Anti-inflammatory activity of curcumin-loaded tetrahedral framework nucleic acids on acute gouty arthritis
Gouty arthritis is a very familiar inflammatory arthritis. Controlling inflammation is the key to preventing gouty arthritis. However, colchicine, the most highly represented drug used in clinical practice, has strict contraindications owing to some severe side effects. Curcumin (Cur), a natural ant...
Saved in:
Published in | Bioactive materials Vol. 8; pp. 368 - 380 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2022
KeAi Publishing KeAi Communications Co., Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gouty arthritis is a very familiar inflammatory arthritis. Controlling inflammation is the key to preventing gouty arthritis. However, colchicine, the most highly represented drug used in clinical practice, has strict contraindications owing to some severe side effects. Curcumin (Cur), a natural anti-inflammatory drug, has demonstrated good safety and efficacy. However, the rapid degradation, poor aqueous solubility, and low bioavailability of Cur limit its therapeutic effect. To strengthen the effectiveness and bioavailability of Cur. Cur loaded tetrahedral framework nucleic acids (Cur-TFNAs) were synthesized to deliver Cur. Compared with free Cur, Cur-TFNAs exhibit a preferable drug stability, good biocompatibility (CCK-8 assay), ease of uptake (immunofluorescence), and higher tissue utilization (in vivo biodistribution). Most importantly, Cur-TFNAs present better anti-inflammatory effect than free Cur both in vivo and in vitro experiments through the determination of inflammation-related cytokines expression. Therefore, we believe that Cur-TFNAs have great prospects for the prevention of gout and similar inflammatory diseases.
Schematic illustration of treating acute gouty arthritis with Cur loaded TFNAs. Cur-TFNAs were absorbed by inflammatory RAW264.7 cells and inhibited the activation of NF-κB, which decreased the levels of ROS, NO and inflammatory factors (IL-6, IL-1β and TNF-α), thus affecting the progression of acute gouty arthritis. [Display omitted]
•The drug curcumin system based on DNA nanostructures (Cur-TFNAs) were developed to obtain a novel nanomaterial with high water solubility, large encapsulation efficiency, sustained drug release and excellent drug stability.•Based on cellular uptake and in vivo drug imaging, Cur-TFNAs improve the retention of Cur in cells and tissues.•Cur-TFNAs prevent acute gouty arthritis through mediating anti-inflammatory and antioxidant responses of macrophage. |
---|---|
AbstractList | Gouty arthritis is a very familiar inflammatory arthritis. Controlling inflammation is the key to preventing gouty arthritis. However, colchicine, the most highly represented drug used in clinical practice, has strict contraindications owing to some severe side effects. Curcumin (Cur), a natural anti-inflammatory drug, has demonstrated good safety and efficacy. However, the rapid degradation, poor aqueous solubility, and low bioavailability of Cur limit its therapeutic effect. To strengthen the effectiveness and bioavailability of Cur. Cur loaded tetrahedral framework nucleic acids (Cur-TFNAs) were synthesized to deliver Cur. Compared with free Cur, Cur-TFNAs exhibit a preferable drug stability, good biocompatibility (CCK-8 assay), ease of uptake (immunofluorescence), and higher tissue utilization (in vivo biodistribution). Most importantly, Cur-TFNAs present better anti-inflammatory effect than free Cur both in vivo and in vitro experiments through the determination of inflammation-related cytokines expression. Therefore, we believe that Cur-TFNAs have great prospects for the prevention of gout and similar inflammatory diseases.
Schematic illustration of treating acute gouty arthritis with Cur loaded TFNAs. Cur-TFNAs were absorbed by inflammatory RAW264.7 cells and inhibited the activation of NF-κB, which decreased the levels of ROS, NO and inflammatory factors (IL-6, IL-1β and TNF-α), thus affecting the progression of acute gouty arthritis.
Image 1
•
The drug curcumin system based on DNA nanostructures (Cur-TFNAs) were developed to obtain a novel nanomaterial with high water solubility, large encapsulation efficiency, sustained drug release and excellent drug stability.
•
Based on cellular uptake and in vivo drug imaging, Cur-TFNAs improve the retention of Cur in cells and tissues.
•
Cur-TFNAs prevent acute gouty arthritis through mediating anti-inflammatory and antioxidant responses of macrophage. Gouty arthritis is a very familiar inflammatory arthritis. Controlling inflammation is the key to preventing gouty arthritis. However, colchicine, the most highly represented drug used in clinical practice, has strict contraindications owing to some severe side effects. Curcumin (Cur), a natural anti-inflammatory drug, has demonstrated good safety and efficacy. However, the rapid degradation, poor aqueous solubility, and low bioavailability of Cur limit its therapeutic effect. To strengthen the effectiveness and bioavailability of Cur. Cur loaded tetrahedral framework nucleic acids (Cur-TFNAs) were synthesized to deliver Cur. Compared with free Cur, Cur-TFNAs exhibit a preferable drug stability, good biocompatibility (CCK-8 assay), ease of uptake (immunofluorescence), and higher tissue utilization (in vivo biodistribution). Most importantly, Cur-TFNAs present better anti-inflammatory effect than free Cur both in vivo and in vitro experiments through the determination of inflammation-related cytokines expression. Therefore, we believe that Cur-TFNAs have great prospects for the prevention of gout and similar inflammatory diseases.Gouty arthritis is a very familiar inflammatory arthritis. Controlling inflammation is the key to preventing gouty arthritis. However, colchicine, the most highly represented drug used in clinical practice, has strict contraindications owing to some severe side effects. Curcumin (Cur), a natural anti-inflammatory drug, has demonstrated good safety and efficacy. However, the rapid degradation, poor aqueous solubility, and low bioavailability of Cur limit its therapeutic effect. To strengthen the effectiveness and bioavailability of Cur. Cur loaded tetrahedral framework nucleic acids (Cur-TFNAs) were synthesized to deliver Cur. Compared with free Cur, Cur-TFNAs exhibit a preferable drug stability, good biocompatibility (CCK-8 assay), ease of uptake (immunofluorescence), and higher tissue utilization (in vivo biodistribution). Most importantly, Cur-TFNAs present better anti-inflammatory effect than free Cur both in vivo and in vitro experiments through the determination of inflammation-related cytokines expression. Therefore, we believe that Cur-TFNAs have great prospects for the prevention of gout and similar inflammatory diseases. Gouty arthritis is a very familiar inflammatory arthritis. Controlling inflammation is the key to preventing gouty arthritis. However, colchicine, the most highly represented drug used in clinical practice, has strict contraindications owing to some severe side effects. Curcumin (Cur), a natural anti-inflammatory drug, has demonstrated good safety and efficacy. However, the rapid degradation, poor aqueous solubility, and low bioavailability of Cur limit its therapeutic effect. To strengthen the effectiveness and bioavailability of Cur. Cur loaded tetrahedral framework nucleic acids (Cur-TFNAs) were synthesized to deliver Cur. Compared with free Cur, Cur-TFNAs exhibit a preferable drug stability, good biocompatibility (CCK-8 assay), ease of uptake (immunofluorescence), and higher tissue utilization (in vivo biodistribution). Most importantly, Cur-TFNAs present better anti-inflammatory effect than free Cur both in vivo and in vitro experiments through the determination of inflammation-related cytokines expression. Therefore, we believe that Cur-TFNAs have great prospects for the prevention of gout and similar inflammatory diseases. Schematic illustration of treating acute gouty arthritis with Cur loaded TFNAs. Cur-TFNAs were absorbed by inflammatory RAW264.7 cells and inhibited the activation of NF-κB, which decreased the levels of ROS, NO and inflammatory factors (IL-6, IL-1β and TNF-α), thus affecting the progression of acute gouty arthritis. [Display omitted] •The drug curcumin system based on DNA nanostructures (Cur-TFNAs) were developed to obtain a novel nanomaterial with high water solubility, large encapsulation efficiency, sustained drug release and excellent drug stability.•Based on cellular uptake and in vivo drug imaging, Cur-TFNAs improve the retention of Cur in cells and tissues.•Cur-TFNAs prevent acute gouty arthritis through mediating anti-inflammatory and antioxidant responses of macrophage. Gouty arthritis is a very familiar inflammatory arthritis. Controlling inflammation is the key to preventing gouty arthritis. However, colchicine, the most highly represented drug used in clinical practice, has strict contraindications owing to some severe side effects. Curcumin (Cur), a natural anti-inflammatory drug, has demonstrated good safety and efficacy. However, the rapid degradation, poor aqueous solubility, and low bioavailability of Cur limit its therapeutic effect. To strengthen the effectiveness and bioavailability of Cur. Cur loaded tetrahedral framework nucleic acids (Cur-TFNAs) were synthesized to deliver Cur. Compared with free Cur, Cur-TFNAs exhibit a preferable drug stability, good biocompatibility (CCK-8 assay), ease of uptake (immunofluorescence), and higher tissue utilization (in vivo biodistribution). Most importantly, Cur-TFNAs present better anti-inflammatory effect than free Cur both in vivo and in vitro experiments through the determination of inflammation-related cytokines expression. Therefore, we believe that Cur-TFNAs have great prospects for the prevention of gout and similar inflammatory diseases. |
Author | Zhang, Qi Tian, Taoran Xiao, Dexuan Lin, Yunfeng Wen, Yuting Cui, Weitong Zhu, Junyao Zhang, Xiaolin Zhang, Mei |
Author_xml | – sequence: 1 givenname: Mei surname: Zhang fullname: Zhang, Mei organization: State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China – sequence: 2 givenname: Xiaolin surname: Zhang fullname: Zhang, Xiaolin organization: State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China – sequence: 3 givenname: Taoran surname: Tian fullname: Tian, Taoran organization: State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China – sequence: 4 givenname: Qi surname: Zhang fullname: Zhang, Qi organization: State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China – sequence: 5 givenname: Yuting surname: Wen fullname: Wen, Yuting organization: State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China – sequence: 6 givenname: Junyao surname: Zhu fullname: Zhu, Junyao organization: State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China – sequence: 7 givenname: Dexuan surname: Xiao fullname: Xiao, Dexuan organization: State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China – sequence: 8 givenname: Weitong surname: Cui fullname: Cui, Weitong organization: State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China – sequence: 9 givenname: Yunfeng orcidid: 0000-0003-1224-6561 surname: Lin fullname: Lin, Yunfeng email: yunfenglin@scu.edu.cn organization: State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China |
BookMark | eNqNkU1v1DAQhiNUREvpbyBHLgl27MTJAaRVxUelSlxA4mY59nh3QmIX29lq_z1etqooF7jYI3veZz7el8WZ8w6K4jUlNSW0ezvVI3ql06JS3ZCG1qSrCWHPiouGt01Fh-H72R_xeXEV40QIoSIfRLwozhlvOeVEXBTTxiWs0NlZLZnnw6HMZNxjOpTelnoNel3QVbNXBkyZIAW1AxPUXNqgFrj34UfpVj0D6qxEE0vvcrAmKLd-zRQV0i5gwviqeG7VHOHq4b4svn388PX6c3X75dPN9ea20i3tU0VHazj0go5i5IL2qodRj0KBFYaNasiTNgZsY3ume90p1o6DEMPI7ECgZ8Aui5sT13g1ybuAiwoH6RXK3w8-bGXuCXPLsmEguk5TxvuWt5YpYtRAFaPABw5CZ9b7E-tuHRcwGlyef34CffrjcCe3fi973gwDFRnw5gEQ_M8VYpILRg3zrBz4NcqmFVxwnm3JqeKUqoOPMYB9LEOJPBovJ_lovDwaL0kn8zqy8t1fSo1JJfTHnnD-D_3mpIdsyx4hyKgRnAaDAXTKe8N_Mn4BPE3UAw |
CitedBy_id | crossref_primary_10_1016_j_cclet_2021_11_090 crossref_primary_10_1002_adhm_202203076 crossref_primary_10_1111_cpr_13624 crossref_primary_10_1166_jbn_2022_3295 crossref_primary_10_1166_jbn_2022_3293 crossref_primary_10_1002_advs_202303706 crossref_primary_10_1111_cpr_13623 crossref_primary_10_1166_mex_2022_2159 crossref_primary_10_2174_1389200224666230614115655 crossref_primary_10_1134_S1070363222090201 crossref_primary_10_1186_s12951_022_01758_2 crossref_primary_10_2174_0929867331666230809143758 crossref_primary_10_3390_molecules28134935 crossref_primary_10_1002_adfm_202204587 crossref_primary_10_1002_smtd_202401360 crossref_primary_10_3389_fnut_2022_1040259 crossref_primary_10_1016_j_matdes_2022_111299 crossref_primary_10_1002_adma_202107820 crossref_primary_10_1021_acs_nanolett_2c00025 crossref_primary_10_1166_jbn_2022_3283 crossref_primary_10_1166_jbn_2022_3281 crossref_primary_10_2147_JIR_S460333 crossref_primary_10_1039_D3BM00095H crossref_primary_10_1021_jacsau_4c01170 crossref_primary_10_1021_acsami_2c05750 crossref_primary_10_2174_1389200224666230202155414 crossref_primary_10_1021_acs_chemmater_3c01776 crossref_primary_10_1093_burnst_tkac006 crossref_primary_10_1166_jbn_2022_3280 crossref_primary_10_1021_acsami_2c02523 crossref_primary_10_1002_adfm_202417307 crossref_primary_10_1002_adfm_202314789 crossref_primary_10_1080_03008207_2023_2235007 crossref_primary_10_1021_acsami_2c10612 crossref_primary_10_1111_cpr_13174 crossref_primary_10_1166_mex_2022_2171 crossref_primary_10_1111_cpr_13689 crossref_primary_10_1002_adma_202202513 crossref_primary_10_1021_acsami_2c02877 crossref_primary_10_1016_j_jiec_2022_02_052 crossref_primary_10_1021_acs_biomac_2c01525 crossref_primary_10_1166_mex_2022_2178 crossref_primary_10_1166_mex_2022_2177 crossref_primary_10_1021_acsami_2c20657 crossref_primary_10_1021_acs_nanolett_3c01502 crossref_primary_10_1016_j_foodres_2024_114492 crossref_primary_10_1016_j_cej_2022_140399 crossref_primary_10_1111_cpr_13283 crossref_primary_10_1166_sam_2022_4251 crossref_primary_10_1111_cpr_13316 crossref_primary_10_1166_mex_2022_2163 crossref_primary_10_1166_mex_2022_2162 crossref_primary_10_1111_cpr_13279 crossref_primary_10_1111_cpr_13678 crossref_primary_10_3389_fcimb_2022_816386 crossref_primary_10_1021_acsami_1c23708 crossref_primary_10_1166_mex_2022_2169 crossref_primary_10_1038_s41413_022_00212_1 crossref_primary_10_1021_acsnano_4c05845 crossref_primary_10_1038_s41596_022_00791_7 crossref_primary_10_1166_sam_2022_4249 crossref_primary_10_1002_adhm_202401384 crossref_primary_10_2174_1389200224666230410111015 crossref_primary_10_1111_cpr_13311 crossref_primary_10_1002_smll_202410162 crossref_primary_10_1111_cpr_13272 crossref_primary_10_1166_mex_2023_2495 crossref_primary_10_1063_10_0025584 crossref_primary_10_1166_jbn_2022_3348 crossref_primary_10_1002_admi_202201532 crossref_primary_10_3389_fmolb_2022_900344 crossref_primary_10_1002_slct_202401655 crossref_primary_10_1111_cpr_13424 crossref_primary_10_1038_s41368_022_00199_9 crossref_primary_10_1021_acsnano_4c06598 crossref_primary_10_1016_j_bioactmat_2021_11_031 crossref_primary_10_1166_mex_2022_2199 crossref_primary_10_1166_mex_2022_2198 crossref_primary_10_1002_smll_202302326 crossref_primary_10_1166_mex_2023_2365 crossref_primary_10_1007_s10876_023_02491_y crossref_primary_10_1021_acsnano_3c02102 crossref_primary_10_1016_j_cej_2022_134855 crossref_primary_10_1021_acsami_1c23869 crossref_primary_10_1166_mex_2023_2368 crossref_primary_10_1021_acsmaterialslett_2c00021 crossref_primary_10_1021_acsami_2c10364 crossref_primary_10_1021_acsami_2c12147 crossref_primary_10_1080_10408398_2022_2092056 crossref_primary_10_2174_1389200224666230710124838 crossref_primary_10_3724_abbs_2023078 crossref_primary_10_3389_fphar_2022_963032 crossref_primary_10_1166_mex_2022_2181 crossref_primary_10_1166_jbn_2022_3363 crossref_primary_10_1021_acsami_1c19889 crossref_primary_10_1166_mex_2022_2223 crossref_primary_10_1002_adfm_202303580 crossref_primary_10_1166_mex_2022_2222 crossref_primary_10_1166_mex_2022_2188 crossref_primary_10_1002_cplu_202100548 crossref_primary_10_2174_1389200224666230413082047 crossref_primary_10_3390_nano12030324 crossref_primary_10_1166_mex_2022_2219 crossref_primary_10_1166_sam_2022_4269 crossref_primary_10_1021_acsnano_4c12917 crossref_primary_10_1016_j_matdes_2022_111087 crossref_primary_10_2174_1389200224666230601091346 crossref_primary_10_1039_D2BM02169B crossref_primary_10_3390_molecules28062878 crossref_primary_10_1111_cpr_13129 crossref_primary_10_1111_cpr_13407 crossref_primary_10_1002_smll_202305490 crossref_primary_10_1166_jbn_2022_3430 crossref_primary_10_1002_adhm_202400198 crossref_primary_10_1007_s11655_022_3721_6 crossref_primary_10_1016_j_jconrel_2022_12_004 crossref_primary_10_3389_fphar_2022_863082 crossref_primary_10_1166_sam_2022_4219 crossref_primary_10_1166_sam_2022_4218 crossref_primary_10_1021_acsnano_3c04462 crossref_primary_10_1039_D2NR06631A crossref_primary_10_1166_sam_2022_4217 crossref_primary_10_1021_acsami_1c20657 crossref_primary_10_3389_fbioe_2021_782237 crossref_primary_10_1016_j_pdpdt_2022_103204 crossref_primary_10_1016_j_jcis_2022_11_139 crossref_primary_10_1021_acsami_2c09462 crossref_primary_10_1002_ptr_7514 crossref_primary_10_1016_j_cellsig_2023_110694 crossref_primary_10_2147_IJN_S428938 crossref_primary_10_1021_acsami_2c14626 crossref_primary_10_1002_adhm_202401452 crossref_primary_10_1016_j_biomaterials_2023_122283 crossref_primary_10_1039_D3NA00327B crossref_primary_10_1186_s40824_023_00372_z crossref_primary_10_1002_advs_202305622 crossref_primary_10_1039_D2NR07174F crossref_primary_10_2147_IJN_S403882 crossref_primary_10_1021_acsnano_3c09589 crossref_primary_10_2174_1389200224666230120124402 crossref_primary_10_1021_acsnano_2c09593 crossref_primary_10_1016_j_jddst_2023_104200 crossref_primary_10_1111_cpr_13470 crossref_primary_10_1007_s10565_025_10001_1 crossref_primary_10_1021_acs_biomac_4c01019 crossref_primary_10_1080_10739149_2022_2105866 |
Cites_doi | 10.1021/acs.accounts.5b00127 10.3390/molecules16064567 10.1016/j.jconrel.2006.04.014 10.1002/art.40807 10.1016/j.nano.2019.102061 10.1039/C7NR09692E 10.1021/acs.nanolett.0c00529 10.5604/17322693.991446 10.1016/j.biomaterials.2007.12.037 10.1186/1742-2094-8-125 10.1021/acs.nanolett.8b02166 10.1016/j.bioactmat.2020.12.027 10.1016/j.autrev.2009.02.026 10.1038/nature04516 10.1039/c1np00051a 10.1002/smll.201800703 10.1016/j.brainres.2009.05.009 10.1097/RHU.0b013e31827d8790 10.2217/nnm.09.28 10.1016/S0140-6736(16)00346-9 10.1016/S0168-3659(02)00127-X 10.1016/j.biomaterials.2011.10.070 10.1021/bm800479e 10.1038/nprot.2015.078 10.1016/j.biomaterials.2010.04.062 10.1016/j.nano.2014.09.004 10.1126/stke.11pe1 10.1016/j.lfs.2003.10.042 10.1021/acs.chemrev.7b00663 10.1038/ni1001-907 10.1016/j.cell.2007.08.024 10.1021/acsami.9b10645 10.1038/cddis.2017.470 10.1002/adma.201300875 10.1038/nrrheum.2014.32 10.1158/1078-0432.CCR-04-2517 10.1021/nn4058787 10.1158/1078-0432.CCR-07-5177 10.1021/nn2005574 10.2217/nnm.10.9 10.1016/j.mattod.2018.08.002 10.2165/00002018-199411040-00004 10.1046/j.1365-2796.2003.01146.x 10.1016/j.lfs.2005.12.007 10.1021/mp700113r 10.1038/s41413-019-0077-4 10.1096/fasebj.6.12.1381691 10.1038/s41572-019-0115-y 10.1002/art.1780340716 10.1038/s41467-018-04947-6 10.1038/s41596-020-0355-z 10.1021/nn405077y 10.1146/annurev-med-040210-162544 10.1016/j.biomaterials.2015.02.116 10.1136/annrheumdis-2011-200298 10.1021/acsami.9b13829 10.1021/acsami.8b22444 10.1101/gad.9.22.2736 10.1002/art.24185 10.1016/j.it.2015.01.003 |
ContentType | Journal Article |
Copyright | 2021 The Authors 2021 The Authors. 2021 The Authors 2021 |
Copyright_xml | – notice: 2021 The Authors – notice: 2021 The Authors. – notice: 2021 The Authors 2021 |
DBID | 6I. AAFTH AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1016/j.bioactmat.2021.06.003 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2452-199X |
EndPage | 380 |
ExternalDocumentID | oai_doaj_org_article_23e766c1348545f3a0da91a31e494e7c PMC8429917 10_1016_j_bioactmat_2021_06_003 S2452199X21002863 |
GroupedDBID | 0SF 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAYWO AAYXX ABJCF ACVFH ADCNI ADMLS ADVLN AEUPX AFKRA AFPUW AIGII AKBMS AKRWK AKYEP BBNVY BENPR BGLVJ BHPHI CCPQU CITATION HCIFZ KB. M7P M~E PDBOC PHGZM PHGZT PIMPY 7X8 5PM |
ID | FETCH-LOGICAL-c518t-1bfd4e871b7b4718a8ebcb7aef7d3ba90032def2f83c8c6a35b9779b3f90e83e3 |
IEDL.DBID | DOA |
ISSN | 2452-199X |
IngestDate | Wed Aug 27 01:27:18 EDT 2025 Thu Aug 21 18:11:22 EDT 2025 Fri Jul 11 09:08:35 EDT 2025 Tue Jul 01 02:11:26 EDT 2025 Thu Apr 24 23:02:29 EDT 2025 Wed May 17 01:14:17 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Oxidative stress Tetrahedral framework DNA nanoparticle NF-κB signaling pathway Gouty arthritis Macrophage |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-1bfd4e871b7b4718a8ebcb7aef7d3ba90032def2f83c8c6a35b9779b3f90e83e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1224-6561 |
OpenAccessLink | https://doaj.org/article/23e766c1348545f3a0da91a31e494e7c |
PMID | 34541407 |
PQID | 2574744007 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_23e766c1348545f3a0da91a31e494e7c pubmedcentral_primary_oai_pubmedcentral_nih_gov_8429917 proquest_miscellaneous_2574744007 crossref_primary_10_1016_j_bioactmat_2021_06_003 crossref_citationtrail_10_1016_j_bioactmat_2021_06_003 elsevier_sciencedirect_doi_10_1016_j_bioactmat_2021_06_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Bioactive materials |
PublicationYear | 2022 |
Publisher | Elsevier B.V KeAi Publishing KeAi Communications Co., Ltd |
Publisher_xml | – name: Elsevier B.V – name: KeAi Publishing – name: KeAi Communications Co., Ltd |
References | Conaghan, Day (bib8) 1994; 11 De Jong, Hagens, Krystek, Burger, Sips, Geertsma (bib40) 2008; 29 Boumans, Houbiers, Verschueren, Ishikura, Westhovens, Brouwer, Rojkovich, Kelly, den Adel, Isaacs, Jacobs, Gomez-Reino, Holtkamp, Hastings, Gerlag, Tak (bib63) 2012; 71 Li, Fan, Pei, Shi, Huang (bib42) 2013; 25 Zhang, Ma, Zhu, Shi, Li, Mao, Zhao, Zhan, Shi, Li, Wang, Fan, Lin (bib26) 2018; 18 Terkeltaub, Zachariae, Santoro, Martin, Peveri, Matsushima (bib6) 1991; 34 Bogdan (bib55) 2001; 2 Sahoo, Panyam, Prabha, Labhasetwar (bib47) 2002; 82 Sun, Ren, Xiong, Chen, Zhao, Wang, Zhou, Han, Chen, Li, Kang, Zhu (bib14) 2017; 8 Fu, You, Ma, Li, Ju, Guo, Shi, Zhang, Zhou, Lin (bib29) 2019; 11 Martinon, Pétrilli, Mayor, Tardivel, Tschopp (bib4) 2006; 440 Zhang, Tian, Zhou, Li, Ma, Zhang, Liu, Shi, Li, Xie, Ge, Liu, Zhang, Lin, Cai, Lin (bib25) 2020; 15 Wang, Wang, Zhu, Liu, Fei, Wang (bib20) 2015; 53 Maheshwari, Singh, Gaddipati, Srimal (bib9) 2006; 78 Basnet, Skalko-Basnet (bib10) 2011; 16 Gupta, Prasad, Kim, Patchva, Webb, Priyadarsini, Aggarwal (bib44) 2011; 28 Sun, Liu, Zhang, Shi, Zhang, Zhao, Tian, Li, Lin (bib33) 2021; 6 Canty, Boyle, Farr, Morgan, Verrier, Pohlman (bib58) 1999; 100 Hainer, Matheson, Wilkes (bib62) 2014; 90 Sirong, Yang, Taoran, Songhang, Shiyu, Yuxin, Xiaoru, Tao, Yunfeng, Xiaoxiao (bib35) 2020; 8 Dalbeth, Merriman, Stamp, Gout (bib1) 2016; 388 Mohanty, Sahoo (bib36) 2010; 31 Tiwari, Agarwal, Seth, Yadav, Nair, Bhatnagar, Karmakar, Kumari, Chauhan, Patel (bib18) 2014; 8 Chen, He, Su, Li, Huang, Wang, Zhang, Tai, Fan (bib39) 2012; 33 Krausz, Adler, Cabral, Navati, Doerner, Charafeddine, Chandra, Liang, Gunther, Clendaniel (bib13) 2015; 11 Shi, Fu, Lin, Tian, Li, Shao, Zhang, Zhang, Tang, Zhou (bib32) 2019; 21 Stubelius, Sheng, Lee, Olejniczak, Guma, Almutairi (bib59) 2018; 14 Szwed, Miłowska (bib17) 2012; 66 Wang, Veena, Stevenson, Tang, Ho, Suh, Duarte, Faull, Mehta, Srivatsan (bib53) 2008; 14 Banerjee, Chakravarty (bib21) 2015; 48 Ko, Liu, Chen, Mao (bib41) 2008; 9 Lv, Hu, Zhu, Zhang, Mei, Liu, Qiu, Wu, Tan (bib43) 2015; 10 Tian, Xiao, Zhang, Li, Shi, Zhong, Gong, Liu, Li, Lin (bib27) 2020 Cronstein, Sunkureddi (bib5) 2013; 19 Karlstetter, Lippe, Walczak, Moehle, Aslanidis, Mirza, Langmann (bib15) 2011; 8 Creus, De Paepe, De Bleecker (bib51) 2009; 8 Yang, Zhang, Fan, Liu (bib12) 2009; 1282 Dalbeth, Choi, Joosten, Khanna, Matsuo, Perez-Ruiz, Stamp, Gout (bib7) 2019; 5 Lv, Zhang, Wang, Cui, Yan (bib38) 2006; 114 Zhang, Zhu, Qin, Zhou, Zhang, Gao, Zhang, Xiao, Cui, Cai (bib37) 2019; 11 Chen-Xu, Yokose, Rai, Pillinger, Choi (bib2) 2019; 71 Martin, Walton, Harper (bib3) 2009; 60 Walsh, Yin, Erben, Wood, Turberfield (bib28) 2011; 5 Meng, Ma, Lin, Shi, Li, Lin (bib31) 2019; 11 Li, Tian, Zhang, Cai, Lin (bib49) 2019; 24 Nathan (bib56) 1992; 6 Rees, Hui, Doherty (bib61) 2014; 10 Pu, Chiang, Maiti, Liao, Ho, Shim, Chuang, Xia, Sung (bib19) 2014; 8 Gambaro, Perazella (bib60) 2003; 253 Mohanty, Acharya, Mohanty, Dilnawaz, Sahoo (bib45) 2010; 5 Beg, Sha, Bronson, Baltimore (bib52) 1995; 9 Allen, Mumbengegwi, Charrois (bib22) 2005; 11 He, Jiang, Chen, Ye, Wang, Wang, Liu, Liang, Deng, Jiang, Zhou (bib48) 2018; 9 Bogdan (bib57) 2015; 36 Natoli, Chiocca (bib50) 2008; 1 Xie, Shao, Ma, Zhao, Shi, Li, Lin (bib34) 2018; 10 Liu, Sun, Li, Liu, Qin, Chen, Lin (bib24) 2020; 20 Hu, Li, Wang, Gu, Fan (bib30) 2018; 119 Aktan (bib54) 2004; 75 Wang, Langer, Farokhzad (bib23) 2012; 63 Anand, Kunnumakkara, Newman, Aggarwal (bib16) 2007; 4 Singh (bib11) 2007; 130 Misra, Acharya, Dilnawaz, Sahoo (bib46) 2009; 4 Hu (10.1016/j.bioactmat.2021.06.003_bib30) 2018; 119 Wang (10.1016/j.bioactmat.2021.06.003_bib23) 2012; 63 Chen (10.1016/j.bioactmat.2021.06.003_bib39) 2012; 33 Bogdan (10.1016/j.bioactmat.2021.06.003_bib57) 2015; 36 Natoli (10.1016/j.bioactmat.2021.06.003_bib50) 2008; 1 Misra (10.1016/j.bioactmat.2021.06.003_bib46) 2009; 4 Krausz (10.1016/j.bioactmat.2021.06.003_bib13) 2015; 11 Lv (10.1016/j.bioactmat.2021.06.003_bib43) 2015; 10 Singh (10.1016/j.bioactmat.2021.06.003_bib11) 2007; 130 Karlstetter (10.1016/j.bioactmat.2021.06.003_bib15) 2011; 8 Sun (10.1016/j.bioactmat.2021.06.003_bib14) 2017; 8 Sun (10.1016/j.bioactmat.2021.06.003_bib33) 2021; 6 Gupta (10.1016/j.bioactmat.2021.06.003_bib44) 2011; 28 Sahoo (10.1016/j.bioactmat.2021.06.003_bib47) 2002; 82 Shi (10.1016/j.bioactmat.2021.06.003_bib32) 2019; 21 Creus (10.1016/j.bioactmat.2021.06.003_bib51) 2009; 8 Conaghan (10.1016/j.bioactmat.2021.06.003_bib8) 1994; 11 Nathan (10.1016/j.bioactmat.2021.06.003_bib56) 1992; 6 Zhang (10.1016/j.bioactmat.2021.06.003_bib26) 2018; 18 Tian (10.1016/j.bioactmat.2021.06.003_bib27) 2020 Tiwari (10.1016/j.bioactmat.2021.06.003_bib18) 2014; 8 Chen-Xu (10.1016/j.bioactmat.2021.06.003_bib2) 2019; 71 Pu (10.1016/j.bioactmat.2021.06.003_bib19) 2014; 8 Wang (10.1016/j.bioactmat.2021.06.003_bib20) 2015; 53 Canty (10.1016/j.bioactmat.2021.06.003_bib58) 1999; 100 Meng (10.1016/j.bioactmat.2021.06.003_bib31) 2019; 11 Anand (10.1016/j.bioactmat.2021.06.003_bib16) 2007; 4 Li (10.1016/j.bioactmat.2021.06.003_bib42) 2013; 25 He (10.1016/j.bioactmat.2021.06.003_bib48) 2018; 9 Hainer (10.1016/j.bioactmat.2021.06.003_bib62) 2014; 90 Xie (10.1016/j.bioactmat.2021.06.003_bib34) 2018; 10 De Jong (10.1016/j.bioactmat.2021.06.003_bib40) 2008; 29 Wang (10.1016/j.bioactmat.2021.06.003_bib53) 2008; 14 Beg (10.1016/j.bioactmat.2021.06.003_bib52) 1995; 9 Dalbeth (10.1016/j.bioactmat.2021.06.003_bib7) 2019; 5 Ko (10.1016/j.bioactmat.2021.06.003_bib41) 2008; 9 Yang (10.1016/j.bioactmat.2021.06.003_bib12) 2009; 1282 Martin (10.1016/j.bioactmat.2021.06.003_bib3) 2009; 60 Mohanty (10.1016/j.bioactmat.2021.06.003_bib45) 2010; 5 Walsh (10.1016/j.bioactmat.2021.06.003_bib28) 2011; 5 Li (10.1016/j.bioactmat.2021.06.003_bib49) 2019; 24 Aktan (10.1016/j.bioactmat.2021.06.003_bib54) 2004; 75 Allen (10.1016/j.bioactmat.2021.06.003_bib22) 2005; 11 Mohanty (10.1016/j.bioactmat.2021.06.003_bib36) 2010; 31 Rees (10.1016/j.bioactmat.2021.06.003_bib61) 2014; 10 Stubelius (10.1016/j.bioactmat.2021.06.003_bib59) 2018; 14 Dalbeth (10.1016/j.bioactmat.2021.06.003_bib1) 2016; 388 Martinon (10.1016/j.bioactmat.2021.06.003_bib4) 2006; 440 Basnet (10.1016/j.bioactmat.2021.06.003_bib10) 2011; 16 Maheshwari (10.1016/j.bioactmat.2021.06.003_bib9) 2006; 78 Liu (10.1016/j.bioactmat.2021.06.003_bib24) 2020; 20 Bogdan (10.1016/j.bioactmat.2021.06.003_bib55) 2001; 2 Terkeltaub (10.1016/j.bioactmat.2021.06.003_bib6) 1991; 34 Sirong (10.1016/j.bioactmat.2021.06.003_bib35) 2020; 8 Zhang (10.1016/j.bioactmat.2021.06.003_bib37) 2019; 11 Zhang (10.1016/j.bioactmat.2021.06.003_bib25) 2020; 15 Gambaro (10.1016/j.bioactmat.2021.06.003_bib60) 2003; 253 Boumans (10.1016/j.bioactmat.2021.06.003_bib63) 2012; 71 Lv (10.1016/j.bioactmat.2021.06.003_bib38) 2006; 114 Cronstein (10.1016/j.bioactmat.2021.06.003_bib5) 2013; 19 Szwed (10.1016/j.bioactmat.2021.06.003_bib17) 2012; 66 Banerjee (10.1016/j.bioactmat.2021.06.003_bib21) 2015; 48 Fu (10.1016/j.bioactmat.2021.06.003_bib29) 2019; 11 |
References_xml | – volume: 130 start-page: 765 year: 2007 end-page: 768 ident: bib11 article-title: From exotic spice to modern drug? publication-title: Cell – volume: 8 start-page: 1213 year: 2014 end-page: 1221 ident: bib19 article-title: Nanoparticles with dual responses to oxidative stress and reduced ph for drug release and anti-inflammatory applications publication-title: ACS Nano – volume: 5 start-page: 433 year: 2010 end-page: 449 ident: bib45 article-title: Curcumin-encapsulated mepeg/pcl diblock copolymeric micelles: a novel controlled delivery vehicle for cancer therapy publication-title: Nanomed – volume: 9 start-page: 2550 year: 2018 ident: bib48 article-title: Oridonin is a covalent nlrp3 inhibitor with strong anti-inflammasome activity publication-title: Nat. Commun. – volume: 20 start-page: 3602 year: 2020 end-page: 3610 ident: bib24 article-title: Tetrahedral framework nucleic acids deliver antimicrobial peptides with improved effects and less susceptibility to bacterial degradation publication-title: Nano Lett. – volume: 24 start-page: 57 year: 2019 end-page: 68 ident: bib49 article-title: Advances in biological applications of self-assembled DNA tetrahedral nanostructures publication-title: Mater. Today – volume: 11 start-page: 39525 year: 2019 end-page: 39533 ident: bib29 article-title: Enhanced efficacy of temozolomide loaded by a tetrahedral framework DNA nanoparticle in the therapy for glioblastoma publication-title: ACS Appl. Mater. Interfaces – volume: 78 start-page: 2081 year: 2006 end-page: 2087 ident: bib9 article-title: Multiple biological activities of curcumin: a short review publication-title: Life Sci. – volume: 28 start-page: 1937 year: 2011 end-page: 1955 ident: bib44 article-title: Multitargeting by curcumin as revealed by molecular interaction studies publication-title: Nat. Prod. Rep. – start-page: 2007342 year: 2020 ident: bib27 article-title: A framework nucleic acid based robotic nanobee for active targeting therapy publication-title: Adv. Funct. Mater. n/a – volume: 63 start-page: 185 year: 2012 end-page: 198 ident: bib23 article-title: Nanoparticle delivery of cancer drugs publication-title: Annu. Rev. Med. – volume: 25 start-page: 4386 year: 2013 end-page: 4396 ident: bib42 article-title: Smart drug delivery nanocarriers with self-assembled DNA nanostructures publication-title: Adv. Mater. – volume: 71 start-page: 180 year: 2012 end-page: 185 ident: bib63 article-title: Safety, tolerability, pharmacokinetics, pharmacodynamics and efficacy of the monoclonal antibody ask8007 blocking osteopontin in patients with rheumatoid arthritis: a randomised, placebo controlled, proof-of-concept study publication-title: Ann. Rheum. Dis. – volume: 29 start-page: 1912 year: 2008 end-page: 1919 ident: bib40 article-title: Particle size-dependent organ distribution of gold nanoparticles after intravenous administration publication-title: Biomaterials – volume: 11 start-page: 3567 year: 2005 end-page: 3573 ident: bib22 article-title: Anti-cd19-targeted liposomal doxorubicin improves the therapeutic efficacy in murine b-cell lymphoma and ameliorates the toxicity of liposomes with varying drug release rates publication-title: Clin. Canc. Res. – volume: 15 start-page: 2728 year: 2020 end-page: 2757 ident: bib25 article-title: Design, fabrication and applications of tetrahedral DNA nanostructure-based multifunctional complexes in drug delivery and biomedical treatment publication-title: Nat. Protoc. – volume: 21 start-page: 102061 year: 2019 ident: bib32 article-title: Targeted and effective glioblastoma therapy via aptamer-modified tetrahedral framework nucleic acid-paclitaxel nanoconjugates that can pass the blood brain barrier publication-title: Nanomedicine – volume: 8 start-page: 627 year: 2009 end-page: 631 ident: bib51 article-title: Idiopathic inflammatory myopathies and the classical nf-κb complex: current insights and implications for therapy publication-title: Autoimmun. Rev. – volume: 14 year: 2018 ident: bib59 article-title: Disease-triggered drug release effectively prevents acute inflammatory flare-ups, achieving reduced dosing publication-title: Small – volume: 100 year: 1999 ident: bib58 article-title: Oxidative stress induces nf-kappab nuclear translocation without degradation of ikappabalpha publication-title: Circulation – volume: 11 start-page: 6850 year: 2019 end-page: 6857 ident: bib31 article-title: Tetrahedral DNA nanostructure-delivered dnazyme for gene silencing to suppress cell growth publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 519 year: 2009 end-page: 530 ident: bib46 article-title: Sustained antibacterial activity of doxycycline-loaded poly(d,l-lactide-co-glycolide) and poly(epsilon-caprolactone) nanoparticles publication-title: Nanomedicine – volume: 9 start-page: 2736 year: 1995 end-page: 2746 ident: bib52 article-title: Constitutive nf-kappa b activation, enhanced granulopoiesis, and neonatal lethality in i kappa b alpha-deficient mice publication-title: Genes Dev. – volume: 90 start-page: 831 year: 2014 end-page: 836 ident: bib62 article-title: Diagnosis, treatment, and prevention of gout publication-title: Am. Fam. Physician – volume: 31 start-page: 6597 year: 2010 end-page: 6611 ident: bib36 article-title: The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation publication-title: Biomaterials – volume: 48 start-page: 2075 year: 2015 end-page: 2083 ident: bib21 article-title: Metal complexes of curcumin for cellular imaging, targeting, and photoinduced anticancer activity publication-title: Acc. Chem. Res. – volume: 10 start-page: 5457 year: 2018 end-page: 5465 ident: bib34 article-title: Overcoming drug-resistant lung cancer by paclitaxel loaded tetrahedral DNA nanostructures publication-title: Nanoscale – volume: 8 start-page: 76 year: 2014 end-page: 103 ident: bib18 article-title: Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in alzheimer's disease model via canonical wnt/β-catenin pathway publication-title: ACS Nano – volume: 82 start-page: 105 year: 2002 end-page: 114 ident: bib47 article-title: Residual polyvinyl alcohol associated with poly (d,l-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake publication-title: J. Contr. Release – volume: 16 start-page: 4567 year: 2011 end-page: 4598 ident: bib10 article-title: Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment publication-title: Molecules – volume: 11 start-page: 195 year: 2015 end-page: 206 ident: bib13 article-title: Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent publication-title: Nanomedicine – volume: 1282 start-page: 133 year: 2009 end-page: 141 ident: bib12 article-title: Curcumin upregulates transcription factor nrf2, ho-1 expression and protects rat brains against focal ischemia publication-title: Brain Res. – volume: 19 start-page: 19 year: 2013 end-page: 29 ident: bib5 article-title: Mechanistic aspects of inflammation and clinical management of inflammation in acute gouty arthritis publication-title: J. Clin. Rheumatol. – volume: 253 start-page: 643 year: 2003 end-page: 652 ident: bib60 article-title: Adverse renal effects of anti-inflammatory agents: evaluation of selective and nonselective cyclooxygenase inhibitors publication-title: J. Intern. Med. – volume: 71 start-page: 991 year: 2019 end-page: 999 ident: bib2 article-title: Contemporary prevalence of gout and hyperuricemia in the United States and decadal trends: the national health and nutrition examination survey, 2007-2016 publication-title: Arthritis Rheum. – volume: 36 start-page: 161 year: 2015 end-page: 178 ident: bib57 article-title: Nitric oxide synthase in innate and adaptive immunity: an update publication-title: Trends Immunol. – volume: 5 start-page: 69 year: 2019 ident: bib7 publication-title: Nat Rev Dis Primers – volume: 9 start-page: 3039 year: 2008 end-page: 3043 ident: bib41 article-title: DNA nanotubes as combinatorial vehicles for cellular delivery publication-title: Biomacromolecules – volume: 5 start-page: 5427 year: 2011 end-page: 5432 ident: bib28 article-title: DNA cage delivery to mammalian cells publication-title: ACS Nano – volume: 440 start-page: 237 year: 2006 end-page: 241 ident: bib4 article-title: Gout-associated uric acid crystals activate the nalp3 inflammasome publication-title: Nature – volume: 14 start-page: 6228 year: 2008 end-page: 6236 ident: bib53 article-title: Liposome-encapsulated curcumin suppresses growth of head and neck squamous cell carcinoma in vitro and in xenografts through the inhibition of nuclear factor κb by an akt-independent pathway publication-title: Clin. Canc. Res. – volume: 8 year: 2017 ident: bib14 article-title: Nlrp3 inflammasome activation contributes to vsmc phenotypic transformation and proliferation in hypertension publication-title: Cell Death Dis. – volume: 119 start-page: 6459 year: 2018 end-page: 6506 ident: bib30 article-title: DNA nanotechnology-enabled drug delivery systems publication-title: Chem. Rev. – volume: 8 start-page: 6 year: 2020 ident: bib35 article-title: Effects of tetrahedral framework nucleic acid/wogonin complexes on osteoarthritis publication-title: Bone Res – volume: 6 start-page: 3051 year: 1992 end-page: 3064 ident: bib56 article-title: Nitric oxide as a secretory product of mammalian cells publication-title: Faseb. J. – volume: 60 start-page: 281 year: 2009 end-page: 289 ident: bib3 article-title: Resident macrophages initiating and driving inflammation in a monosodium urate monohydrate crystal–induced murine peritoneal model of acute gout publication-title: Arthritis Rheum. – volume: 18 start-page: 5652 year: 2018 end-page: 5659 ident: bib26 article-title: Inhibiting methicillin-resistant staphylococcus aureus by tetrahedral DNA nanostructure-enabled antisense peptide nucleic acid delivery publication-title: Nano Lett. – volume: 10 start-page: 1508 year: 2015 end-page: 1524 ident: bib43 article-title: Preparation and biomedical applications of programmable and multifunctional DNA nanoflowers publication-title: Nat. Protoc. – volume: 2 start-page: 907 year: 2001 end-page: 916 ident: bib55 article-title: Nitric oxide and the immune response publication-title: Nat. Immunol. – volume: 10 start-page: 271 year: 2014 end-page: 283 ident: bib61 article-title: Optimizing current treatment of gout publication-title: Nat. Rev. Rheumatol. – volume: 11 start-page: 252 year: 1994 end-page: 258 ident: bib8 article-title: Risks and benefits of drugs used in the management and prevention of gout publication-title: Drug Saf. – volume: 6 start-page: 2281 year: 2021 end-page: 2290 ident: bib33 article-title: Erythromycin loaded by tetrahedral framework nucleic acids are more antimicrobial sensitive against escherichia coli (e. Coli) publication-title: Bioactive Materials – volume: 66 start-page: 187 year: 2012 end-page: 195 ident: bib17 article-title: The role of proteins in neurodegenerative disease publication-title: Postepy Hig. Med. Dosw. – volume: 388 start-page: 2039 year: 2016 end-page: 2052 ident: bib1 publication-title: Lancet – volume: 33 start-page: 1238 year: 2012 end-page: 1244 ident: bib39 article-title: The cytotoxicity of cadmium-based quantum dots publication-title: Biomaterials – volume: 53 start-page: 475 year: 2015 end-page: 483 ident: bib20 article-title: Anti-inflammatory activity of curcumin-loaded solid lipid nanoparticles in il-1β transgenic mice subjected to the lipopolysaccharide-induced sepsis publication-title: Biomaterials – volume: 4 start-page: 807 year: 2007 end-page: 818 ident: bib16 article-title: Bioavailability of curcumin: problems and promises publication-title: Mol. Pharm. – volume: 1 start-page: pe1 year: 2008 ident: bib50 article-title: Nuclear ubiquitin ligases, nf-κb degradation, and the control of inflammation publication-title: Sci. Signal. – volume: 34 start-page: 894 year: 1991 end-page: 903 ident: bib6 article-title: Monocyte-derived neutrophil chemotactic factor/interleukin-8 is a potential mediator of crystal-induced inflammation publication-title: Arthritis Rheum. – volume: 8 start-page: 125 year: 2011 ident: bib15 article-title: Curcumin is a potent modulator of microglial gene expression and migration publication-title: J. Neuroinflammation – volume: 114 start-page: 100 year: 2006 end-page: 109 ident: bib38 article-title: Toxicity of cationic lipids and cationic polymers in gene delivery publication-title: J. Contr. Release – volume: 75 start-page: 639 year: 2004 end-page: 653 ident: bib54 article-title: Inos-mediated nitric oxide production and its regulation publication-title: Life Sci. – volume: 11 start-page: 30631 year: 2019 end-page: 30639 ident: bib37 article-title: Cardioprotection of tetrahedral DNA nanostructures in myocardial ischemia-reperfusion injury publication-title: ACS Appl. Mater. Interfaces – volume: 48 start-page: 2075 year: 2015 ident: 10.1016/j.bioactmat.2021.06.003_bib21 article-title: Metal complexes of curcumin for cellular imaging, targeting, and photoinduced anticancer activity publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00127 – volume: 16 start-page: 4567 year: 2011 ident: 10.1016/j.bioactmat.2021.06.003_bib10 article-title: Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment publication-title: Molecules doi: 10.3390/molecules16064567 – volume: 114 start-page: 100 year: 2006 ident: 10.1016/j.bioactmat.2021.06.003_bib38 article-title: Toxicity of cationic lipids and cationic polymers in gene delivery publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2006.04.014 – volume: 71 start-page: 991 year: 2019 ident: 10.1016/j.bioactmat.2021.06.003_bib2 article-title: Contemporary prevalence of gout and hyperuricemia in the United States and decadal trends: the national health and nutrition examination survey, 2007-2016 publication-title: Arthritis Rheum. doi: 10.1002/art.40807 – volume: 21 start-page: 102061 year: 2019 ident: 10.1016/j.bioactmat.2021.06.003_bib32 article-title: Targeted and effective glioblastoma therapy via aptamer-modified tetrahedral framework nucleic acid-paclitaxel nanoconjugates that can pass the blood brain barrier publication-title: Nanomedicine doi: 10.1016/j.nano.2019.102061 – volume: 10 start-page: 5457 year: 2018 ident: 10.1016/j.bioactmat.2021.06.003_bib34 article-title: Overcoming drug-resistant lung cancer by paclitaxel loaded tetrahedral DNA nanostructures publication-title: Nanoscale doi: 10.1039/C7NR09692E – volume: 20 start-page: 3602 year: 2020 ident: 10.1016/j.bioactmat.2021.06.003_bib24 article-title: Tetrahedral framework nucleic acids deliver antimicrobial peptides with improved effects and less susceptibility to bacterial degradation publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c00529 – start-page: 2007342 year: 2020 ident: 10.1016/j.bioactmat.2021.06.003_bib27 article-title: A framework nucleic acid based robotic nanobee for active targeting therapy publication-title: Adv. Funct. Mater. n/a – volume: 66 start-page: 187 year: 2012 ident: 10.1016/j.bioactmat.2021.06.003_bib17 article-title: The role of proteins in neurodegenerative disease publication-title: Postepy Hig. Med. Dosw. doi: 10.5604/17322693.991446 – volume: 29 start-page: 1912 year: 2008 ident: 10.1016/j.bioactmat.2021.06.003_bib40 article-title: Particle size-dependent organ distribution of gold nanoparticles after intravenous administration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.12.037 – volume: 8 start-page: 125 year: 2011 ident: 10.1016/j.bioactmat.2021.06.003_bib15 article-title: Curcumin is a potent modulator of microglial gene expression and migration publication-title: J. Neuroinflammation doi: 10.1186/1742-2094-8-125 – volume: 18 start-page: 5652 year: 2018 ident: 10.1016/j.bioactmat.2021.06.003_bib26 article-title: Inhibiting methicillin-resistant staphylococcus aureus by tetrahedral DNA nanostructure-enabled antisense peptide nucleic acid delivery publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b02166 – volume: 6 start-page: 2281 year: 2021 ident: 10.1016/j.bioactmat.2021.06.003_bib33 article-title: Erythromycin loaded by tetrahedral framework nucleic acids are more antimicrobial sensitive against escherichia coli (e. Coli) publication-title: Bioactive Materials doi: 10.1016/j.bioactmat.2020.12.027 – volume: 8 start-page: 627 year: 2009 ident: 10.1016/j.bioactmat.2021.06.003_bib51 article-title: Idiopathic inflammatory myopathies and the classical nf-κb complex: current insights and implications for therapy publication-title: Autoimmun. Rev. doi: 10.1016/j.autrev.2009.02.026 – volume: 440 start-page: 237 year: 2006 ident: 10.1016/j.bioactmat.2021.06.003_bib4 article-title: Gout-associated uric acid crystals activate the nalp3 inflammasome publication-title: Nature doi: 10.1038/nature04516 – volume: 28 start-page: 1937 year: 2011 ident: 10.1016/j.bioactmat.2021.06.003_bib44 article-title: Multitargeting by curcumin as revealed by molecular interaction studies publication-title: Nat. Prod. Rep. doi: 10.1039/c1np00051a – volume: 14 year: 2018 ident: 10.1016/j.bioactmat.2021.06.003_bib59 article-title: Disease-triggered drug release effectively prevents acute inflammatory flare-ups, achieving reduced dosing publication-title: Small doi: 10.1002/smll.201800703 – volume: 1282 start-page: 133 year: 2009 ident: 10.1016/j.bioactmat.2021.06.003_bib12 article-title: Curcumin upregulates transcription factor nrf2, ho-1 expression and protects rat brains against focal ischemia publication-title: Brain Res. doi: 10.1016/j.brainres.2009.05.009 – volume: 19 start-page: 19 year: 2013 ident: 10.1016/j.bioactmat.2021.06.003_bib5 article-title: Mechanistic aspects of inflammation and clinical management of inflammation in acute gouty arthritis publication-title: J. Clin. Rheumatol. doi: 10.1097/RHU.0b013e31827d8790 – volume: 4 start-page: 519 year: 2009 ident: 10.1016/j.bioactmat.2021.06.003_bib46 article-title: Sustained antibacterial activity of doxycycline-loaded poly(d,l-lactide-co-glycolide) and poly(epsilon-caprolactone) nanoparticles publication-title: Nanomedicine doi: 10.2217/nnm.09.28 – volume: 388 start-page: 2039 year: 2016 ident: 10.1016/j.bioactmat.2021.06.003_bib1 publication-title: Lancet doi: 10.1016/S0140-6736(16)00346-9 – volume: 82 start-page: 105 year: 2002 ident: 10.1016/j.bioactmat.2021.06.003_bib47 article-title: Residual polyvinyl alcohol associated with poly (d,l-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake publication-title: J. Contr. Release doi: 10.1016/S0168-3659(02)00127-X – volume: 33 start-page: 1238 year: 2012 ident: 10.1016/j.bioactmat.2021.06.003_bib39 article-title: The cytotoxicity of cadmium-based quantum dots publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.10.070 – volume: 9 start-page: 3039 year: 2008 ident: 10.1016/j.bioactmat.2021.06.003_bib41 article-title: DNA nanotubes as combinatorial vehicles for cellular delivery publication-title: Biomacromolecules doi: 10.1021/bm800479e – volume: 10 start-page: 1508 year: 2015 ident: 10.1016/j.bioactmat.2021.06.003_bib43 article-title: Preparation and biomedical applications of programmable and multifunctional DNA nanoflowers publication-title: Nat. Protoc. doi: 10.1038/nprot.2015.078 – volume: 31 start-page: 6597 year: 2010 ident: 10.1016/j.bioactmat.2021.06.003_bib36 article-title: The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.04.062 – volume: 11 start-page: 195 year: 2015 ident: 10.1016/j.bioactmat.2021.06.003_bib13 article-title: Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent publication-title: Nanomedicine doi: 10.1016/j.nano.2014.09.004 – volume: 1 start-page: pe1 year: 2008 ident: 10.1016/j.bioactmat.2021.06.003_bib50 article-title: Nuclear ubiquitin ligases, nf-κb degradation, and the control of inflammation publication-title: Sci. Signal. doi: 10.1126/stke.11pe1 – volume: 75 start-page: 639 year: 2004 ident: 10.1016/j.bioactmat.2021.06.003_bib54 article-title: Inos-mediated nitric oxide production and its regulation publication-title: Life Sci. doi: 10.1016/j.lfs.2003.10.042 – volume: 119 start-page: 6459 year: 2018 ident: 10.1016/j.bioactmat.2021.06.003_bib30 article-title: DNA nanotechnology-enabled drug delivery systems publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00663 – volume: 2 start-page: 907 year: 2001 ident: 10.1016/j.bioactmat.2021.06.003_bib55 article-title: Nitric oxide and the immune response publication-title: Nat. Immunol. doi: 10.1038/ni1001-907 – volume: 130 start-page: 765 year: 2007 ident: 10.1016/j.bioactmat.2021.06.003_bib11 article-title: From exotic spice to modern drug? publication-title: Cell doi: 10.1016/j.cell.2007.08.024 – volume: 11 start-page: 30631 year: 2019 ident: 10.1016/j.bioactmat.2021.06.003_bib37 article-title: Cardioprotection of tetrahedral DNA nanostructures in myocardial ischemia-reperfusion injury publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b10645 – volume: 8 year: 2017 ident: 10.1016/j.bioactmat.2021.06.003_bib14 article-title: Nlrp3 inflammasome activation contributes to vsmc phenotypic transformation and proliferation in hypertension publication-title: Cell Death Dis. doi: 10.1038/cddis.2017.470 – volume: 25 start-page: 4386 year: 2013 ident: 10.1016/j.bioactmat.2021.06.003_bib42 article-title: Smart drug delivery nanocarriers with self-assembled DNA nanostructures publication-title: Adv. Mater. doi: 10.1002/adma.201300875 – volume: 10 start-page: 271 year: 2014 ident: 10.1016/j.bioactmat.2021.06.003_bib61 article-title: Optimizing current treatment of gout publication-title: Nat. Rev. Rheumatol. doi: 10.1038/nrrheum.2014.32 – volume: 11 start-page: 3567 year: 2005 ident: 10.1016/j.bioactmat.2021.06.003_bib22 article-title: Anti-cd19-targeted liposomal doxorubicin improves the therapeutic efficacy in murine b-cell lymphoma and ameliorates the toxicity of liposomes with varying drug release rates publication-title: Clin. Canc. Res. doi: 10.1158/1078-0432.CCR-04-2517 – volume: 8 start-page: 1213 year: 2014 ident: 10.1016/j.bioactmat.2021.06.003_bib19 article-title: Nanoparticles with dual responses to oxidative stress and reduced ph for drug release and anti-inflammatory applications publication-title: ACS Nano doi: 10.1021/nn4058787 – volume: 14 start-page: 6228 year: 2008 ident: 10.1016/j.bioactmat.2021.06.003_bib53 article-title: Liposome-encapsulated curcumin suppresses growth of head and neck squamous cell carcinoma in vitro and in xenografts through the inhibition of nuclear factor κb by an akt-independent pathway publication-title: Clin. Canc. Res. doi: 10.1158/1078-0432.CCR-07-5177 – volume: 5 start-page: 5427 year: 2011 ident: 10.1016/j.bioactmat.2021.06.003_bib28 article-title: DNA cage delivery to mammalian cells publication-title: ACS Nano doi: 10.1021/nn2005574 – volume: 5 start-page: 433 year: 2010 ident: 10.1016/j.bioactmat.2021.06.003_bib45 article-title: Curcumin-encapsulated mepeg/pcl diblock copolymeric micelles: a novel controlled delivery vehicle for cancer therapy publication-title: Nanomed doi: 10.2217/nnm.10.9 – volume: 24 start-page: 57 year: 2019 ident: 10.1016/j.bioactmat.2021.06.003_bib49 article-title: Advances in biological applications of self-assembled DNA tetrahedral nanostructures publication-title: Mater. Today doi: 10.1016/j.mattod.2018.08.002 – volume: 11 start-page: 252 year: 1994 ident: 10.1016/j.bioactmat.2021.06.003_bib8 article-title: Risks and benefits of drugs used in the management and prevention of gout publication-title: Drug Saf. doi: 10.2165/00002018-199411040-00004 – volume: 90 start-page: 831 year: 2014 ident: 10.1016/j.bioactmat.2021.06.003_bib62 article-title: Diagnosis, treatment, and prevention of gout publication-title: Am. Fam. Physician – volume: 253 start-page: 643 year: 2003 ident: 10.1016/j.bioactmat.2021.06.003_bib60 article-title: Adverse renal effects of anti-inflammatory agents: evaluation of selective and nonselective cyclooxygenase inhibitors publication-title: J. Intern. Med. doi: 10.1046/j.1365-2796.2003.01146.x – volume: 78 start-page: 2081 year: 2006 ident: 10.1016/j.bioactmat.2021.06.003_bib9 article-title: Multiple biological activities of curcumin: a short review publication-title: Life Sci. doi: 10.1016/j.lfs.2005.12.007 – volume: 4 start-page: 807 year: 2007 ident: 10.1016/j.bioactmat.2021.06.003_bib16 article-title: Bioavailability of curcumin: problems and promises publication-title: Mol. Pharm. doi: 10.1021/mp700113r – volume: 8 start-page: 6 year: 2020 ident: 10.1016/j.bioactmat.2021.06.003_bib35 article-title: Effects of tetrahedral framework nucleic acid/wogonin complexes on osteoarthritis publication-title: Bone Res doi: 10.1038/s41413-019-0077-4 – volume: 6 start-page: 3051 year: 1992 ident: 10.1016/j.bioactmat.2021.06.003_bib56 article-title: Nitric oxide as a secretory product of mammalian cells publication-title: Faseb. J. doi: 10.1096/fasebj.6.12.1381691 – volume: 5 start-page: 69 year: 2019 ident: 10.1016/j.bioactmat.2021.06.003_bib7 publication-title: Nat Rev Dis Primers doi: 10.1038/s41572-019-0115-y – volume: 100 year: 1999 ident: 10.1016/j.bioactmat.2021.06.003_bib58 article-title: Oxidative stress induces nf-kappab nuclear translocation without degradation of ikappabalpha publication-title: Circulation – volume: 34 start-page: 894 year: 1991 ident: 10.1016/j.bioactmat.2021.06.003_bib6 article-title: Monocyte-derived neutrophil chemotactic factor/interleukin-8 is a potential mediator of crystal-induced inflammation publication-title: Arthritis Rheum. doi: 10.1002/art.1780340716 – volume: 9 start-page: 2550 year: 2018 ident: 10.1016/j.bioactmat.2021.06.003_bib48 article-title: Oridonin is a covalent nlrp3 inhibitor with strong anti-inflammasome activity publication-title: Nat. Commun. doi: 10.1038/s41467-018-04947-6 – volume: 15 start-page: 2728 year: 2020 ident: 10.1016/j.bioactmat.2021.06.003_bib25 article-title: Design, fabrication and applications of tetrahedral DNA nanostructure-based multifunctional complexes in drug delivery and biomedical treatment publication-title: Nat. Protoc. doi: 10.1038/s41596-020-0355-z – volume: 8 start-page: 76 year: 2014 ident: 10.1016/j.bioactmat.2021.06.003_bib18 article-title: Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in alzheimer's disease model via canonical wnt/β-catenin pathway publication-title: ACS Nano doi: 10.1021/nn405077y – volume: 63 start-page: 185 year: 2012 ident: 10.1016/j.bioactmat.2021.06.003_bib23 article-title: Nanoparticle delivery of cancer drugs publication-title: Annu. Rev. Med. doi: 10.1146/annurev-med-040210-162544 – volume: 53 start-page: 475 year: 2015 ident: 10.1016/j.bioactmat.2021.06.003_bib20 article-title: Anti-inflammatory activity of curcumin-loaded solid lipid nanoparticles in il-1β transgenic mice subjected to the lipopolysaccharide-induced sepsis publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.02.116 – volume: 71 start-page: 180 year: 2012 ident: 10.1016/j.bioactmat.2021.06.003_bib63 article-title: Safety, tolerability, pharmacokinetics, pharmacodynamics and efficacy of the monoclonal antibody ask8007 blocking osteopontin in patients with rheumatoid arthritis: a randomised, placebo controlled, proof-of-concept study publication-title: Ann. Rheum. Dis. doi: 10.1136/annrheumdis-2011-200298 – volume: 11 start-page: 39525 year: 2019 ident: 10.1016/j.bioactmat.2021.06.003_bib29 article-title: Enhanced efficacy of temozolomide loaded by a tetrahedral framework DNA nanoparticle in the therapy for glioblastoma publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b13829 – volume: 11 start-page: 6850 year: 2019 ident: 10.1016/j.bioactmat.2021.06.003_bib31 article-title: Tetrahedral DNA nanostructure-delivered dnazyme for gene silencing to suppress cell growth publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b22444 – volume: 9 start-page: 2736 year: 1995 ident: 10.1016/j.bioactmat.2021.06.003_bib52 article-title: Constitutive nf-kappa b activation, enhanced granulopoiesis, and neonatal lethality in i kappa b alpha-deficient mice publication-title: Genes Dev. doi: 10.1101/gad.9.22.2736 – volume: 60 start-page: 281 year: 2009 ident: 10.1016/j.bioactmat.2021.06.003_bib3 article-title: Resident macrophages initiating and driving inflammation in a monosodium urate monohydrate crystal–induced murine peritoneal model of acute gout publication-title: Arthritis Rheum. doi: 10.1002/art.24185 – volume: 36 start-page: 161 year: 2015 ident: 10.1016/j.bioactmat.2021.06.003_bib57 article-title: Nitric oxide synthase in innate and adaptive immunity: an update publication-title: Trends Immunol. doi: 10.1016/j.it.2015.01.003 |
SSID | ssj0001700007 |
Score | 2.584041 |
Snippet | Gouty arthritis is a very familiar inflammatory arthritis. Controlling inflammation is the key to preventing gouty arthritis. However, colchicine, the most... |
SourceID | doaj pubmedcentral proquest crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 368 |
SubjectTerms | Gouty arthritis Macrophage NF-κB signaling pathway Oxidative stress Tetrahedral framework DNA nanoparticle |
Title | Anti-inflammatory activity of curcumin-loaded tetrahedral framework nucleic acids on acute gouty arthritis |
URI | https://dx.doi.org/10.1016/j.bioactmat.2021.06.003 https://www.proquest.com/docview/2574744007 https://pubmed.ncbi.nlm.nih.gov/PMC8429917 https://doaj.org/article/23e766c1348545f3a0da91a31e494e7c |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQe-GCQAWxPCojcY1I4iR2uC2IqqKih4qKvVl-jNms2qRqk__PjJOsNqe9cIuSeGR7xp7P9vgbxj7nRKKUe5nYUrmkKEuR1OBNokxpstRK6-Oe7q_r6vK2-LkpNwepvigmbKQHHjvuSy5AVpXLRKHQ2QdhUm_qzIgMiroA6Wj2RZ93sJjajaQw5P0os1xR5hRNsVkEd9mmM65HTIgrxDyLDJ5z2qzJNUUG_4WHOkCgy_jJA4d08ZK9mJAkX48teMWeQXvGduu2bxK0GlT0fTxA53RzgRJE8C5wNzy64b5pk7vOePC8B5S8BY_ieZjDtHhLHMeNw5KNf-Jdiw9DD_xvN6AU7LFtJEJ6zW4vfvz-fplM6RQSV2aqTzIbfAG4QEINkEsyCqyz0kCQXlhDW5q5h5AHJZxylRGlRXBYWxHqFJQA8YadtF0LbxkHFaQFIxQKKJxRymTSKWtNWVcBxa5YNfekdhPXOKW8uNNzUNlO71WgSQU6hteJFUv3BR9Guo3jRb6Rqva_E192fIFWpCcr0sesaMW-zorWE_QYIQWKao7X4NNsGhoHJ524mBa64UnjfFgQA2MqV0wubGZR3eWXttlGmm9FUCGT7_5H-96z5znd24jh5h_YSf84wEdEU709Z6frq5s_V-dxAP0DpKwjYQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anti-inflammatory+activity+of+curcumin-loaded+tetrahedral+framework+nucleic+acids+on+acute+gouty+arthritis&rft.jtitle=Bioactive+materials&rft.au=Zhang%2C+Mei&rft.au=Zhang%2C+Xiaolin&rft.au=Tian%2C+Taoran&rft.au=Zhang%2C+Qi&rft.date=2022-02-01&rft.issn=2452-199X&rft.eissn=2452-199X&rft.volume=8&rft.spage=368&rft_id=info:doi/10.1016%2Fj.bioactmat.2021.06.003&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-199X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-199X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-199X&client=summon |