Microenvironment reconstitution of highly active Ni single atoms on oxygen-incorporated Mo2C for water splitting

The rational design of efficient bifunctional single-atom electrocatalysts for industrial water splitting and the comprehensive understanding of its complex catalytic mechanisms remain challenging. Here, we report a Ni single atoms supported on oxygen-incorporated Mo 2 C via Ni-O-Mo bridge bonds, th...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 1342 - 13
Main Authors Hou, Mengyun, Zheng, Lirong, Zhao, Di, Tan, Xin, Feng, Wuyi, Fu, Jiantao, Wei, Tianxin, Cao, Minhua, Zhang, Jiatao, Chen, Chen
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.02.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The rational design of efficient bifunctional single-atom electrocatalysts for industrial water splitting and the comprehensive understanding of its complex catalytic mechanisms remain challenging. Here, we report a Ni single atoms supported on oxygen-incorporated Mo 2 C via Ni-O-Mo bridge bonds, that gives high oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) bifunctional activity. By ex situ synchrotron X-ray absorption spectroscopy and electron microscopy, we found that after HER, the coordination number and bond lengths of Ni-O and Ni-Mo (Ni-O-Mo) were all altered, yet the Ni species still remain atomically dispersed. In contrast, after OER, the atomically dispersed Ni were agglomerated into very small clusters with new Ni-Ni (Ni-O-Ni) bonds appeared. Combining experimental results and DFT calculations, we infer the oxidation degree of Mo 2 C and the configuration of single-atom Ni are both vital for HER or OER. This study provides both a feasible strategy and model to rational design highly efficient electrocatalysts for water electrolysis. The comprehensive understanding of complex catalytic mechanisms under harsh reaction conditions for efficient bifunctional single-atom electrocatalysts remain challenging. Here the authors found microenvironment reconsitution of highly active Ni single atoms on oxygen-incorporated Mo2C for water splitting.
AbstractList The rational design of efficient bifunctional single-atom electrocatalysts for industrial water splitting and the comprehensive understanding of its complex catalytic mechanisms remain challenging. Here, we report a Ni single atoms supported on oxygen-incorporated Mo2C via Ni-O-Mo bridge bonds, that gives high oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) bifunctional activity. By ex situ synchrotron X-ray absorption spectroscopy and electron microscopy, we found that after HER, the coordination number and bond lengths of Ni-O and Ni-Mo (Ni-O-Mo) were all altered, yet the Ni species still remain atomically dispersed. In contrast, after OER, the atomically dispersed Ni were agglomerated into very small clusters with new Ni-Ni (Ni-O-Ni) bonds appeared. Combining experimental results and DFT calculations, we infer the oxidation degree of Mo2C and the configuration of single-atom Ni are both vital for HER or OER. This study provides both a feasible strategy and model to rational design highly efficient electrocatalysts for water electrolysis.The comprehensive understanding of complex catalytic mechanisms under harsh reaction conditions for efficient bifunctional single-atom electrocatalysts remain challenging. Here the authors found microenvironment reconsitution of highly active Ni single atoms on oxygen-incorporated Mo2C for water splitting.
The rational design of efficient bifunctional single-atom electrocatalysts for industrial water splitting and the comprehensive understanding of its complex catalytic mechanisms remain challenging. Here, we report a Ni single atoms supported on oxygen-incorporated Mo 2 C via Ni-O-Mo bridge bonds, that gives high oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) bifunctional activity. By ex situ synchrotron X-ray absorption spectroscopy and electron microscopy, we found that after HER, the coordination number and bond lengths of Ni-O and Ni-Mo (Ni-O-Mo) were all altered, yet the Ni species still remain atomically dispersed. In contrast, after OER, the atomically dispersed Ni were agglomerated into very small clusters with new Ni-Ni (Ni-O-Ni) bonds appeared. Combining experimental results and DFT calculations, we infer the oxidation degree of Mo 2 C and the configuration of single-atom Ni are both vital for HER or OER. This study provides both a feasible strategy and model to rational design highly efficient electrocatalysts for water electrolysis.
The rational design of efficient bifunctional single-atom electrocatalysts for industrial water splitting and the comprehensive understanding of its complex catalytic mechanisms remain challenging. Here, we report a Ni single atoms supported on oxygen-incorporated Mo 2 C via Ni-O-Mo bridge bonds, that gives high oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) bifunctional activity. By ex situ synchrotron X-ray absorption spectroscopy and electron microscopy, we found that after HER, the coordination number and bond lengths of Ni-O and Ni-Mo (Ni-O-Mo) were all altered, yet the Ni species still remain atomically dispersed. In contrast, after OER, the atomically dispersed Ni were agglomerated into very small clusters with new Ni-Ni (Ni-O-Ni) bonds appeared. Combining experimental results and DFT calculations, we infer the oxidation degree of Mo 2 C and the configuration of single-atom Ni are both vital for HER or OER. This study provides both a feasible strategy and model to rational design highly efficient electrocatalysts for water electrolysis. The comprehensive understanding of complex catalytic mechanisms under harsh reaction conditions for efficient bifunctional single-atom electrocatalysts remain challenging. Here the authors found microenvironment reconsitution of highly active Ni single atoms on oxygen-incorporated Mo2C for water splitting.
The rational design of efficient bifunctional single-atom electrocatalysts for industrial water splitting and the comprehensive understanding of its complex catalytic mechanisms remain challenging. Here, we report a Ni single atoms supported on oxygen-incorporated Mo2C via Ni-O-Mo bridge bonds, that gives high oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) bifunctional activity. By ex situ synchrotron X-ray absorption spectroscopy and electron microscopy, we found that after HER, the coordination number and bond lengths of Ni-O and Ni-Mo (Ni-O-Mo) were all altered, yet the Ni species still remain atomically dispersed. In contrast, after OER, the atomically dispersed Ni were agglomerated into very small clusters with new Ni-Ni (Ni-O-Ni) bonds appeared. Combining experimental results and DFT calculations, we infer the oxidation degree of Mo2C and the configuration of single-atom Ni are both vital for HER or OER. This study provides both a feasible strategy and model to rational design highly efficient electrocatalysts for water electrolysis.The rational design of efficient bifunctional single-atom electrocatalysts for industrial water splitting and the comprehensive understanding of its complex catalytic mechanisms remain challenging. Here, we report a Ni single atoms supported on oxygen-incorporated Mo2C via Ni-O-Mo bridge bonds, that gives high oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) bifunctional activity. By ex situ synchrotron X-ray absorption spectroscopy and electron microscopy, we found that after HER, the coordination number and bond lengths of Ni-O and Ni-Mo (Ni-O-Mo) were all altered, yet the Ni species still remain atomically dispersed. In contrast, after OER, the atomically dispersed Ni were agglomerated into very small clusters with new Ni-Ni (Ni-O-Ni) bonds appeared. Combining experimental results and DFT calculations, we infer the oxidation degree of Mo2C and the configuration of single-atom Ni are both vital for HER or OER. This study provides both a feasible strategy and model to rational design highly efficient electrocatalysts for water electrolysis.
Abstract The rational design of efficient bifunctional single-atom electrocatalysts for industrial water splitting and the comprehensive understanding of its complex catalytic mechanisms remain challenging. Here, we report a Ni single atoms supported on oxygen-incorporated Mo2C via Ni-O-Mo bridge bonds, that gives high oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) bifunctional activity. By ex situ synchrotron X-ray absorption spectroscopy and electron microscopy, we found that after HER, the coordination number and bond lengths of Ni-O and Ni-Mo (Ni-O-Mo) were all altered, yet the Ni species still remain atomically dispersed. In contrast, after OER, the atomically dispersed Ni were agglomerated into very small clusters with new Ni-Ni (Ni-O-Ni) bonds appeared. Combining experimental results and DFT calculations, we infer the oxidation degree of Mo2C and the configuration of single-atom Ni are both vital for HER or OER. This study provides both a feasible strategy and model to rational design highly efficient electrocatalysts for water electrolysis.
ArticleNumber 1342
Author Cao, Minhua
Zhang, Jiatao
Zheng, Lirong
Chen, Chen
Feng, Wuyi
Fu, Jiantao
Tan, Xin
Wei, Tianxin
Zhao, Di
Hou, Mengyun
Author_xml – sequence: 1
  givenname: Mengyun
  surname: Hou
  fullname: Hou, Mengyun
  organization: Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology
– sequence: 2
  givenname: Lirong
  surname: Zheng
  fullname: Zheng, Lirong
  organization: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences
– sequence: 3
  givenname: Di
  orcidid: 0000-0002-7882-2966
  surname: Zhao
  fullname: Zhao, Di
  email: dizhao@bit.edu.cn
  organization: Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology
– sequence: 4
  givenname: Xin
  orcidid: 0000-0001-9707-672X
  surname: Tan
  fullname: Tan, Xin
  organization: Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University
– sequence: 5
  givenname: Wuyi
  surname: Feng
  fullname: Feng, Wuyi
  organization: Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology
– sequence: 6
  givenname: Jiantao
  surname: Fu
  fullname: Fu, Jiantao
  organization: Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology
– sequence: 7
  givenname: Tianxin
  surname: Wei
  fullname: Wei, Tianxin
  organization: Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology
– sequence: 8
  givenname: Minhua
  orcidid: 0000-0002-2232-6859
  surname: Cao
  fullname: Cao, Minhua
  email: caomh@bit.edu.cn
  organization: Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology
– sequence: 9
  givenname: Jiatao
  surname: Zhang
  fullname: Zhang, Jiatao
  email: zhangjt@bit.edu.cn
  organization: Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology
– sequence: 10
  givenname: Chen
  orcidid: 0000-0001-5902-3037
  surname: Chen
  fullname: Chen, Chen
  email: cchen@mail.tsinghua.edu.cn
  organization: Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University
BookMark eNp9Uk1vEzEUXKEiWkr_ACdLXLgs-Hu9J4QiaCu1cIGz5fU-bxxt7GA7Kfn3OE0RtIf64q-Z8fi9ed2chBigad4S_IFgpj5mTrjsWkx5y4VgrGUvmjOKOWlJR9nJf-vT5iLnFa6D9URx_qo5ZYoJQkh31mxuvU0Rws6nGNYQCkpgY8jFl23xMaDo0NJPy3mPjC1-B-ibR9mHaQZkSlxndMD83k8QWh9sTJuYTIER3Ua6QC4mdFe3CeXN7EupvDfNS2fmDBcP83nz8-uXH4ur9ub75fXi801rBVGlreYUEOVI73rbsUHQDpRQTg5SSDz23ag49AwLhXsiMBOODGagjg3K0h4cO2-uj7pjNCu9SX5t0l5H4_X9QUyTNql4O4MG6M2B5wYlOQisrKF8HOQoJXdS0ar16ai12Q5rGG0tUzLzI9HHN8Ev9RR3muCqyLCsCu8fFFL8tYVc9NpnC_NsAsRt1rSnUpC-412FvnsCXcVtCrVWB5ToZEe5qih1RNXu5ZzAaeuLOXSsGvBzfVkfYqKPMdE1Jvo-JppVKn1C_fuRZ0nsSMoVHCZI_1w9w_oDlZjRpQ
CitedBy_id crossref_primary_10_1002_adfm_202425826
crossref_primary_10_1002_adfm_202422514
crossref_primary_10_1021_acs_nanolett_4c04414
crossref_primary_10_1039_D4QM00743C
crossref_primary_10_1002_aenm_202402825
crossref_primary_10_1021_acscatal_4c05792
crossref_primary_10_20517_energymater_2024_41
crossref_primary_10_1002_ange_202413179
crossref_primary_10_1016_j_cej_2025_160981
crossref_primary_10_1016_j_cclet_2025_111001
crossref_primary_10_1021_acs_inorgchem_4c05429
crossref_primary_10_1039_D4EE05500D
crossref_primary_10_1021_jacs_4c03218
crossref_primary_10_1016_j_ijhydene_2024_08_059
crossref_primary_10_20517_microstructures_2024_65
crossref_primary_10_1016_j_vacuum_2024_113792
crossref_primary_10_1039_D4TA08129C
crossref_primary_10_1016_j_ijhydene_2025_01_390
crossref_primary_10_1002_smll_202409159
crossref_primary_10_26599_NR_2025_94907211
crossref_primary_10_1016_j_est_2024_114740
crossref_primary_10_1039_D4NJ04248D
crossref_primary_10_1016_j_jallcom_2024_175259
crossref_primary_10_1016_j_apcatb_2024_124395
crossref_primary_10_1016_j_jallcom_2025_179115
crossref_primary_10_1021_jacs_4c11788
crossref_primary_10_1021_acsanm_4c03521
crossref_primary_10_1002_anie_202413179
crossref_primary_10_1007_s11426_024_2453_2
crossref_primary_10_1039_D4DT00619D
crossref_primary_10_1039_D4DT03252G
crossref_primary_10_1002_admi_202400916
crossref_primary_10_1021_acsnano_4c09249
crossref_primary_10_1002_aenm_202402611
crossref_primary_10_1021_acsnano_4c04831
crossref_primary_10_1002_adma_202500595
crossref_primary_10_1016_j_cej_2025_160921
crossref_primary_10_1016_j_nanoen_2024_109869
crossref_primary_10_1016_j_apcatb_2024_124388
crossref_primary_10_1016_j_decarb_2024_100097
crossref_primary_10_1016_j_jcis_2025_02_085
crossref_primary_10_1016_j_mtchem_2024_102476
crossref_primary_10_1016_j_nxmate_2025_100491
crossref_primary_10_1002_adma_202414169
crossref_primary_10_1039_D4QI03100H
crossref_primary_10_1038_s41467_024_50535_2
crossref_primary_10_1002_aenm_202402886
crossref_primary_10_1039_D4TA06358A
crossref_primary_10_1021_acs_jpcc_4c07614
crossref_primary_10_1038_s41467_024_53465_1
crossref_primary_10_1039_D4SC07291J
crossref_primary_10_1021_acs_inorgchem_4c03396
crossref_primary_10_1016_j_jcis_2024_06_122
crossref_primary_10_1016_j_cclet_2024_110623
crossref_primary_10_1016_j_cej_2024_154830
crossref_primary_10_1002_cctc_202400946
crossref_primary_10_1016_j_apcatb_2025_125204
crossref_primary_10_1016_j_cej_2024_156979
crossref_primary_10_1038_s41467_024_54513_6
crossref_primary_10_1016_j_cclet_2024_110467
crossref_primary_10_1016_j_jcis_2025_01_092
crossref_primary_10_1016_j_gee_2024_09_012
Cites_doi 10.1021/jacs.9b04492
10.1002/adfm.201604804
10.1002/adfm.202210867
10.1002/anie.201803136
10.1002/anie.201710877
10.1021/acscatal.1c04454
10.1021/jacs.9b12642
10.1021/jp047349j
10.1002/anie.201811728
10.1038/s41570-016-0003
10.1002/aenm.202200067
10.1016/j.cej.2021.132697
10.1021/acscatal.0c04415
10.1002/anie.201610211
10.1021/acsami.8b09941
10.1002/advs.201700733
10.1038/nature11475
10.1038/s41467-022-29875-4
10.1002/adma.201104407
10.1021/jacs.0c05050
10.1002/adfm.202000570
10.1021/ja5127165
10.1038/s41467-021-25048-x
10.1002/aenm.201602122
10.1039/c0cc01044h
10.1039/c2ee23891h
10.1039/C8TA11098K
10.1039/D0EE03701J
10.1021/acscatal.2c02770
10.1002/adfm.202108464
10.1038/s41467-019-13415-8
10.1038/ncomms8261
10.1038/s41467-020-16558-1
10.1016/j.cej.2022.139797
10.1039/D1EE02249K
10.1002/aenm.201803185
10.1002/adma.202303243
10.1002/cjoc.202100695
10.1016/S1003-6326(18)64651-5
10.1038/s41467-022-28947-9
10.1073/pnas.1006652108
10.1016/j.chempr.2017.12.005
10.1038/s41563-021-01006-2
10.1021/jacs.1c04682
10.1002/anie.202001148
10.1021/acscatal.8b01794
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024. The Author(s).
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-024-45533-3
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 13
ExternalDocumentID oai_doaj_org_article_ee9a3b8cfb864e508ca24db6d664f682
PMC10864306
10_1038_s41467_024_45533_3
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 21925202; U22B2071; 22309011
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c518t-1178e18f19f9c73b527e858f6b6560d97d84e930580915035f1bab2f3b8c29ef3
IEDL.DBID C6C
ISSN 2041-1723
IngestDate Wed Aug 27 01:31:02 EDT 2025
Thu Aug 21 18:35:13 EDT 2025
Thu Jul 10 19:07:32 EDT 2025
Wed Aug 13 04:54:18 EDT 2025
Tue Jul 01 02:10:58 EDT 2025
Thu Apr 24 22:56:16 EDT 2025
Fri Feb 21 02:37:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-1178e18f19f9c73b527e858f6b6560d97d84e930580915035f1bab2f3b8c29ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9707-672X
0000-0002-7882-2966
0000-0001-5902-3037
0000-0002-2232-6859
OpenAccessLink https://www.nature.com/articles/s41467-024-45533-3
PMID 38351117
PQID 2925767248
PQPubID 546298
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_ee9a3b8cfb864e508ca24db6d664f682
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10864306
proquest_miscellaneous_2926519747
proquest_journals_2925767248
crossref_citationtrail_10_1038_s41467_024_45533_3
crossref_primary_10_1038_s41467_024_45533_3
springer_journals_10_1038_s41467_024_45533_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-13
PublicationDateYYYYMMDD 2024-02-13
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-13
  day: 13
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Roger, Shipman, Symes (CR3) 2017; 1
Jiang (CR12) 2020; 11
Hu (CR25) 2022; 12
Norskov, Abild-Pedersen, Studt, Bligaard (CR47) 2011; 108
Zhang (CR4) 2018; 4
Yu, Yang, Guan, Lu, Lou (CR38) 2018; 57
Guan, Mou, Sun, Shi (CR34) 2010; 46
Zhao (CR6) 2018; 57
Zhu (CR15) 2017; 7
Jin (CR40) 2015; 137
Li (CR31) 2021; 20
Wang (CR10) 2022; 12
Wang (CR1) 2020; 142
Yang (CR9) 2019; 141
Anjum, Lee, Lee (CR20) 2018; 8
Luo (CR8) 2022; 12
Li (CR16) 2022; 33
Wang (CR36) 2021; 143
Das, Santra, Nanda (CR21) 2018; 10
Yin (CR11) 2020; 142
Yuan (CR18) 2022; 430
Nørskov (CR46) 2004; 108
Zhou, Zhao, Lou (CR33) 2012; 24
Yang, Wu, Zhuang, Li, Chen (CR17) 2021; 40
Tang (CR26) 2022; 5
Yu, Zhou, Sun (CR19) 2020; 30
Zhou (CR30) 2021; 12
Suryanto, Wang, Hocking, Adamson, Zhao (CR24) 2019; 10
Li (CR27) 2022; 13
Han (CR39) 2019; 7
Kuang, Han, Wang, Li, Zheng (CR14) 2016; 26
Chu, Majumdar (CR2) 2012; 488
Wei (CR37) 2018; 5
Zhuang (CR41) 2021; 14
Aracena, Sanino, Jerez (CR44) 2018; 28
Wang (CR5) 2015; 6
Zhao (CR29) 2022; 15
Wang (CR13) 2021; 32
Li (CR28) 2023; 453
Han (CR35) 2019; 58
Li (CR22) 2019; 9
Xiao (CR23) 2020; 59
Zhang (CR32) 2023; 35
Chen (CR43) 2013; 6
He (CR45) 2022; 13
Shi, Liang, Ming, Wang (CR7) 2017; 56
Qin (CR42) 2021; 11
W Luo (45533_CR8) 2022; 12
Y Zhu (45533_CR15) 2017; 7
J Qin (45533_CR42) 2021; 11
C Tang (45533_CR26) 2022; 5
L Zhou (45533_CR33) 2012; 24
J Guan (45533_CR34) 2010; 46
Q Wang (45533_CR1) 2020; 142
I Roger (45533_CR3) 2017; 1
K Jiang (45533_CR12) 2020; 11
M Wang (45533_CR10) 2022; 12
L Zhang (45533_CR4) 2018; 4
H Jin (45533_CR40) 2015; 137
H Shi (45533_CR7) 2017; 56
Y Yang (45533_CR9) 2019; 141
M Kuang (45533_CR14) 2016; 26
H Wang (45533_CR5) 2015; 6
Z He (45533_CR45) 2022; 13
R Li (45533_CR28) 2023; 453
S Yuan (45533_CR18) 2022; 430
J Yin (45533_CR11) 2020; 142
G Li (45533_CR27) 2022; 13
L Han (45533_CR35) 2019; 58
W Wang (45533_CR13) 2021; 32
X Zhao (45533_CR6) 2018; 57
P Zhang (45533_CR32) 2023; 35
M Xiao (45533_CR23) 2020; 59
F Hu (45533_CR25) 2022; 12
H Wei (45533_CR37) 2018; 5
Z Zhuang (45533_CR41) 2021; 14
D Das (45533_CR21) 2018; 10
BHR Suryanto (45533_CR24) 2019; 10
H Zhou (45533_CR30) 2021; 12
W-F Chen (45533_CR43) 2013; 6
W Han (45533_CR39) 2019; 7
Y Yu (45533_CR19) 2020; 30
JK Nørskov (45533_CR46) 2004; 108
M Li (45533_CR16) 2022; 33
S Chu (45533_CR2) 2012; 488
Y Zhao (45533_CR29) 2022; 15
H Yang (45533_CR17) 2021; 40
M Li (45533_CR22) 2019; 9
JK Norskov (45533_CR47) 2011; 108
MAR Anjum (45533_CR20) 2018; 8
L Yu (45533_CR38) 2018; 57
Q Wang (45533_CR36) 2021; 143
S Li (45533_CR31) 2021; 20
A Aracena (45533_CR44) 2018; 28
References_xml – volume: 141
  start-page: 10417
  year: 2019
  end-page: 10430
  ident: CR9
  article-title: Hierarchical nanoassembly of mos(2)/co(9)s(8)/ni(3)s(2)/ni as a highly efficient electrocatalyst for overall water splitting in a wide ph range
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b04492
– volume: 26
  start-page: 8555
  year: 2016
  end-page: 8561
  ident: CR14
  article-title: CuCo hybrid oxides as bifunctional electrocatalyst for efficient water splitting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604804
– volume: 33
  start-page: 2210867
  year: 2022
  ident: CR16
  article-title: Proximity electronic effect of ni/co diatomic sites for synergistic promotion of electrocatalytic oxygen reduction and hydrogen evolution
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202210867
– volume: 57
  start-page: 8921
  year: 2018
  end-page: 8926
  ident: CR6
  article-title: Bifunctional electrocatalysts for overall water splitting from an iron/nickel-based bimetallic metal-organic framework/dicyandiamide composite
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201803136
– volume: 57
  start-page: 172
  year: 2018
  end-page: 176
  ident: CR38
  article-title: Hierarchical hollow nanoprisms based on ultrathin ni‐fe layered double hydroxide nanosheets with enhanced electrocatalytic activity towards oxygen evolution
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201710877
– volume: 12
  start-page: 1167
  year: 2022
  end-page: 1179
  ident: CR8
  article-title: A review: research progress of neural probes for brain research and brain-computer interface
  publication-title: ACS Catal
  doi: 10.1021/acscatal.1c04454
– volume: 142
  start-page: 7425
  year: 2020
  end-page: 7433
  ident: CR1
  article-title: Ultrahigh-loading of ir single atoms on nio matrix to dramatically enhance oxygen evolution reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b12642
– volume: 108
  start-page: 17886
  year: 2004
  end-page: 17892
  ident: CR46
  article-title: Origin of the overpotential for oxygen reduction at a fuel-cell cathode
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp047349j
– volume: 58
  start-page: 2321
  year: 2019
  end-page: 2325
  ident: CR35
  article-title: Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201811728
– volume: 1
  start-page: 0003
  year: 2017
  ident: CR3
  article-title: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-016-0003
– volume: 12
  start-page: 2200067
  year: 2022
  ident: CR25
  article-title: Lattice‐Matching formed mesoporous transition metal oxide heterostructures advance water splitting by active Fe–O–Cu bridges
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202200067
– volume: 430
  start-page: 132697
  year: 2022
  ident: CR18
  article-title: Dual synergistic effects between Co and Mo2C in Co/Mo2C heterostructure for electrocatalytic overall water splitting
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132697
– volume: 11
  start-page: 4486
  year: 2021
  end-page: 4497
  ident: CR42
  article-title: Activating edge-Mo of 2H-MoS2via coordination with pyridinic N–C for pH-universal hydrogen evolution electrocatalysis
  publication-title: ACS Catal
  doi: 10.1021/acscatal.0c04415
– volume: 56
  start-page: 573
  year: 2017
  end-page: 577
  ident: CR7
  article-title: Efficient overall water-splitting electrocatalysis using lepidocrocite vooh hollow nanospheres
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201610211
– volume: 10
  start-page: 35025
  year: 2018
  end-page: 35038
  ident: CR21
  article-title: In situ fabrication of a nickel/molybdenum carbide-anchored n-doped graphene/cnt hybrid: an efficient (Pre)catalyst for OER and HER
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b09941
– volume: 5
  start-page: 1700733
  year: 2018
  ident: CR37
  article-title: Molybdenum carbide nanoparticles coated into the graphene wrapping n-doped porous carbon microspheres for highly efficient electrocatalytic hydrogen evolution both in acidic and alkaline media
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700733
– volume: 488
  start-page: 294
  year: 2012
  end-page: 303
  ident: CR2
  article-title: Opportunities and challenges for a sustainable energy future
  publication-title: Nature
  doi: 10.1038/nature11475
– volume: 13
  year: 2022
  ident: CR45
  article-title: Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29875-4
– volume: 24
  start-page: 745
  year: 2012
  end-page: 748
  ident: CR33
  article-title: Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104407
– volume: 5
  start-page: 899
  year: 2022
  end-page: 905
  ident: CR26
  publication-title: Energy Environ. Sci.
– volume: 142
  start-page: 18378
  year: 2020
  end-page: 18386
  ident: CR11
  article-title: Iridium single atoms coupling with oxygen vacancies boosts oxygen evolution reaction in acid media
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c05050
– volume: 30
  start-page: 2000570
  year: 2020
  ident: CR19
  article-title: Novel 2D transition‐metal carbides: ultrahigh performance electrocatalysts for overall water splitting and oxygen reduction
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000570
– volume: 137
  start-page: 2688
  year: 2015
  end-page: 2694
  ident: CR40
  article-title: In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5127165
– volume: 12
  year: 2021
  ident: CR30
  article-title: Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H(2) fuel
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25048-x
– volume: 7
  start-page: 1602122
  year: 2017
  ident: CR15
  article-title: A perovskite nanorod as bifunctional electrocatalyst for overall water splitting
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602122
– volume: 46
  start-page: 6605
  year: 2010
  end-page: 6607
  ident: CR34
  article-title: Preparation of hollow spheres with controllable interior structures by heterogeneous contraction
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc01044h
– volume: 6
  start-page: 943
  year: 2013
  end-page: 945
  ident: CR43
  article-title: Reply to comments on "synthesis, characterization, and structures of persistent aniline radical cation"
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee23891h
– volume: 7
  start-page: 4734
  year: 2019
  end-page: 4743
  ident: CR39
  article-title: Ultra-small Mo2C nanodots encapsulated in nitrogen-doped porous carbon for pH-universal hydrogen evolution: insights into the synergistic enhancement of HER activity by nitrogen doping and structural defects
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA11098K
– volume: 14
  start-page: 1016
  year: 2021
  end-page: 1028
  ident: CR41
  article-title: Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE03701J
– volume: 12
  start-page: 10771
  year: 2022
  end-page: 10780
  ident: CR10
  article-title: Interfacial water activation by single-atom co–n3sites coupled with encapsulated co nanocrystals for accelerating electrocatalytic hydrogen evolution
  publication-title: ACS Catalysis
  doi: 10.1021/acscatal.2c02770
– volume: 32
  start-page: 2108464
  year: 2021
  ident: CR13
  article-title: Confining zero‐valent platinum single atoms in α‐moc1−xfor ph‐universal hydrogen evolution reaction
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202108464
– volume: 10
  year: 2019
  ident: CR24
  article-title: Overall electrochemical splitting of water at the heterogeneous interface of nickel and iron oxide
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13415-8
– volume: 6
  start-page: 7261
  year: 2015
  ident: CR5
  article-title: Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting
  publication-title: Nat. Commun.,
  doi: 10.1038/ncomms8261
– volume: 11
  year: 2020
  ident: CR12
  article-title: Dynamic active-site generation of atomic iridium stabilized on nanoporous metal phosphides for water oxidation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16558-1
– volume: 453
  start-page: 139797
  year: 2023
  ident: CR28
  article-title: Potential-dependent reconstruction of Ni-based cuboid arrays for highly efficient hydrogen evolution coupled with electro-oxidation of organic compound
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.139797
– volume: 15
  start-page: 727
  year: 2022
  end-page: 739
  ident: CR29
  article-title: Dynamics and control of active sites in hierarchically nanostructured cobalt phosphide/chalcogenide-based electrocatalysts for water splitting
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE02249K
– volume: 9
  start-page: 1803185
  year: 2019
  ident: CR22
  article-title: Ni strongly coupled with mo2c encapsulated in nitrogen‐doped carbon nanofibers as robust bifunctional catalyst for overall water splitting
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201803185
– volume: 35
  start-page: 2303243
  year: 2023
  ident: CR32
  article-title: Bifunctional single atom catalysts for rechargeable zinc–air batteries: from dynamic mechanism to rational design
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202303243
– volume: 40
  start-page: 515
  year: 2021
  end-page: 523
  ident: CR17
  article-title: Computational probing of temperature-dependent unfolding of a small globular protein: from cold to heat denaturation
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.202100695
– volume: 28
  start-page: 177
  year: 2018
  end-page: 185
  ident: CR44
  article-title: Dissolution kinetics of molybdite in KOH media at different temperatures
  publication-title: T NONFERR METAL SOC
  doi: 10.1016/S1003-6326(18)64651-5
– volume: 13
  year: 2022
  ident: CR27
  article-title: The synergistic effect of Hf-O-Ru bonds and oxygen vacancies in Ru/HfO(2) for enhanced hydrogen evolution
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28947-9
– volume: 108
  start-page: 937
  year: 2011
  end-page: 943
  ident: CR47
  article-title: Density functional theory in surface chemistry and catalysis
  publication-title: Proc. Natl Acad Sci USA.
  doi: 10.1073/pnas.1006652108
– volume: 4
  start-page: 285
  year: 2018
  end-page: 297
  ident: CR4
  article-title: Graphene defects trap atomic ni species for hydrogen and oxygen evolution reactions
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.12.005
– volume: 20
  start-page: 1240
  year: 2021
  end-page: 1247
  ident: CR31
  article-title: Oxygen-evolving catalytic atoms on metal carbides
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-01006-2
– volume: 143
  start-page: 13605
  year: 2021
  end-page: 13615
  ident: CR36
  article-title: Single iridium atom doped ni(2)p catalyst for optimal oxygen evolution
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c04682
– volume: 59
  start-page: 7230
  year: 2020
  end-page: 7234
  ident: CR23
  article-title: Molten‐salt‐mediated synthesis of an atomic nickel co‐catalyst on tio2for improved photocatalytic h2evolution
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202001148
– volume: 8
  start-page: 8296
  year: 2018
  end-page: 8305
  ident: CR20
  article-title: Boron- and nitrogen-codoped molybdenum carbide nanoparticles imbedded in a bcn network as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions
  publication-title: ACS Catal
  doi: 10.1021/acscatal.8b01794
– volume: 57
  start-page: 172
  year: 2018
  ident: 45533_CR38
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201710877
– volume: 108
  start-page: 17886
  year: 2004
  ident: 45533_CR46
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp047349j
– volume: 10
  year: 2019
  ident: 45533_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13415-8
– volume: 30
  start-page: 2000570
  year: 2020
  ident: 45533_CR19
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000570
– volume: 7
  start-page: 4734
  year: 2019
  ident: 45533_CR39
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA11098K
– volume: 6
  start-page: 943
  year: 2013
  ident: 45533_CR43
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee23891h
– volume: 141
  start-page: 10417
  year: 2019
  ident: 45533_CR9
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b04492
– volume: 137
  start-page: 2688
  year: 2015
  ident: 45533_CR40
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5127165
– volume: 13
  year: 2022
  ident: 45533_CR45
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29875-4
– volume: 4
  start-page: 285
  year: 2018
  ident: 45533_CR4
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.12.005
– volume: 33
  start-page: 2210867
  year: 2022
  ident: 45533_CR16
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202210867
– volume: 57
  start-page: 8921
  year: 2018
  ident: 45533_CR6
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201803136
– volume: 5
  start-page: 899
  year: 2022
  ident: 45533_CR26
  publication-title: Energy Environ. Sci.
– volume: 40
  start-page: 515
  year: 2021
  ident: 45533_CR17
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.202100695
– volume: 12
  start-page: 2200067
  year: 2022
  ident: 45533_CR25
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202200067
– volume: 20
  start-page: 1240
  year: 2021
  ident: 45533_CR31
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-01006-2
– volume: 430
  start-page: 132697
  year: 2022
  ident: 45533_CR18
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132697
– volume: 10
  start-page: 35025
  year: 2018
  ident: 45533_CR21
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b09941
– volume: 1
  start-page: 0003
  year: 2017
  ident: 45533_CR3
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-016-0003
– volume: 15
  start-page: 727
  year: 2022
  ident: 45533_CR29
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE02249K
– volume: 14
  start-page: 1016
  year: 2021
  ident: 45533_CR41
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE03701J
– volume: 35
  start-page: 2303243
  year: 2023
  ident: 45533_CR32
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202303243
– volume: 32
  start-page: 2108464
  year: 2021
  ident: 45533_CR13
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202108464
– volume: 9
  start-page: 1803185
  year: 2019
  ident: 45533_CR22
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201803185
– volume: 5
  start-page: 1700733
  year: 2018
  ident: 45533_CR37
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700733
– volume: 13
  year: 2022
  ident: 45533_CR27
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28947-9
– volume: 11
  start-page: 4486
  year: 2021
  ident: 45533_CR42
  publication-title: ACS Catal
  doi: 10.1021/acscatal.0c04415
– volume: 142
  start-page: 7425
  year: 2020
  ident: 45533_CR1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b12642
– volume: 142
  start-page: 18378
  year: 2020
  ident: 45533_CR11
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c05050
– volume: 6
  start-page: 7261
  year: 2015
  ident: 45533_CR5
  publication-title: Nat. Commun.,
  doi: 10.1038/ncomms8261
– volume: 11
  year: 2020
  ident: 45533_CR12
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16558-1
– volume: 108
  start-page: 937
  year: 2011
  ident: 45533_CR47
  publication-title: Proc. Natl Acad Sci USA.
  doi: 10.1073/pnas.1006652108
– volume: 12
  start-page: 10771
  year: 2022
  ident: 45533_CR10
  publication-title: ACS Catalysis
  doi: 10.1021/acscatal.2c02770
– volume: 7
  start-page: 1602122
  year: 2017
  ident: 45533_CR15
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602122
– volume: 28
  start-page: 177
  year: 2018
  ident: 45533_CR44
  publication-title: T NONFERR METAL SOC
  doi: 10.1016/S1003-6326(18)64651-5
– volume: 8
  start-page: 8296
  year: 2018
  ident: 45533_CR20
  publication-title: ACS Catal
  doi: 10.1021/acscatal.8b01794
– volume: 24
  start-page: 745
  year: 2012
  ident: 45533_CR33
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104407
– volume: 143
  start-page: 13605
  year: 2021
  ident: 45533_CR36
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c04682
– volume: 453
  start-page: 139797
  year: 2023
  ident: 45533_CR28
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.139797
– volume: 46
  start-page: 6605
  year: 2010
  ident: 45533_CR34
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc01044h
– volume: 12
  start-page: 1167
  year: 2022
  ident: 45533_CR8
  publication-title: ACS Catal
  doi: 10.1021/acscatal.1c04454
– volume: 56
  start-page: 573
  year: 2017
  ident: 45533_CR7
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201610211
– volume: 26
  start-page: 8555
  year: 2016
  ident: 45533_CR14
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604804
– volume: 488
  start-page: 294
  year: 2012
  ident: 45533_CR2
  publication-title: Nature
  doi: 10.1038/nature11475
– volume: 59
  start-page: 7230
  year: 2020
  ident: 45533_CR23
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202001148
– volume: 58
  start-page: 2321
  year: 2019
  ident: 45533_CR35
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201811728
– volume: 12
  year: 2021
  ident: 45533_CR30
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25048-x
SSID ssj0000391844
Score 2.6577623
Snippet The rational design of efficient bifunctional single-atom electrocatalysts for industrial water splitting and the comprehensive understanding of its complex...
Abstract The rational design of efficient bifunctional single-atom electrocatalysts for industrial water splitting and the comprehensive understanding of its...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1342
SubjectTerms 119/118
140/146
147/143
147/28
639/4077/909
639/638/77
Absorption spectroscopy
Adsorption
Coordination numbers
Dispersion
Electrocatalysts
Electrolysis
Electron microscopy
Humanities and Social Sciences
Hydrogen evolution reactions
Industrial water
Metal oxides
Microenvironments
Microscopy
Molybdenum
multidisciplinary
Nickel
Oxidation
Oxygen
Oxygen evolution reactions
Science
Science (multidisciplinary)
Splitting
Synchrotron radiation
Water splitting
X ray absorption
X-ray absorption spectroscopy
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1CoJBLadqUuk2KCr01ImtJlqVjEhpCYXNqIDdhyRINbL0hu6HZf58Z2btdB9peerQtY3s-NG-s0RuAz2g1SqdJ4jKImhOhN0cUHrgJpjIYEREl0H7n6ZW-vFbfbqqbrVZfVBPW0wP3gjuJ0TbSm5C80SoinAiNUK3XrdYqaZNnX4x5W8lUnoOlxdRFDbtkJtKcLFSeEzAkcVUhxuFyFIkyYf8IZT6vkXy2UJrjz8UreDkAR3bav_A-7MTuNbzoW0mu3sDdlCrrtratsZzq9pUAKHs2T4yoiWcr1uQpjl3dMvpPMIsM8-6fC0ZjHldoT5wIG3p-49iy6VycM0S27Bce3rMFgtZcKn0A1xdfv59f8qGbAg9VaZa8LGsTS5NKm2yopa9EHVEfSXvi32lt3RoVLbq_QXFWE1ml0jdeJBK-sDHJt7Dbzbv4DliVbMQ8LwhJ7a5EbMwkCBRVCF43UakCyrVkXRioxqnjxczlJW9pXK8Nh9pwWRtOFvBlc89dT7Tx19FnpLDNSCLJzifQdNxgOu5fplPA4VrdbvDchROWUrBaKFPAp81l9DlaSGm6OH_IYzRt-FV1AWZkJqMXGl_pbn9k9m5qbaUwUSvgeG1Rv5_-5y9-_z---APsCfIAamgjD2F3ef8QjxBULf3H7D9Pbdoe7g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4ikCBRmJG1jd2I7tnBBUVBXS9kSlvVmxY0OlJVk2W9H9951xvFtSiR6TOIrjefizPfMNIR9Aa6SKs8iE55ohoTcDFO6Z8aYyMCMCSsB85_mZOj2X3xfVIm-4DTmscucTk6Nue4975Ee8RmisuTSfV38YVo3C09VcQuM-eYDUZRjSpRd6v8eC7OdGypwrMxPmaJDJM8DExGQFSIeJyXyUaPsnWPN2pOSt49I0C508IY8zfKRfRnk_JfdC94w8HAtKbp-T1Rzj6_5JXqNpwTvGA4AEaB8pEhQvt7RJjo6eXVDcLVgGCqvv3wPFNldb0CqGtA0jy3Fo6bznxxTwLf0Ll2s6AHRNAdMvyPnJtx_HpyzXVGC-Ks2GlaU2oTSxrGPttXAV1wGkEpVDFp621q2RoQYnYABIVDNRxdI1jkfhjOd1iOIlOej6LrwitIp1gNWe5wKLXvHQmJnnMFTeO9UEKQtS7kbW-kw4jnUvljYdfAtjR2lYkIZN0rCiIB_376xGuo07W39Fge1bIlV2utGvf9pseTaEusHeR2eUDIBHfcNl61SrlIzK8IIc7sRts_0O9kbbCvJ-_xgsD49Tmi70l6mNwrRfqQtiJmoy6dD0SXfxK3F4Y4ErCcu1gnzaadTN1___x6_v7uwb8oijbmPBGnFIDjbry_AWQNPGvUuWcQ3BCxWR
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEB7OE8EX8SdWT4ngm0a3SZomDyJ6eBzC3pML9xbaNNGDtT139_D2v3cmbVd7nIKPbae0zcxkvmky3wC8RKtROs4il16UnAi9OaJwz403hcGIiCiB6p3nJ_p4oT6fFqd7MLY7GgZwfW1qR_2kFqvlm8sf2_fo8O_6knHzdq2Su2O04apA-MLlDbiJkakkR50PcD_NzNJiQqOG2pnrb53Ep0TjP8GeV3dOXlk-TVHp6C7cGeAk-9Dr_x7shfY-3OobTG4fwPmc9tv9UczGUgLc7w9AjbAuMiIsXm5ZlSY-dnLG6O_BMjDMxr-vGclcbtHKONE49KzHoWHzThwyxLvsJx6u2BqhbNpA_RAWR5--HB7zoccC90VuNjzPSxNyE3MbrS9lXYgyoJairomVp7FlY1SwOCkYBBbFTBYxr6taRFkbL2yI8hHst10bHgMrog2Y_XkhqQmWCJWZeYFD5X2tq6BUBvk4ss4PBOTUB2Pp0kK4NK7XhkNtuKQNJzN4tbvnvKff-Kf0R1LYTpKos9OJbvXVDZ7oQrAVvX2sjVYB8amvhGpq3WitojYig4NR3W40RycsJWalUCaDF7vL6Im0vFK1obtIMprKgFWZgZmYyeSFplfas2-J05saXilM3zJ4PVrU76f__Yuf_J_4U7gtyNapoY08gP3N6iI8Q1C1qZ8nT_kFA6Yc4Q
  priority: 102
  providerName: Scholars Portal
Title Microenvironment reconstitution of highly active Ni single atoms on oxygen-incorporated Mo2C for water splitting
URI https://link.springer.com/article/10.1038/s41467-024-45533-3
https://www.proquest.com/docview/2925767248
https://www.proquest.com/docview/2926519747
https://pubmed.ncbi.nlm.nih.gov/PMC10864306
https://doaj.org/article/ee9a3b8cfb864e508ca24db6d664f682
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_6wWAvY5_Maxc02NsmFkuyLD-moVkJJIxthbwZW5G2QmqXJGXLf9872c7msg32YuP4jBXdnfU76fQ7gLdoNUr7oefSipQToTdHFG65sSYxOCIiSqD9zrO5vrhU00WyOADR7YUJSfuB0jJ8prvssA8bFVwaRxSuEoQoXB7CMVG3k1WP9Xg_r0KM50apdn_MUJo_PNobgwJVfw9f3s-OvLdEGkaeyWN41EJGNmoa-QQOXPUUHjRFJHfP4GZGOXW_bVhjIchtcgCw11ntGZESr3asCB83Nr9iNEOwcgwj7usNI5mfO7QkTlQNDbOxW7JZLcYMMS37gZdrtkG4GpKkn8Pl5Pzr-IK3dRS4TWKz5XGcGhcbH2c-s6ksE5E61ITXJTHvLLN0aZTL0PENgodkKBMfl0UpvCyNFZnz8gUcVXXlXgJLfOYwwrNCUqEr4QoztAK7ytpSF06pCOKuZ3PbkoxTrYtVHha7pckbbeSojTxoI5cRvNs_c9NQbPxT-owUtpckeuzwQ73-lrfmkjuXFdR6XxqtHGJQWwi1LPVSa-W1ERGcdurOW5_d5CKj4CsVykTwZn8bvY2WUIrK1bdBRtNWX5VGYHpm0mtQ_0519T3wdlNRK4UhWgTvO4v69fa__-NX_yd-Ag8F2ToVrZGncLRd37rXCJy25QAO00WKRzP5OIDj0Wj6ZYrns_P5p8-D4EWDMCWBx5kyd55TGgU
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8aQwguiE8RGGAkOIG1xHYS54AQDKaOrT1tUm8mcWyYVJrSdhr9p_gbec9JOjqJ3XZs47au39fv2X6_B_AatUZlPvZcWpFzIvTmiMIt11anGiMiogSqdx6OssGJ-jpOx1vwp6-FoWuVvU8MjrpuLO2R74qCoHEulP4w-8WpaxSdrvYtNFq1OHSrc0zZFu8PPqN83wix_-V4b8C7rgLcpole8iTJtUu0Twpf2FxWqcgdzstnFfHQ1EVea-UKNAONoTSNZeqTqqyEl5W2onBe4vfegJsYeGOyqHycr_d0iG1dK9XV5sRS7y5U8EQYCLlKEVlxuRH_QpuADWx7-WbmpePZEPX278HdDq6yj61-3YctN30At9oGlquHMBvSfb5_iuVYSLDb-wcocdZ4RoTIkxUrg2Nlo1NGuxMTxzDb_7lgNOb3CrWYE01Ey6rsajZsxB5DPM3O8eWcLRAqhwvaj-DkWlb7MWxPm6l7Aiz1hcPs0gpJTbaEK3VsBS6VtVVWOqUiSPqVNbYjOKc-GxMTDtqlNq00DErDBGkYGcHb9WdmLb3HlaM_kcDWI4maO7zRzL-bztKNc0VJs_eVzpRD_GtLoeoqq7NM-UyLCHZ6cZvOXyzMhXZH8Gr9GC2djm_KqWvOwpiMyoxVHoHeUJONCW0-mZ7-CJzh1FBLYXoYwbteoy5-_f__-OnVk30JtwfHwyNzdDA6fAZ3BOk5NcuRO7C9nJ-55wjYltWLYCUMvl23Wf4Fz3pQ-A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIRAviE-RMcBI8ARWG9tJnAeEYKPaGK14YFLfTOLYMKlrSttp9F_jr-POSTo6ib3tsY3bur4P_86--x3AK9Qalfq-59KKjBOhN0cUbrm2OtG4IyJKoHrn4Sg9OFafx8l4C_50tTCUVtn5xOCoq9rSGXlP5ASNM6F0z7dpEV_3B-9nvzh1kKKb1q6dRqMiR251juHb4t3hPsr6tRCDT9_2DnjbYYDbJNZLHseZdrH2ce5zm8kyEZnDOfq0JE6aKs8qrVyOJqFxW036MvFxWZTCy1JbkTsv8XtvwM1MJjHZWDbO1uc7xLyulWrrdPpS9xYqeCXcFLlKEGVxubEXhpYBGzj3cpbmpavasAMO7sHdFrqyD42u3YctN30At5pmlquHMBtSbt8_hXMsBNtNLgJKn9WeETnyZMWK4GTZ6ITRScXEMYz8TxeMxvxeoUZzooxoGJZdxYa12GOIrdk5vpyzBcLmkKz9CI6vZbUfw_a0nronwBKfO4w0rZDUcEu4QvetwKWytkwLp1QEcbeyxrZk59RzY2LCpbvUppGGQWmYIA0jI3iz_sysofq4cvRHEth6JNF0hzfq-Q_TWr1xLi9o9r7UqXKIhW0hVFWmVZoqn2oRwW4nbtP6joW50PQIXq4fo9XTVU4xdfVZGJNSybHKItAbarIxoc0n05OfgT-cmmspDBUjeNtp1MWv__8f71w92RdwGw3SfDkcHT2FO4LUnPrmyF3YXs7P3DPEbsvyeTASBt-v2yr_AokLVS4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microenvironment+reconstitution+of+highly+active+Ni+single+atoms+on+oxygen-incorporated+Mo2C+for+water+splitting&rft.jtitle=Nature+communications&rft.au=Hou%2C+Mengyun&rft.au=Zheng%2C+Lirong&rft.au=Zhao%2C+Di&rft.au=Tan%2C+Xin&rft.date=2024-02-13&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-024-45533-3&rft.externalDocID=10_1038_s41467_024_45533_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon