μ‐Opioid Receptor Attenuates Aβ Oligomers‐Induced Neurotoxicity Through mTOR Signaling
Summary Aims μ‐opioid receptor (OPRM1) exerts many functions such as antinociception, neuroprotection, and hippocampal plasticity. A body of evidence has shown that OPRM1 activation could stimulate downstream effectors of mechanistic/mammalian target of rapamycin (mTOR). However, it is not clear whe...
Saved in:
Published in | CNS neuroscience & therapeutics Vol. 21; no. 1; pp. 8 - 14 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley and Sons Inc
01.01.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Aims
μ‐opioid receptor (OPRM1) exerts many functions such as antinociception, neuroprotection, and hippocampal plasticity. A body of evidence has shown that OPRM1 activation could stimulate downstream effectors of mechanistic/mammalian target of rapamycin (mTOR). However, it is not clear whether OPRM1 protects neurons against β‐amyloid peptide (Aβ) neurotoxicity through mTOR signaling.
Methods
The effects of OPRM1 activation on Aβ oligomers‐induced neurotoxicity were assessed by cell viability and neurite outgrowth assay in primary cultured cortical neurons. The activities of mTOR, protein kinase B (Akt) and p70 ribosomal S6 kinase (p70 S6k) upon OPRM1 activation by morphine were measured by immunoblotting their phosphorylation status.
Results
Morphine dose‐dependently attenuated Aβ oligomers‐induced neurotoxicity. Aβ oligomers downregulated mTOR signaling. Morphine significantly rescued mTOR signaling by reversal of Aβ oligomers’ effect on mTOR and its upstream signaling molecule Akt, as well as its downstream molecule p70 S6k. Moreover, the neuroprotective effect of morphine could be reversed by OPRM1 selective antagonist and phosphatidylinositol 3‐kinases (PI3K), Akt and mTOR inhibitors. Furthermore, endogenous opioids–enkaphalins also attenuated Aβ oligomers‐induced neurotoxicity.
Conclusions
Our findings demonstrated OPRM1 activation attenuated Aβ oligomers‐induced neurotoxicity through mTOR signaling. It may provide new insight into the pathological process and useful strategy for therapeutic interventions against Aβ neurotoxicity. |
---|---|
AbstractList | μ-opioid receptor (OPRM1) exerts many functions such as antinociception, neuroprotection, and hippocampal plasticity. A body of evidence has shown that OPRM1 activation could stimulate downstream effectors of mechanistic/mammalian target of rapamycin (mTOR). However, it is not clear whether OPRM1 protects neurons against β-amyloid peptide (Aβ) neurotoxicity through mTOR signaling.AIMSμ-opioid receptor (OPRM1) exerts many functions such as antinociception, neuroprotection, and hippocampal plasticity. A body of evidence has shown that OPRM1 activation could stimulate downstream effectors of mechanistic/mammalian target of rapamycin (mTOR). However, it is not clear whether OPRM1 protects neurons against β-amyloid peptide (Aβ) neurotoxicity through mTOR signaling.The effects of OPRM1 activation on Aβ oligomers-induced neurotoxicity were assessed by cell viability and neurite outgrowth assay in primary cultured cortical neurons. The activities of mTOR, protein kinase B (Akt) and p70 ribosomal S6 kinase (p70 S6k) upon OPRM1 activation by morphine were measured by immunoblotting their phosphorylation status.METHODSThe effects of OPRM1 activation on Aβ oligomers-induced neurotoxicity were assessed by cell viability and neurite outgrowth assay in primary cultured cortical neurons. The activities of mTOR, protein kinase B (Akt) and p70 ribosomal S6 kinase (p70 S6k) upon OPRM1 activation by morphine were measured by immunoblotting their phosphorylation status.Morphine dose-dependently attenuated Aβ oligomers-induced neurotoxicity. Aβ oligomers downregulated mTOR signaling. Morphine significantly rescued mTOR signaling by reversal of Aβ oligomers' effect on mTOR and its upstream signaling molecule Akt, as well as its downstream molecule p70 S6k. Moreover, the neuroprotective effect of morphine could be reversed by OPRM1 selective antagonist and phosphatidylinositol 3-kinases (PI3K), Akt and mTOR inhibitors. Furthermore, endogenous opioids-enkaphalins also attenuated Aβ oligomers-induced neurotoxicity.RESULTSMorphine dose-dependently attenuated Aβ oligomers-induced neurotoxicity. Aβ oligomers downregulated mTOR signaling. Morphine significantly rescued mTOR signaling by reversal of Aβ oligomers' effect on mTOR and its upstream signaling molecule Akt, as well as its downstream molecule p70 S6k. Moreover, the neuroprotective effect of morphine could be reversed by OPRM1 selective antagonist and phosphatidylinositol 3-kinases (PI3K), Akt and mTOR inhibitors. Furthermore, endogenous opioids-enkaphalins also attenuated Aβ oligomers-induced neurotoxicity.Our findings demonstrated OPRM1 activation attenuated Aβ oligomers-induced neurotoxicity through mTOR signaling. It may provide new insight into the pathological process and useful strategy for therapeutic interventions against Aβ neurotoxicity.CONCLUSIONSOur findings demonstrated OPRM1 activation attenuated Aβ oligomers-induced neurotoxicity through mTOR signaling. It may provide new insight into the pathological process and useful strategy for therapeutic interventions against Aβ neurotoxicity. μ-opioid receptor (OPRM1) exerts many functions such as antinociception, neuroprotection, and hippocampal plasticity. A body of evidence has shown that OPRM1 activation could stimulate downstream effectors of mechanistic/mammalian target of rapamycin (mTOR). However, it is not clear whether OPRM1 protects neurons against β-amyloid peptide (Aβ) neurotoxicity through mTOR signaling. The effects of OPRM1 activation on Aβ oligomers-induced neurotoxicity were assessed by cell viability and neurite outgrowth assay in primary cultured cortical neurons. The activities of mTOR, protein kinase B (Akt) and p70 ribosomal S6 kinase (p70 S6k) upon OPRM1 activation by morphine were measured by immunoblotting their phosphorylation status. Morphine dose-dependently attenuated Aβ oligomers-induced neurotoxicity. Aβ oligomers downregulated mTOR signaling. Morphine significantly rescued mTOR signaling by reversal of Aβ oligomers' effect on mTOR and its upstream signaling molecule Akt, as well as its downstream molecule p70 S6k. Moreover, the neuroprotective effect of morphine could be reversed by OPRM1 selective antagonist and phosphatidylinositol 3-kinases (PI3K), Akt and mTOR inhibitors. Furthermore, endogenous opioids-enkaphalins also attenuated Aβ oligomers-induced neurotoxicity. Our findings demonstrated OPRM1 activation attenuated Aβ oligomers-induced neurotoxicity through mTOR signaling. It may provide new insight into the pathological process and useful strategy for therapeutic interventions against Aβ neurotoxicity. Summary Aims μ‐opioid receptor (OPRM1) exerts many functions such as antinociception, neuroprotection, and hippocampal plasticity. A body of evidence has shown that OPRM1 activation could stimulate downstream effectors of mechanistic/mammalian target of rapamycin (mTOR). However, it is not clear whether OPRM1 protects neurons against β‐amyloid peptide (Aβ) neurotoxicity through mTOR signaling. Methods The effects of OPRM1 activation on Aβ oligomers‐induced neurotoxicity were assessed by cell viability and neurite outgrowth assay in primary cultured cortical neurons. The activities of mTOR, protein kinase B (Akt) and p70 ribosomal S6 kinase (p70 S6k) upon OPRM1 activation by morphine were measured by immunoblotting their phosphorylation status. Results Morphine dose‐dependently attenuated Aβ oligomers‐induced neurotoxicity. Aβ oligomers downregulated mTOR signaling. Morphine significantly rescued mTOR signaling by reversal of Aβ oligomers’ effect on mTOR and its upstream signaling molecule Akt, as well as its downstream molecule p70 S6k. Moreover, the neuroprotective effect of morphine could be reversed by OPRM1 selective antagonist and phosphatidylinositol 3‐kinases (PI3K), Akt and mTOR inhibitors. Furthermore, endogenous opioids–enkaphalins also attenuated Aβ oligomers‐induced neurotoxicity. Conclusions Our findings demonstrated OPRM1 activation attenuated Aβ oligomers‐induced neurotoxicity through mTOR signaling. It may provide new insight into the pathological process and useful strategy for therapeutic interventions against Aβ neurotoxicity. mu -opioid receptor (OPRM1) exerts many functions such as antinociception, neuroprotection, and hippocampal plasticity. A body of evidence has shown that OPRM1 activation could stimulate downstream effectors of mechanistic/mammalian target of rapamycin (mTOR). However, it is not clear whether OPRM1 protects neurons against beta -amyloid peptide (A beta ) neurotoxicity through mTOR signaling. The effects of OPRM1 activation on A beta oligomers-induced neurotoxicity were assessed by cell viability and neurite outgrowth assay in primary cultured cortical neurons. The activities of mTOR, protein kinase B (Akt) and p70 ribosomal S6 kinase (p70 S6k) upon OPRM1 activation by morphine were measured by immunoblotting their phosphorylation status. Morphine dose-dependently attenuated A beta oligomers-induced neurotoxicity. A beta oligomers downregulated mTOR signaling. Morphine significantly rescued mTOR signaling by reversal of A beta oligomers' effect on mTOR and its upstream signaling molecule Akt, as well as its downstream molecule p70 S6k. Moreover, the neuroprotective effect of morphine could be reversed by OPRM1 selective antagonist and phosphatidylinositol 3-kinases (PI3K), Akt and mTOR inhibitors. Furthermore, endogenous opioids-enkaphalins also attenuated A beta oligomers-induced neurotoxicity. Our findings demonstrated OPRM1 activation attenuated A beta oligomers-induced neurotoxicity through mTOR signaling. It may provide new insight into the pathological process and useful strategy for therapeutic interventions against A beta neurotoxicity. |
Author | Law, Ping‐Yee Qiu, Yu Loh, Horace H. Wang, Yan‐Xia Chen, Hong‐Zhuan Wang, Yan Liu, Ting |
AuthorAffiliation | 2 Department of Microbiology University of Pennsylvania School of Medicine Philadelphia PA USA 3 Department of Pharmacology University of Minnesota Minneapolis MN USA 1 Department of Pharmacology Institute of Medical Sciences Shanghai Jiao Tong University School of Medicine Shanghai China |
AuthorAffiliation_xml | – name: 2 Department of Microbiology University of Pennsylvania School of Medicine Philadelphia PA USA – name: 1 Department of Pharmacology Institute of Medical Sciences Shanghai Jiao Tong University School of Medicine Shanghai China – name: 3 Department of Pharmacology University of Minnesota Minneapolis MN USA |
Author_xml | – sequence: 1 givenname: Yan surname: Wang fullname: Wang, Yan organization: University of Pennsylvania School of Medicine – sequence: 2 givenname: Yan‐Xia surname: Wang fullname: Wang, Yan‐Xia organization: Shanghai Jiao Tong University School of Medicine – sequence: 3 givenname: Ting surname: Liu fullname: Liu, Ting organization: Shanghai Jiao Tong University School of Medicine – sequence: 4 givenname: Ping‐Yee surname: Law fullname: Law, Ping‐Yee organization: University of Minnesota – sequence: 5 givenname: Horace H. surname: Loh fullname: Loh, Horace H. organization: University of Minnesota – sequence: 6 givenname: Yu surname: Qiu fullname: Qiu, Yu organization: Shanghai Jiao Tong University School of Medicine – sequence: 7 givenname: Hong‐Zhuan surname: Chen fullname: Chen, Hong‐Zhuan organization: Shanghai Jiao Tong University School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25146548$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1u1DAQxy3Uin7AgRdAOcJh2ziJHfuCtFrxUanqSu1yQ7Ice5I1SuzFdtrujUfgWTjzDH0InqRetqwACcRcZqT5zV8z8z9Ce9ZZQOgZzk9wilNlwwkuSkwfoUNcEzIhvOJ7u7rMD9BRCB_znBaMs8fooCC4oqRih-jD3bfvn7_MV8YZnV2CglV0PpvGCHaUEUI2vfuazXvTuQF8SOiZ1aMCnV3A6F10t0aZuM4WS-_GbpkNi_lldmU6K3tjuydov5V9gKcP-Ri9f_N6MXs3OZ-_PZtNzyeKYEYnrGq5hhrrgvOmYZRJVnKNSy6ZapROvbzSkskilYWW0LYV1K0qGOWQs0aXx-jVVnc1NgNoBTZ62YuVN4P0a-GkEb93rFmKzl0LWnFCKE4CLx4EvPs0QohiMEFB30sLbgwC06rOC0x5_R9oWZMNThP6_Ne1dvv8_H4CXm4B5V0IHtodgnOxcVYkZ8UPZxN7-gebHi-jcZuLTP-viRvTw_rv0mJ2cbWduAcjk7pG |
CitedBy_id | crossref_primary_10_1016_j_neuint_2022_105311 crossref_primary_10_3390_molecules21040518 crossref_primary_10_1111_cns_12409 crossref_primary_10_1007_s12031_017_0905_1 crossref_primary_10_3389_fphar_2023_1056402 crossref_primary_10_1097_AJP_0000000000000319 crossref_primary_10_2174_1567202620666230721122957 crossref_primary_10_3892_mmr_2018_9424 crossref_primary_10_1111_anae_14019 crossref_primary_10_1016_j_pneurobio_2017_01_004 crossref_primary_10_1007_s11481_016_9671_z crossref_primary_10_1007_s40263_017_0431_2 crossref_primary_10_1021_acschemneuro_0c00093 crossref_primary_10_3389_fneur_2022_977953 crossref_primary_10_1007_s12035_024_04334_x crossref_primary_10_1186_s13195_025_01682_1 crossref_primary_10_3390_bioengineering10070871 crossref_primary_10_1002_ejhf_1185 crossref_primary_10_1007_s12031_020_01478_y crossref_primary_10_3389_fnmol_2018_00120 crossref_primary_10_1042_BST20170121 crossref_primary_10_1111_bcp_12804 crossref_primary_10_1016_j_peptides_2016_12_004 crossref_primary_10_1016_j_neulet_2016_11_018 crossref_primary_10_1080_01480545_2021_1957558 crossref_primary_10_1111_adb_70014 crossref_primary_10_3390_biom13050816 |
Cites_doi | 10.1007/s002130000396 10.3233/JAD-2010-1321 10.1159/000095562 10.1074/jbc.M112.374405 10.1074/jbc.273.29.18623 10.1016/j.cell.2006.01.016 10.1152/jn.01150.2002 10.1016/S0028-3908(03)00024-8 10.1016/j.neuropharm.2011.09.016 10.1186/1750-1326-4-14 10.1124/mol.107.039842 10.3109/08923978909005384 10.1111/j.1471-4159.2008.05671.x 10.1046/j.1460-9568.2003.02820.x 10.1002/hipo.20161 10.1097/01.jnen.0000235123.05677.4b 10.1074/jbc.M110.100420 10.1074/jbc.M114.568659 10.1073/pnas.012605299 10.1016/0955-0674(95)80088-3 10.1523/JNEUROSCI.4209-06.2006 10.4049/jimmunol.179.2.1198 10.1126/science.1161566 10.1074/jbc.M112.435123 10.1159/000085385 10.1111/j.1471-4159.2005.03187.x 10.1007/978-3-642-18930-2_13 10.1038/nrneurol.2012.275 10.1016/j.bcp.2009.09.013 10.1038/nn.3546 10.1016/j.neuropharm.2005.06.016 10.1038/nrm2101 10.1016/j.cell.2009.05.033 10.1016/j.neuroscience.2010.08.064 10.1523/JNEUROSCI.0590-08.2008 10.1186/1750-1326-6-41 10.1038/nrm1018 10.1016/S0002-9440(10)63687-5 10.1074/jbc.273.36.23534 10.1016/j.nbd.2007.09.008 10.1097/01.WCB.0000121235.42748.BF 10.1038/nn.2583 10.18632/aging.100440 10.1074/jbc.M112.409250 10.1111/j.1742-4658.2005.04833.x 10.1073/pnas.1014715108 10.1385/MN:34:3:205 10.1111/j.1460-9568.2010.07317.x 10.1046/j.1471-4159.1997.68041400.x 10.1002/jnr.21039 |
ContentType | Journal Article |
Copyright | 2014 John Wiley & Sons Ltd 2014 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2014 John Wiley & Sons Ltd – notice: 2014 John Wiley & Sons Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
DOI | 10.1111/cns.12316 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | MEDLINE - Academic MEDLINE Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
DocumentTitleAlternate | Y. Wang et al |
EISSN | 1755-5949 |
EndPage | 14 |
ExternalDocumentID | PMC6495561 25146548 10_1111_cns_12316 CNS12316 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: International Science & Technology Cooperation Program of China funderid: 2011DFA33180 – fundername: Shanghai Natural Science foundation funderid: 10ZR1417000 – fundername: National Great Basic Science Project of China funderid: 2010CB529806 – fundername: Shanghai Pujiang Program funderid: 11PJ1406200 – fundername: National Natural Science Foundation of China funderid: 81173044 – fundername: National Institutes of Health funderid: DA007339; DA011806 – fundername: NIDA NIH HHS grantid: DA007339 – fundername: NIDA NIH HHS grantid: P50 DA011806 – fundername: NIDA NIH HHS grantid: R01 DA007339 – fundername: NIDA NIH HHS grantid: DA011806 – fundername: Shanghai Pujiang Program grantid: 11PJ1406200 – fundername: International Science & Technology Cooperation Program of China grantid: 2011DFA33180 – fundername: National Natural Science Foundation of China grantid: 81173044 – fundername: National Institutes of Health grantid: DA007339; DA011806 – fundername: National Great Basic Science Project of China grantid: 2010CB529806 – fundername: Shanghai Natural Science foundation grantid: 10ZR1417000 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29B 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8AO 8FI 8FJ 8UM 930 A01 A03 AAESR AAEVG AAHHS AAONW AAZKR ABCQN ABDBF ABEML ABIVO ABPVW ABUWG ACCFJ ACCMX ACGFS ACMXC ACPRK ACSCC ACUHS ACXQS ADBBV ADEOM ADIZJ ADKYN ADPDF ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFKRA AFPKN AFPWT AFZJQ AHMBA AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AOIJS ATUGU AVUZU AZBYB AZVAB BAFTC BBNVY BCNDV BENPR BFHJK BHBCM BHPHI BMXJE BROTX BRXPI BY8 CAG CCPQU COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DU5 EBC EBD EBS EJD EMB EMOBN ESX F00 F01 F04 F5P FUBAC FYUFA G-S G.N GODZA GROUPED_DOAJ H.X HCIFZ HF~ HMCUK HYE HZ~ IAO IHR INH ITC IX1 J0M LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 M7P MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD OVEED P2W P2X P2Z P4B P4D PIMPY PQQKQ Q.N Q11 QB0 R.K ROL RPM RX1 SUPJJ SV3 TEORI TUS UB1 UKHRP W8V W99 WBKPD WIH WIJ WIK WIN WNSPC WOHZO WQJ WRC WXI WYISQ XG1 ~IA ~WT AAFWJ AAYXX CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM PQGLB 7X8 7TK 1OB 5PM |
ID | FETCH-LOGICAL-c5186-84f9de71d299bb868a839d139a8cbcd9de04da8a2d9d2daeff4e7fc2869e08bd3 |
IEDL.DBID | DR2 |
ISSN | 1755-5930 1755-5949 |
IngestDate | Thu Aug 21 17:32:46 EDT 2025 Thu Jul 10 23:50:03 EDT 2025 Fri Jul 11 16:27:30 EDT 2025 Mon Jul 21 05:58:03 EDT 2025 Thu Apr 24 22:58:54 EDT 2025 Tue Jul 01 00:33:41 EDT 2025 Wed Jan 22 16:24:47 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | μ-Opioid receptor Mechanistic/mammalian target of rapamycin Alzheimer's disease β-Amyloid peptide |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2014 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5186-84f9de71d299bb868a839d139a8cbcd9de04da8a2d9d2daeff4e7fc2869e08bd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/cns.12316 |
PMID | 25146548 |
PQID | 1637564706 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6495561 proquest_miscellaneous_1647021697 proquest_miscellaneous_1637564706 pubmed_primary_25146548 crossref_primary_10_1111_cns_12316 crossref_citationtrail_10_1111_cns_12316 wiley_primary_10_1111_cns_12316_CNS12316 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2015 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: January 2015 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Hoboken |
PublicationTitle | CNS neuroscience & therapeutics |
PublicationTitleAlternate | CNS Neurosci Ther |
PublicationYear | 2015 |
Publisher | John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley and Sons Inc |
References | 2012; 287 2010; 13 2006; 34 2010; 19 2004; 24 2002; 99 2013; 288 2008; 107 2003; 18 2008; 73 2013; 9 1998; 273 2007; 179 2003; 90 2013; 16 2006; 65 2006; 22 2008; 29 2008; 27 2006; 26 2008; 28 2007; 8 2003; 4 2003; 44 2006; 124 2014; 289 2012; 62 2003; 163 2010; 32 2005; 272 2010; 79 2006; 16 1997; 68 2000; 150 2010; 285 2008; 322 2005; 49 2011; 6 2009; 137 1995; 7 1989; 11 2011; 108 2004; 279 2006; 84 1995; 146 2010; 171 2005; 94 2009; 4 2012; 4 2005; 11 2005; 14 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 Berrios I (e_1_2_7_6_1) 2008; 27 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 Rambhia S (e_1_2_7_10_1) 2005; 11 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 Majno G (e_1_2_7_38_1) 1995; 146 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 |
References_xml | – volume: 6 start-page: 41 year: 2011 article-title: Molecular interplay between leptin, insulin‐like growth factor‐1, and beta‐amyloid in organotypic slices from rabbit hippocampus publication-title: Mol Neurodegener – volume: 4 start-page: 117 year: 2003 end-page: 126 article-title: Tor signalling in bugs, brain and brawn publication-title: Nat Rev Mol Cell Biol – volume: 94 start-page: 215 year: 2005 end-page: 225 article-title: mTOR/p70S6k signalling alteration by Abeta exposure as well as in APP‐PS1 transgenic models and in patients with Alzheimer's disease publication-title: J Neurochem – volume: 79 start-page: 516 year: 2010 end-page: 523 article-title: Mechanisms involved in phosphatidylinositol 3‐kinase pathway mediated up‐regulation of the mu opioid receptor in lymphocytes publication-title: Biochem Pharmacol – volume: 90 start-page: 1936 year: 2003 end-page: 1948 article-title: Mu‐opioid receptors facilitate the propagation of excitatory activity in rat hippocampal area CA1 by disinhibition of all anatomical layers publication-title: J Neurophysiol – volume: 163 start-page: 591 year: 2003 end-page: 607 article-title: Up‐regulation of phosphorylated/activated p70 S6 kinase and its relationship to neurofibrillary pathology in Alzheimer's disease publication-title: Am J Pathol – volume: 49 start-page: 1160 year: 2005 end-page: 1169 article-title: Effects of opioid antagonists and morphine in a hippocampal hypoxia/hypoglycemia model publication-title: Neuropharmacology – volume: 288 start-page: 15556 year: 2013 end-page: 15570 article-title: Mammalian target of rapamycin (mTor) mediates tau protein dyshomeostasis: implication for Alzheimer disease publication-title: J Biol Chem – volume: 65 start-page: 945 year: 2006 end-page: 952 article-title: Opioid preconditioning induces opioid receptor‐dependent delayed neuroprotection against ischemia in rats publication-title: J Neuropathol Exp Neurol – volume: 8 start-page: 101 year: 2007 end-page: 112 article-title: Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta‐peptide publication-title: Nat Rev Mol Cell Biol – volume: 179 start-page: 1198 year: 2007 end-page: 1209 article-title: Microglia‐mediated neurotoxicity is inhibited by morphine through an opioid receptor‐independent reduction of NADPH oxidase activity publication-title: J Immunol – volume: 84 start-page: 1323 year: 2006 end-page: 1334 article-title: The immunosuppressant rapamycin exacerbates neurotoxicity of Abeta peptide publication-title: J Neurosci Res – volume: 107 start-page: 883 year: 2008 end-page: 897 article-title: Opioidergic regulation of astroglial/neuronal proliferation: where are we now? publication-title: J Neurochem – volume: 16 start-page: 1537 year: 2013 end-page: 1543 article-title: mTOR complexes in neurodevelopmental and neuropsychiatric disorders publication-title: Nat Neurosci – volume: 14 start-page: 46 year: 2005 end-page: 60 article-title: Multifunctional activities of green tea catechins in neuroprotection. Modulation of cell survival genes, iron‐dependent oxidative stress and PKC signaling pathway publication-title: Neurosignals – volume: 18 start-page: 942 year: 2003 end-page: 950 article-title: Rapamycin‐sensitive signalling in long‐term consolidation of auditory cortex‐dependent memory publication-title: Eur J Neurosci – volume: 99 start-page: 467 year: 2002 end-page: 472 article-title: A rapamycin‐sensitive signaling pathway contributes to long‐term synaptic plasticity in the hippocampus publication-title: Proc Natl Acad Sci USA – volume: 62 start-page: 871 year: 2012 end-page: 881 article-title: Alpha‐mangostin, a polyphenolic xanthone derivative from mangosteen, attenuates beta‐amyloid oligomers‐induced neurotoxicity by inhibiting amyloid aggregation publication-title: Neuropharmacology – volume: 150 start-page: 77 year: 2000 end-page: 84 article-title: Pharmacological demonstration of the differential involvement of protein kinase C isoforms in short‐ and long‐term memory formation and retrieval of one‐trial avoidance in rats publication-title: Psychopharmacology – volume: 11 start-page: 539 year: 1989 end-page: 558 article-title: Morphological, physiological and biochemical parameters associated with cell injury: a review publication-title: Immunopharmacol Immunotoxicol – volume: 19 start-page: 1303 year: 2010 end-page: 1315 article-title: Early amyloid accumulation in the hippocampus of SAMP8 mice publication-title: J Alzheimers Dis – volume: 16 start-page: 271 year: 2006 end-page: 286 article-title: Opiates, psychostimulants, and adult hippocampal neurogenesis: insights for addiction and stem cell biology publication-title: Hippocampus – volume: 4 start-page: 14 year: 2009 article-title: The PI3K‐Akt‐mTOR pathway regulates Abeta oligomer induced neuronal cell cycle events publication-title: Mol Neurodegener – volume: 279 start-page: 215 year: 2004 end-page: 244 article-title: Role of mTOR signalling in the control of translation initiation and elongation by nutrients publication-title: Curr Top Microbiol Immunol – volume: 289 start-page: 20615 year: 2014 end-page: 20629 article-title: Rapamycin and interleukin‐1beta impair brain‐derived neurotrophic factor ‐ dependent neuron survival by modulating autophagy publication-title: J Biol Chem – volume: 32 start-page: 550 year: 2010 end-page: 559 article-title: In vivo effects of morphine on neuronal fate and opioid receptor expression in zebrafish embryos publication-title: Eur J Neurosci – volume: 4 start-page: 187 year: 2012 end-page: 201 article-title: Prevention of beta‐amyloid degeneration of microglia by erythropoietin depends on Wnt1, the PI 3‐K/mTOR pathway, Bad, and Bcl‐xL publication-title: Aging (Albany NY) – volume: 272 start-page: 4211 year: 2005 end-page: 4220 article-title: Levels of mTOR and its downstream targets 4E‐BP1, eEF2, and eEF2 kinase in relationships with tau in Alzheimer's disease brain publication-title: FEBS J – volume: 24 start-page: 636 year: 2004 end-page: 645 article-title: Epsilon protein kinase C mediated ischemic tolerance requires activation of the extracellular regulated kinase pathway in the organotypic hippocampal slice publication-title: J Cereb Blood Flow Metab – volume: 9 start-page: 65 year: 2013 end-page: 66 article-title: Dementia in 2012: further insights into Alzheimer disease pathogenesis publication-title: Nat Rev Neurol – volume: 285 start-page: 13107 year: 2010 end-page: 13120 article-title: Molecular interplay between mammalian target of rapamycin (mTOR), amyloid‐beta, and Tau: effects on cognitive impairments publication-title: J Biol Chem – volume: 68 start-page: 1400 year: 1997 end-page: 1412 article-title: Evidence that the early loss of membrane protein kinase C is a necessary step in the excitatory amino acid‐induced death of primary cortical neurons publication-title: J Neurochem – volume: 13 start-page: 812 year: 2010 end-page: 818 article-title: Amyloid‐beta‐induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks publication-title: Nat Neurosci – volume: 27 start-page: 119 year: 2008 end-page: 128 article-title: Morphine: axon regeneration, neuroprotection, neurotoxicity, tolerance, and neuropathic pain publication-title: P R Health Sci J – volume: 322 start-page: 963 year: 2008 end-page: 966 article-title: Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway publication-title: Science – volume: 73 start-page: 178 year: 2008 end-page: 190 article-title: Beta‐arrestin‐dependent mu‐opioid receptor‐activated extracellular signal‐regulated kinases (ERKs) Translocate to Nucleus in Contrast to G protein‐dependent ERK activation publication-title: Mol Pharmacol – volume: 29 start-page: 354 year: 2008 end-page: 367 article-title: Dissociation of Akt/PKB and ribosomal S6 kinase signaling markers in a transgenic mouse model of Alzheimer's disease publication-title: Neurobiol Dis – volume: 273 start-page: 18623 year: 1998 end-page: 18632 article-title: Identification of a novel inhibitor of mitogen‐activated protein kinase kinase publication-title: J Biol Chem – volume: 108 start-page: 3791 year: 2011 end-page: 3796 article-title: Selective pharmacogenetic inhibition of mammalian target of Rapamycin complex I (mTORC1) blocks long‐term synaptic plasticity and memory storage publication-title: Proc Natl Acad Sci USA – volume: 273 start-page: 23534 year: 1998 end-page: 23541 article-title: mu‐Opioid receptor activates signaling pathways implicated in cell survival and translational control publication-title: J Biol Chem – volume: 146 start-page: 3 year: 1995 end-page: 15 article-title: Apoptosis, oncosis, and necrosis. An overview of cell death publication-title: Am J Pathol – volume: 288 start-page: 1295 year: 2013 end-page: 1306 article-title: Inhibition of glycogen synthase kinase‐3 ameliorates beta‐amyloid pathology and restores lysosomal acidification and mammalian target of rapamycin activity in the Alzheimer disease mouse model: in vivo and in vitro studies publication-title: J Biol Chem – volume: 28 start-page: 5007 year: 2008 end-page: 5017 article-title: Enkephalin elevations contribute to neuronal and behavioral impairments in a transgenic mouse model of Alzheimer's disease publication-title: J Neurosci – volume: 34 start-page: 205 year: 2006 end-page: 219 article-title: The growing role of mTOR in neuronal development and plasticity publication-title: Mol Neurobiol – volume: 44 start-page: 482 year: 2003 end-page: 492 article-title: Mu‐opioid receptor activation prevents apoptosis following serum withdrawal in differentiated SH‐SY5Y cells and cortical neurons via phosphatidylinositol 3‐kinase publication-title: Neuropharmacology – volume: 22 start-page: 320 year: 2006 end-page: 326 article-title: Activated mTOR and PKR kinases in lymphocytes correlate with memory and cognitive decline in Alzheimer's disease publication-title: Dement Geriatr Cogn Disord – volume: 137 start-page: 987 year: 2009 end-page: 988 article-title: Mu and delta opioid receptors diverge publication-title: Cell – volume: 124 start-page: 471 year: 2006 end-page: 484 article-title: TOR signaling in growth and metabolism publication-title: Cell – volume: 26 start-page: 12977 year: 2006 end-page: 12983 article-title: Translational control via the mammalian target of rapamycin pathway is critical for the formation and stability of long‐term fear memory in amygdala neurons publication-title: J Neurosci – volume: 171 start-page: 134 year: 2010 end-page: 143 article-title: Activation of phosphatidylinositol 3‐kinase/Akt‐mammalian target of Rapamycin signaling pathway in the hippocampus is essential for the acquisition of morphine‐induced place preference in rats publication-title: Neuroscience – volume: 287 start-page: 30240 year: 2012 end-page: 30256 article-title: Mammalian target of rapamycin complex 1 (mTORC1) and 2 (mTORC2) control the dendritic arbor morphology of hippocampal neurons publication-title: J Biol Chem – volume: 7 start-page: 337 year: 1995 end-page: 343 article-title: Nuclear changes in apoptosis publication-title: Curr Opin Cell Biol – volume: 11 start-page: BR386 year: 2005 end-page: BR396 article-title: Morphine modulation of the ubiquitin‐proteasome complex is neuroprotective publication-title: Med Sci Monit – ident: e_1_2_7_33_1 doi: 10.1007/s002130000396 – volume: 27 start-page: 119 year: 2008 ident: e_1_2_7_6_1 article-title: Morphine: axon regeneration, neuroprotection, neurotoxicity, tolerance, and neuropathic pain publication-title: P R Health Sci J – ident: e_1_2_7_51_1 doi: 10.3233/JAD-2010-1321 – ident: e_1_2_7_25_1 doi: 10.1159/000095562 – ident: e_1_2_7_18_1 doi: 10.1074/jbc.M112.374405 – ident: e_1_2_7_30_1 doi: 10.1074/jbc.273.29.18623 – ident: e_1_2_7_13_1 doi: 10.1016/j.cell.2006.01.016 – volume: 11 start-page: BR386 year: 2005 ident: e_1_2_7_10_1 article-title: Morphine modulation of the ubiquitin‐proteasome complex is neuroprotective publication-title: Med Sci Monit – ident: e_1_2_7_5_1 doi: 10.1152/jn.01150.2002 – ident: e_1_2_7_35_1 doi: 10.1016/S0028-3908(03)00024-8 – ident: e_1_2_7_37_1 doi: 10.1016/j.neuropharm.2011.09.016 – ident: e_1_2_7_50_1 doi: 10.1186/1750-1326-4-14 – ident: e_1_2_7_36_1 doi: 10.1124/mol.107.039842 – ident: e_1_2_7_40_1 doi: 10.3109/08923978909005384 – ident: e_1_2_7_7_1 doi: 10.1111/j.1471-4159.2008.05671.x – ident: e_1_2_7_44_1 doi: 10.1046/j.1460-9568.2003.02820.x – ident: e_1_2_7_54_1 doi: 10.1002/hipo.20161 – ident: e_1_2_7_12_1 doi: 10.1097/01.jnen.0000235123.05677.4b – ident: e_1_2_7_47_1 doi: 10.1074/jbc.M110.100420 – ident: e_1_2_7_16_1 doi: 10.1074/jbc.M114.568659 – ident: e_1_2_7_42_1 doi: 10.1073/pnas.012605299 – ident: e_1_2_7_39_1 doi: 10.1016/0955-0674(95)80088-3 – ident: e_1_2_7_45_1 doi: 10.1523/JNEUROSCI.4209-06.2006 – ident: e_1_2_7_9_1 doi: 10.4049/jimmunol.179.2.1198 – ident: e_1_2_7_17_1 doi: 10.1126/science.1161566 – ident: e_1_2_7_48_1 doi: 10.1074/jbc.M112.435123 – ident: e_1_2_7_34_1 doi: 10.1159/000085385 – ident: e_1_2_7_23_1 doi: 10.1111/j.1471-4159.2005.03187.x – ident: e_1_2_7_52_1 doi: 10.1007/978-3-642-18930-2_13 – ident: e_1_2_7_21_1 doi: 10.1038/nrneurol.2012.275 – ident: e_1_2_7_4_1 doi: 10.1016/j.bcp.2009.09.013 – ident: e_1_2_7_15_1 doi: 10.1038/nn.3546 – ident: e_1_2_7_11_1 doi: 10.1016/j.neuropharm.2005.06.016 – ident: e_1_2_7_41_1 doi: 10.1038/nrm2101 – ident: e_1_2_7_2_1 doi: 10.1016/j.cell.2009.05.033 – ident: e_1_2_7_3_1 doi: 10.1016/j.neuroscience.2010.08.064 – ident: e_1_2_7_53_1 doi: 10.1523/JNEUROSCI.0590-08.2008 – ident: e_1_2_7_24_1 doi: 10.1186/1750-1326-6-41 – volume: 146 start-page: 3 year: 1995 ident: e_1_2_7_38_1 article-title: Apoptosis, oncosis, and necrosis. An overview of cell death publication-title: Am J Pathol – ident: e_1_2_7_14_1 doi: 10.1038/nrm1018 – ident: e_1_2_7_46_1 doi: 10.1016/S0002-9440(10)63687-5 – ident: e_1_2_7_29_1 doi: 10.1074/jbc.273.36.23534 – ident: e_1_2_7_26_1 doi: 10.1016/j.nbd.2007.09.008 – ident: e_1_2_7_32_1 doi: 10.1097/01.WCB.0000121235.42748.BF – ident: e_1_2_7_20_1 doi: 10.1038/nn.2583 – ident: e_1_2_7_28_1 doi: 10.18632/aging.100440 – ident: e_1_2_7_27_1 doi: 10.1074/jbc.M112.409250 – ident: e_1_2_7_49_1 doi: 10.1111/j.1742-4658.2005.04833.x – ident: e_1_2_7_19_1 doi: 10.1073/pnas.1014715108 – ident: e_1_2_7_43_1 doi: 10.1385/MN:34:3:205 – ident: e_1_2_7_8_1 doi: 10.1111/j.1460-9568.2010.07317.x – ident: e_1_2_7_31_1 doi: 10.1046/j.1471-4159.1997.68041400.x – ident: e_1_2_7_22_1 doi: 10.1002/jnr.21039 |
SSID | ssj0062898 |
Score | 2.2189257 |
Snippet | Summary
Aims
μ‐opioid receptor (OPRM1) exerts many functions such as antinociception, neuroprotection, and hippocampal plasticity. A body of evidence has shown... μ-opioid receptor (OPRM1) exerts many functions such as antinociception, neuroprotection, and hippocampal plasticity. A body of evidence has shown that OPRM1... mu -opioid receptor (OPRM1) exerts many functions such as antinociception, neuroprotection, and hippocampal plasticity. A body of evidence has shown that OPRM1... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8 |
SubjectTerms | Alzheimer's disease Amyloid beta-Peptides - metabolism Animals Blotting, Western Cell Enlargement Cell Survival - drug effects Cell Survival - physiology Cells, Cultured Cerebral Cortex - drug effects Cerebral Cortex - physiopathology Enkephalins - metabolism Mechanistic/mammalian target of rapamycin Morphine - pharmacology Narcotics - pharmacology Neurites - drug effects Neurites - physiology Neurons - drug effects Neurons - physiology Original Peptide Fragments - metabolism Phosphatidylinositol 3-Kinases - metabolism Proto-Oncogene Proteins c-akt - metabolism Rats, Sprague-Dawley Receptors, Opioid, mu - metabolism Signal Transduction TOR Serine-Threonine Kinases - metabolism β‐Amyloid peptide μ‐Opioid receptor |
Title | μ‐Opioid Receptor Attenuates Aβ Oligomers‐Induced Neurotoxicity Through mTOR Signaling |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcns.12316 https://www.ncbi.nlm.nih.gov/pubmed/25146548 https://www.proquest.com/docview/1637564706 https://www.proquest.com/docview/1647021697 https://pubmed.ncbi.nlm.nih.gov/PMC6495561 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RuPTSB30thZWpKtQDQUk2cRz1tDxWqFLZFSwSB6TIr2yjQrIqWalw6k_ob-mZ38CP6C9h7GwCW1pUcbM0E_k1Y3_j2N8AvI-MKSjtOjz2mBNwlzvc56njm3RwIcW4xfLMft6ju4fBp6PwaA4-1m9hKn6I5sDNeIZdr42Dc3F2y8klTgouu56h2zZ3tQwg2m-ooygGEvYZXBSGThh33CmrkLnF03w5uxfdAZh370nexq92A-o9heO66dW9k68bk1JsyIs_WB0f2Ldn8GQKTEm3sqTnMKfzRVgbVMzW5-tkePNQ62ydrJHBDef1-Qs4vrr8_eNnf5wVmSIIRfUYY3nSLRGRTwyaJd2rX6R_ko0Kc06OqiZliNSKWHKQsvieSQwHsBKbNYicDvv75CAbmSghH72Ew97OcGvXmSZucGToMeqwII2VjjyFe50QjDKOMEwh1uRMCqlQhvbBGfex6Cuu0zTQUSp9RmPtMqE6r2A-L3L9Bkis0jgNBKWBchE7SiaYq3ENYW6caoxOW_ChnsJETlnNTXKNk6SObnAsEzuWLXjXqI4rKo-_Ka3WdpCgo5m_JzzXxQTFtBOFNIjce3VQ7nto4i14XdlOUxUCScNdx1oQzVhVo2CIvmclefbFEn5TjGIR52JfrdH8u_XJ1t6BLSz9v-pbeIwgMKyOlZZhvvw20SsItErRhkd-MGjDQndze7PXtv51DWvjLNE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB5ReqCXQqE_W2jrVgj1QFCSTRxH4rKiRUsLuwgWiQNV5NjONipNVpCVgBOPwLNw7jPwEH2Sjp1NYAtUFTdLM5H_ZuxvHPsbgMVAm4JUtsVDh1ket7nFXZ5Yrk4H51OMWwzP7FaHtve8L_v-_gSsVm9hSn6I-sBNe4ZZr7WD6wPpG14ucFZw3XXoI3isM3pr5vxPOzV5FMVQwjyEC3zf8sOmPeIV0vd46k_Hd6NbEPP2TcmbCNZsQevT8K1qfHnz5MfKsIhXxNlfvI4P7d0MPB1hU9IqjekZTKhsFpa2S3Lr02XSu36rdbxMlsj2Ne316RwcXP36fX7RHaR5KgmiUTXAcJ60CgTlQw1oSevqknQP036uj8pRVWcNEUoSww9S5CepwIgAKzGJg8jPXneH7KZ9HShk_eewt_65t9a2RrkbLOE7jFrMS0KpAkfidhfHjDKOSEwi3ORMxEKiDE2EM-5i0ZVcJYmngkS4jIbKZrFsvoDJLM_UKyChTMLEiyn1pI3wUbCY2QqXEWaHicIAtQEfqzmMxIjYXOfXOIyqAAfHMjJj2YAPteqgZPO4S-l9ZQgR-pr-gcIzlQ9RTJuBT73A_qcOyl0HrbwBL0vjqatCLKnp61gDgjGzqhU01_e4JEu_G85vioEsQl3sq7Ga-1sfrXV2TeH1_6u-g6l2b2sz2tzofJ2HJ4gJ_fKUaQEmi6OheoO4q4jfGvf6A3xcLqQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTttAEB7xI1W9VIVCCX_dVghxwJLt2Ou1eoqgEdA2iUqQOCBZ6_0JllI7gkQqNx6hz9Jzn4GH6JN0dh0bImjFbaUZa23PzO43-_MNwE5kXEEq1-Gxx5yAu9zhPteOb8rBhRTzFssz-7VDj86Ck_PwfA4-VndhSn6IesHNRIYdr02Aj6R-EOQCjYLDrkfnYdFs9pnzXH7Qq4ZhipmEvQcXhaETxk13SitkjvHUj85ORo8Q5uODkg8BrJ2B2q_h1RQ6klZp6yWYU_ky7PZK7umbfdK_v0p1vU92Se-elfrmDVzc_f5z-7M7yopMEgSLaoTZNmmNETNPDN4krbtfpDvMBoVZyUZVU9RDKEksfce4-JEJBOzYia3rQ773u9_IaTYwOD4frMBZ-1P_4MiZllZwROgx6rBAx1JFnsTZKE0ZZRyBkkQ0yJlIhUQZWpAz7mPTl1xpHahIC5_RWLkslc1VWMiLXK0BiaWOdZBSGkgX0Z1gKXMVRjlzY60wf2zAXvWPEzHlHTflL4ZJlX-gORJrjgZ8qFVHJdnGU0rvK0MlGApmf4PnqpigmDajkAaR-18dlPseOmED3pbGrbtCqGfY5VgDohmz1wqGintWkmeXlpKbYp6JSBS_1TrIv98-Oeic2sb681XfwYveYTv5ctz5vAEvEbGF5RrQJiyMryZqC1HRON223v8XGv8NIA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%CE%BC-Opioid+receptor+attenuates+A%CE%B2+oligomers-induced+neurotoxicity+through+mTOR+signaling&rft.jtitle=CNS+neuroscience+%26+therapeutics&rft.au=Wang%2C+Yan&rft.au=Wang%2C+Yan-Xia&rft.au=Liu%2C+Ting&rft.au=Law%2C+Ping-Yee&rft.date=2015-01-01&rft.eissn=1755-5949&rft.volume=21&rft.issue=1&rft.spage=8&rft_id=info:doi/10.1111%2Fcns.12316&rft_id=info%3Apmid%2F25146548&rft.externalDocID=25146548 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-5930&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-5930&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-5930&client=summon |