Harvesting Robots for High-value Crops: State-of-the-art Review and Challenges Ahead
This review article analyzes state‐of‐the‐art and future perspectives for harvesting robots in high‐value crops. The objectives were to characterize the crop environment relevant for robotic harvesting, to perform a literature review on the state‐of‐the‐art of harvesting robots using quantitative me...
Saved in:
Published in | Journal of field robotics Vol. 31; no. 6; pp. 888 - 911 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Blackwell Publishing Ltd
01.11.2014
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This review article analyzes state‐of‐the‐art and future perspectives for harvesting robots in high‐value crops. The objectives were to characterize the crop environment relevant for robotic harvesting, to perform a literature review on the state‐of‐the‐art of harvesting robots using quantitative measures, and to reflect on the crop environment and literature review to formulate challenges and directions for future research and development. Harvesting robots were reviewed regarding the crop harvested in a production environment, performance indicators, design process techniques used, hardware design decisions, and algorithm characteristics. On average, localization success was 85%, detachment success was 75%, harvest success was 66%, fruit damage was 5%, peduncle damage was 45%, and cycle time was 33 s. A kiwi harvesting robot achieved the shortest cycle time of 1 s. Moreover, the performance of harvesting robots did not improve in the past three decades, and none of these 50 robots was commercialized. Four future challenges with R&D directions were identified to realize a positive trend in performance and to successfully implement harvesting robots in practice: (1) simplifying the task, (2) enhancing the robot, (3) defining requirements and measuring performance, and (4) considering additional requirements for successful implementation. This review article may provide new directions for future automation projects in high‐value crops. |
---|---|
AbstractList | This review article analyzes state‐of‐the‐art and future perspectives for harvesting robots in high‐value crops. The objectives were to characterize the crop environment relevant for robotic harvesting, to perform a literature review on the state‐of‐the‐art of harvesting robots using quantitative measures, and to reflect on the crop environment and literature review to formulate challenges and directions for future research and development. Harvesting robots were reviewed regarding the crop harvested in a production environment, performance indicators, design process techniques used, hardware design decisions, and algorithm characteristics. On average, localization success was 85%, detachment success was 75%, harvest success was 66%, fruit damage was 5%, peduncle damage was 45%, and cycle time was 33 s. A kiwi harvesting robot achieved the shortest cycle time of 1 s. Moreover, the performance of harvesting robots did not improve in the past three decades, and none of these 50 robots was commercialized. Four future challenges with R&D directions were identified to realize a positive trend in performance and to successfully implement harvesting robots in practice: (1) simplifying the task, (2) enhancing the robot, (3) defining requirements and measuring performance, and (4) considering additional requirements for successful implementation. This review article may provide new directions for future automation projects in high‐value crops. |
Author | Hemming, Jochen Bac, C. Wouter van Henten, Eldert J. Edan, Yael |
Author_xml | – sequence: 1 givenname: C. Wouter surname: Bac fullname: Bac, C. Wouter email: wouter.bac@wur.nl organization: Farm Technology Group & Wageningen UR, Greenhouse Horticulture, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands – sequence: 2 givenname: Eldert J. surname: van Henten fullname: van Henten, Eldert J. email: eldert.vanhenten@wur.nl organization: Farm Technology Group & Wageningen UR, Greenhouse Horticulture, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands – sequence: 3 givenname: Jochen surname: Hemming fullname: Hemming, Jochen email: jochen.hemming@wur.nl organization: Wageningen UR Greenhouse Horticulture, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands – sequence: 4 givenname: Yael surname: Edan fullname: Edan, Yael email: yael@bgu.ac.il organization: Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel |
BookMark | eNp9kcFu1DAQhiNUJNrCgTeIxAUOae3EE296KyvYpaqo2LbiaE3iya6Lay92skvfHi9beqgEp5nD941m5j_KDpx3lGVvOTvhjJWnwbcnJYcSXmSHHKAuRFPLg6cemlfZUYx3jIlq0sBhdjPHsKE4GLfMF771Q8x7H_K5Wa6KDdqR8mnw63iWXw84UOH7YlhRgWHIF7QxtM3R6Xy6QmvJLSnm5ytC_Tp72aON9OaxHme3nz_dTOfF5dXsy_T8suiAT6AgBqLvZc3qWmiEFlCi7jSWouU9otSaqGKaSyaQNZJx3bdaQN9ALTveltVxdrafu8UluXQCOeUwdCYqj0ZZ0wYMD2o7BuXsrqzHNioBICaQ5Pd7eR38zzG9QN2b2JG16MiPUfG6bCqQrJQJffcMvfNjcOm0RHEBTQNSJOrDnuqCjzFQr9bB3O8W4EztwlEpHPUnnMSePmM7kx5svBsCGvs_Y2ssPfx7tFpcffxrFHvDxIF-PRkYfqhaVhLU968zxfk3uJiJSjXVbzGwshY |
CitedBy_id | crossref_primary_10_1002_rob_22013 crossref_primary_10_29039_2409_6024_2020_8_4_161_165 crossref_primary_10_1002_rob_22377 crossref_primary_10_1016_j_biosystemseng_2015_07_004 crossref_primary_10_1007_s40747_021_00522_7 crossref_primary_10_1038_s41598_021_02581_9 crossref_primary_10_1016_j_compag_2021_106383 crossref_primary_10_1002_rob_21721 crossref_primary_10_1016_j_compag_2020_105694 crossref_primary_10_17660_ActaHortic_2019_1245_2 crossref_primary_10_1016_j_compag_2017_11_040 crossref_primary_10_1109_ACCESS_2019_2910150 crossref_primary_10_7746_jkros_2020_15_2_091 crossref_primary_10_1016_j_atech_2024_100454 crossref_primary_10_1088_1757_899X_997_1_012081 crossref_primary_10_1109_ACCESS_2020_3003034 crossref_primary_10_1002_aisy_202300823 crossref_primary_10_1007_s11370_021_00401_7 crossref_primary_10_3390_applmech3030049 crossref_primary_10_1016_j_biosystemseng_2018_05_003 crossref_primary_10_1016_j_biosystemseng_2016_05_001 crossref_primary_10_1016_j_compag_2020_105216 crossref_primary_10_1016_j_compag_2024_108961 crossref_primary_10_1016_j_compind_2024_104191 crossref_primary_10_3390_app15010317 crossref_primary_10_1002_rob_22494 crossref_primary_10_1016_j_compag_2014_04_011 crossref_primary_10_3390_agriengineering2010010 crossref_primary_10_3390_biomimetics9080495 crossref_primary_10_4081_jae_2024_1594 crossref_primary_10_1016_j_compag_2022_107065 crossref_primary_10_1002_rob_21715 crossref_primary_10_17660_ActaHortic_2024_1395_59 crossref_primary_10_1177_1729881420925310 crossref_primary_10_1007_s00146_018_0846_4 crossref_primary_10_1002_rob_21709 crossref_primary_10_1016_j_eng_2023_10_012 crossref_primary_10_3390_agronomy14122783 crossref_primary_10_1016_j_biosystemseng_2020_07_007 crossref_primary_10_1049_joe_2018_8325 crossref_primary_10_3390_s20195670 crossref_primary_10_1007_s43154_020_00034_1 crossref_primary_10_1016_j_compag_2020_105324 crossref_primary_10_1016_j_compag_2020_105323 crossref_primary_10_2174_1874331501913010101 crossref_primary_10_1007_s10044_024_01222_x crossref_primary_10_1002_rob_22000 crossref_primary_10_1016_j_biosystemseng_2017_11_006 crossref_primary_10_1002_rob_22232 crossref_primary_10_1108_IR_03_2016_0113 crossref_primary_10_3390_s19061390 crossref_primary_10_1115_1_4063362 crossref_primary_10_1002_jsfa_10447 crossref_primary_10_1016_j_compag_2020_105475 crossref_primary_10_1016_j_compag_2022_107177 crossref_primary_10_1016_j_procs_2024_01_056 crossref_primary_10_1109_TRO_2017_2766265 crossref_primary_10_1002_rob_21706 crossref_primary_10_1016_j_biosystemseng_2016_01_007 crossref_primary_10_1016_j_compag_2024_109039 crossref_primary_10_3390_agronomy14050964 crossref_primary_10_1016_j_compag_2020_105911 crossref_primary_10_1111_1745_5871_12261 crossref_primary_10_1007_s11119_017_9538_1 crossref_primary_10_35633_inmateh_61_17 crossref_primary_10_1002_rob_22347 crossref_primary_10_1016_j_biosystemseng_2019_04_006 crossref_primary_10_1002_rob_22106 crossref_primary_10_1177_1729881418759424 crossref_primary_10_3389_fmtec_2023_1282843 crossref_primary_10_3390_ijerph18136705 crossref_primary_10_3390_s22228632 crossref_primary_10_1002_rob_21937 crossref_primary_10_1007_s43154_020_00018_1 crossref_primary_10_3389_fsci_2024_1411259 crossref_primary_10_3390_agriculture11090815 crossref_primary_10_1016_j_compag_2022_106879 crossref_primary_10_1016_j_jterra_2020_06_006 crossref_primary_10_1016_j_compag_2020_105900 crossref_primary_10_1177_00197939221076747 crossref_primary_10_1016_j_compag_2024_108735 crossref_primary_10_1007_s42235_022_00202_3 crossref_primary_10_1016_j_compag_2022_106984 crossref_primary_10_1016_j_robot_2024_104854 crossref_primary_10_1016_j_compag_2024_108926 crossref_primary_10_1109_MRA_2023_3309098 crossref_primary_10_3390_s16081222 crossref_primary_10_1007_s10846_022_01793_z crossref_primary_10_1016_j_compag_2022_106860 crossref_primary_10_3390_s23020752 crossref_primary_10_1016_j_compag_2022_107274 crossref_primary_10_3389_fpls_2020_571299 crossref_primary_10_1016_j_biosystemseng_2018_06_002 crossref_primary_10_1007_s11119_023_10074_0 crossref_primary_10_2139_ssrn_3979438 crossref_primary_10_1007_s13218_023_00826_5 crossref_primary_10_1016_j_compag_2025_110046 crossref_primary_10_1038_s44172_023_00089_w crossref_primary_10_1049_tje2_12419 crossref_primary_10_2139_ssrn_3985202 crossref_primary_10_1016_j_compag_2020_105378 crossref_primary_10_1016_j_compag_2022_106747 crossref_primary_10_3389_fpls_2019_00611 crossref_primary_10_1038_s43016_021_00402_w crossref_primary_10_1111_gcb_13986 crossref_primary_10_3390_agriculture14040624 crossref_primary_10_1016_j_ifacol_2016_10_028 crossref_primary_10_1002_rob_22323 crossref_primary_10_1016_j_robot_2020_103591 crossref_primary_10_3390_agronomy11061210 crossref_primary_10_1109_TRO_2016_2603528 crossref_primary_10_1002_rob_22207 crossref_primary_10_1016_j_scitotenv_2018_01_142 crossref_primary_10_1016_j_compag_2018_05_022 crossref_primary_10_1002_rob_21917 crossref_primary_10_1109_ACCESS_2019_2937326 crossref_primary_10_3389_fpls_2022_879182 crossref_primary_10_3390_machines10090817 crossref_primary_10_1007_s10514_017_9626_0 crossref_primary_10_1016_j_biosystemseng_2015_12_004 crossref_primary_10_3390_agriculture14111985 crossref_primary_10_3390_s16050618 crossref_primary_10_1016_j_jrurstud_2021_12_012 crossref_primary_10_1142_S0219843623500123 crossref_primary_10_1016_j_compag_2019_01_015 crossref_primary_10_1016_j_ifacol_2019_12_507 crossref_primary_10_3390_agronomy11040646 crossref_primary_10_1016_j_biosystemseng_2016_02_004 crossref_primary_10_1109_ACCESS_2023_3349093 crossref_primary_10_1109_ACCESS_2022_3190863 crossref_primary_10_1016_j_tifs_2024_104705 crossref_primary_10_1016_j_dib_2020_105591 crossref_primary_10_1016_j_biosystemseng_2015_12_016 crossref_primary_10_3390_agriengineering6030166 crossref_primary_10_3390_agronomy12071594 crossref_primary_10_1109_TMECH_2017_2735861 crossref_primary_10_1177_17298806221104906 crossref_primary_10_1007_s11119_019_09654_w crossref_primary_10_1007_s11119_021_09806_x crossref_primary_10_1007_s10846_018_0892_7 crossref_primary_10_7746_jkros_2020_15_2_107 crossref_primary_10_3390_agriculture14060903 crossref_primary_10_3390_app12094414 crossref_primary_10_1186_s13634_021_00734_6 crossref_primary_10_1016_j_compag_2016_06_022 crossref_primary_10_1016_j_compag_2019_06_001 crossref_primary_10_1016_j_scienta_2019_108937 crossref_primary_10_1016_j_compind_2018_03_023 crossref_primary_10_1016_j_biosystemseng_2018_12_005 crossref_primary_10_1016_j_compag_2020_105380 crossref_primary_10_1016_j_compag_2025_110077 crossref_primary_10_1016_j_biosystemseng_2019_08_017 crossref_primary_10_3390_agronomy12112836 crossref_primary_10_1016_j_atech_2024_100491 crossref_primary_10_1016_j_biosystemseng_2019_03_007 crossref_primary_10_1016_j_compag_2024_109586 crossref_primary_10_3390_agronomy12020356 crossref_primary_10_1016_j_biosystemseng_2023_11_003 crossref_primary_10_29130_dubited_1075572 crossref_primary_10_1016_j_compag_2017_12_001 crossref_primary_10_17660_ActaHortic_2017_1154_19 crossref_primary_10_3390_agronomy14081764 crossref_primary_10_3390_s19020428 crossref_primary_10_1088_1748_3190_acb51f crossref_primary_10_3390_agriculture15040407 crossref_primary_10_3390_agriengineering5020048 crossref_primary_10_1016_j_arcontrol_2021_01_001 crossref_primary_10_1007_s12541_023_00911_7 crossref_primary_10_3390_app12052507 crossref_primary_10_1016_j_compag_2022_107590 crossref_primary_10_1109_LRA_2016_2523553 crossref_primary_10_3390_su15097331 crossref_primary_10_54097_hset_v71i_12379 crossref_primary_10_1016_j_compag_2020_105736 crossref_primary_10_3390_atmos11090898 crossref_primary_10_1002_rob_21680 crossref_primary_10_1016_j_dib_2021_107629 crossref_primary_10_1002_rob_22521 crossref_primary_10_1016_j_biosystemseng_2018_07_015 crossref_primary_10_1109_LRA_2017_2655622 crossref_primary_10_3390_agronomy13051351 crossref_primary_10_3390_robotics12060166 crossref_primary_10_15406_iratj_2020_06_00196 crossref_primary_10_5010_JPB_2023_50_018_142 crossref_primary_10_1002_rob_21679 crossref_primary_10_1088_2631_8695_ad5cd2 crossref_primary_10_3390_agronomy13122873 crossref_primary_10_1109_ACCESS_2020_2984556 crossref_primary_10_31992_0321_4443_2020_6_78_90 crossref_primary_10_1016_j_compag_2025_110131 crossref_primary_10_32604_cmc_2023_046876 crossref_primary_10_3390_agronomy12071520 crossref_primary_10_1016_j_compag_2019_105165 crossref_primary_10_1016_j_compag_2020_105606 crossref_primary_10_1590_0100_29452021096 crossref_primary_10_3390_s20010093 crossref_primary_10_1080_23311916_2024_2403706 crossref_primary_10_1146_annurev_control_053018_023617 crossref_primary_10_1016_j_compag_2023_107641 crossref_primary_10_1016_j_compag_2018_06_036 crossref_primary_10_1016_j_compag_2022_107336 crossref_primary_10_1016_j_compag_2023_107979 crossref_primary_10_1155_2021_5516368 crossref_primary_10_1007_s11119_022_09913_3 crossref_primary_10_1007_s42835_023_01596_8 crossref_primary_10_1109_LRA_2017_2651952 crossref_primary_10_1088_1742_6596_2246_1_012060 crossref_primary_10_1109_ACCESS_2021_3052240 crossref_primary_10_1016_j_compag_2021_106562 crossref_primary_10_1155_2017_6716820 crossref_primary_10_3390_horticulturae11010088 crossref_primary_10_1007_s11119_021_09856_1 crossref_primary_10_1016_j_ifacol_2016_10_053 crossref_primary_10_3389_fpls_2022_765523 crossref_primary_10_17660_ActaHortic_2016_1130_85 crossref_primary_10_1016_j_techfore_2024_123842 crossref_primary_10_1016_j_biosystemseng_2020_01_021 crossref_primary_10_3390_agriculture14122280 crossref_primary_10_1016_j_biosystemseng_2024_08_002 crossref_primary_10_1007_s12374_022_09370_5 crossref_primary_10_1016_j_compag_2023_108023 crossref_primary_10_1016_j_compag_2024_109314 crossref_primary_10_1002_rob_22194 crossref_primary_10_1016_j_inpa_2021_02_001 crossref_primary_10_1016_j_ifacol_2019_12_536 crossref_primary_10_1007_s11119_020_09757_9 crossref_primary_10_1016_j_compag_2023_107628 crossref_primary_10_1016_j_compind_2020_103274 crossref_primary_10_3182_20130828_2_SF_3019_00070 crossref_primary_10_3390_info16020100 crossref_primary_10_3390_act12060253 crossref_primary_10_3390_agriculture10070276 crossref_primary_10_1016_j_biosystemseng_2021_03_012 crossref_primary_10_20965_ijat_2017_p0415 crossref_primary_10_1016_j_compag_2016_07_024 crossref_primary_10_3390_agriengineering6040218 crossref_primary_10_1007_s10845_023_02201_5 crossref_primary_10_1109_ACCESS_2019_2955566 crossref_primary_10_1016_j_biosystemseng_2023_06_003 crossref_primary_10_1007_s10462_023_10674_2 crossref_primary_10_1186_s13007_023_01066_2 crossref_primary_10_1155_2021_5584754 crossref_primary_10_1016_j_ifacol_2016_10_051 crossref_primary_10_1016_j_compag_2023_108035 crossref_primary_10_3390_robotics7010011 crossref_primary_10_1017_S0263574719000481 crossref_primary_10_1016_j_compag_2025_109968 crossref_primary_10_1017_S2040470017001236 crossref_primary_10_1002_rob_21890 crossref_primary_10_1002_rob_22178 crossref_primary_10_1016_j_compag_2020_105894 crossref_primary_10_1109_ACCESS_2024_3522349 crossref_primary_10_1016_j_compag_2022_107430 crossref_primary_10_1515_auto_2020_0044 crossref_primary_10_1002_rob_21888 crossref_primary_10_3390_agriculture14081346 crossref_primary_10_1109_TAFE_2024_3379190 crossref_primary_10_3390_agriculture14122257 crossref_primary_10_1109_MRA_2023_3315934 crossref_primary_10_5772_acrt_20240030 crossref_primary_10_1108_IR_12_2019_0255 crossref_primary_10_3390_agronomy11091818 crossref_primary_10_1016_j_measurement_2024_115484 crossref_primary_10_1088_1748_3190_ad2084 crossref_primary_10_1016_j_compag_2023_107724 crossref_primary_10_1016_j_compag_2022_107541 crossref_primary_10_1016_j_apergo_2017_03_008 crossref_primary_10_1016_j_robot_2019_01_019 crossref_primary_10_3390_math10142540 crossref_primary_10_1016_j_compag_2020_105760 crossref_primary_10_1016_j_compag_2021_106353 crossref_primary_10_1002_rob_21877 crossref_primary_10_1002_rob_21998 crossref_primary_10_1007_s10846_017_0770_8 crossref_primary_10_1109_ACCESS_2020_3005386 crossref_primary_10_3390_robotics4020194 crossref_primary_10_3390_pr9111905 crossref_primary_10_3390_robotics10030094 crossref_primary_10_1089_rorep_2023_0016 crossref_primary_10_17660_ActaHortic_2020_1296_124 crossref_primary_10_3390_horticulturae10121268 crossref_primary_10_1016_j_jclepro_2025_145301 crossref_primary_10_3390_act8040076 crossref_primary_10_3390_s16071018 crossref_primary_10_1016_j_compag_2024_108750 crossref_primary_10_3390_robotics10020052 crossref_primary_10_3390_jimaging3010009 crossref_primary_10_7717_peerj_cs_1463 crossref_primary_10_3390_agronomy10050743 crossref_primary_10_1111_plb_12914 crossref_primary_10_1016_j_biosystemseng_2024_04_017 crossref_primary_10_1002_rob_22043 crossref_primary_10_3390_s21103569 crossref_primary_10_1109_LRA_2021_3061377 crossref_primary_10_1109_ACCESS_2021_3053490 crossref_primary_10_1016_j_atech_2024_100638 crossref_primary_10_35633_inmateh_59_23 crossref_primary_10_1002_rob_21861 crossref_primary_10_1186_s13662_020_03158_y crossref_primary_10_33889_IJMEMS_2023_8_4_041 crossref_primary_10_1016_j_biosystemseng_2018_04_017 crossref_primary_10_1016_j_compag_2022_107410 crossref_primary_10_1016_j_sciaf_2023_e01798 crossref_primary_10_1002_rob_21987 crossref_primary_10_1016_j_inpa_2019_05_004 crossref_primary_10_1007_s10514_017_9693_2 crossref_primary_10_1016_j_ifacol_2018_08_200 crossref_primary_10_1016_j_atech_2022_100043 crossref_primary_10_3390_s19092130 crossref_primary_10_1016_j_compag_2024_109517 crossref_primary_10_3390_plants13223197 crossref_primary_10_1002_rob_22146 crossref_primary_10_1002_rob_22268 crossref_primary_10_1177_09544062221128443 crossref_primary_10_1002_rob_21730 crossref_primary_10_1016_j_compag_2021_106010 crossref_primary_10_1002_rob_21973 crossref_primary_10_16924_revinge_47_4 crossref_primary_10_3390_su15086769 crossref_primary_10_1002_rob_21738 crossref_primary_10_1007_s11119_021_09846_3 crossref_primary_10_3390_s21113933 crossref_primary_10_1016_j_compag_2016_03_007 crossref_primary_10_1016_j_jrurstud_2022_09_016 crossref_primary_10_1016_j_sna_2024_115380 crossref_primary_10_3390_s19051176 crossref_primary_10_3390_machines8020027 crossref_primary_10_1007_s10489_023_04742_x crossref_primary_10_1016_j_compag_2023_108353 crossref_primary_10_1080_01969722_2021_2008678 crossref_primary_10_3390_app10175887 crossref_primary_10_1016_j_biosystemseng_2016_11_004 crossref_primary_10_1016_j_dte_2024_100032 crossref_primary_10_1109_LRA_2022_3143894 crossref_primary_10_1016_j_compag_2020_105302 crossref_primary_10_3390_s20133783 crossref_primary_10_1016_j_compag_2023_107943 crossref_primary_10_1109_LRA_2018_2855043 crossref_primary_10_1109_TMECH_2017_2760866 |
Cites_doi | 10.1109/70.897793 10.1007/978-3-540-75404-6_51 10.1023/A:1020568125418 10.5307/JBE.2012.37.1.065 10.1108/01439919810232440 10.1109/5.5968 10.1016/j.compag.2014.01.003 10.1002/rob.20295 10.1023/A:1015626121039 10.1108/01439910310492194 10.1109/JPROC.2010.2050411 10.13031/2013.31750 10.21273/HORTTECH.15.1.0076 10.13031/2013.31943 10.1016/j.compag.2013.10.005 10.1109/AIM.2003.1225538 10.1016/j.biosystemseng.2006.07.004 10.1016/j.proeng.2011.11.2514 10.1016/j.compag.2013.05.004 10.17660/ActaHortic.2006.718.42 10.13031/2013.22286 10.1142/S0218213012500236 10.1016/j.compag.2008.01.015 10.1002/rob.20131 10.1109/AIM.2009.5229897 10.1016/0273-1177(95)00807-Q 10.1016/j.compag.2008.11.004 10.1016/S0168-1699(96)00033-6 10.1504/IJCVR.2012.046419 10.1109/ICICTA.2008.138 10.1108/01439910510582255 10.1016/j.postharvbio.2004.05.002 10.21273/HORTTECH.15.1.0079 10.13031/2013.31671 10.1109/ICIT.2009.4939556 10.13031/2013.26324 10.3182/20110828-6-IT-1002.02683 10.13031/2013.27744 10.5367/000000009788632386 10.1177/0278364906060480 10.1007/978-3-540-78831-7 10.1109/ICICTA.2011.302 10.1016/j.compag.2008.01.018 10.1017/S0263574700000308 10.1016/j.scienta.2012.02.002 10.1006/jaer.2000.0629 10.25165/j.ijabe.20191203.4310 10.1007/BF00872782 10.3390/s120912405 10.1109/CSAE.2012.6272606 10.1007/s001380050117 10.1007/s10514-008-9090-y 10.1109/MRA.2007.339624 10.13031/2013.28377 10.17660/ActaHortic.2005.691.110 10.1016/S0021-8634(05)80131-3 10.1109/ICMA.2005.1626834 10.6090/jarq.36.163 10.13031/2013.26105 10.1038/nrg2897 10.1002/9780470172506.ch32 10.1109/21.299707 10.1007/s11119-009-9138-9 10.1016/j.biosystemseng.2011.07.005 10.1080/00288230709510373 10.1016/0957-4158(94)90004-3 10.13031/2013.30697 10.1016/j.robot.2012.03.002 10.1016/j.robot.2011.02.011 10.20965/jrm.1999.p0208 10.2212/spr.2010.3.12 10.1006/jaer.1993.1035 10.13031/2013.3096 10.1080/03003930701770405 10.1016/j.biosystemseng.2013.04.005 10.1007/PL00013271 10.1016/j.pmcj.2011.01.004 10.17660/ActaHortic.2006.710.3 10.1016/j.biosystemseng.2009.09.011 10.17660/ActaHortic.2006.718.45 10.1006/jaer.1993.1020 10.1108/01439910810893581 10.1006/jaer.1999.0524 10.1016/j.biosystemseng.2004.10.002 10.1109/RAAD.2010.5524602 10.6090/jarq.45.285 10.13031/2013.22033 10.1007/978-3-540-30301-5_11 10.1007/s10516-009-9075-2 10.1016/j.compag.2008.12.006 10.1016/0168-1699(93)90058-9 10.1016/j.biosystemseng.2003.08.002 10.1016/j.biosystemseng.2006.03.005 10.2212/spr.2010.3.11 10.13031/2013.23665 10.1007/s11119-006-9014-9 10.1016/j.postharvbio.2004.02.004 10.1109/TSMCC.2009.2023380 |
ContentType | Journal Article |
Copyright | 2014 Wiley Periodicals, Inc. Copyright © 2014 Wiley Periodicals, Inc. Wageningen University & Research |
Copyright_xml | – notice: 2014 Wiley Periodicals, Inc. – notice: Copyright © 2014 Wiley Periodicals, Inc. – notice: Wageningen University & Research |
DBID | BSCLL AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D QVL |
DOI | 10.1002/rob.21525 |
DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional NARCIS:Publications |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1556-4967 |
EndPage | 911 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_455485 3467289051 10_1002_rob_21525 ROB21525 ark_67375_WNG_11Q5JG43_9 |
Genre | article |
GrantInformation_xml | – fundername: Helmsley Charitable Trust, and the Rabbi W. Gunther Plaut Chair in Manufacturing Engineering – fundername: Ben‐Gurion University of the Negev, Agricultural, Biological and Cognitive Robotics Center – fundername: European Commission in the 7th Framework Programme funderid: 246252 – fundername: Dutch horticultural product board funderid: 14555 |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIYS ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 FEDTE G-S GNP GODZA H.T H.X HBH HF~ HGLYW HVGLF HZ~ I-F IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ~02 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADMLS AGHNM AGQPQ AGYGG CITATION 1OB 7SC 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 JQ2 L7M L~C L~D ABHUG ABWRO ACXME ADAWD ADDAD AFVGU AGJLS BFHJK PQEST QVL |
ID | FETCH-LOGICAL-c5185-e054ff760664da5b5a7adcda24b1faa7ddee30d1704a09701dfbd45f9567c1b23 |
IEDL.DBID | DR2 |
ISSN | 1556-4959 |
IngestDate | Thu Oct 13 09:30:09 EDT 2022 Fri Jul 11 03:03:01 EDT 2025 Wed Aug 13 08:48:14 EDT 2025 Thu Apr 24 22:51:09 EDT 2025 Tue Jul 01 05:08:49 EDT 2025 Wed Jan 22 16:29:53 EST 2025 Wed Oct 30 09:54:52 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5185-e054ff760664da5b5a7adcda24b1faa7ddee30d1704a09701dfbd45f9567c1b23 |
Notes | Helmsley Charitable Trust, and the Rabbi W. Gunther Plaut Chair in Manufacturing Engineering istex:F102C5E7B03F380E56C29DE38097BAB06C56B38C ark:/67375/WNG-11Q5JG43-9 Dutch horticultural product board - No. 14555 European Commission in the 7th Framework Programme - No. 246252 ArticleID:ROB21525 Ben-Gurion University of the Negev, Agricultural, Biological and Cognitive Robotics Center ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2694-8732 |
PQID | 1614599574 |
PQPubID | 1006410 |
PageCount | 24 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_455485 proquest_miscellaneous_1629357027 proquest_journals_1614599574 crossref_primary_10_1002_rob_21525 crossref_citationtrail_10_1002_rob_21525 wiley_primary_10_1002_rob_21525_ROB21525 istex_primary_ark_67375_WNG_11Q5JG43_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November/December 2014 |
PublicationDateYYYYMMDD | 2014-11-01 |
PublicationDate_xml | – month: 11 year: 2014 text: November/December 2014 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Journal of field robotics |
PublicationTitleAlternate | J. Field Robotics |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Mehta, S. S., & Burks, T. F. (2014). Vision-based control of robotic manipulator for citrus harvesting. Computers and Electronics in Agriculture, 102(0), 146-158. Li, B., Vigneault, C., & Wang, N. (2010). Research development of fruit and vegetable harvesting robots in China. Stewart Postharvest Review, 6(3), 1-8. Thrun, S., Burgard, W., & Fox, D. (2006). Probabilistic robotics. Cambridge, MA: MIT Press. Plebe, A., & Grasso, G. (2001). Localization of spherical fruits for robotic harvesting. Machine Vision and Applications, 13(2), 70-79. Toussaint, K., Pouliot, N., & Montambault, S. (2009). Transmission line maintenance robots capable of crossing obstacles: State-of-the-art review and challenges ahead. Journal of Field Robotics, 26(5), 477-499. Angeles, J., Park, F. C., Siciliano, B., & Khatib, O. (2008). Performance evaluation and design criteria. Springer handbook of robotics, B. Siciliano & O. Khatib (eds.) (chap. 10, pp. 229-244). Berlin-Heidelberg: Springer. Buemi, F., Massa, M., Sandini, G., & Costi, G. (1996). The AGROBOT project. Advances in Space Research, 18(1-2), 185-189. Ye, J., Dobson, S., & McKeever, S. (2012). Situation identification techniques in pervasive computing: A review. Pervasive and Mobile Computing, 8(1), 36-66. Tanigaki, K., Fujiura, T., Akase, A., & Imagawa, J. (2008). Cherry-harvesting robot. Computers and Electronics in Agriculture, 63(1), 65-72. Tillett, N. D. (1993). Robotic manipulators in horticulture: A review. Journal of Agricultural Engineering Research, 55(2), 89-105. Han, K.-S., Kim, S.-C., Lee, Y.-B., Kim, S.-C., Im, D.-H., Choi, H.-K., & Hwang, H. (2012). Strawberry harvesting robot for bench-type cultivation. Journal of Biosystems Engineering, 37(1), 65-74. Hagras, H., Colley, M., Callaghan, V., & Carr-West, M. (2002). Online learning and adaptation of autonomous mobile robots for sustainable agriculture. Autonomous Robots, 13(1), 37-52. Lu, Z., Augusto, J., Liu, J., Wang, H., & Aztiria, A. (2012). A system to reason about uncertain and dynamic environments. International Journal on Artificial Intelligence Tools, 21(5), 1-36. Jovicich, E., Cnatliffe, D. J., Sargent, S. A., & Osborne, L. S. (2004). Production of greenhouse-grown peppers in Florida (No. HS979). Gainesville, FL: University of Florida, IFAS Extension. Grift, T. E., Zhang, Q., Kondo, N., & Ting, K. C. (2008). A review of automation and robotics for the bio-industry. Journal of Biomechatronics Engineering, 1(1), 37-54. Lee, B. S. H., & Rosa, U. A. (2006). Development of a canopy volume reduction technique for easy assessment and harvesting of valencia citrus fruits. Transactions of the ASABE, 49(6), 1695-1703. Humburg, D. S., & Reid, J. F. (1991). Field performance of machine vision for the selective harvest of asparagus. SAE (Society of Automotive Engineers) Transactions, 100(2), 81-92. Van Henten, E. J., Hemming, J., Van Tuijl, B. A. J., Kornet, J. G., Meuleman, J., Bontsema, J., & van Os, E. A. (2002). An autonomous robot for harvesting cucumbers in greenhouses. Autonomous Robots, 13(3), 241-258. Clary, C. D., Ball, T., Ward, E., Fuchs, S., Durfey, J. E., Cavalieri, R. P., & Folwell, R. J. (2007). Performance and economic analysis of a selective asparagus harvester. Applied Engineering in Agriculture, 23(5), 571-577. Siers, F. J. (2007). Methodological design; in Dutch: Methodisch ontwerpen. Groningen, The Netherlands: Wolters-Noordhoff. Houle, D., Govindaraju, D. R., & Omholt, S. (2010). Phenomics: The next challenge. Nature Reviews Genetics, 11(12), 855-866. Yao, B. Z., Yang, X., Liang, L., Mun Wai, L., & Song-Chun, Z. (2010). I2T: Image parsing to text description. Proceedings of the IEEE, 98(8), 1485-1508. Glancey, J. L., & Kee, W. E. (2005). Engineering aspects of production and harvest mechanization for fresh and processed vegetables. HortTechnology, 15(1), 76-79. Arndt, G., Rudziejewski, R., & Stewart, V. A. (1997). On the future of automated selective asparagus harvesting technology. Computers and Electronics in Agriculture, 16, 137-145. Qiao, J., Sasao, A., Shibusawa, S., Kondo, N., & Morimoto, E. (2005). Mapping yield and quality using the mobile fruit grading robot. Biosystems Engineering, 90(2), 135-142. Bechar, A. (2010). Robotics in horticultural field production. Stewart Postharvest Review, 6(3), 1-11. Jukema, G., & Van de Meer, R. (2009). Labor costs in arable farming and greenhouse horticulture; in Dutch: Arbeidskosten in de akkerbouw en glastuinbouw. The Hague, The Netherlands: Landbouw Economisch Instituur (LEI). Vermeulen, M. M. A., & Wisse, M. (2008). Maximum allowable manipulator mass based on cycle time, impact safety and pinching safety. Industrial Robot, 35(5), 410-420. Reed, J. N., Miles, S. J., Butler, J., Baldwin, M., & Noble, R. (2001). Automatic mushroom harvester development. Journal of Agricultural Engineering Research, 78(1), 15-23. Edan, Y., Flash, T., Shmulevich, I., Sarig, Y., & Peiper, U. M. (1990). An algorithm defining the motions of a citrus picking robot. Journal of Agricultural Engineering Research, 46(C), 259-273. Jiménez, A. R., Ceres, R., & Pons, J. L. (2000b). A vision system based on a laser range-finder applied to robotic fruit harvesting. Machine Vision and Applications, 11(6), 321-329. Harrell, R. (1987). Economic analysis of robotic citrus harvesting in Florida. Transactions of the American Society of Agricultural Engineers, 30(2), 298-304. Kondo, N., Nishitsuji, Y., Ling, P. P., & Ting, K. C. (1996). Visual feedback guided robotic cherry tomato harvesting. Transactions of the ASAE, 39(6), 2331-2338. LEI, & CBS. (2009). Statistics of agriculture and horticulture in the Netherlands; in Dutch: Land- en tuinbouwcijfers 2009 (LEI-Report No. 2009-069). The Netherlands: The Hague. Guo, F., Cao, Q., & Masateru, N. (2008). Fruit detachment and classification method for strawberry harvesting robot. International Journal of Advanced Robotic Systems, 5(1), 41-48. Wan Ishak, W. I., Kit, W. H., & Awal, M. A. (2010). Design and development of eggplant harvester for gantry system. Pertanika Journal of Science and Technology, 18(2), 231-242. Buwalda, F., Van Henten, E. J., De Gelder, A., Bontsema, J., & Hemming, J. (2006). Toward an optimal control strategy for sweet pepper cultivation-1. A dynamic crop model, Acta Horticulturae (Vol. 718, pp. 367-374). Kapach, K., Barnea, E., Mairon, R., Edan, Y., & Ben-Shahar, O. (2012). Computer vision for fruit harvesting robots-State of the art and challenges ahead. International Journal of Computational Vision and Robotics, 3(1/2), 4-34. Belta, C., Bicchi, A., Egerstedt, M., Frazzoli, E., Klavins, E., & Pappas, G. J. (2007). Symbolic planning and control of robot motion [grand challenges of robotics]. Robotics & Automation Magazine, IEEE, 14(1), 61-70. Jiménez, A. R., Ceres, R., & Pons, J. L. (2000a). A survey of computer vision methods for locating fruit on trees. Transactions of the American Society of Agricultural Engineers, 43(6), 1911-1920. Armada, M. A., Sanfeliu, A., Ferre, M., Fernández, R., Salinas, C., Montes, H., Sarria, J., & Armada, M. (2014). Validation of a multisensory system for fruit harvesting robots in lab conditions, ROBOT2013: First Iberian Robotics Conference (Vol. 252, pp. 495-504). Springer International Publishing. Halachmi, I., Metz, J. H. M., Maltz, E., Dijkhuizen, A. A., & Speelman, L. (2000). Designing the optimal robotic milking barn, part 1: Quantifying facility usage. Journal of Agricultural Engineering Research, 76(1), 37-49. Reina, G., & Milella, A. (2012). Towards autonomous agriculture: Automatic ground detection using trinocular stereovision. Sensors, 12(9), 12405-12423. Plá, F., Juste, F., & Ferri, F. (1993). Feature extraction of spherical objects in image analysis: An application to robotic citrus harvesting. Computers and Electronics in Agriculture, 8, 57-72. Van Henten, E. J., Van't Slot, D. A., Hol, C. W. J., & Van Willigenburg, L. G. (2009). Optimal manipulator design for a cucumber harvesting robot. Computers and Electronics in Agriculture, 65(2), 247-257. Edan, Y. & Miles, G. E. (1993). Design of an agricultural robot for harvesting melons. Transactions of the ASAE, 36(2), 593-603. Reed, J. N., & Tillet, R. D. (1994). Initial experiments in robotic mushroom harvesting. Mechatronics, 4(3), 265-279. Sarig, Y. (1993). Robotics of fruit harvesting: A state-of-the-art review. Journal of Agricultural Engineering Research, 54(4), 265-280. Hiremath, S. A., van der Heijden, G. W. A. M., van Evert, F. K., Stein, A., & Ter Braak, C. J. F. (2014). Laser range finder model for autonomous navigation of a robot in a maize field using a particle filter. Computers and Electronics in Agriculture, 100, 41-50. Edan, Y. (1995). Design of an autonomous agricultural robot. Applied Intelligence, 5(1), 41-50. Li, M., Imou, K., Wakabayashi, K., & Yokoyama, S. (2009). Review of research on agricultural vehicle autonomous guidance. International Journal of Agricultural and Biological Engineering, 2(3), 1-16. Baeten, J., Donné, K., Boedrij, S., Beckers, W., & Claesen, E. (2008). Autonomous fruit picking machine: A robotic apple harvester. Springer Tracts in Advanced Robotics, 42, 531-539. Reina, G., Milella, A., & Underwood, J. (2012). Self-learning classification of radar features for scene understanding. Robotics and Autonomous Systems, 60(11), 1377-1388. Hayashi, S., Shigematsu, K., Yamamoto, S., Kobayashi, K., Kohno, Y., Kamata, J., & Kurita, M. (2010). Evaluation of a strawberry-harvesting robot in a field test. Biosystems Engineering, 105(2), 160-171. Bac, C. W., Hemming, J., & Van Henten, E. J. (2013). Robust pixel-based classification of obstacles for robotic harvesting of sweet-pepper. Computers and Electronics in Agriculture, 96, 148-162. Belforte, G., Deboli, R., Gay, P., Piccarolo, P., & Ricauda Aimonino, D. (2006). Robot design and testing for greenhouse applications. Biosystems Engineering, 95(3), 309-321. Arima, S., & Kondo, N. (1999). Cucumber harvesting robot and plant training system. Journal of Robotics and Mechatronics, 11(3), 208-212. Van 't Ooster 2010; 11 2010; 98 2005; 691 1987; 30 2010; 105 2010; 18 2002; 13 1988; 76 2008; 34 2008; 35 2011; 59 2012; 12 2014; 252 2011; 110 2004; 33 1993; 36 1992; 8 2010; 20 1990; 46 2000; 16 1991; 100 2006; 23 2006; 25 2004; 34 1987 2008; 25 1984 1983 2012; 138 2014; 120 2012; 21 2010; 6 2009; 66 1996; 18 2011; 2 2009; 65 1989; 65 2005; 90 1996 1995 1993 1992 1991 2012; 37 1995; 2 2003; 30 1995; 3 2007; 14 1995; 5 2000; 76 2006; 49 1993; 55 1993; 54 2005; 4 2008; 42 2005; 15 1990; 8 2000a; 43 1993; 8 2012; 60 1996; 39 1994; 24 2008; 5 1988; 31 2008; 1 2011; 18 2000b; 11 2013; 96 2003; 2 1999; 11 1997; 16 2005; 32 2011; 23 2008; 63 2001; 13 2007; 23 2003; 86 2006; 718 2009; 25 2002; 36 2006; 94 2006; 95 2012 1991; 34 2011 2010 2009 2006; 7 2008 2007 2006 2005 2007; 50 2004 2011; 39 2009; 26 1998; 25 2012; 3 2012; 1 2011; 45 2009; 6 2014 2013 2014; 100 2009; 2 2001; 78 2009; 38 1994; 4 2012; 8 2009; 39 2014; 102 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 Glancey J. L. (e_1_2_9_46_1) 2005; 15 LEI, & CBS (e_1_2_9_79_1) 2009 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_107_1 e_1_2_9_122_1 Jukema G. (e_1_2_9_70_1) 2009 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 Pedersen S. M. (e_1_2_9_100_1) 2008 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 Armada M. A. (e_1_2_9_6_1) 2014 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_2_1 Hayashi S. (e_1_2_9_57_1) 2002; 36 Humburg D. S. (e_1_2_9_63_1) 1991; 100 e_1_2_9_138_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_115_1 e_1_2_9_49_1 CCC (e_1_2_9_26_1) 2009 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_95_1 e_1_2_9_76_1 Thrun S. (e_1_2_9_124_1) 2006 e_1_2_9_91_1 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 Antonelli M. G. (e_1_2_9_4_1) 2011; 39 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_84_1 Li B. (e_1_2_9_81_1) 2010; 6 e_1_2_9_23_1 Guo F. (e_1_2_9_51_1) 2008; 5 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_118_1 e_1_2_9_133_1 Van Henten E. J. (e_1_2_9_130_1) 2006; 718 e_1_2_9_9_1 Pekkeriet E. J. (e_1_2_9_102_1) 2011 e_1_2_9_27_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_73_1 e_1_2_9_35_1 Jovicich E. (e_1_2_9_69_1) 2004 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 Noordam J. C. (e_1_2_9_99_1) 2005; 691 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_128_1 e_1_2_9_105_1 e_1_2_9_39_1 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_58_1 Siers F. J. (e_1_2_9_117_1) 2007 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 Namikawa K. (e_1_2_9_94_1) 1989; 65 Wan Ishak W. I. (e_1_2_9_136_1) 2010; 18 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_28_1 e_1_2_9_47_1 Saeys W. (e_1_2_9_113_1) 2012 e_1_2_9_132_1 e_1_2_9_74_1 Cross N. (e_1_2_9_32_1) 2008 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_127_1 Grift T. E. (e_1_2_9_50_1) 2008; 1 Van Henten E. J. (e_1_2_9_129_1) 2006 e_1_2_9_123_1 e_1_2_9_104_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_135_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_48_1 e_1_2_9_29_1 Buwalda F. (e_1_2_9_24_1) 2006; 718 |
References_xml | – reference: Guo, F., Cao, Q., & Masateru, N. (2008). Fruit detachment and classification method for strawberry harvesting robot. International Journal of Advanced Robotic Systems, 5(1), 41-48. – reference: Cardenas-Weber, M. C., Stroshine, R. L., Haghighi, K., & Edan, Y. (1991). Melon material properties and finite element analysis of melon compression with application to robot gripping. Transactions of the ASAE, 34(3), 920-929. – reference: Namikawa, K., & Ogawa, Y. (1989). Study on the hand of fruits harvesting robot. Kansai Branch Report of the Japanese Society of Agricultural Machinery, 65, 38-41. – reference: Toussaint, K., Pouliot, N., & Montambault, S. (2009). Transmission line maintenance robots capable of crossing obstacles: State-of-the-art review and challenges ahead. Journal of Field Robotics, 26(5), 477-499. – reference: Lu, Z., Augusto, J., Liu, J., Wang, H., & Aztiria, A. (2012). A system to reason about uncertain and dynamic environments. International Journal on Artificial Intelligence Tools, 21(5), 1-36. – reference: Polder, G., Van der Heijden, G. W. A. M., Van der Voet, H., & Young, I. T. (2004). Measuring surface distribution of carotenes and chlorophyll in ripening tomatoes using imaging spectrometry. Postharvest Biology and Technology, 34(2), 117-129. – reference: Muscato, G., Prestifilippo, M., Abbate, N., & Rizzuto, I. (2005). A prototype of an orange picking robot: Past history, the new robot and experimental results. Industrial Robot, 32(2), 128-138. – reference: Nieuwenhuizen, A. T., Hofstee, J. W., & van Henten, E. J. (2010). Adaptive detection of volunteer potato plants in sugar beet fields. Precision Agriculture, 11(5), 433-447. – reference: Nof, S. Y. (2009). Springer handbook of automation. Berlin Heidelberg: Springer. – reference: Reina, G., & Milella, A. (2012). Towards autonomous agriculture: Automatic ground detection using trinocular stereovision. Sensors, 12(9), 12405-12423. – reference: Edan, Y., Haghighi, K., Stroshine, R., & Cardenas-Weber, M. (1992). Robot gripper analysis: Finite element modeling and optimization. Applied Engineering in Agriculture, 8(4), 563-570. – reference: Harrell, R. C., Adsit, P. D., Munilla, R. D., & Slaughter, D. C. (1990). Robotic picking of citrus. Robotica, 8(4), 269-278. – reference: Humburg, D. S., & Reid, J. F. (1991). Field performance of machine vision for the selective harvest of asparagus. SAE (Society of Automotive Engineers) Transactions, 100(2), 81-92. – reference: De-An, Z., Jidong, L., Wei, J., Ying, Z., & Yu, C. (2011). Design and control of an apple harvesting robot. Biosystems Engineering, 110(2), 112-122. – reference: Foglia, M. M., & Reina, G. (2006). Agricultural robot for radicchio harvesting. Journal of Field Robotics, 23(6-7), 363-377. – reference: Grift, T. E., Zhang, Q., Kondo, N., & Ting, K. C. (2008). A review of automation and robotics for the bio-industry. Journal of Biomechatronics Engineering, 1(1), 37-54. – reference: Harrell, R. (1987). Economic analysis of robotic citrus harvesting in Florida. Transactions of the American Society of Agricultural Engineers, 30(2), 298-304. – reference: Qiao, J., Sasao, A., Shibusawa, S., Kondo, N., & Morimoto, E. (2005). Mapping yield and quality using the mobile fruit grading robot. Biosystems Engineering, 90(2), 135-142. – reference: Arima, S., & Kondo, N. (1999). Cucumber harvesting robot and plant training system. Journal of Robotics and Mechatronics, 11(3), 208-212. – reference: Bechar, A. (2010). Robotics in horticultural field production. Stewart Postharvest Review, 6(3), 1-11. – reference: Mehta, S. S., & Burks, T. F. (2014). Vision-based control of robotic manipulator for citrus harvesting. Computers and Electronics in Agriculture, 102(0), 146-158. – reference: Sites, P. W., & Delwiche, M. J. (1988). Computer vision to locate fruit on a tree. Transactions of the ASAE, 31(1), 257-263, 272. – reference: Bajcsy, R. (1988). Active perception. Proceedings of the IEEE, 76(8), 996-1005. – reference: Siers, F. J. (2007). Methodological design; in Dutch: Methodisch ontwerpen. Groningen, The Netherlands: Wolters-Noordhoff. – reference: Jiménez, A. R., Ceres, R., & Pons, J. L. (2000a). A survey of computer vision methods for locating fruit on trees. Transactions of the American Society of Agricultural Engineers, 43(6), 1911-1920. – reference: Yao, B. Z., Yang, X., Liang, L., Mun Wai, L., & Song-Chun, Z. (2010). I2T: Image parsing to text description. Proceedings of the IEEE, 98(8), 1485-1508. – reference: Edan, Y. (1995). Design of an autonomous agricultural robot. Applied Intelligence, 5(1), 41-50. – reference: Gorbe, E., & Calatayud, A. (2012). Applications of chlorophyll fluorescence imaging technique in horticultural research: A review. Scientia Horticulturae, 138, 24-35. – reference: Buwalda, F., Van Henten, E. J., De Gelder, A., Bontsema, J., & Hemming, J. (2006). Toward an optimal control strategy for sweet pepper cultivation-1. A dynamic crop model, Acta Horticulturae (Vol. 718, pp. 367-374). – reference: Rath, T., & Kawollek, M. (2009). Robotic harvesting of Gerbera Jamesonii based on detection and three-dimensional modeling of cut flower pedicels. Computers and Electronics in Agriculture, 66(1), 85-92. – reference: Reed, J. N., Miles, S. J., Butler, J., Baldwin, M., & Noble, R. (2001). Automatic mushroom harvester development. Journal of Agricultural Engineering Research, 78(1), 15-23. – reference: Pool, T. A., & Harrell, R. C. (1991). An end-effector for robotic removal of citrus from the tree. Transactions of the ASAE, 34(3), 373-378. – reference: Wan Ishak, W. I., Kit, W. H., & Awal, M. A. (2010). Design and development of eggplant harvester for gantry system. Pertanika Journal of Science and Technology, 18(2), 231-242. – reference: Belforte, G., Deboli, R., Gay, P., Piccarolo, P., & Ricauda Aimonino, D. (2006). Robot design and testing for greenhouse applications. Biosystems Engineering, 95(3), 309-321. – reference: Kapach, K., Barnea, E., Mairon, R., Edan, Y., & Ben-Shahar, O. (2012). Computer vision for fruit harvesting robots-State of the art and challenges ahead. International Journal of Computational Vision and Robotics, 3(1/2), 4-34. – reference: Lavee, G., Rivlin, E., & Rudzsky, M. (2009). Understanding video events: A survey of methods for automatic interpretation of semantic occurrences in video. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 39(5), 489-504. – reference: Van Henten, E. J., Van Tuijl, B. A. J., Hoogakker, G. J., Van Der Weerd, M. J., Hemming, J., Kornet, J. G., & Bontsema, J. (2006). An autonomous robot for de-leafing cucumber plants grown in a high-wire cultivation system. Biosystems Engineering, 94(3), 317-323. – reference: Armada, M. A., Sanfeliu, A., Ferre, M., Fernández, R., Salinas, C., Montes, H., Sarria, J., & Armada, M. (2014). Validation of a multisensory system for fruit harvesting robots in lab conditions, ROBOT2013: First Iberian Robotics Conference (Vol. 252, pp. 495-504). Springer International Publishing. – reference: Halachmi, I., Metz, J. H. M., Maltz, E., Dijkhuizen, A. A., & Speelman, L. (2000). Designing the optimal robotic milking barn, part 1: Quantifying facility usage. Journal of Agricultural Engineering Research, 76(1), 37-49. – reference: Sarig, Y. (1993). Robotics of fruit harvesting: A state-of-the-art review. Journal of Agricultural Engineering Research, 54(4), 265-280. – reference: Han, K.-S., Kim, S.-C., Lee, Y.-B., Kim, S.-C., Im, D.-H., Choi, H.-K., & Hwang, H. (2012). Strawberry harvesting robot for bench-type cultivation. Journal of Biosystems Engineering, 37(1), 65-74. – reference: Van 't Ooster, A., Bontsema, J., Van Henten, E. J., & Hemming, S. (2014). Simulation of harvest operations in a static rose cultivation system. Biosystems Engineering, 120, 34-46. – reference: Hiremath, S. A., van der Heijden, G. W. A. M., van Evert, F. K., Stein, A., & Ter Braak, C. J. F. (2014). Laser range finder model for autonomous navigation of a robot in a maize field using a particle filter. Computers and Electronics in Agriculture, 100, 41-50. – reference: LEI, & CBS. (2009). Statistics of agriculture and horticulture in the Netherlands; in Dutch: Land- en tuinbouwcijfers 2009 (LEI-Report No. 2009-069). The Netherlands: The Hague. – reference: Van Henten, E. J., Hemming, J., Van Tuijl, B. A. J., Kornet, J. G., Meuleman, J., Bontsema, J., & van Os, E. A. (2002). An autonomous robot for harvesting cucumbers in greenhouses. Autonomous Robots, 13(3), 241-258. – reference: Jukema, G., & Van de Meer, R. (2009). Labor costs in arable farming and greenhouse horticulture; in Dutch: Arbeidskosten in de akkerbouw en glastuinbouw. The Hague, The Netherlands: Landbouw Economisch Instituur (LEI). – reference: Sivaraman, B., & Burks, T. F. (2006). Geometric performance indices for analysis and synthesis of manipulators for robotic harvesting. Transactions of the ASABE, 49(5), 1589-1597. – reference: Clary, C. D., Ball, T., Ward, E., Fuchs, S., Durfey, J. E., Cavalieri, R. P., & Folwell, R. J. (2007). Performance and economic analysis of a selective asparagus harvester. Applied Engineering in Agriculture, 23(5), 571-577. – reference: Bos, A. P., Groot Koerkamp, P. W. G., Gosselink, J. M. J., & Bokma, S. (2009). Reflexive interactive design and its application in a project on sustainable dairy husbandry systems. Outlook on Agriculture, 38(2), 137-145. – reference: Plá, F., Juste, F., & Ferri, F. (1993). Feature extraction of spherical objects in image analysis: An application to robotic citrus harvesting. Computers and Electronics in Agriculture, 8, 57-72. – reference: Cross, N. (2008). Engineering design methods (4th revised ed.). Chichester: John Wiley and Sons. – reference: Li, M., Imou, K., Wakabayashi, K., & Yokoyama, S. (2009). Review of research on agricultural vehicle autonomous guidance. International Journal of Agricultural and Biological Engineering, 2(3), 1-16. – reference: Hayashi, S., Shigematsu, K., Yamamoto, S., Kobayashi, K., Kohno, Y., Kamata, J., & Kurita, M. (2010). Evaluation of a strawberry-harvesting robot in a field test. Biosystems Engineering, 105(2), 160-171. – reference: Arndt, G., Rudziejewski, R., & Stewart, V. A. (1997). On the future of automated selective asparagus harvesting technology. Computers and Electronics in Agriculture, 16, 137-145. – reference: Belta, C., Bicchi, A., Egerstedt, M., Frazzoli, E., Klavins, E., & Pappas, G. J. (2007). Symbolic planning and control of robot motion [grand challenges of robotics]. Robotics & Automation Magazine, IEEE, 14(1), 61-70. – reference: Glancey, J. L., & Kee, W. E. (2005). Engineering aspects of production and harvest mechanization for fresh and processed vegetables. HortTechnology, 15(1), 76-79. – reference: Thrun, S., Burgard, W., & Fox, D. (2006). Probabilistic robotics. Cambridge, MA: MIT Press. – reference: Tillett, N. D. (1993). Robotic manipulators in horticulture: A review. Journal of Agricultural Engineering Research, 55(2), 89-105. – reference: Hagras, H., Colley, M., Callaghan, V., & Carr-West, M. (2002). Online learning and adaptation of autonomous mobile robots for sustainable agriculture. Autonomous Robots, 13(1), 37-52. – reference: Tanigaki, K., Fujiura, T., Akase, A., & Imagawa, J. (2008). Cherry-harvesting robot. Computers and Electronics in Agriculture, 63(1), 65-72. – reference: Antonelli, M. G., Auriti, L., Beomonte Zobel, P., & Raparelli, T. (2011). Development of a new harvesting module for saffron flower detachment. Romanian Review Precision Mechanics, Optics and Mechatronics, 39, 163-168. – reference: Houle, D., Govindaraju, D. R., & Omholt, S. (2010). Phenomics: The next challenge. Nature Reviews Genetics, 11(12), 855-866. – reference: Angeles, J., Park, F. C., Siciliano, B., & Khatib, O. (2008). Performance evaluation and design criteria. Springer handbook of robotics, B. Siciliano & O. Khatib (eds.) (chap. 10, pp. 229-244). Berlin-Heidelberg: Springer. – reference: Cohen, O., Edan, Y., & Schechtman, E. (2006). Statistical evaluation method for comparing grid map based sensor fusion algorithms. International Journal of Robotics Research, 25(2), 117-133. – reference: Reed, J. N., & Tillet, R. D. (1994). Initial experiments in robotic mushroom harvesting. Mechatronics, 4(3), 265-279. – reference: Van Henten, E. J., Van't Slot, D. A., Hol, C. W. J., & Van Willigenburg, L. G. (2009). Optimal manipulator design for a cucumber harvesting robot. Computers and Electronics in Agriculture, 65(2), 247-257. – reference: Weiss, U., & Biber, P. (2011). Plant detection and mapping for agricultural robots using a 3D LIDAR sensor. Robotics and Autonomous Systems, 59(5), 265-273. – reference: Murakami, N., Ito, A., Will, J. D., Steffen, M., Inoue, K., Kita, K., & Miyaura, S. (2008). Development of a teleoperation system for agricultural vehicles. Computers and Electronics in Agriculture, 63(1), 81-88. – reference: Van Henten, E. J. (2006). Greenhouse mechanization: State of the art and future perspective. Acta Horticulturae (710), 55-69. – reference: Brannan, T., Durose, C., John, P., & Wolman, H. (2008). Assessing best practice as a means of innovation. Local Government Studies, 34(1), 23-38. – reference: González, R., Rodríguez, F., Sánchez-Hermosilla, J., & Donaire, J. G. (2009). Navigation techniques for mobile robots in greenhouses. Applied Engineering in Agriculture, 25(2), 153-165. – reference: Hayashi, S., Saito, S., Iwasaki, Y., Yamamoto, S., Nagoya, T., & Kano, K. (2011). Development of circulating-type movable bench system for strawberry cultivation. Japan Agricultural Research Quarterly, 45(3), 285-293. – reference: Bron, U. I., Ribeiro, R. V., Azzolini, M., Jacomino, A. P., & Machado, E. C. (2004). Chlorophyll fluorescence as a tool to evaluate the ripening of 'Golden' papaya fruit. Postharvest Biology and Technology, 33(2), 163-173. – reference: Lee, B. S. H., & Rosa, U. A. (2006). Development of a canopy volume reduction technique for easy assessment and harvesting of valencia citrus fruits. Transactions of the ASABE, 49(6), 1695-1703. – reference: Sakai, S., Iida, M., Osuka, K., & Umeda, M. (2008). Design and control of a heavy material handling manipulator for agricultural robots. Autonomous Robots, 25(3), 189-204. – reference: Buemi, F., Massa, M., Sandini, G., & Costi, G. (1996). The AGROBOT project. Advances in Space Research, 18(1-2), 185-189. – reference: CCC. (2009). A roadmap for U. S. robotics: From Internet to robotics. Computing Community Consortium Study on Robotics, Snobird, UT. – reference: Pedersen, S. M., Fountas, S., Have, H., & Blackmore, B. S. (2006). Agricultural robots-System analysis and economic feasibility. Precision Agriculture, 7(4), 295-308. – reference: Li, B., Vigneault, C., & Wang, N. (2010). Research development of fruit and vegetable harvesting robots in China. Stewart Postharvest Review, 6(3), 1-8. – reference: Edan, Y., Flash, T., Shmulevich, I., Sarig, Y., & Peiper, U. M. (1990). An algorithm defining the motions of a citrus picking robot. Journal of Agricultural Engineering Research, 46(C), 259-273. – reference: Edan, Y., Rogozin, D., Flash, T., & Miles, G. E. (2000). Robotic melon harvesting. IEEE Transactions on Robotics and Automation, 16(6), 831-835. – reference: Edan, Y. & Miles, G. E. (1993). Design of an agricultural robot for harvesting melons. Transactions of the ASAE, 36(2), 593-603. – reference: Edan, Y., & Miles, G. E. (1994). Systems engineering of agricultural robot design. IEEE Transactions on Systems, Man and Cybernetics, 24(8), 1259-1265. – reference: Pekkeriet, E. J. (2011). CROPS project deliverable 12.1: Economic viability for each application. Wageningen, The Netherlands: Wageningen UR Greenhouse Horticulture. – reference: Bac, C. W., Hemming, J., & Van Henten, E. J. (2013). Robust pixel-based classification of obstacles for robotic harvesting of sweet-pepper. Computers and Electronics in Agriculture, 96, 148-162. – reference: Kondo, N., Nishitsuji, Y., Ling, P. P., & Ting, K. C. (1996). Visual feedback guided robotic cherry tomato harvesting. Transactions of the ASAE, 39(6), 2331-2338. – reference: Ye, J., Dobson, S., & McKeever, S. (2012). Situation identification techniques in pervasive computing: A review. Pervasive and Mobile Computing, 8(1), 36-66. – reference: Burks, T., Villegas, F., Hannan, M., Flood, S., Sivaraman, B., Subramanian, V., & Sikes, J. (2005). Engineering and horticultural aspects of robotic fruit harvesting: Opportunities and constraints. HortTechnology, 15(1), 79-87. – reference: Clouser, R. (2010). A brief sketch of the philosophy of Herman Dooyeweerd. Axiomathes, 20(1), 3-17. – reference: Van Henten, E. J., Van Tuijl, B. A. J., Hemming, J., Kornet, J. G., Bontsema, J., & Van Os, E. A. (2003). Field test of an autonomous cucumber picking robot. Biosystems Engineering, 86(3), 305-313. – reference: Li, P., Lee, S.-h., & Hsu, H.-Y. (2011). Review on fruit harvesting method for potential use of automatic fruit harvesting systems. Procedia Engineering, 23, 351-366. – reference: Jian, S., Xueyan, S., Tiezhong, Z., Bin, Z., & Liming, X. (2007). Design optimisation and simulation of structure parameters of an eggplant picking robot. New Zealand Journal of Agricultural Research, 50(5), 959-964. – reference: Jiménez, A. R., Ceres, R., & Pons, J. L. (2000b). A vision system based on a laser range-finder applied to robotic fruit harvesting. Machine Vision and Applications, 11(6), 321-329. – reference: Hayashi, S., Ganno, K., Ishii, Y., & Tanaka, I. (2002). Robotic harvesting system for eggplants. Japan Agricultural Research Quarterly, 36(3), 163-168. – reference: Baeten, J., Donné, K., Boedrij, S., Beckers, W., & Claesen, E. (2008). Autonomous fruit picking machine: A robotic apple harvester. Springer Tracts in Advanced Robotics, 42, 531-539. – reference: Bechar, A., & Edan, Y. (2003). Human-robot collaboration for improved target recognition of agricultural robots. Industrial Robot, 30(5), 432-436. – reference: Saeys, W., & Nguyen, T. T. (2012). CROPS project deliverable 6.3: Report on the plantation and pruning methods to have fruit readily suited for automated harvesting. Leuven, Belgium: KU Leuven. – reference: Jovicich, E., Cnatliffe, D. J., Sargent, S. A., & Osborne, L. S. (2004). Production of greenhouse-grown peppers in Florida (No. HS979). Gainesville, FL: University of Florida, IFAS Extension. – reference: Van Henten, E. J., Buwalda, F., De Zwart, H. F., De Gelder, A., Hemming, J., & Bontsema, J. (2006). Toward an optimal control strategy for sweet pepper cultivation-2. Optimization of the yield pattern and energy efficiency, Acta Horticulturae, 718, 391-398. – reference: Plebe, A., & Grasso, G. (2001). Localization of spherical fruits for robotic harvesting. Machine Vision and Applications, 13(2), 70-79. – reference: Ceres, R., Pons, J. L., Jiménez, A. R., Martín, J. M., & Calderón, L. (1998). Design and implementation of an aided fruit-harvesting robot (Agribot). Industrial Robot, 25(5), 337-346. – reference: Reina, G., Milella, A., & Underwood, J. (2012). Self-learning classification of radar features for scene understanding. Robotics and Autonomous Systems, 60(11), 1377-1388. – reference: Vermeulen, M. M. A., & Wisse, M. (2008). Maximum allowable manipulator mass based on cycle time, impact safety and pinching safety. Industrial Robot, 35(5), 410-420. – reference: Noordam, J. C., Hemming, J., van Heerde, C., Golbach, F., van Soest, R., & Wekking, E. (2005). Automated rose cutting in greenhouses with 3D vision and robotics: Analysis of 3D vision techniques for stem detection. Acta Horticulturae (ISHS), 691, 885-892. – year: 2011 – volume: 98 start-page: 1485 issue: 8 year: 2010 end-page: 1508 article-title: I2T: Image parsing to text description publication-title: Proceedings of the IEEE – volume: 6 start-page: 1 issue: 3 year: 2010 end-page: 11 article-title: Robotics in horticultural field production publication-title: Stewart Postharvest Review – volume: 55 start-page: 89 issue: 2 year: 1993 end-page: 105 article-title: Robotic manipulators in horticulture: A review publication-title: Journal of Agricultural Engineering Research – volume: 13 start-page: 70 issue: 2 year: 2001 end-page: 79 article-title: Localization of spherical fruits for robotic harvesting publication-title: Machine Vision and Applications – volume: 138 start-page: 24 year: 2012 end-page: 35 article-title: Applications of chlorophyll fluorescence imaging technique in horticultural research: A review publication-title: Scientia Horticulturae – volume: 65 start-page: 38 year: 1989 end-page: 41 article-title: Study on the hand of fruits harvesting robot publication-title: Kansai Branch Report of the Japanese Society of Agricultural Machinery – year: 2005 – start-page: 105 year: 2010 end-page: 108 – volume: 43 start-page: 1911 issue: 6 year: 2000a end-page: 1920 article-title: A survey of computer vision methods for locating fruit on trees publication-title: Transactions of the American Society of Agricultural Engineers – volume: 60 start-page: 1377 issue: 11 year: 2012 end-page: 1388 article-title: Self‐learning classification of radar features for scene understanding publication-title: Robotics and Autonomous Systems – volume: 691 start-page: 885 year: 2005 end-page: 892 article-title: Automated rose cutting in greenhouses with 3D vision and robotics: Analysis of 3D vision techniques for stem detection publication-title: Acta Horticulturae (ISHS) – volume: 36 start-page: 593 issue: 2 year: 1993 end-page: 603 article-title: Design of an agricultural robot for harvesting melons publication-title: Transactions of the ASAE – volume: 59 start-page: 265 issue: 5 year: 2011 end-page: 273 article-title: Plant detection and mapping for agricultural robots using a 3D LIDAR sensor publication-title: Robotics and Autonomous Systems – volume: 96 start-page: 148 year: 2013 end-page: 162 article-title: Robust pixel‐based classification of obstacles for robotic harvesting of sweet‐pepper publication-title: Computers and Electronics in Agriculture – start-page: 887 year: 2009 end-page: 892 – volume: 1 start-page: 823 year: 2008 end-page: 827 – volume: 1 start-page: 320 year: 2012 end-page: 324 – year: 2014 – volume: 8 start-page: 563 issue: 4 year: 1992 end-page: 570 article-title: Robot gripper analysis: Finite element modeling and optimization publication-title: Applied Engineering in Agriculture – volume: 66 start-page: 85 issue: 1 year: 2009 end-page: 92 article-title: Robotic harvesting of Gerbera Jamesonii based on detection and three‐dimensional modeling of cut flower pedicels publication-title: Computers and Electronics in Agriculture – volume: 1 start-page: 37 issue: 1 year: 2008 end-page: 54 article-title: A review of automation and robotics for the bio‐industry publication-title: Journal of Biomechatronics Engineering – volume: 110 start-page: 112 issue: 2 year: 2011 end-page: 122 article-title: Design and control of an apple harvesting robot publication-title: Biosystems Engineering – volume: 4 start-page: 265 issue: 3 year: 1994 end-page: 279 article-title: Initial experiments in robotic mushroom harvesting publication-title: Mechatronics – year: 2008 – volume: 8 start-page: 57 year: 1993 end-page: 72 article-title: Feature extraction of spherical objects in image analysis: An application to robotic citrus harvesting publication-title: Computers and Electronics in Agriculture – volume: 11 start-page: 208 issue: 3 year: 1999 end-page: 212 article-title: Cucumber harvesting robot and plant training system publication-title: Journal of Robotics and Mechatronics – volume: 8 start-page: 36 issue: 1 year: 2012 end-page: 66 article-title: Situation identification techniques in pervasive computing: A review publication-title: Pervasive and Mobile Computing – volume: 94 start-page: 317 issue: 3 year: 2006 end-page: 323 article-title: An autonomous robot for de‐leafing cucumber plants grown in a high‐wire cultivation system publication-title: Biosystems Engineering – volume: 36 start-page: 163 issue: 3 year: 2002 end-page: 168 article-title: Robotic harvesting system for eggplants publication-title: Japan Agricultural Research Quarterly – volume: 90 start-page: 135 issue: 2 year: 2005 end-page: 142 article-title: Mapping yield and quality using the mobile fruit grading robot publication-title: Biosystems Engineering – volume: 38 start-page: 137 issue: 2 year: 2009 end-page: 145 article-title: Reflexive interactive design and its application in a project on sustainable dairy husbandry systems publication-title: Outlook on Agriculture – volume: 35 start-page: 410 issue: 5 year: 2008 end-page: 420 article-title: Maximum allowable manipulator mass based on cycle time, impact safety and pinching safety publication-title: Industrial Robot – volume: 100 start-page: 41 year: 2014 end-page: 50 article-title: Laser range finder model for autonomous navigation of a robot in a maize field using a particle filter publication-title: Computers and Electronics in Agriculture – volume: 105 start-page: 160 issue: 2 year: 2010 end-page: 171 article-title: Evaluation of a strawberry‐harvesting robot in a field test publication-title: Biosystems Engineering – volume: 34 start-page: 23 issue: 1 year: 2008 end-page: 38 article-title: Assessing best practice as a means of innovation publication-title: Local Government Studies – volume: 25 start-page: 117 issue: 2 year: 2006 end-page: 133 article-title: Statistical evaluation method for comparing grid map based sensor fusion algorithms publication-title: International Journal of Robotics Research – volume: 13 start-page: 37 issue: 1 year: 2002 end-page: 52 article-title: Online learning and adaptation of autonomous mobile robots for sustainable agriculture publication-title: Autonomous Robots – volume: 39 start-page: 163 year: 2011 end-page: 168 article-title: Development of a new harvesting module for saffron flower detachment publication-title: Romanian Review Precision Mechanics, Optics and Mechatronics – volume: 15 start-page: 79 issue: 1 year: 2005 end-page: 87 article-title: Engineering and horticultural aspects of robotic fruit harvesting: Opportunities and constraints publication-title: HortTechnology – volume: 5 start-page: 3111 year: 2008 end-page: 3120 – start-page: 236 year: 1991 end-page: 244 – year: 1987 – year: 2007 – volume: 23 start-page: 571 issue: 5 year: 2007 end-page: 577 article-title: Performance and economic analysis of a selective asparagus harvester publication-title: Applied Engineering in Agriculture – volume: 20 start-page: 3 issue: 1 year: 2010 end-page: 17 article-title: A brief sketch of the philosophy of Herman Dooyeweerd publication-title: Axiomathes – start-page: 55 issue: 710 year: 2006 end-page: 69 article-title: Greenhouse mechanization: State of the art and future perspective publication-title: Acta Horticulturae – volume: 11 start-page: 433 issue: 5 year: 2010 end-page: 447 article-title: Adaptive detection of volunteer potato plants in sugar beet fields publication-title: Precision Agriculture – start-page: 35 year: 1984 end-page: 38 – start-page: 1 year: 1993 end-page: 16 – volume: 18 start-page: 185 issue: 1–2 year: 1996 end-page: 189 article-title: The AGROBOT project publication-title: Advances in Space Research – year: 1992 – volume: 42 start-page: 531 year: 2008 end-page: 539 article-title: Autonomous fruit picking machine: A robotic apple harvester publication-title: Springer Tracts in Advanced Robotics – volume: 34 start-page: 920 issue: 3 year: 1991 end-page: 929 article-title: Melon material properties and finite element analysis of melon compression with application to robot gripping publication-title: Transactions of the ASAE – volume: 16 start-page: 831 issue: 6 year: 2000 end-page: 835 article-title: Robotic melon harvesting publication-title: IEEE Transactions on Robotics and Automation – volume: 34 start-page: 373 issue: 3 year: 1991 end-page: 378 article-title: An end‐effector for robotic removal of citrus from the tree publication-title: Transactions of the ASAE – volume: 39 start-page: 489 issue: 5 year: 2009 end-page: 504 article-title: Understanding video events: A survey of methods for automatic interpretation of semantic occurrences in video publication-title: IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews – start-page: 229 year: 2008 end-page: 244 – volume: 7 start-page: 295 issue: 4 year: 2006 end-page: 308 article-title: Agricultural robots—System analysis and economic feasibility publication-title: Precision Agriculture – volume: 76 start-page: 37 issue: 1 year: 2000 end-page: 49 article-title: Designing the optimal robotic milking barn, part 1: Quantifying facility usage publication-title: Journal of Agricultural Engineering Research – volume: 12 start-page: 12405 issue: 9 year: 2012 end-page: 12423 article-title: Towards autonomous agriculture: Automatic ground detection using trinocular stereovision publication-title: Sensors – volume: 63 start-page: 65 issue: 1 year: 2008 end-page: 72 article-title: Cherry‐harvesting robot publication-title: Computers and Electronics in Agriculture – volume: 30 start-page: 432 issue: 5 year: 2003 end-page: 436 article-title: Human‐robot collaboration for improved target recognition of agricultural robots publication-title: Industrial Robot – year: 2013 – year: 2009 – volume: 76 start-page: 996 issue: 8 year: 1988 end-page: 1005 article-title: Active perception publication-title: Proceedings of the IEEE – volume: 18 start-page: 605 year: 2011 end-page: 609 – volume: 16 start-page: 137 year: 1997 end-page: 145 article-title: On the future of automated selective asparagus harvesting technology publication-title: Computers and Electronics in Agriculture – volume: 63 start-page: 81 issue: 1 year: 2008 end-page: 88 article-title: Development of a teleoperation system for agricultural vehicles publication-title: Computers and Electronics in Agriculture – volume: 6 start-page: 1 issue: 3 year: 2010 end-page: 8 article-title: Research development of fruit and vegetable harvesting robots in China publication-title: Stewart Postharvest Review – volume: 49 start-page: 1589 issue: 5 year: 2006 end-page: 1597 article-title: Geometric performance indices for analysis and synthesis of manipulators for robotic harvesting publication-title: Transactions of the ASABE – volume: 25 start-page: 189 issue: 3 year: 2008 end-page: 204 article-title: Design and control of a heavy material handling manipulator for agricultural robots publication-title: Autonomous Robots – volume: 252 start-page: 495 year: 2014 end-page: 504 – volume: 2 start-page: 9 year: 1995 end-page: 24 – volume: 2 start-page: 1344 year: 2003 end-page: 1349 – volume: 46 start-page: 259 issue: C year: 1990 end-page: 273 article-title: An algorithm defining the motions of a citrus picking robot publication-title: Journal of Agricultural Engineering Research – volume: 25 start-page: 153 issue: 2 year: 2009 end-page: 165 article-title: Navigation techniques for mobile robots in greenhouses publication-title: Applied Engineering in Agriculture – volume: 30 start-page: 298 issue: 2 year: 1987 end-page: 304 article-title: Economic analysis of robotic citrus harvesting in Florida publication-title: Transactions of the American Society of Agricultural Engineers – volume: 33 start-page: 163 issue: 2 year: 2004 end-page: 173 article-title: Chlorophyll fluorescence as a tool to evaluate the ripening of ‘Golden’ papaya fruit publication-title: Postharvest Biology and Technology – volume: 50 start-page: 959 issue: 5 year: 2007 end-page: 964 article-title: Design optimisation and simulation of structure parameters of an eggplant picking robot publication-title: New Zealand Journal of Agricultural Research – volume: 86 start-page: 305 issue: 3 year: 2003 end-page: 313 article-title: Field test of an autonomous cucumber picking robot publication-title: Biosystems Engineering – volume: 49 start-page: 1695 issue: 6 year: 2006 end-page: 1703 article-title: Development of a canopy volume reduction technique for easy assessment and harvesting of valencia citrus fruits publication-title: Transactions of the ASABE – volume: 5 start-page: 41 issue: 1 year: 1995 end-page: 50 article-title: Design of an autonomous agricultural robot publication-title: Applied Intelligence – start-page: 1 year: 2009 end-page: 6 – volume: 718 start-page: 367 year: 2006 end-page: 374 article-title: Toward an optimal control strategy for sweet pepper cultivation—1 publication-title: A dynamic crop model, Acta Horticulturae – volume: 4 start-page: 1807 year: 2005 end-page: 1812 – volume: 5 start-page: 41 issue: 1 year: 2008 end-page: 48 article-title: Fruit detachment and classification method for strawberry harvesting robot publication-title: International Journal of Advanced Robotic Systems – year: 2004 – volume: 11 start-page: 321 issue: 6 year: 2000b end-page: 329 article-title: A vision system based on a laser range‐finder applied to robotic fruit harvesting publication-title: Machine Vision and Applications – volume: 32 start-page: 128 issue: 2 year: 2005 end-page: 138 article-title: A prototype of an orange picking robot: Past history, the new robot and experimental results publication-title: Industrial Robot – volume: 78 start-page: 15 issue: 1 year: 2001 end-page: 23 article-title: Automatic mushroom harvester development publication-title: Journal of Agricultural Engineering Research – volume: 100 start-page: 81 issue: 2 year: 1991 end-page: 92 article-title: Field performance of machine vision for the selective harvest of asparagus publication-title: SAE (Society of Automotive Engineers) Transactions – volume: 6 start-page: 3873 year: 2009 end-page: 3885 – volume: 3 start-page: 4 issue: 1/2 year: 2012 end-page: 34 article-title: Computer vision for fruit harvesting robots—State of the art and challenges ahead publication-title: International Journal of Computational Vision and Robotics – volume: 37 start-page: 65 issue: 1 year: 2012 end-page: 74 article-title: Strawberry harvesting robot for bench‐type cultivation publication-title: Journal of Biosystems Engineering – year: 1983 – volume: 718 start-page: 391 year: 2006 end-page: 398 article-title: Toward an optimal control strategy for sweet pepper cultivation—2. Optimization of the yield pattern and energy efficiency publication-title: Acta Horticulturae – volume: 18 start-page: 231 issue: 2 year: 2010 end-page: 242 article-title: Design and development of eggplant harvester for gantry system publication-title: Pertanika Journal of Science and Technology – volume: 15 start-page: 76 issue: 1 year: 2005 end-page: 79 article-title: Engineering aspects of production and harvest mechanization for fresh and processed vegetables publication-title: HortTechnology – volume: 23 start-page: 351 year: 2011 end-page: 366 article-title: Review on fruit harvesting method for potential use of automatic fruit harvesting systems publication-title: Procedia Engineering – volume: 65 start-page: 247 issue: 2 year: 2009 end-page: 257 article-title: Optimal manipulator design for a cucumber harvesting robot publication-title: Computers and Electronics in Agriculture – volume: 3 start-page: 2054 year: 1995 end-page: 2509 – volume: 13 start-page: 241 issue: 3 year: 2002 end-page: 258 article-title: An autonomous robot for harvesting cucumbers in greenhouses publication-title: Autonomous Robots – volume: 95 start-page: 309 issue: 3 year: 2006 end-page: 321 article-title: Robot design and testing for greenhouse applications publication-title: Biosystems Engineering – volume: 24 start-page: 1259 issue: 8 year: 1994 end-page: 1265 article-title: Systems engineering of agricultural robot design publication-title: IEEE Transactions on Systems, Man and Cybernetics – year: 1996 – volume: 2 start-page: 39 year: 2011 end-page: 42 – volume: 8 start-page: 269 issue: 4 year: 1990 end-page: 278 article-title: Robotic picking of citrus publication-title: Robotica – volume: 39 start-page: 2331 issue: 6 year: 1996 end-page: 2338 article-title: Visual feedback guided robotic cherry tomato harvesting publication-title: Transactions of the ASAE – year: 2012 – volume: 14 start-page: 61 issue: 1 year: 2007 end-page: 70 article-title: Symbolic planning and control of robot motion [grand challenges of robotics] publication-title: Robotics & Automation Magazine, IEEE – volume: 21 start-page: 1 issue: 5 year: 2012 end-page: 36 article-title: A system to reason about uncertain and dynamic environments publication-title: International Journal on Artificial Intelligence Tools – volume: 120 start-page: 34 year: 2014 end-page: 46 article-title: Simulation of harvest operations in a static rose cultivation system publication-title: Biosystems Engineering – volume: 26 start-page: 477 issue: 5 year: 2009 end-page: 499 article-title: Transmission line maintenance robots capable of crossing obstacles: State‐of‐the‐art review and challenges ahead publication-title: Journal of Field Robotics – volume: 102 start-page: 146 issue: 0 year: 2014 end-page: 158 article-title: Vision‐based control of robotic manipulator for citrus harvesting publication-title: Computers and Electronics in Agriculture – volume: 31 start-page: 257 issue: 1 year: 1988 end-page: 263 article-title: Computer vision to locate fruit on a tree publication-title: Transactions of the ASAE – volume: 45 start-page: 285 issue: 3 year: 2011 end-page: 293 article-title: Development of circulating‐type movable bench system for strawberry cultivation publication-title: Japan Agricultural Research Quarterly – volume: 11 start-page: 855 issue: 12 year: 2010 end-page: 866 article-title: Phenomics: The next challenge publication-title: Nature Reviews Genetics – volume: 2 start-page: 1 issue: 3 year: 2009 end-page: 16 article-title: Review of research on agricultural vehicle autonomous guidance publication-title: International Journal of Agricultural and Biological Engineering – start-page: 65 year: 1995 end-page: 70 – year: 2006 – volume: 23 start-page: 363 issue: 6–7 year: 2006 end-page: 377 article-title: Agricultural robot for radicchio harvesting publication-title: Journal of Field Robotics – volume: 54 start-page: 265 issue: 4 year: 1993 end-page: 280 article-title: Robotics of fruit harvesting: A state‐of‐the‐art review publication-title: Journal of Agricultural Engineering Research – volume: 25 start-page: 337 issue: 5 year: 1998 end-page: 346 article-title: Design and implementation of an aided fruit‐harvesting robot (Agribot) publication-title: Industrial Robot – volume: 34 start-page: 117 issue: 2 year: 2004 end-page: 129 article-title: Measuring surface distribution of carotenes and chlorophyll in ripening tomatoes using imaging spectrometry publication-title: Postharvest Biology and Technology – ident: e_1_2_9_40_1 doi: 10.1109/70.897793 – ident: e_1_2_9_9_1 doi: 10.1007/978-3-540-75404-6_51 – volume-title: Probabilistic robotics year: 2006 ident: e_1_2_9_124_1 – volume-title: Production of greenhouse‐grown peppers in Florida (No. HS979) year: 2004 ident: e_1_2_9_69_1 – ident: e_1_2_9_131_1 doi: 10.1023/A:1020568125418 – ident: e_1_2_9_54_1 doi: 10.5307/JBE.2012.37.1.065 – ident: e_1_2_9_17_1 – ident: e_1_2_9_27_1 doi: 10.1108/01439919810232440 – ident: e_1_2_9_10_1 doi: 10.1109/5.5968 – ident: e_1_2_9_90_1 doi: 10.1016/j.compag.2014.01.003 – ident: e_1_2_9_127_1 doi: 10.1002/rob.20295 – volume-title: A roadmap for U. S. robotics: From Internet to robotics year: 2009 ident: e_1_2_9_26_1 – volume: 1 start-page: 37 issue: 1 year: 2008 ident: e_1_2_9_50_1 article-title: A review of automation and robotics for the bio‐industry publication-title: Journal of Biomechatronics Engineering – ident: e_1_2_9_52_1 doi: 10.1023/A:1015626121039 – ident: e_1_2_9_14_1 doi: 10.1108/01439910310492194 – ident: e_1_2_9_138_1 doi: 10.1109/JPROC.2010.2050411 – ident: e_1_2_9_25_1 doi: 10.13031/2013.31750 – volume: 15 start-page: 76 issue: 1 year: 2005 ident: e_1_2_9_46_1 article-title: Engineering aspects of production and harvest mechanization for fresh and processed vegetables publication-title: HortTechnology doi: 10.21273/HORTTECH.15.1.0076 – ident: e_1_2_9_55_1 doi: 10.13031/2013.31943 – ident: e_1_2_9_35_1 – ident: e_1_2_9_61_1 doi: 10.1016/j.compag.2013.10.005 – ident: e_1_2_9_64_1 doi: 10.1109/AIM.2003.1225538 – ident: e_1_2_9_15_1 doi: 10.1016/j.biosystemseng.2006.07.004 – volume: 5 start-page: 41 issue: 1 year: 2008 ident: e_1_2_9_51_1 article-title: Fruit detachment and classification method for strawberry harvesting robot publication-title: International Journal of Advanced Robotic Systems – ident: e_1_2_9_83_1 doi: 10.1016/j.proeng.2011.11.2514 – ident: e_1_2_9_8_1 doi: 10.1016/j.compag.2013.05.004 – ident: e_1_2_9_49_1 – ident: e_1_2_9_123_1 – volume-title: Statistics of agriculture and horticulture in the Netherlands; in Dutch: Land‐ en tuinbouwcijfers 2009 year: 2009 ident: e_1_2_9_79_1 – ident: e_1_2_9_126_1 – volume: 718 start-page: 367 year: 2006 ident: e_1_2_9_24_1 article-title: Toward an optimal control strategy for sweet pepper cultivation—1 publication-title: A dynamic crop model, Acta Horticulturae doi: 10.17660/ActaHortic.2006.718.42 – ident: e_1_2_9_78_1 doi: 10.13031/2013.22286 – ident: e_1_2_9_87_1 doi: 10.1142/S0218213012500236 – ident: e_1_2_9_92_1 doi: 10.1016/j.compag.2008.01.015 – ident: e_1_2_9_45_1 doi: 10.1002/rob.20131 – ident: e_1_2_9_95_1 – ident: e_1_2_9_28_1 doi: 10.1109/AIM.2009.5229897 – volume-title: Service robot applications year: 2008 ident: e_1_2_9_100_1 – ident: e_1_2_9_22_1 doi: 10.1016/0273-1177(95)00807-Q – ident: e_1_2_9_132_1 doi: 10.1016/j.compag.2008.11.004 – ident: e_1_2_9_7_1 doi: 10.1016/S0168-1699(96)00033-6 – ident: e_1_2_9_71_1 doi: 10.1504/IJCVR.2012.046419 – ident: e_1_2_9_84_1 doi: 10.1109/ICICTA.2008.138 – ident: e_1_2_9_59_1 – ident: e_1_2_9_93_1 doi: 10.1108/01439910510582255 – ident: e_1_2_9_105_1 doi: 10.1016/j.postharvbio.2004.05.002 – ident: e_1_2_9_23_1 doi: 10.21273/HORTTECH.15.1.0079 – volume: 65 start-page: 38 year: 1989 ident: e_1_2_9_94_1 article-title: Study on the hand of fruits harvesting robot publication-title: Kansai Branch Report of the Japanese Society of Agricultural Machinery – volume: 18 start-page: 231 issue: 2 year: 2010 ident: e_1_2_9_136_1 article-title: Design and development of eggplant harvester for gantry system publication-title: Pertanika Journal of Science and Technology – volume-title: Engineering design methods year: 2008 ident: e_1_2_9_32_1 – ident: e_1_2_9_119_1 – ident: e_1_2_9_85_1 – ident: e_1_2_9_106_1 doi: 10.13031/2013.31671 – ident: e_1_2_9_65_1 doi: 10.1109/ICIT.2009.4939556 – ident: e_1_2_9_91_1 – ident: e_1_2_9_47_1 doi: 10.13031/2013.26324 – volume-title: Labor costs in arable farming and greenhouse horticulture; in Dutch: Arbeidskosten in de akkerbouw en glastuinbouw year: 2009 ident: e_1_2_9_70_1 – ident: e_1_2_9_12_1 – ident: e_1_2_9_72_1 – ident: e_1_2_9_116_1 doi: 10.3182/20110828-6-IT-1002.02683 – ident: e_1_2_9_75_1 doi: 10.13031/2013.27744 – ident: e_1_2_9_19_1 doi: 10.5367/000000009788632386 – ident: e_1_2_9_18_1 – volume-title: CROPS project deliverable 6.3: Report on the plantation and pruning methods to have fruit readily suited for automated harvesting year: 2012 ident: e_1_2_9_113_1 – ident: e_1_2_9_31_1 doi: 10.1177/0278364906060480 – ident: e_1_2_9_98_1 doi: 10.1007/978-3-540-78831-7 – ident: e_1_2_9_86_1 doi: 10.1109/ICICTA.2011.302 – ident: e_1_2_9_122_1 doi: 10.1016/j.compag.2008.01.018 – ident: e_1_2_9_56_1 doi: 10.1017/S0263574700000308 – ident: e_1_2_9_42_1 – ident: e_1_2_9_48_1 doi: 10.1016/j.scienta.2012.02.002 – ident: e_1_2_9_109_1 doi: 10.1006/jaer.2000.0629 – ident: e_1_2_9_82_1 doi: 10.25165/j.ijabe.20191203.4310 – ident: e_1_2_9_34_1 doi: 10.1007/BF00872782 – volume: 100 start-page: 81 issue: 2 year: 1991 ident: e_1_2_9_63_1 article-title: Field performance of machine vision for the selective harvest of asparagus publication-title: SAE (Society of Automotive Engineers) Transactions – ident: e_1_2_9_111_1 doi: 10.3390/s120912405 – ident: e_1_2_9_43_1 doi: 10.1109/CSAE.2012.6272606 – ident: e_1_2_9_68_1 doi: 10.1007/s001380050117 – ident: e_1_2_9_73_1 – ident: e_1_2_9_114_1 doi: 10.1007/s10514-008-9090-y – ident: e_1_2_9_88_1 – ident: e_1_2_9_16_1 doi: 10.1109/MRA.2007.339624 – ident: e_1_2_9_38_1 doi: 10.13031/2013.28377 – volume: 691 start-page: 885 year: 2005 ident: e_1_2_9_99_1 article-title: Automated rose cutting in greenhouses with 3D vision and robotics: Analysis of 3D vision techniques for stem detection publication-title: Acta Horticulturae (ISHS) doi: 10.17660/ActaHortic.2005.691.110 – ident: e_1_2_9_36_1 doi: 10.1016/S0021-8634(05)80131-3 – ident: e_1_2_9_74_1 doi: 10.1109/ICMA.2005.1626834 – volume: 36 start-page: 163 issue: 3 year: 2002 ident: e_1_2_9_57_1 article-title: Robotic harvesting system for eggplants publication-title: Japan Agricultural Research Quarterly doi: 10.6090/jarq.36.163 – ident: e_1_2_9_37_1 doi: 10.13031/2013.26105 – ident: e_1_2_9_62_1 doi: 10.1038/nrg2897 – ident: e_1_2_9_97_1 doi: 10.1002/9780470172506.ch32 – ident: e_1_2_9_39_1 doi: 10.1109/21.299707 – ident: e_1_2_9_96_1 doi: 10.1007/s11119-009-9138-9 – ident: e_1_2_9_33_1 doi: 10.1016/j.biosystemseng.2011.07.005 – ident: e_1_2_9_44_1 – ident: e_1_2_9_66_1 doi: 10.1080/00288230709510373 – ident: e_1_2_9_110_1 doi: 10.1016/0957-4158(94)90004-3 – ident: e_1_2_9_41_1 – ident: e_1_2_9_118_1 doi: 10.13031/2013.30697 – ident: e_1_2_9_112_1 doi: 10.1016/j.robot.2012.03.002 – ident: e_1_2_9_137_1 doi: 10.1016/j.robot.2011.02.011 – start-page: 495 volume-title: Validation of a multisensory system for fruit harvesting robots in lab conditions, ROBOT2013: First Iberian Robotics Conference year: 2014 ident: e_1_2_9_6_1 – ident: e_1_2_9_11_1 – ident: e_1_2_9_5_1 doi: 10.20965/jrm.1999.p0208 – volume: 6 start-page: 1 issue: 3 year: 2010 ident: e_1_2_9_81_1 article-title: Research development of fruit and vegetable harvesting robots in China publication-title: Stewart Postharvest Review doi: 10.2212/spr.2010.3.12 – ident: e_1_2_9_125_1 doi: 10.1006/jaer.1993.1035 – ident: e_1_2_9_67_1 doi: 10.13031/2013.3096 – ident: e_1_2_9_20_1 doi: 10.1080/03003930701770405 – ident: e_1_2_9_128_1 doi: 10.1016/j.biosystemseng.2013.04.005 – ident: e_1_2_9_76_1 – ident: e_1_2_9_104_1 doi: 10.1007/PL00013271 – volume: 39 start-page: 163 year: 2011 ident: e_1_2_9_4_1 article-title: Development of a new harvesting module for saffron flower detachment publication-title: Romanian Review Precision Mechanics, Optics and Mechatronics – volume-title: CROPS project deliverable 12.1: Economic viability for each application year: 2011 ident: e_1_2_9_102_1 – ident: e_1_2_9_139_1 doi: 10.1016/j.pmcj.2011.01.004 – start-page: 55 issue: 710 year: 2006 ident: e_1_2_9_129_1 article-title: Greenhouse mechanization: State of the art and future perspective publication-title: Acta Horticulturae doi: 10.17660/ActaHortic.2006.710.3 – ident: e_1_2_9_60_1 doi: 10.1016/j.biosystemseng.2009.09.011 – ident: e_1_2_9_89_1 – volume: 718 start-page: 391 year: 2006 ident: e_1_2_9_130_1 article-title: Toward an optimal control strategy for sweet pepper cultivation—2. Optimization of the yield pattern and energy efficiency publication-title: Acta Horticulturae doi: 10.17660/ActaHortic.2006.718.45 – ident: e_1_2_9_115_1 doi: 10.1006/jaer.1993.1020 – ident: e_1_2_9_121_1 – ident: e_1_2_9_135_1 doi: 10.1108/01439910810893581 – ident: e_1_2_9_53_1 doi: 10.1006/jaer.1999.0524 – ident: e_1_2_9_107_1 doi: 10.1016/j.biosystemseng.2004.10.002 – volume-title: Methodological design; in Dutch: Methodisch ontwerpen year: 2007 ident: e_1_2_9_117_1 – ident: e_1_2_9_2_1 doi: 10.1109/RAAD.2010.5524602 – ident: e_1_2_9_58_1 doi: 10.6090/jarq.45.285 – ident: e_1_2_9_120_1 doi: 10.13031/2013.22033 – ident: e_1_2_9_3_1 doi: 10.1007/978-3-540-30301-5_11 – ident: e_1_2_9_30_1 doi: 10.1007/s10516-009-9075-2 – ident: e_1_2_9_108_1 doi: 10.1016/j.compag.2008.12.006 – ident: e_1_2_9_103_1 doi: 10.1016/0168-1699(93)90058-9 – ident: e_1_2_9_133_1 doi: 10.1016/j.biosystemseng.2003.08.002 – ident: e_1_2_9_134_1 doi: 10.1016/j.biosystemseng.2006.03.005 – ident: e_1_2_9_13_1 doi: 10.2212/spr.2010.3.11 – ident: e_1_2_9_80_1 – ident: e_1_2_9_29_1 doi: 10.13031/2013.23665 – ident: e_1_2_9_101_1 doi: 10.1007/s11119-006-9014-9 – ident: e_1_2_9_21_1 doi: 10.1016/j.postharvbio.2004.02.004 – ident: e_1_2_9_77_1 doi: 10.1109/TSMCC.2009.2023380 |
SSID | ssj0043895 |
Score | 2.582321 |
SecondaryResourceType | review_article |
Snippet | This review article analyzes state‐of‐the‐art and future perspectives for harvesting robots in high‐value crops. The objectives were to characterize the crop... This review article analyzes state-of-the-art and future perspectives for harvesting robots in high-value crops. The objectives were to characterize the crop... |
SourceID | wageningen proquest crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 888 |
SubjectTerms | agricultural robots autonomous robot computer vision Crops cultivation system Cycle time Damage economic-analysis field-test fruit Harvesting Literature reviews mobile robots picking robot Robotics Robots State of the art Success sweet-pepper |
Title | Harvesting Robots for High-value Crops: State-of-the-art Review and Challenges Ahead |
URI | https://api.istex.fr/ark:/67375/WNG-11Q5JG43-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frob.21525 https://www.proquest.com/docview/1614599574 https://www.proquest.com/docview/1629357027 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F455485 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CekkPfZe6TYNaSsnFGz-kyKanZGkSAk3p0tAcAkKy7BwS5GLvkpBTfkJ-Y39JZ-RHuqWF0ott7DHoMSN9I42-AXgnEtSKjFbuqzwPubFpaKqoCLGvtUwzjvZFSwOfjrYPjvnhiThZgQ_DWZiOH2JccCPL8OM1Gbg27dYdaWhTmwklZaUD5hSrRYBoNlJHUVJv4blSxXaITkA-sApFydb459JcdI-a9WoJaK5dok07f8hpGbv6yWfvIZwOxe5iTs4ni7mZFNe_MTr-Z70ewYMelLKdTosew0rpnsD9X6gKn8IpJREiRg53xma1qectQ7jLKEzkx80tUYaXbNrUWArm8Su-rCu8IL7EK-on63YhmHaWTYcMLi3bwcnAPoPjvY9fpwdhn5khLARO8GGJQK-qJDk_3GphhJbaFlYn3MSV1hLHzDKNbCwjrqNcRrGtjOWiQmdMFrFJ0uew6mpXvgCWI25OdWR0QuxqOtNWRlLmZZblVWyMDGBz6CNV9LTllD3jQnWEy4nCBlO-wQJ4O4p-77g6_iT03nf0KKGbcwpuk0J9O9pHh-iLONznqcoDWB80QfV23SrEx5wo2iQP4M34GS2Stlm0K-sFySCEEhL9_QDSOw1SjpJDtYr4vHs9UJeLRrkLuqHxtYojtsuwhJteP_5eBzX7vOsfXv676CtYQ6zHu2OU67A6bxbla8RTc7PhDecnBSUfzw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqdkFZ8EZMW8AgQN1kmoddJwsWZUo7fQ1i1IoukIwdxyxaJSiZ0QArPoEP4Vf4Cb6Ee51HGQQSmy7YJFFyF3buw-f6cS4hT3gIVhHjzL1NEo9pE3na-qkHulYiihn4F04NHI02hyds_5SfLpBv7VmYmh-im3BDz3DxGh0cJ6Q3LlhDy0L3sSpru6XyIPs0g4Ster63Ddp9GoY7L48HQ6-pKeClHIYmLwOIYq1A2M6M4poroUxqVMh0YJUS4O1Z5JtA-Ez5ifADY7Vh3EIaIdJAI80BBPwlrCCOTP3b446sCsuIc8fOyjc9SDuSlsfIDze6ps6NfkuoyI9z0HZ5BlEkd8eq5tGyG-52rpPv7Y-qd7mc9acT3U8__8Yh-b_8yRvkWoO76VbtKDfJQpbfIld_YWO8Td5inSQkHcnf03Ghi0lFAdFT3Anz48tXZEXP6KAsoNvUQXR4WVi4AISGK7ggrRdaqMoNHbRFaiq6BeOduUNOLqV7d8liXuTZPUITSA0i5WsVIoGcipURvhBJFseJDbQWPbLeGoVMG2Z2LBByLmtO6VCCgqRTUI887kQ_1HQkfxJ65iyrk1DlGe7fE1y-Ge1Czvea7--ySCY9staanmxCVyUhBWDIQidYjzzqPkPQwZUklWfFFGUAJXLhh9D26MJkZY71ryqJlOWN4cnZtJT5Od4gvlSSAXyNoYXrziD_3gc5fvXCPaz8u-hDcmV4fHQoD_dGB6tkGaAtq0-NrpHFSTnN7gN8nOgHzmspeXfZxv0TP7h_oA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqVkJlwRsxpYBBgLrJ1EnscbJgUWaYvmCAEVW7QDJ2nHTRKqmSGQ2w4hP4D36Fr-BLuNeZpAwCiU0XbJIouQs79-Fz_TiXkMciAKuIcOY-i2OPGxt6JmOJB7rWMow4-BdODbwa9XYO-N6ROFoi35qzMDU_RDvhhp7h4jU6-JnNNs9JQ8vCdLEoa7Ojcj_9NIN8rXq2OwDlPgmC4Yt3_R1vXlLASwSMTF4KCCXLJKJ2brUwQkttE6sDbvxMawnOnobM-pJxzWLJfJsZy0UGWYRMfIMsBxDvV3iPxVgnYjBuuaqwirhw5Kyi50HWETc0RizYbJu6MPitoB4_LiDb1RkEkdydqloEy260G14l35v_VG9yOelOJ6abfP6NQvI_-ZHXyJU56qZbtZtcJ0tpfoNc_oWL8SZ5j1WSkHIkP6bjwhSTigKep7gP5seXr8iJntJ-WUCvqQPo8LLI4AIAGq7ggLReZqE6t7TflKip6BaMdvYWObiQ7t0my3mRp3cIjSExCDUzOkD6OB1pK5mUcRpFceYbIztko7EJlcx52bE8yKmqGaUDBQpSTkEd8qgVPavJSP4k9NQZViuhyxPcvSeFOhxtQ8b3Vuxt81DFHbLeWJ6aB65KQQLAkYNO8g552H6GkIPrSDpPiynKAEYUkgXQ9vDcYlWO1a8qhYTlc7tTs2mp8lO8QXSpFAfwGkELN5w9_r0Pavz6uXtY-3fRB-TSm8FQvdwd7d8lq4BreX1kdJ0sT8ppeg-w48Tcdz5LyYeLtu2fRH9-Tw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harvesting+Robots+for+High-value+Crops%3A+State-of-the-art+Review+and+Challenges+Ahead&rft.jtitle=Journal+of+field+robotics&rft.au=Bac%2C+C.W&rft.au=Henten%2C+E.%2C+van&rft.au=Hemming%2C+J&rft.au=Edan%2C+Y&rft.date=2014-11-01&rft.issn=1556-4959&rft.eissn=1556-4967&rft.volume=31&rft.issue=6&rft_id=info:doi/10.1002%2Frob.21525&rft.externalDBID=n%2Fa&rft.externalDocID=oai_library_wur_nl_wurpubs_455485 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-4959&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-4959&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-4959&client=summon |