRonUN9EJYgN5IzmHVrAxyJpyoO9eBQMN1uxKOO3FB3h53828cp5Uakx902quovbrx369UTGs1TUo0TNbwNDymSUkp63bGq9P4j7JRnHesrmf-zZEfU_w5YS5qG6cU5gcoDrKBpq2FnCl5pEyKOSd0_3cZqINLtVX_XKqDSwVszqH47lHR-KIPfmZTfne6_v5Yx1nIL49JZeMxmNlkQlOUjf7UxB-8i8Mp |
CitedBy_id | crossref_primary_10_1016_j_mattod_2021_03_018 crossref_primary_10_1103_PhysRevB_106_214422 crossref_primary_10_1063_5_0064617 crossref_primary_10_1063_5_0063367 crossref_primary_10_1016_j_commatsci_2021_110408 crossref_primary_10_3390_ma16041486 crossref_primary_10_1016_j_jmst_2020_06_040 crossref_primary_10_1126_science_abo4940 crossref_primary_10_1016_j_intermet_2021_107399 crossref_primary_10_1016_j_jallcom_2019_03_133 crossref_primary_10_1080_14786435_2023_2193911 crossref_primary_10_1016_j_jallcom_2021_163428 crossref_primary_10_1016_j_actamat_2022_118662 crossref_primary_10_1080_21663831_2019_1644683 crossref_primary_10_1002_adem_201801055 crossref_primary_10_1557_jmr_2018_168 crossref_primary_10_1557_jmr_2018_323 crossref_primary_10_1016_j_jnoncrysol_2019_119865 crossref_primary_10_1007_s11661_024_07514_5 crossref_primary_10_1063_5_0065067 crossref_primary_10_1007_s12274_021_3900_3 crossref_primary_10_1016_j_scriptamat_2020_02_037 crossref_primary_10_1016_j_jmmm_2020_167432 crossref_primary_10_1038_s41524_021_00617_2 crossref_primary_10_1063_5_0201591 crossref_primary_10_1016_j_matchar_2018_06_019 crossref_primary_10_1016_j_scriptamat_2019_06_019 crossref_primary_10_1016_j_jmmm_2019_01_096 crossref_primary_10_1016_j_intermet_2022_107581 crossref_primary_10_1063_5_0017989 crossref_primary_10_1126_sciadv_abo7333 crossref_primary_10_1016_j_mtener_2020_100621 crossref_primary_10_1103_PhysRevMaterials_3_124410 crossref_primary_10_1103_PhysRevMaterials_5_085003 crossref_primary_10_1103_PhysRevMaterials_4_014402 crossref_primary_10_1016_j_jssc_2019_05_003 crossref_primary_10_1557_jmr_2018_237 crossref_primary_10_3390_ma14195824 crossref_primary_10_1016_j_matlet_2020_128653 crossref_primary_10_1038_s41598_018_30892_x crossref_primary_10_1103_PhysRevB_103_064407 crossref_primary_10_1002_adfm_202007668 crossref_primary_10_1016_j_intermet_2021_107298 crossref_primary_10_1016_j_intermet_2020_107050 crossref_primary_10_1016_j_commatsci_2021_110942 crossref_primary_10_2320_matertrans_MT_MA2024004 crossref_primary_10_1016_j_intermet_2020_106844 crossref_primary_10_1103_PhysRevMaterials_3_014411 crossref_primary_10_1016_j_intermet_2019_106672 crossref_primary_10_1038_s41598_018_30732_y crossref_primary_10_3390_met9020254 crossref_primary_10_1016_j_jmst_2021_07_019 crossref_primary_10_1007_s12598_024_03052_6 crossref_primary_10_1063_5_0064308 crossref_primary_10_1103_PhysRevMaterials_2_094407 crossref_primary_10_1016_j_scriptamat_2019_04_008 crossref_primary_10_1016_j_actamat_2024_120569 |
Cites_doi | 10.1109/LMAG.2016.2592462 10.1088/0034-4885/68/6/R04 10.1016/j.intermet.2014.08.008 10.1016/j.matdes.2016.12.079 10.1007/s10853-016-0609-x 10.1103/PhysRev.156.809 10.1016/j.msea.2012.03.080 10.1063/1.4918996 10.1016/j.jallcom.2008.07.124 10.1016/j.matdes.2016.01.149 10.1016/j.jallcom.2014.11.061 10.1016/j.intermet.2012.03.005 10.1002/adem.200300567 10.1038/srep26179 10.1016/j.actamat.2013.01.042 10.1016/j.jallcom.2016.08.326 10.1016/S1002-0071(12)60080-X 10.1016/S0081-1947(08)60518-4 10.1103/RevModPhys.82.1633 10.1088/0953-8984/20/31/315203 10.1016/j.intermet.2013.10.024 10.1103/PhysRevB.96.014437 10.1016/j.jallcom.2009.08.090 10.1016/j.pmatsci.2013.10.001 10.1038/srep15755 10.1080/21663831.2014.912690 10.1103/PhysRevLett.77.3865 10.1126/science.1254581 10.1002/adem.200700240 10.1016/j.msea.2003.10.257 10.1016/j.actamat.2016.08.081 10.1016/j.jmmm.2014.07.023 10.1088/0305-4608/15/6/018 10.1103/PhysRevLett.87.156401 10.1016/j.jallcom.2010.10.210 10.1016/j.matchemphys.2007.01.003 10.1016/j.intermet.2006.08.005 10.1016/j.intermet.2010.05.014 10.1103/PhysRevLett.113.107001 10.1063/1.4798340 10.1016/j.actamat.2016.12.021 10.1016/j.actamat.2015.08.050 10.1016/j.msea.2012.07.003 10.1007/s11665-017-2742-3 10.1016/j.msea.2008.12.053 10.1016/j.mattod.2015.11.026 10.1063/1.4938398 10.1103/PhysRevB.5.2382 10.1016/j.matdes.2013.12.048 10.1016/j.actamat.2012.06.046 10.1016/j.matdes.2016.04.053 10.1016/j.actamat.2017.03.013 10.1103/PhysRevB.64.014107 10.1038/ncomms7529 10.1103/PhysRevLett.93.137202 10.1063/1.4932571 10.1016/j.mseb.2009.05.024 10.1063/1.3538936 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Apr 2018 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Apr 2018 |
DBID | AAYXX CITATION 8BQ 8FD JG9 ADTPV AOWAS D8V D91 DF2 |
DOI | 10.1016/j.intermet.2018.01.016 |
DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan SWEPUB Örebro universitet SWEPUB Uppsala universitet |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0216 |
EndPage | 84 |
ExternalDocumentID | oai_DiVA_org_uu_351640 oai_DiVA_org_oru_66647 oai_DiVA_org_kth_228144 10_1016_j_intermet_2018_01_016 S0966979517311688 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFJKZ AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SMS SPC SPCBC SSM SSZ T5K UHS WUQ XPP ZMT ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH 8BQ 8FD EFKBS JG9 ADTPV AOWAS D8V D91 DF2 |
ID | FETCH-LOGICAL-c518t-3dd94e89d72d0592ff837edf50933d009c6220b5bce213f348f803ec2a7b3f2f3 |
IEDL.DBID | .~1 |
ISSN | 0966-9795 1879-0216 |
IngestDate | Thu Aug 21 06:45:58 EDT 2025 Thu Aug 21 06:51:58 EDT 2025 Thu Aug 21 07:29:20 EDT 2025 Sun Jul 13 04:10:11 EDT 2025 Thu Apr 24 22:53:07 EDT 2025 Tue Jul 01 02:43:25 EDT 2025 Tue Dec 03 03:44:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | High-entropy alloys Monte-Carlo simulations First-principle calculations Curie temperature |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-3dd94e89d72d0592ff837edf50933d009c6220b5bce213f348f803ec2a7b3f2f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2065057436 |
PQPubID | 2045471 |
PageCount | 5 |
ParticipantIDs | swepub_primary_oai_DiVA_org_uu_351640 swepub_primary_oai_DiVA_org_oru_66647 swepub_primary_oai_DiVA_org_kth_228144 proquest_journals_2065057436 crossref_primary_10_1016_j_intermet_2018_01_016 crossref_citationtrail_10_1016_j_intermet_2018_01_016 elsevier_sciencedirect_doi_10_1016_j_intermet_2018_01_016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-01 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Barking |
PublicationPlace_xml | – name: Barking |
PublicationTitle | Intermetallics |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Yuan, Wu, Tong, Zhang, Wang, Liu, Ma, Suo, Lu (bib15) 2017; 125 Zhao, Qiao, Ma, Gao, Yang, Chen, Zhang (bib6) 2016; 96 Laplanche, Gadaud, Horst, Otto, Eggeler, George (bib49) 2015; 623 Vitos (bib27) 2001; 64 Kao, Chen, Chen, Yeh (bib22) 2009; 488 Zhang, Zuo, Tang, Gao, Dahmen, Liaw, Lu (bib2) 2014; 61 Gschneidner, Pecharsky, Tsokol (bib13) 2005; 68 Vitos, Abrikosov, Johansson (bib31) 2001; 87 Győrffy (bib30) 1972; 5 Sales, Jin, Bei, Stocks, Samolyuk, May, McGuire (bib36) 2016; 6 Huang, Li, Li, Schönecker, Bergqvist, Holmström, Varga, Vitos (bib17) 2016; 103 Lucas, Belyea, Bauer, Bryant, Michel, Turgut, Leontsev, Horwath, Semiatin, McHenry, Miller (bib18) 2013; 113 Győrffy, Pindor, Staunton, Stocks, Winter (bib33) 1985; 15 Bergqvist, Eriksson, Kudrnovský, Drchal, Korzhavyi, Turek (bib25) 2004; 93 Zhuang, Liu, Chen, Xue, He (bib45) 2012; 556 Huang, Vida, Molnár, Kádas, Varga, Holmström, Vitos (bib55) 2015; 107 Körmann, Ma, Belyea, Lucas, Miller, Grabowski, Sluiter (bib26) 2015; 107 Vitos (bib28) 2007 Yeh, Chen, Lin, Gan, Chin, Shun, Tsau, Chang (bib1) 2004; 6 Ye, Wang, Lu, Liu, Yang (bib3) 2016; 19 Guo, Huang, Huang (bib39) 2017; 26 Perdew, Burke, Ernzerhof (bib32) 1996; 77 Miracle, Senkov (bib4) 2017; 122 Tsai, Yeh (bib7) 2014; 2 Zhang, Fu, Zhang, Wang, Wang, Wang, Zhang, Shi (bib46) 2009; 508 Zhang, Zhou, Lin, Chen, Liaw (bib48) 2008; 10 Zuo, Li, Ren, Zhang (bib37) 2014; 371 Hemphill, Yuan, Wang, Yeh, Tsai, Chuang, Liaw (bib11) 2012; 60 Kao, Chen, Chen, Chu, Yeh, Lin (bib16) 2011; 509 Wu, Bei, Otto, Pharr, George (bib35) 2014; 46 Dong, Zhou, Lu, Gao, Wang, Li (bib5) 2014; 57 Skubic, Hellsvik, Nordström, Eriksson (bib58) 2008; 20 Yeh, Chang, Hong, Chen, Lin (bib34) 2007; 103 Wang, Wang, Wang, Tsai, Lai, Yeh (bib23) 2012; 26 Schneeweiss, Friák, Dudová, Holec, Šob, Kriegner, Holý, Beran, George, Neugebauer, Dlouhý (bib56) 2017; 96 Soven (bib29) 1967; 156 Jin, Mu, An, Porter, Samolyuk, Stocks, Bei (bib38) 2017; 117 Ji, Wang, Wang, Zhang, Wang, Zhang, Fu (bib57) 2015; 56 Niu, Zaddach, Oni, Sang, Hurt, LeBeau, Koch, Irving (bib20) 2015; 106 Zuo, Gao, Ouyang, Yang, Cheng, Feng, Chen, Liaw, Hawk, Zhang (bib40) 2017; 130 Belyea, Lucas, Michel, Horwath, Miller (bib14) 2015; 5 Cantor, Chang, Knight, Vincent (bib53) 2004; 375–377 Kurniawan, Perrin, Xu, Keylin, McHenry (bib52) 2016; 7 Senkov, Miller, Miracle, Woodward (bib59) 2015; 6 Koželj, Vrtnik, Jelen, Jazbec, Jagličić, Maiti, Feuerbacher, Steurer, Dolinšek (bib12) 2014; 113 Ma, Grabowski, Körmann, Neugebauer, Raabe (bib50) 2015; 100 Chou, Chang, Chen, Yeh (bib21) 2009; 163 Gao, Yeh, Liaw, Zhang (bib8) 2016 Liu, Zhu, Zhang, Li, Jiang (bib41) 2012; 548 Marshal, Pradeep, Music, Zaefferer, De, Schneider (bib43) 2017; 691 Gludovatz, Hohenwarter, Catoor, Chang, George, Ritchie (bib10) 2014; 345 Otto, Yang, Bei, George (bib47) 2013; 61 Sato, Bergqvist, Kudrnovský, Dederichs, Eriksson, Turek, Sanyal, Bouzerar, Katayama-Yoshida, Dinh, Fukushima, Kizaki, Zeller (bib24) 2010; 82 Gschneidner (bib60) 1964; 16 Li, Li, Zhao, Jiang (bib44) 2009; 475 Lucas, Mauger, Muñoz, Xiao, Sheets, Semiatin, Horwath, Turgut (bib19) 2011; 109 Jiang, Sun, Zhang, Wang, Zhao (bib42) 2017; 52 Senkov, Wilks, Miracle, Chuang, Liaw (bib9) 2010; 18 Guo, Liu (bib54) 2011; 21 Wang, Zhang, Qiao, Chen (bib51) 2007; 15 Bergqvist (10.1016/j.intermet.2018.01.016_bib25) 2004; 93 Győrffy (10.1016/j.intermet.2018.01.016_bib33) 1985; 15 Gludovatz (10.1016/j.intermet.2018.01.016_bib10) 2014; 345 Senkov (10.1016/j.intermet.2018.01.016_bib59) 2015; 6 Jiang (10.1016/j.intermet.2018.01.016_bib42) 2017; 52 Guo (10.1016/j.intermet.2018.01.016_bib39) 2017; 26 Niu (10.1016/j.intermet.2018.01.016_bib20) 2015; 106 Liu (10.1016/j.intermet.2018.01.016_bib41) 2012; 548 Chou (10.1016/j.intermet.2018.01.016_bib21) 2009; 163 Schneeweiss (10.1016/j.intermet.2018.01.016_bib56) 2017; 96 Cantor (10.1016/j.intermet.2018.01.016_bib53) 2004; 375–377 Perdew (10.1016/j.intermet.2018.01.016_bib32) 1996; 77 Guo (10.1016/j.intermet.2018.01.016_bib54) 2011; 21 Soven (10.1016/j.intermet.2018.01.016_bib29) 1967; 156 Jin (10.1016/j.intermet.2018.01.016_bib38) 2017; 117 Ye (10.1016/j.intermet.2018.01.016_bib3) 2016; 19 Laplanche (10.1016/j.intermet.2018.01.016_bib49) 2015; 623 Vitos (10.1016/j.intermet.2018.01.016_bib27) 2001; 64 Belyea (10.1016/j.intermet.2018.01.016_bib14) 2015; 5 Vitos (10.1016/j.intermet.2018.01.016_bib31) 2001; 87 Lucas (10.1016/j.intermet.2018.01.016_bib19) 2011; 109 Wu (10.1016/j.intermet.2018.01.016_bib35) 2014; 46 Zhao (10.1016/j.intermet.2018.01.016_bib6) 2016; 96 Huang (10.1016/j.intermet.2018.01.016_bib17) 2016; 103 Zhang (10.1016/j.intermet.2018.01.016_bib46) 2009; 508 Yuan (10.1016/j.intermet.2018.01.016_bib15) 2017; 125 Skubic (10.1016/j.intermet.2018.01.016_bib58) 2008; 20 Gschneidner (10.1016/j.intermet.2018.01.016_bib60) 1964; 16 Senkov (10.1016/j.intermet.2018.01.016_bib9) 2010; 18 Ma (10.1016/j.intermet.2018.01.016_bib50) 2015; 100 Dong (10.1016/j.intermet.2018.01.016_bib5) 2014; 57 Li (10.1016/j.intermet.2018.01.016_bib44) 2009; 475 Zhang (10.1016/j.intermet.2018.01.016_bib2) 2014; 61 Körmann (10.1016/j.intermet.2018.01.016_bib26) 2015; 107 Zuo (10.1016/j.intermet.2018.01.016_bib40) 2017; 130 Kurniawan (10.1016/j.intermet.2018.01.016_bib52) 2016; 7 Vitos (10.1016/j.intermet.2018.01.016_bib28) 2007 Sato (10.1016/j.intermet.2018.01.016_bib24) 2010; 82 Sales (10.1016/j.intermet.2018.01.016_bib36) 2016; 6 Wang (10.1016/j.intermet.2018.01.016_bib23) 2012; 26 Wang (10.1016/j.intermet.2018.01.016_bib51) 2007; 15 Otto (10.1016/j.intermet.2018.01.016_bib47) 2013; 61 Hemphill (10.1016/j.intermet.2018.01.016_bib11) 2012; 60 Ji (10.1016/j.intermet.2018.01.016_bib57) 2015; 56 Lucas (10.1016/j.intermet.2018.01.016_bib18) 2013; 113 Zhuang (10.1016/j.intermet.2018.01.016_bib45) 2012; 556 Zuo (10.1016/j.intermet.2018.01.016_bib37) 2014; 371 Yeh (10.1016/j.intermet.2018.01.016_bib1) 2004; 6 Marshal (10.1016/j.intermet.2018.01.016_bib43) 2017; 691 Zhang (10.1016/j.intermet.2018.01.016_bib48) 2008; 10 Győrffy (10.1016/j.intermet.2018.01.016_bib30) 1972; 5 Huang (10.1016/j.intermet.2018.01.016_bib55) 2015; 107 Tsai (10.1016/j.intermet.2018.01.016_bib7) 2014; 2 Gao (10.1016/j.intermet.2018.01.016_bib8) 2016 Gschneidner (10.1016/j.intermet.2018.01.016_bib13) 2005; 68 Yeh (10.1016/j.intermet.2018.01.016_bib34) 2007; 103 Kao (10.1016/j.intermet.2018.01.016_bib22) 2009; 488 Koželj (10.1016/j.intermet.2018.01.016_bib12) 2014; 113 Miracle (10.1016/j.intermet.2018.01.016_bib4) 2017; 122 Kao (10.1016/j.intermet.2018.01.016_bib16) 2011; 509 |
References_xml | – volume: 68 start-page: 1479 year: 2005 ident: bib13 article-title: Recent developments in magnetocaloric materials publication-title: Rep. Prog. Phys. – volume: 5 start-page: 2382 year: 1972 end-page: 2384 ident: bib30 article-title: Coherent-potential approximation for a nonoverlapping-muffin-tin-potential model of random substitutional alloys publication-title: Phys. Rev. B – volume: 10 start-page: 534 year: 2008 end-page: 538 ident: bib48 article-title: Solid-solution phase formation rules for multi-component alloys publication-title: Adv. Eng. Mater. – volume: 488 start-page: 57 year: 2009 end-page: 64 ident: bib22 article-title: Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys publication-title: J. Alloy. Comp. – volume: 125 start-page: 481 year: 2017 end-page: 489 ident: bib15 article-title: Rare-earth high-entropy alloys with giant magnetocaloric effect publication-title: Acta Mater. – volume: 100 start-page: 90 year: 2015 end-page: 97 ident: bib50 article-title: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: importance of entropy contributions beyond the configurational one publication-title: Acta Mater. – volume: 113 year: 2014 ident: bib12 article-title: Discovery of a superconducting high-entropy alloy publication-title: Phys. Rev. Lett. – volume: 7 start-page: 1 year: 2016 end-page: 5 ident: bib52 article-title: Curie temperature engineering in high entropy alloys for magnetocaloric applications publication-title: IEEE Magn. Lett. – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: bib32 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 20 year: 2008 ident: bib58 article-title: A method for atomistic spin dynamics simulations: implementation and examples publication-title: J. Phys. Condens. Matter – volume: 508 start-page: 214 year: 2009 end-page: 219 ident: bib46 article-title: Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys publication-title: Mater. Sci. Eng. A – volume: 61 start-page: 2628 year: 2013 end-page: 2638 ident: bib47 article-title: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys publication-title: Acta Mater. – volume: 103 start-page: 41 year: 2007 end-page: 46 ident: bib34 article-title: Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements publication-title: Mater. Chem. Phys. – volume: 122 start-page: 448 year: 2017 end-page: 511 ident: bib4 article-title: A critical review of high entropy alloys and related concepts publication-title: Acta Mater. – volume: 57 start-page: 67 year: 2014 end-page: 72 ident: bib5 article-title: Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy publication-title: Mater. Des. – volume: 113 year: 2013 ident: bib18 article-title: Thermomagnetic analysis of FeCoCrxNi alloys: magnetic entropy of high-entropy alloys publication-title: J. Appl. Phys. – volume: 15 start-page: 1337 year: 1985 end-page: 1386 ident: bib33 article-title: A first-principles theory of ferromagnetic phase transitions in metals publication-title: J. Phys. F Met. Phys. – volume: 26 start-page: 44 year: 2012 end-page: 51 ident: bib23 article-title: Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys publication-title: Intermetallics – volume: 15 start-page: 357 year: 2007 end-page: 362 ident: bib51 article-title: Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys publication-title: Intermetallics – volume: 96 start-page: 10 year: 2016 end-page: 15 ident: bib6 article-title: A hexagonal close-packed high-entropy alloy: the effect of entropy publication-title: Mater. Des. – volume: 156 start-page: 809 year: 1967 end-page: 813 ident: bib29 article-title: Coherent-potential model of substitutional disordered alloys publication-title: Phys. Rev. – volume: 375–377 start-page: 213 year: 2004 end-page: 218 ident: bib53 article-title: Microstructural development in equiatomic multicomponent alloys publication-title: Mater. Sci. Eng. A – volume: 46 start-page: 131 year: 2014 end-page: 140 ident: bib35 article-title: Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys publication-title: Intermetallics – year: 2016 ident: bib8 article-title: High-entropy Alloys: Fundamentals and Applications – volume: 5 year: 2015 ident: bib14 article-title: Tunable magnetocaloric effect in transition metal alloys publication-title: Sci. Rep. – year: 2007 ident: bib28 article-title: Computational Quantum Mechanics for Materials Engineers – volume: 130 start-page: 10 year: 2017 end-page: 18 ident: bib40 article-title: Tailoring magnetic behavior of CoFeMnNiX (X = Al, Cr, Ga, and Sn) high entropy alloys by metal doping publication-title: Acta Mater. – volume: 6 start-page: 299 year: 2004 end-page: 303 ident: bib1 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater. – volume: 556 start-page: 395 year: 2012 end-page: 399 ident: bib45 article-title: Effect of elemental interaction on microstructure and mechanical properties of FeCoNiCuAl alloys publication-title: Mater. Sci. Eng. A – volume: 475 start-page: 752 year: 2009 end-page: 757 ident: bib44 article-title: Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys publication-title: J. Alloy. Comp. – volume: 623 start-page: 348 year: 2015 end-page: 353 ident: bib49 article-title: Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy publication-title: J. Alloy. Comp. – volume: 52 start-page: 3199 year: 2017 end-page: 3207 ident: bib42 article-title: Plastic deformation mechanisms of equiatomic Ni publication-title: J. Mater. Sci. – volume: 106 year: 2015 ident: bib20 article-title: Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo publication-title: Appl. Phys. Lett. – volume: 82 start-page: 1633 year: 2010 end-page: 1690 ident: bib24 article-title: First-principles theory of dilute magnetic semiconductors publication-title: Rev. Mod. Phys. – volume: 61 start-page: 1 year: 2014 end-page: 93 ident: bib2 article-title: Microstructures and properties of high-entropy alloys publication-title: Prog. Mater. Sci. – volume: 60 start-page: 5723 year: 2012 end-page: 5734 ident: bib11 article-title: Fatigue behavior of Al publication-title: Acta Mater. – volume: 107 year: 2015 ident: bib26 article-title: “Treasure maps” for magnetic high-entropy-alloys from theory and experiment publication-title: Appl. Phys. Lett. – volume: 6 start-page: 6529 year: 2015 ident: bib59 article-title: Accelerated exploration of multi-principal element alloys with solid solution phases publication-title: Nat. Commun. – volume: 163 start-page: 184 year: 2009 end-page: 189 ident: bib21 article-title: Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤x≤2) high-entropy alloys publication-title: Mater. Sci. Eng., B – volume: 6 year: 2016 ident: bib36 article-title: Quantum critical behavior in a concentrated ternary solid solution publication-title: Sci. Rep. – volume: 107 year: 2015 ident: bib55 article-title: Phase stability and magnetic behavior of FeCrCoNiGe high-entropy alloy publication-title: Appl. Phys. Lett. – volume: 16 start-page: 275 year: 1964 end-page: 426 ident: bib60 article-title: Physical properties and interrelationships of metallic and semimetallic elements publication-title: Solid State Phys. – volume: 21 start-page: 433 year: 2011 end-page: 446 ident: bib54 article-title: Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase publication-title: Prog. Nat. Sci. Mater. Int – volume: 96 year: 2017 ident: bib56 article-title: Magnetic properties of the CrMnFeCoNi high-entropy alloy publication-title: Phys. Rev. B – volume: 691 start-page: 683 year: 2017 end-page: 689 ident: bib43 article-title: Combinatorial synthesis of high entropy alloys: introduction of a novel, single phase, body-centered-cubic FeMnCoCrAl solid solution publication-title: J. Alloy. Comp. – volume: 87 year: 2001 ident: bib31 article-title: Anisotropic lattice distortions in random alloys from first-principles theory publication-title: Phys. Rev. Lett. – volume: 103 start-page: 71 year: 2016 end-page: 74 ident: bib17 article-title: Mechanism of magnetic transition in FeCrCoNi-based high entropy alloys publication-title: Mater. Des. – volume: 18 start-page: 1758 year: 2010 end-page: 1765 ident: bib9 article-title: Refractory high-entropy alloys publication-title: Intermetallics – volume: 345 start-page: 1153 year: 2014 end-page: 1158 ident: bib10 article-title: A fracture-resistant high-entropy alloy for cryogenic applications publication-title: Science – volume: 109 year: 2011 ident: bib19 article-title: Magnetic and vibrational properties of high-entropy alloys publication-title: J. Appl. Phys. – volume: 509 start-page: 1607 year: 2011 end-page: 1614 ident: bib16 article-title: Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys publication-title: J. Alloy. Comp. – volume: 64 year: 2001 ident: bib27 article-title: Total-energy method based on the exact muffin-tin orbitals theory publication-title: Phys. Rev. B – volume: 93 year: 2004 ident: bib25 article-title: Magnetic percolation in diluted magnetic semiconductors publication-title: Phys. Rev. Lett. – volume: 371 start-page: 60 year: 2014 end-page: 68 ident: bib37 article-title: Effects of Al and Si addition on the structure and properties of CoFeNi equal atomic ratio alloy publication-title: J. Magn. Magn Mater. – volume: 548 start-page: 64 year: 2012 end-page: 68 ident: bib41 article-title: Microstructure and the properties of FeCoCuNiSnx high entropy alloys publication-title: Mater. Sci. Eng. A – volume: 56 start-page: 24 year: 2015 end-page: 27 ident: bib57 article-title: Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering publication-title: Intermetallics – volume: 26 start-page: 3071 year: 2017 end-page: 3078 ident: bib39 article-title: Microstructure and room-temperature mechanical properties of FeCrMoVTix high-entropy alloys publication-title: J. Mater. Eng. Perform. – volume: 19 start-page: 349 year: 2016 end-page: 362 ident: bib3 article-title: High-entropy alloy: challenges and prospects publication-title: Mater. Today – volume: 2 start-page: 107 year: 2014 end-page: 123 ident: bib7 article-title: High-entropy alloys: a critical review publication-title: Mater. Res. Lett. – volume: 117 start-page: 185 year: 2017 end-page: 192 ident: bib38 article-title: Thermophysical properties of Ni-containing single-phase concentrated solid solution alloys publication-title: Mater. Des. – volume: 7 start-page: 1 year: 2016 ident: 10.1016/j.intermet.2018.01.016_bib52 article-title: Curie temperature engineering in high entropy alloys for magnetocaloric applications publication-title: IEEE Magn. Lett. doi: 10.1109/LMAG.2016.2592462 – year: 2016 ident: 10.1016/j.intermet.2018.01.016_bib8 – volume: 68 start-page: 1479 year: 2005 ident: 10.1016/j.intermet.2018.01.016_bib13 article-title: Recent developments in magnetocaloric materials publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/68/6/R04 – volume: 56 start-page: 24 year: 2015 ident: 10.1016/j.intermet.2018.01.016_bib57 article-title: Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering publication-title: Intermetallics doi: 10.1016/j.intermet.2014.08.008 – volume: 117 start-page: 185 year: 2017 ident: 10.1016/j.intermet.2018.01.016_bib38 article-title: Thermophysical properties of Ni-containing single-phase concentrated solid solution alloys publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.12.079 – volume: 52 start-page: 3199 year: 2017 ident: 10.1016/j.intermet.2018.01.016_bib42 article-title: Plastic deformation mechanisms of equiatomic Ni20Ti20Fe20Al20Cu20 high-entropy alloy at high temperatures publication-title: J. Mater. Sci. doi: 10.1007/s10853-016-0609-x – volume: 156 start-page: 809 year: 1967 ident: 10.1016/j.intermet.2018.01.016_bib29 article-title: Coherent-potential model of substitutional disordered alloys publication-title: Phys. Rev. doi: 10.1103/PhysRev.156.809 – volume: 548 start-page: 64 year: 2012 ident: 10.1016/j.intermet.2018.01.016_bib41 article-title: Microstructure and the properties of FeCoCuNiSnx high entropy alloys publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2012.03.080 – volume: 106 year: 2015 ident: 10.1016/j.intermet.2018.01.016_bib20 article-title: Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo publication-title: Appl. Phys. Lett. doi: 10.1063/1.4918996 – volume: 475 start-page: 752 year: 2009 ident: 10.1016/j.intermet.2018.01.016_bib44 article-title: Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2008.07.124 – volume: 96 start-page: 10 year: 2016 ident: 10.1016/j.intermet.2018.01.016_bib6 article-title: A hexagonal close-packed high-entropy alloy: the effect of entropy publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.01.149 – volume: 623 start-page: 348 year: 2015 ident: 10.1016/j.intermet.2018.01.016_bib49 article-title: Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2014.11.061 – volume: 26 start-page: 44 year: 2012 ident: 10.1016/j.intermet.2018.01.016_bib23 article-title: Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2012.03.005 – volume: 6 start-page: 299 year: 2004 ident: 10.1016/j.intermet.2018.01.016_bib1 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200300567 – volume: 6 year: 2016 ident: 10.1016/j.intermet.2018.01.016_bib36 article-title: Quantum critical behavior in a concentrated ternary solid solution publication-title: Sci. Rep. doi: 10.1038/srep26179 – volume: 61 start-page: 2628 year: 2013 ident: 10.1016/j.intermet.2018.01.016_bib47 article-title: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.01.042 – volume: 691 start-page: 683 year: 2017 ident: 10.1016/j.intermet.2018.01.016_bib43 article-title: Combinatorial synthesis of high entropy alloys: introduction of a novel, single phase, body-centered-cubic FeMnCoCrAl solid solution publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2016.08.326 – volume: 21 start-page: 433 year: 2011 ident: 10.1016/j.intermet.2018.01.016_bib54 article-title: Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase publication-title: Prog. Nat. Sci. Mater. Int doi: 10.1016/S1002-0071(12)60080-X – volume: 16 start-page: 275 year: 1964 ident: 10.1016/j.intermet.2018.01.016_bib60 article-title: Physical properties and interrelationships of metallic and semimetallic elements publication-title: Solid State Phys. doi: 10.1016/S0081-1947(08)60518-4 – volume: 82 start-page: 1633 year: 2010 ident: 10.1016/j.intermet.2018.01.016_bib24 article-title: First-principles theory of dilute magnetic semiconductors publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.1633 – volume: 20 year: 2008 ident: 10.1016/j.intermet.2018.01.016_bib58 article-title: A method for atomistic spin dynamics simulations: implementation and examples publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/20/31/315203 – volume: 46 start-page: 131 year: 2014 ident: 10.1016/j.intermet.2018.01.016_bib35 article-title: Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2013.10.024 – volume: 96 year: 2017 ident: 10.1016/j.intermet.2018.01.016_bib56 article-title: Magnetic properties of the CrMnFeCoNi high-entropy alloy publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.014437 – volume: 488 start-page: 57 year: 2009 ident: 10.1016/j.intermet.2018.01.016_bib22 article-title: Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2009.08.090 – volume: 61 start-page: 1 year: 2014 ident: 10.1016/j.intermet.2018.01.016_bib2 article-title: Microstructures and properties of high-entropy alloys publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2013.10.001 – volume: 5 year: 2015 ident: 10.1016/j.intermet.2018.01.016_bib14 article-title: Tunable magnetocaloric effect in transition metal alloys publication-title: Sci. Rep. doi: 10.1038/srep15755 – volume: 2 start-page: 107 year: 2014 ident: 10.1016/j.intermet.2018.01.016_bib7 article-title: High-entropy alloys: a critical review publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2014.912690 – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.intermet.2018.01.016_bib32 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 345 start-page: 1153 year: 2014 ident: 10.1016/j.intermet.2018.01.016_bib10 article-title: A fracture-resistant high-entropy alloy for cryogenic applications publication-title: Science doi: 10.1126/science.1254581 – volume: 10 start-page: 534 year: 2008 ident: 10.1016/j.intermet.2018.01.016_bib48 article-title: Solid-solution phase formation rules for multi-component alloys publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200700240 – volume: 375–377 start-page: 213 year: 2004 ident: 10.1016/j.intermet.2018.01.016_bib53 article-title: Microstructural development in equiatomic multicomponent alloys publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2003.10.257 – volume: 122 start-page: 448 year: 2017 ident: 10.1016/j.intermet.2018.01.016_bib4 article-title: A critical review of high entropy alloys and related concepts publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.08.081 – volume: 371 start-page: 60 year: 2014 ident: 10.1016/j.intermet.2018.01.016_bib37 article-title: Effects of Al and Si addition on the structure and properties of CoFeNi equal atomic ratio alloy publication-title: J. Magn. Magn Mater. doi: 10.1016/j.jmmm.2014.07.023 – volume: 15 start-page: 1337 year: 1985 ident: 10.1016/j.intermet.2018.01.016_bib33 article-title: A first-principles theory of ferromagnetic phase transitions in metals publication-title: J. Phys. F Met. Phys. doi: 10.1088/0305-4608/15/6/018 – volume: 87 year: 2001 ident: 10.1016/j.intermet.2018.01.016_bib31 article-title: Anisotropic lattice distortions in random alloys from first-principles theory publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.156401 – volume: 509 start-page: 1607 year: 2011 ident: 10.1016/j.intermet.2018.01.016_bib16 article-title: Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2010.10.210 – volume: 103 start-page: 41 year: 2007 ident: 10.1016/j.intermet.2018.01.016_bib34 article-title: Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2007.01.003 – volume: 15 start-page: 357 year: 2007 ident: 10.1016/j.intermet.2018.01.016_bib51 article-title: Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2006.08.005 – year: 2007 ident: 10.1016/j.intermet.2018.01.016_bib28 – volume: 18 start-page: 1758 year: 2010 ident: 10.1016/j.intermet.2018.01.016_bib9 article-title: Refractory high-entropy alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2010.05.014 – volume: 113 year: 2014 ident: 10.1016/j.intermet.2018.01.016_bib12 article-title: Discovery of a superconducting high-entropy alloy publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.107001 – volume: 113 year: 2013 ident: 10.1016/j.intermet.2018.01.016_bib18 article-title: Thermomagnetic analysis of FeCoCrxNi alloys: magnetic entropy of high-entropy alloys publication-title: J. Appl. Phys. doi: 10.1063/1.4798340 – volume: 125 start-page: 481 year: 2017 ident: 10.1016/j.intermet.2018.01.016_bib15 article-title: Rare-earth high-entropy alloys with giant magnetocaloric effect publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.12.021 – volume: 100 start-page: 90 year: 2015 ident: 10.1016/j.intermet.2018.01.016_bib50 article-title: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: importance of entropy contributions beyond the configurational one publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.08.050 – volume: 556 start-page: 395 year: 2012 ident: 10.1016/j.intermet.2018.01.016_bib45 article-title: Effect of elemental interaction on microstructure and mechanical properties of FeCoNiCuAl alloys publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2012.07.003 – volume: 26 start-page: 3071 year: 2017 ident: 10.1016/j.intermet.2018.01.016_bib39 article-title: Microstructure and room-temperature mechanical properties of FeCrMoVTix high-entropy alloys publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-017-2742-3 – volume: 508 start-page: 214 year: 2009 ident: 10.1016/j.intermet.2018.01.016_bib46 article-title: Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2008.12.053 – volume: 19 start-page: 349 year: 2016 ident: 10.1016/j.intermet.2018.01.016_bib3 article-title: High-entropy alloy: challenges and prospects publication-title: Mater. Today doi: 10.1016/j.mattod.2015.11.026 – volume: 107 year: 2015 ident: 10.1016/j.intermet.2018.01.016_bib55 article-title: Phase stability and magnetic behavior of FeCrCoNiGe high-entropy alloy publication-title: Appl. Phys. Lett. doi: 10.1063/1.4938398 – volume: 5 start-page: 2382 year: 1972 ident: 10.1016/j.intermet.2018.01.016_bib30 article-title: Coherent-potential approximation for a nonoverlapping-muffin-tin-potential model of random substitutional alloys publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.5.2382 – volume: 57 start-page: 67 year: 2014 ident: 10.1016/j.intermet.2018.01.016_bib5 article-title: Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy publication-title: Mater. Des. doi: 10.1016/j.matdes.2013.12.048 – volume: 60 start-page: 5723 year: 2012 ident: 10.1016/j.intermet.2018.01.016_bib11 article-title: Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2012.06.046 – volume: 103 start-page: 71 year: 2016 ident: 10.1016/j.intermet.2018.01.016_bib17 article-title: Mechanism of magnetic transition in FeCrCoNi-based high entropy alloys publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.04.053 – volume: 130 start-page: 10 year: 2017 ident: 10.1016/j.intermet.2018.01.016_bib40 article-title: Tailoring magnetic behavior of CoFeMnNiX (X = Al, Cr, Ga, and Sn) high entropy alloys by metal doping publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.03.013 – volume: 64 year: 2001 ident: 10.1016/j.intermet.2018.01.016_bib27 article-title: Total-energy method based on the exact muffin-tin orbitals theory publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.64.014107 – volume: 6 start-page: 6529 year: 2015 ident: 10.1016/j.intermet.2018.01.016_bib59 article-title: Accelerated exploration of multi-principal element alloys with solid solution phases publication-title: Nat. Commun. doi: 10.1038/ncomms7529 – volume: 93 year: 2004 ident: 10.1016/j.intermet.2018.01.016_bib25 article-title: Magnetic percolation in diluted magnetic semiconductors publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.137202 – volume: 107 year: 2015 ident: 10.1016/j.intermet.2018.01.016_bib26 article-title: “Treasure maps” for magnetic high-entropy-alloys from theory and experiment publication-title: Appl. Phys. Lett. doi: 10.1063/1.4932571 – volume: 163 start-page: 184 year: 2009 ident: 10.1016/j.intermet.2018.01.016_bib21 article-title: Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤x≤2) high-entropy alloys publication-title: Mater. Sci. Eng., B doi: 10.1016/j.mseb.2009.05.024 – volume: 109 year: 2011 ident: 10.1016/j.intermet.2018.01.016_bib19 article-title: Magnetic and vibrational properties of high-entropy alloys publication-title: J. Appl. Phys. doi: 10.1063/1.3538936 |
SSID | ssj0017035 |
Score | 2.4436707 |
Snippet | Tailorable magnetic state near room temperature is very promising for several technological, including magnetocaloric applications. Here using first-principle... |
SourceID | swepub proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 80 |
SubjectTerms | Composition effects Crystal lattices Crystal structure Curie temperature Dependence Entropy Entropy of solution First principles First-principle calculations High entropy alloys High strength alloys Lattice parameters Magnetic fields Magnetic properties Medium entropy alloys Monte Carlo simulation Monte-Carlo simulations Organic chemistry Solid solutions Temperature effects |
Title | Mapping the magnetic transition temperatures for medium- and high-entropy alloys |
URI | https://dx.doi.org/10.1016/j.intermet.2018.01.016 https://www.proquest.com/docview/2065057436 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-228144 https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-66647 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-351640 |
Volume | 95 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqcoED4ikWSuUDcHM3fsR2jqtCtYBaIUFRb1ac2Mu2bHa1mxx66W_vTB6rRULsASmXJJ7IGY_tb-yZz4S8K0XMueGRZTJGpqIPLDeZZ0GEwoZYKKkxUfj8Qk8v1Zer9OqAnA65MBhW2Y_93Zjejtb9k3GvzfFqPh9_B_CtMwMIwUjOtcWEX6UMWvnJ3TbMg4NFt2GMUJhh6Z0s4esTpGRYLwLGVHLb0nfiued_n6B2AeguqWg7EZ09IY97BEknXSWfkoNQPSOPdngFn5Nv5znSLswooDu6yGcVZirSGqelNkKLIiFVz6a8oQBbKW6xNwtG86qkyGDMcNF3ubqluC9_u3lBLs8-_Tidsv7oBFak3NZMlmWmgs1KI0oAUCJGcERDGVNcwCgBVxVaiMSnvgiCyyiVjTaRoRC58TKKKF-Sw2pZhVeE8ph7rvPSB58rkwj4pk29TKWORVBRj0g66MsVPa84Hm_x2w0BZNdu0LNDPbuEwwVy463cqmPW2CuRDc3h_rARB8P_Xtmjof1c30s38F6jfwb2OCIfujbdVgVptz_Of07ccj1zN_UvJ4QF53NE3v-r4HLdOHAIldlTrmmcTMFTTV7_xz-9IQ_xrosjOiKH9boJbwEi1f647QPH5MHk89fpxT3VshY1 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECZSZ2g7FH2izqsc2m6sRVIPajSSBk4TGwWaFNkIUSIdp7Vs2NKQf987iTJcIKiHAppEnkAdH_cdefeRkI-FcBlPuGOpdI6FzliWJalhVthcWZeHMsZE4fEkHt2E326j2z1y2uXCYFilX_vbNb1Zrf2bgdfmYDmbDX4A-I7TBBBCIjmPlXpC9pGdKuqR_eHF5WiyOUyAQd1EMkJ9hgJbicL3X5CVYTW3GFbJVcPgiVefP26jtjHoNq9oY4vOX5IXHkTSYdvOV2TPlq_J8y1qwTfk-zhD5oUpBYBH59m0xGRFWqFlaoK0KHJSeULlNQXkSvGUvZ4zmpUFRRJjhvu-i-UDxaP5h_VbcnP-9fp0xPztCSyPuKqYLIo0tCotElEAhhLOgS9qCxfhHkYB0CqPhQhMZHIruHQyVE4F0uYiS4x0wsl3pFcuSvueUO4yw-OsMNZkYRII-KaKjIxk7HIburhPok5fOvfU4njDxW_dxZDd607PGvWsAw4PyA02csuWXGOnRNp1h_5rmGiwADtlj7r-036irqE8RhcNhmSffG77dNMUZN4-m_0c6sVqqn9Vd1oIBf5nn3z6V8XFqtbgE4bJjnp1rWUEzmpw8B__9IE8HV2Pr_TVxeTykDzDkjas6Ij0qlVtjwExVebEz4g_RSIY5g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+the+magnetic+transition+temperatures+for+medium-+and+high-entropy+alloys&rft.jtitle=Intermetallics&rft.au=Huang%2C+Shuo&rft.au=Holmstrom%2C+Erik&rft.au=Eriksson%2C+Olle&rft.au=Vitos%2C+Levente&rft.date=2018-04-01&rft.issn=0966-9795&rft.volume=95&rft.spage=80&rft_id=info:doi/10.1016%2Fj.intermet.2018.01.016&rft.externalDocID=oai_DiVA_org_uu_351640 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0966-9795&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0966-9795&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0966-9795&client=summon |