Surface Strain Redistribution on Structured Microfibers to Enhance Sensitivity of Fiber‐Shaped Stretchable Strain Sensors
Fiber‐shaped stretchable strain sensors with small testing areas can be directly woven into textiles. This paves the way for the design of integrated wearable devices capable of obtaining real‐time mechanical feedback for various applications. However, for a simple fiber that undergoes uniform strai...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 5 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.02.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.201704229 |
Cover
Loading…
Abstract | Fiber‐shaped stretchable strain sensors with small testing areas can be directly woven into textiles. This paves the way for the design of integrated wearable devices capable of obtaining real‐time mechanical feedback for various applications. However, for a simple fiber that undergoes uniform strain distribution during deformation, it is still a big challenge to obtain high sensitivity. Herein, a new strategy, surface strain redistribution, is reported to significantly enhance the sensitivity of fiber‐shaped stretchable strain sensors. A new method of transient thermal curing is used to achieve the large‐scale fabrication of modified elastic microfibers with intrinsic microbeads. The proposed strategy is independent of the active materials utilized and can be universally applied for various active materials. The strategy used here will shift the vision of the sensitivity enhancement method from the active materials design to the mechanical design of the elastic substrate, and the proposed strategy can also be applied to nonfiber‐shaped stretchable strain sensors.
Surface strain redistribution in substrates significantly enhances sensitivity of fiber‐shaped stretchable strain sensors fabricated by thermal‐transient‐curing and Plateau–Rayleigh instability. Poly(dimethylsiloxane) (PDMS) microfibers with beads are produced in large scale. The beads regulate strain distribution. Novel sensors are well adhered to textiles for monitoring sports activities. This study opens up a new perspective of fiber‐shaped sensors and a method to enhance sensitivity. |
---|---|
AbstractList | Fiber-shaped stretchable strain sensors with small testing areas can be directly woven into textiles. This paves the way for the design of integrated wearable devices capable of obtaining real-time mechanical feedback for various applications. However, for a simple fiber that undergoes uniform strain distribution during deformation, it is still a big challenge to obtain high sensitivity. Herein, a new strategy, surface strain redistribution, is reported to significantly enhance the sensitivity of fiber-shaped stretchable strain sensors. A new method of transient thermal curing is used to achieve the large-scale fabrication of modified elastic microfibers with intrinsic microbeads. The proposed strategy is independent of the active materials utilized and can be universally applied for various active materials. The strategy used here will shift the vision of the sensitivity enhancement method from the active materials design to the mechanical design of the elastic substrate, and the proposed strategy can also be applied to nonfiber-shaped stretchable strain sensors. Fiber-shaped stretchable strain sensors with small testing areas can be directly woven into textiles. This paves the way for the design of integrated wearable devices capable of obtaining real-time mechanical feedback for various applications. However, for a simple fiber that undergoes uniform strain distribution during deformation, it is still a big challenge to obtain high sensitivity. Herein, a new strategy, surface strain redistribution, is reported to significantly enhance the sensitivity of fiber-shaped stretchable strain sensors. A new method of transient thermal curing is used to achieve the large-scale fabrication of modified elastic microfibers with intrinsic microbeads. The proposed strategy is independent of the active materials utilized and can be universally applied for various active materials. The strategy used here will shift the vision of the sensitivity enhancement method from the active materials design to the mechanical design of the elastic substrate, and the proposed strategy can also be applied to nonfiber-shaped stretchable strain sensors.Fiber-shaped stretchable strain sensors with small testing areas can be directly woven into textiles. This paves the way for the design of integrated wearable devices capable of obtaining real-time mechanical feedback for various applications. However, for a simple fiber that undergoes uniform strain distribution during deformation, it is still a big challenge to obtain high sensitivity. Herein, a new strategy, surface strain redistribution, is reported to significantly enhance the sensitivity of fiber-shaped stretchable strain sensors. A new method of transient thermal curing is used to achieve the large-scale fabrication of modified elastic microfibers with intrinsic microbeads. The proposed strategy is independent of the active materials utilized and can be universally applied for various active materials. The strategy used here will shift the vision of the sensitivity enhancement method from the active materials design to the mechanical design of the elastic substrate, and the proposed strategy can also be applied to nonfiber-shaped stretchable strain sensors. Fiber‐shaped stretchable strain sensors with small testing areas can be directly woven into textiles. This paves the way for the design of integrated wearable devices capable of obtaining real‐time mechanical feedback for various applications. However, for a simple fiber that undergoes uniform strain distribution during deformation, it is still a big challenge to obtain high sensitivity. Herein, a new strategy, surface strain redistribution, is reported to significantly enhance the sensitivity of fiber‐shaped stretchable strain sensors. A new method of transient thermal curing is used to achieve the large‐scale fabrication of modified elastic microfibers with intrinsic microbeads. The proposed strategy is independent of the active materials utilized and can be universally applied for various active materials. The strategy used here will shift the vision of the sensitivity enhancement method from the active materials design to the mechanical design of the elastic substrate, and the proposed strategy can also be applied to nonfiber‐shaped stretchable strain sensors. Surface strain redistribution in substrates significantly enhances sensitivity of fiber‐shaped stretchable strain sensors fabricated by thermal‐transient‐curing and Plateau–Rayleigh instability. Poly(dimethylsiloxane) (PDMS) microfibers with beads are produced in large scale. The beads regulate strain distribution. Novel sensors are well adhered to textiles for monitoring sports activities. This study opens up a new perspective of fiber‐shaped sensors and a method to enhance sensitivity. |
Author | Chen, Xiaodong Liu, Zhiyuan Liedberg, Bo Jiang, Ying Loh, Xian Jun Hu, Guoyu Qi, Dianpeng Chen, Geng Luo, Yifei Wang, Han |
Author_xml | – sequence: 1 givenname: Zhiyuan surname: Liu fullname: Liu, Zhiyuan organization: Nanyang Technological University – sequence: 2 givenname: Dianpeng surname: Qi fullname: Qi, Dianpeng organization: Nanyang Technological University – sequence: 3 givenname: Guoyu surname: Hu fullname: Hu, Guoyu organization: Nanyang Technological University – sequence: 4 givenname: Han surname: Wang fullname: Wang, Han organization: Nanyang Technological University – sequence: 5 givenname: Ying surname: Jiang fullname: Jiang, Ying organization: Nanyang Technological University – sequence: 6 givenname: Geng surname: Chen fullname: Chen, Geng organization: Nanyang Technological University – sequence: 7 givenname: Yifei surname: Luo fullname: Luo, Yifei organization: Technology and Research (ASTAR) – sequence: 8 givenname: Xian Jun surname: Loh fullname: Loh, Xian Jun organization: Technology and Research (ASTAR) – sequence: 9 givenname: Bo surname: Liedberg fullname: Liedberg, Bo organization: Nanyang Technological University – sequence: 10 givenname: Xiaodong orcidid: 0000-0002-3312-1664 surname: Chen fullname: Chen, Xiaodong email: chenxd@ntu.edu.sg organization: Nanyang Technological University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29226515$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1qGzEURkVIaRy32yzDQDbdjHv1N7aWJk3aQkIhTteDNJKwwlhyJE2L6aaP0Gfsk1SDUxcCoSDQQufoXr7vFB374A1CZxhmGIC8l3ojZwTwHBgh4ghNMCe4ZiD4MZqAoLwWDVucoNOUHgBANNC8RidEENJwzCfox2qIVnamWuUona_ujHYpR6eG7IKvyikPQ5eHaHR167oYrFMmpiqH6sqvpR9V45PL7pvLuyrY6noEfv_8tVrLbZGKb3K3lqo_DBmFENMb9MrKPpm3T_cUfb2-ur_8VN98-fj5cnlTdxwvRG1Vo7RmIIWw0jZAOeBOgMbcSMYVZgQ4ZpRTTS3lCpgycyBA8EJLKvSCTtG7_b_bGB4Hk3K7cakzfS-9CUNqsZhzLhgXoqAXz9CHMERftiuUoFCCLgtM0fkTNaiN0e02uo2Mu_ZvrAWY7YGSV0rR2AOCoR17a8fe2kNvRWDPhM5lOVYwJta_rIm99t31ZvefIe3yw-3yn_sHHdquBg |
CitedBy_id | crossref_primary_10_1002_pc_25635 crossref_primary_10_1021_acsami_1c09879 crossref_primary_10_1021_acs_chemmater_0c03392 crossref_primary_10_1007_s11706_021_0537_9 crossref_primary_10_1021_acsami_8b20902 crossref_primary_10_20517_ss_2023_30 crossref_primary_10_1021_acsapm_1c00187 crossref_primary_10_1039_D0TC02930K crossref_primary_10_1021_acsami_2c14642 crossref_primary_10_1021_acs_chemmater_9b02274 crossref_primary_10_1039_D3SM01651J crossref_primary_10_1002_adma_201903733 crossref_primary_10_1002_smll_202401565 crossref_primary_10_1002_admt_201800424 crossref_primary_10_1021_acsami_1c18233 crossref_primary_10_1002_admt_202100437 crossref_primary_10_1016_j_compositesb_2019_107683 crossref_primary_10_1063_1_5103274 crossref_primary_10_1002_smll_202405000 crossref_primary_10_1002_smll_202410148 crossref_primary_10_1002_advs_202203808 crossref_primary_10_1038_s41586_020_2892_6 crossref_primary_10_1002_aisy_202100263 crossref_primary_10_1002_sus2_207 crossref_primary_10_1016_j_nanoen_2023_109142 crossref_primary_10_3390_mi14010062 crossref_primary_10_1002_adma_202003155 crossref_primary_10_1149_1945_7111_ab7117 crossref_primary_10_1088_1361_6439_acf93f crossref_primary_10_3390_polym14122373 crossref_primary_10_1007_s42235_025_00667_y crossref_primary_10_1021_acsami_8b14365 crossref_primary_10_1016_j_talanta_2020_120869 crossref_primary_10_1016_j_nanoen_2021_106754 crossref_primary_10_1007_s40820_022_00806_8 crossref_primary_10_3390_polym14112219 crossref_primary_10_1021_acsami_3c00419 crossref_primary_10_1039_C8CS00609A crossref_primary_10_3390_polym11030404 crossref_primary_10_1016_j_cej_2019_123036 crossref_primary_10_1016_j_ijbiomac_2023_126550 crossref_primary_10_1021_acsami_3c14396 crossref_primary_10_1039_D3NJ01106B crossref_primary_10_1002_admt_202000008 crossref_primary_10_1038_s41928_022_00868_x crossref_primary_10_1002_adfm_202214265 crossref_primary_10_1021_acsami_9b03204 crossref_primary_10_1002_admt_202101544 crossref_primary_10_1021_acsanm_8b01926 crossref_primary_10_1039_D1MH00538C crossref_primary_10_1016_j_bios_2020_112460 crossref_primary_10_1039_D1TA08521B crossref_primary_10_1016_j_compscitech_2022_109565 crossref_primary_10_1039_D2TA04261D crossref_primary_10_1039_C8CS00801A crossref_primary_10_3390_s21113648 crossref_primary_10_32604_cmc_2022_029433 crossref_primary_10_1021_acsami_9b14476 crossref_primary_10_1002_adfm_202403918 crossref_primary_10_1021_acsami_1c03615 crossref_primary_10_3390_polym11040666 crossref_primary_10_1002_adma_202415268 crossref_primary_10_1002_adma_202102332 crossref_primary_10_1039_C8TB01063C crossref_primary_10_1016_j_compscitech_2021_109111 crossref_primary_10_1002_anie_201909965 crossref_primary_10_1002_adfm_201902898 crossref_primary_10_1016_j_nanoen_2020_104814 crossref_primary_10_1021_acs_nanolett_5c00294 crossref_primary_10_1016_j_mattod_2019_11_006 crossref_primary_10_1002_adfm_201801683 crossref_primary_10_1002_adfm_201905808 crossref_primary_10_1016_j_jpowsour_2021_230142 crossref_primary_10_3390_textiles2010005 crossref_primary_10_1088_2053_1583_abafeb crossref_primary_10_1039_D2NJ03297J crossref_primary_10_1002_adfm_202003214 crossref_primary_10_1364_OL_397213 crossref_primary_10_1002_admt_201900880 crossref_primary_10_1021_acsami_0c03996 crossref_primary_10_1002_eem2_12041 crossref_primary_10_1016_j_compositesb_2021_108641 crossref_primary_10_1039_D4NA00770K crossref_primary_10_1002_adma_201902434 crossref_primary_10_1016_j_cej_2019_123912 crossref_primary_10_1002_ange_201909965 crossref_primary_10_1016_j_matt_2023_08_006 crossref_primary_10_1016_j_cej_2024_158365 crossref_primary_10_1016_j_pmatsci_2019_100617 crossref_primary_10_1021_acsami_8b08166 crossref_primary_10_1016_j_compstruct_2022_115214 crossref_primary_10_1002_aelm_201800509 crossref_primary_10_1002_adma_201802348 crossref_primary_10_1002_admt_202201714 crossref_primary_10_1039_D0QM00745E crossref_primary_10_1021_acs_accounts_8b00499 crossref_primary_10_1021_acsami_8b15809 crossref_primary_10_1002_adma_201902301 crossref_primary_10_1017_pma_2024_3 crossref_primary_10_1039_C8TC02360C crossref_primary_10_1021_acsami_1c10975 crossref_primary_10_1109_COMST_2022_3187138 crossref_primary_10_1021_acsami_4c12429 crossref_primary_10_1039_D2CS00837H crossref_primary_10_1016_j_polymer_2023_126552 crossref_primary_10_1016_j_mattod_2020_02_005 crossref_primary_10_1002_aisy_202000113 crossref_primary_10_3390_app11031235 crossref_primary_10_1038_s41928_022_00914_8 crossref_primary_10_1021_acsnano_2c06482 crossref_primary_10_1002_adfm_201903732 crossref_primary_10_1021_acs_nanolett_2c01967 crossref_primary_10_1039_D1MH00736J crossref_primary_10_1002_admt_202101190 crossref_primary_10_1002_smll_201906270 crossref_primary_10_1002_adma_201905522 crossref_primary_10_1002_adma_202106212 crossref_primary_10_1007_s10118_021_2560_1 crossref_primary_10_1002_adma_202003453 crossref_primary_10_1109_LPT_2018_2889464 crossref_primary_10_1039_C9TC05653J crossref_primary_10_1007_s10118_024_3232_3 crossref_primary_10_1002_admt_202000550 crossref_primary_10_1002_mame_202200034 crossref_primary_10_1007_s40843_022_1986_5 crossref_primary_10_1021_acssensors_0c00870 crossref_primary_10_1016_j_compscitech_2022_109714 crossref_primary_10_1016_j_cej_2022_136317 crossref_primary_10_1177_00405175221113087 crossref_primary_10_1039_D0MH01539C crossref_primary_10_1002_marc_201900469 crossref_primary_10_1002_smll_201804805 crossref_primary_10_1002_adma_202212189 crossref_primary_10_1016_j_compositesb_2018_12_107 crossref_primary_10_1016_j_compositesb_2021_108674 crossref_primary_10_1002_adma_201904664 crossref_primary_10_1016_j_cej_2021_128418 crossref_primary_10_1002_smll_202406739 crossref_primary_10_1002_aenm_202101443 crossref_primary_10_1002_smll_201902691 crossref_primary_10_1016_j_jcis_2023_04_014 crossref_primary_10_1002_adfm_202204731 crossref_primary_10_1016_j_optcom_2023_129693 crossref_primary_10_1002_admt_201900442 crossref_primary_10_3390_nano10101980 crossref_primary_10_1002_smll_202104706 crossref_primary_10_1021_acsami_2c04773 crossref_primary_10_1021_acsami_9b20612 crossref_primary_10_1109_LRA_2021_3116697 crossref_primary_10_1002_adma_202001130 crossref_primary_10_1002_adma_201803637 crossref_primary_10_1016_j_nanoen_2018_10_049 crossref_primary_10_1002_admt_201900309 crossref_primary_10_1021_acsnano_1c09288 crossref_primary_10_1021_acsami_0c13427 crossref_primary_10_1021_acsami_9b09815 crossref_primary_10_1021_acsami_0c21372 crossref_primary_10_26599_NR_2025_94906990 crossref_primary_10_1039_C9RA01147A crossref_primary_10_1021_acsapm_2c01199 crossref_primary_10_1021_acsami_9b20964 crossref_primary_10_1039_D2MH00470D crossref_primary_10_1021_acsapm_1c01403 crossref_primary_10_1007_s42765_024_00445_1 crossref_primary_10_1021_acssensors_4c01097 crossref_primary_10_1039_C8CS00561C crossref_primary_10_1002_aisy_202000039 crossref_primary_10_1021_acsnano_0c04730 crossref_primary_10_1016_j_cej_2022_138088 crossref_primary_10_1021_acsami_9b10937 crossref_primary_10_1126_science_abh4357 crossref_primary_10_1007_s40843_018_9266_8 crossref_primary_10_1126_sciadv_abg4041 crossref_primary_10_1016_j_cej_2023_145075 crossref_primary_10_3390_mi15070890 crossref_primary_10_1002_adfm_202300517 crossref_primary_10_1002_adma_202305615 crossref_primary_10_1002_adma_202413929 crossref_primary_10_1038_s41528_022_00198_0 crossref_primary_10_1016_j_apmt_2022_101635 crossref_primary_10_1039_D0MH00716A crossref_primary_10_1088_2058_8585_ac20bf crossref_primary_10_1002_smll_201905707 crossref_primary_10_1016_j_cej_2021_133488 crossref_primary_10_1016_j_cej_2021_133005 crossref_primary_10_1002_advs_201800340 crossref_primary_10_1007_s40843_021_2023_x crossref_primary_10_1016_j_carbon_2019_02_060 crossref_primary_10_1038_s41528_023_00272_1 crossref_primary_10_1021_acsami_1c06295 crossref_primary_10_1039_C8TC04652B crossref_primary_10_1039_D1NR08380E crossref_primary_10_1002_adma_202001903 crossref_primary_10_1002_advs_202002009 crossref_primary_10_3390_s23187905 crossref_primary_10_1039_C8TC02702A crossref_primary_10_1002_smll_202310612 crossref_primary_10_1021_acsnano_8b09651 crossref_primary_10_1039_C9TA04352G crossref_primary_10_1093_nsr_nwae158 crossref_primary_10_1088_2058_8585_aae8c0 crossref_primary_10_1016_j_cej_2022_135399 crossref_primary_10_1016_j_compscitech_2020_108011 crossref_primary_10_1021_acsapm_1c00805 crossref_primary_10_1038_s41467_022_32361_6 crossref_primary_10_1002_aelm_202001242 crossref_primary_10_1021_jacs_4c11866 crossref_primary_10_1016_j_carbon_2023_118379 crossref_primary_10_1109_JSEN_2023_3310114 crossref_primary_10_1038_s41528_024_00301_7 crossref_primary_10_1016_j_compositesa_2024_108643 crossref_primary_10_1002_smll_201803411 crossref_primary_10_1039_C8TA03262A crossref_primary_10_1039_D3MA00013C crossref_primary_10_1016_j_carbon_2019_04_019 crossref_primary_10_3390_nano12050882 crossref_primary_10_1002_adma_202420322 crossref_primary_10_1039_D0MH00280A crossref_primary_10_1002_adma_201901971 crossref_primary_10_1002_sstr_202100131 crossref_primary_10_1002_aelm_201800462 crossref_primary_10_1002_smll_201804991 crossref_primary_10_1007_s11814_025_00422_3 crossref_primary_10_1016_j_polymer_2020_123340 crossref_primary_10_1002_aenm_201804005 crossref_primary_10_1039_D0TA05129B crossref_primary_10_1002_aisy_202000194 crossref_primary_10_1007_s40145_021_0509_7 |
Cites_doi | 10.1038/ncomms6898 10.1039/C6TC00251J 10.1039/C4NR03295K 10.1038/srep35153 10.1002/advs.201600190 10.1557/mrs.2017.7 10.1021/am509087u 10.1021/nn501204t 10.1002/adma.201500582 10.1002/adfm.201602619 10.1021/acsnano.5b01835 10.1021/am502454t 10.1038/nature14002 10.1039/c3ta11617d 10.1002/adfm.201404087 10.1038/nnano.2011.36 10.1002/cphc.201402810 10.1038/srep03048 10.1002/adma.201504239 10.1063/1.1565683 10.1016/S0032-3861(99)00068-3 10.1038/nnano.2011.184 10.1002/adma.201500072 10.1002/adma.201603160 10.1021/acsami.5b00695 10.1038/srep00870 10.1038/nphys1682 10.1021/acs.nanolett.5b01505 10.1002/adma.201304742 10.1002/pen.20304 10.1002/adfm.201002061 10.1002/smtd.201600029 10.1002/adma.201103406 10.1002/adma.201601572 10.1002/app.25907 10.1039/C5NR08618C 10.1017/jfm.2014.321 10.1002/adma.201503558 10.1021/acsami.5b12588 10.1002/adma.201400334 10.1021/acsami.6b08172 10.1021/acsnano.5b01613 10.1039/C6NR06804A 10.1021/am4026032 10.1039/c4nr02064b 10.1002/adfm.201504755 10.1017/jfm.2013.540 10.1002/adma.201600405 10.1002/admt.201600136 10.1002/adma.201503288 10.1002/adfm.201202405 10.1002/adma.201603382 10.1002/smll.201600487 10.1021/acsami.5b08404 10.1021/acsami.5b04892 10.1021/acsnano.6b03813 |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201704229 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 29226515 10_1002_adma_201704229 ADMA201704229 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Singapore Ministry of Education funderid: MOE2015‐T2‐2‐060 – fundername: Prime Minister's Office – fundername: NRF Investigatorship funderid: NRF2016NRF‐NRFI001‐21 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c5189-fb6bdd40a99faf603501c90d15ea45b1420514353d3f35b04be7020218da39d83 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 19:25:28 EDT 2025 Sun Jul 13 04:24:28 EDT 2025 Thu Apr 03 07:06:35 EDT 2025 Thu Apr 24 23:06:28 EDT 2025 Tue Jul 01 00:44:37 EDT 2025 Wed Jan 22 17:01:16 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | beads fiber-shaped sensors enhanced sensitivity stretchable strain sensors strain redistribution |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5189-fb6bdd40a99faf603501c90d15ea45b1420514353d3f35b04be7020218da39d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3312-1664 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.201704229 |
PMID | 29226515 |
PQID | 1993001760 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1975594599 proquest_journals_1993001760 pubmed_primary_29226515 crossref_primary_10_1002_adma_201704229 crossref_citationtrail_10_1002_adma_201704229 wiley_primary_10_1002_adma_201704229_ADMA201704229 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 1, 2018 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: February 1, 2018 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 15 2017; 42 2017; 1 2013; 3 2015; 16 2014; 516 2013; 1 2007; 106 2017; 27 2013; 23 2016; 10 2014; 26 1999; 40 2015; 9 2011; 6 2013; 5 2015; 7 2014; 752 2005; 45 2016; 12 2016; 4 2016; 6 2015; 25 2014; 5 2015; 28 2012; 2 2015; 27 2016; 1 2016; 2 2013; 737 2011; 21 2011; 23 2003; 82 2016; 28 2014; 8 2016; 26 2014; 6 2016; 8 2010; 6 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_57_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_55_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_51_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 Yeo J. C. (e_1_2_5_17_1) 2016; 2 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_56_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_54_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 e_1_2_5_31_1 e_1_2_5_52_1 e_1_2_5_50_1 |
References_xml | – volume: 5 start-page: 8766 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 2944 year: 2016 publication-title: Nanoscale – volume: 27 start-page: 2440 year: 2015 publication-title: Adv. Mater. – volume: 28 start-page: 4998 year: 2016 publication-title: Adv. Mater. – volume: 25 start-page: 1798 year: 2015 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 5898 year: 2014 publication-title: Nat. Commun. – volume: 6 start-page: 35153 year: 2016 publication-title: Sci. Rep. – volume: 3 start-page: 3048 year: 2013 publication-title: Sci. Rep. – volume: 752 start-page: 66 year: 2014 publication-title: J. Fluid Mech. – volume: 26 start-page: 6307 year: 2014 publication-title: Adv. Mater. – volume: 6 start-page: 296 year: 2011 publication-title: Nat. Nanotechnol. – volume: 40 start-page: 4585 year: 1999 publication-title: Polymer – volume: 4 start-page: 5642 year: 2016 publication-title: J. Mater. Chem. C – volume: 6 start-page: 7703 year: 2014 publication-title: Nanoscale – volume: 9 start-page: 6252 year: 2015 publication-title: ACS Nano – volume: 23 start-page: 2308 year: 2013 publication-title: Adv. Funct. Mater. – volume: 16 start-page: 1155 year: 2015 publication-title: ChemPhysChem – volume: 9 start-page: 8801 year: 2015 publication-title: ACS Nano – volume: 6 start-page: 11932 year: 2014 publication-title: Nanoscale – volume: 8 start-page: 5154 year: 2014 publication-title: ACS Nano – volume: 28 start-page: 10244 year: 2016 publication-title: Adv. Mater. – volume: 42 start-page: 103 year: 2017 publication-title: MRS Bull. – volume: 26 start-page: 2022 year: 2014 publication-title: Adv. Mater. – volume: 10 start-page: 7901 year: 2016 publication-title: ACS Nano – volume: 106 start-page: 475 year: 2007 publication-title: J. Appl. Polym. Sci. – volume: 516 start-page: 222 year: 2014 publication-title: Nature – volume: 4 start-page: 1600190 year: 2016 publication-title: Adv. Sci. – volume: 21 start-page: 1398 year: 2011 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 870 year: 2012 publication-title: Sci. Rep. – volume: 1 start-page: 1600029 year: 2017 publication-title: Small Methods – volume: 12 start-page: 5058 year: 2016 publication-title: Small – volume: 7 start-page: 6317 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 19352 year: 2016 publication-title: Nanoscale – volume: 45 start-page: 704 year: 2005 publication-title: Polym. Eng. Sci. – volume: 2 start-page: 2016 year: 2016 publication-title: Adv. Mater. Technol. – volume: 15 start-page: 5240 year: 2015 publication-title: Nano Lett. – volume: 8 start-page: 5618 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 27 start-page: 1603382 year: 2017 publication-title: Adv. Mater. – volume: 737 start-page: 232 year: 2013 publication-title: J. Fluid Mech. – volume: 6 start-page: 13487 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 27 start-page: 7365 year: 2015 publication-title: Adv. Mater. – volume: 7 start-page: 21150 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 26 start-page: 1678 year: 2016 publication-title: Adv. Funct. Mater. – volume: 27 start-page: 6230 year: 2015 publication-title: Adv. Mater. – volume: 1 start-page: 1600136 year: 2016 publication-title: Adv. Mater. Technol. – volume: 1 start-page: 8363 year: 2013 publication-title: J. Mater. Chem. A – volume: 7 start-page: 27562 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 26 start-page: 7614 year: 2016 publication-title: Adv. Funct. Mater. – volume: 28 start-page: 722 year: 2015 publication-title: Adv. Mater. – volume: 28 start-page: 6640 year: 2016 publication-title: Adv. Mater. – volume: 6 start-page: 625 year: 2010 publication-title: Nat. Phys. – volume: 23 start-page: 5440 year: 2011 publication-title: Adv. Mater. – volume: 27 start-page: 3411 year: 2015 publication-title: Adv. Mater. – volume: 82 start-page: 2404 year: 2003 publication-title: Appl. Phys. Lett. – volume: 7 start-page: 4463 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 788 year: 2011 publication-title: Nat. Nanotechnol. – volume: 8 start-page: 26458 year: 2016 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_5_1_1 doi: 10.1038/ncomms6898 – ident: e_1_2_5_28_1 doi: 10.1039/C6TC00251J – ident: e_1_2_5_37_1 doi: 10.1039/C4NR03295K – ident: e_1_2_5_40_1 doi: 10.1038/srep35153 – ident: e_1_2_5_7_1 doi: 10.1002/advs.201600190 – ident: e_1_2_5_5_1 doi: 10.1557/mrs.2017.7 – ident: e_1_2_5_12_1 doi: 10.1021/am509087u – ident: e_1_2_5_33_1 doi: 10.1021/nn501204t – ident: e_1_2_5_27_1 doi: 10.1002/adma.201500582 – ident: e_1_2_5_30_1 doi: 10.1002/adfm.201602619 – ident: e_1_2_5_32_1 doi: 10.1021/acsnano.5b01835 – ident: e_1_2_5_56_1 doi: 10.1021/am502454t – ident: e_1_2_5_38_1 doi: 10.1038/nature14002 – ident: e_1_2_5_51_1 doi: 10.1039/c3ta11617d – ident: e_1_2_5_14_1 doi: 10.1002/adfm.201404087 – ident: e_1_2_5_8_1 doi: 10.1038/nnano.2011.36 – ident: e_1_2_5_4_1 doi: 10.1002/cphc.201402810 – ident: e_1_2_5_22_1 doi: 10.1038/srep03048 – ident: e_1_2_5_41_1 doi: 10.1002/adma.201504239 – ident: e_1_2_5_57_1 doi: 10.1063/1.1565683 – ident: e_1_2_5_49_1 doi: 10.1016/S0032-3861(99)00068-3 – ident: e_1_2_5_23_1 doi: 10.1038/nnano.2011.184 – ident: e_1_2_5_43_1 doi: 10.1002/adma.201500072 – ident: e_1_2_5_13_1 doi: 10.1002/adma.201603160 – ident: e_1_2_5_35_1 doi: 10.1021/acsami.5b00695 – ident: e_1_2_5_46_1 doi: 10.1038/srep00870 – ident: e_1_2_5_55_1 doi: 10.1038/nphys1682 – volume: 2 start-page: 2016 year: 2016 ident: e_1_2_5_17_1 publication-title: Adv. Mater. Technol. – ident: e_1_2_5_2_1 doi: 10.1021/acs.nanolett.5b01505 – ident: e_1_2_5_24_1 doi: 10.1002/adma.201304742 – ident: e_1_2_5_48_1 doi: 10.1002/pen.20304 – ident: e_1_2_5_52_1 doi: 10.1002/adfm.201002061 – ident: e_1_2_5_6_1 doi: 10.1002/smtd.201600029 – ident: e_1_2_5_26_1 doi: 10.1002/adma.201103406 – ident: e_1_2_5_21_1 doi: 10.1002/adma.201601572 – ident: e_1_2_5_47_1 doi: 10.1002/app.25907 – ident: e_1_2_5_31_1 doi: 10.1039/C5NR08618C – ident: e_1_2_5_54_1 doi: 10.1017/jfm.2014.321 – ident: e_1_2_5_18_1 doi: 10.1002/adma.201503558 – ident: e_1_2_5_16_1 doi: 10.1021/acsami.5b12588 – ident: e_1_2_5_25_1 doi: 10.1002/adma.201400334 – ident: e_1_2_5_29_1 doi: 10.1021/acsami.6b08172 – ident: e_1_2_5_9_1 doi: 10.1021/acsnano.5b01613 – ident: e_1_2_5_15_1 doi: 10.1039/C6NR06804A – ident: e_1_2_5_36_1 doi: 10.1021/am4026032 – ident: e_1_2_5_50_1 doi: 10.1039/c4nr02064b – ident: e_1_2_5_3_1 doi: 10.1002/adfm.201504755 – ident: e_1_2_5_53_1 doi: 10.1017/jfm.2013.540 – ident: e_1_2_5_42_1 doi: 10.1002/adma.201600405 – ident: e_1_2_5_44_1 doi: 10.1002/admt.201600136 – ident: e_1_2_5_10_1 doi: 10.1002/adma.201503288 – ident: e_1_2_5_45_1 doi: 10.1002/adfm.201202405 – ident: e_1_2_5_11_1 doi: 10.1002/adma.201603382 – ident: e_1_2_5_20_1 doi: 10.1002/smll.201600487 – ident: e_1_2_5_34_1 doi: 10.1021/acsami.5b08404 – ident: e_1_2_5_39_1 doi: 10.1021/acsami.5b04892 – ident: e_1_2_5_19_1 doi: 10.1021/acsnano.6b03813 |
SSID | ssj0009606 |
Score | 2.6296432 |
Snippet | Fiber‐shaped stretchable strain sensors with small testing areas can be directly woven into textiles. This paves the way for the design of integrated wearable... Fiber-shaped stretchable strain sensors with small testing areas can be directly woven into textiles. This paves the way for the design of integrated wearable... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | beads Deformation enhanced sensitivity fiber‐shaped sensors Materials science Microfibers Nanoparticles Sensitivity enhancement Sensors Strain distribution strain redistribution Strategy stretchable strain sensors Substrates Textiles |
Title | Surface Strain Redistribution on Structured Microfibers to Enhance Sensitivity of Fiber‐Shaped Stretchable Strain Sensors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201704229 https://www.ncbi.nlm.nih.gov/pubmed/29226515 https://www.proquest.com/docview/1993001760 https://www.proquest.com/docview/1975594599 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iSQ--H-uLCIKn7rZN0jbHRV0WYT1YBW8laRIWlFb2cdGLP8Hf6C8xk26rq4ig0EJDkyZNZ5ovycw3CJ34QZ4zQrlnpAo9Kg33eEICmySGhlQqGoA38uAq6t_Syzt298mLv-KHaBbcQDPc_xoUXMhx54M0VCjHGxTEwGIFHnxgsAWo6PqDPwrguSPbI8zjEU1q1kY_7MwXnx-VvkHNeeTqhp7eKhJ1oyuLk_v2dCLb-dMXPsf_vNUaWpnhUtytBGkdLehiAy1_YivcRM_pdGRErnHq4krga3DpbQJmYXukjox2OtIKD8DQz4A5yhhPSnxRDEG8cAr28lXAClwa3IMMby-v6VA82kKwRW6lCLy56kqgQDkab6Hb3sXNWd-bxW7wchYk8OkjqRT1BedGmMjtX-bcVwHTgjJYefIdVCOKGMKkT6WOLXK1gEMJwlVCttFiURZ6F-GQwzxR0TzghtpTMmC41ITGsUxsN7WQV3-7LJ8Rm0MTH7KKkjnMoFOzplNb6LTJ_1hRevyY86AWhWym2uMMLB5hbI_8FjpublulhJ0WUehyCnliO1OjjNtH7FQi1FQVcot4LYpsodAJwi9tyLrng26T2vtLoX20ZK-Tytb8AC1aWdCHFkpN5JFTl3fjcBWJ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOFAOLY9Cl0drJCROgSS2k_i4alktLcuBgMQtimNbSKAE7eNSLvyE_kZ-CR5nE7pFFRJIySGJHTv2TPzZnvkGYN8PioJTJjwjVegxaYQnEhrYS2pYyKRiAXojD86i_iX7ecUba0L0han5IdoFN9QM979GBccF6aNn1tBcOeKgIEYaKzEPixjW282qzp8ZpBCgO7o9yj0RsaThbfTDo9n8s-PSC7A5i13d4NP7BLKpdm1zcnM4GcvD4vc_jI7v-q4V-DiFpqRby9IqzOlyDZb_Iixch_t0MjR5oUnqQkuQc_TqbWNmEXukjo92MtSKDNDWz6BFyoiMK3JcXqOEkRRN5uuYFaQypIcJHh_-pNf5nc2Eu-RWkNChqykEM1TD0We47B1ffO970_ANXsGDBHs_kkoxPxfC5CZyW5iF8FXAdc44Lj75Dq1RRQ3l0mdSxxa8WsyhcipUQjdgoaxK_QVIKHCqqFgRCMPsKTmSXGrK4lgmtpk64DWdlxVTbnOs4m1WszKHGTZq1jZqBw7a9Hc1q8d_U-40spBNtXuUodEjDu-R34G99rHVS9xsyUtdTTBNbCdrjAv7is1ahtqiQmFBrwWSHQidJLxSh6z7Y9Btr7bekukbLPUvBqfZ6cnZr234YO8nten5DixYudC7FlmN5VenO081BBmk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkVA58OgDFkpxJaSe0iaxncTHFburFrpV1VCpt8iObVUCJat9XODCT-A38kvwOJtsF1QhFSk5JJmJHXsm_myPPwO8D6Oy5JSJwCodB0xZEYiMRu6SWhYzpVmEq5HH58nJFft4za9vreJv-CG6ATf0DP-_RgefaHu8Ig2V2vMGRSmyWImH8IglYYZ2PbhcEUghPvdse5QHImFZS9sYxsfr-uvN0l9Ycx26-rZn9Axkm-sm5OTL0WKujspvfxA6_s9nPYenS2BK-o0lvYAHptqCJ7foCrfhe76YWlkakvuNJcglruntdswi7sg9G-1iajQZY6SfxXiUGZnXZFjdoH2RHAPmmx0rSG3JCAV-_fiZ38iJU8I5cmdGuJyrTQQV6ulsB65Gw88fToLl5g1ByaMM6z5RWrNQCmGlTfwEZilCHXEjGcehp9BjNaqppVyFTJnUQVeHOLSkQmd0FzaqujKvgMQCO4qalZGwzJ2KI8WloSxNVeaKqQdBW3dFuWQ2xyx-LRpO5rjAQi26Qu3BYSc_aTg97pTca02hWPr2rMCQR2zck7AHB91j55U41SIrUy9QJnVdNcaFe8XLxoS6pGLhIK-DkT2IvSH8Iw9FfzDud1ev76P0Dh5fDEbF2en5pzew6W5nTdz5Hmw4szBvHayaq33vOb8B6o8YXA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+Strain+Redistribution+on+Structured+Microfibers+to+Enhance+Sensitivity+of+Fiber%E2%80%90Shaped+Stretchable+Strain+Sensors&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Liu%2C+Zhiyuan&rft.au=Dianpeng+Qi&rft.au=Hu%2C+Guoyu&rft.au=Wang%2C+Han&rft.date=2018-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=5&rft_id=info:doi/10.1002%2Fadma.201704229&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |