μ‐Opioid Receptor Attenuates Aβ Oligomers‐Induced Neurotoxicity Through mTOR Signaling

Summary Aims μ‐opioid receptor (OPRM1) exerts many functions such as antinociception, neuroprotection, and hippocampal plasticity. A body of evidence has shown that OPRM1 activation could stimulate downstream effectors of mechanistic/mammalian target of rapamycin (mTOR). However, it is not clear whe...

Full description

Saved in:
Bibliographic Details
Published inCNS neuroscience & therapeutics Vol. 21; no. 1; pp. 8 - 14
Main Authors Wang, Yan, Wang, Yan‐Xia, Liu, Ting, Law, Ping‐Yee, Loh, Horace H., Qiu, Yu, Chen, Hong‐Zhuan
Format Journal Article
LanguageEnglish
Published England John Wiley and Sons Inc 01.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Aims μ‐opioid receptor (OPRM1) exerts many functions such as antinociception, neuroprotection, and hippocampal plasticity. A body of evidence has shown that OPRM1 activation could stimulate downstream effectors of mechanistic/mammalian target of rapamycin (mTOR). However, it is not clear whether OPRM1 protects neurons against β‐amyloid peptide (Aβ) neurotoxicity through mTOR signaling. Methods The effects of OPRM1 activation on Aβ oligomers‐induced neurotoxicity were assessed by cell viability and neurite outgrowth assay in primary cultured cortical neurons. The activities of mTOR, protein kinase B (Akt) and p70 ribosomal S6 kinase (p70 S6k) upon OPRM1 activation by morphine were measured by immunoblotting their phosphorylation status. Results Morphine dose‐dependently attenuated Aβ oligomers‐induced neurotoxicity. Aβ oligomers downregulated mTOR signaling. Morphine significantly rescued mTOR signaling by reversal of Aβ oligomers’ effect on mTOR and its upstream signaling molecule Akt, as well as its downstream molecule p70 S6k. Moreover, the neuroprotective effect of morphine could be reversed by OPRM1 selective antagonist and phosphatidylinositol 3‐kinases (PI3K), Akt and mTOR inhibitors. Furthermore, endogenous opioids–enkaphalins also attenuated Aβ oligomers‐induced neurotoxicity. Conclusions Our findings demonstrated OPRM1 activation attenuated Aβ oligomers‐induced neurotoxicity through mTOR signaling. It may provide new insight into the pathological process and useful strategy for therapeutic interventions against Aβ neurotoxicity.
AbstractList μ-opioid receptor (OPRM1) exerts many functions such as antinociception, neuroprotection, and hippocampal plasticity. A body of evidence has shown that OPRM1 activation could stimulate downstream effectors of mechanistic/mammalian target of rapamycin (mTOR). However, it is not clear whether OPRM1 protects neurons against β-amyloid peptide (Aβ) neurotoxicity through mTOR signaling.AIMSμ-opioid receptor (OPRM1) exerts many functions such as antinociception, neuroprotection, and hippocampal plasticity. A body of evidence has shown that OPRM1 activation could stimulate downstream effectors of mechanistic/mammalian target of rapamycin (mTOR). However, it is not clear whether OPRM1 protects neurons against β-amyloid peptide (Aβ) neurotoxicity through mTOR signaling.The effects of OPRM1 activation on Aβ oligomers-induced neurotoxicity were assessed by cell viability and neurite outgrowth assay in primary cultured cortical neurons. The activities of mTOR, protein kinase B (Akt) and p70 ribosomal S6 kinase (p70 S6k) upon OPRM1 activation by morphine were measured by immunoblotting their phosphorylation status.METHODSThe effects of OPRM1 activation on Aβ oligomers-induced neurotoxicity were assessed by cell viability and neurite outgrowth assay in primary cultured cortical neurons. The activities of mTOR, protein kinase B (Akt) and p70 ribosomal S6 kinase (p70 S6k) upon OPRM1 activation by morphine were measured by immunoblotting their phosphorylation status.Morphine dose-dependently attenuated Aβ oligomers-induced neurotoxicity. Aβ oligomers downregulated mTOR signaling. Morphine significantly rescued mTOR signaling by reversal of Aβ oligomers' effect on mTOR and its upstream signaling molecule Akt, as well as its downstream molecule p70 S6k. Moreover, the neuroprotective effect of morphine could be reversed by OPRM1 selective antagonist and phosphatidylinositol 3-kinases (PI3K), Akt and mTOR inhibitors. Furthermore, endogenous opioids-enkaphalins also attenuated Aβ oligomers-induced neurotoxicity.RESULTSMorphine dose-dependently attenuated Aβ oligomers-induced neurotoxicity. Aβ oligomers downregulated mTOR signaling. Morphine significantly rescued mTOR signaling by reversal of Aβ oligomers' effect on mTOR and its upstream signaling molecule Akt, as well as its downstream molecule p70 S6k. Moreover, the neuroprotective effect of morphine could be reversed by OPRM1 selective antagonist and phosphatidylinositol 3-kinases (PI3K), Akt and mTOR inhibitors. Furthermore, endogenous opioids-enkaphalins also attenuated Aβ oligomers-induced neurotoxicity.Our findings demonstrated OPRM1 activation attenuated Aβ oligomers-induced neurotoxicity through mTOR signaling. It may provide new insight into the pathological process and useful strategy for therapeutic interventions against Aβ neurotoxicity.CONCLUSIONSOur findings demonstrated OPRM1 activation attenuated Aβ oligomers-induced neurotoxicity through mTOR signaling. It may provide new insight into the pathological process and useful strategy for therapeutic interventions against Aβ neurotoxicity.
μ-opioid receptor (OPRM1) exerts many functions such as antinociception, neuroprotection, and hippocampal plasticity. A body of evidence has shown that OPRM1 activation could stimulate downstream effectors of mechanistic/mammalian target of rapamycin (mTOR). However, it is not clear whether OPRM1 protects neurons against β-amyloid peptide (Aβ) neurotoxicity through mTOR signaling. The effects of OPRM1 activation on Aβ oligomers-induced neurotoxicity were assessed by cell viability and neurite outgrowth assay in primary cultured cortical neurons. The activities of mTOR, protein kinase B (Akt) and p70 ribosomal S6 kinase (p70 S6k) upon OPRM1 activation by morphine were measured by immunoblotting their phosphorylation status. Morphine dose-dependently attenuated Aβ oligomers-induced neurotoxicity. Aβ oligomers downregulated mTOR signaling. Morphine significantly rescued mTOR signaling by reversal of Aβ oligomers' effect on mTOR and its upstream signaling molecule Akt, as well as its downstream molecule p70 S6k. Moreover, the neuroprotective effect of morphine could be reversed by OPRM1 selective antagonist and phosphatidylinositol 3-kinases (PI3K), Akt and mTOR inhibitors. Furthermore, endogenous opioids-enkaphalins also attenuated Aβ oligomers-induced neurotoxicity. Our findings demonstrated OPRM1 activation attenuated Aβ oligomers-induced neurotoxicity through mTOR signaling. It may provide new insight into the pathological process and useful strategy for therapeutic interventions against Aβ neurotoxicity.
Summary Aims μ‐opioid receptor (OPRM1) exerts many functions such as antinociception, neuroprotection, and hippocampal plasticity. A body of evidence has shown that OPRM1 activation could stimulate downstream effectors of mechanistic/mammalian target of rapamycin (mTOR). However, it is not clear whether OPRM1 protects neurons against β‐amyloid peptide (Aβ) neurotoxicity through mTOR signaling. Methods The effects of OPRM1 activation on Aβ oligomers‐induced neurotoxicity were assessed by cell viability and neurite outgrowth assay in primary cultured cortical neurons. The activities of mTOR, protein kinase B (Akt) and p70 ribosomal S6 kinase (p70 S6k) upon OPRM1 activation by morphine were measured by immunoblotting their phosphorylation status. Results Morphine dose‐dependently attenuated Aβ oligomers‐induced neurotoxicity. Aβ oligomers downregulated mTOR signaling. Morphine significantly rescued mTOR signaling by reversal of Aβ oligomers’ effect on mTOR and its upstream signaling molecule Akt, as well as its downstream molecule p70 S6k. Moreover, the neuroprotective effect of morphine could be reversed by OPRM1 selective antagonist and phosphatidylinositol 3‐kinases (PI3K), Akt and mTOR inhibitors. Furthermore, endogenous opioids–enkaphalins also attenuated Aβ oligomers‐induced neurotoxicity. Conclusions Our findings demonstrated OPRM1 activation attenuated Aβ oligomers‐induced neurotoxicity through mTOR signaling. It may provide new insight into the pathological process and useful strategy for therapeutic interventions against Aβ neurotoxicity.
mu -opioid receptor (OPRM1) exerts many functions such as antinociception, neuroprotection, and hippocampal plasticity. A body of evidence has shown that OPRM1 activation could stimulate downstream effectors of mechanistic/mammalian target of rapamycin (mTOR). However, it is not clear whether OPRM1 protects neurons against beta -amyloid peptide (A beta ) neurotoxicity through mTOR signaling. The effects of OPRM1 activation on A beta oligomers-induced neurotoxicity were assessed by cell viability and neurite outgrowth assay in primary cultured cortical neurons. The activities of mTOR, protein kinase B (Akt) and p70 ribosomal S6 kinase (p70 S6k) upon OPRM1 activation by morphine were measured by immunoblotting their phosphorylation status. Morphine dose-dependently attenuated A beta oligomers-induced neurotoxicity. A beta oligomers downregulated mTOR signaling. Morphine significantly rescued mTOR signaling by reversal of A beta oligomers' effect on mTOR and its upstream signaling molecule Akt, as well as its downstream molecule p70 S6k. Moreover, the neuroprotective effect of morphine could be reversed by OPRM1 selective antagonist and phosphatidylinositol 3-kinases (PI3K), Akt and mTOR inhibitors. Furthermore, endogenous opioids-enkaphalins also attenuated A beta oligomers-induced neurotoxicity. Our findings demonstrated OPRM1 activation attenuated A beta oligomers-induced neurotoxicity through mTOR signaling. It may provide new insight into the pathological process and useful strategy for therapeutic interventions against A beta neurotoxicity.
Author Law, Ping‐Yee
Qiu, Yu
Loh, Horace H.
Wang, Yan‐Xia
Chen, Hong‐Zhuan
Wang, Yan
Liu, Ting
AuthorAffiliation 2 Department of Microbiology University of Pennsylvania School of Medicine Philadelphia PA USA
3 Department of Pharmacology University of Minnesota Minneapolis MN USA
1 Department of Pharmacology Institute of Medical Sciences Shanghai Jiao Tong University School of Medicine Shanghai China
AuthorAffiliation_xml – name: 2 Department of Microbiology University of Pennsylvania School of Medicine Philadelphia PA USA
– name: 1 Department of Pharmacology Institute of Medical Sciences Shanghai Jiao Tong University School of Medicine Shanghai China
– name: 3 Department of Pharmacology University of Minnesota Minneapolis MN USA
Author_xml – sequence: 1
  givenname: Yan
  surname: Wang
  fullname: Wang, Yan
  organization: University of Pennsylvania School of Medicine
– sequence: 2
  givenname: Yan‐Xia
  surname: Wang
  fullname: Wang, Yan‐Xia
  organization: Shanghai Jiao Tong University School of Medicine
– sequence: 3
  givenname: Ting
  surname: Liu
  fullname: Liu, Ting
  organization: Shanghai Jiao Tong University School of Medicine
– sequence: 4
  givenname: Ping‐Yee
  surname: Law
  fullname: Law, Ping‐Yee
  organization: University of Minnesota
– sequence: 5
  givenname: Horace H.
  surname: Loh
  fullname: Loh, Horace H.
  organization: University of Minnesota
– sequence: 6
  givenname: Yu
  surname: Qiu
  fullname: Qiu, Yu
  organization: Shanghai Jiao Tong University School of Medicine
– sequence: 7
  givenname: Hong‐Zhuan
  surname: Chen
  fullname: Chen, Hong‐Zhuan
  organization: Shanghai Jiao Tong University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25146548$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAQxy3Uin7AgRdAOcJh2ziJHfuCtFrxUanqSu1yQ7Ice5I1SuzFdtrujUfgWTjzDH0InqRetqwACcRcZqT5zV8z8z9Ce9ZZQOgZzk9wilNlwwkuSkwfoUNcEzIhvOJ7u7rMD9BRCB_znBaMs8fooCC4oqRih-jD3bfvn7_MV8YZnV2CglV0PpvGCHaUEUI2vfuazXvTuQF8SOiZ1aMCnV3A6F10t0aZuM4WS-_GbpkNi_lldmU6K3tjuydov5V9gKcP-Ri9f_N6MXs3OZ-_PZtNzyeKYEYnrGq5hhrrgvOmYZRJVnKNSy6ZapROvbzSkskilYWW0LYV1K0qGOWQs0aXx-jVVnc1NgNoBTZ62YuVN4P0a-GkEb93rFmKzl0LWnFCKE4CLx4EvPs0QohiMEFB30sLbgwC06rOC0x5_R9oWZMNThP6_Ne1dvv8_H4CXm4B5V0IHtodgnOxcVYkZ8UPZxN7-gebHi-jcZuLTP-viRvTw_rv0mJ2cbWduAcjk7pG
CitedBy_id crossref_primary_10_1016_j_neuint_2022_105311
crossref_primary_10_3390_molecules21040518
crossref_primary_10_1111_cns_12409
crossref_primary_10_1007_s12031_017_0905_1
crossref_primary_10_3389_fphar_2023_1056402
crossref_primary_10_1097_AJP_0000000000000319
crossref_primary_10_2174_1567202620666230721122957
crossref_primary_10_3892_mmr_2018_9424
crossref_primary_10_1111_anae_14019
crossref_primary_10_1016_j_pneurobio_2017_01_004
crossref_primary_10_1007_s11481_016_9671_z
crossref_primary_10_1007_s40263_017_0431_2
crossref_primary_10_1021_acschemneuro_0c00093
crossref_primary_10_3389_fneur_2022_977953
crossref_primary_10_1007_s12035_024_04334_x
crossref_primary_10_1186_s13195_025_01682_1
crossref_primary_10_3390_bioengineering10070871
crossref_primary_10_1002_ejhf_1185
crossref_primary_10_1007_s12031_020_01478_y
crossref_primary_10_3389_fnmol_2018_00120
crossref_primary_10_1042_BST20170121
crossref_primary_10_1111_bcp_12804
crossref_primary_10_1016_j_peptides_2016_12_004
crossref_primary_10_1016_j_neulet_2016_11_018
crossref_primary_10_1080_01480545_2021_1957558
crossref_primary_10_1111_adb_70014
crossref_primary_10_3390_biom13050816
Cites_doi 10.1007/s002130000396
10.3233/JAD-2010-1321
10.1159/000095562
10.1074/jbc.M112.374405
10.1074/jbc.273.29.18623
10.1016/j.cell.2006.01.016
10.1152/jn.01150.2002
10.1016/S0028-3908(03)00024-8
10.1016/j.neuropharm.2011.09.016
10.1186/1750-1326-4-14
10.1124/mol.107.039842
10.3109/08923978909005384
10.1111/j.1471-4159.2008.05671.x
10.1046/j.1460-9568.2003.02820.x
10.1002/hipo.20161
10.1097/01.jnen.0000235123.05677.4b
10.1074/jbc.M110.100420
10.1074/jbc.M114.568659
10.1073/pnas.012605299
10.1016/0955-0674(95)80088-3
10.1523/JNEUROSCI.4209-06.2006
10.4049/jimmunol.179.2.1198
10.1126/science.1161566
10.1074/jbc.M112.435123
10.1159/000085385
10.1111/j.1471-4159.2005.03187.x
10.1007/978-3-642-18930-2_13
10.1038/nrneurol.2012.275
10.1016/j.bcp.2009.09.013
10.1038/nn.3546
10.1016/j.neuropharm.2005.06.016
10.1038/nrm2101
10.1016/j.cell.2009.05.033
10.1016/j.neuroscience.2010.08.064
10.1523/JNEUROSCI.0590-08.2008
10.1186/1750-1326-6-41
10.1038/nrm1018
10.1016/S0002-9440(10)63687-5
10.1074/jbc.273.36.23534
10.1016/j.nbd.2007.09.008
10.1097/01.WCB.0000121235.42748.BF
10.1038/nn.2583
10.18632/aging.100440
10.1074/jbc.M112.409250
10.1111/j.1742-4658.2005.04833.x
10.1073/pnas.1014715108
10.1385/MN:34:3:205
10.1111/j.1460-9568.2010.07317.x
10.1046/j.1471-4159.1997.68041400.x
10.1002/jnr.21039
ContentType Journal Article
Copyright 2014 John Wiley & Sons Ltd
2014 John Wiley & Sons Ltd.
Copyright_xml – notice: 2014 John Wiley & Sons Ltd
– notice: 2014 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1111/cns.12316
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList MEDLINE - Academic
MEDLINE

Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
DocumentTitleAlternate Y. Wang et al
EISSN 1755-5949
EndPage 14
ExternalDocumentID PMC6495561
25146548
10_1111_cns_12316
CNS12316
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: International Science & Technology Cooperation Program of China
  funderid: 2011DFA33180
– fundername: Shanghai Natural Science foundation
  funderid: 10ZR1417000
– fundername: National Great Basic Science Project of China
  funderid: 2010CB529806
– fundername: Shanghai Pujiang Program
  funderid: 11PJ1406200
– fundername: National Natural Science Foundation of China
  funderid: 81173044
– fundername: National Institutes of Health
  funderid: DA007339; DA011806
– fundername: NIDA NIH HHS
  grantid: DA007339
– fundername: NIDA NIH HHS
  grantid: P50 DA011806
– fundername: NIDA NIH HHS
  grantid: R01 DA007339
– fundername: NIDA NIH HHS
  grantid: DA011806
– fundername: Shanghai Pujiang Program
  grantid: 11PJ1406200
– fundername: International Science & Technology Cooperation Program of China
  grantid: 2011DFA33180
– fundername: National Natural Science Foundation of China
  grantid: 81173044
– fundername: National Institutes of Health
  grantid: DA007339; DA011806
– fundername: National Great Basic Science Project of China
  grantid: 2010CB529806
– fundername: Shanghai Natural Science foundation
  grantid: 10ZR1417000
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29B
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8AO
8FI
8FJ
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAONW
AAZKR
ABCQN
ABDBF
ABEML
ABIVO
ABPVW
ABUWG
ACCFJ
ACCMX
ACGFS
ACMXC
ACPRK
ACSCC
ACUHS
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADPDF
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFKRA
AFPKN
AFPWT
AFZJQ
AHMBA
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AOIJS
ATUGU
AVUZU
AZBYB
AZVAB
BAFTC
BBNVY
BCNDV
BENPR
BFHJK
BHBCM
BHPHI
BMXJE
BROTX
BRXPI
BY8
CAG
CCPQU
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DU5
EBC
EBD
EBS
EJD
EMB
EMOBN
ESX
F00
F01
F04
F5P
FUBAC
FYUFA
G-S
G.N
GODZA
GROUPED_DOAJ
H.X
HCIFZ
HF~
HMCUK
HYE
HZ~
IAO
IHR
INH
ITC
IX1
J0M
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
M7P
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
OVEED
P2W
P2X
P2Z
P4B
P4D
PIMPY
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RPM
RX1
SUPJJ
SV3
TEORI
TUS
UB1
UKHRP
W8V
W99
WBKPD
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXI
WYISQ
XG1
~IA
~WT
AAFWJ
AAYXX
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
PQGLB
7X8
7TK
1OB
5PM
ID FETCH-LOGICAL-c5186-84f9de71d299bb868a839d139a8cbcd9de04da8a2d9d2daeff4e7fc2869e08bd3
IEDL.DBID DR2
ISSN 1755-5930
1755-5949
IngestDate Thu Aug 21 17:32:46 EDT 2025
Thu Jul 10 23:50:03 EDT 2025
Fri Jul 11 16:27:30 EDT 2025
Mon Jul 21 05:58:03 EDT 2025
Thu Apr 24 22:58:54 EDT 2025
Tue Jul 01 00:33:41 EDT 2025
Wed Jan 22 16:24:47 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords μ-Opioid receptor
Mechanistic/mammalian target of rapamycin
Alzheimer's disease
β-Amyloid peptide
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2014 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5186-84f9de71d299bb868a839d139a8cbcd9de04da8a2d9d2daeff4e7fc2869e08bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/cns.12316
PMID 25146548
PQID 1637564706
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6495561
proquest_miscellaneous_1647021697
proquest_miscellaneous_1637564706
pubmed_primary_25146548
crossref_primary_10_1111_cns_12316
crossref_citationtrail_10_1111_cns_12316
wiley_primary_10_1111_cns_12316_CNS12316
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: January 2015
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Hoboken
PublicationTitle CNS neuroscience & therapeutics
PublicationTitleAlternate CNS Neurosci Ther
PublicationYear 2015
Publisher John Wiley and Sons Inc
Publisher_xml – name: John Wiley and Sons Inc
References 2012; 287
2010; 13
2006; 34
2010; 19
2004; 24
2002; 99
2013; 288
2008; 107
2003; 18
2008; 73
2013; 9
1998; 273
2007; 179
2003; 90
2013; 16
2006; 65
2006; 22
2008; 29
2008; 27
2006; 26
2008; 28
2007; 8
2003; 4
2003; 44
2006; 124
2014; 289
2012; 62
2003; 163
2010; 32
2005; 272
2010; 79
2006; 16
1997; 68
2000; 150
2010; 285
2008; 322
2005; 49
2011; 6
2009; 137
1995; 7
1989; 11
2011; 108
2004; 279
2006; 84
1995; 146
2010; 171
2005; 94
2009; 4
2012; 4
2005; 11
2005; 14
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
Berrios I (e_1_2_7_6_1) 2008; 27
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
Rambhia S (e_1_2_7_10_1) 2005; 11
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
Majno G (e_1_2_7_38_1) 1995; 146
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
References_xml – volume: 6
  start-page: 41
  year: 2011
  article-title: Molecular interplay between leptin, insulin‐like growth factor‐1, and beta‐amyloid in organotypic slices from rabbit hippocampus
  publication-title: Mol Neurodegener
– volume: 4
  start-page: 117
  year: 2003
  end-page: 126
  article-title: Tor signalling in bugs, brain and brawn
  publication-title: Nat Rev Mol Cell Biol
– volume: 94
  start-page: 215
  year: 2005
  end-page: 225
  article-title: mTOR/p70S6k signalling alteration by Abeta exposure as well as in APP‐PS1 transgenic models and in patients with Alzheimer's disease
  publication-title: J Neurochem
– volume: 79
  start-page: 516
  year: 2010
  end-page: 523
  article-title: Mechanisms involved in phosphatidylinositol 3‐kinase pathway mediated up‐regulation of the mu opioid receptor in lymphocytes
  publication-title: Biochem Pharmacol
– volume: 90
  start-page: 1936
  year: 2003
  end-page: 1948
  article-title: Mu‐opioid receptors facilitate the propagation of excitatory activity in rat hippocampal area CA1 by disinhibition of all anatomical layers
  publication-title: J Neurophysiol
– volume: 163
  start-page: 591
  year: 2003
  end-page: 607
  article-title: Up‐regulation of phosphorylated/activated p70 S6 kinase and its relationship to neurofibrillary pathology in Alzheimer's disease
  publication-title: Am J Pathol
– volume: 49
  start-page: 1160
  year: 2005
  end-page: 1169
  article-title: Effects of opioid antagonists and morphine in a hippocampal hypoxia/hypoglycemia model
  publication-title: Neuropharmacology
– volume: 288
  start-page: 15556
  year: 2013
  end-page: 15570
  article-title: Mammalian target of rapamycin (mTor) mediates tau protein dyshomeostasis: implication for Alzheimer disease
  publication-title: J Biol Chem
– volume: 65
  start-page: 945
  year: 2006
  end-page: 952
  article-title: Opioid preconditioning induces opioid receptor‐dependent delayed neuroprotection against ischemia in rats
  publication-title: J Neuropathol Exp Neurol
– volume: 8
  start-page: 101
  year: 2007
  end-page: 112
  article-title: Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta‐peptide
  publication-title: Nat Rev Mol Cell Biol
– volume: 179
  start-page: 1198
  year: 2007
  end-page: 1209
  article-title: Microglia‐mediated neurotoxicity is inhibited by morphine through an opioid receptor‐independent reduction of NADPH oxidase activity
  publication-title: J Immunol
– volume: 84
  start-page: 1323
  year: 2006
  end-page: 1334
  article-title: The immunosuppressant rapamycin exacerbates neurotoxicity of Abeta peptide
  publication-title: J Neurosci Res
– volume: 107
  start-page: 883
  year: 2008
  end-page: 897
  article-title: Opioidergic regulation of astroglial/neuronal proliferation: where are we now?
  publication-title: J Neurochem
– volume: 16
  start-page: 1537
  year: 2013
  end-page: 1543
  article-title: mTOR complexes in neurodevelopmental and neuropsychiatric disorders
  publication-title: Nat Neurosci
– volume: 14
  start-page: 46
  year: 2005
  end-page: 60
  article-title: Multifunctional activities of green tea catechins in neuroprotection. Modulation of cell survival genes, iron‐dependent oxidative stress and PKC signaling pathway
  publication-title: Neurosignals
– volume: 18
  start-page: 942
  year: 2003
  end-page: 950
  article-title: Rapamycin‐sensitive signalling in long‐term consolidation of auditory cortex‐dependent memory
  publication-title: Eur J Neurosci
– volume: 99
  start-page: 467
  year: 2002
  end-page: 472
  article-title: A rapamycin‐sensitive signaling pathway contributes to long‐term synaptic plasticity in the hippocampus
  publication-title: Proc Natl Acad Sci USA
– volume: 62
  start-page: 871
  year: 2012
  end-page: 881
  article-title: Alpha‐mangostin, a polyphenolic xanthone derivative from mangosteen, attenuates beta‐amyloid oligomers‐induced neurotoxicity by inhibiting amyloid aggregation
  publication-title: Neuropharmacology
– volume: 150
  start-page: 77
  year: 2000
  end-page: 84
  article-title: Pharmacological demonstration of the differential involvement of protein kinase C isoforms in short‐ and long‐term memory formation and retrieval of one‐trial avoidance in rats
  publication-title: Psychopharmacology
– volume: 11
  start-page: 539
  year: 1989
  end-page: 558
  article-title: Morphological, physiological and biochemical parameters associated with cell injury: a review
  publication-title: Immunopharmacol Immunotoxicol
– volume: 19
  start-page: 1303
  year: 2010
  end-page: 1315
  article-title: Early amyloid accumulation in the hippocampus of SAMP8 mice
  publication-title: J Alzheimers Dis
– volume: 16
  start-page: 271
  year: 2006
  end-page: 286
  article-title: Opiates, psychostimulants, and adult hippocampal neurogenesis: insights for addiction and stem cell biology
  publication-title: Hippocampus
– volume: 4
  start-page: 14
  year: 2009
  article-title: The PI3K‐Akt‐mTOR pathway regulates Abeta oligomer induced neuronal cell cycle events
  publication-title: Mol Neurodegener
– volume: 279
  start-page: 215
  year: 2004
  end-page: 244
  article-title: Role of mTOR signalling in the control of translation initiation and elongation by nutrients
  publication-title: Curr Top Microbiol Immunol
– volume: 289
  start-page: 20615
  year: 2014
  end-page: 20629
  article-title: Rapamycin and interleukin‐1beta impair brain‐derived neurotrophic factor ‐ dependent neuron survival by modulating autophagy
  publication-title: J Biol Chem
– volume: 32
  start-page: 550
  year: 2010
  end-page: 559
  article-title: In vivo effects of morphine on neuronal fate and opioid receptor expression in zebrafish embryos
  publication-title: Eur J Neurosci
– volume: 4
  start-page: 187
  year: 2012
  end-page: 201
  article-title: Prevention of beta‐amyloid degeneration of microglia by erythropoietin depends on Wnt1, the PI 3‐K/mTOR pathway, Bad, and Bcl‐xL
  publication-title: Aging (Albany NY)
– volume: 272
  start-page: 4211
  year: 2005
  end-page: 4220
  article-title: Levels of mTOR and its downstream targets 4E‐BP1, eEF2, and eEF2 kinase in relationships with tau in Alzheimer's disease brain
  publication-title: FEBS J
– volume: 24
  start-page: 636
  year: 2004
  end-page: 645
  article-title: Epsilon protein kinase C mediated ischemic tolerance requires activation of the extracellular regulated kinase pathway in the organotypic hippocampal slice
  publication-title: J Cereb Blood Flow Metab
– volume: 9
  start-page: 65
  year: 2013
  end-page: 66
  article-title: Dementia in 2012: further insights into Alzheimer disease pathogenesis
  publication-title: Nat Rev Neurol
– volume: 285
  start-page: 13107
  year: 2010
  end-page: 13120
  article-title: Molecular interplay between mammalian target of rapamycin (mTOR), amyloid‐beta, and Tau: effects on cognitive impairments
  publication-title: J Biol Chem
– volume: 68
  start-page: 1400
  year: 1997
  end-page: 1412
  article-title: Evidence that the early loss of membrane protein kinase C is a necessary step in the excitatory amino acid‐induced death of primary cortical neurons
  publication-title: J Neurochem
– volume: 13
  start-page: 812
  year: 2010
  end-page: 818
  article-title: Amyloid‐beta‐induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks
  publication-title: Nat Neurosci
– volume: 27
  start-page: 119
  year: 2008
  end-page: 128
  article-title: Morphine: axon regeneration, neuroprotection, neurotoxicity, tolerance, and neuropathic pain
  publication-title: P R Health Sci J
– volume: 322
  start-page: 963
  year: 2008
  end-page: 966
  article-title: Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway
  publication-title: Science
– volume: 73
  start-page: 178
  year: 2008
  end-page: 190
  article-title: Beta‐arrestin‐dependent mu‐opioid receptor‐activated extracellular signal‐regulated kinases (ERKs) Translocate to Nucleus in Contrast to G protein‐dependent ERK activation
  publication-title: Mol Pharmacol
– volume: 29
  start-page: 354
  year: 2008
  end-page: 367
  article-title: Dissociation of Akt/PKB and ribosomal S6 kinase signaling markers in a transgenic mouse model of Alzheimer's disease
  publication-title: Neurobiol Dis
– volume: 273
  start-page: 18623
  year: 1998
  end-page: 18632
  article-title: Identification of a novel inhibitor of mitogen‐activated protein kinase kinase
  publication-title: J Biol Chem
– volume: 108
  start-page: 3791
  year: 2011
  end-page: 3796
  article-title: Selective pharmacogenetic inhibition of mammalian target of Rapamycin complex I (mTORC1) blocks long‐term synaptic plasticity and memory storage
  publication-title: Proc Natl Acad Sci USA
– volume: 273
  start-page: 23534
  year: 1998
  end-page: 23541
  article-title: mu‐Opioid receptor activates signaling pathways implicated in cell survival and translational control
  publication-title: J Biol Chem
– volume: 146
  start-page: 3
  year: 1995
  end-page: 15
  article-title: Apoptosis, oncosis, and necrosis. An overview of cell death
  publication-title: Am J Pathol
– volume: 288
  start-page: 1295
  year: 2013
  end-page: 1306
  article-title: Inhibition of glycogen synthase kinase‐3 ameliorates beta‐amyloid pathology and restores lysosomal acidification and mammalian target of rapamycin activity in the Alzheimer disease mouse model: in vivo and in vitro studies
  publication-title: J Biol Chem
– volume: 28
  start-page: 5007
  year: 2008
  end-page: 5017
  article-title: Enkephalin elevations contribute to neuronal and behavioral impairments in a transgenic mouse model of Alzheimer's disease
  publication-title: J Neurosci
– volume: 34
  start-page: 205
  year: 2006
  end-page: 219
  article-title: The growing role of mTOR in neuronal development and plasticity
  publication-title: Mol Neurobiol
– volume: 44
  start-page: 482
  year: 2003
  end-page: 492
  article-title: Mu‐opioid receptor activation prevents apoptosis following serum withdrawal in differentiated SH‐SY5Y cells and cortical neurons via phosphatidylinositol 3‐kinase
  publication-title: Neuropharmacology
– volume: 22
  start-page: 320
  year: 2006
  end-page: 326
  article-title: Activated mTOR and PKR kinases in lymphocytes correlate with memory and cognitive decline in Alzheimer's disease
  publication-title: Dement Geriatr Cogn Disord
– volume: 137
  start-page: 987
  year: 2009
  end-page: 988
  article-title: Mu and delta opioid receptors diverge
  publication-title: Cell
– volume: 124
  start-page: 471
  year: 2006
  end-page: 484
  article-title: TOR signaling in growth and metabolism
  publication-title: Cell
– volume: 26
  start-page: 12977
  year: 2006
  end-page: 12983
  article-title: Translational control via the mammalian target of rapamycin pathway is critical for the formation and stability of long‐term fear memory in amygdala neurons
  publication-title: J Neurosci
– volume: 171
  start-page: 134
  year: 2010
  end-page: 143
  article-title: Activation of phosphatidylinositol 3‐kinase/Akt‐mammalian target of Rapamycin signaling pathway in the hippocampus is essential for the acquisition of morphine‐induced place preference in rats
  publication-title: Neuroscience
– volume: 287
  start-page: 30240
  year: 2012
  end-page: 30256
  article-title: Mammalian target of rapamycin complex 1 (mTORC1) and 2 (mTORC2) control the dendritic arbor morphology of hippocampal neurons
  publication-title: J Biol Chem
– volume: 7
  start-page: 337
  year: 1995
  end-page: 343
  article-title: Nuclear changes in apoptosis
  publication-title: Curr Opin Cell Biol
– volume: 11
  start-page: BR386
  year: 2005
  end-page: BR396
  article-title: Morphine modulation of the ubiquitin‐proteasome complex is neuroprotective
  publication-title: Med Sci Monit
– ident: e_1_2_7_33_1
  doi: 10.1007/s002130000396
– volume: 27
  start-page: 119
  year: 2008
  ident: e_1_2_7_6_1
  article-title: Morphine: axon regeneration, neuroprotection, neurotoxicity, tolerance, and neuropathic pain
  publication-title: P R Health Sci J
– ident: e_1_2_7_51_1
  doi: 10.3233/JAD-2010-1321
– ident: e_1_2_7_25_1
  doi: 10.1159/000095562
– ident: e_1_2_7_18_1
  doi: 10.1074/jbc.M112.374405
– ident: e_1_2_7_30_1
  doi: 10.1074/jbc.273.29.18623
– ident: e_1_2_7_13_1
  doi: 10.1016/j.cell.2006.01.016
– volume: 11
  start-page: BR386
  year: 2005
  ident: e_1_2_7_10_1
  article-title: Morphine modulation of the ubiquitin‐proteasome complex is neuroprotective
  publication-title: Med Sci Monit
– ident: e_1_2_7_5_1
  doi: 10.1152/jn.01150.2002
– ident: e_1_2_7_35_1
  doi: 10.1016/S0028-3908(03)00024-8
– ident: e_1_2_7_37_1
  doi: 10.1016/j.neuropharm.2011.09.016
– ident: e_1_2_7_50_1
  doi: 10.1186/1750-1326-4-14
– ident: e_1_2_7_36_1
  doi: 10.1124/mol.107.039842
– ident: e_1_2_7_40_1
  doi: 10.3109/08923978909005384
– ident: e_1_2_7_7_1
  doi: 10.1111/j.1471-4159.2008.05671.x
– ident: e_1_2_7_44_1
  doi: 10.1046/j.1460-9568.2003.02820.x
– ident: e_1_2_7_54_1
  doi: 10.1002/hipo.20161
– ident: e_1_2_7_12_1
  doi: 10.1097/01.jnen.0000235123.05677.4b
– ident: e_1_2_7_47_1
  doi: 10.1074/jbc.M110.100420
– ident: e_1_2_7_16_1
  doi: 10.1074/jbc.M114.568659
– ident: e_1_2_7_42_1
  doi: 10.1073/pnas.012605299
– ident: e_1_2_7_39_1
  doi: 10.1016/0955-0674(95)80088-3
– ident: e_1_2_7_45_1
  doi: 10.1523/JNEUROSCI.4209-06.2006
– ident: e_1_2_7_9_1
  doi: 10.4049/jimmunol.179.2.1198
– ident: e_1_2_7_17_1
  doi: 10.1126/science.1161566
– ident: e_1_2_7_48_1
  doi: 10.1074/jbc.M112.435123
– ident: e_1_2_7_34_1
  doi: 10.1159/000085385
– ident: e_1_2_7_23_1
  doi: 10.1111/j.1471-4159.2005.03187.x
– ident: e_1_2_7_52_1
  doi: 10.1007/978-3-642-18930-2_13
– ident: e_1_2_7_21_1
  doi: 10.1038/nrneurol.2012.275
– ident: e_1_2_7_4_1
  doi: 10.1016/j.bcp.2009.09.013
– ident: e_1_2_7_15_1
  doi: 10.1038/nn.3546
– ident: e_1_2_7_11_1
  doi: 10.1016/j.neuropharm.2005.06.016
– ident: e_1_2_7_41_1
  doi: 10.1038/nrm2101
– ident: e_1_2_7_2_1
  doi: 10.1016/j.cell.2009.05.033
– ident: e_1_2_7_3_1
  doi: 10.1016/j.neuroscience.2010.08.064
– ident: e_1_2_7_53_1
  doi: 10.1523/JNEUROSCI.0590-08.2008
– ident: e_1_2_7_24_1
  doi: 10.1186/1750-1326-6-41
– volume: 146
  start-page: 3
  year: 1995
  ident: e_1_2_7_38_1
  article-title: Apoptosis, oncosis, and necrosis. An overview of cell death
  publication-title: Am J Pathol
– ident: e_1_2_7_14_1
  doi: 10.1038/nrm1018
– ident: e_1_2_7_46_1
  doi: 10.1016/S0002-9440(10)63687-5
– ident: e_1_2_7_29_1
  doi: 10.1074/jbc.273.36.23534
– ident: e_1_2_7_26_1
  doi: 10.1016/j.nbd.2007.09.008
– ident: e_1_2_7_32_1
  doi: 10.1097/01.WCB.0000121235.42748.BF
– ident: e_1_2_7_20_1
  doi: 10.1038/nn.2583
– ident: e_1_2_7_28_1
  doi: 10.18632/aging.100440
– ident: e_1_2_7_27_1
  doi: 10.1074/jbc.M112.409250
– ident: e_1_2_7_49_1
  doi: 10.1111/j.1742-4658.2005.04833.x
– ident: e_1_2_7_19_1
  doi: 10.1073/pnas.1014715108
– ident: e_1_2_7_43_1
  doi: 10.1385/MN:34:3:205
– ident: e_1_2_7_8_1
  doi: 10.1111/j.1460-9568.2010.07317.x
– ident: e_1_2_7_31_1
  doi: 10.1046/j.1471-4159.1997.68041400.x
– ident: e_1_2_7_22_1
  doi: 10.1002/jnr.21039
SSID ssj0062898
Score 2.2189257
Snippet Summary Aims μ‐opioid receptor (OPRM1) exerts many functions such as antinociception, neuroprotection, and hippocampal plasticity. A body of evidence has shown...
μ-opioid receptor (OPRM1) exerts many functions such as antinociception, neuroprotection, and hippocampal plasticity. A body of evidence has shown that OPRM1...
mu -opioid receptor (OPRM1) exerts many functions such as antinociception, neuroprotection, and hippocampal plasticity. A body of evidence has shown that OPRM1...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8
SubjectTerms Alzheimer's disease
Amyloid beta-Peptides - metabolism
Animals
Blotting, Western
Cell Enlargement
Cell Survival - drug effects
Cell Survival - physiology
Cells, Cultured
Cerebral Cortex - drug effects
Cerebral Cortex - physiopathology
Enkephalins - metabolism
Mechanistic/mammalian target of rapamycin
Morphine - pharmacology
Narcotics - pharmacology
Neurites - drug effects
Neurites - physiology
Neurons - drug effects
Neurons - physiology
Original
Peptide Fragments - metabolism
Phosphatidylinositol 3-Kinases - metabolism
Proto-Oncogene Proteins c-akt - metabolism
Rats, Sprague-Dawley
Receptors, Opioid, mu - metabolism
Signal Transduction
TOR Serine-Threonine Kinases - metabolism
β‐Amyloid peptide
μ‐Opioid receptor
Title μ‐Opioid Receptor Attenuates Aβ Oligomers‐Induced Neurotoxicity Through mTOR Signaling
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcns.12316
https://www.ncbi.nlm.nih.gov/pubmed/25146548
https://www.proquest.com/docview/1637564706
https://www.proquest.com/docview/1647021697
https://pubmed.ncbi.nlm.nih.gov/PMC6495561
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RuPTSB30thZWpKtQDQUk2cRz1tDxWqFLZFSwSB6TIr2yjQrIqWalw6k_ob-mZ38CP6C9h7GwCW1pUcbM0E_k1Y3_j2N8AvI-MKSjtOjz2mBNwlzvc56njm3RwIcW4xfLMft6ju4fBp6PwaA4-1m9hKn6I5sDNeIZdr42Dc3F2y8klTgouu56h2zZ3tQwg2m-ooygGEvYZXBSGThh33CmrkLnF03w5uxfdAZh370nexq92A-o9heO66dW9k68bk1JsyIs_WB0f2Ldn8GQKTEm3sqTnMKfzRVgbVMzW5-tkePNQ62ydrJHBDef1-Qs4vrr8_eNnf5wVmSIIRfUYY3nSLRGRTwyaJd2rX6R_ko0Kc06OqiZliNSKWHKQsvieSQwHsBKbNYicDvv75CAbmSghH72Ew97OcGvXmSZucGToMeqwII2VjjyFe50QjDKOMEwh1uRMCqlQhvbBGfex6Cuu0zTQUSp9RmPtMqE6r2A-L3L9Bkis0jgNBKWBchE7SiaYq3ENYW6caoxOW_ChnsJETlnNTXKNk6SObnAsEzuWLXjXqI4rKo-_Ka3WdpCgo5m_JzzXxQTFtBOFNIjce3VQ7nto4i14XdlOUxUCScNdx1oQzVhVo2CIvmclefbFEn5TjGIR52JfrdH8u_XJ1t6BLSz9v-pbeIwgMKyOlZZhvvw20SsItErRhkd-MGjDQndze7PXtv51DWvjLNE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB5ReqCXQqE_W2jrVgj1QFCSTRxH4rKiRUsLuwgWiQNV5NjONipNVpCVgBOPwLNw7jPwEH2Sjp1NYAtUFTdLM5H_ZuxvHPsbgMVAm4JUtsVDh1ket7nFXZ5Yrk4H51OMWwzP7FaHtve8L_v-_gSsVm9hSn6I-sBNe4ZZr7WD6wPpG14ucFZw3XXoI3isM3pr5vxPOzV5FMVQwjyEC3zf8sOmPeIV0vd46k_Hd6NbEPP2TcmbCNZsQevT8K1qfHnz5MfKsIhXxNlfvI4P7d0MPB1hU9IqjekZTKhsFpa2S3Lr02XSu36rdbxMlsj2Ne316RwcXP36fX7RHaR5KgmiUTXAcJ60CgTlQw1oSevqknQP036uj8pRVWcNEUoSww9S5CepwIgAKzGJg8jPXneH7KZ9HShk_eewt_65t9a2RrkbLOE7jFrMS0KpAkfidhfHjDKOSEwi3ORMxEKiDE2EM-5i0ZVcJYmngkS4jIbKZrFsvoDJLM_UKyChTMLEiyn1pI3wUbCY2QqXEWaHicIAtQEfqzmMxIjYXOfXOIyqAAfHMjJj2YAPteqgZPO4S-l9ZQgR-pr-gcIzlQ9RTJuBT73A_qcOyl0HrbwBL0vjqatCLKnp61gDgjGzqhU01_e4JEu_G85vioEsQl3sq7Ga-1sfrXV2TeH1_6u-g6l2b2sz2tzofJ2HJ4gJ_fKUaQEmi6OheoO4q4jfGvf6A3xcLqQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTttAEB7xI1W9VIVCCX_dVghxwJLt2Ou1eoqgEdA2iUqQOCBZ6_0JllI7gkQqNx6hz9Jzn4GH6JN0dh0bImjFbaUZa23PzO43-_MNwE5kXEEq1-Gxx5yAu9zhPteOb8rBhRTzFssz-7VDj86Ck_PwfA4-VndhSn6IesHNRIYdr02Aj6R-EOQCjYLDrkfnYdFs9pnzXH7Qq4ZhipmEvQcXhaETxk13SitkjvHUj85ORo8Q5uODkg8BrJ2B2q_h1RQ6klZp6yWYU_ky7PZK7umbfdK_v0p1vU92Se-elfrmDVzc_f5z-7M7yopMEgSLaoTZNmmNETNPDN4krbtfpDvMBoVZyUZVU9RDKEksfce4-JEJBOzYia3rQ773u9_IaTYwOD4frMBZ-1P_4MiZllZwROgx6rBAx1JFnsTZKE0ZZRyBkkQ0yJlIhUQZWpAz7mPTl1xpHahIC5_RWLkslc1VWMiLXK0BiaWOdZBSGkgX0Z1gKXMVRjlzY60wf2zAXvWPEzHlHTflL4ZJlX-gORJrjgZ8qFVHJdnGU0rvK0MlGApmf4PnqpigmDajkAaR-18dlPseOmED3pbGrbtCqGfY5VgDohmz1wqGintWkmeXlpKbYp6JSBS_1TrIv98-Oeic2sb681XfwYveYTv5ctz5vAEvEbGF5RrQJiyMryZqC1HRON223v8XGv8NIA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%CE%BC-Opioid+receptor+attenuates+A%CE%B2+oligomers-induced+neurotoxicity+through+mTOR+signaling&rft.jtitle=CNS+neuroscience+%26+therapeutics&rft.au=Wang%2C+Yan&rft.au=Wang%2C+Yan-Xia&rft.au=Liu%2C+Ting&rft.au=Law%2C+Ping-Yee&rft.date=2015-01-01&rft.eissn=1755-5949&rft.volume=21&rft.issue=1&rft.spage=8&rft_id=info:doi/10.1111%2Fcns.12316&rft_id=info%3Apmid%2F25146548&rft.externalDocID=25146548
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-5930&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-5930&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-5930&client=summon