Generalized Linear Latent Variable Models for Multivariate Count and Biomass Data in Ecology

In this paper we consider generalized linear latent variable models that can handle overdispersed counts and continuous but non-negative data. Such data are common in ecological studies when modelling multivariate abundances or biomass. By extending the standard generalized linear modelling framewor...

Full description

Saved in:
Bibliographic Details
Published inJournal of agricultural, biological, and environmental statistics Vol. 22; no. 4; pp. 498 - 522
Main Authors Niku, Jenni, Warton, David I., Hui, Francis K. C., Taskinen, Sara
Format Journal Article
LanguageEnglish
Published New York Springer 01.12.2017
Springer US
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper we consider generalized linear latent variable models that can handle overdispersed counts and continuous but non-negative data. Such data are common in ecological studies when modelling multivariate abundances or biomass. By extending the standard generalized linear modelling framework to include latent variables, we can account for any covariation between species not accounted for by the predictors, notably species interactions and correlations driven by missing covariates. We show how estimation and inference for the considered models can be performed efficiently using the Laplace approximation method and use simulations to study the finite-sample properties of the resulting estimates. In the overdispersed count data case, the Laplace-approximated estimates perform similarly to the estimates based on variational approximation method, which is another method that provides a closed form approximation of the likelihood. In the biomass data case, we show that ignoring the correlation between taxa affects the regression estimates unfavourably. To illustrate how our methods can be used in unconstrained ordination and in making inference on environmental variables, we apply them to two ecological datasets: abundances of bacterial species in three arctic locations in Europe and abundances of coral reef species in Indonesia.
AbstractList In this paper we consider generalized linear latent variable models that can handle overdispersed counts and continuous but non-negative data. Such data are common in ecological studies when modelling multivariate abundances or biomass. By extending the standard generalized linear modelling framework to include latent variables, we can account for any covariation between species not accounted for by the predictors, notably species interactions and correlations driven by missing covariates. We show how estimation and inference for the considered models can be performed efficiently using the Laplace approximation method and use simulations to study the finite-sample properties of the resulting estimates. In the overdispersed count data case, the Laplace-approximated estimates perform similarly to the estimates based on variational approximation method, which is another method that provides a closed form approximation of the likelihood. In the biomass data case, we show that ignoring the correlation between taxa affects the regression estimates unfavourably. To illustrate how our methods can be used in unconstrained ordination and in making inference on environmental variables, we apply them to two ecological datasets: abundances of bacterial species in three arctic locations in Europe and abundances of coral reef species in Indonesia.
In this paper we consider generalized linear latent variable models that can handle overdispersed counts and continuous but non-negative data. Such data are common in ecological studies when modelling multivariate abundances or biomass. By extending the standard generalized linear modelling framework to include latent variables, we can account for any covariation between species not accounted for by the predictors, notably species interactions and correlations driven by missing covariates. We show how estimation and inference for the considered models can be performed efficiently using the Laplace approximation method and use simulations to study the finite-sample properties of the resulting estimates. In the overdispersed count data case, the Laplace-approximated estimates perform similarly to the estimates based on variational approximation method, which is another method that provides a closed form approximation of the likelihood. In the biomass data case, we show that ignoring the correlation between taxa affects the regression estimates unfavourably. To illustrate how our methods can be used in unconstrained ordination and in making inference on environmental variables, we apply them to two ecological datasets: abundances of bacterial species in three arctic locations in Europe and abundances of coral reef species in Indonesia. Supplementary materials accompanying this paper appear on-line.
In this paper we consider generalized linear latent variable models that can handle overdispersed counts and continuous but non-negative data. Such data are common in ecological studies when modelling multivariate abundances or biomass. By extending the standard generalized linear modelling framework to include latent variables, we can account for any covariation between species not accounted for by the predictors, notably species interactions and correlations driven by missing covariates. We show how estimation and inference for the considered models can be performed efficiently using the Laplace approximation method and use simulations to study the finite-sample properties of the resulting estimates. In the overdispersed count data case, the Laplace-approximated estimates perform similarly to the estimates based on variational approximation method, which is another method that provides a closed form approximation of the likelihood. In the biomass data case, we show that ignoring the correlation between taxa affects the regression estimates unfavourably. To illustrate how our methods can be used in unconstrained ordination and in making inference on environmental variables, we apply them to two ecological datasets: abundances of bacterial species in three arctic locations in Europe and abundances of coral reef species in Indonesia. Supplementary materials accompanying this paper appear on-line.
Audience Academic
Author Niku, Jenni
Taskinen, Sara
Warton, David I.
Hui, Francis K. C.
Author_xml – sequence: 1
  givenname: Jenni
  surname: Niku
  fullname: Niku, Jenni
– sequence: 2
  givenname: David I.
  surname: Warton
  fullname: Warton, David I.
– sequence: 3
  givenname: Francis K. C.
  surname: Hui
  fullname: Hui, Francis K. C.
– sequence: 4
  givenname: Sara
  surname: Taskinen
  fullname: Taskinen, Sara
BookMark eNp9kc1rHCEYh4eSQpNt_4DehFJoD5P6MY7jMd0maWBDoV-ngrjO6-LiaqpOafLX12F6SHIIHhR9ntdXfyfNUYgBmuY1wacEY_EhE0Y5azERLWa4a8Wz5phwJlraS3ZU13jgrSBEvGhOct5jTFiP6XHz6xICJO3dHYxo4wLohDa6QCjop05Obz2g6ziCz8jGhK4nX9yf-aAAWsepYjqM6KOLB50z-qSLRi6gcxN93N2-bJ5b7TO8-j-vmh8X59_Xn9vNl8ur9dmmNZwMpWUMbMfGocMj7YVgkhuubY9xJ2E0fDQCcysFE3LQfLvllOCedVYaUd_W2YGtmndL3ZsUf0-Qizq4bMB7HSBOWVFMMMWS1Nqr5s0jdB-nFGp3isie06GXHa_U6ULttAflgo0laVPHCAdn6s9bV_fPOKNyIJLNwvsHQmUK_C07PeWsrr59fciKhTUp5pzAKuOKLq4qSTuvCFZzpGqJVNVI1Rypmpsnj8yb5A463T7p0MXJlQ07SPce_IT0dpH2ucR0_xbKqkD7rhtqDOwfTNO9WQ
CitedBy_id crossref_primary_10_1002_ece3_6059
crossref_primary_10_1177_09622802211043276
crossref_primary_10_1016_j_ecoinf_2020_101159
crossref_primary_10_1016_j_envpol_2022_120377
crossref_primary_10_1002_ecy_2759
crossref_primary_10_1186_s40793_024_00595_0
crossref_primary_10_1016_j_ecoinf_2020_101155
crossref_primary_10_1080_10618600_2021_1882467
crossref_primary_10_3390_d16040233
crossref_primary_10_1111_insr_12534
crossref_primary_10_1098_rspb_2023_2768
crossref_primary_10_1111_1755_0998_13532
crossref_primary_10_1111_bmsp_12337
crossref_primary_10_1007_s00180_024_01544_8
crossref_primary_10_1186_s13059_022_02657_3
crossref_primary_10_1002_wics_70005
crossref_primary_10_1002_ece3_10815
crossref_primary_10_1093_biomtc_ujad001
crossref_primary_10_1111_2041_210X_14184
crossref_primary_10_3389_fevo_2021_588292
crossref_primary_10_1016_j_patcog_2023_109401
crossref_primary_10_3390_f15101732
crossref_primary_10_3390_ijgi9070414
crossref_primary_10_1016_j_procs_2018_08_188
crossref_primary_10_1111_biom_12888
crossref_primary_10_1016_j_ecss_2025_109210
crossref_primary_10_1016_j_ecosta_2024_09_002
crossref_primary_10_1002_ecy_3500
crossref_primary_10_1111_1365_2745_13200
crossref_primary_10_1016_j_scitotenv_2019_07_235
crossref_primary_10_1007_s11222_022_10189_w
crossref_primary_10_1007_s10651_024_00613_x
crossref_primary_10_1080_01621459_2021_1987251
crossref_primary_10_1038_s41598_021_87143_9
crossref_primary_10_1111_ele_13784
crossref_primary_10_3390_microorganisms10101961
crossref_primary_10_1371_journal_pone_0216129
crossref_primary_10_1002_ece3_5752
crossref_primary_10_1111_jvs_70016
crossref_primary_10_1111_biom_13768
crossref_primary_10_1007_s00442_022_05309_2
crossref_primary_10_1002_ecy_3835
crossref_primary_10_1371_journal_pone_0205474
crossref_primary_10_1002_ece3_4948
crossref_primary_10_1093_icesjms_fsaa068
crossref_primary_10_1111_2041_210X_13303
crossref_primary_10_1002_env_2683
crossref_primary_10_1111_2041_210X_14035
crossref_primary_10_1002_mbo3_1320
Cites_doi 10.1093/acprof:oso/9780198714866.001.0001
10.1111/j.1466-8238.2007.00359.x
10.1111/j.1574-6941.2012.01464.x
10.1007/BF02296153
10.1111/j.1467-9868.2004.05627.x
10.1214/11-AOS908
10.1111/j.1574-6941.2006.00232.x
10.1007/s13253-013-0146-x
10.1111/1467-9868.00090
10.1007/s11222-005-4070-y
10.1016/j.ecocom.2004.05.001
10.1111/2041-210X.12236
10.1111/1365-2745.12428
10.1002/env.702
10.1016/j.tree.2016.07.007
10.1007/s10651-012-0233-0
10.1111/2041-210X.12514
10.1111/2041-210X.12163
10.1038/189732a0
10.1002/9781119970583
10.1016/j.tree.2015.09.007
10.1111/j.2041-210X.2012.00198.x
10.1007/BF00265008
10.1111/j.2044-8317.1996.tb01091.x
10.1111/2041-210X.12501
10.1111/j.2041-210x.2012.00261.x
10.1201/9780203489437
10.1016/0304-3800(95)00113-1
10.1111/j.1462-2920.2010.02277.x
10.1890/07-0744.1
10.1002/9780470434697
10.1016/j.tree.2015.03.014
10.1016/j.jmva.2012.06.005
10.1111/j.1461-0248.2005.00826.x
10.1080/02664763.2013.789098
10.1080/10618600.1996.10474708
10.1177/1536867X0200200101
ContentType Journal Article
Copyright 2017 International Biometric Society
International Biometric Society 2017
COPYRIGHT 2017 Springer
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: 2017 International Biometric Society
– notice: International Biometric Society 2017
– notice: COPYRIGHT 2017 Springer
– notice: Copyright Springer Science & Business Media 2017
DBID AAYXX
CITATION
ISR
7S9
L.6
DOI 10.1007/s13253-017-0304-7
DatabaseName CrossRef
Gale In Context: Science
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList




AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
Environmental Sciences
Medicine
Statistics
EISSN 1537-2693
EndPage 522
ExternalDocumentID A532981935
10_1007_s13253_017_0304_7
26448521
GeographicLocations Arctic region
Europe
GeographicLocations_xml – name: Arctic region
– name: Europe
GrantInformation_xml – fundername: Luonnontieteiden ja Tekniikan Tutkimuksen Toimikunta
  grantid: 251965; 283323
  funderid: http://dx.doi.org/10.13039/501100005877
– fundername: Jenny ja Antti Wihurin Rahasto
  funderid: http://dx.doi.org/10.13039/501100004022
GroupedDBID 06D
0R~
0VY
199
1N0
203
2AX
2JN
2KG
2LR
2XV
30V
4.4
406
408
40D
40E
5GY
8UJ
95.
96X
A8Z
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWIL
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABAWQ
ABBHK
ABBRH
ABDBE
ABDBF
ABDZT
ABECU
ABFAN
ABFSG
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQDR
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ABXSQ
ABYWD
ACAOD
ACDIW
ACDTI
ACGFS
ACHJO
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACMTB
ACOKC
ACPIV
ACPRK
ACSTC
ACTMH
ACUHS
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADODI
ADTPH
ADULT
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AELLO
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEUPB
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFQWF
AFRAH
AFVYC
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGLNM
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AIHAF
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKBRZ
ALMA_UNASSIGNED_HOLDINGS
ALRMG
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
BAPOH
BGNMA
CSCUP
D0L
DDRTE
DNIVK
DPUIP
DQDLB
DSRWC
DU5
EBD
EBLON
EBS
ECEWR
EIOEI
EJD
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GXS
H13
HF~
HMJXF
HQ6
HRMNR
IAO
IEP
IGS
IKXTQ
IPSME
ISR
ITM
IWAJR
I~Z
J-C
J0Z
JAA
JAAYA
JBMMH
JBSCW
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
JZLTJ
KOV
LLZTM
M4Y
ML.
NPVJJ
NQJWS
NU0
O93
O9J
P2P
P9R
PT4
R9I
ROL
RSV
S27
S3B
SA0
SHX
SISQX
SJN
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
ZMTXR
~KM
-5D
-5G
-BR
-EM
-~C
0VX
2VQ
3-Y
AAKYL
ABULA
ACBXY
ADINQ
ADRFC
AELPN
AFLOW
AHSBF
AI.
AS~
BHOJU
CAG
COF
FEDTE
GIFXF
GQ6
HGD
HVGLF
HZ~
IFM
JSODD
O9-
PKN
RNS
S1Z
UQL
VH1
Z7U
Z7W
Z7Y
Z7Z
Z81
AAYXX
ADXHL
CITATION
AEIIB
ABRTQ
7S9
L.6
ID FETCH-LOGICAL-c518t-33ef43d840d2677395c5af60049edc5dc705f973798a5bb5210634f9c76934f83
IEDL.DBID U2A
ISSN 1085-7117
IngestDate Fri Jul 11 03:35:07 EDT 2025
Fri Jul 25 11:05:37 EDT 2025
Tue Jun 10 20:10:46 EDT 2025
Fri Jun 27 04:51:49 EDT 2025
Tue Jul 01 01:51:33 EDT 2025
Thu Apr 24 23:08:45 EDT 2025
Fri Feb 21 02:33:22 EST 2025
Fri Jun 20 00:28:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Biomass
Overdispersed count
Species interactions
Ordination
Laplace approximation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-33ef43d840d2677395c5af60049edc5dc705f973798a5bb5210634f9c76934f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7992-2598
PQID 1965286945
PQPubID 2044458
PageCount 25
ParticipantIDs proquest_miscellaneous_2010209177
proquest_journals_1965286945
gale_infotracacademiconefile_A532981935
gale_incontextgauss_ISR_A532981935
crossref_citationtrail_10_1007_s13253_017_0304_7
crossref_primary_10_1007_s13253_017_0304_7
springer_journals_10_1007_s13253_017_0304_7
jstor_primary_10_2307_26448521
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of agricultural, biological, and environmental statistics
PublicationTitleAbbrev JABES
PublicationYear 2017
Publisher Springer
Springer US
Springer Nature B.V
Publisher_xml – name: Springer
– name: Springer US
– name: Springer Nature B.V
References Araújo, Luoto (CR1) 2007; 16
Cressie, Calder, Clark, Hoef, Wikle (CR8) 2009; 19
Taylor (CR38) 1961; 189
Chu, Fierer, Lauber, Caporaso, Knight, Grogan (CR7) 2010; 12
Kendal (CR22) 2004; 1
Warton (CR39) 2005; 16
Warton, Blanchet, O’Hara, Ovaskainen, Taskinen, Walker, Hui (CR40) 2016; 31
Sammel, Ryan, Legler (CR36) 1997; 59
CR19
Huber, Ronchetti (CR15) 2009
Hui, Taskinen, Pledger, Foster, Warton (CR18) 2015; 6
Welsh, Cunningham, Donnelly, Lindenmayer (CR43) 1996; 88
Moustaki (CR28) 1996; 49
Dunstan, Foster, Hui, Warton (CR11) 2013; 18
Männistö, Tiirola, Häggblom (CR25) 2007; 59
Kristensen, Nielsen, Berg, Skaug, Bell (CR23) 2016; 70
Brown, Warton, Andrew, Binns, Cassis, Gibb (CR5) 2014; 5
Morales-Castilla, Matias, Gravel, Araújo (CR27) 2015; 30
Warton, Blanchet, O’Hara, Ovaskainen, Taskinen, Walker, Hui (CR41) 2015; 30
Joe (CR20) 2008; 5066–5074
Moustaki, Knott (CR29) 2000; 65
Nakagawa, Schielzeth (CR30) 2013; 4
CR4
Foster, Bravington (CR12) 2013; 20
CR6
Hui (CR17) 2016; 7
Skrondal, Rabe-Hesketh (CR37) 2004
Rabe-Hesketh, Skrondal, Pickles (CR34) 2002; 2
Dunn, Smyth (CR9) 1996; 5
Martin, Wintle, Rhodes, Kuhnert, Field, Low-Choy, Tyre, Possingham (CR26) 2005; 8
Hall, Pham, Wand, Wang (CR14) 2011; 39
CR21
Hall, Ormerod, Wand (CR13) 2011; 21
Ovaskainen, Abrego, Halme, Dunson (CR32) 2016; 7
Rodrigues-Motta, Pinheiro, Martins, Araujo, dos Reis (CR35) 2013; 40
Nissinen, Männistö, van Elsas (CR31) 2012; 82
Huber, Ronchetti, Victoria-Feser (CR16) 2004; 66
Ovaskainen, de Knegt, Delgado Sanchez (CR33) 2016
Letten, Keith, Tozer, Hui (CR24) 2015; 103
Warwick, Clarke, Suharsono (CR42) 1990; 8
Bianconcini, Cagnone (CR3) 2012; 112
Dunn, Smyth (CR10) 2005; 15
Bartholomew, Knott, Moustaki (CR2) 2011
Yu, Ji, Emerson, Wang, Ye, Yang, Ding (CR44) 2012; 3
304_CR19
MK Männistö (304_CR25) 2007; 59
R Nissinen (304_CR31) 2012; 82
AM Brown (304_CR5) 2014; 5
N Cressie (304_CR8) 2009; 19
DJ Bartholomew (304_CR2) 2011
PK Dunn (304_CR9) 1996; 5
H Joe (304_CR20) 2008; 5066–5074
I Morales-Castilla (304_CR27) 2015; 30
AH Welsh (304_CR43) 1996; 88
A Skrondal (304_CR37) 2004
PK Dunstan (304_CR11) 2013; 18
304_CR6
304_CR4
S Bianconcini (304_CR3) 2012; 112
MD Sammel (304_CR36) 1997; 59
DI Warton (304_CR41) 2015; 30
R Warwick (304_CR42) 1990; 8
AD Letten (304_CR24) 2015; 103
O Ovaskainen (304_CR33) 2016
K Kristensen (304_CR23) 2016; 70
P Huber (304_CR15) 2009
TG Martin (304_CR26) 2005; 8
P Hall (304_CR14) 2011; 39
DI Warton (304_CR39) 2005; 16
P Huber (304_CR16) 2004; 66
WS Kendal (304_CR22) 2004; 1
O Ovaskainen (304_CR32) 2016; 7
P Hall (304_CR13) 2011; 21
304_CR21
DI Warton (304_CR40) 2016; 31
DW Yu (304_CR44) 2012; 3
FKC Hui (304_CR18) 2015; 6
MB Araújo (304_CR1) 2007; 16
LR Taylor (304_CR38) 1961; 189
H Chu (304_CR7) 2010; 12
I Moustaki (304_CR28) 1996; 49
SD Foster (304_CR12) 2013; 20
I Moustaki (304_CR29) 2000; 65
FKC Hui (304_CR17) 2016; 7
PK Dunn (304_CR10) 2005; 15
S Rabe-Hesketh (304_CR34) 2002; 2
M Rodrigues-Motta (304_CR35) 2013; 40
S Nakagawa (304_CR30) 2013; 4
References_xml – year: 2016
  ident: CR33
  publication-title: Quantitative Ecology and Evolutionary Biology: Integrating Models with Data
  doi: 10.1093/acprof:oso/9780198714866.001.0001
– volume: 2
  start-page: 1
  year: 2002
  end-page: 21
  ident: CR34
  article-title: Reliable estimation of generalized linear mixed models using adaptive quadrature
  publication-title: Stata Journal
– volume: 16
  start-page: 743
  year: 2007
  end-page: 753
  ident: CR1
  article-title: The importance of biotic interactions for modelling species distributions under climate change
  publication-title: Global Ecology and Biogeography
  doi: 10.1111/j.1466-8238.2007.00359.x
– volume: 82
  start-page: 510
  year: 2012
  end-page: 522
  ident: CR31
  article-title: Endophytic bacterial communities in three arctic plants from low arctic fell tundra are cold-adapted and host-plant specific
  publication-title: FEMS Microbiology Ecology
  doi: 10.1111/j.1574-6941.2012.01464.x
– volume: 5066–5074
  start-page: 52
  year: 2008
  ident: CR20
  article-title: Accuracy of laplace approximation for discrete response mixed models
  publication-title: Computational Statistics & Data Analysis
– volume: 65
  start-page: 391
  year: 2000
  end-page: 411
  ident: CR29
  article-title: Generalized latent trait models
  publication-title: Psychometrika
  doi: 10.1007/BF02296153
– volume: 66
  start-page: 893
  year: 2004
  end-page: 908
  ident: CR16
  article-title: Estimation of generalized linear latent variable models
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/j.1467-9868.2004.05627.x
– volume: 39
  start-page: 2502
  year: 2011
  end-page: 2532
  ident: CR14
  article-title: Asymptotic normality and valid inference for Gaussian variational approximation
  publication-title: The Annals of Statistics
  doi: 10.1214/11-AOS908
– ident: CR4
– volume: 59
  start-page: 452
  year: 2007
  end-page: 465
  ident: CR25
  article-title: Bacterial communities in arctic fjelds of finnish lapland are stable but highly ph-dependent
  publication-title: FEMS Microbiology Ecology
  doi: 10.1111/j.1574-6941.2006.00232.x
– volume: 18
  start-page: 357
  year: 2013
  end-page: 375
  ident: CR11
  article-title: Finite mixture of regression modeling for high-dimensional count and biomass data in ecology
  publication-title: Journal of Agricultural, Biological and Environmental Sciences
  doi: 10.1007/s13253-013-0146-x
– volume: 59
  start-page: 667
  year: 1997
  end-page: 678
  ident: CR36
  article-title: Latent variable models for mixed discrete and continuous outcomes
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/1467-9868.00090
– volume: 15
  start-page: 267
  year: 2005
  end-page: 280
  ident: CR10
  article-title: Series evaluation of tweedie exponential dispersion model densities
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-005-4070-y
– volume: 1
  start-page: 193
  issue: 3
  year: 2004
  end-page: 209
  ident: CR22
  article-title: Taylor’s ecological power law as a consequence of scale invariant exponential dispersion models
  publication-title: Ecological Complexity
  doi: 10.1016/j.ecocom.2004.05.001
– ident: CR6
– volume: 6
  start-page: 399
  year: 2015
  end-page: 411
  ident: CR18
  article-title: Model-Based Approaches to Unconstrained Ordination
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.12236
– volume: 103
  start-page: 1264
  year: 2015
  end-page: 1275
  ident: CR24
  article-title: Fine-scale hydrological niche differentiation through the lens of multi-species co-occurrence models
  publication-title: Journal of Ecology
  doi: 10.1111/1365-2745.12428
– volume: 16
  start-page: 275
  year: 2005
  end-page: 289
  ident: CR39
  article-title: Many zeros does not mean zero inflation: comparing the goodness-of-fit of parametric models to multivariate abundance data
  publication-title: Environmetrics
  doi: 10.1002/env.702
– volume: 31
  start-page: 737
  year: 2016
  end-page: 738
  ident: CR40
  article-title: Extending Joint Models in Community Ecology: A Response to Beissinger et al.
  publication-title: Trends in Ecology & Evolution
  doi: 10.1016/j.tree.2016.07.007
– volume: 20
  start-page: 533
  year: 2013
  end-page: 552
  ident: CR12
  article-title: A Poisson-Gamma model for analysis of ecological non-negative continuous data
  publication-title: Environmental and ecological statistics
  doi: 10.1007/s10651-012-0233-0
– volume: 7
  start-page: 744
  year: 2016
  end-page: 750
  ident: CR17
  article-title: boral-Bayesian Ordination and Regression Analysis of Multivariate Abundance Data in R
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.12514
– volume: 5
  start-page: 344
  year: 2014
  end-page: 352
  ident: CR5
  article-title: The fourth-corner solution - using predictive models to understand how species traits interact with the environment
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.12163
– volume: 189
  start-page: 732
  year: 1961
  end-page: 735
  ident: CR38
  article-title: Aggregation, variance and the mean
  publication-title: Nature
  doi: 10.1038/189732a0
– ident: CR21
– year: 2011
  ident: CR2
  publication-title: Latent variable models and factor analysis: A unified approach
  doi: 10.1002/9781119970583
– ident: CR19
– volume: 30
  start-page: 766
  year: 2015
  end-page: 779
  ident: CR41
  article-title: So many variables: Joint modeling in community ecology
  publication-title: Trends in Ecology and Evolution
  doi: 10.1016/j.tree.2015.09.007
– volume: 3
  start-page: 613
  year: 2012
  end-page: 623
  ident: CR44
  article-title: Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/j.2041-210X.2012.00198.x
– volume: 5
  start-page: 236
  year: 1996
  end-page: 244
  ident: CR9
  article-title: Randomized quantile residuals
  publication-title: Journal of Computational and Graphical Statistics
– volume: 8
  start-page: 171
  year: 1990
  end-page: 179
  ident: CR42
  article-title: A statistical analysis of coral community responses to the 1982–83 el niño in the thousand islands, indonesia
  publication-title: Coral Reefs
  doi: 10.1007/BF00265008
– volume: 49
  start-page: 313
  year: 1996
  end-page: 334
  ident: CR28
  article-title: A latent trait and a latent class model for mixed observed variables
  publication-title: British Journal of Mathematical and Statistical Psychology
  doi: 10.1111/j.2044-8317.1996.tb01091.x
– volume: 7
  start-page: 549
  year: 2016
  end-page: 555
  ident: CR32
  article-title: Using latent variable models to identify large networks of species-to-species associations at different spatial scales
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.12501
– volume: 21
  start-page: 369
  year: 2011
  end-page: 389
  ident: CR13
  article-title: Theory of gaussian variational approximation for a poisson mixed model
  publication-title: Statistica Sinica
– volume: 4
  start-page: 133
  year: 2013
  end-page: 142
  ident: CR30
  article-title: A general and simple method for obtaining R2 from generalized linear mixed-effects models
  publication-title: Methods In Ecology And Evolution
  doi: 10.1111/j.2041-210x.2012.00261.x
– year: 2004
  ident: CR37
  publication-title: Generalized Latent Variable Modeling: Multilevel
  doi: 10.1201/9780203489437
– volume: 88
  start-page: 297
  year: 1996
  end-page: 308
  ident: CR43
  article-title: Modelling the abundance of rare species: statistical models for counts with extra zeros
  publication-title: Ecological Modelling
  doi: 10.1016/0304-3800(95)00113-1
– volume: 12
  start-page: 2998
  year: 2010
  end-page: 3006
  ident: CR7
  article-title: Soil bacterial diversity in the arctic is not fundamentally different from that found in other biomes
  publication-title: Environmental Microbiology
  doi: 10.1111/j.1462-2920.2010.02277.x
– volume: 19
  start-page: 553
  issue: 3
  year: 2009
  end-page: 570
  ident: CR8
  article-title: Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical modeling
  publication-title: Ecological Applications
  doi: 10.1890/07-0744.1
– year: 2009
  ident: CR15
  publication-title: Robust Statistics
  doi: 10.1002/9780470434697
– volume: 70
  start-page: 1
  issue: 5
  year: 2016
  end-page: 21
  ident: CR23
  article-title: Tmb: Automatic differentiation and laplace approximation
  publication-title: Journal of Statistical Software, Articles
– volume: 30
  start-page: 347
  issue: 6
  year: 2015
  end-page: 356
  ident: CR27
  article-title: Inferring biotic interactions from proxies
  publication-title: Trends in ecology & evolution
  doi: 10.1016/j.tree.2015.03.014
– volume: 112
  start-page: 183
  year: 2012
  end-page: 193
  ident: CR3
  article-title: Estimation of generalized linear latent variable models via fully exponential Laplace approximation
  publication-title: Journal of Multivariate Analysis
  doi: 10.1016/j.jmva.2012.06.005
– volume: 8
  start-page: 1235
  year: 2005
  end-page: 1246
  ident: CR26
  article-title: Zero tolerance ecology: improving ecological inference by modelling the source of zero observations
  publication-title: Ecology letters
  doi: 10.1111/j.1461-0248.2005.00826.x
– volume: 40
  start-page: 1586
  year: 2013
  end-page: 1596
  ident: CR35
  article-title: Multivariate models for correlated count data
  publication-title: Journal of Applied Statistics
  doi: 10.1080/02664763.2013.789098
– volume: 59
  start-page: 452
  year: 2007
  ident: 304_CR25
  publication-title: FEMS Microbiology Ecology
  doi: 10.1111/j.1574-6941.2006.00232.x
– volume: 4
  start-page: 133
  year: 2013
  ident: 304_CR30
  publication-title: Methods In Ecology And Evolution
  doi: 10.1111/j.2041-210x.2012.00261.x
– ident: 304_CR4
– volume-title: Quantitative Ecology and Evolutionary Biology: Integrating Models with Data
  year: 2016
  ident: 304_CR33
  doi: 10.1093/acprof:oso/9780198714866.001.0001
– volume: 7
  start-page: 549
  year: 2016
  ident: 304_CR32
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.12501
– volume: 189
  start-page: 732
  year: 1961
  ident: 304_CR38
  publication-title: Nature
  doi: 10.1038/189732a0
– ident: 304_CR6
– volume: 5
  start-page: 344
  year: 2014
  ident: 304_CR5
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.12163
– volume: 21
  start-page: 369
  year: 2011
  ident: 304_CR13
  publication-title: Statistica Sinica
– volume: 66
  start-page: 893
  year: 2004
  ident: 304_CR16
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/j.1467-9868.2004.05627.x
– volume: 16
  start-page: 275
  year: 2005
  ident: 304_CR39
  publication-title: Environmetrics
  doi: 10.1002/env.702
– volume: 59
  start-page: 667
  year: 1997
  ident: 304_CR36
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/1467-9868.00090
– volume: 12
  start-page: 2998
  year: 2010
  ident: 304_CR7
  publication-title: Environmental Microbiology
  doi: 10.1111/j.1462-2920.2010.02277.x
– volume: 18
  start-page: 357
  year: 2013
  ident: 304_CR11
  publication-title: Journal of Agricultural, Biological and Environmental Sciences
  doi: 10.1007/s13253-013-0146-x
– volume: 40
  start-page: 1586
  year: 2013
  ident: 304_CR35
  publication-title: Journal of Applied Statistics
  doi: 10.1080/02664763.2013.789098
– volume-title: Generalized Latent Variable Modeling: Multilevel
  year: 2004
  ident: 304_CR37
  doi: 10.1201/9780203489437
– volume: 39
  start-page: 2502
  year: 2011
  ident: 304_CR14
  publication-title: The Annals of Statistics
  doi: 10.1214/11-AOS908
– volume: 1
  start-page: 193
  issue: 3
  year: 2004
  ident: 304_CR22
  publication-title: Ecological Complexity
  doi: 10.1016/j.ecocom.2004.05.001
– volume: 30
  start-page: 766
  year: 2015
  ident: 304_CR41
  publication-title: Trends in Ecology and Evolution
  doi: 10.1016/j.tree.2015.09.007
– volume: 16
  start-page: 743
  year: 2007
  ident: 304_CR1
  publication-title: Global Ecology and Biogeography
  doi: 10.1111/j.1466-8238.2007.00359.x
– volume: 7
  start-page: 744
  year: 2016
  ident: 304_CR17
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.12514
– volume: 19
  start-page: 553
  issue: 3
  year: 2009
  ident: 304_CR8
  publication-title: Ecological Applications
  doi: 10.1890/07-0744.1
– volume: 82
  start-page: 510
  year: 2012
  ident: 304_CR31
  publication-title: FEMS Microbiology Ecology
  doi: 10.1111/j.1574-6941.2012.01464.x
– volume: 5066–5074
  start-page: 52
  year: 2008
  ident: 304_CR20
  publication-title: Computational Statistics & Data Analysis
– ident: 304_CR21
– volume: 20
  start-page: 533
  year: 2013
  ident: 304_CR12
  publication-title: Environmental and ecological statistics
  doi: 10.1007/s10651-012-0233-0
– volume: 30
  start-page: 347
  issue: 6
  year: 2015
  ident: 304_CR27
  publication-title: Trends in ecology & evolution
  doi: 10.1016/j.tree.2015.03.014
– volume: 31
  start-page: 737
  year: 2016
  ident: 304_CR40
  publication-title: Trends in Ecology & Evolution
  doi: 10.1016/j.tree.2016.07.007
– volume: 5
  start-page: 236
  year: 1996
  ident: 304_CR9
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1080/10618600.1996.10474708
– volume: 103
  start-page: 1264
  year: 2015
  ident: 304_CR24
  publication-title: Journal of Ecology
  doi: 10.1111/1365-2745.12428
– volume: 70
  start-page: 1
  issue: 5
  year: 2016
  ident: 304_CR23
  publication-title: Journal of Statistical Software, Articles
– volume: 6
  start-page: 399
  year: 2015
  ident: 304_CR18
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/2041-210X.12236
– volume: 49
  start-page: 313
  year: 1996
  ident: 304_CR28
  publication-title: British Journal of Mathematical and Statistical Psychology
  doi: 10.1111/j.2044-8317.1996.tb01091.x
– volume: 15
  start-page: 267
  year: 2005
  ident: 304_CR10
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-005-4070-y
– volume-title: Latent variable models and factor analysis: A unified approach
  year: 2011
  ident: 304_CR2
  doi: 10.1002/9781119970583
– volume: 8
  start-page: 1235
  year: 2005
  ident: 304_CR26
  publication-title: Ecology letters
  doi: 10.1111/j.1461-0248.2005.00826.x
– volume: 112
  start-page: 183
  year: 2012
  ident: 304_CR3
  publication-title: Journal of Multivariate Analysis
  doi: 10.1016/j.jmva.2012.06.005
– volume: 8
  start-page: 171
  year: 1990
  ident: 304_CR42
  publication-title: Coral Reefs
  doi: 10.1007/BF00265008
– volume-title: Robust Statistics
  year: 2009
  ident: 304_CR15
  doi: 10.1002/9780470434697
– volume: 2
  start-page: 1
  year: 2002
  ident: 304_CR34
  publication-title: Stata Journal
  doi: 10.1177/1536867X0200200101
– volume: 3
  start-page: 613
  year: 2012
  ident: 304_CR44
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/j.2041-210X.2012.00198.x
– volume: 65
  start-page: 391
  year: 2000
  ident: 304_CR29
  publication-title: Psychometrika
  doi: 10.1007/BF02296153
– volume: 88
  start-page: 297
  year: 1996
  ident: 304_CR43
  publication-title: Ecological Modelling
  doi: 10.1016/0304-3800(95)00113-1
– ident: 304_CR19
SSID ssj0013602
Score 2.357456
Snippet In this paper we consider generalized linear latent variable models that can handle overdispersed counts and continuous but non-negative data. Such data are...
SourceID proquest
gale
crossref
springer
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 498
SubjectTerms Agriculture
Analysis
Approximation
Approximation method
Arctic region
Bacteria
Biomass
Biostatistics
Computer simulation
Coral reef ecosystems
Coral reefs
data collection
Ecological monitoring
Ecological studies
Economic models
environmental factors
Estimates
Europe
Health Sciences
Inference
linear models
Mathematics and Statistics
Medicine
Modelling
Monitoring/Environmental Analysis
Multivariate analysis
Ordination
ordination techniques
Reefs
Species
Statistics
Statistics for Life Sciences
Title Generalized Linear Latent Variable Models for Multivariate Count and Biomass Data in Ecology
URI https://www.jstor.org/stable/26448521
https://link.springer.com/article/10.1007/s13253-017-0304-7
https://www.proquest.com/docview/1965286945
https://www.proquest.com/docview/2010209177
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_0DuV8EK0erp5LFEFQAt2kadrHonueH-eDunKCENomPQ7Orly7wvnXO5Omt7eigi99aT6aziT5DTPzG4AnuRUi1tpxXeMjkS7muIskn-VVpqzUeekd7Yfv04NF8uZIHYU87m6Mdh9dkv6kXie7SaEo9kdzcudxfRW2FZruFMe1EMXadZCGQMNMcT2b6dGV-achNi6jcCQPYYkbgPM3H6m_evZvwc2AGVkxCPk2XHFtBDeK47PAm-EiuDbUlDyPYHe-Tl3DTmHvdhFcPwxu9Ah2CGIODM134Gtgnj756SxD0xRVn71DBNr27DMa0pRaxahi2mnHEOAyn7H7g170jlFGe8_K1jKc_xvicPay7Et20rK5Z8M-vwuL_fmnFwc81FzgtZplPZfSNYm0aPZZkWry4tWqbFIyJJytla11rJpcoxCzUlUVXv6IcZImr6mmYtJkche22mXr7gETsopxoCRPcMhYZVnVOIc3ZiNjq2wcTyAef76pAyE51cU4NWsqZZKXQXkZkpfRE3h20eX7wMbxr8aPSaKGWC5aCqM5LlddZ15__GAKJUWOWEiqCTwNjZolTl6XISsBl0DEWBstp14zLk9MUfTGm7j4IyawN6qMCQdBZ4iwUWRpnmD_RxevcQuTX6Zs3XLVGQpIEIjbNH7y81HVLg3xtwXe_6_WD2BHkOb7UJw92OrPVu4hAqq-msJ28erL2_nUb6RfFoQS_w
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VImg5IAhUDZSyIBASyJKz6_XaBw4RTZXQpAdoUA-VFj_WVaXioNoBhb_DH2VmvW4aBEgcevHF-56dnW80L4AXcc65r5TxVIafQBjfQy4SXi9OI5kLFSfW0D45DIfT4P2xPF6Dn20sjPV2b02S9qVeBrsJLsn3R3lkzvOU86Q8MIvvqKdVb0d7SNSXnO8Pjt4NPVdKwMtkL6o9IUwRiBy1mZyHioxTmUyKkPCxyTOZZ8qXRaxwbVEi0xRlGoruoIgzKhUYFJHAcW_ATcQeEbHOlPeXporQOTZG0lO9nmpNp39a8orwcyKgcYNcAbi_2WStqNu_B3cdRmX95lLdhzVTduBO__TC5ekwHbjV1LBcdGBrsAyVw07urag6cHvizPYd2CRI22SEfgAnLtP12Q-TM1SF8XjZGBFvWbNPqLhTKBejCm3nFUNAzWyE8Df6URtGEfQ1S8qc4fxfEPezvaRO2FnJBjb79uIhTK-FMFuwXs5Ksw2Mi9THgYI4wCF9GUVpYQxK6EL4ucx9vwt-e_g6cwnQqQ7HuV6mbiZ6aaSXJnpp1YXXl12-Ntk__tX4OVFUU1aNktx2TpN5VenRxw-6LwWPEXsJ2YVXrlExw8mzxEVB4BYoEddKy117M65OTF772qrUeBBd2GmvjHYPT6UpQSSPwjjA_s8uf-OTQXagpDSzeaXJAYIjTlS45DftVbsyxN82-Oi_Wj-FjeHRZKzHo8ODx7DJiQusG9AOrNcXc_MEwVyd7lpmYvD5urn3F6_3TJw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qxdI-iJ4Wz9a6iiIoobndbDZ58OHw7ujZD0Q96YOwJtlNKdRcaXLK-U_5LzqTbHo9UcGHvuQl-z07OzPMzG8AnsWGc18p66kMP4GwvodcJLxenEbSCBUntaP98CjcmwRvj-XxCvxsc2HqaPfWJdnkNBBKU1Htnpt8d5H4JrikOCDlkWvPUy6qct_Ov6PNVr4eD5DAzzkfDT--2fNcWQEvk72o8oSweSAMWjaGh4ocVZlM8pB0ZWsyaTLlyzxWuM4okWmK8g3FeJDHGZUNDPJI4Lg34GZAycfIQBPeX7gtQhfkGElP9XqqdaP-aclLgtCJgyYkcknZ_c0_W4u90R247fRV1m8u2F1YsUUHNvonFw6zw3bgVlPPct6BzeEibQ47uXej7MDaoXPhd2Cd1NsGHfoefHao16c_rGFoFuPxsoOECME-oRFPaV2MqrWdlQyVa1ZnC3-jH5VllE1fsaQwDOf_ijYAGyRVwk4LNqyRuOf3YXIthNmE1WJa2AfAuEh9HCiIAxzSl1GU5taitM6Fb6Tx_S747eHrzIGhU02OM72AcSZ6aaSXJnpp1YWXl13OGySQfzV-ShTVhLBRUAjPSTIrSz3-8F73peAx6mFCduGFa5RPcfIscRkRuAUC5VpquVPfjKsTUwS_rs1rPIgubLdXRrtHqNQEFsmjMA6w_5PL3_h8kE8oKex0VmoKhuCoMypc8qv2ql0Z4m8bfPhfrR_D2rvBSB-Mj_a3YJ0TE9QRQduwWl3M7CPU66p0p-YlBl-um3l_AQmpUM8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+Linear+Latent+Variable+Models+for+Multivariate+Count+and+Biomass+Data+in+Ecology&rft.jtitle=Journal+of+agricultural%2C+biological%2C+and+environmental+statistics&rft.au=Niku%2C+Jenni&rft.au=Warton%2C+David+I&rft.au=Hui%2C+Francis+K.+C&rft.au=Taskinen%2C+Sara&rft.date=2017-12-01&rft.pub=Springer&rft.issn=1085-7117&rft.volume=22&rft.issue=4&rft.spage=498&rft_id=info:doi/10.1007%2Fs13253-017-0304-7&rft.externalDocID=A532981935
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1085-7117&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1085-7117&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1085-7117&client=summon