Generalized Linear Latent Variable Models for Multivariate Count and Biomass Data in Ecology
In this paper we consider generalized linear latent variable models that can handle overdispersed counts and continuous but non-negative data. Such data are common in ecological studies when modelling multivariate abundances or biomass. By extending the standard generalized linear modelling framewor...
Saved in:
Published in | Journal of agricultural, biological, and environmental statistics Vol. 22; no. 4; pp. 498 - 522 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer
01.12.2017
Springer US Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper we consider generalized linear latent variable models that can handle overdispersed counts and continuous but non-negative data. Such data are common in ecological studies when modelling multivariate abundances or biomass. By extending the standard generalized linear modelling framework to include latent variables, we can account for any covariation between species not accounted for by the predictors, notably species interactions and correlations driven by missing covariates. We show how estimation and inference for the considered models can be performed efficiently using the Laplace approximation method and use simulations to study the finite-sample properties of the resulting estimates. In the overdispersed count data case, the Laplace-approximated estimates perform similarly to the estimates based on variational approximation method, which is another method that provides a closed form approximation of the likelihood. In the biomass data case, we show that ignoring the correlation between taxa affects the regression estimates unfavourably. To illustrate how our methods can be used in unconstrained ordination and in making inference on environmental variables, we apply them to two ecological datasets: abundances of bacterial species in three arctic locations in Europe and abundances of coral reef species in Indonesia. |
---|---|
AbstractList | In this paper we consider generalized linear latent variable models that can handle overdispersed counts and continuous but non-negative data. Such data are common in ecological studies when modelling multivariate abundances or biomass. By extending the standard generalized linear modelling framework to include latent variables, we can account for any covariation between species not accounted for by the predictors, notably species interactions and correlations driven by missing covariates. We show how estimation and inference for the considered models can be performed efficiently using the Laplace approximation method and use simulations to study the finite-sample properties of the resulting estimates. In the overdispersed count data case, the Laplace-approximated estimates perform similarly to the estimates based on variational approximation method, which is another method that provides a closed form approximation of the likelihood. In the biomass data case, we show that ignoring the correlation between taxa affects the regression estimates unfavourably. To illustrate how our methods can be used in unconstrained ordination and in making inference on environmental variables, we apply them to two ecological datasets: abundances of bacterial species in three arctic locations in Europe and abundances of coral reef species in Indonesia. In this paper we consider generalized linear latent variable models that can handle overdispersed counts and continuous but non-negative data. Such data are common in ecological studies when modelling multivariate abundances or biomass. By extending the standard generalized linear modelling framework to include latent variables, we can account for any covariation between species not accounted for by the predictors, notably species interactions and correlations driven by missing covariates. We show how estimation and inference for the considered models can be performed efficiently using the Laplace approximation method and use simulations to study the finite-sample properties of the resulting estimates. In the overdispersed count data case, the Laplace-approximated estimates perform similarly to the estimates based on variational approximation method, which is another method that provides a closed form approximation of the likelihood. In the biomass data case, we show that ignoring the correlation between taxa affects the regression estimates unfavourably. To illustrate how our methods can be used in unconstrained ordination and in making inference on environmental variables, we apply them to two ecological datasets: abundances of bacterial species in three arctic locations in Europe and abundances of coral reef species in Indonesia. Supplementary materials accompanying this paper appear on-line. In this paper we consider generalized linear latent variable models that can handle overdispersed counts and continuous but non-negative data. Such data are common in ecological studies when modelling multivariate abundances or biomass. By extending the standard generalized linear modelling framework to include latent variables, we can account for any covariation between species not accounted for by the predictors, notably species interactions and correlations driven by missing covariates. We show how estimation and inference for the considered models can be performed efficiently using the Laplace approximation method and use simulations to study the finite-sample properties of the resulting estimates. In the overdispersed count data case, the Laplace-approximated estimates perform similarly to the estimates based on variational approximation method, which is another method that provides a closed form approximation of the likelihood. In the biomass data case, we show that ignoring the correlation between taxa affects the regression estimates unfavourably. To illustrate how our methods can be used in unconstrained ordination and in making inference on environmental variables, we apply them to two ecological datasets: abundances of bacterial species in three arctic locations in Europe and abundances of coral reef species in Indonesia. Supplementary materials accompanying this paper appear on-line. |
Audience | Academic |
Author | Niku, Jenni Taskinen, Sara Warton, David I. Hui, Francis K. C. |
Author_xml | – sequence: 1 givenname: Jenni surname: Niku fullname: Niku, Jenni – sequence: 2 givenname: David I. surname: Warton fullname: Warton, David I. – sequence: 3 givenname: Francis K. C. surname: Hui fullname: Hui, Francis K. C. – sequence: 4 givenname: Sara surname: Taskinen fullname: Taskinen, Sara |
BookMark | eNp9kc1rHCEYh4eSQpNt_4DehFJoD5P6MY7jMd0maWBDoV-ngrjO6-LiaqpOafLX12F6SHIIHhR9ntdXfyfNUYgBmuY1wacEY_EhE0Y5azERLWa4a8Wz5phwJlraS3ZU13jgrSBEvGhOct5jTFiP6XHz6xICJO3dHYxo4wLohDa6QCjop05Obz2g6ziCz8jGhK4nX9yf-aAAWsepYjqM6KOLB50z-qSLRi6gcxN93N2-bJ5b7TO8-j-vmh8X59_Xn9vNl8ur9dmmNZwMpWUMbMfGocMj7YVgkhuubY9xJ2E0fDQCcysFE3LQfLvllOCedVYaUd_W2YGtmndL3ZsUf0-Qizq4bMB7HSBOWVFMMMWS1Nqr5s0jdB-nFGp3isie06GXHa_U6ULttAflgo0laVPHCAdn6s9bV_fPOKNyIJLNwvsHQmUK_C07PeWsrr59fciKhTUp5pzAKuOKLq4qSTuvCFZzpGqJVNVI1Rypmpsnj8yb5A463T7p0MXJlQ07SPce_IT0dpH2ucR0_xbKqkD7rhtqDOwfTNO9WQ |
CitedBy_id | crossref_primary_10_1002_ece3_6059 crossref_primary_10_1177_09622802211043276 crossref_primary_10_1016_j_ecoinf_2020_101159 crossref_primary_10_1016_j_envpol_2022_120377 crossref_primary_10_1002_ecy_2759 crossref_primary_10_1186_s40793_024_00595_0 crossref_primary_10_1016_j_ecoinf_2020_101155 crossref_primary_10_1080_10618600_2021_1882467 crossref_primary_10_3390_d16040233 crossref_primary_10_1111_insr_12534 crossref_primary_10_1098_rspb_2023_2768 crossref_primary_10_1111_1755_0998_13532 crossref_primary_10_1111_bmsp_12337 crossref_primary_10_1007_s00180_024_01544_8 crossref_primary_10_1186_s13059_022_02657_3 crossref_primary_10_1002_wics_70005 crossref_primary_10_1002_ece3_10815 crossref_primary_10_1093_biomtc_ujad001 crossref_primary_10_1111_2041_210X_14184 crossref_primary_10_3389_fevo_2021_588292 crossref_primary_10_1016_j_patcog_2023_109401 crossref_primary_10_3390_f15101732 crossref_primary_10_3390_ijgi9070414 crossref_primary_10_1016_j_procs_2018_08_188 crossref_primary_10_1111_biom_12888 crossref_primary_10_1016_j_ecss_2025_109210 crossref_primary_10_1016_j_ecosta_2024_09_002 crossref_primary_10_1002_ecy_3500 crossref_primary_10_1111_1365_2745_13200 crossref_primary_10_1016_j_scitotenv_2019_07_235 crossref_primary_10_1007_s11222_022_10189_w crossref_primary_10_1007_s10651_024_00613_x crossref_primary_10_1080_01621459_2021_1987251 crossref_primary_10_1038_s41598_021_87143_9 crossref_primary_10_1111_ele_13784 crossref_primary_10_3390_microorganisms10101961 crossref_primary_10_1371_journal_pone_0216129 crossref_primary_10_1002_ece3_5752 crossref_primary_10_1111_jvs_70016 crossref_primary_10_1111_biom_13768 crossref_primary_10_1007_s00442_022_05309_2 crossref_primary_10_1002_ecy_3835 crossref_primary_10_1371_journal_pone_0205474 crossref_primary_10_1002_ece3_4948 crossref_primary_10_1093_icesjms_fsaa068 crossref_primary_10_1111_2041_210X_13303 crossref_primary_10_1002_env_2683 crossref_primary_10_1111_2041_210X_14035 crossref_primary_10_1002_mbo3_1320 |
Cites_doi | 10.1093/acprof:oso/9780198714866.001.0001 10.1111/j.1466-8238.2007.00359.x 10.1111/j.1574-6941.2012.01464.x 10.1007/BF02296153 10.1111/j.1467-9868.2004.05627.x 10.1214/11-AOS908 10.1111/j.1574-6941.2006.00232.x 10.1007/s13253-013-0146-x 10.1111/1467-9868.00090 10.1007/s11222-005-4070-y 10.1016/j.ecocom.2004.05.001 10.1111/2041-210X.12236 10.1111/1365-2745.12428 10.1002/env.702 10.1016/j.tree.2016.07.007 10.1007/s10651-012-0233-0 10.1111/2041-210X.12514 10.1111/2041-210X.12163 10.1038/189732a0 10.1002/9781119970583 10.1016/j.tree.2015.09.007 10.1111/j.2041-210X.2012.00198.x 10.1007/BF00265008 10.1111/j.2044-8317.1996.tb01091.x 10.1111/2041-210X.12501 10.1111/j.2041-210x.2012.00261.x 10.1201/9780203489437 10.1016/0304-3800(95)00113-1 10.1111/j.1462-2920.2010.02277.x 10.1890/07-0744.1 10.1002/9780470434697 10.1016/j.tree.2015.03.014 10.1016/j.jmva.2012.06.005 10.1111/j.1461-0248.2005.00826.x 10.1080/02664763.2013.789098 10.1080/10618600.1996.10474708 10.1177/1536867X0200200101 |
ContentType | Journal Article |
Copyright | 2017 International Biometric Society International Biometric Society 2017 COPYRIGHT 2017 Springer Copyright Springer Science & Business Media 2017 |
Copyright_xml | – notice: 2017 International Biometric Society – notice: International Biometric Society 2017 – notice: COPYRIGHT 2017 Springer – notice: Copyright Springer Science & Business Media 2017 |
DBID | AAYXX CITATION ISR 7S9 L.6 |
DOI | 10.1007/s13253-017-0304-7 |
DatabaseName | CrossRef Gale In Context: Science AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology Environmental Sciences Medicine Statistics |
EISSN | 1537-2693 |
EndPage | 522 |
ExternalDocumentID | A532981935 10_1007_s13253_017_0304_7 26448521 |
GeographicLocations | Arctic region Europe |
GeographicLocations_xml | – name: Arctic region – name: Europe |
GrantInformation_xml | – fundername: Luonnontieteiden ja Tekniikan Tutkimuksen Toimikunta grantid: 251965; 283323 funderid: http://dx.doi.org/10.13039/501100005877 – fundername: Jenny ja Antti Wihurin Rahasto funderid: http://dx.doi.org/10.13039/501100004022 |
GroupedDBID | 06D 0R~ 0VY 199 1N0 203 2AX 2JN 2KG 2LR 2XV 30V 4.4 406 408 40D 40E 5GY 8UJ 95. 96X A8Z AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWIL AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABAWQ ABBHK ABBRH ABDBE ABDBF ABDZT ABECU ABFAN ABFSG ABFTV ABHLI ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQDR ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ABXSQ ABYWD ACAOD ACDIW ACDTI ACGFS ACHJO ACHSB ACHXU ACKNC ACMDZ ACMLO ACMTB ACOKC ACPIV ACPRK ACSTC ACTMH ACUHS ACZOJ ADHHG ADHIR ADKNI ADKPE ADODI ADTPH ADULT ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AELLO AEMSY AENEX AEOHA AEPYU AESKC AETCA AEUPB AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFOHR AFQWF AFRAH AFVYC AFWTZ AFZKB AGAYW AGDGC AGJBK AGLNM AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHWEU AHYZX AIAKS AIGIU AIHAF AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKBRZ ALMA_UNASSIGNED_HOLDINGS ALRMG AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN BAPOH BGNMA CSCUP D0L DDRTE DNIVK DPUIP DQDLB DSRWC DU5 EBD EBLON EBS ECEWR EIOEI EJD ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE GGCAI GGRSB GJIRD GNWQR GQ7 GXS H13 HF~ HMJXF HQ6 HRMNR IAO IEP IGS IKXTQ IPSME ISR ITM IWAJR I~Z J-C J0Z JAA JAAYA JBMMH JBSCW JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST JZLTJ KOV LLZTM M4Y ML. NPVJJ NQJWS NU0 O93 O9J P2P P9R PT4 R9I ROL RSV S27 S3B SA0 SHX SISQX SJN SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 ZMTXR ~KM -5D -5G -BR -EM -~C 0VX 2VQ 3-Y AAKYL ABULA ACBXY ADINQ ADRFC AELPN AFLOW AHSBF AI. AS~ BHOJU CAG COF FEDTE GIFXF GQ6 HGD HVGLF HZ~ IFM JSODD O9- PKN RNS S1Z UQL VH1 Z7U Z7W Z7Y Z7Z Z81 AAYXX ADXHL CITATION AEIIB ABRTQ 7S9 L.6 |
ID | FETCH-LOGICAL-c518t-33ef43d840d2677395c5af60049edc5dc705f973798a5bb5210634f9c76934f83 |
IEDL.DBID | U2A |
ISSN | 1085-7117 |
IngestDate | Fri Jul 11 03:35:07 EDT 2025 Fri Jul 25 11:05:37 EDT 2025 Tue Jun 10 20:10:46 EDT 2025 Fri Jun 27 04:51:49 EDT 2025 Tue Jul 01 01:51:33 EDT 2025 Thu Apr 24 23:08:45 EDT 2025 Fri Feb 21 02:33:22 EST 2025 Fri Jun 20 00:28:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Biomass Overdispersed count Species interactions Ordination Laplace approximation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-33ef43d840d2677395c5af60049edc5dc705f973798a5bb5210634f9c76934f83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7992-2598 |
PQID | 1965286945 |
PQPubID | 2044458 |
PageCount | 25 |
ParticipantIDs | proquest_miscellaneous_2010209177 proquest_journals_1965286945 gale_infotracacademiconefile_A532981935 gale_incontextgauss_ISR_A532981935 crossref_citationtrail_10_1007_s13253_017_0304_7 crossref_primary_10_1007_s13253_017_0304_7 springer_journals_10_1007_s13253_017_0304_7 jstor_primary_10_2307_26448521 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-01 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of agricultural, biological, and environmental statistics |
PublicationTitleAbbrev | JABES |
PublicationYear | 2017 |
Publisher | Springer Springer US Springer Nature B.V |
Publisher_xml | – name: Springer – name: Springer US – name: Springer Nature B.V |
References | Araújo, Luoto (CR1) 2007; 16 Cressie, Calder, Clark, Hoef, Wikle (CR8) 2009; 19 Taylor (CR38) 1961; 189 Chu, Fierer, Lauber, Caporaso, Knight, Grogan (CR7) 2010; 12 Kendal (CR22) 2004; 1 Warton (CR39) 2005; 16 Warton, Blanchet, O’Hara, Ovaskainen, Taskinen, Walker, Hui (CR40) 2016; 31 Sammel, Ryan, Legler (CR36) 1997; 59 CR19 Huber, Ronchetti (CR15) 2009 Hui, Taskinen, Pledger, Foster, Warton (CR18) 2015; 6 Welsh, Cunningham, Donnelly, Lindenmayer (CR43) 1996; 88 Moustaki (CR28) 1996; 49 Dunstan, Foster, Hui, Warton (CR11) 2013; 18 Männistö, Tiirola, Häggblom (CR25) 2007; 59 Kristensen, Nielsen, Berg, Skaug, Bell (CR23) 2016; 70 Brown, Warton, Andrew, Binns, Cassis, Gibb (CR5) 2014; 5 Morales-Castilla, Matias, Gravel, Araújo (CR27) 2015; 30 Warton, Blanchet, O’Hara, Ovaskainen, Taskinen, Walker, Hui (CR41) 2015; 30 Joe (CR20) 2008; 5066–5074 Moustaki, Knott (CR29) 2000; 65 Nakagawa, Schielzeth (CR30) 2013; 4 CR4 Foster, Bravington (CR12) 2013; 20 CR6 Hui (CR17) 2016; 7 Skrondal, Rabe-Hesketh (CR37) 2004 Rabe-Hesketh, Skrondal, Pickles (CR34) 2002; 2 Dunn, Smyth (CR9) 1996; 5 Martin, Wintle, Rhodes, Kuhnert, Field, Low-Choy, Tyre, Possingham (CR26) 2005; 8 Hall, Pham, Wand, Wang (CR14) 2011; 39 CR21 Hall, Ormerod, Wand (CR13) 2011; 21 Ovaskainen, Abrego, Halme, Dunson (CR32) 2016; 7 Rodrigues-Motta, Pinheiro, Martins, Araujo, dos Reis (CR35) 2013; 40 Nissinen, Männistö, van Elsas (CR31) 2012; 82 Huber, Ronchetti, Victoria-Feser (CR16) 2004; 66 Ovaskainen, de Knegt, Delgado Sanchez (CR33) 2016 Letten, Keith, Tozer, Hui (CR24) 2015; 103 Warwick, Clarke, Suharsono (CR42) 1990; 8 Bianconcini, Cagnone (CR3) 2012; 112 Dunn, Smyth (CR10) 2005; 15 Bartholomew, Knott, Moustaki (CR2) 2011 Yu, Ji, Emerson, Wang, Ye, Yang, Ding (CR44) 2012; 3 304_CR19 MK Männistö (304_CR25) 2007; 59 R Nissinen (304_CR31) 2012; 82 AM Brown (304_CR5) 2014; 5 N Cressie (304_CR8) 2009; 19 DJ Bartholomew (304_CR2) 2011 PK Dunn (304_CR9) 1996; 5 H Joe (304_CR20) 2008; 5066–5074 I Morales-Castilla (304_CR27) 2015; 30 AH Welsh (304_CR43) 1996; 88 A Skrondal (304_CR37) 2004 PK Dunstan (304_CR11) 2013; 18 304_CR6 304_CR4 S Bianconcini (304_CR3) 2012; 112 MD Sammel (304_CR36) 1997; 59 DI Warton (304_CR41) 2015; 30 R Warwick (304_CR42) 1990; 8 AD Letten (304_CR24) 2015; 103 O Ovaskainen (304_CR33) 2016 K Kristensen (304_CR23) 2016; 70 P Huber (304_CR15) 2009 TG Martin (304_CR26) 2005; 8 P Hall (304_CR14) 2011; 39 DI Warton (304_CR39) 2005; 16 P Huber (304_CR16) 2004; 66 WS Kendal (304_CR22) 2004; 1 O Ovaskainen (304_CR32) 2016; 7 P Hall (304_CR13) 2011; 21 304_CR21 DI Warton (304_CR40) 2016; 31 DW Yu (304_CR44) 2012; 3 FKC Hui (304_CR18) 2015; 6 MB Araújo (304_CR1) 2007; 16 LR Taylor (304_CR38) 1961; 189 H Chu (304_CR7) 2010; 12 I Moustaki (304_CR28) 1996; 49 SD Foster (304_CR12) 2013; 20 I Moustaki (304_CR29) 2000; 65 FKC Hui (304_CR17) 2016; 7 PK Dunn (304_CR10) 2005; 15 S Rabe-Hesketh (304_CR34) 2002; 2 M Rodrigues-Motta (304_CR35) 2013; 40 S Nakagawa (304_CR30) 2013; 4 |
References_xml | – year: 2016 ident: CR33 publication-title: Quantitative Ecology and Evolutionary Biology: Integrating Models with Data doi: 10.1093/acprof:oso/9780198714866.001.0001 – volume: 2 start-page: 1 year: 2002 end-page: 21 ident: CR34 article-title: Reliable estimation of generalized linear mixed models using adaptive quadrature publication-title: Stata Journal – volume: 16 start-page: 743 year: 2007 end-page: 753 ident: CR1 article-title: The importance of biotic interactions for modelling species distributions under climate change publication-title: Global Ecology and Biogeography doi: 10.1111/j.1466-8238.2007.00359.x – volume: 82 start-page: 510 year: 2012 end-page: 522 ident: CR31 article-title: Endophytic bacterial communities in three arctic plants from low arctic fell tundra are cold-adapted and host-plant specific publication-title: FEMS Microbiology Ecology doi: 10.1111/j.1574-6941.2012.01464.x – volume: 5066–5074 start-page: 52 year: 2008 ident: CR20 article-title: Accuracy of laplace approximation for discrete response mixed models publication-title: Computational Statistics & Data Analysis – volume: 65 start-page: 391 year: 2000 end-page: 411 ident: CR29 article-title: Generalized latent trait models publication-title: Psychometrika doi: 10.1007/BF02296153 – volume: 66 start-page: 893 year: 2004 end-page: 908 ident: CR16 article-title: Estimation of generalized linear latent variable models publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/j.1467-9868.2004.05627.x – volume: 39 start-page: 2502 year: 2011 end-page: 2532 ident: CR14 article-title: Asymptotic normality and valid inference for Gaussian variational approximation publication-title: The Annals of Statistics doi: 10.1214/11-AOS908 – ident: CR4 – volume: 59 start-page: 452 year: 2007 end-page: 465 ident: CR25 article-title: Bacterial communities in arctic fjelds of finnish lapland are stable but highly ph-dependent publication-title: FEMS Microbiology Ecology doi: 10.1111/j.1574-6941.2006.00232.x – volume: 18 start-page: 357 year: 2013 end-page: 375 ident: CR11 article-title: Finite mixture of regression modeling for high-dimensional count and biomass data in ecology publication-title: Journal of Agricultural, Biological and Environmental Sciences doi: 10.1007/s13253-013-0146-x – volume: 59 start-page: 667 year: 1997 end-page: 678 ident: CR36 article-title: Latent variable models for mixed discrete and continuous outcomes publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/1467-9868.00090 – volume: 15 start-page: 267 year: 2005 end-page: 280 ident: CR10 article-title: Series evaluation of tweedie exponential dispersion model densities publication-title: Statistics and Computing doi: 10.1007/s11222-005-4070-y – volume: 1 start-page: 193 issue: 3 year: 2004 end-page: 209 ident: CR22 article-title: Taylor’s ecological power law as a consequence of scale invariant exponential dispersion models publication-title: Ecological Complexity doi: 10.1016/j.ecocom.2004.05.001 – ident: CR6 – volume: 6 start-page: 399 year: 2015 end-page: 411 ident: CR18 article-title: Model-Based Approaches to Unconstrained Ordination publication-title: Methods in Ecology and Evolution doi: 10.1111/2041-210X.12236 – volume: 103 start-page: 1264 year: 2015 end-page: 1275 ident: CR24 article-title: Fine-scale hydrological niche differentiation through the lens of multi-species co-occurrence models publication-title: Journal of Ecology doi: 10.1111/1365-2745.12428 – volume: 16 start-page: 275 year: 2005 end-page: 289 ident: CR39 article-title: Many zeros does not mean zero inflation: comparing the goodness-of-fit of parametric models to multivariate abundance data publication-title: Environmetrics doi: 10.1002/env.702 – volume: 31 start-page: 737 year: 2016 end-page: 738 ident: CR40 article-title: Extending Joint Models in Community Ecology: A Response to Beissinger et al. publication-title: Trends in Ecology & Evolution doi: 10.1016/j.tree.2016.07.007 – volume: 20 start-page: 533 year: 2013 end-page: 552 ident: CR12 article-title: A Poisson-Gamma model for analysis of ecological non-negative continuous data publication-title: Environmental and ecological statistics doi: 10.1007/s10651-012-0233-0 – volume: 7 start-page: 744 year: 2016 end-page: 750 ident: CR17 article-title: boral-Bayesian Ordination and Regression Analysis of Multivariate Abundance Data in R publication-title: Methods in Ecology and Evolution doi: 10.1111/2041-210X.12514 – volume: 5 start-page: 344 year: 2014 end-page: 352 ident: CR5 article-title: The fourth-corner solution - using predictive models to understand how species traits interact with the environment publication-title: Methods in Ecology and Evolution doi: 10.1111/2041-210X.12163 – volume: 189 start-page: 732 year: 1961 end-page: 735 ident: CR38 article-title: Aggregation, variance and the mean publication-title: Nature doi: 10.1038/189732a0 – ident: CR21 – year: 2011 ident: CR2 publication-title: Latent variable models and factor analysis: A unified approach doi: 10.1002/9781119970583 – ident: CR19 – volume: 30 start-page: 766 year: 2015 end-page: 779 ident: CR41 article-title: So many variables: Joint modeling in community ecology publication-title: Trends in Ecology and Evolution doi: 10.1016/j.tree.2015.09.007 – volume: 3 start-page: 613 year: 2012 end-page: 623 ident: CR44 article-title: Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring publication-title: Methods in Ecology and Evolution doi: 10.1111/j.2041-210X.2012.00198.x – volume: 5 start-page: 236 year: 1996 end-page: 244 ident: CR9 article-title: Randomized quantile residuals publication-title: Journal of Computational and Graphical Statistics – volume: 8 start-page: 171 year: 1990 end-page: 179 ident: CR42 article-title: A statistical analysis of coral community responses to the 1982–83 el niño in the thousand islands, indonesia publication-title: Coral Reefs doi: 10.1007/BF00265008 – volume: 49 start-page: 313 year: 1996 end-page: 334 ident: CR28 article-title: A latent trait and a latent class model for mixed observed variables publication-title: British Journal of Mathematical and Statistical Psychology doi: 10.1111/j.2044-8317.1996.tb01091.x – volume: 7 start-page: 549 year: 2016 end-page: 555 ident: CR32 article-title: Using latent variable models to identify large networks of species-to-species associations at different spatial scales publication-title: Methods in Ecology and Evolution doi: 10.1111/2041-210X.12501 – volume: 21 start-page: 369 year: 2011 end-page: 389 ident: CR13 article-title: Theory of gaussian variational approximation for a poisson mixed model publication-title: Statistica Sinica – volume: 4 start-page: 133 year: 2013 end-page: 142 ident: CR30 article-title: A general and simple method for obtaining R2 from generalized linear mixed-effects models publication-title: Methods In Ecology And Evolution doi: 10.1111/j.2041-210x.2012.00261.x – year: 2004 ident: CR37 publication-title: Generalized Latent Variable Modeling: Multilevel doi: 10.1201/9780203489437 – volume: 88 start-page: 297 year: 1996 end-page: 308 ident: CR43 article-title: Modelling the abundance of rare species: statistical models for counts with extra zeros publication-title: Ecological Modelling doi: 10.1016/0304-3800(95)00113-1 – volume: 12 start-page: 2998 year: 2010 end-page: 3006 ident: CR7 article-title: Soil bacterial diversity in the arctic is not fundamentally different from that found in other biomes publication-title: Environmental Microbiology doi: 10.1111/j.1462-2920.2010.02277.x – volume: 19 start-page: 553 issue: 3 year: 2009 end-page: 570 ident: CR8 article-title: Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical modeling publication-title: Ecological Applications doi: 10.1890/07-0744.1 – year: 2009 ident: CR15 publication-title: Robust Statistics doi: 10.1002/9780470434697 – volume: 70 start-page: 1 issue: 5 year: 2016 end-page: 21 ident: CR23 article-title: Tmb: Automatic differentiation and laplace approximation publication-title: Journal of Statistical Software, Articles – volume: 30 start-page: 347 issue: 6 year: 2015 end-page: 356 ident: CR27 article-title: Inferring biotic interactions from proxies publication-title: Trends in ecology & evolution doi: 10.1016/j.tree.2015.03.014 – volume: 112 start-page: 183 year: 2012 end-page: 193 ident: CR3 article-title: Estimation of generalized linear latent variable models via fully exponential Laplace approximation publication-title: Journal of Multivariate Analysis doi: 10.1016/j.jmva.2012.06.005 – volume: 8 start-page: 1235 year: 2005 end-page: 1246 ident: CR26 article-title: Zero tolerance ecology: improving ecological inference by modelling the source of zero observations publication-title: Ecology letters doi: 10.1111/j.1461-0248.2005.00826.x – volume: 40 start-page: 1586 year: 2013 end-page: 1596 ident: CR35 article-title: Multivariate models for correlated count data publication-title: Journal of Applied Statistics doi: 10.1080/02664763.2013.789098 – volume: 59 start-page: 452 year: 2007 ident: 304_CR25 publication-title: FEMS Microbiology Ecology doi: 10.1111/j.1574-6941.2006.00232.x – volume: 4 start-page: 133 year: 2013 ident: 304_CR30 publication-title: Methods In Ecology And Evolution doi: 10.1111/j.2041-210x.2012.00261.x – ident: 304_CR4 – volume-title: Quantitative Ecology and Evolutionary Biology: Integrating Models with Data year: 2016 ident: 304_CR33 doi: 10.1093/acprof:oso/9780198714866.001.0001 – volume: 7 start-page: 549 year: 2016 ident: 304_CR32 publication-title: Methods in Ecology and Evolution doi: 10.1111/2041-210X.12501 – volume: 189 start-page: 732 year: 1961 ident: 304_CR38 publication-title: Nature doi: 10.1038/189732a0 – ident: 304_CR6 – volume: 5 start-page: 344 year: 2014 ident: 304_CR5 publication-title: Methods in Ecology and Evolution doi: 10.1111/2041-210X.12163 – volume: 21 start-page: 369 year: 2011 ident: 304_CR13 publication-title: Statistica Sinica – volume: 66 start-page: 893 year: 2004 ident: 304_CR16 publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/j.1467-9868.2004.05627.x – volume: 16 start-page: 275 year: 2005 ident: 304_CR39 publication-title: Environmetrics doi: 10.1002/env.702 – volume: 59 start-page: 667 year: 1997 ident: 304_CR36 publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/1467-9868.00090 – volume: 12 start-page: 2998 year: 2010 ident: 304_CR7 publication-title: Environmental Microbiology doi: 10.1111/j.1462-2920.2010.02277.x – volume: 18 start-page: 357 year: 2013 ident: 304_CR11 publication-title: Journal of Agricultural, Biological and Environmental Sciences doi: 10.1007/s13253-013-0146-x – volume: 40 start-page: 1586 year: 2013 ident: 304_CR35 publication-title: Journal of Applied Statistics doi: 10.1080/02664763.2013.789098 – volume-title: Generalized Latent Variable Modeling: Multilevel year: 2004 ident: 304_CR37 doi: 10.1201/9780203489437 – volume: 39 start-page: 2502 year: 2011 ident: 304_CR14 publication-title: The Annals of Statistics doi: 10.1214/11-AOS908 – volume: 1 start-page: 193 issue: 3 year: 2004 ident: 304_CR22 publication-title: Ecological Complexity doi: 10.1016/j.ecocom.2004.05.001 – volume: 30 start-page: 766 year: 2015 ident: 304_CR41 publication-title: Trends in Ecology and Evolution doi: 10.1016/j.tree.2015.09.007 – volume: 16 start-page: 743 year: 2007 ident: 304_CR1 publication-title: Global Ecology and Biogeography doi: 10.1111/j.1466-8238.2007.00359.x – volume: 7 start-page: 744 year: 2016 ident: 304_CR17 publication-title: Methods in Ecology and Evolution doi: 10.1111/2041-210X.12514 – volume: 19 start-page: 553 issue: 3 year: 2009 ident: 304_CR8 publication-title: Ecological Applications doi: 10.1890/07-0744.1 – volume: 82 start-page: 510 year: 2012 ident: 304_CR31 publication-title: FEMS Microbiology Ecology doi: 10.1111/j.1574-6941.2012.01464.x – volume: 5066–5074 start-page: 52 year: 2008 ident: 304_CR20 publication-title: Computational Statistics & Data Analysis – ident: 304_CR21 – volume: 20 start-page: 533 year: 2013 ident: 304_CR12 publication-title: Environmental and ecological statistics doi: 10.1007/s10651-012-0233-0 – volume: 30 start-page: 347 issue: 6 year: 2015 ident: 304_CR27 publication-title: Trends in ecology & evolution doi: 10.1016/j.tree.2015.03.014 – volume: 31 start-page: 737 year: 2016 ident: 304_CR40 publication-title: Trends in Ecology & Evolution doi: 10.1016/j.tree.2016.07.007 – volume: 5 start-page: 236 year: 1996 ident: 304_CR9 publication-title: Journal of Computational and Graphical Statistics doi: 10.1080/10618600.1996.10474708 – volume: 103 start-page: 1264 year: 2015 ident: 304_CR24 publication-title: Journal of Ecology doi: 10.1111/1365-2745.12428 – volume: 70 start-page: 1 issue: 5 year: 2016 ident: 304_CR23 publication-title: Journal of Statistical Software, Articles – volume: 6 start-page: 399 year: 2015 ident: 304_CR18 publication-title: Methods in Ecology and Evolution doi: 10.1111/2041-210X.12236 – volume: 49 start-page: 313 year: 1996 ident: 304_CR28 publication-title: British Journal of Mathematical and Statistical Psychology doi: 10.1111/j.2044-8317.1996.tb01091.x – volume: 15 start-page: 267 year: 2005 ident: 304_CR10 publication-title: Statistics and Computing doi: 10.1007/s11222-005-4070-y – volume-title: Latent variable models and factor analysis: A unified approach year: 2011 ident: 304_CR2 doi: 10.1002/9781119970583 – volume: 8 start-page: 1235 year: 2005 ident: 304_CR26 publication-title: Ecology letters doi: 10.1111/j.1461-0248.2005.00826.x – volume: 112 start-page: 183 year: 2012 ident: 304_CR3 publication-title: Journal of Multivariate Analysis doi: 10.1016/j.jmva.2012.06.005 – volume: 8 start-page: 171 year: 1990 ident: 304_CR42 publication-title: Coral Reefs doi: 10.1007/BF00265008 – volume-title: Robust Statistics year: 2009 ident: 304_CR15 doi: 10.1002/9780470434697 – volume: 2 start-page: 1 year: 2002 ident: 304_CR34 publication-title: Stata Journal doi: 10.1177/1536867X0200200101 – volume: 3 start-page: 613 year: 2012 ident: 304_CR44 publication-title: Methods in Ecology and Evolution doi: 10.1111/j.2041-210X.2012.00198.x – volume: 65 start-page: 391 year: 2000 ident: 304_CR29 publication-title: Psychometrika doi: 10.1007/BF02296153 – volume: 88 start-page: 297 year: 1996 ident: 304_CR43 publication-title: Ecological Modelling doi: 10.1016/0304-3800(95)00113-1 – ident: 304_CR19 |
SSID | ssj0013602 |
Score | 2.357456 |
Snippet | In this paper we consider generalized linear latent variable models that can handle overdispersed counts and continuous but non-negative data. Such data are... |
SourceID | proquest gale crossref springer jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 498 |
SubjectTerms | Agriculture Analysis Approximation Approximation method Arctic region Bacteria Biomass Biostatistics Computer simulation Coral reef ecosystems Coral reefs data collection Ecological monitoring Ecological studies Economic models environmental factors Estimates Europe Health Sciences Inference linear models Mathematics and Statistics Medicine Modelling Monitoring/Environmental Analysis Multivariate analysis Ordination ordination techniques Reefs Species Statistics Statistics for Life Sciences |
Title | Generalized Linear Latent Variable Models for Multivariate Count and Biomass Data in Ecology |
URI | https://www.jstor.org/stable/26448521 https://link.springer.com/article/10.1007/s13253-017-0304-7 https://www.proquest.com/docview/1965286945 https://www.proquest.com/docview/2010209177 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_0DuV8EK0erp5LFEFQAt2kadrHonueH-eDunKCENomPQ7Orly7wvnXO5Omt7eigi99aT6aziT5DTPzG4AnuRUi1tpxXeMjkS7muIskn-VVpqzUeekd7Yfv04NF8uZIHYU87m6Mdh9dkv6kXie7SaEo9kdzcudxfRW2FZruFMe1EMXadZCGQMNMcT2b6dGV-achNi6jcCQPYYkbgPM3H6m_evZvwc2AGVkxCPk2XHFtBDeK47PAm-EiuDbUlDyPYHe-Tl3DTmHvdhFcPwxu9Ah2CGIODM134Gtgnj756SxD0xRVn71DBNr27DMa0pRaxahi2mnHEOAyn7H7g170jlFGe8_K1jKc_xvicPay7Et20rK5Z8M-vwuL_fmnFwc81FzgtZplPZfSNYm0aPZZkWry4tWqbFIyJJytla11rJpcoxCzUlUVXv6IcZImr6mmYtJkche22mXr7gETsopxoCRPcMhYZVnVOIc3ZiNjq2wcTyAef76pAyE51cU4NWsqZZKXQXkZkpfRE3h20eX7wMbxr8aPSaKGWC5aCqM5LlddZ15__GAKJUWOWEiqCTwNjZolTl6XISsBl0DEWBstp14zLk9MUfTGm7j4IyawN6qMCQdBZ4iwUWRpnmD_RxevcQuTX6Zs3XLVGQpIEIjbNH7y81HVLg3xtwXe_6_WD2BHkOb7UJw92OrPVu4hAqq-msJ28erL2_nUb6RfFoQS_w |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VImg5IAhUDZSyIBASyJKz6_XaBw4RTZXQpAdoUA-VFj_WVaXioNoBhb_DH2VmvW4aBEgcevHF-56dnW80L4AXcc65r5TxVIafQBjfQy4SXi9OI5kLFSfW0D45DIfT4P2xPF6Dn20sjPV2b02S9qVeBrsJLsn3R3lkzvOU86Q8MIvvqKdVb0d7SNSXnO8Pjt4NPVdKwMtkL6o9IUwRiBy1mZyHioxTmUyKkPCxyTOZZ8qXRaxwbVEi0xRlGoruoIgzKhUYFJHAcW_ATcQeEbHOlPeXporQOTZG0lO9nmpNp39a8orwcyKgcYNcAbi_2WStqNu_B3cdRmX95lLdhzVTduBO__TC5ekwHbjV1LBcdGBrsAyVw07urag6cHvizPYd2CRI22SEfgAnLtP12Q-TM1SF8XjZGBFvWbNPqLhTKBejCm3nFUNAzWyE8Df6URtGEfQ1S8qc4fxfEPezvaRO2FnJBjb79uIhTK-FMFuwXs5Ksw2Mi9THgYI4wCF9GUVpYQxK6EL4ucx9vwt-e_g6cwnQqQ7HuV6mbiZ6aaSXJnpp1YXXl12-Ntk__tX4OVFUU1aNktx2TpN5VenRxw-6LwWPEXsJ2YVXrlExw8mzxEVB4BYoEddKy117M65OTF772qrUeBBd2GmvjHYPT6UpQSSPwjjA_s8uf-OTQXagpDSzeaXJAYIjTlS45DftVbsyxN82-Oi_Wj-FjeHRZKzHo8ODx7DJiQusG9AOrNcXc_MEwVyd7lpmYvD5urn3F6_3TJw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qxdI-iJ4Wz9a6iiIoobndbDZ58OHw7ujZD0Q96YOwJtlNKdRcaXLK-U_5LzqTbHo9UcGHvuQl-z07OzPMzG8AnsWGc18p66kMP4GwvodcJLxenEbSCBUntaP98CjcmwRvj-XxCvxsc2HqaPfWJdnkNBBKU1Htnpt8d5H4JrikOCDlkWvPUy6qct_Ov6PNVr4eD5DAzzkfDT--2fNcWQEvk72o8oSweSAMWjaGh4ocVZlM8pB0ZWsyaTLlyzxWuM4okWmK8g3FeJDHGZUNDPJI4Lg34GZAycfIQBPeX7gtQhfkGElP9XqqdaP-aclLgtCJgyYkcknZ_c0_W4u90R247fRV1m8u2F1YsUUHNvonFw6zw3bgVlPPct6BzeEibQ47uXej7MDaoXPhd2Cd1NsGHfoefHao16c_rGFoFuPxsoOECME-oRFPaV2MqrWdlQyVa1ZnC3-jH5VllE1fsaQwDOf_ijYAGyRVwk4LNqyRuOf3YXIthNmE1WJa2AfAuEh9HCiIAxzSl1GU5taitM6Fb6Tx_S747eHrzIGhU02OM72AcSZ6aaSXJnpp1YWXl13OGySQfzV-ShTVhLBRUAjPSTIrSz3-8F73peAx6mFCduGFa5RPcfIscRkRuAUC5VpquVPfjKsTUwS_rs1rPIgubLdXRrtHqNQEFsmjMA6w_5PL3_h8kE8oKex0VmoKhuCoMypc8qv2ql0Z4m8bfPhfrR_D2rvBSB-Mj_a3YJ0TE9QRQduwWl3M7CPU66p0p-YlBl-um3l_AQmpUM8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+Linear+Latent+Variable+Models+for+Multivariate+Count+and+Biomass+Data+in+Ecology&rft.jtitle=Journal+of+agricultural%2C+biological%2C+and+environmental+statistics&rft.au=Niku%2C+Jenni&rft.au=Warton%2C+David+I&rft.au=Hui%2C+Francis+K.+C&rft.au=Taskinen%2C+Sara&rft.date=2017-12-01&rft.pub=Springer&rft.issn=1085-7117&rft.volume=22&rft.issue=4&rft.spage=498&rft_id=info:doi/10.1007%2Fs13253-017-0304-7&rft.externalDocID=A532981935 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1085-7117&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1085-7117&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1085-7117&client=summon |