Anti-inflammatory activity of curcumin-loaded tetrahedral framework nucleic acids on acute gouty arthritis

Gouty arthritis is a very familiar inflammatory arthritis. Controlling inflammation is the key to preventing gouty arthritis. However, colchicine, the most highly represented drug used in clinical practice, has strict contraindications owing to some severe side effects. Curcumin (Cur), a natural ant...

Full description

Saved in:
Bibliographic Details
Published inBioactive materials Vol. 8; pp. 368 - 380
Main Authors Zhang, Mei, Zhang, Xiaolin, Tian, Taoran, Zhang, Qi, Wen, Yuting, Zhu, Junyao, Xiao, Dexuan, Cui, Weitong, Lin, Yunfeng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2022
KeAi Publishing
KeAi Communications Co., Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gouty arthritis is a very familiar inflammatory arthritis. Controlling inflammation is the key to preventing gouty arthritis. However, colchicine, the most highly represented drug used in clinical practice, has strict contraindications owing to some severe side effects. Curcumin (Cur), a natural anti-inflammatory drug, has demonstrated good safety and efficacy. However, the rapid degradation, poor aqueous solubility, and low bioavailability of Cur limit its therapeutic effect. To strengthen the effectiveness and bioavailability of Cur. Cur loaded tetrahedral framework nucleic acids (Cur-TFNAs) were synthesized to deliver Cur. Compared with free Cur, Cur-TFNAs exhibit a preferable drug stability, good biocompatibility (CCK-8 assay), ease of uptake (immunofluorescence), and higher tissue utilization (in vivo biodistribution). Most importantly, Cur-TFNAs present better anti-inflammatory effect than free Cur both in vivo and in vitro experiments through the determination of inflammation-related cytokines expression. Therefore, we believe that Cur-TFNAs have great prospects for the prevention of gout and similar inflammatory diseases. Schematic illustration of treating acute gouty arthritis with Cur loaded TFNAs. Cur-TFNAs were absorbed by inflammatory RAW264.7 cells and inhibited the activation of NF-κB, which decreased the levels of ROS, NO and inflammatory factors (IL-6, IL-1β and TNF-α), thus affecting the progression of acute gouty arthritis. [Display omitted] •The drug curcumin system based on DNA nanostructures (Cur-TFNAs) were developed to obtain a novel nanomaterial with high water solubility, large encapsulation efficiency, sustained drug release and excellent drug stability.•Based on cellular uptake and in vivo drug imaging, Cur-TFNAs improve the retention of Cur in cells and tissues.•Cur-TFNAs prevent acute gouty arthritis through mediating anti-inflammatory and antioxidant responses of macrophage.
AbstractList Gouty arthritis is a very familiar inflammatory arthritis. Controlling inflammation is the key to preventing gouty arthritis. However, colchicine, the most highly represented drug used in clinical practice, has strict contraindications owing to some severe side effects. Curcumin (Cur), a natural anti-inflammatory drug, has demonstrated good safety and efficacy. However, the rapid degradation, poor aqueous solubility, and low bioavailability of Cur limit its therapeutic effect. To strengthen the effectiveness and bioavailability of Cur. Cur loaded tetrahedral framework nucleic acids (Cur-TFNAs) were synthesized to deliver Cur. Compared with free Cur, Cur-TFNAs exhibit a preferable drug stability, good biocompatibility (CCK-8 assay), ease of uptake (immunofluorescence), and higher tissue utilization (in vivo biodistribution). Most importantly, Cur-TFNAs present better anti-inflammatory effect than free Cur both in vivo and in vitro experiments through the determination of inflammation-related cytokines expression. Therefore, we believe that Cur-TFNAs have great prospects for the prevention of gout and similar inflammatory diseases. Schematic illustration of treating acute gouty arthritis with Cur loaded TFNAs. Cur-TFNAs were absorbed by inflammatory RAW264.7 cells and inhibited the activation of NF-κB, which decreased the levels of ROS, NO and inflammatory factors (IL-6, IL-1β and TNF-α), thus affecting the progression of acute gouty arthritis. Image 1 • The drug curcumin system based on DNA nanostructures (Cur-TFNAs) were developed to obtain a novel nanomaterial with high water solubility, large encapsulation efficiency, sustained drug release and excellent drug stability. • Based on cellular uptake and in vivo drug imaging, Cur-TFNAs improve the retention of Cur in cells and tissues. • Cur-TFNAs prevent acute gouty arthritis through mediating anti-inflammatory and antioxidant responses of macrophage.
Gouty arthritis is a very familiar inflammatory arthritis. Controlling inflammation is the key to preventing gouty arthritis. However, colchicine, the most highly represented drug used in clinical practice, has strict contraindications owing to some severe side effects. Curcumin (Cur), a natural anti-inflammatory drug, has demonstrated good safety and efficacy. However, the rapid degradation, poor aqueous solubility, and low bioavailability of Cur limit its therapeutic effect. To strengthen the effectiveness and bioavailability of Cur. Cur loaded tetrahedral framework nucleic acids (Cur-TFNAs) were synthesized to deliver Cur. Compared with free Cur, Cur-TFNAs exhibit a preferable drug stability, good biocompatibility (CCK-8 assay), ease of uptake (immunofluorescence), and higher tissue utilization (in vivo biodistribution). Most importantly, Cur-TFNAs present better anti-inflammatory effect than free Cur both in vivo and in vitro experiments through the determination of inflammation-related cytokines expression. Therefore, we believe that Cur-TFNAs have great prospects for the prevention of gout and similar inflammatory diseases.Gouty arthritis is a very familiar inflammatory arthritis. Controlling inflammation is the key to preventing gouty arthritis. However, colchicine, the most highly represented drug used in clinical practice, has strict contraindications owing to some severe side effects. Curcumin (Cur), a natural anti-inflammatory drug, has demonstrated good safety and efficacy. However, the rapid degradation, poor aqueous solubility, and low bioavailability of Cur limit its therapeutic effect. To strengthen the effectiveness and bioavailability of Cur. Cur loaded tetrahedral framework nucleic acids (Cur-TFNAs) were synthesized to deliver Cur. Compared with free Cur, Cur-TFNAs exhibit a preferable drug stability, good biocompatibility (CCK-8 assay), ease of uptake (immunofluorescence), and higher tissue utilization (in vivo biodistribution). Most importantly, Cur-TFNAs present better anti-inflammatory effect than free Cur both in vivo and in vitro experiments through the determination of inflammation-related cytokines expression. Therefore, we believe that Cur-TFNAs have great prospects for the prevention of gout and similar inflammatory diseases.
Gouty arthritis is a very familiar inflammatory arthritis. Controlling inflammation is the key to preventing gouty arthritis. However, colchicine, the most highly represented drug used in clinical practice, has strict contraindications owing to some severe side effects. Curcumin (Cur), a natural anti-inflammatory drug, has demonstrated good safety and efficacy. However, the rapid degradation, poor aqueous solubility, and low bioavailability of Cur limit its therapeutic effect. To strengthen the effectiveness and bioavailability of Cur. Cur loaded tetrahedral framework nucleic acids (Cur-TFNAs) were synthesized to deliver Cur. Compared with free Cur, Cur-TFNAs exhibit a preferable drug stability, good biocompatibility (CCK-8 assay), ease of uptake (immunofluorescence), and higher tissue utilization (in vivo biodistribution). Most importantly, Cur-TFNAs present better anti-inflammatory effect than free Cur both in vivo and in vitro experiments through the determination of inflammation-related cytokines expression. Therefore, we believe that Cur-TFNAs have great prospects for the prevention of gout and similar inflammatory diseases. Schematic illustration of treating acute gouty arthritis with Cur loaded TFNAs. Cur-TFNAs were absorbed by inflammatory RAW264.7 cells and inhibited the activation of NF-κB, which decreased the levels of ROS, NO and inflammatory factors (IL-6, IL-1β and TNF-α), thus affecting the progression of acute gouty arthritis. [Display omitted] •The drug curcumin system based on DNA nanostructures (Cur-TFNAs) were developed to obtain a novel nanomaterial with high water solubility, large encapsulation efficiency, sustained drug release and excellent drug stability.•Based on cellular uptake and in vivo drug imaging, Cur-TFNAs improve the retention of Cur in cells and tissues.•Cur-TFNAs prevent acute gouty arthritis through mediating anti-inflammatory and antioxidant responses of macrophage.
Gouty arthritis is a very familiar inflammatory arthritis. Controlling inflammation is the key to preventing gouty arthritis. However, colchicine, the most highly represented drug used in clinical practice, has strict contraindications owing to some severe side effects. Curcumin (Cur), a natural anti-inflammatory drug, has demonstrated good safety and efficacy. However, the rapid degradation, poor aqueous solubility, and low bioavailability of Cur limit its therapeutic effect. To strengthen the effectiveness and bioavailability of Cur. Cur loaded tetrahedral framework nucleic acids (Cur-TFNAs) were synthesized to deliver Cur. Compared with free Cur, Cur-TFNAs exhibit a preferable drug stability, good biocompatibility (CCK-8 assay), ease of uptake (immunofluorescence), and higher tissue utilization (in vivo biodistribution). Most importantly, Cur-TFNAs present better anti-inflammatory effect than free Cur both in vivo and in vitro experiments through the determination of inflammation-related cytokines expression. Therefore, we believe that Cur-TFNAs have great prospects for the prevention of gout and similar inflammatory diseases.
Author Zhang, Qi
Tian, Taoran
Xiao, Dexuan
Lin, Yunfeng
Wen, Yuting
Cui, Weitong
Zhu, Junyao
Zhang, Xiaolin
Zhang, Mei
Author_xml – sequence: 1
  givenname: Mei
  surname: Zhang
  fullname: Zhang, Mei
  organization: State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
– sequence: 2
  givenname: Xiaolin
  surname: Zhang
  fullname: Zhang, Xiaolin
  organization: State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
– sequence: 3
  givenname: Taoran
  surname: Tian
  fullname: Tian, Taoran
  organization: State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
– sequence: 4
  givenname: Qi
  surname: Zhang
  fullname: Zhang, Qi
  organization: State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
– sequence: 5
  givenname: Yuting
  surname: Wen
  fullname: Wen, Yuting
  organization: State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
– sequence: 6
  givenname: Junyao
  surname: Zhu
  fullname: Zhu, Junyao
  organization: State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
– sequence: 7
  givenname: Dexuan
  surname: Xiao
  fullname: Xiao, Dexuan
  organization: State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
– sequence: 8
  givenname: Weitong
  surname: Cui
  fullname: Cui, Weitong
  organization: State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
– sequence: 9
  givenname: Yunfeng
  orcidid: 0000-0003-1224-6561
  surname: Lin
  fullname: Lin, Yunfeng
  email: yunfenglin@scu.edu.cn
  organization: State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
BookMark eNqNkU1v1DAQhiNUREvpbyBHLgl27MTJAaRVxUelSlxA4mY59nh3QmIX29lq_z1etqooF7jYI3veZz7el8WZ8w6K4jUlNSW0ezvVI3ql06JS3ZCG1qSrCWHPiouGt01Fh-H72R_xeXEV40QIoSIfRLwozhlvOeVEXBTTxiWs0NlZLZnnw6HMZNxjOpTelnoNel3QVbNXBkyZIAW1AxPUXNqgFrj34UfpVj0D6qxEE0vvcrAmKLd-zRQV0i5gwviqeG7VHOHq4b4svn388PX6c3X75dPN9ea20i3tU0VHazj0go5i5IL2qodRj0KBFYaNasiTNgZsY3ume90p1o6DEMPI7ECgZ8Aui5sT13g1ybuAiwoH6RXK3w8-bGXuCXPLsmEguk5TxvuWt5YpYtRAFaPABw5CZ9b7E-tuHRcwGlyef34CffrjcCe3fi973gwDFRnw5gEQ_M8VYpILRg3zrBz4NcqmFVxwnm3JqeKUqoOPMYB9LEOJPBovJ_lovDwaL0kn8zqy8t1fSo1JJfTHnnD-D_3mpIdsyx4hyKgRnAaDAXTKe8N_Mn4BPE3UAw
CitedBy_id crossref_primary_10_1016_j_cclet_2021_11_090
crossref_primary_10_1002_adhm_202203076
crossref_primary_10_1111_cpr_13624
crossref_primary_10_1166_jbn_2022_3295
crossref_primary_10_1166_jbn_2022_3293
crossref_primary_10_1002_advs_202303706
crossref_primary_10_1111_cpr_13623
crossref_primary_10_1166_mex_2022_2159
crossref_primary_10_2174_1389200224666230614115655
crossref_primary_10_1134_S1070363222090201
crossref_primary_10_1186_s12951_022_01758_2
crossref_primary_10_2174_0929867331666230809143758
crossref_primary_10_3390_molecules28134935
crossref_primary_10_1002_adfm_202204587
crossref_primary_10_1002_smtd_202401360
crossref_primary_10_3389_fnut_2022_1040259
crossref_primary_10_1016_j_matdes_2022_111299
crossref_primary_10_1002_adma_202107820
crossref_primary_10_1021_acs_nanolett_2c00025
crossref_primary_10_1166_jbn_2022_3283
crossref_primary_10_1166_jbn_2022_3281
crossref_primary_10_2147_JIR_S460333
crossref_primary_10_1039_D3BM00095H
crossref_primary_10_1021_jacsau_4c01170
crossref_primary_10_1021_acsami_2c05750
crossref_primary_10_2174_1389200224666230202155414
crossref_primary_10_1021_acs_chemmater_3c01776
crossref_primary_10_1093_burnst_tkac006
crossref_primary_10_1166_jbn_2022_3280
crossref_primary_10_1021_acsami_2c02523
crossref_primary_10_1002_adfm_202417307
crossref_primary_10_1002_adfm_202314789
crossref_primary_10_1080_03008207_2023_2235007
crossref_primary_10_1021_acsami_2c10612
crossref_primary_10_1111_cpr_13174
crossref_primary_10_1166_mex_2022_2171
crossref_primary_10_1111_cpr_13689
crossref_primary_10_1002_adma_202202513
crossref_primary_10_1021_acsami_2c02877
crossref_primary_10_1016_j_jiec_2022_02_052
crossref_primary_10_1021_acs_biomac_2c01525
crossref_primary_10_1166_mex_2022_2178
crossref_primary_10_1166_mex_2022_2177
crossref_primary_10_1021_acsami_2c20657
crossref_primary_10_1021_acs_nanolett_3c01502
crossref_primary_10_1016_j_foodres_2024_114492
crossref_primary_10_1016_j_cej_2022_140399
crossref_primary_10_1111_cpr_13283
crossref_primary_10_1166_sam_2022_4251
crossref_primary_10_1111_cpr_13316
crossref_primary_10_1166_mex_2022_2163
crossref_primary_10_1166_mex_2022_2162
crossref_primary_10_1111_cpr_13279
crossref_primary_10_1111_cpr_13678
crossref_primary_10_3389_fcimb_2022_816386
crossref_primary_10_1021_acsami_1c23708
crossref_primary_10_1166_mex_2022_2169
crossref_primary_10_1038_s41413_022_00212_1
crossref_primary_10_1021_acsnano_4c05845
crossref_primary_10_1038_s41596_022_00791_7
crossref_primary_10_1166_sam_2022_4249
crossref_primary_10_1002_adhm_202401384
crossref_primary_10_2174_1389200224666230410111015
crossref_primary_10_1111_cpr_13311
crossref_primary_10_1002_smll_202410162
crossref_primary_10_1111_cpr_13272
crossref_primary_10_1166_mex_2023_2495
crossref_primary_10_1063_10_0025584
crossref_primary_10_1166_jbn_2022_3348
crossref_primary_10_1002_admi_202201532
crossref_primary_10_3389_fmolb_2022_900344
crossref_primary_10_1002_slct_202401655
crossref_primary_10_1111_cpr_13424
crossref_primary_10_1038_s41368_022_00199_9
crossref_primary_10_1021_acsnano_4c06598
crossref_primary_10_1016_j_bioactmat_2021_11_031
crossref_primary_10_1166_mex_2022_2199
crossref_primary_10_1166_mex_2022_2198
crossref_primary_10_1002_smll_202302326
crossref_primary_10_1166_mex_2023_2365
crossref_primary_10_1007_s10876_023_02491_y
crossref_primary_10_1021_acsnano_3c02102
crossref_primary_10_1016_j_cej_2022_134855
crossref_primary_10_1021_acsami_1c23869
crossref_primary_10_1166_mex_2023_2368
crossref_primary_10_1021_acsmaterialslett_2c00021
crossref_primary_10_1021_acsami_2c10364
crossref_primary_10_1021_acsami_2c12147
crossref_primary_10_1080_10408398_2022_2092056
crossref_primary_10_2174_1389200224666230710124838
crossref_primary_10_3724_abbs_2023078
crossref_primary_10_3389_fphar_2022_963032
crossref_primary_10_1166_mex_2022_2181
crossref_primary_10_1166_jbn_2022_3363
crossref_primary_10_1021_acsami_1c19889
crossref_primary_10_1166_mex_2022_2223
crossref_primary_10_1002_adfm_202303580
crossref_primary_10_1166_mex_2022_2222
crossref_primary_10_1166_mex_2022_2188
crossref_primary_10_1002_cplu_202100548
crossref_primary_10_2174_1389200224666230413082047
crossref_primary_10_3390_nano12030324
crossref_primary_10_1166_mex_2022_2219
crossref_primary_10_1166_sam_2022_4269
crossref_primary_10_1021_acsnano_4c12917
crossref_primary_10_1016_j_matdes_2022_111087
crossref_primary_10_2174_1389200224666230601091346
crossref_primary_10_1039_D2BM02169B
crossref_primary_10_3390_molecules28062878
crossref_primary_10_1111_cpr_13129
crossref_primary_10_1111_cpr_13407
crossref_primary_10_1002_smll_202305490
crossref_primary_10_1166_jbn_2022_3430
crossref_primary_10_1002_adhm_202400198
crossref_primary_10_1007_s11655_022_3721_6
crossref_primary_10_1016_j_jconrel_2022_12_004
crossref_primary_10_3389_fphar_2022_863082
crossref_primary_10_1166_sam_2022_4219
crossref_primary_10_1166_sam_2022_4218
crossref_primary_10_1021_acsnano_3c04462
crossref_primary_10_1039_D2NR06631A
crossref_primary_10_1166_sam_2022_4217
crossref_primary_10_1021_acsami_1c20657
crossref_primary_10_3389_fbioe_2021_782237
crossref_primary_10_1016_j_pdpdt_2022_103204
crossref_primary_10_1016_j_jcis_2022_11_139
crossref_primary_10_1021_acsami_2c09462
crossref_primary_10_1002_ptr_7514
crossref_primary_10_1016_j_cellsig_2023_110694
crossref_primary_10_2147_IJN_S428938
crossref_primary_10_1021_acsami_2c14626
crossref_primary_10_1002_adhm_202401452
crossref_primary_10_1016_j_biomaterials_2023_122283
crossref_primary_10_1039_D3NA00327B
crossref_primary_10_1186_s40824_023_00372_z
crossref_primary_10_1002_advs_202305622
crossref_primary_10_1039_D2NR07174F
crossref_primary_10_2147_IJN_S403882
crossref_primary_10_1021_acsnano_3c09589
crossref_primary_10_2174_1389200224666230120124402
crossref_primary_10_1021_acsnano_2c09593
crossref_primary_10_1016_j_jddst_2023_104200
crossref_primary_10_1111_cpr_13470
crossref_primary_10_1007_s10565_025_10001_1
crossref_primary_10_1021_acs_biomac_4c01019
crossref_primary_10_1080_10739149_2022_2105866
Cites_doi 10.1021/acs.accounts.5b00127
10.3390/molecules16064567
10.1016/j.jconrel.2006.04.014
10.1002/art.40807
10.1016/j.nano.2019.102061
10.1039/C7NR09692E
10.1021/acs.nanolett.0c00529
10.5604/17322693.991446
10.1016/j.biomaterials.2007.12.037
10.1186/1742-2094-8-125
10.1021/acs.nanolett.8b02166
10.1016/j.bioactmat.2020.12.027
10.1016/j.autrev.2009.02.026
10.1038/nature04516
10.1039/c1np00051a
10.1002/smll.201800703
10.1016/j.brainres.2009.05.009
10.1097/RHU.0b013e31827d8790
10.2217/nnm.09.28
10.1016/S0140-6736(16)00346-9
10.1016/S0168-3659(02)00127-X
10.1016/j.biomaterials.2011.10.070
10.1021/bm800479e
10.1038/nprot.2015.078
10.1016/j.biomaterials.2010.04.062
10.1016/j.nano.2014.09.004
10.1126/stke.11pe1
10.1016/j.lfs.2003.10.042
10.1021/acs.chemrev.7b00663
10.1038/ni1001-907
10.1016/j.cell.2007.08.024
10.1021/acsami.9b10645
10.1038/cddis.2017.470
10.1002/adma.201300875
10.1038/nrrheum.2014.32
10.1158/1078-0432.CCR-04-2517
10.1021/nn4058787
10.1158/1078-0432.CCR-07-5177
10.1021/nn2005574
10.2217/nnm.10.9
10.1016/j.mattod.2018.08.002
10.2165/00002018-199411040-00004
10.1046/j.1365-2796.2003.01146.x
10.1016/j.lfs.2005.12.007
10.1021/mp700113r
10.1038/s41413-019-0077-4
10.1096/fasebj.6.12.1381691
10.1038/s41572-019-0115-y
10.1002/art.1780340716
10.1038/s41467-018-04947-6
10.1038/s41596-020-0355-z
10.1021/nn405077y
10.1146/annurev-med-040210-162544
10.1016/j.biomaterials.2015.02.116
10.1136/annrheumdis-2011-200298
10.1021/acsami.9b13829
10.1021/acsami.8b22444
10.1101/gad.9.22.2736
10.1002/art.24185
10.1016/j.it.2015.01.003
ContentType Journal Article
Copyright 2021 The Authors
2021 The Authors.
2021 The Authors 2021
Copyright_xml – notice: 2021 The Authors
– notice: 2021 The Authors.
– notice: 2021 The Authors 2021
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.bioactmat.2021.06.003
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2452-199X
EndPage 380
ExternalDocumentID oai_doaj_org_article_23e766c1348545f3a0da91a31e494e7c
PMC8429917
10_1016_j_bioactmat_2021_06_003
S2452199X21002863
GroupedDBID 0SF
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
AAYWO
AAYXX
ABJCF
ACVFH
ADCNI
ADMLS
ADVLN
AEUPX
AFKRA
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
HCIFZ
KB.
M7P
M~E
PDBOC
PHGZM
PHGZT
PIMPY
7X8
5PM
ID FETCH-LOGICAL-c518t-1bfd4e871b7b4718a8ebcb7aef7d3ba90032def2f83c8c6a35b9779b3f90e83e3
IEDL.DBID DOA
ISSN 2452-199X
IngestDate Wed Aug 27 01:27:18 EDT 2025
Thu Aug 21 18:11:22 EDT 2025
Fri Jul 11 09:08:35 EDT 2025
Tue Jul 01 02:11:26 EDT 2025
Thu Apr 24 23:02:29 EDT 2025
Wed May 17 01:14:17 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Oxidative stress
Tetrahedral framework DNA nanoparticle
NF-κB signaling pathway
Gouty arthritis
Macrophage
Language English
License This is an open access article under the CC BY-NC-ND license.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-1bfd4e871b7b4718a8ebcb7aef7d3ba90032def2f83c8c6a35b9779b3f90e83e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1224-6561
OpenAccessLink https://doaj.org/article/23e766c1348545f3a0da91a31e494e7c
PMID 34541407
PQID 2574744007
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_23e766c1348545f3a0da91a31e494e7c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8429917
proquest_miscellaneous_2574744007
crossref_primary_10_1016_j_bioactmat_2021_06_003
crossref_citationtrail_10_1016_j_bioactmat_2021_06_003
elsevier_sciencedirect_doi_10_1016_j_bioactmat_2021_06_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Bioactive materials
PublicationYear 2022
Publisher Elsevier B.V
KeAi Publishing
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Publishing
– name: KeAi Communications Co., Ltd
References Conaghan, Day (bib8) 1994; 11
De Jong, Hagens, Krystek, Burger, Sips, Geertsma (bib40) 2008; 29
Boumans, Houbiers, Verschueren, Ishikura, Westhovens, Brouwer, Rojkovich, Kelly, den Adel, Isaacs, Jacobs, Gomez-Reino, Holtkamp, Hastings, Gerlag, Tak (bib63) 2012; 71
Li, Fan, Pei, Shi, Huang (bib42) 2013; 25
Zhang, Ma, Zhu, Shi, Li, Mao, Zhao, Zhan, Shi, Li, Wang, Fan, Lin (bib26) 2018; 18
Terkeltaub, Zachariae, Santoro, Martin, Peveri, Matsushima (bib6) 1991; 34
Bogdan (bib55) 2001; 2
Sahoo, Panyam, Prabha, Labhasetwar (bib47) 2002; 82
Sun, Ren, Xiong, Chen, Zhao, Wang, Zhou, Han, Chen, Li, Kang, Zhu (bib14) 2017; 8
Fu, You, Ma, Li, Ju, Guo, Shi, Zhang, Zhou, Lin (bib29) 2019; 11
Martinon, Pétrilli, Mayor, Tardivel, Tschopp (bib4) 2006; 440
Zhang, Tian, Zhou, Li, Ma, Zhang, Liu, Shi, Li, Xie, Ge, Liu, Zhang, Lin, Cai, Lin (bib25) 2020; 15
Wang, Wang, Zhu, Liu, Fei, Wang (bib20) 2015; 53
Maheshwari, Singh, Gaddipati, Srimal (bib9) 2006; 78
Basnet, Skalko-Basnet (bib10) 2011; 16
Gupta, Prasad, Kim, Patchva, Webb, Priyadarsini, Aggarwal (bib44) 2011; 28
Sun, Liu, Zhang, Shi, Zhang, Zhao, Tian, Li, Lin (bib33) 2021; 6
Canty, Boyle, Farr, Morgan, Verrier, Pohlman (bib58) 1999; 100
Hainer, Matheson, Wilkes (bib62) 2014; 90
Sirong, Yang, Taoran, Songhang, Shiyu, Yuxin, Xiaoru, Tao, Yunfeng, Xiaoxiao (bib35) 2020; 8
Dalbeth, Merriman, Stamp, Gout (bib1) 2016; 388
Mohanty, Sahoo (bib36) 2010; 31
Tiwari, Agarwal, Seth, Yadav, Nair, Bhatnagar, Karmakar, Kumari, Chauhan, Patel (bib18) 2014; 8
Chen, He, Su, Li, Huang, Wang, Zhang, Tai, Fan (bib39) 2012; 33
Krausz, Adler, Cabral, Navati, Doerner, Charafeddine, Chandra, Liang, Gunther, Clendaniel (bib13) 2015; 11
Shi, Fu, Lin, Tian, Li, Shao, Zhang, Zhang, Tang, Zhou (bib32) 2019; 21
Stubelius, Sheng, Lee, Olejniczak, Guma, Almutairi (bib59) 2018; 14
Szwed, Miłowska (bib17) 2012; 66
Wang, Veena, Stevenson, Tang, Ho, Suh, Duarte, Faull, Mehta, Srivatsan (bib53) 2008; 14
Banerjee, Chakravarty (bib21) 2015; 48
Ko, Liu, Chen, Mao (bib41) 2008; 9
Lv, Hu, Zhu, Zhang, Mei, Liu, Qiu, Wu, Tan (bib43) 2015; 10
Tian, Xiao, Zhang, Li, Shi, Zhong, Gong, Liu, Li, Lin (bib27) 2020
Cronstein, Sunkureddi (bib5) 2013; 19
Karlstetter, Lippe, Walczak, Moehle, Aslanidis, Mirza, Langmann (bib15) 2011; 8
Creus, De Paepe, De Bleecker (bib51) 2009; 8
Yang, Zhang, Fan, Liu (bib12) 2009; 1282
Dalbeth, Choi, Joosten, Khanna, Matsuo, Perez-Ruiz, Stamp, Gout (bib7) 2019; 5
Lv, Zhang, Wang, Cui, Yan (bib38) 2006; 114
Zhang, Zhu, Qin, Zhou, Zhang, Gao, Zhang, Xiao, Cui, Cai (bib37) 2019; 11
Chen-Xu, Yokose, Rai, Pillinger, Choi (bib2) 2019; 71
Martin, Walton, Harper (bib3) 2009; 60
Walsh, Yin, Erben, Wood, Turberfield (bib28) 2011; 5
Meng, Ma, Lin, Shi, Li, Lin (bib31) 2019; 11
Li, Tian, Zhang, Cai, Lin (bib49) 2019; 24
Nathan (bib56) 1992; 6
Rees, Hui, Doherty (bib61) 2014; 10
Pu, Chiang, Maiti, Liao, Ho, Shim, Chuang, Xia, Sung (bib19) 2014; 8
Gambaro, Perazella (bib60) 2003; 253
Mohanty, Acharya, Mohanty, Dilnawaz, Sahoo (bib45) 2010; 5
Beg, Sha, Bronson, Baltimore (bib52) 1995; 9
Allen, Mumbengegwi, Charrois (bib22) 2005; 11
He, Jiang, Chen, Ye, Wang, Wang, Liu, Liang, Deng, Jiang, Zhou (bib48) 2018; 9
Bogdan (bib57) 2015; 36
Natoli, Chiocca (bib50) 2008; 1
Xie, Shao, Ma, Zhao, Shi, Li, Lin (bib34) 2018; 10
Liu, Sun, Li, Liu, Qin, Chen, Lin (bib24) 2020; 20
Hu, Li, Wang, Gu, Fan (bib30) 2018; 119
Aktan (bib54) 2004; 75
Wang, Langer, Farokhzad (bib23) 2012; 63
Anand, Kunnumakkara, Newman, Aggarwal (bib16) 2007; 4
Singh (bib11) 2007; 130
Misra, Acharya, Dilnawaz, Sahoo (bib46) 2009; 4
Hu (10.1016/j.bioactmat.2021.06.003_bib30) 2018; 119
Wang (10.1016/j.bioactmat.2021.06.003_bib23) 2012; 63
Chen (10.1016/j.bioactmat.2021.06.003_bib39) 2012; 33
Bogdan (10.1016/j.bioactmat.2021.06.003_bib57) 2015; 36
Natoli (10.1016/j.bioactmat.2021.06.003_bib50) 2008; 1
Misra (10.1016/j.bioactmat.2021.06.003_bib46) 2009; 4
Krausz (10.1016/j.bioactmat.2021.06.003_bib13) 2015; 11
Lv (10.1016/j.bioactmat.2021.06.003_bib43) 2015; 10
Singh (10.1016/j.bioactmat.2021.06.003_bib11) 2007; 130
Karlstetter (10.1016/j.bioactmat.2021.06.003_bib15) 2011; 8
Sun (10.1016/j.bioactmat.2021.06.003_bib14) 2017; 8
Sun (10.1016/j.bioactmat.2021.06.003_bib33) 2021; 6
Gupta (10.1016/j.bioactmat.2021.06.003_bib44) 2011; 28
Sahoo (10.1016/j.bioactmat.2021.06.003_bib47) 2002; 82
Shi (10.1016/j.bioactmat.2021.06.003_bib32) 2019; 21
Creus (10.1016/j.bioactmat.2021.06.003_bib51) 2009; 8
Conaghan (10.1016/j.bioactmat.2021.06.003_bib8) 1994; 11
Nathan (10.1016/j.bioactmat.2021.06.003_bib56) 1992; 6
Zhang (10.1016/j.bioactmat.2021.06.003_bib26) 2018; 18
Tian (10.1016/j.bioactmat.2021.06.003_bib27) 2020
Tiwari (10.1016/j.bioactmat.2021.06.003_bib18) 2014; 8
Chen-Xu (10.1016/j.bioactmat.2021.06.003_bib2) 2019; 71
Pu (10.1016/j.bioactmat.2021.06.003_bib19) 2014; 8
Wang (10.1016/j.bioactmat.2021.06.003_bib20) 2015; 53
Canty (10.1016/j.bioactmat.2021.06.003_bib58) 1999; 100
Meng (10.1016/j.bioactmat.2021.06.003_bib31) 2019; 11
Anand (10.1016/j.bioactmat.2021.06.003_bib16) 2007; 4
Li (10.1016/j.bioactmat.2021.06.003_bib42) 2013; 25
He (10.1016/j.bioactmat.2021.06.003_bib48) 2018; 9
Hainer (10.1016/j.bioactmat.2021.06.003_bib62) 2014; 90
Xie (10.1016/j.bioactmat.2021.06.003_bib34) 2018; 10
De Jong (10.1016/j.bioactmat.2021.06.003_bib40) 2008; 29
Wang (10.1016/j.bioactmat.2021.06.003_bib53) 2008; 14
Beg (10.1016/j.bioactmat.2021.06.003_bib52) 1995; 9
Dalbeth (10.1016/j.bioactmat.2021.06.003_bib7) 2019; 5
Ko (10.1016/j.bioactmat.2021.06.003_bib41) 2008; 9
Yang (10.1016/j.bioactmat.2021.06.003_bib12) 2009; 1282
Martin (10.1016/j.bioactmat.2021.06.003_bib3) 2009; 60
Mohanty (10.1016/j.bioactmat.2021.06.003_bib45) 2010; 5
Walsh (10.1016/j.bioactmat.2021.06.003_bib28) 2011; 5
Li (10.1016/j.bioactmat.2021.06.003_bib49) 2019; 24
Aktan (10.1016/j.bioactmat.2021.06.003_bib54) 2004; 75
Allen (10.1016/j.bioactmat.2021.06.003_bib22) 2005; 11
Mohanty (10.1016/j.bioactmat.2021.06.003_bib36) 2010; 31
Rees (10.1016/j.bioactmat.2021.06.003_bib61) 2014; 10
Stubelius (10.1016/j.bioactmat.2021.06.003_bib59) 2018; 14
Dalbeth (10.1016/j.bioactmat.2021.06.003_bib1) 2016; 388
Martinon (10.1016/j.bioactmat.2021.06.003_bib4) 2006; 440
Basnet (10.1016/j.bioactmat.2021.06.003_bib10) 2011; 16
Maheshwari (10.1016/j.bioactmat.2021.06.003_bib9) 2006; 78
Liu (10.1016/j.bioactmat.2021.06.003_bib24) 2020; 20
Bogdan (10.1016/j.bioactmat.2021.06.003_bib55) 2001; 2
Terkeltaub (10.1016/j.bioactmat.2021.06.003_bib6) 1991; 34
Sirong (10.1016/j.bioactmat.2021.06.003_bib35) 2020; 8
Zhang (10.1016/j.bioactmat.2021.06.003_bib37) 2019; 11
Zhang (10.1016/j.bioactmat.2021.06.003_bib25) 2020; 15
Gambaro (10.1016/j.bioactmat.2021.06.003_bib60) 2003; 253
Boumans (10.1016/j.bioactmat.2021.06.003_bib63) 2012; 71
Lv (10.1016/j.bioactmat.2021.06.003_bib38) 2006; 114
Cronstein (10.1016/j.bioactmat.2021.06.003_bib5) 2013; 19
Szwed (10.1016/j.bioactmat.2021.06.003_bib17) 2012; 66
Banerjee (10.1016/j.bioactmat.2021.06.003_bib21) 2015; 48
Fu (10.1016/j.bioactmat.2021.06.003_bib29) 2019; 11
References_xml – volume: 130
  start-page: 765
  year: 2007
  end-page: 768
  ident: bib11
  article-title: From exotic spice to modern drug?
  publication-title: Cell
– volume: 8
  start-page: 1213
  year: 2014
  end-page: 1221
  ident: bib19
  article-title: Nanoparticles with dual responses to oxidative stress and reduced ph for drug release and anti-inflammatory applications
  publication-title: ACS Nano
– volume: 5
  start-page: 433
  year: 2010
  end-page: 449
  ident: bib45
  article-title: Curcumin-encapsulated mepeg/pcl diblock copolymeric micelles: a novel controlled delivery vehicle for cancer therapy
  publication-title: Nanomed
– volume: 9
  start-page: 2550
  year: 2018
  ident: bib48
  article-title: Oridonin is a covalent nlrp3 inhibitor with strong anti-inflammasome activity
  publication-title: Nat. Commun.
– volume: 20
  start-page: 3602
  year: 2020
  end-page: 3610
  ident: bib24
  article-title: Tetrahedral framework nucleic acids deliver antimicrobial peptides with improved effects and less susceptibility to bacterial degradation
  publication-title: Nano Lett.
– volume: 24
  start-page: 57
  year: 2019
  end-page: 68
  ident: bib49
  article-title: Advances in biological applications of self-assembled DNA tetrahedral nanostructures
  publication-title: Mater. Today
– volume: 11
  start-page: 39525
  year: 2019
  end-page: 39533
  ident: bib29
  article-title: Enhanced efficacy of temozolomide loaded by a tetrahedral framework DNA nanoparticle in the therapy for glioblastoma
  publication-title: ACS Appl. Mater. Interfaces
– volume: 78
  start-page: 2081
  year: 2006
  end-page: 2087
  ident: bib9
  article-title: Multiple biological activities of curcumin: a short review
  publication-title: Life Sci.
– volume: 28
  start-page: 1937
  year: 2011
  end-page: 1955
  ident: bib44
  article-title: Multitargeting by curcumin as revealed by molecular interaction studies
  publication-title: Nat. Prod. Rep.
– start-page: 2007342
  year: 2020
  ident: bib27
  article-title: A framework nucleic acid based robotic nanobee for active targeting therapy
  publication-title: Adv. Funct. Mater. n/a
– volume: 63
  start-page: 185
  year: 2012
  end-page: 198
  ident: bib23
  article-title: Nanoparticle delivery of cancer drugs
  publication-title: Annu. Rev. Med.
– volume: 25
  start-page: 4386
  year: 2013
  end-page: 4396
  ident: bib42
  article-title: Smart drug delivery nanocarriers with self-assembled DNA nanostructures
  publication-title: Adv. Mater.
– volume: 71
  start-page: 180
  year: 2012
  end-page: 185
  ident: bib63
  article-title: Safety, tolerability, pharmacokinetics, pharmacodynamics and efficacy of the monoclonal antibody ask8007 blocking osteopontin in patients with rheumatoid arthritis: a randomised, placebo controlled, proof-of-concept study
  publication-title: Ann. Rheum. Dis.
– volume: 29
  start-page: 1912
  year: 2008
  end-page: 1919
  ident: bib40
  article-title: Particle size-dependent organ distribution of gold nanoparticles after intravenous administration
  publication-title: Biomaterials
– volume: 11
  start-page: 3567
  year: 2005
  end-page: 3573
  ident: bib22
  article-title: Anti-cd19-targeted liposomal doxorubicin improves the therapeutic efficacy in murine b-cell lymphoma and ameliorates the toxicity of liposomes with varying drug release rates
  publication-title: Clin. Canc. Res.
– volume: 15
  start-page: 2728
  year: 2020
  end-page: 2757
  ident: bib25
  article-title: Design, fabrication and applications of tetrahedral DNA nanostructure-based multifunctional complexes in drug delivery and biomedical treatment
  publication-title: Nat. Protoc.
– volume: 21
  start-page: 102061
  year: 2019
  ident: bib32
  article-title: Targeted and effective glioblastoma therapy via aptamer-modified tetrahedral framework nucleic acid-paclitaxel nanoconjugates that can pass the blood brain barrier
  publication-title: Nanomedicine
– volume: 8
  start-page: 627
  year: 2009
  end-page: 631
  ident: bib51
  article-title: Idiopathic inflammatory myopathies and the classical nf-κb complex: current insights and implications for therapy
  publication-title: Autoimmun. Rev.
– volume: 14
  year: 2018
  ident: bib59
  article-title: Disease-triggered drug release effectively prevents acute inflammatory flare-ups, achieving reduced dosing
  publication-title: Small
– volume: 100
  year: 1999
  ident: bib58
  article-title: Oxidative stress induces nf-kappab nuclear translocation without degradation of ikappabalpha
  publication-title: Circulation
– volume: 11
  start-page: 6850
  year: 2019
  end-page: 6857
  ident: bib31
  article-title: Tetrahedral DNA nanostructure-delivered dnazyme for gene silencing to suppress cell growth
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 519
  year: 2009
  end-page: 530
  ident: bib46
  article-title: Sustained antibacterial activity of doxycycline-loaded poly(d,l-lactide-co-glycolide) and poly(epsilon-caprolactone) nanoparticles
  publication-title: Nanomedicine
– volume: 9
  start-page: 2736
  year: 1995
  end-page: 2746
  ident: bib52
  article-title: Constitutive nf-kappa b activation, enhanced granulopoiesis, and neonatal lethality in i kappa b alpha-deficient mice
  publication-title: Genes Dev.
– volume: 90
  start-page: 831
  year: 2014
  end-page: 836
  ident: bib62
  article-title: Diagnosis, treatment, and prevention of gout
  publication-title: Am. Fam. Physician
– volume: 31
  start-page: 6597
  year: 2010
  end-page: 6611
  ident: bib36
  article-title: The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation
  publication-title: Biomaterials
– volume: 48
  start-page: 2075
  year: 2015
  end-page: 2083
  ident: bib21
  article-title: Metal complexes of curcumin for cellular imaging, targeting, and photoinduced anticancer activity
  publication-title: Acc. Chem. Res.
– volume: 10
  start-page: 5457
  year: 2018
  end-page: 5465
  ident: bib34
  article-title: Overcoming drug-resistant lung cancer by paclitaxel loaded tetrahedral DNA nanostructures
  publication-title: Nanoscale
– volume: 8
  start-page: 76
  year: 2014
  end-page: 103
  ident: bib18
  article-title: Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in alzheimer's disease model via canonical wnt/β-catenin pathway
  publication-title: ACS Nano
– volume: 82
  start-page: 105
  year: 2002
  end-page: 114
  ident: bib47
  article-title: Residual polyvinyl alcohol associated with poly (d,l-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake
  publication-title: J. Contr. Release
– volume: 16
  start-page: 4567
  year: 2011
  end-page: 4598
  ident: bib10
  article-title: Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment
  publication-title: Molecules
– volume: 11
  start-page: 195
  year: 2015
  end-page: 206
  ident: bib13
  article-title: Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent
  publication-title: Nanomedicine
– volume: 1282
  start-page: 133
  year: 2009
  end-page: 141
  ident: bib12
  article-title: Curcumin upregulates transcription factor nrf2, ho-1 expression and protects rat brains against focal ischemia
  publication-title: Brain Res.
– volume: 19
  start-page: 19
  year: 2013
  end-page: 29
  ident: bib5
  article-title: Mechanistic aspects of inflammation and clinical management of inflammation in acute gouty arthritis
  publication-title: J. Clin. Rheumatol.
– volume: 253
  start-page: 643
  year: 2003
  end-page: 652
  ident: bib60
  article-title: Adverse renal effects of anti-inflammatory agents: evaluation of selective and nonselective cyclooxygenase inhibitors
  publication-title: J. Intern. Med.
– volume: 71
  start-page: 991
  year: 2019
  end-page: 999
  ident: bib2
  article-title: Contemporary prevalence of gout and hyperuricemia in the United States and decadal trends: the national health and nutrition examination survey, 2007-2016
  publication-title: Arthritis Rheum.
– volume: 36
  start-page: 161
  year: 2015
  end-page: 178
  ident: bib57
  article-title: Nitric oxide synthase in innate and adaptive immunity: an update
  publication-title: Trends Immunol.
– volume: 5
  start-page: 69
  year: 2019
  ident: bib7
  publication-title: Nat Rev Dis Primers
– volume: 9
  start-page: 3039
  year: 2008
  end-page: 3043
  ident: bib41
  article-title: DNA nanotubes as combinatorial vehicles for cellular delivery
  publication-title: Biomacromolecules
– volume: 5
  start-page: 5427
  year: 2011
  end-page: 5432
  ident: bib28
  article-title: DNA cage delivery to mammalian cells
  publication-title: ACS Nano
– volume: 440
  start-page: 237
  year: 2006
  end-page: 241
  ident: bib4
  article-title: Gout-associated uric acid crystals activate the nalp3 inflammasome
  publication-title: Nature
– volume: 14
  start-page: 6228
  year: 2008
  end-page: 6236
  ident: bib53
  article-title: Liposome-encapsulated curcumin suppresses growth of head and neck squamous cell carcinoma in vitro and in xenografts through the inhibition of nuclear factor κb by an akt-independent pathway
  publication-title: Clin. Canc. Res.
– volume: 8
  year: 2017
  ident: bib14
  article-title: Nlrp3 inflammasome activation contributes to vsmc phenotypic transformation and proliferation in hypertension
  publication-title: Cell Death Dis.
– volume: 119
  start-page: 6459
  year: 2018
  end-page: 6506
  ident: bib30
  article-title: DNA nanotechnology-enabled drug delivery systems
  publication-title: Chem. Rev.
– volume: 8
  start-page: 6
  year: 2020
  ident: bib35
  article-title: Effects of tetrahedral framework nucleic acid/wogonin complexes on osteoarthritis
  publication-title: Bone Res
– volume: 6
  start-page: 3051
  year: 1992
  end-page: 3064
  ident: bib56
  article-title: Nitric oxide as a secretory product of mammalian cells
  publication-title: Faseb. J.
– volume: 60
  start-page: 281
  year: 2009
  end-page: 289
  ident: bib3
  article-title: Resident macrophages initiating and driving inflammation in a monosodium urate monohydrate crystal–induced murine peritoneal model of acute gout
  publication-title: Arthritis Rheum.
– volume: 18
  start-page: 5652
  year: 2018
  end-page: 5659
  ident: bib26
  article-title: Inhibiting methicillin-resistant staphylococcus aureus by tetrahedral DNA nanostructure-enabled antisense peptide nucleic acid delivery
  publication-title: Nano Lett.
– volume: 10
  start-page: 1508
  year: 2015
  end-page: 1524
  ident: bib43
  article-title: Preparation and biomedical applications of programmable and multifunctional DNA nanoflowers
  publication-title: Nat. Protoc.
– volume: 2
  start-page: 907
  year: 2001
  end-page: 916
  ident: bib55
  article-title: Nitric oxide and the immune response
  publication-title: Nat. Immunol.
– volume: 10
  start-page: 271
  year: 2014
  end-page: 283
  ident: bib61
  article-title: Optimizing current treatment of gout
  publication-title: Nat. Rev. Rheumatol.
– volume: 11
  start-page: 252
  year: 1994
  end-page: 258
  ident: bib8
  article-title: Risks and benefits of drugs used in the management and prevention of gout
  publication-title: Drug Saf.
– volume: 6
  start-page: 2281
  year: 2021
  end-page: 2290
  ident: bib33
  article-title: Erythromycin loaded by tetrahedral framework nucleic acids are more antimicrobial sensitive against escherichia coli (e. Coli)
  publication-title: Bioactive Materials
– volume: 66
  start-page: 187
  year: 2012
  end-page: 195
  ident: bib17
  article-title: The role of proteins in neurodegenerative disease
  publication-title: Postepy Hig. Med. Dosw.
– volume: 388
  start-page: 2039
  year: 2016
  end-page: 2052
  ident: bib1
  publication-title: Lancet
– volume: 33
  start-page: 1238
  year: 2012
  end-page: 1244
  ident: bib39
  article-title: The cytotoxicity of cadmium-based quantum dots
  publication-title: Biomaterials
– volume: 53
  start-page: 475
  year: 2015
  end-page: 483
  ident: bib20
  article-title: Anti-inflammatory activity of curcumin-loaded solid lipid nanoparticles in il-1β transgenic mice subjected to the lipopolysaccharide-induced sepsis
  publication-title: Biomaterials
– volume: 4
  start-page: 807
  year: 2007
  end-page: 818
  ident: bib16
  article-title: Bioavailability of curcumin: problems and promises
  publication-title: Mol. Pharm.
– volume: 1
  start-page: pe1
  year: 2008
  ident: bib50
  article-title: Nuclear ubiquitin ligases, nf-κb degradation, and the control of inflammation
  publication-title: Sci. Signal.
– volume: 34
  start-page: 894
  year: 1991
  end-page: 903
  ident: bib6
  article-title: Monocyte-derived neutrophil chemotactic factor/interleukin-8 is a potential mediator of crystal-induced inflammation
  publication-title: Arthritis Rheum.
– volume: 8
  start-page: 125
  year: 2011
  ident: bib15
  article-title: Curcumin is a potent modulator of microglial gene expression and migration
  publication-title: J. Neuroinflammation
– volume: 114
  start-page: 100
  year: 2006
  end-page: 109
  ident: bib38
  article-title: Toxicity of cationic lipids and cationic polymers in gene delivery
  publication-title: J. Contr. Release
– volume: 75
  start-page: 639
  year: 2004
  end-page: 653
  ident: bib54
  article-title: Inos-mediated nitric oxide production and its regulation
  publication-title: Life Sci.
– volume: 11
  start-page: 30631
  year: 2019
  end-page: 30639
  ident: bib37
  article-title: Cardioprotection of tetrahedral DNA nanostructures in myocardial ischemia-reperfusion injury
  publication-title: ACS Appl. Mater. Interfaces
– volume: 48
  start-page: 2075
  year: 2015
  ident: 10.1016/j.bioactmat.2021.06.003_bib21
  article-title: Metal complexes of curcumin for cellular imaging, targeting, and photoinduced anticancer activity
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00127
– volume: 16
  start-page: 4567
  year: 2011
  ident: 10.1016/j.bioactmat.2021.06.003_bib10
  article-title: Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment
  publication-title: Molecules
  doi: 10.3390/molecules16064567
– volume: 114
  start-page: 100
  year: 2006
  ident: 10.1016/j.bioactmat.2021.06.003_bib38
  article-title: Toxicity of cationic lipids and cationic polymers in gene delivery
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2006.04.014
– volume: 71
  start-page: 991
  year: 2019
  ident: 10.1016/j.bioactmat.2021.06.003_bib2
  article-title: Contemporary prevalence of gout and hyperuricemia in the United States and decadal trends: the national health and nutrition examination survey, 2007-2016
  publication-title: Arthritis Rheum.
  doi: 10.1002/art.40807
– volume: 21
  start-page: 102061
  year: 2019
  ident: 10.1016/j.bioactmat.2021.06.003_bib32
  article-title: Targeted and effective glioblastoma therapy via aptamer-modified tetrahedral framework nucleic acid-paclitaxel nanoconjugates that can pass the blood brain barrier
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2019.102061
– volume: 10
  start-page: 5457
  year: 2018
  ident: 10.1016/j.bioactmat.2021.06.003_bib34
  article-title: Overcoming drug-resistant lung cancer by paclitaxel loaded tetrahedral DNA nanostructures
  publication-title: Nanoscale
  doi: 10.1039/C7NR09692E
– volume: 20
  start-page: 3602
  year: 2020
  ident: 10.1016/j.bioactmat.2021.06.003_bib24
  article-title: Tetrahedral framework nucleic acids deliver antimicrobial peptides with improved effects and less susceptibility to bacterial degradation
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c00529
– start-page: 2007342
  year: 2020
  ident: 10.1016/j.bioactmat.2021.06.003_bib27
  article-title: A framework nucleic acid based robotic nanobee for active targeting therapy
  publication-title: Adv. Funct. Mater. n/a
– volume: 66
  start-page: 187
  year: 2012
  ident: 10.1016/j.bioactmat.2021.06.003_bib17
  article-title: The role of proteins in neurodegenerative disease
  publication-title: Postepy Hig. Med. Dosw.
  doi: 10.5604/17322693.991446
– volume: 29
  start-page: 1912
  year: 2008
  ident: 10.1016/j.bioactmat.2021.06.003_bib40
  article-title: Particle size-dependent organ distribution of gold nanoparticles after intravenous administration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.12.037
– volume: 8
  start-page: 125
  year: 2011
  ident: 10.1016/j.bioactmat.2021.06.003_bib15
  article-title: Curcumin is a potent modulator of microglial gene expression and migration
  publication-title: J. Neuroinflammation
  doi: 10.1186/1742-2094-8-125
– volume: 18
  start-page: 5652
  year: 2018
  ident: 10.1016/j.bioactmat.2021.06.003_bib26
  article-title: Inhibiting methicillin-resistant staphylococcus aureus by tetrahedral DNA nanostructure-enabled antisense peptide nucleic acid delivery
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b02166
– volume: 6
  start-page: 2281
  year: 2021
  ident: 10.1016/j.bioactmat.2021.06.003_bib33
  article-title: Erythromycin loaded by tetrahedral framework nucleic acids are more antimicrobial sensitive against escherichia coli (e. Coli)
  publication-title: Bioactive Materials
  doi: 10.1016/j.bioactmat.2020.12.027
– volume: 8
  start-page: 627
  year: 2009
  ident: 10.1016/j.bioactmat.2021.06.003_bib51
  article-title: Idiopathic inflammatory myopathies and the classical nf-κb complex: current insights and implications for therapy
  publication-title: Autoimmun. Rev.
  doi: 10.1016/j.autrev.2009.02.026
– volume: 440
  start-page: 237
  year: 2006
  ident: 10.1016/j.bioactmat.2021.06.003_bib4
  article-title: Gout-associated uric acid crystals activate the nalp3 inflammasome
  publication-title: Nature
  doi: 10.1038/nature04516
– volume: 28
  start-page: 1937
  year: 2011
  ident: 10.1016/j.bioactmat.2021.06.003_bib44
  article-title: Multitargeting by curcumin as revealed by molecular interaction studies
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/c1np00051a
– volume: 14
  year: 2018
  ident: 10.1016/j.bioactmat.2021.06.003_bib59
  article-title: Disease-triggered drug release effectively prevents acute inflammatory flare-ups, achieving reduced dosing
  publication-title: Small
  doi: 10.1002/smll.201800703
– volume: 1282
  start-page: 133
  year: 2009
  ident: 10.1016/j.bioactmat.2021.06.003_bib12
  article-title: Curcumin upregulates transcription factor nrf2, ho-1 expression and protects rat brains against focal ischemia
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2009.05.009
– volume: 19
  start-page: 19
  year: 2013
  ident: 10.1016/j.bioactmat.2021.06.003_bib5
  article-title: Mechanistic aspects of inflammation and clinical management of inflammation in acute gouty arthritis
  publication-title: J. Clin. Rheumatol.
  doi: 10.1097/RHU.0b013e31827d8790
– volume: 4
  start-page: 519
  year: 2009
  ident: 10.1016/j.bioactmat.2021.06.003_bib46
  article-title: Sustained antibacterial activity of doxycycline-loaded poly(d,l-lactide-co-glycolide) and poly(epsilon-caprolactone) nanoparticles
  publication-title: Nanomedicine
  doi: 10.2217/nnm.09.28
– volume: 388
  start-page: 2039
  year: 2016
  ident: 10.1016/j.bioactmat.2021.06.003_bib1
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)00346-9
– volume: 82
  start-page: 105
  year: 2002
  ident: 10.1016/j.bioactmat.2021.06.003_bib47
  article-title: Residual polyvinyl alcohol associated with poly (d,l-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake
  publication-title: J. Contr. Release
  doi: 10.1016/S0168-3659(02)00127-X
– volume: 33
  start-page: 1238
  year: 2012
  ident: 10.1016/j.bioactmat.2021.06.003_bib39
  article-title: The cytotoxicity of cadmium-based quantum dots
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.10.070
– volume: 9
  start-page: 3039
  year: 2008
  ident: 10.1016/j.bioactmat.2021.06.003_bib41
  article-title: DNA nanotubes as combinatorial vehicles for cellular delivery
  publication-title: Biomacromolecules
  doi: 10.1021/bm800479e
– volume: 10
  start-page: 1508
  year: 2015
  ident: 10.1016/j.bioactmat.2021.06.003_bib43
  article-title: Preparation and biomedical applications of programmable and multifunctional DNA nanoflowers
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2015.078
– volume: 31
  start-page: 6597
  year: 2010
  ident: 10.1016/j.bioactmat.2021.06.003_bib36
  article-title: The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.04.062
– volume: 11
  start-page: 195
  year: 2015
  ident: 10.1016/j.bioactmat.2021.06.003_bib13
  article-title: Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2014.09.004
– volume: 1
  start-page: pe1
  year: 2008
  ident: 10.1016/j.bioactmat.2021.06.003_bib50
  article-title: Nuclear ubiquitin ligases, nf-κb degradation, and the control of inflammation
  publication-title: Sci. Signal.
  doi: 10.1126/stke.11pe1
– volume: 75
  start-page: 639
  year: 2004
  ident: 10.1016/j.bioactmat.2021.06.003_bib54
  article-title: Inos-mediated nitric oxide production and its regulation
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2003.10.042
– volume: 119
  start-page: 6459
  year: 2018
  ident: 10.1016/j.bioactmat.2021.06.003_bib30
  article-title: DNA nanotechnology-enabled drug delivery systems
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00663
– volume: 2
  start-page: 907
  year: 2001
  ident: 10.1016/j.bioactmat.2021.06.003_bib55
  article-title: Nitric oxide and the immune response
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1001-907
– volume: 130
  start-page: 765
  year: 2007
  ident: 10.1016/j.bioactmat.2021.06.003_bib11
  article-title: From exotic spice to modern drug?
  publication-title: Cell
  doi: 10.1016/j.cell.2007.08.024
– volume: 11
  start-page: 30631
  year: 2019
  ident: 10.1016/j.bioactmat.2021.06.003_bib37
  article-title: Cardioprotection of tetrahedral DNA nanostructures in myocardial ischemia-reperfusion injury
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b10645
– volume: 8
  year: 2017
  ident: 10.1016/j.bioactmat.2021.06.003_bib14
  article-title: Nlrp3 inflammasome activation contributes to vsmc phenotypic transformation and proliferation in hypertension
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2017.470
– volume: 25
  start-page: 4386
  year: 2013
  ident: 10.1016/j.bioactmat.2021.06.003_bib42
  article-title: Smart drug delivery nanocarriers with self-assembled DNA nanostructures
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201300875
– volume: 10
  start-page: 271
  year: 2014
  ident: 10.1016/j.bioactmat.2021.06.003_bib61
  article-title: Optimizing current treatment of gout
  publication-title: Nat. Rev. Rheumatol.
  doi: 10.1038/nrrheum.2014.32
– volume: 11
  start-page: 3567
  year: 2005
  ident: 10.1016/j.bioactmat.2021.06.003_bib22
  article-title: Anti-cd19-targeted liposomal doxorubicin improves the therapeutic efficacy in murine b-cell lymphoma and ameliorates the toxicity of liposomes with varying drug release rates
  publication-title: Clin. Canc. Res.
  doi: 10.1158/1078-0432.CCR-04-2517
– volume: 8
  start-page: 1213
  year: 2014
  ident: 10.1016/j.bioactmat.2021.06.003_bib19
  article-title: Nanoparticles with dual responses to oxidative stress and reduced ph for drug release and anti-inflammatory applications
  publication-title: ACS Nano
  doi: 10.1021/nn4058787
– volume: 14
  start-page: 6228
  year: 2008
  ident: 10.1016/j.bioactmat.2021.06.003_bib53
  article-title: Liposome-encapsulated curcumin suppresses growth of head and neck squamous cell carcinoma in vitro and in xenografts through the inhibition of nuclear factor κb by an akt-independent pathway
  publication-title: Clin. Canc. Res.
  doi: 10.1158/1078-0432.CCR-07-5177
– volume: 5
  start-page: 5427
  year: 2011
  ident: 10.1016/j.bioactmat.2021.06.003_bib28
  article-title: DNA cage delivery to mammalian cells
  publication-title: ACS Nano
  doi: 10.1021/nn2005574
– volume: 5
  start-page: 433
  year: 2010
  ident: 10.1016/j.bioactmat.2021.06.003_bib45
  article-title: Curcumin-encapsulated mepeg/pcl diblock copolymeric micelles: a novel controlled delivery vehicle for cancer therapy
  publication-title: Nanomed
  doi: 10.2217/nnm.10.9
– volume: 24
  start-page: 57
  year: 2019
  ident: 10.1016/j.bioactmat.2021.06.003_bib49
  article-title: Advances in biological applications of self-assembled DNA tetrahedral nanostructures
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.08.002
– volume: 11
  start-page: 252
  year: 1994
  ident: 10.1016/j.bioactmat.2021.06.003_bib8
  article-title: Risks and benefits of drugs used in the management and prevention of gout
  publication-title: Drug Saf.
  doi: 10.2165/00002018-199411040-00004
– volume: 90
  start-page: 831
  year: 2014
  ident: 10.1016/j.bioactmat.2021.06.003_bib62
  article-title: Diagnosis, treatment, and prevention of gout
  publication-title: Am. Fam. Physician
– volume: 253
  start-page: 643
  year: 2003
  ident: 10.1016/j.bioactmat.2021.06.003_bib60
  article-title: Adverse renal effects of anti-inflammatory agents: evaluation of selective and nonselective cyclooxygenase inhibitors
  publication-title: J. Intern. Med.
  doi: 10.1046/j.1365-2796.2003.01146.x
– volume: 78
  start-page: 2081
  year: 2006
  ident: 10.1016/j.bioactmat.2021.06.003_bib9
  article-title: Multiple biological activities of curcumin: a short review
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2005.12.007
– volume: 4
  start-page: 807
  year: 2007
  ident: 10.1016/j.bioactmat.2021.06.003_bib16
  article-title: Bioavailability of curcumin: problems and promises
  publication-title: Mol. Pharm.
  doi: 10.1021/mp700113r
– volume: 8
  start-page: 6
  year: 2020
  ident: 10.1016/j.bioactmat.2021.06.003_bib35
  article-title: Effects of tetrahedral framework nucleic acid/wogonin complexes on osteoarthritis
  publication-title: Bone Res
  doi: 10.1038/s41413-019-0077-4
– volume: 6
  start-page: 3051
  year: 1992
  ident: 10.1016/j.bioactmat.2021.06.003_bib56
  article-title: Nitric oxide as a secretory product of mammalian cells
  publication-title: Faseb. J.
  doi: 10.1096/fasebj.6.12.1381691
– volume: 5
  start-page: 69
  year: 2019
  ident: 10.1016/j.bioactmat.2021.06.003_bib7
  publication-title: Nat Rev Dis Primers
  doi: 10.1038/s41572-019-0115-y
– volume: 100
  year: 1999
  ident: 10.1016/j.bioactmat.2021.06.003_bib58
  article-title: Oxidative stress induces nf-kappab nuclear translocation without degradation of ikappabalpha
  publication-title: Circulation
– volume: 34
  start-page: 894
  year: 1991
  ident: 10.1016/j.bioactmat.2021.06.003_bib6
  article-title: Monocyte-derived neutrophil chemotactic factor/interleukin-8 is a potential mediator of crystal-induced inflammation
  publication-title: Arthritis Rheum.
  doi: 10.1002/art.1780340716
– volume: 9
  start-page: 2550
  year: 2018
  ident: 10.1016/j.bioactmat.2021.06.003_bib48
  article-title: Oridonin is a covalent nlrp3 inhibitor with strong anti-inflammasome activity
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04947-6
– volume: 15
  start-page: 2728
  year: 2020
  ident: 10.1016/j.bioactmat.2021.06.003_bib25
  article-title: Design, fabrication and applications of tetrahedral DNA nanostructure-based multifunctional complexes in drug delivery and biomedical treatment
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-020-0355-z
– volume: 8
  start-page: 76
  year: 2014
  ident: 10.1016/j.bioactmat.2021.06.003_bib18
  article-title: Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in alzheimer's disease model via canonical wnt/β-catenin pathway
  publication-title: ACS Nano
  doi: 10.1021/nn405077y
– volume: 63
  start-page: 185
  year: 2012
  ident: 10.1016/j.bioactmat.2021.06.003_bib23
  article-title: Nanoparticle delivery of cancer drugs
  publication-title: Annu. Rev. Med.
  doi: 10.1146/annurev-med-040210-162544
– volume: 53
  start-page: 475
  year: 2015
  ident: 10.1016/j.bioactmat.2021.06.003_bib20
  article-title: Anti-inflammatory activity of curcumin-loaded solid lipid nanoparticles in il-1β transgenic mice subjected to the lipopolysaccharide-induced sepsis
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.02.116
– volume: 71
  start-page: 180
  year: 2012
  ident: 10.1016/j.bioactmat.2021.06.003_bib63
  article-title: Safety, tolerability, pharmacokinetics, pharmacodynamics and efficacy of the monoclonal antibody ask8007 blocking osteopontin in patients with rheumatoid arthritis: a randomised, placebo controlled, proof-of-concept study
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/annrheumdis-2011-200298
– volume: 11
  start-page: 39525
  year: 2019
  ident: 10.1016/j.bioactmat.2021.06.003_bib29
  article-title: Enhanced efficacy of temozolomide loaded by a tetrahedral framework DNA nanoparticle in the therapy for glioblastoma
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b13829
– volume: 11
  start-page: 6850
  year: 2019
  ident: 10.1016/j.bioactmat.2021.06.003_bib31
  article-title: Tetrahedral DNA nanostructure-delivered dnazyme for gene silencing to suppress cell growth
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b22444
– volume: 9
  start-page: 2736
  year: 1995
  ident: 10.1016/j.bioactmat.2021.06.003_bib52
  article-title: Constitutive nf-kappa b activation, enhanced granulopoiesis, and neonatal lethality in i kappa b alpha-deficient mice
  publication-title: Genes Dev.
  doi: 10.1101/gad.9.22.2736
– volume: 60
  start-page: 281
  year: 2009
  ident: 10.1016/j.bioactmat.2021.06.003_bib3
  article-title: Resident macrophages initiating and driving inflammation in a monosodium urate monohydrate crystal–induced murine peritoneal model of acute gout
  publication-title: Arthritis Rheum.
  doi: 10.1002/art.24185
– volume: 36
  start-page: 161
  year: 2015
  ident: 10.1016/j.bioactmat.2021.06.003_bib57
  article-title: Nitric oxide synthase in innate and adaptive immunity: an update
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2015.01.003
SSID ssj0001700007
Score 2.584041
Snippet Gouty arthritis is a very familiar inflammatory arthritis. Controlling inflammation is the key to preventing gouty arthritis. However, colchicine, the most...
SourceID doaj
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 368
SubjectTerms Gouty arthritis
Macrophage
NF-κB signaling pathway
Oxidative stress
Tetrahedral framework DNA nanoparticle
Title Anti-inflammatory activity of curcumin-loaded tetrahedral framework nucleic acids on acute gouty arthritis
URI https://dx.doi.org/10.1016/j.bioactmat.2021.06.003
https://www.proquest.com/docview/2574744007
https://pubmed.ncbi.nlm.nih.gov/PMC8429917
https://doaj.org/article/23e766c1348545f3a0da91a31e494e7c
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQe-GCQAWxPCojcY1I4iR2uC2IqqKih4qKvVl-jNms2qRqk__PjJOsNqe9cIuSeGR7xp7P9vgbxj7nRKKUe5nYUrmkKEuR1OBNokxpstRK6-Oe7q_r6vK2-LkpNwepvigmbKQHHjvuSy5AVpXLRKHQ2QdhUm_qzIgMiroA6Wj2RZ93sJjajaQw5P0os1xR5hRNsVkEd9mmM65HTIgrxDyLDJ5z2qzJNUUG_4WHOkCgy_jJA4d08ZK9mJAkX48teMWeQXvGduu2bxK0GlT0fTxA53RzgRJE8C5wNzy64b5pk7vOePC8B5S8BY_ieZjDtHhLHMeNw5KNf-Jdiw9DD_xvN6AU7LFtJEJ6zW4vfvz-fplM6RQSV2aqTzIbfAG4QEINkEsyCqyz0kCQXlhDW5q5h5AHJZxylRGlRXBYWxHqFJQA8YadtF0LbxkHFaQFIxQKKJxRymTSKWtNWVcBxa5YNfekdhPXOKW8uNNzUNlO71WgSQU6hteJFUv3BR9Guo3jRb6Rqva_E192fIFWpCcr0sesaMW-zorWE_QYIQWKao7X4NNsGhoHJ524mBa64UnjfFgQA2MqV0wubGZR3eWXttlGmm9FUCGT7_5H-96z5znd24jh5h_YSf84wEdEU709Z6frq5s_V-dxAP0DpKwjYQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anti-inflammatory+activity+of+curcumin-loaded+tetrahedral+framework+nucleic+acids+on+acute+gouty+arthritis&rft.jtitle=Bioactive+materials&rft.au=Zhang%2C+Mei&rft.au=Zhang%2C+Xiaolin&rft.au=Tian%2C+Taoran&rft.au=Zhang%2C+Qi&rft.date=2022-02-01&rft.issn=2452-199X&rft.eissn=2452-199X&rft.volume=8&rft.spage=368&rft_id=info:doi/10.1016%2Fj.bioactmat.2021.06.003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-199X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-199X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-199X&client=summon