Harvesting Robots for High-value Crops: State-of-the-art Review and Challenges Ahead

This review article analyzes state‐of‐the‐art and future perspectives for harvesting robots in high‐value crops. The objectives were to characterize the crop environment relevant for robotic harvesting, to perform a literature review on the state‐of‐the‐art of harvesting robots using quantitative me...

Full description

Saved in:
Bibliographic Details
Published inJournal of field robotics Vol. 31; no. 6; pp. 888 - 911
Main Authors Bac, C. Wouter, van Henten, Eldert J., Hemming, Jochen, Edan, Yael
Format Journal Article
LanguageEnglish
Published Hoboken Blackwell Publishing Ltd 01.11.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This review article analyzes state‐of‐the‐art and future perspectives for harvesting robots in high‐value crops. The objectives were to characterize the crop environment relevant for robotic harvesting, to perform a literature review on the state‐of‐the‐art of harvesting robots using quantitative measures, and to reflect on the crop environment and literature review to formulate challenges and directions for future research and development. Harvesting robots were reviewed regarding the crop harvested in a production environment, performance indicators, design process techniques used, hardware design decisions, and algorithm characteristics. On average, localization success was 85%, detachment success was 75%, harvest success was 66%, fruit damage was 5%, peduncle damage was 45%, and cycle time was 33 s. A kiwi harvesting robot achieved the shortest cycle time of 1 s. Moreover, the performance of harvesting robots did not improve in the past three decades, and none of these 50 robots was commercialized. Four future challenges with R&D directions were identified to realize a positive trend in performance and to successfully implement harvesting robots in practice: (1) simplifying the task, (2) enhancing the robot, (3) defining requirements and measuring performance, and (4) considering additional requirements for successful implementation. This review article may provide new directions for future automation projects in high‐value crops.
AbstractList This review article analyzes state‐of‐the‐art and future perspectives for harvesting robots in high‐value crops. The objectives were to characterize the crop environment relevant for robotic harvesting, to perform a literature review on the state‐of‐the‐art of harvesting robots using quantitative measures, and to reflect on the crop environment and literature review to formulate challenges and directions for future research and development. Harvesting robots were reviewed regarding the crop harvested in a production environment, performance indicators, design process techniques used, hardware design decisions, and algorithm characteristics. On average, localization success was 85%, detachment success was 75%, harvest success was 66%, fruit damage was 5%, peduncle damage was 45%, and cycle time was 33 s. A kiwi harvesting robot achieved the shortest cycle time of 1 s. Moreover, the performance of harvesting robots did not improve in the past three decades, and none of these 50 robots was commercialized. Four future challenges with R&D directions were identified to realize a positive trend in performance and to successfully implement harvesting robots in practice: (1) simplifying the task, (2) enhancing the robot, (3) defining requirements and measuring performance, and (4) considering additional requirements for successful implementation. This review article may provide new directions for future automation projects in high‐value crops.
Author Hemming, Jochen
Bac, C. Wouter
van Henten, Eldert J.
Edan, Yael
Author_xml – sequence: 1
  givenname: C. Wouter
  surname: Bac
  fullname: Bac, C. Wouter
  email: wouter.bac@wur.nl
  organization: Farm Technology Group & Wageningen UR, Greenhouse Horticulture, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
– sequence: 2
  givenname: Eldert J.
  surname: van Henten
  fullname: van Henten, Eldert J.
  email: eldert.vanhenten@wur.nl
  organization: Farm Technology Group & Wageningen UR, Greenhouse Horticulture, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
– sequence: 3
  givenname: Jochen
  surname: Hemming
  fullname: Hemming, Jochen
  email: jochen.hemming@wur.nl
  organization: Wageningen UR Greenhouse Horticulture, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
– sequence: 4
  givenname: Yael
  surname: Edan
  fullname: Edan, Yael
  email: yael@bgu.ac.il
  organization: Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
BookMark eNp9kcFu1DAQhiNUJNrCgTeIxAUOae3EE296KyvYpaqo2LbiaE3iya6Lay92skvfHi9beqgEp5nD941m5j_KDpx3lGVvOTvhjJWnwbcnJYcSXmSHHKAuRFPLg6cemlfZUYx3jIlq0sBhdjPHsKE4GLfMF771Q8x7H_K5Wa6KDdqR8mnw63iWXw84UOH7YlhRgWHIF7QxtM3R6Xy6QmvJLSnm5ytC_Tp72aON9OaxHme3nz_dTOfF5dXsy_T8suiAT6AgBqLvZc3qWmiEFlCi7jSWouU9otSaqGKaSyaQNZJx3bdaQN9ALTveltVxdrafu8UluXQCOeUwdCYqj0ZZ0wYMD2o7BuXsrqzHNioBICaQ5Pd7eR38zzG9QN2b2JG16MiPUfG6bCqQrJQJffcMvfNjcOm0RHEBTQNSJOrDnuqCjzFQr9bB3O8W4EztwlEpHPUnnMSePmM7kx5svBsCGvs_Y2ssPfx7tFpcffxrFHvDxIF-PRkYfqhaVhLU968zxfk3uJiJSjXVbzGwshY
CitedBy_id crossref_primary_10_1002_rob_22013
crossref_primary_10_29039_2409_6024_2020_8_4_161_165
crossref_primary_10_1002_rob_22377
crossref_primary_10_1016_j_biosystemseng_2015_07_004
crossref_primary_10_1007_s40747_021_00522_7
crossref_primary_10_1038_s41598_021_02581_9
crossref_primary_10_1016_j_compag_2021_106383
crossref_primary_10_1002_rob_21721
crossref_primary_10_1016_j_compag_2020_105694
crossref_primary_10_17660_ActaHortic_2019_1245_2
crossref_primary_10_1016_j_compag_2017_11_040
crossref_primary_10_1109_ACCESS_2019_2910150
crossref_primary_10_7746_jkros_2020_15_2_091
crossref_primary_10_1016_j_atech_2024_100454
crossref_primary_10_1088_1757_899X_997_1_012081
crossref_primary_10_1109_ACCESS_2020_3003034
crossref_primary_10_1002_aisy_202300823
crossref_primary_10_1007_s11370_021_00401_7
crossref_primary_10_3390_applmech3030049
crossref_primary_10_1016_j_biosystemseng_2018_05_003
crossref_primary_10_1016_j_biosystemseng_2016_05_001
crossref_primary_10_1016_j_compag_2020_105216
crossref_primary_10_1016_j_compag_2024_108961
crossref_primary_10_1016_j_compind_2024_104191
crossref_primary_10_3390_app15010317
crossref_primary_10_1002_rob_22494
crossref_primary_10_1016_j_compag_2014_04_011
crossref_primary_10_3390_agriengineering2010010
crossref_primary_10_3390_biomimetics9080495
crossref_primary_10_4081_jae_2024_1594
crossref_primary_10_1016_j_compag_2022_107065
crossref_primary_10_1002_rob_21715
crossref_primary_10_17660_ActaHortic_2024_1395_59
crossref_primary_10_1177_1729881420925310
crossref_primary_10_1007_s00146_018_0846_4
crossref_primary_10_1002_rob_21709
crossref_primary_10_1016_j_eng_2023_10_012
crossref_primary_10_3390_agronomy14122783
crossref_primary_10_1016_j_biosystemseng_2020_07_007
crossref_primary_10_1049_joe_2018_8325
crossref_primary_10_3390_s20195670
crossref_primary_10_1007_s43154_020_00034_1
crossref_primary_10_1016_j_compag_2020_105324
crossref_primary_10_1016_j_compag_2020_105323
crossref_primary_10_2174_1874331501913010101
crossref_primary_10_1007_s10044_024_01222_x
crossref_primary_10_1002_rob_22000
crossref_primary_10_1016_j_biosystemseng_2017_11_006
crossref_primary_10_1002_rob_22232
crossref_primary_10_1108_IR_03_2016_0113
crossref_primary_10_3390_s19061390
crossref_primary_10_1115_1_4063362
crossref_primary_10_1002_jsfa_10447
crossref_primary_10_1016_j_compag_2020_105475
crossref_primary_10_1016_j_compag_2022_107177
crossref_primary_10_1016_j_procs_2024_01_056
crossref_primary_10_1109_TRO_2017_2766265
crossref_primary_10_1002_rob_21706
crossref_primary_10_1016_j_biosystemseng_2016_01_007
crossref_primary_10_1016_j_compag_2024_109039
crossref_primary_10_3390_agronomy14050964
crossref_primary_10_1016_j_compag_2020_105911
crossref_primary_10_1111_1745_5871_12261
crossref_primary_10_1007_s11119_017_9538_1
crossref_primary_10_35633_inmateh_61_17
crossref_primary_10_1002_rob_22347
crossref_primary_10_1016_j_biosystemseng_2019_04_006
crossref_primary_10_1002_rob_22106
crossref_primary_10_1177_1729881418759424
crossref_primary_10_3389_fmtec_2023_1282843
crossref_primary_10_3390_ijerph18136705
crossref_primary_10_3390_s22228632
crossref_primary_10_1002_rob_21937
crossref_primary_10_1007_s43154_020_00018_1
crossref_primary_10_3389_fsci_2024_1411259
crossref_primary_10_3390_agriculture11090815
crossref_primary_10_1016_j_compag_2022_106879
crossref_primary_10_1016_j_jterra_2020_06_006
crossref_primary_10_1016_j_compag_2020_105900
crossref_primary_10_1177_00197939221076747
crossref_primary_10_1016_j_compag_2024_108735
crossref_primary_10_1007_s42235_022_00202_3
crossref_primary_10_1016_j_compag_2022_106984
crossref_primary_10_1016_j_robot_2024_104854
crossref_primary_10_1016_j_compag_2024_108926
crossref_primary_10_1109_MRA_2023_3309098
crossref_primary_10_3390_s16081222
crossref_primary_10_1007_s10846_022_01793_z
crossref_primary_10_1016_j_compag_2022_106860
crossref_primary_10_3390_s23020752
crossref_primary_10_1016_j_compag_2022_107274
crossref_primary_10_3389_fpls_2020_571299
crossref_primary_10_1016_j_biosystemseng_2018_06_002
crossref_primary_10_1007_s11119_023_10074_0
crossref_primary_10_2139_ssrn_3979438
crossref_primary_10_1007_s13218_023_00826_5
crossref_primary_10_1016_j_compag_2025_110046
crossref_primary_10_1038_s44172_023_00089_w
crossref_primary_10_1049_tje2_12419
crossref_primary_10_2139_ssrn_3985202
crossref_primary_10_1016_j_compag_2020_105378
crossref_primary_10_1016_j_compag_2022_106747
crossref_primary_10_3389_fpls_2019_00611
crossref_primary_10_1038_s43016_021_00402_w
crossref_primary_10_1111_gcb_13986
crossref_primary_10_3390_agriculture14040624
crossref_primary_10_1016_j_ifacol_2016_10_028
crossref_primary_10_1002_rob_22323
crossref_primary_10_1016_j_robot_2020_103591
crossref_primary_10_3390_agronomy11061210
crossref_primary_10_1109_TRO_2016_2603528
crossref_primary_10_1002_rob_22207
crossref_primary_10_1016_j_scitotenv_2018_01_142
crossref_primary_10_1016_j_compag_2018_05_022
crossref_primary_10_1002_rob_21917
crossref_primary_10_1109_ACCESS_2019_2937326
crossref_primary_10_3389_fpls_2022_879182
crossref_primary_10_3390_machines10090817
crossref_primary_10_1007_s10514_017_9626_0
crossref_primary_10_1016_j_biosystemseng_2015_12_004
crossref_primary_10_3390_agriculture14111985
crossref_primary_10_3390_s16050618
crossref_primary_10_1016_j_jrurstud_2021_12_012
crossref_primary_10_1142_S0219843623500123
crossref_primary_10_1016_j_compag_2019_01_015
crossref_primary_10_1016_j_ifacol_2019_12_507
crossref_primary_10_3390_agronomy11040646
crossref_primary_10_1016_j_biosystemseng_2016_02_004
crossref_primary_10_1109_ACCESS_2023_3349093
crossref_primary_10_1109_ACCESS_2022_3190863
crossref_primary_10_1016_j_tifs_2024_104705
crossref_primary_10_1016_j_dib_2020_105591
crossref_primary_10_1016_j_biosystemseng_2015_12_016
crossref_primary_10_3390_agriengineering6030166
crossref_primary_10_3390_agronomy12071594
crossref_primary_10_1109_TMECH_2017_2735861
crossref_primary_10_1177_17298806221104906
crossref_primary_10_1007_s11119_019_09654_w
crossref_primary_10_1007_s11119_021_09806_x
crossref_primary_10_1007_s10846_018_0892_7
crossref_primary_10_7746_jkros_2020_15_2_107
crossref_primary_10_3390_agriculture14060903
crossref_primary_10_3390_app12094414
crossref_primary_10_1186_s13634_021_00734_6
crossref_primary_10_1016_j_compag_2016_06_022
crossref_primary_10_1016_j_compag_2019_06_001
crossref_primary_10_1016_j_scienta_2019_108937
crossref_primary_10_1016_j_compind_2018_03_023
crossref_primary_10_1016_j_biosystemseng_2018_12_005
crossref_primary_10_1016_j_compag_2020_105380
crossref_primary_10_1016_j_compag_2025_110077
crossref_primary_10_1016_j_biosystemseng_2019_08_017
crossref_primary_10_3390_agronomy12112836
crossref_primary_10_1016_j_atech_2024_100491
crossref_primary_10_1016_j_biosystemseng_2019_03_007
crossref_primary_10_1016_j_compag_2024_109586
crossref_primary_10_3390_agronomy12020356
crossref_primary_10_1016_j_biosystemseng_2023_11_003
crossref_primary_10_29130_dubited_1075572
crossref_primary_10_1016_j_compag_2017_12_001
crossref_primary_10_17660_ActaHortic_2017_1154_19
crossref_primary_10_3390_agronomy14081764
crossref_primary_10_3390_s19020428
crossref_primary_10_1088_1748_3190_acb51f
crossref_primary_10_3390_agriculture15040407
crossref_primary_10_3390_agriengineering5020048
crossref_primary_10_1016_j_arcontrol_2021_01_001
crossref_primary_10_1007_s12541_023_00911_7
crossref_primary_10_3390_app12052507
crossref_primary_10_1016_j_compag_2022_107590
crossref_primary_10_1109_LRA_2016_2523553
crossref_primary_10_3390_su15097331
crossref_primary_10_54097_hset_v71i_12379
crossref_primary_10_1016_j_compag_2020_105736
crossref_primary_10_3390_atmos11090898
crossref_primary_10_1002_rob_21680
crossref_primary_10_1016_j_dib_2021_107629
crossref_primary_10_1002_rob_22521
crossref_primary_10_1016_j_biosystemseng_2018_07_015
crossref_primary_10_1109_LRA_2017_2655622
crossref_primary_10_3390_agronomy13051351
crossref_primary_10_3390_robotics12060166
crossref_primary_10_15406_iratj_2020_06_00196
crossref_primary_10_5010_JPB_2023_50_018_142
crossref_primary_10_1002_rob_21679
crossref_primary_10_1088_2631_8695_ad5cd2
crossref_primary_10_3390_agronomy13122873
crossref_primary_10_1109_ACCESS_2020_2984556
crossref_primary_10_31992_0321_4443_2020_6_78_90
crossref_primary_10_1016_j_compag_2025_110131
crossref_primary_10_32604_cmc_2023_046876
crossref_primary_10_3390_agronomy12071520
crossref_primary_10_1016_j_compag_2019_105165
crossref_primary_10_1016_j_compag_2020_105606
crossref_primary_10_1590_0100_29452021096
crossref_primary_10_3390_s20010093
crossref_primary_10_1080_23311916_2024_2403706
crossref_primary_10_1146_annurev_control_053018_023617
crossref_primary_10_1016_j_compag_2023_107641
crossref_primary_10_1016_j_compag_2018_06_036
crossref_primary_10_1016_j_compag_2022_107336
crossref_primary_10_1016_j_compag_2023_107979
crossref_primary_10_1155_2021_5516368
crossref_primary_10_1007_s11119_022_09913_3
crossref_primary_10_1007_s42835_023_01596_8
crossref_primary_10_1109_LRA_2017_2651952
crossref_primary_10_1088_1742_6596_2246_1_012060
crossref_primary_10_1109_ACCESS_2021_3052240
crossref_primary_10_1016_j_compag_2021_106562
crossref_primary_10_1155_2017_6716820
crossref_primary_10_3390_horticulturae11010088
crossref_primary_10_1007_s11119_021_09856_1
crossref_primary_10_1016_j_ifacol_2016_10_053
crossref_primary_10_3389_fpls_2022_765523
crossref_primary_10_17660_ActaHortic_2016_1130_85
crossref_primary_10_1016_j_techfore_2024_123842
crossref_primary_10_1016_j_biosystemseng_2020_01_021
crossref_primary_10_3390_agriculture14122280
crossref_primary_10_1016_j_biosystemseng_2024_08_002
crossref_primary_10_1007_s12374_022_09370_5
crossref_primary_10_1016_j_compag_2023_108023
crossref_primary_10_1016_j_compag_2024_109314
crossref_primary_10_1002_rob_22194
crossref_primary_10_1016_j_inpa_2021_02_001
crossref_primary_10_1016_j_ifacol_2019_12_536
crossref_primary_10_1007_s11119_020_09757_9
crossref_primary_10_1016_j_compag_2023_107628
crossref_primary_10_1016_j_compind_2020_103274
crossref_primary_10_3182_20130828_2_SF_3019_00070
crossref_primary_10_3390_info16020100
crossref_primary_10_3390_act12060253
crossref_primary_10_3390_agriculture10070276
crossref_primary_10_1016_j_biosystemseng_2021_03_012
crossref_primary_10_20965_ijat_2017_p0415
crossref_primary_10_1016_j_compag_2016_07_024
crossref_primary_10_3390_agriengineering6040218
crossref_primary_10_1007_s10845_023_02201_5
crossref_primary_10_1109_ACCESS_2019_2955566
crossref_primary_10_1016_j_biosystemseng_2023_06_003
crossref_primary_10_1007_s10462_023_10674_2
crossref_primary_10_1186_s13007_023_01066_2
crossref_primary_10_1155_2021_5584754
crossref_primary_10_1016_j_ifacol_2016_10_051
crossref_primary_10_1016_j_compag_2023_108035
crossref_primary_10_3390_robotics7010011
crossref_primary_10_1017_S0263574719000481
crossref_primary_10_1016_j_compag_2025_109968
crossref_primary_10_1017_S2040470017001236
crossref_primary_10_1002_rob_21890
crossref_primary_10_1002_rob_22178
crossref_primary_10_1016_j_compag_2020_105894
crossref_primary_10_1109_ACCESS_2024_3522349
crossref_primary_10_1016_j_compag_2022_107430
crossref_primary_10_1515_auto_2020_0044
crossref_primary_10_1002_rob_21888
crossref_primary_10_3390_agriculture14081346
crossref_primary_10_1109_TAFE_2024_3379190
crossref_primary_10_3390_agriculture14122257
crossref_primary_10_1109_MRA_2023_3315934
crossref_primary_10_5772_acrt_20240030
crossref_primary_10_1108_IR_12_2019_0255
crossref_primary_10_3390_agronomy11091818
crossref_primary_10_1016_j_measurement_2024_115484
crossref_primary_10_1088_1748_3190_ad2084
crossref_primary_10_1016_j_compag_2023_107724
crossref_primary_10_1016_j_compag_2022_107541
crossref_primary_10_1016_j_apergo_2017_03_008
crossref_primary_10_1016_j_robot_2019_01_019
crossref_primary_10_3390_math10142540
crossref_primary_10_1016_j_compag_2020_105760
crossref_primary_10_1016_j_compag_2021_106353
crossref_primary_10_1002_rob_21877
crossref_primary_10_1002_rob_21998
crossref_primary_10_1007_s10846_017_0770_8
crossref_primary_10_1109_ACCESS_2020_3005386
crossref_primary_10_3390_robotics4020194
crossref_primary_10_3390_pr9111905
crossref_primary_10_3390_robotics10030094
crossref_primary_10_1089_rorep_2023_0016
crossref_primary_10_17660_ActaHortic_2020_1296_124
crossref_primary_10_3390_horticulturae10121268
crossref_primary_10_1016_j_jclepro_2025_145301
crossref_primary_10_3390_act8040076
crossref_primary_10_3390_s16071018
crossref_primary_10_1016_j_compag_2024_108750
crossref_primary_10_3390_robotics10020052
crossref_primary_10_3390_jimaging3010009
crossref_primary_10_7717_peerj_cs_1463
crossref_primary_10_3390_agronomy10050743
crossref_primary_10_1111_plb_12914
crossref_primary_10_1016_j_biosystemseng_2024_04_017
crossref_primary_10_1002_rob_22043
crossref_primary_10_3390_s21103569
crossref_primary_10_1109_LRA_2021_3061377
crossref_primary_10_1109_ACCESS_2021_3053490
crossref_primary_10_1016_j_atech_2024_100638
crossref_primary_10_35633_inmateh_59_23
crossref_primary_10_1002_rob_21861
crossref_primary_10_1186_s13662_020_03158_y
crossref_primary_10_33889_IJMEMS_2023_8_4_041
crossref_primary_10_1016_j_biosystemseng_2018_04_017
crossref_primary_10_1016_j_compag_2022_107410
crossref_primary_10_1016_j_sciaf_2023_e01798
crossref_primary_10_1002_rob_21987
crossref_primary_10_1016_j_inpa_2019_05_004
crossref_primary_10_1007_s10514_017_9693_2
crossref_primary_10_1016_j_ifacol_2018_08_200
crossref_primary_10_1016_j_atech_2022_100043
crossref_primary_10_3390_s19092130
crossref_primary_10_1016_j_compag_2024_109517
crossref_primary_10_3390_plants13223197
crossref_primary_10_1002_rob_22146
crossref_primary_10_1002_rob_22268
crossref_primary_10_1177_09544062221128443
crossref_primary_10_1002_rob_21730
crossref_primary_10_1016_j_compag_2021_106010
crossref_primary_10_1002_rob_21973
crossref_primary_10_16924_revinge_47_4
crossref_primary_10_3390_su15086769
crossref_primary_10_1002_rob_21738
crossref_primary_10_1007_s11119_021_09846_3
crossref_primary_10_3390_s21113933
crossref_primary_10_1016_j_compag_2016_03_007
crossref_primary_10_1016_j_jrurstud_2022_09_016
crossref_primary_10_1016_j_sna_2024_115380
crossref_primary_10_3390_s19051176
crossref_primary_10_3390_machines8020027
crossref_primary_10_1007_s10489_023_04742_x
crossref_primary_10_1016_j_compag_2023_108353
crossref_primary_10_1080_01969722_2021_2008678
crossref_primary_10_3390_app10175887
crossref_primary_10_1016_j_biosystemseng_2016_11_004
crossref_primary_10_1016_j_dte_2024_100032
crossref_primary_10_1109_LRA_2022_3143894
crossref_primary_10_1016_j_compag_2020_105302
crossref_primary_10_3390_s20133783
crossref_primary_10_1016_j_compag_2023_107943
crossref_primary_10_1109_LRA_2018_2855043
crossref_primary_10_1109_TMECH_2017_2760866
Cites_doi 10.1109/70.897793
10.1007/978-3-540-75404-6_51
10.1023/A:1020568125418
10.5307/JBE.2012.37.1.065
10.1108/01439919810232440
10.1109/5.5968
10.1016/j.compag.2014.01.003
10.1002/rob.20295
10.1023/A:1015626121039
10.1108/01439910310492194
10.1109/JPROC.2010.2050411
10.13031/2013.31750
10.21273/HORTTECH.15.1.0076
10.13031/2013.31943
10.1016/j.compag.2013.10.005
10.1109/AIM.2003.1225538
10.1016/j.biosystemseng.2006.07.004
10.1016/j.proeng.2011.11.2514
10.1016/j.compag.2013.05.004
10.17660/ActaHortic.2006.718.42
10.13031/2013.22286
10.1142/S0218213012500236
10.1016/j.compag.2008.01.015
10.1002/rob.20131
10.1109/AIM.2009.5229897
10.1016/0273-1177(95)00807-Q
10.1016/j.compag.2008.11.004
10.1016/S0168-1699(96)00033-6
10.1504/IJCVR.2012.046419
10.1109/ICICTA.2008.138
10.1108/01439910510582255
10.1016/j.postharvbio.2004.05.002
10.21273/HORTTECH.15.1.0079
10.13031/2013.31671
10.1109/ICIT.2009.4939556
10.13031/2013.26324
10.3182/20110828-6-IT-1002.02683
10.13031/2013.27744
10.5367/000000009788632386
10.1177/0278364906060480
10.1007/978-3-540-78831-7
10.1109/ICICTA.2011.302
10.1016/j.compag.2008.01.018
10.1017/S0263574700000308
10.1016/j.scienta.2012.02.002
10.1006/jaer.2000.0629
10.25165/j.ijabe.20191203.4310
10.1007/BF00872782
10.3390/s120912405
10.1109/CSAE.2012.6272606
10.1007/s001380050117
10.1007/s10514-008-9090-y
10.1109/MRA.2007.339624
10.13031/2013.28377
10.17660/ActaHortic.2005.691.110
10.1016/S0021-8634(05)80131-3
10.1109/ICMA.2005.1626834
10.6090/jarq.36.163
10.13031/2013.26105
10.1038/nrg2897
10.1002/9780470172506.ch32
10.1109/21.299707
10.1007/s11119-009-9138-9
10.1016/j.biosystemseng.2011.07.005
10.1080/00288230709510373
10.1016/0957-4158(94)90004-3
10.13031/2013.30697
10.1016/j.robot.2012.03.002
10.1016/j.robot.2011.02.011
10.20965/jrm.1999.p0208
10.2212/spr.2010.3.12
10.1006/jaer.1993.1035
10.13031/2013.3096
10.1080/03003930701770405
10.1016/j.biosystemseng.2013.04.005
10.1007/PL00013271
10.1016/j.pmcj.2011.01.004
10.17660/ActaHortic.2006.710.3
10.1016/j.biosystemseng.2009.09.011
10.17660/ActaHortic.2006.718.45
10.1006/jaer.1993.1020
10.1108/01439910810893581
10.1006/jaer.1999.0524
10.1016/j.biosystemseng.2004.10.002
10.1109/RAAD.2010.5524602
10.6090/jarq.45.285
10.13031/2013.22033
10.1007/978-3-540-30301-5_11
10.1007/s10516-009-9075-2
10.1016/j.compag.2008.12.006
10.1016/0168-1699(93)90058-9
10.1016/j.biosystemseng.2003.08.002
10.1016/j.biosystemseng.2006.03.005
10.2212/spr.2010.3.11
10.13031/2013.23665
10.1007/s11119-006-9014-9
10.1016/j.postharvbio.2004.02.004
10.1109/TSMCC.2009.2023380
ContentType Journal Article
Copyright 2014 Wiley Periodicals, Inc.
Copyright © 2014 Wiley Periodicals, Inc.
Wageningen University & Research
Copyright_xml – notice: 2014 Wiley Periodicals, Inc.
– notice: Copyright © 2014 Wiley Periodicals, Inc.
– notice: Wageningen University & Research
DBID BSCLL
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
QVL
DOI 10.1002/rob.21525
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
NARCIS:Publications
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Technology Research Database
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1556-4967
EndPage 911
ExternalDocumentID oai_library_wur_nl_wurpubs_455485
3467289051
10_1002_rob_21525
ROB21525
ark_67375_WNG_11Q5JG43_9
Genre article
GrantInformation_xml – fundername: Helmsley Charitable Trust, and the Rabbi W. Gunther Plaut Chair in Manufacturing Engineering
– fundername: Ben‐Gurion University of the Negev, Agricultural, Biological and Cognitive Robotics Center
– fundername: European Commission in the 7th Framework Programme
  funderid: 246252
– fundername: Dutch horticultural product board
  funderid: 14555
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
FEDTE
G-S
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
I-F
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
~02
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADMLS
AGHNM
AGQPQ
AGYGG
CITATION
1OB
7SC
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
JQ2
L7M
L~C
L~D
ABHUG
ABWRO
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
BFHJK
PQEST
QVL
ID FETCH-LOGICAL-c5185-e054ff760664da5b5a7adcda24b1faa7ddee30d1704a09701dfbd45f9567c1b23
IEDL.DBID DR2
ISSN 1556-4959
IngestDate Thu Oct 13 09:30:09 EDT 2022
Fri Jul 11 03:03:01 EDT 2025
Wed Aug 13 08:48:14 EDT 2025
Thu Apr 24 22:51:09 EDT 2025
Tue Jul 01 05:08:49 EDT 2025
Wed Jan 22 16:29:53 EST 2025
Wed Oct 30 09:54:52 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5185-e054ff760664da5b5a7adcda24b1faa7ddee30d1704a09701dfbd45f9567c1b23
Notes Helmsley Charitable Trust, and the Rabbi W. Gunther Plaut Chair in Manufacturing Engineering
istex:F102C5E7B03F380E56C29DE38097BAB06C56B38C
ark:/67375/WNG-11Q5JG43-9
Dutch horticultural product board - No. 14555
European Commission in the 7th Framework Programme - No. 246252
ArticleID:ROB21525
Ben-Gurion University of the Negev, Agricultural, Biological and Cognitive Robotics Center
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2694-8732
PQID 1614599574
PQPubID 1006410
PageCount 24
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_455485
proquest_miscellaneous_1629357027
proquest_journals_1614599574
crossref_primary_10_1002_rob_21525
crossref_citationtrail_10_1002_rob_21525
wiley_primary_10_1002_rob_21525_ROB21525
istex_primary_ark_67375_WNG_11Q5JG43_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November/December 2014
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: November/December 2014
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of field robotics
PublicationTitleAlternate J. Field Robotics
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Mehta, S. S., & Burks, T. F. (2014). Vision-based control of robotic manipulator for citrus harvesting. Computers and Electronics in Agriculture, 102(0), 146-158.
Li, B., Vigneault, C., & Wang, N. (2010). Research development of fruit and vegetable harvesting robots in China. Stewart Postharvest Review, 6(3), 1-8.
Thrun, S., Burgard, W., & Fox, D. (2006). Probabilistic robotics. Cambridge, MA: MIT Press.
Plebe, A., & Grasso, G. (2001). Localization of spherical fruits for robotic harvesting. Machine Vision and Applications, 13(2), 70-79.
Toussaint, K., Pouliot, N., & Montambault, S. (2009). Transmission line maintenance robots capable of crossing obstacles: State-of-the-art review and challenges ahead. Journal of Field Robotics, 26(5), 477-499.
Angeles, J., Park, F. C., Siciliano, B., & Khatib, O. (2008). Performance evaluation and design criteria. Springer handbook of robotics, B. Siciliano & O. Khatib (eds.) (chap. 10, pp. 229-244). Berlin-Heidelberg: Springer.
Buemi, F., Massa, M., Sandini, G., & Costi, G. (1996). The AGROBOT project. Advances in Space Research, 18(1-2), 185-189.
Ye, J., Dobson, S., & McKeever, S. (2012). Situation identification techniques in pervasive computing: A review. Pervasive and Mobile Computing, 8(1), 36-66.
Tanigaki, K., Fujiura, T., Akase, A., & Imagawa, J. (2008). Cherry-harvesting robot. Computers and Electronics in Agriculture, 63(1), 65-72.
Tillett, N. D. (1993). Robotic manipulators in horticulture: A review. Journal of Agricultural Engineering Research, 55(2), 89-105.
Han, K.-S., Kim, S.-C., Lee, Y.-B., Kim, S.-C., Im, D.-H., Choi, H.-K., & Hwang, H. (2012). Strawberry harvesting robot for bench-type cultivation. Journal of Biosystems Engineering, 37(1), 65-74.
Hagras, H., Colley, M., Callaghan, V., & Carr-West, M. (2002). Online learning and adaptation of autonomous mobile robots for sustainable agriculture. Autonomous Robots, 13(1), 37-52.
Lu, Z., Augusto, J., Liu, J., Wang, H., & Aztiria, A. (2012). A system to reason about uncertain and dynamic environments. International Journal on Artificial Intelligence Tools, 21(5), 1-36.
Jovicich, E., Cnatliffe, D. J., Sargent, S. A., & Osborne, L. S. (2004). Production of greenhouse-grown peppers in Florida (No. HS979). Gainesville, FL: University of Florida, IFAS Extension.
Grift, T. E., Zhang, Q., Kondo, N., & Ting, K. C. (2008). A review of automation and robotics for the bio-industry. Journal of Biomechatronics Engineering, 1(1), 37-54.
Lee, B. S. H., & Rosa, U. A. (2006). Development of a canopy volume reduction technique for easy assessment and harvesting of valencia citrus fruits. Transactions of the ASABE, 49(6), 1695-1703.
Humburg, D. S., & Reid, J. F. (1991). Field performance of machine vision for the selective harvest of asparagus. SAE (Society of Automotive Engineers) Transactions, 100(2), 81-92.
Van Henten, E. J., Hemming, J., Van Tuijl, B. A. J., Kornet, J. G., Meuleman, J., Bontsema, J., & van Os, E. A. (2002). An autonomous robot for harvesting cucumbers in greenhouses. Autonomous Robots, 13(3), 241-258.
Clary, C. D., Ball, T., Ward, E., Fuchs, S., Durfey, J. E., Cavalieri, R. P., & Folwell, R. J. (2007). Performance and economic analysis of a selective asparagus harvester. Applied Engineering in Agriculture, 23(5), 571-577.
Siers, F. J. (2007). Methodological design; in Dutch: Methodisch ontwerpen. Groningen, The Netherlands: Wolters-Noordhoff.
Houle, D., Govindaraju, D. R., & Omholt, S. (2010). Phenomics: The next challenge. Nature Reviews Genetics, 11(12), 855-866.
Yao, B. Z., Yang, X., Liang, L., Mun Wai, L., & Song-Chun, Z. (2010). I2T: Image parsing to text description. Proceedings of the IEEE, 98(8), 1485-1508.
Glancey, J. L., & Kee, W. E. (2005). Engineering aspects of production and harvest mechanization for fresh and processed vegetables. HortTechnology, 15(1), 76-79.
Arndt, G., Rudziejewski, R., & Stewart, V. A. (1997). On the future of automated selective asparagus harvesting technology. Computers and Electronics in Agriculture, 16, 137-145.
Qiao, J., Sasao, A., Shibusawa, S., Kondo, N., & Morimoto, E. (2005). Mapping yield and quality using the mobile fruit grading robot. Biosystems Engineering, 90(2), 135-142.
Bechar, A. (2010). Robotics in horticultural field production. Stewart Postharvest Review, 6(3), 1-11.
Jukema, G., & Van de Meer, R. (2009). Labor costs in arable farming and greenhouse horticulture; in Dutch: Arbeidskosten in de akkerbouw en glastuinbouw. The Hague, The Netherlands: Landbouw Economisch Instituur (LEI).
Vermeulen, M. M. A., & Wisse, M. (2008). Maximum allowable manipulator mass based on cycle time, impact safety and pinching safety. Industrial Robot, 35(5), 410-420.
Reed, J. N., Miles, S. J., Butler, J., Baldwin, M., & Noble, R. (2001). Automatic mushroom harvester development. Journal of Agricultural Engineering Research, 78(1), 15-23.
Edan, Y., Flash, T., Shmulevich, I., Sarig, Y., & Peiper, U. M. (1990). An algorithm defining the motions of a citrus picking robot. Journal of Agricultural Engineering Research, 46(C), 259-273.
Jiménez, A. R., Ceres, R., & Pons, J. L. (2000b). A vision system based on a laser range-finder applied to robotic fruit harvesting. Machine Vision and Applications, 11(6), 321-329.
Harrell, R. (1987). Economic analysis of robotic citrus harvesting in Florida. Transactions of the American Society of Agricultural Engineers, 30(2), 298-304.
Kondo, N., Nishitsuji, Y., Ling, P. P., & Ting, K. C. (1996). Visual feedback guided robotic cherry tomato harvesting. Transactions of the ASAE, 39(6), 2331-2338.
LEI, & CBS. (2009). Statistics of agriculture and horticulture in the Netherlands; in Dutch: Land- en tuinbouwcijfers 2009 (LEI-Report No. 2009-069). The Netherlands: The Hague.
Guo, F., Cao, Q., & Masateru, N. (2008). Fruit detachment and classification method for strawberry harvesting robot. International Journal of Advanced Robotic Systems, 5(1), 41-48.
Wan Ishak, W. I., Kit, W. H., & Awal, M. A. (2010). Design and development of eggplant harvester for gantry system. Pertanika Journal of Science and Technology, 18(2), 231-242.
Buwalda, F., Van Henten, E. J., De Gelder, A., Bontsema, J., & Hemming, J. (2006). Toward an optimal control strategy for sweet pepper cultivation-1. A dynamic crop model, Acta Horticulturae (Vol. 718, pp. 367-374).
Kapach, K., Barnea, E., Mairon, R., Edan, Y., & Ben-Shahar, O. (2012). Computer vision for fruit harvesting robots-State of the art and challenges ahead. International Journal of Computational Vision and Robotics, 3(1/2), 4-34.
Belta, C., Bicchi, A., Egerstedt, M., Frazzoli, E., Klavins, E., & Pappas, G. J. (2007). Symbolic planning and control of robot motion [grand challenges of robotics]. Robotics & Automation Magazine, IEEE, 14(1), 61-70.
Jiménez, A. R., Ceres, R., & Pons, J. L. (2000a). A survey of computer vision methods for locating fruit on trees. Transactions of the American Society of Agricultural Engineers, 43(6), 1911-1920.
Armada, M. A., Sanfeliu, A., Ferre, M., Fernández, R., Salinas, C., Montes, H., Sarria, J., & Armada, M. (2014). Validation of a multisensory system for fruit harvesting robots in lab conditions, ROBOT2013: First Iberian Robotics Conference (Vol. 252, pp. 495-504). Springer International Publishing.
Halachmi, I., Metz, J. H. M., Maltz, E., Dijkhuizen, A. A., & Speelman, L. (2000). Designing the optimal robotic milking barn, part 1: Quantifying facility usage. Journal of Agricultural Engineering Research, 76(1), 37-49.
Reina, G., & Milella, A. (2012). Towards autonomous agriculture: Automatic ground detection using trinocular stereovision. Sensors, 12(9), 12405-12423.
Plá, F., Juste, F., & Ferri, F. (1993). Feature extraction of spherical objects in image analysis: An application to robotic citrus harvesting. Computers and Electronics in Agriculture, 8, 57-72.
Van Henten, E. J., Van't Slot, D. A., Hol, C. W. J., & Van Willigenburg, L. G. (2009). Optimal manipulator design for a cucumber harvesting robot. Computers and Electronics in Agriculture, 65(2), 247-257.
Edan, Y. & Miles, G. E. (1993). Design of an agricultural robot for harvesting melons. Transactions of the ASAE, 36(2), 593-603.
Reed, J. N., & Tillet, R. D. (1994). Initial experiments in robotic mushroom harvesting. Mechatronics, 4(3), 265-279.
Sarig, Y. (1993). Robotics of fruit harvesting: A state-of-the-art review. Journal of Agricultural Engineering Research, 54(4), 265-280.
Hiremath, S. A., van der Heijden, G. W. A. M., van Evert, F. K., Stein, A., & Ter Braak, C. J. F. (2014). Laser range finder model for autonomous navigation of a robot in a maize field using a particle filter. Computers and Electronics in Agriculture, 100, 41-50.
Edan, Y. (1995). Design of an autonomous agricultural robot. Applied Intelligence, 5(1), 41-50.
Li, M., Imou, K., Wakabayashi, K., & Yokoyama, S. (2009). Review of research on agricultural vehicle autonomous guidance. International Journal of Agricultural and Biological Engineering, 2(3), 1-16.
Baeten, J., Donné, K., Boedrij, S., Beckers, W., & Claesen, E. (2008). Autonomous fruit picking machine: A robotic apple harvester. Springer Tracts in Advanced Robotics, 42, 531-539.
Reina, G., Milella, A., & Underwood, J. (2012). Self-learning classification of radar features for scene understanding. Robotics and Autonomous Systems, 60(11), 1377-1388.
Hayashi, S., Shigematsu, K., Yamamoto, S., Kobayashi, K., Kohno, Y., Kamata, J., & Kurita, M. (2010). Evaluation of a strawberry-harvesting robot in a field test. Biosystems Engineering, 105(2), 160-171.
Bac, C. W., Hemming, J., & Van Henten, E. J. (2013). Robust pixel-based classification of obstacles for robotic harvesting of sweet-pepper. Computers and Electronics in Agriculture, 96, 148-162.
Belforte, G., Deboli, R., Gay, P., Piccarolo, P., & Ricauda Aimonino, D. (2006). Robot design and testing for greenhouse applications. Biosystems Engineering, 95(3), 309-321.
Arima, S., & Kondo, N. (1999). Cucumber harvesting robot and plant training system. Journal of Robotics and Mechatronics, 11(3), 208-212.
Van 't Ooster
2010; 11
2010; 98
2005; 691
1987; 30
2010; 105
2010; 18
2002; 13
1988; 76
2008; 34
2008; 35
2011; 59
2012; 12
2014; 252
2011; 110
2004; 33
1993; 36
1992; 8
2010; 20
1990; 46
2000; 16
1991; 100
2006; 23
2006; 25
2004; 34
1987
2008; 25
1984
1983
2012; 138
2014; 120
2012; 21
2010; 6
2009; 66
1996; 18
2011; 2
2009; 65
1989; 65
2005; 90
1996
1995
1993
1992
1991
2012; 37
1995; 2
2003; 30
1995; 3
2007; 14
1995; 5
2000; 76
2006; 49
1993; 55
1993; 54
2005; 4
2008; 42
2005; 15
1990; 8
2000a; 43
1993; 8
2012; 60
1996; 39
1994; 24
2008; 5
1988; 31
2008; 1
2011; 18
2000b; 11
2013; 96
2003; 2
1999; 11
1997; 16
2005; 32
2011; 23
2008; 63
2001; 13
2007; 23
2003; 86
2006; 718
2009; 25
2002; 36
2006; 94
2006; 95
2012
1991; 34
2011
2010
2009
2006; 7
2008
2007
2006
2005
2007; 50
2004
2011; 39
2009; 26
1998; 25
2012; 3
2012; 1
2011; 45
2009; 6
2014
2013
2014; 100
2009; 2
2001; 78
2009; 38
1994; 4
2012; 8
2009; 39
2014; 102
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
Glancey J. L. (e_1_2_9_46_1) 2005; 15
LEI, & CBS (e_1_2_9_79_1) 2009
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_107_1
e_1_2_9_122_1
Jukema G. (e_1_2_9_70_1) 2009
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_1
Pedersen S. M. (e_1_2_9_100_1) 2008
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
Armada M. A. (e_1_2_9_6_1) 2014
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_2_1
Hayashi S. (e_1_2_9_57_1) 2002; 36
Humburg D. S. (e_1_2_9_63_1) 1991; 100
e_1_2_9_138_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_115_1
e_1_2_9_49_1
CCC (e_1_2_9_26_1) 2009
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_95_1
e_1_2_9_76_1
Thrun S. (e_1_2_9_124_1) 2006
e_1_2_9_91_1
e_1_2_9_106_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
Antonelli M. G. (e_1_2_9_4_1) 2011; 39
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_84_1
Li B. (e_1_2_9_81_1) 2010; 6
e_1_2_9_23_1
Guo F. (e_1_2_9_51_1) 2008; 5
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_118_1
e_1_2_9_133_1
Van Henten E. J. (e_1_2_9_130_1) 2006; 718
e_1_2_9_9_1
Pekkeriet E. J. (e_1_2_9_102_1) 2011
e_1_2_9_27_1
e_1_2_9_110_1
e_1_2_9_31_1
e_1_2_9_73_1
e_1_2_9_35_1
Jovicich E. (e_1_2_9_69_1) 2004
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
Noordam J. C. (e_1_2_9_99_1) 2005; 691
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_128_1
e_1_2_9_105_1
e_1_2_9_39_1
e_1_2_9_120_1
e_1_2_9_16_1
e_1_2_9_58_1
Siers F. J. (e_1_2_9_117_1) 2007
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
Namikawa K. (e_1_2_9_94_1) 1989; 65
Wan Ishak W. I. (e_1_2_9_136_1) 2010; 18
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_28_1
e_1_2_9_47_1
Saeys W. (e_1_2_9_113_1) 2012
e_1_2_9_132_1
e_1_2_9_74_1
Cross N. (e_1_2_9_32_1) 2008
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_127_1
Grift T. E. (e_1_2_9_50_1) 2008; 1
Van Henten E. J. (e_1_2_9_129_1) 2006
e_1_2_9_123_1
e_1_2_9_104_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_112_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_135_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_48_1
e_1_2_9_29_1
Buwalda F. (e_1_2_9_24_1) 2006; 718
References_xml – reference: Guo, F., Cao, Q., & Masateru, N. (2008). Fruit detachment and classification method for strawberry harvesting robot. International Journal of Advanced Robotic Systems, 5(1), 41-48.
– reference: Cardenas-Weber, M. C., Stroshine, R. L., Haghighi, K., & Edan, Y. (1991). Melon material properties and finite element analysis of melon compression with application to robot gripping. Transactions of the ASAE, 34(3), 920-929.
– reference: Namikawa, K., & Ogawa, Y. (1989). Study on the hand of fruits harvesting robot. Kansai Branch Report of the Japanese Society of Agricultural Machinery, 65, 38-41.
– reference: Toussaint, K., Pouliot, N., & Montambault, S. (2009). Transmission line maintenance robots capable of crossing obstacles: State-of-the-art review and challenges ahead. Journal of Field Robotics, 26(5), 477-499.
– reference: Lu, Z., Augusto, J., Liu, J., Wang, H., & Aztiria, A. (2012). A system to reason about uncertain and dynamic environments. International Journal on Artificial Intelligence Tools, 21(5), 1-36.
– reference: Polder, G., Van der Heijden, G. W. A. M., Van der Voet, H., & Young, I. T. (2004). Measuring surface distribution of carotenes and chlorophyll in ripening tomatoes using imaging spectrometry. Postharvest Biology and Technology, 34(2), 117-129.
– reference: Muscato, G., Prestifilippo, M., Abbate, N., & Rizzuto, I. (2005). A prototype of an orange picking robot: Past history, the new robot and experimental results. Industrial Robot, 32(2), 128-138.
– reference: Nieuwenhuizen, A. T., Hofstee, J. W., & van Henten, E. J. (2010). Adaptive detection of volunteer potato plants in sugar beet fields. Precision Agriculture, 11(5), 433-447.
– reference: Nof, S. Y. (2009). Springer handbook of automation. Berlin Heidelberg: Springer.
– reference: Reina, G., & Milella, A. (2012). Towards autonomous agriculture: Automatic ground detection using trinocular stereovision. Sensors, 12(9), 12405-12423.
– reference: Edan, Y., Haghighi, K., Stroshine, R., & Cardenas-Weber, M. (1992). Robot gripper analysis: Finite element modeling and optimization. Applied Engineering in Agriculture, 8(4), 563-570.
– reference: Harrell, R. C., Adsit, P. D., Munilla, R. D., & Slaughter, D. C. (1990). Robotic picking of citrus. Robotica, 8(4), 269-278.
– reference: Humburg, D. S., & Reid, J. F. (1991). Field performance of machine vision for the selective harvest of asparagus. SAE (Society of Automotive Engineers) Transactions, 100(2), 81-92.
– reference: De-An, Z., Jidong, L., Wei, J., Ying, Z., & Yu, C. (2011). Design and control of an apple harvesting robot. Biosystems Engineering, 110(2), 112-122.
– reference: Foglia, M. M., & Reina, G. (2006). Agricultural robot for radicchio harvesting. Journal of Field Robotics, 23(6-7), 363-377.
– reference: Grift, T. E., Zhang, Q., Kondo, N., & Ting, K. C. (2008). A review of automation and robotics for the bio-industry. Journal of Biomechatronics Engineering, 1(1), 37-54.
– reference: Harrell, R. (1987). Economic analysis of robotic citrus harvesting in Florida. Transactions of the American Society of Agricultural Engineers, 30(2), 298-304.
– reference: Qiao, J., Sasao, A., Shibusawa, S., Kondo, N., & Morimoto, E. (2005). Mapping yield and quality using the mobile fruit grading robot. Biosystems Engineering, 90(2), 135-142.
– reference: Arima, S., & Kondo, N. (1999). Cucumber harvesting robot and plant training system. Journal of Robotics and Mechatronics, 11(3), 208-212.
– reference: Bechar, A. (2010). Robotics in horticultural field production. Stewart Postharvest Review, 6(3), 1-11.
– reference: Mehta, S. S., & Burks, T. F. (2014). Vision-based control of robotic manipulator for citrus harvesting. Computers and Electronics in Agriculture, 102(0), 146-158.
– reference: Sites, P. W., & Delwiche, M. J. (1988). Computer vision to locate fruit on a tree. Transactions of the ASAE, 31(1), 257-263, 272.
– reference: Bajcsy, R. (1988). Active perception. Proceedings of the IEEE, 76(8), 996-1005.
– reference: Siers, F. J. (2007). Methodological design; in Dutch: Methodisch ontwerpen. Groningen, The Netherlands: Wolters-Noordhoff.
– reference: Jiménez, A. R., Ceres, R., & Pons, J. L. (2000a). A survey of computer vision methods for locating fruit on trees. Transactions of the American Society of Agricultural Engineers, 43(6), 1911-1920.
– reference: Yao, B. Z., Yang, X., Liang, L., Mun Wai, L., & Song-Chun, Z. (2010). I2T: Image parsing to text description. Proceedings of the IEEE, 98(8), 1485-1508.
– reference: Edan, Y. (1995). Design of an autonomous agricultural robot. Applied Intelligence, 5(1), 41-50.
– reference: Gorbe, E., & Calatayud, A. (2012). Applications of chlorophyll fluorescence imaging technique in horticultural research: A review. Scientia Horticulturae, 138, 24-35.
– reference: Buwalda, F., Van Henten, E. J., De Gelder, A., Bontsema, J., & Hemming, J. (2006). Toward an optimal control strategy for sweet pepper cultivation-1. A dynamic crop model, Acta Horticulturae (Vol. 718, pp. 367-374).
– reference: Rath, T., & Kawollek, M. (2009). Robotic harvesting of Gerbera Jamesonii based on detection and three-dimensional modeling of cut flower pedicels. Computers and Electronics in Agriculture, 66(1), 85-92.
– reference: Reed, J. N., Miles, S. J., Butler, J., Baldwin, M., & Noble, R. (2001). Automatic mushroom harvester development. Journal of Agricultural Engineering Research, 78(1), 15-23.
– reference: Pool, T. A., & Harrell, R. C. (1991). An end-effector for robotic removal of citrus from the tree. Transactions of the ASAE, 34(3), 373-378.
– reference: Wan Ishak, W. I., Kit, W. H., & Awal, M. A. (2010). Design and development of eggplant harvester for gantry system. Pertanika Journal of Science and Technology, 18(2), 231-242.
– reference: Belforte, G., Deboli, R., Gay, P., Piccarolo, P., & Ricauda Aimonino, D. (2006). Robot design and testing for greenhouse applications. Biosystems Engineering, 95(3), 309-321.
– reference: Kapach, K., Barnea, E., Mairon, R., Edan, Y., & Ben-Shahar, O. (2012). Computer vision for fruit harvesting robots-State of the art and challenges ahead. International Journal of Computational Vision and Robotics, 3(1/2), 4-34.
– reference: Lavee, G., Rivlin, E., & Rudzsky, M. (2009). Understanding video events: A survey of methods for automatic interpretation of semantic occurrences in video. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 39(5), 489-504.
– reference: Van Henten, E. J., Van Tuijl, B. A. J., Hoogakker, G. J., Van Der Weerd, M. J., Hemming, J., Kornet, J. G., & Bontsema, J. (2006). An autonomous robot for de-leafing cucumber plants grown in a high-wire cultivation system. Biosystems Engineering, 94(3), 317-323.
– reference: Armada, M. A., Sanfeliu, A., Ferre, M., Fernández, R., Salinas, C., Montes, H., Sarria, J., & Armada, M. (2014). Validation of a multisensory system for fruit harvesting robots in lab conditions, ROBOT2013: First Iberian Robotics Conference (Vol. 252, pp. 495-504). Springer International Publishing.
– reference: Halachmi, I., Metz, J. H. M., Maltz, E., Dijkhuizen, A. A., & Speelman, L. (2000). Designing the optimal robotic milking barn, part 1: Quantifying facility usage. Journal of Agricultural Engineering Research, 76(1), 37-49.
– reference: Sarig, Y. (1993). Robotics of fruit harvesting: A state-of-the-art review. Journal of Agricultural Engineering Research, 54(4), 265-280.
– reference: Han, K.-S., Kim, S.-C., Lee, Y.-B., Kim, S.-C., Im, D.-H., Choi, H.-K., & Hwang, H. (2012). Strawberry harvesting robot for bench-type cultivation. Journal of Biosystems Engineering, 37(1), 65-74.
– reference: Van 't Ooster, A., Bontsema, J., Van Henten, E. J., & Hemming, S. (2014). Simulation of harvest operations in a static rose cultivation system. Biosystems Engineering, 120, 34-46.
– reference: Hiremath, S. A., van der Heijden, G. W. A. M., van Evert, F. K., Stein, A., & Ter Braak, C. J. F. (2014). Laser range finder model for autonomous navigation of a robot in a maize field using a particle filter. Computers and Electronics in Agriculture, 100, 41-50.
– reference: LEI, & CBS. (2009). Statistics of agriculture and horticulture in the Netherlands; in Dutch: Land- en tuinbouwcijfers 2009 (LEI-Report No. 2009-069). The Netherlands: The Hague.
– reference: Van Henten, E. J., Hemming, J., Van Tuijl, B. A. J., Kornet, J. G., Meuleman, J., Bontsema, J., & van Os, E. A. (2002). An autonomous robot for harvesting cucumbers in greenhouses. Autonomous Robots, 13(3), 241-258.
– reference: Jukema, G., & Van de Meer, R. (2009). Labor costs in arable farming and greenhouse horticulture; in Dutch: Arbeidskosten in de akkerbouw en glastuinbouw. The Hague, The Netherlands: Landbouw Economisch Instituur (LEI).
– reference: Sivaraman, B., & Burks, T. F. (2006). Geometric performance indices for analysis and synthesis of manipulators for robotic harvesting. Transactions of the ASABE, 49(5), 1589-1597.
– reference: Clary, C. D., Ball, T., Ward, E., Fuchs, S., Durfey, J. E., Cavalieri, R. P., & Folwell, R. J. (2007). Performance and economic analysis of a selective asparagus harvester. Applied Engineering in Agriculture, 23(5), 571-577.
– reference: Bos, A. P., Groot Koerkamp, P. W. G., Gosselink, J. M. J., & Bokma, S. (2009). Reflexive interactive design and its application in a project on sustainable dairy husbandry systems. Outlook on Agriculture, 38(2), 137-145.
– reference: Plá, F., Juste, F., & Ferri, F. (1993). Feature extraction of spherical objects in image analysis: An application to robotic citrus harvesting. Computers and Electronics in Agriculture, 8, 57-72.
– reference: Cross, N. (2008). Engineering design methods (4th revised ed.). Chichester: John Wiley and Sons.
– reference: Li, M., Imou, K., Wakabayashi, K., & Yokoyama, S. (2009). Review of research on agricultural vehicle autonomous guidance. International Journal of Agricultural and Biological Engineering, 2(3), 1-16.
– reference: Hayashi, S., Shigematsu, K., Yamamoto, S., Kobayashi, K., Kohno, Y., Kamata, J., & Kurita, M. (2010). Evaluation of a strawberry-harvesting robot in a field test. Biosystems Engineering, 105(2), 160-171.
– reference: Arndt, G., Rudziejewski, R., & Stewart, V. A. (1997). On the future of automated selective asparagus harvesting technology. Computers and Electronics in Agriculture, 16, 137-145.
– reference: Belta, C., Bicchi, A., Egerstedt, M., Frazzoli, E., Klavins, E., & Pappas, G. J. (2007). Symbolic planning and control of robot motion [grand challenges of robotics]. Robotics & Automation Magazine, IEEE, 14(1), 61-70.
– reference: Glancey, J. L., & Kee, W. E. (2005). Engineering aspects of production and harvest mechanization for fresh and processed vegetables. HortTechnology, 15(1), 76-79.
– reference: Thrun, S., Burgard, W., & Fox, D. (2006). Probabilistic robotics. Cambridge, MA: MIT Press.
– reference: Tillett, N. D. (1993). Robotic manipulators in horticulture: A review. Journal of Agricultural Engineering Research, 55(2), 89-105.
– reference: Hagras, H., Colley, M., Callaghan, V., & Carr-West, M. (2002). Online learning and adaptation of autonomous mobile robots for sustainable agriculture. Autonomous Robots, 13(1), 37-52.
– reference: Tanigaki, K., Fujiura, T., Akase, A., & Imagawa, J. (2008). Cherry-harvesting robot. Computers and Electronics in Agriculture, 63(1), 65-72.
– reference: Antonelli, M. G., Auriti, L., Beomonte Zobel, P., & Raparelli, T. (2011). Development of a new harvesting module for saffron flower detachment. Romanian Review Precision Mechanics, Optics and Mechatronics, 39, 163-168.
– reference: Houle, D., Govindaraju, D. R., & Omholt, S. (2010). Phenomics: The next challenge. Nature Reviews Genetics, 11(12), 855-866.
– reference: Angeles, J., Park, F. C., Siciliano, B., & Khatib, O. (2008). Performance evaluation and design criteria. Springer handbook of robotics, B. Siciliano & O. Khatib (eds.) (chap. 10, pp. 229-244). Berlin-Heidelberg: Springer.
– reference: Cohen, O., Edan, Y., & Schechtman, E. (2006). Statistical evaluation method for comparing grid map based sensor fusion algorithms. International Journal of Robotics Research, 25(2), 117-133.
– reference: Reed, J. N., & Tillet, R. D. (1994). Initial experiments in robotic mushroom harvesting. Mechatronics, 4(3), 265-279.
– reference: Van Henten, E. J., Van't Slot, D. A., Hol, C. W. J., & Van Willigenburg, L. G. (2009). Optimal manipulator design for a cucumber harvesting robot. Computers and Electronics in Agriculture, 65(2), 247-257.
– reference: Weiss, U., & Biber, P. (2011). Plant detection and mapping for agricultural robots using a 3D LIDAR sensor. Robotics and Autonomous Systems, 59(5), 265-273.
– reference: Murakami, N., Ito, A., Will, J. D., Steffen, M., Inoue, K., Kita, K., & Miyaura, S. (2008). Development of a teleoperation system for agricultural vehicles. Computers and Electronics in Agriculture, 63(1), 81-88.
– reference: Van Henten, E. J. (2006). Greenhouse mechanization: State of the art and future perspective. Acta Horticulturae (710), 55-69.
– reference: Brannan, T., Durose, C., John, P., & Wolman, H. (2008). Assessing best practice as a means of innovation. Local Government Studies, 34(1), 23-38.
– reference: González, R., Rodríguez, F., Sánchez-Hermosilla, J., & Donaire, J. G. (2009). Navigation techniques for mobile robots in greenhouses. Applied Engineering in Agriculture, 25(2), 153-165.
– reference: Hayashi, S., Saito, S., Iwasaki, Y., Yamamoto, S., Nagoya, T., & Kano, K. (2011). Development of circulating-type movable bench system for strawberry cultivation. Japan Agricultural Research Quarterly, 45(3), 285-293.
– reference: Bron, U. I., Ribeiro, R. V., Azzolini, M., Jacomino, A. P., & Machado, E. C. (2004). Chlorophyll fluorescence as a tool to evaluate the ripening of 'Golden' papaya fruit. Postharvest Biology and Technology, 33(2), 163-173.
– reference: Lee, B. S. H., & Rosa, U. A. (2006). Development of a canopy volume reduction technique for easy assessment and harvesting of valencia citrus fruits. Transactions of the ASABE, 49(6), 1695-1703.
– reference: Sakai, S., Iida, M., Osuka, K., & Umeda, M. (2008). Design and control of a heavy material handling manipulator for agricultural robots. Autonomous Robots, 25(3), 189-204.
– reference: Buemi, F., Massa, M., Sandini, G., & Costi, G. (1996). The AGROBOT project. Advances in Space Research, 18(1-2), 185-189.
– reference: CCC. (2009). A roadmap for U. S. robotics: From Internet to robotics. Computing Community Consortium Study on Robotics, Snobird, UT.
– reference: Pedersen, S. M., Fountas, S., Have, H., & Blackmore, B. S. (2006). Agricultural robots-System analysis and economic feasibility. Precision Agriculture, 7(4), 295-308.
– reference: Li, B., Vigneault, C., & Wang, N. (2010). Research development of fruit and vegetable harvesting robots in China. Stewart Postharvest Review, 6(3), 1-8.
– reference: Edan, Y., Flash, T., Shmulevich, I., Sarig, Y., & Peiper, U. M. (1990). An algorithm defining the motions of a citrus picking robot. Journal of Agricultural Engineering Research, 46(C), 259-273.
– reference: Edan, Y., Rogozin, D., Flash, T., & Miles, G. E. (2000). Robotic melon harvesting. IEEE Transactions on Robotics and Automation, 16(6), 831-835.
– reference: Edan, Y. & Miles, G. E. (1993). Design of an agricultural robot for harvesting melons. Transactions of the ASAE, 36(2), 593-603.
– reference: Edan, Y., & Miles, G. E. (1994). Systems engineering of agricultural robot design. IEEE Transactions on Systems, Man and Cybernetics, 24(8), 1259-1265.
– reference: Pekkeriet, E. J. (2011). CROPS project deliverable 12.1: Economic viability for each application. Wageningen, The Netherlands: Wageningen UR Greenhouse Horticulture.
– reference: Bac, C. W., Hemming, J., & Van Henten, E. J. (2013). Robust pixel-based classification of obstacles for robotic harvesting of sweet-pepper. Computers and Electronics in Agriculture, 96, 148-162.
– reference: Kondo, N., Nishitsuji, Y., Ling, P. P., & Ting, K. C. (1996). Visual feedback guided robotic cherry tomato harvesting. Transactions of the ASAE, 39(6), 2331-2338.
– reference: Ye, J., Dobson, S., & McKeever, S. (2012). Situation identification techniques in pervasive computing: A review. Pervasive and Mobile Computing, 8(1), 36-66.
– reference: Burks, T., Villegas, F., Hannan, M., Flood, S., Sivaraman, B., Subramanian, V., & Sikes, J. (2005). Engineering and horticultural aspects of robotic fruit harvesting: Opportunities and constraints. HortTechnology, 15(1), 79-87.
– reference: Clouser, R. (2010). A brief sketch of the philosophy of Herman Dooyeweerd. Axiomathes, 20(1), 3-17.
– reference: Van Henten, E. J., Van Tuijl, B. A. J., Hemming, J., Kornet, J. G., Bontsema, J., & Van Os, E. A. (2003). Field test of an autonomous cucumber picking robot. Biosystems Engineering, 86(3), 305-313.
– reference: Li, P., Lee, S.-h., & Hsu, H.-Y. (2011). Review on fruit harvesting method for potential use of automatic fruit harvesting systems. Procedia Engineering, 23, 351-366.
– reference: Jian, S., Xueyan, S., Tiezhong, Z., Bin, Z., & Liming, X. (2007). Design optimisation and simulation of structure parameters of an eggplant picking robot. New Zealand Journal of Agricultural Research, 50(5), 959-964.
– reference: Jiménez, A. R., Ceres, R., & Pons, J. L. (2000b). A vision system based on a laser range-finder applied to robotic fruit harvesting. Machine Vision and Applications, 11(6), 321-329.
– reference: Hayashi, S., Ganno, K., Ishii, Y., & Tanaka, I. (2002). Robotic harvesting system for eggplants. Japan Agricultural Research Quarterly, 36(3), 163-168.
– reference: Baeten, J., Donné, K., Boedrij, S., Beckers, W., & Claesen, E. (2008). Autonomous fruit picking machine: A robotic apple harvester. Springer Tracts in Advanced Robotics, 42, 531-539.
– reference: Bechar, A., & Edan, Y. (2003). Human-robot collaboration for improved target recognition of agricultural robots. Industrial Robot, 30(5), 432-436.
– reference: Saeys, W., & Nguyen, T. T. (2012). CROPS project deliverable 6.3: Report on the plantation and pruning methods to have fruit readily suited for automated harvesting. Leuven, Belgium: KU Leuven.
– reference: Jovicich, E., Cnatliffe, D. J., Sargent, S. A., & Osborne, L. S. (2004). Production of greenhouse-grown peppers in Florida (No. HS979). Gainesville, FL: University of Florida, IFAS Extension.
– reference: Van Henten, E. J., Buwalda, F., De Zwart, H. F., De Gelder, A., Hemming, J., & Bontsema, J. (2006). Toward an optimal control strategy for sweet pepper cultivation-2. Optimization of the yield pattern and energy efficiency, Acta Horticulturae, 718, 391-398.
– reference: Plebe, A., & Grasso, G. (2001). Localization of spherical fruits for robotic harvesting. Machine Vision and Applications, 13(2), 70-79.
– reference: Ceres, R., Pons, J. L., Jiménez, A. R., Martín, J. M., & Calderón, L. (1998). Design and implementation of an aided fruit-harvesting robot (Agribot). Industrial Robot, 25(5), 337-346.
– reference: Reina, G., Milella, A., & Underwood, J. (2012). Self-learning classification of radar features for scene understanding. Robotics and Autonomous Systems, 60(11), 1377-1388.
– reference: Vermeulen, M. M. A., & Wisse, M. (2008). Maximum allowable manipulator mass based on cycle time, impact safety and pinching safety. Industrial Robot, 35(5), 410-420.
– reference: Noordam, J. C., Hemming, J., van Heerde, C., Golbach, F., van Soest, R., & Wekking, E. (2005). Automated rose cutting in greenhouses with 3D vision and robotics: Analysis of 3D vision techniques for stem detection. Acta Horticulturae (ISHS), 691, 885-892.
– year: 2011
– volume: 98
  start-page: 1485
  issue: 8
  year: 2010
  end-page: 1508
  article-title: I2T: Image parsing to text description
  publication-title: Proceedings of the IEEE
– volume: 6
  start-page: 1
  issue: 3
  year: 2010
  end-page: 11
  article-title: Robotics in horticultural field production
  publication-title: Stewart Postharvest Review
– volume: 55
  start-page: 89
  issue: 2
  year: 1993
  end-page: 105
  article-title: Robotic manipulators in horticulture: A review
  publication-title: Journal of Agricultural Engineering Research
– volume: 13
  start-page: 70
  issue: 2
  year: 2001
  end-page: 79
  article-title: Localization of spherical fruits for robotic harvesting
  publication-title: Machine Vision and Applications
– volume: 138
  start-page: 24
  year: 2012
  end-page: 35
  article-title: Applications of chlorophyll fluorescence imaging technique in horticultural research: A review
  publication-title: Scientia Horticulturae
– volume: 65
  start-page: 38
  year: 1989
  end-page: 41
  article-title: Study on the hand of fruits harvesting robot
  publication-title: Kansai Branch Report of the Japanese Society of Agricultural Machinery
– year: 2005
– start-page: 105
  year: 2010
  end-page: 108
– volume: 43
  start-page: 1911
  issue: 6
  year: 2000a
  end-page: 1920
  article-title: A survey of computer vision methods for locating fruit on trees
  publication-title: Transactions of the American Society of Agricultural Engineers
– volume: 60
  start-page: 1377
  issue: 11
  year: 2012
  end-page: 1388
  article-title: Self‐learning classification of radar features for scene understanding
  publication-title: Robotics and Autonomous Systems
– volume: 691
  start-page: 885
  year: 2005
  end-page: 892
  article-title: Automated rose cutting in greenhouses with 3D vision and robotics: Analysis of 3D vision techniques for stem detection
  publication-title: Acta Horticulturae (ISHS)
– volume: 36
  start-page: 593
  issue: 2
  year: 1993
  end-page: 603
  article-title: Design of an agricultural robot for harvesting melons
  publication-title: Transactions of the ASAE
– volume: 59
  start-page: 265
  issue: 5
  year: 2011
  end-page: 273
  article-title: Plant detection and mapping for agricultural robots using a 3D LIDAR sensor
  publication-title: Robotics and Autonomous Systems
– volume: 96
  start-page: 148
  year: 2013
  end-page: 162
  article-title: Robust pixel‐based classification of obstacles for robotic harvesting of sweet‐pepper
  publication-title: Computers and Electronics in Agriculture
– start-page: 887
  year: 2009
  end-page: 892
– volume: 1
  start-page: 823
  year: 2008
  end-page: 827
– volume: 1
  start-page: 320
  year: 2012
  end-page: 324
– year: 2014
– volume: 8
  start-page: 563
  issue: 4
  year: 1992
  end-page: 570
  article-title: Robot gripper analysis: Finite element modeling and optimization
  publication-title: Applied Engineering in Agriculture
– volume: 66
  start-page: 85
  issue: 1
  year: 2009
  end-page: 92
  article-title: Robotic harvesting of Gerbera Jamesonii based on detection and three‐dimensional modeling of cut flower pedicels
  publication-title: Computers and Electronics in Agriculture
– volume: 1
  start-page: 37
  issue: 1
  year: 2008
  end-page: 54
  article-title: A review of automation and robotics for the bio‐industry
  publication-title: Journal of Biomechatronics Engineering
– volume: 110
  start-page: 112
  issue: 2
  year: 2011
  end-page: 122
  article-title: Design and control of an apple harvesting robot
  publication-title: Biosystems Engineering
– volume: 4
  start-page: 265
  issue: 3
  year: 1994
  end-page: 279
  article-title: Initial experiments in robotic mushroom harvesting
  publication-title: Mechatronics
– year: 2008
– volume: 8
  start-page: 57
  year: 1993
  end-page: 72
  article-title: Feature extraction of spherical objects in image analysis: An application to robotic citrus harvesting
  publication-title: Computers and Electronics in Agriculture
– volume: 11
  start-page: 208
  issue: 3
  year: 1999
  end-page: 212
  article-title: Cucumber harvesting robot and plant training system
  publication-title: Journal of Robotics and Mechatronics
– volume: 8
  start-page: 36
  issue: 1
  year: 2012
  end-page: 66
  article-title: Situation identification techniques in pervasive computing: A review
  publication-title: Pervasive and Mobile Computing
– volume: 94
  start-page: 317
  issue: 3
  year: 2006
  end-page: 323
  article-title: An autonomous robot for de‐leafing cucumber plants grown in a high‐wire cultivation system
  publication-title: Biosystems Engineering
– volume: 36
  start-page: 163
  issue: 3
  year: 2002
  end-page: 168
  article-title: Robotic harvesting system for eggplants
  publication-title: Japan Agricultural Research Quarterly
– volume: 90
  start-page: 135
  issue: 2
  year: 2005
  end-page: 142
  article-title: Mapping yield and quality using the mobile fruit grading robot
  publication-title: Biosystems Engineering
– volume: 38
  start-page: 137
  issue: 2
  year: 2009
  end-page: 145
  article-title: Reflexive interactive design and its application in a project on sustainable dairy husbandry systems
  publication-title: Outlook on Agriculture
– volume: 35
  start-page: 410
  issue: 5
  year: 2008
  end-page: 420
  article-title: Maximum allowable manipulator mass based on cycle time, impact safety and pinching safety
  publication-title: Industrial Robot
– volume: 100
  start-page: 41
  year: 2014
  end-page: 50
  article-title: Laser range finder model for autonomous navigation of a robot in a maize field using a particle filter
  publication-title: Computers and Electronics in Agriculture
– volume: 105
  start-page: 160
  issue: 2
  year: 2010
  end-page: 171
  article-title: Evaluation of a strawberry‐harvesting robot in a field test
  publication-title: Biosystems Engineering
– volume: 34
  start-page: 23
  issue: 1
  year: 2008
  end-page: 38
  article-title: Assessing best practice as a means of innovation
  publication-title: Local Government Studies
– volume: 25
  start-page: 117
  issue: 2
  year: 2006
  end-page: 133
  article-title: Statistical evaluation method for comparing grid map based sensor fusion algorithms
  publication-title: International Journal of Robotics Research
– volume: 13
  start-page: 37
  issue: 1
  year: 2002
  end-page: 52
  article-title: Online learning and adaptation of autonomous mobile robots for sustainable agriculture
  publication-title: Autonomous Robots
– volume: 39
  start-page: 163
  year: 2011
  end-page: 168
  article-title: Development of a new harvesting module for saffron flower detachment
  publication-title: Romanian Review Precision Mechanics, Optics and Mechatronics
– volume: 15
  start-page: 79
  issue: 1
  year: 2005
  end-page: 87
  article-title: Engineering and horticultural aspects of robotic fruit harvesting: Opportunities and constraints
  publication-title: HortTechnology
– volume: 5
  start-page: 3111
  year: 2008
  end-page: 3120
– start-page: 236
  year: 1991
  end-page: 244
– year: 1987
– year: 2007
– volume: 23
  start-page: 571
  issue: 5
  year: 2007
  end-page: 577
  article-title: Performance and economic analysis of a selective asparagus harvester
  publication-title: Applied Engineering in Agriculture
– volume: 20
  start-page: 3
  issue: 1
  year: 2010
  end-page: 17
  article-title: A brief sketch of the philosophy of Herman Dooyeweerd
  publication-title: Axiomathes
– start-page: 55
  issue: 710
  year: 2006
  end-page: 69
  article-title: Greenhouse mechanization: State of the art and future perspective
  publication-title: Acta Horticulturae
– volume: 11
  start-page: 433
  issue: 5
  year: 2010
  end-page: 447
  article-title: Adaptive detection of volunteer potato plants in sugar beet fields
  publication-title: Precision Agriculture
– start-page: 35
  year: 1984
  end-page: 38
– start-page: 1
  year: 1993
  end-page: 16
– volume: 18
  start-page: 185
  issue: 1–2
  year: 1996
  end-page: 189
  article-title: The AGROBOT project
  publication-title: Advances in Space Research
– year: 1992
– volume: 42
  start-page: 531
  year: 2008
  end-page: 539
  article-title: Autonomous fruit picking machine: A robotic apple harvester
  publication-title: Springer Tracts in Advanced Robotics
– volume: 34
  start-page: 920
  issue: 3
  year: 1991
  end-page: 929
  article-title: Melon material properties and finite element analysis of melon compression with application to robot gripping
  publication-title: Transactions of the ASAE
– volume: 16
  start-page: 831
  issue: 6
  year: 2000
  end-page: 835
  article-title: Robotic melon harvesting
  publication-title: IEEE Transactions on Robotics and Automation
– volume: 34
  start-page: 373
  issue: 3
  year: 1991
  end-page: 378
  article-title: An end‐effector for robotic removal of citrus from the tree
  publication-title: Transactions of the ASAE
– volume: 39
  start-page: 489
  issue: 5
  year: 2009
  end-page: 504
  article-title: Understanding video events: A survey of methods for automatic interpretation of semantic occurrences in video
  publication-title: IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews
– start-page: 229
  year: 2008
  end-page: 244
– volume: 7
  start-page: 295
  issue: 4
  year: 2006
  end-page: 308
  article-title: Agricultural robots—System analysis and economic feasibility
  publication-title: Precision Agriculture
– volume: 76
  start-page: 37
  issue: 1
  year: 2000
  end-page: 49
  article-title: Designing the optimal robotic milking barn, part 1: Quantifying facility usage
  publication-title: Journal of Agricultural Engineering Research
– volume: 12
  start-page: 12405
  issue: 9
  year: 2012
  end-page: 12423
  article-title: Towards autonomous agriculture: Automatic ground detection using trinocular stereovision
  publication-title: Sensors
– volume: 63
  start-page: 65
  issue: 1
  year: 2008
  end-page: 72
  article-title: Cherry‐harvesting robot
  publication-title: Computers and Electronics in Agriculture
– volume: 30
  start-page: 432
  issue: 5
  year: 2003
  end-page: 436
  article-title: Human‐robot collaboration for improved target recognition of agricultural robots
  publication-title: Industrial Robot
– year: 2013
– year: 2009
– volume: 76
  start-page: 996
  issue: 8
  year: 1988
  end-page: 1005
  article-title: Active perception
  publication-title: Proceedings of the IEEE
– volume: 18
  start-page: 605
  year: 2011
  end-page: 609
– volume: 16
  start-page: 137
  year: 1997
  end-page: 145
  article-title: On the future of automated selective asparagus harvesting technology
  publication-title: Computers and Electronics in Agriculture
– volume: 63
  start-page: 81
  issue: 1
  year: 2008
  end-page: 88
  article-title: Development of a teleoperation system for agricultural vehicles
  publication-title: Computers and Electronics in Agriculture
– volume: 6
  start-page: 1
  issue: 3
  year: 2010
  end-page: 8
  article-title: Research development of fruit and vegetable harvesting robots in China
  publication-title: Stewart Postharvest Review
– volume: 49
  start-page: 1589
  issue: 5
  year: 2006
  end-page: 1597
  article-title: Geometric performance indices for analysis and synthesis of manipulators for robotic harvesting
  publication-title: Transactions of the ASABE
– volume: 25
  start-page: 189
  issue: 3
  year: 2008
  end-page: 204
  article-title: Design and control of a heavy material handling manipulator for agricultural robots
  publication-title: Autonomous Robots
– volume: 252
  start-page: 495
  year: 2014
  end-page: 504
– volume: 2
  start-page: 9
  year: 1995
  end-page: 24
– volume: 2
  start-page: 1344
  year: 2003
  end-page: 1349
– volume: 46
  start-page: 259
  issue: C
  year: 1990
  end-page: 273
  article-title: An algorithm defining the motions of a citrus picking robot
  publication-title: Journal of Agricultural Engineering Research
– volume: 25
  start-page: 153
  issue: 2
  year: 2009
  end-page: 165
  article-title: Navigation techniques for mobile robots in greenhouses
  publication-title: Applied Engineering in Agriculture
– volume: 30
  start-page: 298
  issue: 2
  year: 1987
  end-page: 304
  article-title: Economic analysis of robotic citrus harvesting in Florida
  publication-title: Transactions of the American Society of Agricultural Engineers
– volume: 33
  start-page: 163
  issue: 2
  year: 2004
  end-page: 173
  article-title: Chlorophyll fluorescence as a tool to evaluate the ripening of ‘Golden’ papaya fruit
  publication-title: Postharvest Biology and Technology
– volume: 50
  start-page: 959
  issue: 5
  year: 2007
  end-page: 964
  article-title: Design optimisation and simulation of structure parameters of an eggplant picking robot
  publication-title: New Zealand Journal of Agricultural Research
– volume: 86
  start-page: 305
  issue: 3
  year: 2003
  end-page: 313
  article-title: Field test of an autonomous cucumber picking robot
  publication-title: Biosystems Engineering
– volume: 49
  start-page: 1695
  issue: 6
  year: 2006
  end-page: 1703
  article-title: Development of a canopy volume reduction technique for easy assessment and harvesting of valencia citrus fruits
  publication-title: Transactions of the ASABE
– volume: 5
  start-page: 41
  issue: 1
  year: 1995
  end-page: 50
  article-title: Design of an autonomous agricultural robot
  publication-title: Applied Intelligence
– start-page: 1
  year: 2009
  end-page: 6
– volume: 718
  start-page: 367
  year: 2006
  end-page: 374
  article-title: Toward an optimal control strategy for sweet pepper cultivation—1
  publication-title: A dynamic crop model, Acta Horticulturae
– volume: 4
  start-page: 1807
  year: 2005
  end-page: 1812
– volume: 5
  start-page: 41
  issue: 1
  year: 2008
  end-page: 48
  article-title: Fruit detachment and classification method for strawberry harvesting robot
  publication-title: International Journal of Advanced Robotic Systems
– year: 2004
– volume: 11
  start-page: 321
  issue: 6
  year: 2000b
  end-page: 329
  article-title: A vision system based on a laser range‐finder applied to robotic fruit harvesting
  publication-title: Machine Vision and Applications
– volume: 32
  start-page: 128
  issue: 2
  year: 2005
  end-page: 138
  article-title: A prototype of an orange picking robot: Past history, the new robot and experimental results
  publication-title: Industrial Robot
– volume: 78
  start-page: 15
  issue: 1
  year: 2001
  end-page: 23
  article-title: Automatic mushroom harvester development
  publication-title: Journal of Agricultural Engineering Research
– volume: 100
  start-page: 81
  issue: 2
  year: 1991
  end-page: 92
  article-title: Field performance of machine vision for the selective harvest of asparagus
  publication-title: SAE (Society of Automotive Engineers) Transactions
– volume: 6
  start-page: 3873
  year: 2009
  end-page: 3885
– volume: 3
  start-page: 4
  issue: 1/2
  year: 2012
  end-page: 34
  article-title: Computer vision for fruit harvesting robots—State of the art and challenges ahead
  publication-title: International Journal of Computational Vision and Robotics
– volume: 37
  start-page: 65
  issue: 1
  year: 2012
  end-page: 74
  article-title: Strawberry harvesting robot for bench‐type cultivation
  publication-title: Journal of Biosystems Engineering
– year: 1983
– volume: 718
  start-page: 391
  year: 2006
  end-page: 398
  article-title: Toward an optimal control strategy for sweet pepper cultivation—2. Optimization of the yield pattern and energy efficiency
  publication-title: Acta Horticulturae
– volume: 18
  start-page: 231
  issue: 2
  year: 2010
  end-page: 242
  article-title: Design and development of eggplant harvester for gantry system
  publication-title: Pertanika Journal of Science and Technology
– volume: 15
  start-page: 76
  issue: 1
  year: 2005
  end-page: 79
  article-title: Engineering aspects of production and harvest mechanization for fresh and processed vegetables
  publication-title: HortTechnology
– volume: 23
  start-page: 351
  year: 2011
  end-page: 366
  article-title: Review on fruit harvesting method for potential use of automatic fruit harvesting systems
  publication-title: Procedia Engineering
– volume: 65
  start-page: 247
  issue: 2
  year: 2009
  end-page: 257
  article-title: Optimal manipulator design for a cucumber harvesting robot
  publication-title: Computers and Electronics in Agriculture
– volume: 3
  start-page: 2054
  year: 1995
  end-page: 2509
– volume: 13
  start-page: 241
  issue: 3
  year: 2002
  end-page: 258
  article-title: An autonomous robot for harvesting cucumbers in greenhouses
  publication-title: Autonomous Robots
– volume: 95
  start-page: 309
  issue: 3
  year: 2006
  end-page: 321
  article-title: Robot design and testing for greenhouse applications
  publication-title: Biosystems Engineering
– volume: 24
  start-page: 1259
  issue: 8
  year: 1994
  end-page: 1265
  article-title: Systems engineering of agricultural robot design
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
– year: 1996
– volume: 2
  start-page: 39
  year: 2011
  end-page: 42
– volume: 8
  start-page: 269
  issue: 4
  year: 1990
  end-page: 278
  article-title: Robotic picking of citrus
  publication-title: Robotica
– volume: 39
  start-page: 2331
  issue: 6
  year: 1996
  end-page: 2338
  article-title: Visual feedback guided robotic cherry tomato harvesting
  publication-title: Transactions of the ASAE
– year: 2012
– volume: 14
  start-page: 61
  issue: 1
  year: 2007
  end-page: 70
  article-title: Symbolic planning and control of robot motion [grand challenges of robotics]
  publication-title: Robotics & Automation Magazine, IEEE
– volume: 21
  start-page: 1
  issue: 5
  year: 2012
  end-page: 36
  article-title: A system to reason about uncertain and dynamic environments
  publication-title: International Journal on Artificial Intelligence Tools
– volume: 120
  start-page: 34
  year: 2014
  end-page: 46
  article-title: Simulation of harvest operations in a static rose cultivation system
  publication-title: Biosystems Engineering
– volume: 26
  start-page: 477
  issue: 5
  year: 2009
  end-page: 499
  article-title: Transmission line maintenance robots capable of crossing obstacles: State‐of‐the‐art review and challenges ahead
  publication-title: Journal of Field Robotics
– volume: 102
  start-page: 146
  issue: 0
  year: 2014
  end-page: 158
  article-title: Vision‐based control of robotic manipulator for citrus harvesting
  publication-title: Computers and Electronics in Agriculture
– volume: 31
  start-page: 257
  issue: 1
  year: 1988
  end-page: 263
  article-title: Computer vision to locate fruit on a tree
  publication-title: Transactions of the ASAE
– volume: 45
  start-page: 285
  issue: 3
  year: 2011
  end-page: 293
  article-title: Development of circulating‐type movable bench system for strawberry cultivation
  publication-title: Japan Agricultural Research Quarterly
– volume: 11
  start-page: 855
  issue: 12
  year: 2010
  end-page: 866
  article-title: Phenomics: The next challenge
  publication-title: Nature Reviews Genetics
– volume: 2
  start-page: 1
  issue: 3
  year: 2009
  end-page: 16
  article-title: Review of research on agricultural vehicle autonomous guidance
  publication-title: International Journal of Agricultural and Biological Engineering
– start-page: 65
  year: 1995
  end-page: 70
– year: 2006
– volume: 23
  start-page: 363
  issue: 6–7
  year: 2006
  end-page: 377
  article-title: Agricultural robot for radicchio harvesting
  publication-title: Journal of Field Robotics
– volume: 54
  start-page: 265
  issue: 4
  year: 1993
  end-page: 280
  article-title: Robotics of fruit harvesting: A state‐of‐the‐art review
  publication-title: Journal of Agricultural Engineering Research
– volume: 25
  start-page: 337
  issue: 5
  year: 1998
  end-page: 346
  article-title: Design and implementation of an aided fruit‐harvesting robot (Agribot)
  publication-title: Industrial Robot
– volume: 34
  start-page: 117
  issue: 2
  year: 2004
  end-page: 129
  article-title: Measuring surface distribution of carotenes and chlorophyll in ripening tomatoes using imaging spectrometry
  publication-title: Postharvest Biology and Technology
– ident: e_1_2_9_40_1
  doi: 10.1109/70.897793
– ident: e_1_2_9_9_1
  doi: 10.1007/978-3-540-75404-6_51
– volume-title: Probabilistic robotics
  year: 2006
  ident: e_1_2_9_124_1
– volume-title: Production of greenhouse‐grown peppers in Florida (No. HS979)
  year: 2004
  ident: e_1_2_9_69_1
– ident: e_1_2_9_131_1
  doi: 10.1023/A:1020568125418
– ident: e_1_2_9_54_1
  doi: 10.5307/JBE.2012.37.1.065
– ident: e_1_2_9_17_1
– ident: e_1_2_9_27_1
  doi: 10.1108/01439919810232440
– ident: e_1_2_9_10_1
  doi: 10.1109/5.5968
– ident: e_1_2_9_90_1
  doi: 10.1016/j.compag.2014.01.003
– ident: e_1_2_9_127_1
  doi: 10.1002/rob.20295
– volume-title: A roadmap for U. S. robotics: From Internet to robotics
  year: 2009
  ident: e_1_2_9_26_1
– volume: 1
  start-page: 37
  issue: 1
  year: 2008
  ident: e_1_2_9_50_1
  article-title: A review of automation and robotics for the bio‐industry
  publication-title: Journal of Biomechatronics Engineering
– ident: e_1_2_9_52_1
  doi: 10.1023/A:1015626121039
– ident: e_1_2_9_14_1
  doi: 10.1108/01439910310492194
– ident: e_1_2_9_138_1
  doi: 10.1109/JPROC.2010.2050411
– ident: e_1_2_9_25_1
  doi: 10.13031/2013.31750
– volume: 15
  start-page: 76
  issue: 1
  year: 2005
  ident: e_1_2_9_46_1
  article-title: Engineering aspects of production and harvest mechanization for fresh and processed vegetables
  publication-title: HortTechnology
  doi: 10.21273/HORTTECH.15.1.0076
– ident: e_1_2_9_55_1
  doi: 10.13031/2013.31943
– ident: e_1_2_9_35_1
– ident: e_1_2_9_61_1
  doi: 10.1016/j.compag.2013.10.005
– ident: e_1_2_9_64_1
  doi: 10.1109/AIM.2003.1225538
– ident: e_1_2_9_15_1
  doi: 10.1016/j.biosystemseng.2006.07.004
– volume: 5
  start-page: 41
  issue: 1
  year: 2008
  ident: e_1_2_9_51_1
  article-title: Fruit detachment and classification method for strawberry harvesting robot
  publication-title: International Journal of Advanced Robotic Systems
– ident: e_1_2_9_83_1
  doi: 10.1016/j.proeng.2011.11.2514
– ident: e_1_2_9_8_1
  doi: 10.1016/j.compag.2013.05.004
– ident: e_1_2_9_49_1
– ident: e_1_2_9_123_1
– volume-title: Statistics of agriculture and horticulture in the Netherlands; in Dutch: Land‐ en tuinbouwcijfers 2009
  year: 2009
  ident: e_1_2_9_79_1
– ident: e_1_2_9_126_1
– volume: 718
  start-page: 367
  year: 2006
  ident: e_1_2_9_24_1
  article-title: Toward an optimal control strategy for sweet pepper cultivation—1
  publication-title: A dynamic crop model, Acta Horticulturae
  doi: 10.17660/ActaHortic.2006.718.42
– ident: e_1_2_9_78_1
  doi: 10.13031/2013.22286
– ident: e_1_2_9_87_1
  doi: 10.1142/S0218213012500236
– ident: e_1_2_9_92_1
  doi: 10.1016/j.compag.2008.01.015
– ident: e_1_2_9_45_1
  doi: 10.1002/rob.20131
– ident: e_1_2_9_95_1
– ident: e_1_2_9_28_1
  doi: 10.1109/AIM.2009.5229897
– volume-title: Service robot applications
  year: 2008
  ident: e_1_2_9_100_1
– ident: e_1_2_9_22_1
  doi: 10.1016/0273-1177(95)00807-Q
– ident: e_1_2_9_132_1
  doi: 10.1016/j.compag.2008.11.004
– ident: e_1_2_9_7_1
  doi: 10.1016/S0168-1699(96)00033-6
– ident: e_1_2_9_71_1
  doi: 10.1504/IJCVR.2012.046419
– ident: e_1_2_9_84_1
  doi: 10.1109/ICICTA.2008.138
– ident: e_1_2_9_59_1
– ident: e_1_2_9_93_1
  doi: 10.1108/01439910510582255
– ident: e_1_2_9_105_1
  doi: 10.1016/j.postharvbio.2004.05.002
– ident: e_1_2_9_23_1
  doi: 10.21273/HORTTECH.15.1.0079
– volume: 65
  start-page: 38
  year: 1989
  ident: e_1_2_9_94_1
  article-title: Study on the hand of fruits harvesting robot
  publication-title: Kansai Branch Report of the Japanese Society of Agricultural Machinery
– volume: 18
  start-page: 231
  issue: 2
  year: 2010
  ident: e_1_2_9_136_1
  article-title: Design and development of eggplant harvester for gantry system
  publication-title: Pertanika Journal of Science and Technology
– volume-title: Engineering design methods
  year: 2008
  ident: e_1_2_9_32_1
– ident: e_1_2_9_119_1
– ident: e_1_2_9_85_1
– ident: e_1_2_9_106_1
  doi: 10.13031/2013.31671
– ident: e_1_2_9_65_1
  doi: 10.1109/ICIT.2009.4939556
– ident: e_1_2_9_91_1
– ident: e_1_2_9_47_1
  doi: 10.13031/2013.26324
– volume-title: Labor costs in arable farming and greenhouse horticulture; in Dutch: Arbeidskosten in de akkerbouw en glastuinbouw
  year: 2009
  ident: e_1_2_9_70_1
– ident: e_1_2_9_12_1
– ident: e_1_2_9_72_1
– ident: e_1_2_9_116_1
  doi: 10.3182/20110828-6-IT-1002.02683
– ident: e_1_2_9_75_1
  doi: 10.13031/2013.27744
– ident: e_1_2_9_19_1
  doi: 10.5367/000000009788632386
– ident: e_1_2_9_18_1
– volume-title: CROPS project deliverable 6.3: Report on the plantation and pruning methods to have fruit readily suited for automated harvesting
  year: 2012
  ident: e_1_2_9_113_1
– ident: e_1_2_9_31_1
  doi: 10.1177/0278364906060480
– ident: e_1_2_9_98_1
  doi: 10.1007/978-3-540-78831-7
– ident: e_1_2_9_86_1
  doi: 10.1109/ICICTA.2011.302
– ident: e_1_2_9_122_1
  doi: 10.1016/j.compag.2008.01.018
– ident: e_1_2_9_56_1
  doi: 10.1017/S0263574700000308
– ident: e_1_2_9_42_1
– ident: e_1_2_9_48_1
  doi: 10.1016/j.scienta.2012.02.002
– ident: e_1_2_9_109_1
  doi: 10.1006/jaer.2000.0629
– ident: e_1_2_9_82_1
  doi: 10.25165/j.ijabe.20191203.4310
– ident: e_1_2_9_34_1
  doi: 10.1007/BF00872782
– volume: 100
  start-page: 81
  issue: 2
  year: 1991
  ident: e_1_2_9_63_1
  article-title: Field performance of machine vision for the selective harvest of asparagus
  publication-title: SAE (Society of Automotive Engineers) Transactions
– ident: e_1_2_9_111_1
  doi: 10.3390/s120912405
– ident: e_1_2_9_43_1
  doi: 10.1109/CSAE.2012.6272606
– ident: e_1_2_9_68_1
  doi: 10.1007/s001380050117
– ident: e_1_2_9_73_1
– ident: e_1_2_9_114_1
  doi: 10.1007/s10514-008-9090-y
– ident: e_1_2_9_88_1
– ident: e_1_2_9_16_1
  doi: 10.1109/MRA.2007.339624
– ident: e_1_2_9_38_1
  doi: 10.13031/2013.28377
– volume: 691
  start-page: 885
  year: 2005
  ident: e_1_2_9_99_1
  article-title: Automated rose cutting in greenhouses with 3D vision and robotics: Analysis of 3D vision techniques for stem detection
  publication-title: Acta Horticulturae (ISHS)
  doi: 10.17660/ActaHortic.2005.691.110
– ident: e_1_2_9_36_1
  doi: 10.1016/S0021-8634(05)80131-3
– ident: e_1_2_9_74_1
  doi: 10.1109/ICMA.2005.1626834
– volume: 36
  start-page: 163
  issue: 3
  year: 2002
  ident: e_1_2_9_57_1
  article-title: Robotic harvesting system for eggplants
  publication-title: Japan Agricultural Research Quarterly
  doi: 10.6090/jarq.36.163
– ident: e_1_2_9_37_1
  doi: 10.13031/2013.26105
– ident: e_1_2_9_62_1
  doi: 10.1038/nrg2897
– ident: e_1_2_9_97_1
  doi: 10.1002/9780470172506.ch32
– ident: e_1_2_9_39_1
  doi: 10.1109/21.299707
– ident: e_1_2_9_96_1
  doi: 10.1007/s11119-009-9138-9
– ident: e_1_2_9_33_1
  doi: 10.1016/j.biosystemseng.2011.07.005
– ident: e_1_2_9_44_1
– ident: e_1_2_9_66_1
  doi: 10.1080/00288230709510373
– ident: e_1_2_9_110_1
  doi: 10.1016/0957-4158(94)90004-3
– ident: e_1_2_9_41_1
– ident: e_1_2_9_118_1
  doi: 10.13031/2013.30697
– ident: e_1_2_9_112_1
  doi: 10.1016/j.robot.2012.03.002
– ident: e_1_2_9_137_1
  doi: 10.1016/j.robot.2011.02.011
– start-page: 495
  volume-title: Validation of a multisensory system for fruit harvesting robots in lab conditions, ROBOT2013: First Iberian Robotics Conference
  year: 2014
  ident: e_1_2_9_6_1
– ident: e_1_2_9_11_1
– ident: e_1_2_9_5_1
  doi: 10.20965/jrm.1999.p0208
– volume: 6
  start-page: 1
  issue: 3
  year: 2010
  ident: e_1_2_9_81_1
  article-title: Research development of fruit and vegetable harvesting robots in China
  publication-title: Stewart Postharvest Review
  doi: 10.2212/spr.2010.3.12
– ident: e_1_2_9_125_1
  doi: 10.1006/jaer.1993.1035
– ident: e_1_2_9_67_1
  doi: 10.13031/2013.3096
– ident: e_1_2_9_20_1
  doi: 10.1080/03003930701770405
– ident: e_1_2_9_128_1
  doi: 10.1016/j.biosystemseng.2013.04.005
– ident: e_1_2_9_76_1
– ident: e_1_2_9_104_1
  doi: 10.1007/PL00013271
– volume: 39
  start-page: 163
  year: 2011
  ident: e_1_2_9_4_1
  article-title: Development of a new harvesting module for saffron flower detachment
  publication-title: Romanian Review Precision Mechanics, Optics and Mechatronics
– volume-title: CROPS project deliverable 12.1: Economic viability for each application
  year: 2011
  ident: e_1_2_9_102_1
– ident: e_1_2_9_139_1
  doi: 10.1016/j.pmcj.2011.01.004
– start-page: 55
  issue: 710
  year: 2006
  ident: e_1_2_9_129_1
  article-title: Greenhouse mechanization: State of the art and future perspective
  publication-title: Acta Horticulturae
  doi: 10.17660/ActaHortic.2006.710.3
– ident: e_1_2_9_60_1
  doi: 10.1016/j.biosystemseng.2009.09.011
– ident: e_1_2_9_89_1
– volume: 718
  start-page: 391
  year: 2006
  ident: e_1_2_9_130_1
  article-title: Toward an optimal control strategy for sweet pepper cultivation—2. Optimization of the yield pattern and energy efficiency
  publication-title: Acta Horticulturae
  doi: 10.17660/ActaHortic.2006.718.45
– ident: e_1_2_9_115_1
  doi: 10.1006/jaer.1993.1020
– ident: e_1_2_9_121_1
– ident: e_1_2_9_135_1
  doi: 10.1108/01439910810893581
– ident: e_1_2_9_53_1
  doi: 10.1006/jaer.1999.0524
– ident: e_1_2_9_107_1
  doi: 10.1016/j.biosystemseng.2004.10.002
– volume-title: Methodological design; in Dutch: Methodisch ontwerpen
  year: 2007
  ident: e_1_2_9_117_1
– ident: e_1_2_9_2_1
  doi: 10.1109/RAAD.2010.5524602
– ident: e_1_2_9_58_1
  doi: 10.6090/jarq.45.285
– ident: e_1_2_9_120_1
  doi: 10.13031/2013.22033
– ident: e_1_2_9_3_1
  doi: 10.1007/978-3-540-30301-5_11
– ident: e_1_2_9_30_1
  doi: 10.1007/s10516-009-9075-2
– ident: e_1_2_9_108_1
  doi: 10.1016/j.compag.2008.12.006
– ident: e_1_2_9_103_1
  doi: 10.1016/0168-1699(93)90058-9
– ident: e_1_2_9_133_1
  doi: 10.1016/j.biosystemseng.2003.08.002
– ident: e_1_2_9_134_1
  doi: 10.1016/j.biosystemseng.2006.03.005
– ident: e_1_2_9_13_1
  doi: 10.2212/spr.2010.3.11
– ident: e_1_2_9_80_1
– ident: e_1_2_9_29_1
  doi: 10.13031/2013.23665
– ident: e_1_2_9_101_1
  doi: 10.1007/s11119-006-9014-9
– ident: e_1_2_9_21_1
  doi: 10.1016/j.postharvbio.2004.02.004
– ident: e_1_2_9_77_1
  doi: 10.1109/TSMCC.2009.2023380
SSID ssj0043895
Score 2.582321
SecondaryResourceType review_article
Snippet This review article analyzes state‐of‐the‐art and future perspectives for harvesting robots in high‐value crops. The objectives were to characterize the crop...
This review article analyzes state-of-the-art and future perspectives for harvesting robots in high-value crops. The objectives were to characterize the crop...
SourceID wageningen
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 888
SubjectTerms agricultural robots
autonomous robot
computer vision
Crops
cultivation system
Cycle time
Damage
economic-analysis
field-test
fruit
Harvesting
Literature reviews
mobile robots
picking robot
Robotics
Robots
State of the art
Success
sweet-pepper
Title Harvesting Robots for High-value Crops: State-of-the-art Review and Challenges Ahead
URI https://api.istex.fr/ark:/67375/WNG-11Q5JG43-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frob.21525
https://www.proquest.com/docview/1614599574
https://www.proquest.com/docview/1629357027
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F455485
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CekkPfZe6TYNaSsnFGz-kyKanZGkSAk3p0tAcAkKy7BwS5GLvkpBTfkJ-Y39JZ-RHuqWF0ott7DHoMSN9I42-AXgnEtSKjFbuqzwPubFpaKqoCLGvtUwzjvZFSwOfjrYPjvnhiThZgQ_DWZiOH2JccCPL8OM1Gbg27dYdaWhTmwklZaUD5hSrRYBoNlJHUVJv4blSxXaITkA-sApFydb459JcdI-a9WoJaK5dok07f8hpGbv6yWfvIZwOxe5iTs4ni7mZFNe_MTr-Z70ewYMelLKdTosew0rpnsD9X6gKn8IpJREiRg53xma1qectQ7jLKEzkx80tUYaXbNrUWArm8Su-rCu8IL7EK-on63YhmHaWTYcMLi3bwcnAPoPjvY9fpwdhn5khLARO8GGJQK-qJDk_3GphhJbaFlYn3MSV1hLHzDKNbCwjrqNcRrGtjOWiQmdMFrFJ0uew6mpXvgCWI25OdWR0QuxqOtNWRlLmZZblVWyMDGBz6CNV9LTllD3jQnWEy4nCBlO-wQJ4O4p-77g6_iT03nf0KKGbcwpuk0J9O9pHh-iLONznqcoDWB80QfV23SrEx5wo2iQP4M34GS2Stlm0K-sFySCEEhL9_QDSOw1SjpJDtYr4vHs9UJeLRrkLuqHxtYojtsuwhJteP_5eBzX7vOsfXv676CtYQ6zHu2OU67A6bxbla8RTc7PhDecnBSUfzw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqdkFZ8EZMW8AgQN1kmoddJwsWZUo7fQ1i1IoukIwdxyxaJSiZ0QArPoEP4Vf4Cb6Ee51HGQQSmy7YJFFyF3buw-f6cS4hT3gIVhHjzL1NEo9pE3na-qkHulYiihn4F04NHI02hyds_5SfLpBv7VmYmh-im3BDz3DxGh0cJ6Q3LlhDy0L3sSpru6XyIPs0g4Ster63Ddp9GoY7L48HQ6-pKeClHIYmLwOIYq1A2M6M4poroUxqVMh0YJUS4O1Z5JtA-Ez5ifADY7Vh3EIaIdJAI80BBPwlrCCOTP3b446sCsuIc8fOyjc9SDuSlsfIDze6ps6NfkuoyI9z0HZ5BlEkd8eq5tGyG-52rpPv7Y-qd7mc9acT3U8__8Yh-b_8yRvkWoO76VbtKDfJQpbfIld_YWO8Td5inSQkHcnf03Ghi0lFAdFT3Anz48tXZEXP6KAsoNvUQXR4WVi4AISGK7ggrRdaqMoNHbRFaiq6BeOduUNOLqV7d8liXuTZPUITSA0i5WsVIoGcipURvhBJFseJDbQWPbLeGoVMG2Z2LBByLmtO6VCCgqRTUI887kQ_1HQkfxJ65iyrk1DlGe7fE1y-Ge1Czvea7--ySCY9staanmxCVyUhBWDIQidYjzzqPkPQwZUklWfFFGUAJXLhh9D26MJkZY71ryqJlOWN4cnZtJT5Od4gvlSSAXyNoYXrziD_3gc5fvXCPaz8u-hDcmV4fHQoD_dGB6tkGaAtq0-NrpHFSTnN7gN8nOgHzmspeXfZxv0TP7h_oA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqVkJlwRsxpYBBgLrJ1EnscbJgUWaYvmCAEVW7QDJ2nHTRKqmSGQ2w4hP4D36Fr-BLuNeZpAwCiU0XbJIouQs79-Fz_TiXkMciAKuIcOY-i2OPGxt6JmOJB7rWMow4-BdODbwa9XYO-N6ROFoi35qzMDU_RDvhhp7h4jU6-JnNNs9JQ8vCdLEoa7Ojcj_9NIN8rXq2OwDlPgmC4Yt3_R1vXlLASwSMTF4KCCXLJKJ2brUwQkttE6sDbvxMawnOnobM-pJxzWLJfJsZy0UGWYRMfIMsBxDvV3iPxVgnYjBuuaqwirhw5Kyi50HWETc0RizYbJu6MPitoB4_LiDb1RkEkdydqloEy260G14l35v_VG9yOelOJ6abfP6NQvI_-ZHXyJU56qZbtZtcJ0tpfoNc_oWL8SZ5j1WSkHIkP6bjwhSTigKep7gP5seXr8iJntJ-WUCvqQPo8LLI4AIAGq7ggLReZqE6t7TflKip6BaMdvYWObiQ7t0my3mRp3cIjSExCDUzOkD6OB1pK5mUcRpFceYbIztko7EJlcx52bE8yKmqGaUDBQpSTkEd8qgVPavJSP4k9NQZViuhyxPcvSeFOhxtQ8b3Vuxt81DFHbLeWJ6aB65KQQLAkYNO8g552H6GkIPrSDpPiynKAEYUkgXQ9vDcYlWO1a8qhYTlc7tTs2mp8lO8QXSpFAfwGkELN5w9_r0Pavz6uXtY-3fRB-TSm8FQvdwd7d8lq4BreX1kdJ0sT8ppeg-w48Tcdz5LyYeLtu2fRH9-Tw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harvesting+Robots+for+High-value+Crops%3A+State-of-the-art+Review+and+Challenges+Ahead&rft.jtitle=Journal+of+field+robotics&rft.au=Bac%2C+C.W&rft.au=Henten%2C+E.%2C+van&rft.au=Hemming%2C+J&rft.au=Edan%2C+Y&rft.date=2014-11-01&rft.issn=1556-4959&rft.eissn=1556-4967&rft.volume=31&rft.issue=6&rft_id=info:doi/10.1002%2Frob.21525&rft.externalDBID=n%2Fa&rft.externalDocID=oai_library_wur_nl_wurpubs_455485
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-4959&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-4959&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-4959&client=summon