Microenvironment reconstitution of highly active Ni single atoms on oxygen-incorporated Mo2C for water splitting
The rational design of efficient bifunctional single-atom electrocatalysts for industrial water splitting and the comprehensive understanding of its complex catalytic mechanisms remain challenging. Here, we report a Ni single atoms supported on oxygen-incorporated Mo 2 C via Ni-O-Mo bridge bonds, th...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 1342 - 13 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
13.02.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The rational design of efficient bifunctional single-atom electrocatalysts for industrial water splitting and the comprehensive understanding of its complex catalytic mechanisms remain challenging. Here, we report a Ni single atoms supported on oxygen-incorporated Mo
2
C via Ni-O-Mo bridge bonds, that gives high oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) bifunctional activity. By ex situ synchrotron X-ray absorption spectroscopy and electron microscopy, we found that after HER, the coordination number and bond lengths of Ni-O and Ni-Mo (Ni-O-Mo) were all altered, yet the Ni species still remain atomically dispersed. In contrast, after OER, the atomically dispersed Ni were agglomerated into very small clusters with new Ni-Ni (Ni-O-Ni) bonds appeared. Combining experimental results and DFT calculations, we infer the oxidation degree of Mo
2
C and the configuration of single-atom Ni are both vital for HER or OER. This study provides both a feasible strategy and model to rational design highly efficient electrocatalysts for water electrolysis.
The comprehensive understanding of complex catalytic mechanisms under harsh reaction conditions for efficient bifunctional single-atom electrocatalysts remain challenging. Here the authors found microenvironment reconsitution of highly active Ni single atoms on oxygen-incorporated Mo2C for water splitting. |
---|---|
AbstractList | The rational design of efficient bifunctional single-atom electrocatalysts for industrial water splitting and the comprehensive understanding of its complex catalytic mechanisms remain challenging. Here, we report a Ni single atoms supported on oxygen-incorporated Mo2C via Ni-O-Mo bridge bonds, that gives high oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) bifunctional activity. By ex situ synchrotron X-ray absorption spectroscopy and electron microscopy, we found that after HER, the coordination number and bond lengths of Ni-O and Ni-Mo (Ni-O-Mo) were all altered, yet the Ni species still remain atomically dispersed. In contrast, after OER, the atomically dispersed Ni were agglomerated into very small clusters with new Ni-Ni (Ni-O-Ni) bonds appeared. Combining experimental results and DFT calculations, we infer the oxidation degree of Mo2C and the configuration of single-atom Ni are both vital for HER or OER. This study provides both a feasible strategy and model to rational design highly efficient electrocatalysts for water electrolysis.The comprehensive understanding of complex catalytic mechanisms under harsh reaction conditions for efficient bifunctional single-atom electrocatalysts remain challenging. Here the authors found microenvironment reconsitution of highly active Ni single atoms on oxygen-incorporated Mo2C for water splitting. The rational design of efficient bifunctional single-atom electrocatalysts for industrial water splitting and the comprehensive understanding of its complex catalytic mechanisms remain challenging. Here, we report a Ni single atoms supported on oxygen-incorporated Mo 2 C via Ni-O-Mo bridge bonds, that gives high oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) bifunctional activity. By ex situ synchrotron X-ray absorption spectroscopy and electron microscopy, we found that after HER, the coordination number and bond lengths of Ni-O and Ni-Mo (Ni-O-Mo) were all altered, yet the Ni species still remain atomically dispersed. In contrast, after OER, the atomically dispersed Ni were agglomerated into very small clusters with new Ni-Ni (Ni-O-Ni) bonds appeared. Combining experimental results and DFT calculations, we infer the oxidation degree of Mo 2 C and the configuration of single-atom Ni are both vital for HER or OER. This study provides both a feasible strategy and model to rational design highly efficient electrocatalysts for water electrolysis. The rational design of efficient bifunctional single-atom electrocatalysts for industrial water splitting and the comprehensive understanding of its complex catalytic mechanisms remain challenging. Here, we report a Ni single atoms supported on oxygen-incorporated Mo 2 C via Ni-O-Mo bridge bonds, that gives high oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) bifunctional activity. By ex situ synchrotron X-ray absorption spectroscopy and electron microscopy, we found that after HER, the coordination number and bond lengths of Ni-O and Ni-Mo (Ni-O-Mo) were all altered, yet the Ni species still remain atomically dispersed. In contrast, after OER, the atomically dispersed Ni were agglomerated into very small clusters with new Ni-Ni (Ni-O-Ni) bonds appeared. Combining experimental results and DFT calculations, we infer the oxidation degree of Mo 2 C and the configuration of single-atom Ni are both vital for HER or OER. This study provides both a feasible strategy and model to rational design highly efficient electrocatalysts for water electrolysis. The comprehensive understanding of complex catalytic mechanisms under harsh reaction conditions for efficient bifunctional single-atom electrocatalysts remain challenging. Here the authors found microenvironment reconsitution of highly active Ni single atoms on oxygen-incorporated Mo2C for water splitting. The rational design of efficient bifunctional single-atom electrocatalysts for industrial water splitting and the comprehensive understanding of its complex catalytic mechanisms remain challenging. Here, we report a Ni single atoms supported on oxygen-incorporated Mo2C via Ni-O-Mo bridge bonds, that gives high oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) bifunctional activity. By ex situ synchrotron X-ray absorption spectroscopy and electron microscopy, we found that after HER, the coordination number and bond lengths of Ni-O and Ni-Mo (Ni-O-Mo) were all altered, yet the Ni species still remain atomically dispersed. In contrast, after OER, the atomically dispersed Ni were agglomerated into very small clusters with new Ni-Ni (Ni-O-Ni) bonds appeared. Combining experimental results and DFT calculations, we infer the oxidation degree of Mo2C and the configuration of single-atom Ni are both vital for HER or OER. This study provides both a feasible strategy and model to rational design highly efficient electrocatalysts for water electrolysis.The rational design of efficient bifunctional single-atom electrocatalysts for industrial water splitting and the comprehensive understanding of its complex catalytic mechanisms remain challenging. Here, we report a Ni single atoms supported on oxygen-incorporated Mo2C via Ni-O-Mo bridge bonds, that gives high oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) bifunctional activity. By ex situ synchrotron X-ray absorption spectroscopy and electron microscopy, we found that after HER, the coordination number and bond lengths of Ni-O and Ni-Mo (Ni-O-Mo) were all altered, yet the Ni species still remain atomically dispersed. In contrast, after OER, the atomically dispersed Ni were agglomerated into very small clusters with new Ni-Ni (Ni-O-Ni) bonds appeared. Combining experimental results and DFT calculations, we infer the oxidation degree of Mo2C and the configuration of single-atom Ni are both vital for HER or OER. This study provides both a feasible strategy and model to rational design highly efficient electrocatalysts for water electrolysis. Abstract The rational design of efficient bifunctional single-atom electrocatalysts for industrial water splitting and the comprehensive understanding of its complex catalytic mechanisms remain challenging. Here, we report a Ni single atoms supported on oxygen-incorporated Mo2C via Ni-O-Mo bridge bonds, that gives high oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) bifunctional activity. By ex situ synchrotron X-ray absorption spectroscopy and electron microscopy, we found that after HER, the coordination number and bond lengths of Ni-O and Ni-Mo (Ni-O-Mo) were all altered, yet the Ni species still remain atomically dispersed. In contrast, after OER, the atomically dispersed Ni were agglomerated into very small clusters with new Ni-Ni (Ni-O-Ni) bonds appeared. Combining experimental results and DFT calculations, we infer the oxidation degree of Mo2C and the configuration of single-atom Ni are both vital for HER or OER. This study provides both a feasible strategy and model to rational design highly efficient electrocatalysts for water electrolysis. |
ArticleNumber | 1342 |
Author | Cao, Minhua Zhang, Jiatao Zheng, Lirong Chen, Chen Feng, Wuyi Fu, Jiantao Tan, Xin Wei, Tianxin Zhao, Di Hou, Mengyun |
Author_xml | – sequence: 1 givenname: Mengyun surname: Hou fullname: Hou, Mengyun organization: Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology – sequence: 2 givenname: Lirong surname: Zheng fullname: Zheng, Lirong organization: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences – sequence: 3 givenname: Di orcidid: 0000-0002-7882-2966 surname: Zhao fullname: Zhao, Di email: dizhao@bit.edu.cn organization: Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology – sequence: 4 givenname: Xin orcidid: 0000-0001-9707-672X surname: Tan fullname: Tan, Xin organization: Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University – sequence: 5 givenname: Wuyi surname: Feng fullname: Feng, Wuyi organization: Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology – sequence: 6 givenname: Jiantao surname: Fu fullname: Fu, Jiantao organization: Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology – sequence: 7 givenname: Tianxin surname: Wei fullname: Wei, Tianxin organization: Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology – sequence: 8 givenname: Minhua orcidid: 0000-0002-2232-6859 surname: Cao fullname: Cao, Minhua email: caomh@bit.edu.cn organization: Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology – sequence: 9 givenname: Jiatao surname: Zhang fullname: Zhang, Jiatao email: zhangjt@bit.edu.cn organization: Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology – sequence: 10 givenname: Chen orcidid: 0000-0001-5902-3037 surname: Chen fullname: Chen, Chen email: cchen@mail.tsinghua.edu.cn organization: Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University |
BookMark | eNp9Uk1vEzEUXKEiWkr_ACdLXLgs-Hu9J4QiaCu1cIGz5fU-bxxt7GA7Kfn3OE0RtIf64q-Z8fi9ed2chBigad4S_IFgpj5mTrjsWkx5y4VgrGUvmjOKOWlJR9nJf-vT5iLnFa6D9URx_qo5ZYoJQkh31mxuvU0Rws6nGNYQCkpgY8jFl23xMaDo0NJPy3mPjC1-B-ibR9mHaQZkSlxndMD83k8QWh9sTJuYTIER3Ua6QC4mdFe3CeXN7EupvDfNS2fmDBcP83nz8-uXH4ur9ub75fXi801rBVGlreYUEOVI73rbsUHQDpRQTg5SSDz23ag49AwLhXsiMBOODGagjg3K0h4cO2-uj7pjNCu9SX5t0l5H4_X9QUyTNql4O4MG6M2B5wYlOQisrKF8HOQoJXdS0ar16ai12Q5rGG0tUzLzI9HHN8Ev9RR3muCqyLCsCu8fFFL8tYVc9NpnC_NsAsRt1rSnUpC-412FvnsCXcVtCrVWB5ToZEe5qih1RNXu5ZzAaeuLOXSsGvBzfVkfYqKPMdE1Jvo-JppVKn1C_fuRZ0nsSMoVHCZI_1w9w_oDlZjRpQ |
CitedBy_id | crossref_primary_10_1002_adfm_202425826 crossref_primary_10_1002_adfm_202422514 crossref_primary_10_1021_acs_nanolett_4c04414 crossref_primary_10_1039_D4QM00743C crossref_primary_10_1002_aenm_202402825 crossref_primary_10_1021_acscatal_4c05792 crossref_primary_10_20517_energymater_2024_41 crossref_primary_10_1002_ange_202413179 crossref_primary_10_1016_j_cej_2025_160981 crossref_primary_10_1016_j_cclet_2025_111001 crossref_primary_10_1021_acs_inorgchem_4c05429 crossref_primary_10_1039_D4EE05500D crossref_primary_10_1021_jacs_4c03218 crossref_primary_10_1016_j_ijhydene_2024_08_059 crossref_primary_10_20517_microstructures_2024_65 crossref_primary_10_1016_j_vacuum_2024_113792 crossref_primary_10_1039_D4TA08129C crossref_primary_10_1016_j_ijhydene_2025_01_390 crossref_primary_10_1002_smll_202409159 crossref_primary_10_26599_NR_2025_94907211 crossref_primary_10_1016_j_est_2024_114740 crossref_primary_10_1039_D4NJ04248D crossref_primary_10_1016_j_jallcom_2024_175259 crossref_primary_10_1016_j_apcatb_2024_124395 crossref_primary_10_1016_j_jallcom_2025_179115 crossref_primary_10_1021_jacs_4c11788 crossref_primary_10_1021_acsanm_4c03521 crossref_primary_10_1002_anie_202413179 crossref_primary_10_1007_s11426_024_2453_2 crossref_primary_10_1039_D4DT00619D crossref_primary_10_1039_D4DT03252G crossref_primary_10_1002_admi_202400916 crossref_primary_10_1021_acsnano_4c09249 crossref_primary_10_1002_aenm_202402611 crossref_primary_10_1021_acsnano_4c04831 crossref_primary_10_1002_adma_202500595 crossref_primary_10_1016_j_cej_2025_160921 crossref_primary_10_1016_j_nanoen_2024_109869 crossref_primary_10_1016_j_apcatb_2024_124388 crossref_primary_10_1016_j_decarb_2024_100097 crossref_primary_10_1016_j_jcis_2025_02_085 crossref_primary_10_1016_j_mtchem_2024_102476 crossref_primary_10_1016_j_nxmate_2025_100491 crossref_primary_10_1002_adma_202414169 crossref_primary_10_1039_D4QI03100H crossref_primary_10_1038_s41467_024_50535_2 crossref_primary_10_1002_aenm_202402886 crossref_primary_10_1039_D4TA06358A crossref_primary_10_1021_acs_jpcc_4c07614 crossref_primary_10_1038_s41467_024_53465_1 crossref_primary_10_1039_D4SC07291J crossref_primary_10_1021_acs_inorgchem_4c03396 crossref_primary_10_1016_j_jcis_2024_06_122 crossref_primary_10_1016_j_cclet_2024_110623 crossref_primary_10_1016_j_cej_2024_154830 crossref_primary_10_1002_cctc_202400946 crossref_primary_10_1016_j_apcatb_2025_125204 crossref_primary_10_1016_j_cej_2024_156979 crossref_primary_10_1038_s41467_024_54513_6 crossref_primary_10_1016_j_cclet_2024_110467 crossref_primary_10_1016_j_jcis_2025_01_092 crossref_primary_10_1016_j_gee_2024_09_012 |
Cites_doi | 10.1021/jacs.9b04492 10.1002/adfm.201604804 10.1002/adfm.202210867 10.1002/anie.201803136 10.1002/anie.201710877 10.1021/acscatal.1c04454 10.1021/jacs.9b12642 10.1021/jp047349j 10.1002/anie.201811728 10.1038/s41570-016-0003 10.1002/aenm.202200067 10.1016/j.cej.2021.132697 10.1021/acscatal.0c04415 10.1002/anie.201610211 10.1021/acsami.8b09941 10.1002/advs.201700733 10.1038/nature11475 10.1038/s41467-022-29875-4 10.1002/adma.201104407 10.1021/jacs.0c05050 10.1002/adfm.202000570 10.1021/ja5127165 10.1038/s41467-021-25048-x 10.1002/aenm.201602122 10.1039/c0cc01044h 10.1039/c2ee23891h 10.1039/C8TA11098K 10.1039/D0EE03701J 10.1021/acscatal.2c02770 10.1002/adfm.202108464 10.1038/s41467-019-13415-8 10.1038/ncomms8261 10.1038/s41467-020-16558-1 10.1016/j.cej.2022.139797 10.1039/D1EE02249K 10.1002/aenm.201803185 10.1002/adma.202303243 10.1002/cjoc.202100695 10.1016/S1003-6326(18)64651-5 10.1038/s41467-022-28947-9 10.1073/pnas.1006652108 10.1016/j.chempr.2017.12.005 10.1038/s41563-021-01006-2 10.1021/jacs.1c04682 10.1002/anie.202001148 10.1021/acscatal.8b01794 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024. The Author(s). |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-024-45533-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_ee9a3b8cfb864e508ca24db6d664f682 PMC10864306 10_1038_s41467_024_45533_3 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 21925202; U22B2071; 22309011 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c518t-1178e18f19f9c73b527e858f6b6560d97d84e930580915035f1bab2f3b8c29ef3 |
IEDL.DBID | C6C |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:31:02 EDT 2025 Thu Aug 21 18:35:13 EDT 2025 Thu Jul 10 19:07:32 EDT 2025 Wed Aug 13 04:54:18 EDT 2025 Tue Jul 01 02:10:58 EDT 2025 Thu Apr 24 22:56:16 EDT 2025 Fri Feb 21 02:37:29 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-1178e18f19f9c73b527e858f6b6560d97d84e930580915035f1bab2f3b8c29ef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9707-672X 0000-0002-7882-2966 0000-0001-5902-3037 0000-0002-2232-6859 |
OpenAccessLink | https://www.nature.com/articles/s41467-024-45533-3 |
PMID | 38351117 |
PQID | 2925767248 |
PQPubID | 546298 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ee9a3b8cfb864e508ca24db6d664f682 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10864306 proquest_miscellaneous_2926519747 proquest_journals_2925767248 crossref_citationtrail_10_1038_s41467_024_45533_3 crossref_primary_10_1038_s41467_024_45533_3 springer_journals_10_1038_s41467_024_45533_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-13 |
PublicationDateYYYYMMDD | 2024-02-13 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Roger, Shipman, Symes (CR3) 2017; 1 Jiang (CR12) 2020; 11 Hu (CR25) 2022; 12 Norskov, Abild-Pedersen, Studt, Bligaard (CR47) 2011; 108 Zhang (CR4) 2018; 4 Yu, Yang, Guan, Lu, Lou (CR38) 2018; 57 Guan, Mou, Sun, Shi (CR34) 2010; 46 Zhao (CR6) 2018; 57 Zhu (CR15) 2017; 7 Jin (CR40) 2015; 137 Li (CR31) 2021; 20 Wang (CR10) 2022; 12 Wang (CR1) 2020; 142 Yang (CR9) 2019; 141 Anjum, Lee, Lee (CR20) 2018; 8 Luo (CR8) 2022; 12 Li (CR16) 2022; 33 Wang (CR36) 2021; 143 Das, Santra, Nanda (CR21) 2018; 10 Yin (CR11) 2020; 142 Yuan (CR18) 2022; 430 Nørskov (CR46) 2004; 108 Zhou, Zhao, Lou (CR33) 2012; 24 Yang, Wu, Zhuang, Li, Chen (CR17) 2021; 40 Tang (CR26) 2022; 5 Yu, Zhou, Sun (CR19) 2020; 30 Zhou (CR30) 2021; 12 Suryanto, Wang, Hocking, Adamson, Zhao (CR24) 2019; 10 Li (CR27) 2022; 13 Han (CR39) 2019; 7 Kuang, Han, Wang, Li, Zheng (CR14) 2016; 26 Chu, Majumdar (CR2) 2012; 488 Wei (CR37) 2018; 5 Zhuang (CR41) 2021; 14 Aracena, Sanino, Jerez (CR44) 2018; 28 Wang (CR5) 2015; 6 Zhao (CR29) 2022; 15 Wang (CR13) 2021; 32 Li (CR28) 2023; 453 Han (CR35) 2019; 58 Li (CR22) 2019; 9 Xiao (CR23) 2020; 59 Zhang (CR32) 2023; 35 Chen (CR43) 2013; 6 He (CR45) 2022; 13 Shi, Liang, Ming, Wang (CR7) 2017; 56 Qin (CR42) 2021; 11 W Luo (45533_CR8) 2022; 12 Y Zhu (45533_CR15) 2017; 7 J Qin (45533_CR42) 2021; 11 C Tang (45533_CR26) 2022; 5 L Zhou (45533_CR33) 2012; 24 J Guan (45533_CR34) 2010; 46 Q Wang (45533_CR1) 2020; 142 I Roger (45533_CR3) 2017; 1 K Jiang (45533_CR12) 2020; 11 M Wang (45533_CR10) 2022; 12 L Zhang (45533_CR4) 2018; 4 H Jin (45533_CR40) 2015; 137 H Shi (45533_CR7) 2017; 56 Y Yang (45533_CR9) 2019; 141 M Kuang (45533_CR14) 2016; 26 H Wang (45533_CR5) 2015; 6 Z He (45533_CR45) 2022; 13 R Li (45533_CR28) 2023; 453 S Yuan (45533_CR18) 2022; 430 J Yin (45533_CR11) 2020; 142 G Li (45533_CR27) 2022; 13 L Han (45533_CR35) 2019; 58 W Wang (45533_CR13) 2021; 32 X Zhao (45533_CR6) 2018; 57 P Zhang (45533_CR32) 2023; 35 M Xiao (45533_CR23) 2020; 59 F Hu (45533_CR25) 2022; 12 H Wei (45533_CR37) 2018; 5 Z Zhuang (45533_CR41) 2021; 14 D Das (45533_CR21) 2018; 10 BHR Suryanto (45533_CR24) 2019; 10 H Zhou (45533_CR30) 2021; 12 W-F Chen (45533_CR43) 2013; 6 W Han (45533_CR39) 2019; 7 Y Yu (45533_CR19) 2020; 30 JK Nørskov (45533_CR46) 2004; 108 M Li (45533_CR16) 2022; 33 S Chu (45533_CR2) 2012; 488 Y Zhao (45533_CR29) 2022; 15 H Yang (45533_CR17) 2021; 40 M Li (45533_CR22) 2019; 9 JK Norskov (45533_CR47) 2011; 108 MAR Anjum (45533_CR20) 2018; 8 L Yu (45533_CR38) 2018; 57 Q Wang (45533_CR36) 2021; 143 S Li (45533_CR31) 2021; 20 A Aracena (45533_CR44) 2018; 28 |
References_xml | – volume: 141 start-page: 10417 year: 2019 end-page: 10430 ident: CR9 article-title: Hierarchical nanoassembly of mos(2)/co(9)s(8)/ni(3)s(2)/ni as a highly efficient electrocatalyst for overall water splitting in a wide ph range publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b04492 – volume: 26 start-page: 8555 year: 2016 end-page: 8561 ident: CR14 article-title: CuCo hybrid oxides as bifunctional electrocatalyst for efficient water splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604804 – volume: 33 start-page: 2210867 year: 2022 ident: CR16 article-title: Proximity electronic effect of ni/co diatomic sites for synergistic promotion of electrocatalytic oxygen reduction and hydrogen evolution publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202210867 – volume: 57 start-page: 8921 year: 2018 end-page: 8926 ident: CR6 article-title: Bifunctional electrocatalysts for overall water splitting from an iron/nickel-based bimetallic metal-organic framework/dicyandiamide composite publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201803136 – volume: 57 start-page: 172 year: 2018 end-page: 176 ident: CR38 article-title: Hierarchical hollow nanoprisms based on ultrathin ni‐fe layered double hydroxide nanosheets with enhanced electrocatalytic activity towards oxygen evolution publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201710877 – volume: 12 start-page: 1167 year: 2022 end-page: 1179 ident: CR8 article-title: A review: research progress of neural probes for brain research and brain-computer interface publication-title: ACS Catal doi: 10.1021/acscatal.1c04454 – volume: 142 start-page: 7425 year: 2020 end-page: 7433 ident: CR1 article-title: Ultrahigh-loading of ir single atoms on nio matrix to dramatically enhance oxygen evolution reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b12642 – volume: 108 start-page: 17886 year: 2004 end-page: 17892 ident: CR46 article-title: Origin of the overpotential for oxygen reduction at a fuel-cell cathode publication-title: J. Phys. Chem. B doi: 10.1021/jp047349j – volume: 58 start-page: 2321 year: 2019 end-page: 2325 ident: CR35 article-title: Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201811728 – volume: 1 start-page: 0003 year: 2017 ident: CR3 article-title: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-016-0003 – volume: 12 start-page: 2200067 year: 2022 ident: CR25 article-title: Lattice‐Matching formed mesoporous transition metal oxide heterostructures advance water splitting by active Fe–O–Cu bridges publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202200067 – volume: 430 start-page: 132697 year: 2022 ident: CR18 article-title: Dual synergistic effects between Co and Mo2C in Co/Mo2C heterostructure for electrocatalytic overall water splitting publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132697 – volume: 11 start-page: 4486 year: 2021 end-page: 4497 ident: CR42 article-title: Activating edge-Mo of 2H-MoS2via coordination with pyridinic N–C for pH-universal hydrogen evolution electrocatalysis publication-title: ACS Catal doi: 10.1021/acscatal.0c04415 – volume: 56 start-page: 573 year: 2017 end-page: 577 ident: CR7 article-title: Efficient overall water-splitting electrocatalysis using lepidocrocite vooh hollow nanospheres publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201610211 – volume: 10 start-page: 35025 year: 2018 end-page: 35038 ident: CR21 article-title: In situ fabrication of a nickel/molybdenum carbide-anchored n-doped graphene/cnt hybrid: an efficient (Pre)catalyst for OER and HER publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b09941 – volume: 5 start-page: 1700733 year: 2018 ident: CR37 article-title: Molybdenum carbide nanoparticles coated into the graphene wrapping n-doped porous carbon microspheres for highly efficient electrocatalytic hydrogen evolution both in acidic and alkaline media publication-title: Adv. Sci. doi: 10.1002/advs.201700733 – volume: 488 start-page: 294 year: 2012 end-page: 303 ident: CR2 article-title: Opportunities and challenges for a sustainable energy future publication-title: Nature doi: 10.1038/nature11475 – volume: 13 year: 2022 ident: CR45 article-title: Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis publication-title: Nat. Commun. doi: 10.1038/s41467-022-29875-4 – volume: 24 start-page: 745 year: 2012 end-page: 748 ident: CR33 article-title: Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201104407 – volume: 5 start-page: 899 year: 2022 end-page: 905 ident: CR26 publication-title: Energy Environ. Sci. – volume: 142 start-page: 18378 year: 2020 end-page: 18386 ident: CR11 article-title: Iridium single atoms coupling with oxygen vacancies boosts oxygen evolution reaction in acid media publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c05050 – volume: 30 start-page: 2000570 year: 2020 ident: CR19 article-title: Novel 2D transition‐metal carbides: ultrahigh performance electrocatalysts for overall water splitting and oxygen reduction publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000570 – volume: 137 start-page: 2688 year: 2015 end-page: 2694 ident: CR40 article-title: In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5127165 – volume: 12 year: 2021 ident: CR30 article-title: Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H(2) fuel publication-title: Nat. Commun. doi: 10.1038/s41467-021-25048-x – volume: 7 start-page: 1602122 year: 2017 ident: CR15 article-title: A perovskite nanorod as bifunctional electrocatalyst for overall water splitting publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602122 – volume: 46 start-page: 6605 year: 2010 end-page: 6607 ident: CR34 article-title: Preparation of hollow spheres with controllable interior structures by heterogeneous contraction publication-title: Chem. Commun. doi: 10.1039/c0cc01044h – volume: 6 start-page: 943 year: 2013 end-page: 945 ident: CR43 article-title: Reply to comments on "synthesis, characterization, and structures of persistent aniline radical cation" publication-title: Energy Environ. Sci. doi: 10.1039/c2ee23891h – volume: 7 start-page: 4734 year: 2019 end-page: 4743 ident: CR39 article-title: Ultra-small Mo2C nanodots encapsulated in nitrogen-doped porous carbon for pH-universal hydrogen evolution: insights into the synergistic enhancement of HER activity by nitrogen doping and structural defects publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11098K – volume: 14 start-page: 1016 year: 2021 end-page: 1028 ident: CR41 article-title: Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides publication-title: Energy Environ. Sci. doi: 10.1039/D0EE03701J – volume: 12 start-page: 10771 year: 2022 end-page: 10780 ident: CR10 article-title: Interfacial water activation by single-atom co–n3sites coupled with encapsulated co nanocrystals for accelerating electrocatalytic hydrogen evolution publication-title: ACS Catalysis doi: 10.1021/acscatal.2c02770 – volume: 32 start-page: 2108464 year: 2021 ident: CR13 article-title: Confining zero‐valent platinum single atoms in α‐moc1−xfor ph‐universal hydrogen evolution reaction publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202108464 – volume: 10 year: 2019 ident: CR24 article-title: Overall electrochemical splitting of water at the heterogeneous interface of nickel and iron oxide publication-title: Nat. Commun. doi: 10.1038/s41467-019-13415-8 – volume: 6 start-page: 7261 year: 2015 ident: CR5 article-title: Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting publication-title: Nat. Commun., doi: 10.1038/ncomms8261 – volume: 11 year: 2020 ident: CR12 article-title: Dynamic active-site generation of atomic iridium stabilized on nanoporous metal phosphides for water oxidation publication-title: Nat. Commun. doi: 10.1038/s41467-020-16558-1 – volume: 453 start-page: 139797 year: 2023 ident: CR28 article-title: Potential-dependent reconstruction of Ni-based cuboid arrays for highly efficient hydrogen evolution coupled with electro-oxidation of organic compound publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.139797 – volume: 15 start-page: 727 year: 2022 end-page: 739 ident: CR29 article-title: Dynamics and control of active sites in hierarchically nanostructured cobalt phosphide/chalcogenide-based electrocatalysts for water splitting publication-title: Energy Environ. Sci. doi: 10.1039/D1EE02249K – volume: 9 start-page: 1803185 year: 2019 ident: CR22 article-title: Ni strongly coupled with mo2c encapsulated in nitrogen‐doped carbon nanofibers as robust bifunctional catalyst for overall water splitting publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803185 – volume: 35 start-page: 2303243 year: 2023 ident: CR32 article-title: Bifunctional single atom catalysts for rechargeable zinc–air batteries: from dynamic mechanism to rational design publication-title: Adv. Mater. doi: 10.1002/adma.202303243 – volume: 40 start-page: 515 year: 2021 end-page: 523 ident: CR17 article-title: Computational probing of temperature-dependent unfolding of a small globular protein: from cold to heat denaturation publication-title: Chin. J. Chem. doi: 10.1002/cjoc.202100695 – volume: 28 start-page: 177 year: 2018 end-page: 185 ident: CR44 article-title: Dissolution kinetics of molybdite in KOH media at different temperatures publication-title: T NONFERR METAL SOC doi: 10.1016/S1003-6326(18)64651-5 – volume: 13 year: 2022 ident: CR27 article-title: The synergistic effect of Hf-O-Ru bonds and oxygen vacancies in Ru/HfO(2) for enhanced hydrogen evolution publication-title: Nat. Commun. doi: 10.1038/s41467-022-28947-9 – volume: 108 start-page: 937 year: 2011 end-page: 943 ident: CR47 article-title: Density functional theory in surface chemistry and catalysis publication-title: Proc. Natl Acad Sci USA. doi: 10.1073/pnas.1006652108 – volume: 4 start-page: 285 year: 2018 end-page: 297 ident: CR4 article-title: Graphene defects trap atomic ni species for hydrogen and oxygen evolution reactions publication-title: Chem doi: 10.1016/j.chempr.2017.12.005 – volume: 20 start-page: 1240 year: 2021 end-page: 1247 ident: CR31 article-title: Oxygen-evolving catalytic atoms on metal carbides publication-title: Nat. Mater. doi: 10.1038/s41563-021-01006-2 – volume: 143 start-page: 13605 year: 2021 end-page: 13615 ident: CR36 article-title: Single iridium atom doped ni(2)p catalyst for optimal oxygen evolution publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c04682 – volume: 59 start-page: 7230 year: 2020 end-page: 7234 ident: CR23 article-title: Molten‐salt‐mediated synthesis of an atomic nickel co‐catalyst on tio2for improved photocatalytic h2evolution publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202001148 – volume: 8 start-page: 8296 year: 2018 end-page: 8305 ident: CR20 article-title: Boron- and nitrogen-codoped molybdenum carbide nanoparticles imbedded in a bcn network as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions publication-title: ACS Catal doi: 10.1021/acscatal.8b01794 – volume: 57 start-page: 172 year: 2018 ident: 45533_CR38 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201710877 – volume: 108 start-page: 17886 year: 2004 ident: 45533_CR46 publication-title: J. Phys. Chem. B doi: 10.1021/jp047349j – volume: 10 year: 2019 ident: 45533_CR24 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13415-8 – volume: 30 start-page: 2000570 year: 2020 ident: 45533_CR19 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000570 – volume: 7 start-page: 4734 year: 2019 ident: 45533_CR39 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11098K – volume: 6 start-page: 943 year: 2013 ident: 45533_CR43 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee23891h – volume: 141 start-page: 10417 year: 2019 ident: 45533_CR9 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b04492 – volume: 137 start-page: 2688 year: 2015 ident: 45533_CR40 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5127165 – volume: 13 year: 2022 ident: 45533_CR45 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29875-4 – volume: 4 start-page: 285 year: 2018 ident: 45533_CR4 publication-title: Chem doi: 10.1016/j.chempr.2017.12.005 – volume: 33 start-page: 2210867 year: 2022 ident: 45533_CR16 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202210867 – volume: 57 start-page: 8921 year: 2018 ident: 45533_CR6 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201803136 – volume: 5 start-page: 899 year: 2022 ident: 45533_CR26 publication-title: Energy Environ. Sci. – volume: 40 start-page: 515 year: 2021 ident: 45533_CR17 publication-title: Chin. J. Chem. doi: 10.1002/cjoc.202100695 – volume: 12 start-page: 2200067 year: 2022 ident: 45533_CR25 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202200067 – volume: 20 start-page: 1240 year: 2021 ident: 45533_CR31 publication-title: Nat. Mater. doi: 10.1038/s41563-021-01006-2 – volume: 430 start-page: 132697 year: 2022 ident: 45533_CR18 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132697 – volume: 10 start-page: 35025 year: 2018 ident: 45533_CR21 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b09941 – volume: 1 start-page: 0003 year: 2017 ident: 45533_CR3 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-016-0003 – volume: 15 start-page: 727 year: 2022 ident: 45533_CR29 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE02249K – volume: 14 start-page: 1016 year: 2021 ident: 45533_CR41 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE03701J – volume: 35 start-page: 2303243 year: 2023 ident: 45533_CR32 publication-title: Adv. Mater. doi: 10.1002/adma.202303243 – volume: 32 start-page: 2108464 year: 2021 ident: 45533_CR13 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202108464 – volume: 9 start-page: 1803185 year: 2019 ident: 45533_CR22 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803185 – volume: 5 start-page: 1700733 year: 2018 ident: 45533_CR37 publication-title: Adv. Sci. doi: 10.1002/advs.201700733 – volume: 13 year: 2022 ident: 45533_CR27 publication-title: Nat. Commun. doi: 10.1038/s41467-022-28947-9 – volume: 11 start-page: 4486 year: 2021 ident: 45533_CR42 publication-title: ACS Catal doi: 10.1021/acscatal.0c04415 – volume: 142 start-page: 7425 year: 2020 ident: 45533_CR1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b12642 – volume: 142 start-page: 18378 year: 2020 ident: 45533_CR11 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c05050 – volume: 6 start-page: 7261 year: 2015 ident: 45533_CR5 publication-title: Nat. Commun., doi: 10.1038/ncomms8261 – volume: 11 year: 2020 ident: 45533_CR12 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16558-1 – volume: 108 start-page: 937 year: 2011 ident: 45533_CR47 publication-title: Proc. Natl Acad Sci USA. doi: 10.1073/pnas.1006652108 – volume: 12 start-page: 10771 year: 2022 ident: 45533_CR10 publication-title: ACS Catalysis doi: 10.1021/acscatal.2c02770 – volume: 7 start-page: 1602122 year: 2017 ident: 45533_CR15 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602122 – volume: 28 start-page: 177 year: 2018 ident: 45533_CR44 publication-title: T NONFERR METAL SOC doi: 10.1016/S1003-6326(18)64651-5 – volume: 8 start-page: 8296 year: 2018 ident: 45533_CR20 publication-title: ACS Catal doi: 10.1021/acscatal.8b01794 – volume: 24 start-page: 745 year: 2012 ident: 45533_CR33 publication-title: Adv. Mater. doi: 10.1002/adma.201104407 – volume: 143 start-page: 13605 year: 2021 ident: 45533_CR36 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c04682 – volume: 453 start-page: 139797 year: 2023 ident: 45533_CR28 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.139797 – volume: 46 start-page: 6605 year: 2010 ident: 45533_CR34 publication-title: Chem. Commun. doi: 10.1039/c0cc01044h – volume: 12 start-page: 1167 year: 2022 ident: 45533_CR8 publication-title: ACS Catal doi: 10.1021/acscatal.1c04454 – volume: 56 start-page: 573 year: 2017 ident: 45533_CR7 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201610211 – volume: 26 start-page: 8555 year: 2016 ident: 45533_CR14 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604804 – volume: 488 start-page: 294 year: 2012 ident: 45533_CR2 publication-title: Nature doi: 10.1038/nature11475 – volume: 59 start-page: 7230 year: 2020 ident: 45533_CR23 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202001148 – volume: 58 start-page: 2321 year: 2019 ident: 45533_CR35 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201811728 – volume: 12 year: 2021 ident: 45533_CR30 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25048-x |
SSID | ssj0000391844 |
Score | 2.6577623 |
Snippet | The rational design of efficient bifunctional single-atom electrocatalysts for industrial water splitting and the comprehensive understanding of its complex... Abstract The rational design of efficient bifunctional single-atom electrocatalysts for industrial water splitting and the comprehensive understanding of its... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1342 |
SubjectTerms | 119/118 140/146 147/143 147/28 639/4077/909 639/638/77 Absorption spectroscopy Adsorption Coordination numbers Dispersion Electrocatalysts Electrolysis Electron microscopy Humanities and Social Sciences Hydrogen evolution reactions Industrial water Metal oxides Microenvironments Microscopy Molybdenum multidisciplinary Nickel Oxidation Oxygen Oxygen evolution reactions Science Science (multidisciplinary) Splitting Synchrotron radiation Water splitting X ray absorption X-ray absorption spectroscopy |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1CoJBLadqUuk2KCr01ImtJlqVjEhpCYXNqIDdhyRINbL0hu6HZf58Z2btdB9peerQtY3s-NG-s0RuAz2g1SqdJ4jKImhOhN0cUHrgJpjIYEREl0H7n6ZW-vFbfbqqbrVZfVBPW0wP3gjuJ0TbSm5C80SoinAiNUK3XrdYqaZNnX4x5W8lUnoOlxdRFDbtkJtKcLFSeEzAkcVUhxuFyFIkyYf8IZT6vkXy2UJrjz8UreDkAR3bav_A-7MTuNbzoW0mu3sDdlCrrtratsZzq9pUAKHs2T4yoiWcr1uQpjl3dMvpPMIsM8-6fC0ZjHldoT5wIG3p-49iy6VycM0S27Bce3rMFgtZcKn0A1xdfv59f8qGbAg9VaZa8LGsTS5NKm2yopa9EHVEfSXvi32lt3RoVLbq_QXFWE1ml0jdeJBK-sDHJt7Dbzbv4DliVbMQ8LwhJ7a5EbMwkCBRVCF43UakCyrVkXRioxqnjxczlJW9pXK8Nh9pwWRtOFvBlc89dT7Tx19FnpLDNSCLJzifQdNxgOu5fplPA4VrdbvDchROWUrBaKFPAp81l9DlaSGm6OH_IYzRt-FV1AWZkJqMXGl_pbn9k9m5qbaUwUSvgeG1Rv5_-5y9-_z---APsCfIAamgjD2F3ef8QjxBULf3H7D9Pbdoe7g priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4ikCBRmJG1jd2I7tnBBUVBXS9kSlvVmxY0OlJVk2W9H9951xvFtSiR6TOIrjefizPfMNIR9Aa6SKs8iE55ohoTcDFO6Z8aYyMCMCSsB85_mZOj2X3xfVIm-4DTmscucTk6Nue4975Ee8RmisuTSfV38YVo3C09VcQuM-eYDUZRjSpRd6v8eC7OdGypwrMxPmaJDJM8DExGQFSIeJyXyUaPsnWPN2pOSt49I0C508IY8zfKRfRnk_JfdC94w8HAtKbp-T1Rzj6_5JXqNpwTvGA4AEaB8pEhQvt7RJjo6eXVDcLVgGCqvv3wPFNldb0CqGtA0jy3Fo6bznxxTwLf0Ll2s6AHRNAdMvyPnJtx_HpyzXVGC-Ks2GlaU2oTSxrGPttXAV1wGkEpVDFp621q2RoQYnYABIVDNRxdI1jkfhjOd1iOIlOej6LrwitIp1gNWe5wKLXvHQmJnnMFTeO9UEKQtS7kbW-kw4jnUvljYdfAtjR2lYkIZN0rCiIB_376xGuo07W39Fge1bIlV2utGvf9pseTaEusHeR2eUDIBHfcNl61SrlIzK8IIc7sRts_0O9kbbCvJ-_xgsD49Tmi70l6mNwrRfqQtiJmoy6dD0SXfxK3F4Y4ErCcu1gnzaadTN1___x6_v7uwb8oijbmPBGnFIDjbry_AWQNPGvUuWcQ3BCxWR priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEB7OE8EX8SdWT4ngm0a3SZomDyJ6eBzC3pML9xbaNNGDtT139_D2v3cmbVd7nIKPbae0zcxkvmky3wC8RKtROs4il16UnAi9OaJwz403hcGIiCiB6p3nJ_p4oT6fFqd7MLY7GgZwfW1qR_2kFqvlm8sf2_fo8O_6knHzdq2Su2O04apA-MLlDbiJkakkR50PcD_NzNJiQqOG2pnrb53Ep0TjP8GeV3dOXlk-TVHp6C7cGeAk-9Dr_x7shfY-3OobTG4fwPmc9tv9UczGUgLc7w9AjbAuMiIsXm5ZlSY-dnLG6O_BMjDMxr-vGclcbtHKONE49KzHoWHzThwyxLvsJx6u2BqhbNpA_RAWR5--HB7zoccC90VuNjzPSxNyE3MbrS9lXYgyoJairomVp7FlY1SwOCkYBBbFTBYxr6taRFkbL2yI8hHst10bHgMrog2Y_XkhqQmWCJWZeYFD5X2tq6BUBvk4ss4PBOTUB2Pp0kK4NK7XhkNtuKQNJzN4tbvnvKff-Kf0R1LYTpKos9OJbvXVDZ7oQrAVvX2sjVYB8amvhGpq3WitojYig4NR3W40RycsJWalUCaDF7vL6Im0vFK1obtIMprKgFWZgZmYyeSFplfas2-J05saXilM3zJ4PVrU76f__Yuf_J_4U7gtyNapoY08gP3N6iI8Q1C1qZ8nT_kFA6Yc4Q priority: 102 providerName: Scholars Portal |
Title | Microenvironment reconstitution of highly active Ni single atoms on oxygen-incorporated Mo2C for water splitting |
URI | https://link.springer.com/article/10.1038/s41467-024-45533-3 https://www.proquest.com/docview/2925767248 https://www.proquest.com/docview/2926519747 https://pubmed.ncbi.nlm.nih.gov/PMC10864306 https://doaj.org/article/ee9a3b8cfb864e508ca24db6d664f682 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_6wWAvY5_Maxc02NsmFkuyLD-moVkJJIxthbwZW5G2QmqXJGXLf9872c7msg32YuP4jBXdnfU76fQ7gLdoNUr7oefSipQToTdHFG65sSYxOCIiSqD9zrO5vrhU00WyOADR7YUJSfuB0jJ8prvssA8bFVwaRxSuEoQoXB7CMVG3k1WP9Xg_r0KM50apdn_MUJo_PNobgwJVfw9f3s-OvLdEGkaeyWN41EJGNmoa-QQOXPUUHjRFJHfP4GZGOXW_bVhjIchtcgCw11ntGZESr3asCB83Nr9iNEOwcgwj7usNI5mfO7QkTlQNDbOxW7JZLcYMMS37gZdrtkG4GpKkn8Pl5Pzr-IK3dRS4TWKz5XGcGhcbH2c-s6ksE5E61ITXJTHvLLN0aZTL0PENgodkKBMfl0UpvCyNFZnz8gUcVXXlXgJLfOYwwrNCUqEr4QoztAK7ytpSF06pCOKuZ3PbkoxTrYtVHha7pckbbeSojTxoI5cRvNs_c9NQbPxT-owUtpckeuzwQ73-lrfmkjuXFdR6XxqtHGJQWwi1LPVSa-W1ERGcdurOW5_d5CKj4CsVykTwZn8bvY2WUIrK1bdBRtNWX5VGYHpm0mtQ_0519T3wdlNRK4UhWgTvO4v69fa__-NX_yd-Ag8F2ToVrZGncLRd37rXCJy25QAO00WKRzP5OIDj0Wj6ZYrns_P5p8-D4EWDMCWBx5kyd55TGgU |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8aQwguiE8RGGAkOIG1xHYS54AQDKaOrT1tUm8mcWyYVJrSdhr9p_gbec9JOjqJ3XZs47au39fv2X6_B_AatUZlPvZcWpFzIvTmiMIt11anGiMiogSqdx6OssGJ-jpOx1vwp6-FoWuVvU8MjrpuLO2R74qCoHEulP4w-8WpaxSdrvYtNFq1OHSrc0zZFu8PPqN83wix_-V4b8C7rgLcpole8iTJtUu0Twpf2FxWqcgdzstnFfHQ1EVea-UKNAONoTSNZeqTqqyEl5W2onBe4vfegJsYeGOyqHycr_d0iG1dK9XV5sRS7y5U8EQYCLlKEVlxuRH_QpuADWx7-WbmpePZEPX278HdDq6yj61-3YctN30At9oGlquHMBvSfb5_iuVYSLDb-wcocdZ4RoTIkxUrg2Nlo1NGuxMTxzDb_7lgNOb3CrWYE01Ey6rsajZsxB5DPM3O8eWcLRAqhwvaj-DkWlb7MWxPm6l7Aiz1hcPs0gpJTbaEK3VsBS6VtVVWOqUiSPqVNbYjOKc-GxMTDtqlNq00DErDBGkYGcHb9WdmLb3HlaM_kcDWI4maO7zRzL-bztKNc0VJs_eVzpRD_GtLoeoqq7NM-UyLCHZ6cZvOXyzMhXZH8Gr9GC2djm_KqWvOwpiMyoxVHoHeUJONCW0-mZ7-CJzh1FBLYXoYwbteoy5-_f__-OnVk30JtwfHwyNzdDA6fAZ3BOk5NcuRO7C9nJ-55wjYltWLYCUMvl23Wf4Fz3pQ-A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIRAviE-RMcBI8ARWG9tJnAeEYKPaGK14YFLfTOLYMKlrSttp9F_jr-POSTo6ib3tsY3bur4P_86--x3AK9Qalfq-59KKjBOhN0cUbrm2OtG4IyJKoHrn4Sg9OFafx8l4C_50tTCUVtn5xOCoq9rSGXlP5ASNM6F0z7dpEV_3B-9nvzh1kKKb1q6dRqMiR251juHb4t3hPsr6tRCDT9_2DnjbYYDbJNZLHseZdrH2ce5zm8kyEZnDOfq0JE6aKs8qrVyOJqFxW036MvFxWZTCy1JbkTsv8XtvwM1MJjHZWDbO1uc7xLyulWrrdPpS9xYqeCXcFLlKEGVxubEXhpYBGzj3cpbmpavasAMO7sHdFrqyD42u3YctN30At5pmlquHMBtSbt8_hXMsBNtNLgJKn9WeETnyZMWK4GTZ6ITRScXEMYz8TxeMxvxeoUZzooxoGJZdxYa12GOIrdk5vpyzBcLmkKz9CI6vZbUfw_a0nronwBKfO4w0rZDUcEu4QvetwKWytkwLp1QEcbeyxrZk59RzY2LCpbvUppGGQWmYIA0jI3iz_sysofq4cvRHEth6JNF0hzfq-Q_TWr1xLi9o9r7UqXKIhW0hVFWmVZoqn2oRwW4nbtP6joW50PQIXq4fo9XTVU4xdfVZGJNSybHKItAbarIxoc0n05OfgT-cmmspDBUjeNtp1MWv__8f71w92RdwGw3SfDkcHT2FO4LUnPrmyF3YXs7P3DPEbsvyeTASBt-v2yr_AokLVS4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microenvironment+reconstitution+of+highly+active+Ni+single+atoms+on+oxygen-incorporated+Mo2C+for+water+splitting&rft.jtitle=Nature+communications&rft.au=Hou%2C+Mengyun&rft.au=Zheng%2C+Lirong&rft.au=Zhao%2C+Di&rft.au=Tan%2C+Xin&rft.date=2024-02-13&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-024-45533-3&rft.externalDocID=10_1038_s41467_024_45533_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |