Surface Strain Redistribution on Structured Microfibers to Enhance Sensitivity of Fiber‐Shaped Stretchable Strain Sensors

Fiber‐shaped stretchable strain sensors with small testing areas can be directly woven into textiles. This paves the way for the design of integrated wearable devices capable of obtaining real‐time mechanical feedback for various applications. However, for a simple fiber that undergoes uniform strai...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 5
Main Authors Liu, Zhiyuan, Qi, Dianpeng, Hu, Guoyu, Wang, Han, Jiang, Ying, Chen, Geng, Luo, Yifei, Loh, Xian Jun, Liedberg, Bo, Chen, Xiaodong
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.02.2018
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.201704229

Cover

Loading…
Abstract Fiber‐shaped stretchable strain sensors with small testing areas can be directly woven into textiles. This paves the way for the design of integrated wearable devices capable of obtaining real‐time mechanical feedback for various applications. However, for a simple fiber that undergoes uniform strain distribution during deformation, it is still a big challenge to obtain high sensitivity. Herein, a new strategy, surface strain redistribution, is reported to significantly enhance the sensitivity of fiber‐shaped stretchable strain sensors. A new method of transient thermal curing is used to achieve the large‐scale fabrication of modified elastic microfibers with intrinsic microbeads. The proposed strategy is independent of the active materials utilized and can be universally applied for various active materials. The strategy used here will shift the vision of the sensitivity enhancement method from the active materials design to the mechanical design of the elastic substrate, and the proposed strategy can also be applied to nonfiber‐shaped stretchable strain sensors. Surface strain redistribution in substrates significantly enhances sensitivity of fiber‐shaped stretchable strain sensors fabricated by thermal‐transient‐curing and Plateau–Rayleigh instability. Poly(dimethylsiloxane) (PDMS) microfibers with beads are produced in large scale. The beads regulate strain distribution. Novel sensors are well adhered to textiles for monitoring sports activities. This study opens up a new perspective of fiber‐shaped sensors and a method to enhance sensitivity.
AbstractList Fiber-shaped stretchable strain sensors with small testing areas can be directly woven into textiles. This paves the way for the design of integrated wearable devices capable of obtaining real-time mechanical feedback for various applications. However, for a simple fiber that undergoes uniform strain distribution during deformation, it is still a big challenge to obtain high sensitivity. Herein, a new strategy, surface strain redistribution, is reported to significantly enhance the sensitivity of fiber-shaped stretchable strain sensors. A new method of transient thermal curing is used to achieve the large-scale fabrication of modified elastic microfibers with intrinsic microbeads. The proposed strategy is independent of the active materials utilized and can be universally applied for various active materials. The strategy used here will shift the vision of the sensitivity enhancement method from the active materials design to the mechanical design of the elastic substrate, and the proposed strategy can also be applied to nonfiber-shaped stretchable strain sensors.
Fiber-shaped stretchable strain sensors with small testing areas can be directly woven into textiles. This paves the way for the design of integrated wearable devices capable of obtaining real-time mechanical feedback for various applications. However, for a simple fiber that undergoes uniform strain distribution during deformation, it is still a big challenge to obtain high sensitivity. Herein, a new strategy, surface strain redistribution, is reported to significantly enhance the sensitivity of fiber-shaped stretchable strain sensors. A new method of transient thermal curing is used to achieve the large-scale fabrication of modified elastic microfibers with intrinsic microbeads. The proposed strategy is independent of the active materials utilized and can be universally applied for various active materials. The strategy used here will shift the vision of the sensitivity enhancement method from the active materials design to the mechanical design of the elastic substrate, and the proposed strategy can also be applied to nonfiber-shaped stretchable strain sensors.Fiber-shaped stretchable strain sensors with small testing areas can be directly woven into textiles. This paves the way for the design of integrated wearable devices capable of obtaining real-time mechanical feedback for various applications. However, for a simple fiber that undergoes uniform strain distribution during deformation, it is still a big challenge to obtain high sensitivity. Herein, a new strategy, surface strain redistribution, is reported to significantly enhance the sensitivity of fiber-shaped stretchable strain sensors. A new method of transient thermal curing is used to achieve the large-scale fabrication of modified elastic microfibers with intrinsic microbeads. The proposed strategy is independent of the active materials utilized and can be universally applied for various active materials. The strategy used here will shift the vision of the sensitivity enhancement method from the active materials design to the mechanical design of the elastic substrate, and the proposed strategy can also be applied to nonfiber-shaped stretchable strain sensors.
Fiber‐shaped stretchable strain sensors with small testing areas can be directly woven into textiles. This paves the way for the design of integrated wearable devices capable of obtaining real‐time mechanical feedback for various applications. However, for a simple fiber that undergoes uniform strain distribution during deformation, it is still a big challenge to obtain high sensitivity. Herein, a new strategy, surface strain redistribution, is reported to significantly enhance the sensitivity of fiber‐shaped stretchable strain sensors. A new method of transient thermal curing is used to achieve the large‐scale fabrication of modified elastic microfibers with intrinsic microbeads. The proposed strategy is independent of the active materials utilized and can be universally applied for various active materials. The strategy used here will shift the vision of the sensitivity enhancement method from the active materials design to the mechanical design of the elastic substrate, and the proposed strategy can also be applied to nonfiber‐shaped stretchable strain sensors. Surface strain redistribution in substrates significantly enhances sensitivity of fiber‐shaped stretchable strain sensors fabricated by thermal‐transient‐curing and Plateau–Rayleigh instability. Poly(dimethylsiloxane) (PDMS) microfibers with beads are produced in large scale. The beads regulate strain distribution. Novel sensors are well adhered to textiles for monitoring sports activities. This study opens up a new perspective of fiber‐shaped sensors and a method to enhance sensitivity.
Author Chen, Xiaodong
Liu, Zhiyuan
Liedberg, Bo
Jiang, Ying
Loh, Xian Jun
Hu, Guoyu
Qi, Dianpeng
Chen, Geng
Luo, Yifei
Wang, Han
Author_xml – sequence: 1
  givenname: Zhiyuan
  surname: Liu
  fullname: Liu, Zhiyuan
  organization: Nanyang Technological University
– sequence: 2
  givenname: Dianpeng
  surname: Qi
  fullname: Qi, Dianpeng
  organization: Nanyang Technological University
– sequence: 3
  givenname: Guoyu
  surname: Hu
  fullname: Hu, Guoyu
  organization: Nanyang Technological University
– sequence: 4
  givenname: Han
  surname: Wang
  fullname: Wang, Han
  organization: Nanyang Technological University
– sequence: 5
  givenname: Ying
  surname: Jiang
  fullname: Jiang, Ying
  organization: Nanyang Technological University
– sequence: 6
  givenname: Geng
  surname: Chen
  fullname: Chen, Geng
  organization: Nanyang Technological University
– sequence: 7
  givenname: Yifei
  surname: Luo
  fullname: Luo, Yifei
  organization: Technology and Research (ASTAR)
– sequence: 8
  givenname: Xian Jun
  surname: Loh
  fullname: Loh, Xian Jun
  organization: Technology and Research (ASTAR)
– sequence: 9
  givenname: Bo
  surname: Liedberg
  fullname: Liedberg, Bo
  organization: Nanyang Technological University
– sequence: 10
  givenname: Xiaodong
  orcidid: 0000-0002-3312-1664
  surname: Chen
  fullname: Chen, Xiaodong
  email: chenxd@ntu.edu.sg
  organization: Nanyang Technological University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29226515$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1qGzEURkVIaRy32yzDQDbdjHv1N7aWJk3aQkIhTteDNJKwwlhyJE2L6aaP0Gfsk1SDUxcCoSDQQufoXr7vFB374A1CZxhmGIC8l3ojZwTwHBgh4ghNMCe4ZiD4MZqAoLwWDVucoNOUHgBANNC8RidEENJwzCfox2qIVnamWuUona_ujHYpR6eG7IKvyikPQ5eHaHR167oYrFMmpiqH6sqvpR9V45PL7pvLuyrY6noEfv_8tVrLbZGKb3K3lqo_DBmFENMb9MrKPpm3T_cUfb2-ur_8VN98-fj5cnlTdxwvRG1Vo7RmIIWw0jZAOeBOgMbcSMYVZgQ4ZpRTTS3lCpgycyBA8EJLKvSCTtG7_b_bGB4Hk3K7cakzfS-9CUNqsZhzLhgXoqAXz9CHMERftiuUoFCCLgtM0fkTNaiN0e02uo2Mu_ZvrAWY7YGSV0rR2AOCoR17a8fe2kNvRWDPhM5lOVYwJta_rIm99t31ZvefIe3yw-3yn_sHHdquBg
CitedBy_id crossref_primary_10_1002_pc_25635
crossref_primary_10_1021_acsami_1c09879
crossref_primary_10_1021_acs_chemmater_0c03392
crossref_primary_10_1007_s11706_021_0537_9
crossref_primary_10_1021_acsami_8b20902
crossref_primary_10_20517_ss_2023_30
crossref_primary_10_1021_acsapm_1c00187
crossref_primary_10_1039_D0TC02930K
crossref_primary_10_1021_acsami_2c14642
crossref_primary_10_1021_acs_chemmater_9b02274
crossref_primary_10_1039_D3SM01651J
crossref_primary_10_1002_adma_201903733
crossref_primary_10_1002_smll_202401565
crossref_primary_10_1002_admt_201800424
crossref_primary_10_1021_acsami_1c18233
crossref_primary_10_1002_admt_202100437
crossref_primary_10_1016_j_compositesb_2019_107683
crossref_primary_10_1063_1_5103274
crossref_primary_10_1002_smll_202405000
crossref_primary_10_1002_smll_202410148
crossref_primary_10_1002_advs_202203808
crossref_primary_10_1038_s41586_020_2892_6
crossref_primary_10_1002_aisy_202100263
crossref_primary_10_1002_sus2_207
crossref_primary_10_1016_j_nanoen_2023_109142
crossref_primary_10_3390_mi14010062
crossref_primary_10_1002_adma_202003155
crossref_primary_10_1149_1945_7111_ab7117
crossref_primary_10_1088_1361_6439_acf93f
crossref_primary_10_3390_polym14122373
crossref_primary_10_1007_s42235_025_00667_y
crossref_primary_10_1021_acsami_8b14365
crossref_primary_10_1016_j_talanta_2020_120869
crossref_primary_10_1016_j_nanoen_2021_106754
crossref_primary_10_1007_s40820_022_00806_8
crossref_primary_10_3390_polym14112219
crossref_primary_10_1021_acsami_3c00419
crossref_primary_10_1039_C8CS00609A
crossref_primary_10_3390_polym11030404
crossref_primary_10_1016_j_cej_2019_123036
crossref_primary_10_1016_j_ijbiomac_2023_126550
crossref_primary_10_1021_acsami_3c14396
crossref_primary_10_1039_D3NJ01106B
crossref_primary_10_1002_admt_202000008
crossref_primary_10_1038_s41928_022_00868_x
crossref_primary_10_1002_adfm_202214265
crossref_primary_10_1021_acsami_9b03204
crossref_primary_10_1002_admt_202101544
crossref_primary_10_1021_acsanm_8b01926
crossref_primary_10_1039_D1MH00538C
crossref_primary_10_1016_j_bios_2020_112460
crossref_primary_10_1039_D1TA08521B
crossref_primary_10_1016_j_compscitech_2022_109565
crossref_primary_10_1039_D2TA04261D
crossref_primary_10_1039_C8CS00801A
crossref_primary_10_3390_s21113648
crossref_primary_10_32604_cmc_2022_029433
crossref_primary_10_1021_acsami_9b14476
crossref_primary_10_1002_adfm_202403918
crossref_primary_10_1021_acsami_1c03615
crossref_primary_10_3390_polym11040666
crossref_primary_10_1002_adma_202415268
crossref_primary_10_1002_adma_202102332
crossref_primary_10_1039_C8TB01063C
crossref_primary_10_1016_j_compscitech_2021_109111
crossref_primary_10_1002_anie_201909965
crossref_primary_10_1002_adfm_201902898
crossref_primary_10_1016_j_nanoen_2020_104814
crossref_primary_10_1021_acs_nanolett_5c00294
crossref_primary_10_1016_j_mattod_2019_11_006
crossref_primary_10_1002_adfm_201801683
crossref_primary_10_1002_adfm_201905808
crossref_primary_10_1016_j_jpowsour_2021_230142
crossref_primary_10_3390_textiles2010005
crossref_primary_10_1088_2053_1583_abafeb
crossref_primary_10_1039_D2NJ03297J
crossref_primary_10_1002_adfm_202003214
crossref_primary_10_1364_OL_397213
crossref_primary_10_1002_admt_201900880
crossref_primary_10_1021_acsami_0c03996
crossref_primary_10_1002_eem2_12041
crossref_primary_10_1016_j_compositesb_2021_108641
crossref_primary_10_1039_D4NA00770K
crossref_primary_10_1002_adma_201902434
crossref_primary_10_1016_j_cej_2019_123912
crossref_primary_10_1002_ange_201909965
crossref_primary_10_1016_j_matt_2023_08_006
crossref_primary_10_1016_j_cej_2024_158365
crossref_primary_10_1016_j_pmatsci_2019_100617
crossref_primary_10_1021_acsami_8b08166
crossref_primary_10_1016_j_compstruct_2022_115214
crossref_primary_10_1002_aelm_201800509
crossref_primary_10_1002_adma_201802348
crossref_primary_10_1002_admt_202201714
crossref_primary_10_1039_D0QM00745E
crossref_primary_10_1021_acs_accounts_8b00499
crossref_primary_10_1021_acsami_8b15809
crossref_primary_10_1002_adma_201902301
crossref_primary_10_1017_pma_2024_3
crossref_primary_10_1039_C8TC02360C
crossref_primary_10_1021_acsami_1c10975
crossref_primary_10_1109_COMST_2022_3187138
crossref_primary_10_1021_acsami_4c12429
crossref_primary_10_1039_D2CS00837H
crossref_primary_10_1016_j_polymer_2023_126552
crossref_primary_10_1016_j_mattod_2020_02_005
crossref_primary_10_1002_aisy_202000113
crossref_primary_10_3390_app11031235
crossref_primary_10_1038_s41928_022_00914_8
crossref_primary_10_1021_acsnano_2c06482
crossref_primary_10_1002_adfm_201903732
crossref_primary_10_1021_acs_nanolett_2c01967
crossref_primary_10_1039_D1MH00736J
crossref_primary_10_1002_admt_202101190
crossref_primary_10_1002_smll_201906270
crossref_primary_10_1002_adma_201905522
crossref_primary_10_1002_adma_202106212
crossref_primary_10_1007_s10118_021_2560_1
crossref_primary_10_1002_adma_202003453
crossref_primary_10_1109_LPT_2018_2889464
crossref_primary_10_1039_C9TC05653J
crossref_primary_10_1007_s10118_024_3232_3
crossref_primary_10_1002_admt_202000550
crossref_primary_10_1002_mame_202200034
crossref_primary_10_1007_s40843_022_1986_5
crossref_primary_10_1021_acssensors_0c00870
crossref_primary_10_1016_j_compscitech_2022_109714
crossref_primary_10_1016_j_cej_2022_136317
crossref_primary_10_1177_00405175221113087
crossref_primary_10_1039_D0MH01539C
crossref_primary_10_1002_marc_201900469
crossref_primary_10_1002_smll_201804805
crossref_primary_10_1002_adma_202212189
crossref_primary_10_1016_j_compositesb_2018_12_107
crossref_primary_10_1016_j_compositesb_2021_108674
crossref_primary_10_1002_adma_201904664
crossref_primary_10_1016_j_cej_2021_128418
crossref_primary_10_1002_smll_202406739
crossref_primary_10_1002_aenm_202101443
crossref_primary_10_1002_smll_201902691
crossref_primary_10_1016_j_jcis_2023_04_014
crossref_primary_10_1002_adfm_202204731
crossref_primary_10_1016_j_optcom_2023_129693
crossref_primary_10_1002_admt_201900442
crossref_primary_10_3390_nano10101980
crossref_primary_10_1002_smll_202104706
crossref_primary_10_1021_acsami_2c04773
crossref_primary_10_1021_acsami_9b20612
crossref_primary_10_1109_LRA_2021_3116697
crossref_primary_10_1002_adma_202001130
crossref_primary_10_1002_adma_201803637
crossref_primary_10_1016_j_nanoen_2018_10_049
crossref_primary_10_1002_admt_201900309
crossref_primary_10_1021_acsnano_1c09288
crossref_primary_10_1021_acsami_0c13427
crossref_primary_10_1021_acsami_9b09815
crossref_primary_10_1021_acsami_0c21372
crossref_primary_10_26599_NR_2025_94906990
crossref_primary_10_1039_C9RA01147A
crossref_primary_10_1021_acsapm_2c01199
crossref_primary_10_1021_acsami_9b20964
crossref_primary_10_1039_D2MH00470D
crossref_primary_10_1021_acsapm_1c01403
crossref_primary_10_1007_s42765_024_00445_1
crossref_primary_10_1021_acssensors_4c01097
crossref_primary_10_1039_C8CS00561C
crossref_primary_10_1002_aisy_202000039
crossref_primary_10_1021_acsnano_0c04730
crossref_primary_10_1016_j_cej_2022_138088
crossref_primary_10_1021_acsami_9b10937
crossref_primary_10_1126_science_abh4357
crossref_primary_10_1007_s40843_018_9266_8
crossref_primary_10_1126_sciadv_abg4041
crossref_primary_10_1016_j_cej_2023_145075
crossref_primary_10_3390_mi15070890
crossref_primary_10_1002_adfm_202300517
crossref_primary_10_1002_adma_202305615
crossref_primary_10_1002_adma_202413929
crossref_primary_10_1038_s41528_022_00198_0
crossref_primary_10_1016_j_apmt_2022_101635
crossref_primary_10_1039_D0MH00716A
crossref_primary_10_1088_2058_8585_ac20bf
crossref_primary_10_1002_smll_201905707
crossref_primary_10_1016_j_cej_2021_133488
crossref_primary_10_1016_j_cej_2021_133005
crossref_primary_10_1002_advs_201800340
crossref_primary_10_1007_s40843_021_2023_x
crossref_primary_10_1016_j_carbon_2019_02_060
crossref_primary_10_1038_s41528_023_00272_1
crossref_primary_10_1021_acsami_1c06295
crossref_primary_10_1039_C8TC04652B
crossref_primary_10_1039_D1NR08380E
crossref_primary_10_1002_adma_202001903
crossref_primary_10_1002_advs_202002009
crossref_primary_10_3390_s23187905
crossref_primary_10_1039_C8TC02702A
crossref_primary_10_1002_smll_202310612
crossref_primary_10_1021_acsnano_8b09651
crossref_primary_10_1039_C9TA04352G
crossref_primary_10_1093_nsr_nwae158
crossref_primary_10_1088_2058_8585_aae8c0
crossref_primary_10_1016_j_cej_2022_135399
crossref_primary_10_1016_j_compscitech_2020_108011
crossref_primary_10_1021_acsapm_1c00805
crossref_primary_10_1038_s41467_022_32361_6
crossref_primary_10_1002_aelm_202001242
crossref_primary_10_1021_jacs_4c11866
crossref_primary_10_1016_j_carbon_2023_118379
crossref_primary_10_1109_JSEN_2023_3310114
crossref_primary_10_1038_s41528_024_00301_7
crossref_primary_10_1016_j_compositesa_2024_108643
crossref_primary_10_1002_smll_201803411
crossref_primary_10_1039_C8TA03262A
crossref_primary_10_1039_D3MA00013C
crossref_primary_10_1016_j_carbon_2019_04_019
crossref_primary_10_3390_nano12050882
crossref_primary_10_1002_adma_202420322
crossref_primary_10_1039_D0MH00280A
crossref_primary_10_1002_adma_201901971
crossref_primary_10_1002_sstr_202100131
crossref_primary_10_1002_aelm_201800462
crossref_primary_10_1002_smll_201804991
crossref_primary_10_1007_s11814_025_00422_3
crossref_primary_10_1016_j_polymer_2020_123340
crossref_primary_10_1002_aenm_201804005
crossref_primary_10_1039_D0TA05129B
crossref_primary_10_1002_aisy_202000194
crossref_primary_10_1007_s40145_021_0509_7
Cites_doi 10.1038/ncomms6898
10.1039/C6TC00251J
10.1039/C4NR03295K
10.1038/srep35153
10.1002/advs.201600190
10.1557/mrs.2017.7
10.1021/am509087u
10.1021/nn501204t
10.1002/adma.201500582
10.1002/adfm.201602619
10.1021/acsnano.5b01835
10.1021/am502454t
10.1038/nature14002
10.1039/c3ta11617d
10.1002/adfm.201404087
10.1038/nnano.2011.36
10.1002/cphc.201402810
10.1038/srep03048
10.1002/adma.201504239
10.1063/1.1565683
10.1016/S0032-3861(99)00068-3
10.1038/nnano.2011.184
10.1002/adma.201500072
10.1002/adma.201603160
10.1021/acsami.5b00695
10.1038/srep00870
10.1038/nphys1682
10.1021/acs.nanolett.5b01505
10.1002/adma.201304742
10.1002/pen.20304
10.1002/adfm.201002061
10.1002/smtd.201600029
10.1002/adma.201103406
10.1002/adma.201601572
10.1002/app.25907
10.1039/C5NR08618C
10.1017/jfm.2014.321
10.1002/adma.201503558
10.1021/acsami.5b12588
10.1002/adma.201400334
10.1021/acsami.6b08172
10.1021/acsnano.5b01613
10.1039/C6NR06804A
10.1021/am4026032
10.1039/c4nr02064b
10.1002/adfm.201504755
10.1017/jfm.2013.540
10.1002/adma.201600405
10.1002/admt.201600136
10.1002/adma.201503288
10.1002/adfm.201202405
10.1002/adma.201603382
10.1002/smll.201600487
10.1021/acsami.5b08404
10.1021/acsami.5b04892
10.1021/acsnano.6b03813
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201704229
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 29226515
10_1002_adma_201704229
ADMA201704229
Genre article
Journal Article
GrantInformation_xml – fundername: Singapore Ministry of Education
  funderid: MOE2015‐T2‐2‐060
– fundername: Prime Minister's Office
– fundername: NRF Investigatorship
  funderid: NRF2016NRF‐NRFI001‐21
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c5189-fb6bdd40a99faf603501c90d15ea45b1420514353d3f35b04be7020218da39d83
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 19:25:28 EDT 2025
Sun Jul 13 04:24:28 EDT 2025
Thu Apr 03 07:06:35 EDT 2025
Thu Apr 24 23:06:28 EDT 2025
Tue Jul 01 00:44:37 EDT 2025
Wed Jan 22 17:01:16 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords beads
fiber-shaped sensors
enhanced sensitivity
stretchable strain sensors
strain redistribution
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5189-fb6bdd40a99faf603501c90d15ea45b1420514353d3f35b04be7020218da39d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3312-1664
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.201704229
PMID 29226515
PQID 1993001760
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_1975594599
proquest_journals_1993001760
pubmed_primary_29226515
crossref_primary_10_1002_adma_201704229
crossref_citationtrail_10_1002_adma_201704229
wiley_primary_10_1002_adma_201704229_ADMA201704229
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 1, 2018
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: February 1, 2018
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 15
2017; 42
2017; 1
2013; 3
2015; 16
2014; 516
2013; 1
2007; 106
2017; 27
2013; 23
2016; 10
2014; 26
1999; 40
2015; 9
2011; 6
2013; 5
2015; 7
2014; 752
2005; 45
2016; 12
2016; 4
2016; 6
2015; 25
2014; 5
2015; 28
2012; 2
2015; 27
2016; 1
2016; 2
2013; 737
2011; 21
2011; 23
2003; 82
2016; 28
2014; 8
2016; 26
2014; 6
2016; 8
2010; 6
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_57_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
Yeo J. C. (e_1_2_5_17_1) 2016; 2
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_56_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_31_1
e_1_2_5_52_1
e_1_2_5_50_1
References_xml – volume: 5
  start-page: 8766
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 2944
  year: 2016
  publication-title: Nanoscale
– volume: 27
  start-page: 2440
  year: 2015
  publication-title: Adv. Mater.
– volume: 28
  start-page: 4998
  year: 2016
  publication-title: Adv. Mater.
– volume: 25
  start-page: 1798
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 5898
  year: 2014
  publication-title: Nat. Commun.
– volume: 6
  start-page: 35153
  year: 2016
  publication-title: Sci. Rep.
– volume: 3
  start-page: 3048
  year: 2013
  publication-title: Sci. Rep.
– volume: 752
  start-page: 66
  year: 2014
  publication-title: J. Fluid Mech.
– volume: 26
  start-page: 6307
  year: 2014
  publication-title: Adv. Mater.
– volume: 6
  start-page: 296
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 40
  start-page: 4585
  year: 1999
  publication-title: Polymer
– volume: 4
  start-page: 5642
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 6
  start-page: 7703
  year: 2014
  publication-title: Nanoscale
– volume: 9
  start-page: 6252
  year: 2015
  publication-title: ACS Nano
– volume: 23
  start-page: 2308
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 16
  start-page: 1155
  year: 2015
  publication-title: ChemPhysChem
– volume: 9
  start-page: 8801
  year: 2015
  publication-title: ACS Nano
– volume: 6
  start-page: 11932
  year: 2014
  publication-title: Nanoscale
– volume: 8
  start-page: 5154
  year: 2014
  publication-title: ACS Nano
– volume: 28
  start-page: 10244
  year: 2016
  publication-title: Adv. Mater.
– volume: 42
  start-page: 103
  year: 2017
  publication-title: MRS Bull.
– volume: 26
  start-page: 2022
  year: 2014
  publication-title: Adv. Mater.
– volume: 10
  start-page: 7901
  year: 2016
  publication-title: ACS Nano
– volume: 106
  start-page: 475
  year: 2007
  publication-title: J. Appl. Polym. Sci.
– volume: 516
  start-page: 222
  year: 2014
  publication-title: Nature
– volume: 4
  start-page: 1600190
  year: 2016
  publication-title: Adv. Sci.
– volume: 21
  start-page: 1398
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 870
  year: 2012
  publication-title: Sci. Rep.
– volume: 1
  start-page: 1600029
  year: 2017
  publication-title: Small Methods
– volume: 12
  start-page: 5058
  year: 2016
  publication-title: Small
– volume: 7
  start-page: 6317
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 19352
  year: 2016
  publication-title: Nanoscale
– volume: 45
  start-page: 704
  year: 2005
  publication-title: Polym. Eng. Sci.
– volume: 2
  start-page: 2016
  year: 2016
  publication-title: Adv. Mater. Technol.
– volume: 15
  start-page: 5240
  year: 2015
  publication-title: Nano Lett.
– volume: 8
  start-page: 5618
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 27
  start-page: 1603382
  year: 2017
  publication-title: Adv. Mater.
– volume: 737
  start-page: 232
  year: 2013
  publication-title: J. Fluid Mech.
– volume: 6
  start-page: 13487
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 27
  start-page: 7365
  year: 2015
  publication-title: Adv. Mater.
– volume: 7
  start-page: 21150
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 26
  start-page: 1678
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 6230
  year: 2015
  publication-title: Adv. Mater.
– volume: 1
  start-page: 1600136
  year: 2016
  publication-title: Adv. Mater. Technol.
– volume: 1
  start-page: 8363
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 27562
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 26
  start-page: 7614
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 28
  start-page: 722
  year: 2015
  publication-title: Adv. Mater.
– volume: 28
  start-page: 6640
  year: 2016
  publication-title: Adv. Mater.
– volume: 6
  start-page: 625
  year: 2010
  publication-title: Nat. Phys.
– volume: 23
  start-page: 5440
  year: 2011
  publication-title: Adv. Mater.
– volume: 27
  start-page: 3411
  year: 2015
  publication-title: Adv. Mater.
– volume: 82
  start-page: 2404
  year: 2003
  publication-title: Appl. Phys. Lett.
– volume: 7
  start-page: 4463
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 788
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 8
  start-page: 26458
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_5_1_1
  doi: 10.1038/ncomms6898
– ident: e_1_2_5_28_1
  doi: 10.1039/C6TC00251J
– ident: e_1_2_5_37_1
  doi: 10.1039/C4NR03295K
– ident: e_1_2_5_40_1
  doi: 10.1038/srep35153
– ident: e_1_2_5_7_1
  doi: 10.1002/advs.201600190
– ident: e_1_2_5_5_1
  doi: 10.1557/mrs.2017.7
– ident: e_1_2_5_12_1
  doi: 10.1021/am509087u
– ident: e_1_2_5_33_1
  doi: 10.1021/nn501204t
– ident: e_1_2_5_27_1
  doi: 10.1002/adma.201500582
– ident: e_1_2_5_30_1
  doi: 10.1002/adfm.201602619
– ident: e_1_2_5_32_1
  doi: 10.1021/acsnano.5b01835
– ident: e_1_2_5_56_1
  doi: 10.1021/am502454t
– ident: e_1_2_5_38_1
  doi: 10.1038/nature14002
– ident: e_1_2_5_51_1
  doi: 10.1039/c3ta11617d
– ident: e_1_2_5_14_1
  doi: 10.1002/adfm.201404087
– ident: e_1_2_5_8_1
  doi: 10.1038/nnano.2011.36
– ident: e_1_2_5_4_1
  doi: 10.1002/cphc.201402810
– ident: e_1_2_5_22_1
  doi: 10.1038/srep03048
– ident: e_1_2_5_41_1
  doi: 10.1002/adma.201504239
– ident: e_1_2_5_57_1
  doi: 10.1063/1.1565683
– ident: e_1_2_5_49_1
  doi: 10.1016/S0032-3861(99)00068-3
– ident: e_1_2_5_23_1
  doi: 10.1038/nnano.2011.184
– ident: e_1_2_5_43_1
  doi: 10.1002/adma.201500072
– ident: e_1_2_5_13_1
  doi: 10.1002/adma.201603160
– ident: e_1_2_5_35_1
  doi: 10.1021/acsami.5b00695
– ident: e_1_2_5_46_1
  doi: 10.1038/srep00870
– ident: e_1_2_5_55_1
  doi: 10.1038/nphys1682
– volume: 2
  start-page: 2016
  year: 2016
  ident: e_1_2_5_17_1
  publication-title: Adv. Mater. Technol.
– ident: e_1_2_5_2_1
  doi: 10.1021/acs.nanolett.5b01505
– ident: e_1_2_5_24_1
  doi: 10.1002/adma.201304742
– ident: e_1_2_5_48_1
  doi: 10.1002/pen.20304
– ident: e_1_2_5_52_1
  doi: 10.1002/adfm.201002061
– ident: e_1_2_5_6_1
  doi: 10.1002/smtd.201600029
– ident: e_1_2_5_26_1
  doi: 10.1002/adma.201103406
– ident: e_1_2_5_21_1
  doi: 10.1002/adma.201601572
– ident: e_1_2_5_47_1
  doi: 10.1002/app.25907
– ident: e_1_2_5_31_1
  doi: 10.1039/C5NR08618C
– ident: e_1_2_5_54_1
  doi: 10.1017/jfm.2014.321
– ident: e_1_2_5_18_1
  doi: 10.1002/adma.201503558
– ident: e_1_2_5_16_1
  doi: 10.1021/acsami.5b12588
– ident: e_1_2_5_25_1
  doi: 10.1002/adma.201400334
– ident: e_1_2_5_29_1
  doi: 10.1021/acsami.6b08172
– ident: e_1_2_5_9_1
  doi: 10.1021/acsnano.5b01613
– ident: e_1_2_5_15_1
  doi: 10.1039/C6NR06804A
– ident: e_1_2_5_36_1
  doi: 10.1021/am4026032
– ident: e_1_2_5_50_1
  doi: 10.1039/c4nr02064b
– ident: e_1_2_5_3_1
  doi: 10.1002/adfm.201504755
– ident: e_1_2_5_53_1
  doi: 10.1017/jfm.2013.540
– ident: e_1_2_5_42_1
  doi: 10.1002/adma.201600405
– ident: e_1_2_5_44_1
  doi: 10.1002/admt.201600136
– ident: e_1_2_5_10_1
  doi: 10.1002/adma.201503288
– ident: e_1_2_5_45_1
  doi: 10.1002/adfm.201202405
– ident: e_1_2_5_11_1
  doi: 10.1002/adma.201603382
– ident: e_1_2_5_20_1
  doi: 10.1002/smll.201600487
– ident: e_1_2_5_34_1
  doi: 10.1021/acsami.5b08404
– ident: e_1_2_5_39_1
  doi: 10.1021/acsami.5b04892
– ident: e_1_2_5_19_1
  doi: 10.1021/acsnano.6b03813
SSID ssj0009606
Score 2.6296432
Snippet Fiber‐shaped stretchable strain sensors with small testing areas can be directly woven into textiles. This paves the way for the design of integrated wearable...
Fiber-shaped stretchable strain sensors with small testing areas can be directly woven into textiles. This paves the way for the design of integrated wearable...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms beads
Deformation
enhanced sensitivity
fiber‐shaped sensors
Materials science
Microfibers
Nanoparticles
Sensitivity enhancement
Sensors
Strain distribution
strain redistribution
Strategy
stretchable strain sensors
Substrates
Textiles
Title Surface Strain Redistribution on Structured Microfibers to Enhance Sensitivity of Fiber‐Shaped Stretchable Strain Sensors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201704229
https://www.ncbi.nlm.nih.gov/pubmed/29226515
https://www.proquest.com/docview/1993001760
https://www.proquest.com/docview/1975594599
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iSQ--H-uLCIKn7rZN0jbHRV0WYT1YBW8laRIWlFb2cdGLP8Hf6C8xk26rq4ig0EJDkyZNZ5ovycw3CJ34QZ4zQrlnpAo9Kg33eEICmySGhlQqGoA38uAq6t_Syzt298mLv-KHaBbcQDPc_xoUXMhx54M0VCjHGxTEwGIFHnxgsAWo6PqDPwrguSPbI8zjEU1q1kY_7MwXnx-VvkHNeeTqhp7eKhJ1oyuLk_v2dCLb-dMXPsf_vNUaWpnhUtytBGkdLehiAy1_YivcRM_pdGRErnHq4krga3DpbQJmYXukjox2OtIKD8DQz4A5yhhPSnxRDEG8cAr28lXAClwa3IMMby-v6VA82kKwRW6lCLy56kqgQDkab6Hb3sXNWd-bxW7wchYk8OkjqRT1BedGmMjtX-bcVwHTgjJYefIdVCOKGMKkT6WOLXK1gEMJwlVCttFiURZ6F-GQwzxR0TzghtpTMmC41ITGsUxsN7WQV3-7LJ8Rm0MTH7KKkjnMoFOzplNb6LTJ_1hRevyY86AWhWym2uMMLB5hbI_8FjpublulhJ0WUehyCnliO1OjjNtH7FQi1FQVcot4LYpsodAJwi9tyLrng26T2vtLoX20ZK-Tytb8AC1aWdCHFkpN5JFTl3fjcBWJ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOFAOLY9Cl0drJCROgSS2k_i4alktLcuBgMQtimNbSKAE7eNSLvyE_kZ-CR5nE7pFFRJIySGJHTv2TPzZnvkGYN8PioJTJjwjVegxaYQnEhrYS2pYyKRiAXojD86i_iX7ecUba0L0han5IdoFN9QM979GBccF6aNn1tBcOeKgIEYaKzEPixjW282qzp8ZpBCgO7o9yj0RsaThbfTDo9n8s-PSC7A5i13d4NP7BLKpdm1zcnM4GcvD4vc_jI7v-q4V-DiFpqRby9IqzOlyDZb_Iixch_t0MjR5oUnqQkuQc_TqbWNmEXukjo92MtSKDNDWz6BFyoiMK3JcXqOEkRRN5uuYFaQypIcJHh_-pNf5nc2Eu-RWkNChqykEM1TD0We47B1ffO970_ANXsGDBHs_kkoxPxfC5CZyW5iF8FXAdc44Lj75Dq1RRQ3l0mdSxxa8WsyhcipUQjdgoaxK_QVIKHCqqFgRCMPsKTmSXGrK4lgmtpk64DWdlxVTbnOs4m1WszKHGTZq1jZqBw7a9Hc1q8d_U-40spBNtXuUodEjDu-R34G99rHVS9xsyUtdTTBNbCdrjAv7is1ahtqiQmFBrwWSHQidJLxSh6z7Y9Btr7bekukbLPUvBqfZ6cnZr234YO8nten5DixYudC7FlmN5VenO081BBmk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkVA58OgDFkpxJaSe0iaxncTHFburFrpV1VCpt8iObVUCJat9XODCT-A38kvwOJtsF1QhFSk5JJmJHXsm_myPPwO8D6Oy5JSJwCodB0xZEYiMRu6SWhYzpVmEq5HH58nJFft4za9vreJv-CG6ATf0DP-_RgefaHu8Ig2V2vMGRSmyWImH8IglYYZ2PbhcEUghPvdse5QHImFZS9sYxsfr-uvN0l9Ycx26-rZn9Axkm-sm5OTL0WKujspvfxA6_s9nPYenS2BK-o0lvYAHptqCJ7foCrfhe76YWlkakvuNJcglruntdswi7sg9G-1iajQZY6SfxXiUGZnXZFjdoH2RHAPmmx0rSG3JCAV-_fiZ38iJU8I5cmdGuJyrTQQV6ulsB65Gw88fToLl5g1ByaMM6z5RWrNQCmGlTfwEZilCHXEjGcehp9BjNaqppVyFTJnUQVeHOLSkQmd0FzaqujKvgMQCO4qalZGwzJ2KI8WloSxNVeaKqQdBW3dFuWQ2xyx-LRpO5rjAQi26Qu3BYSc_aTg97pTca02hWPr2rMCQR2zck7AHB91j55U41SIrUy9QJnVdNcaFe8XLxoS6pGLhIK-DkT2IvSH8Iw9FfzDud1ev76P0Dh5fDEbF2en5pzew6W5nTdz5Hmw4szBvHayaq33vOb8B6o8YXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+Strain+Redistribution+on+Structured+Microfibers+to+Enhance+Sensitivity+of+Fiber%E2%80%90Shaped+Stretchable+Strain+Sensors&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Liu%2C+Zhiyuan&rft.au=Dianpeng+Qi&rft.au=Hu%2C+Guoyu&rft.au=Wang%2C+Han&rft.date=2018-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=5&rft_id=info:doi/10.1002%2Fadma.201704229&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon