Mammalian Target of Rapamycin Complex 2 (mTORC2) Coordinates Pulmonary Artery Smooth Muscle Cell Metabolism, Proliferation, and Survival in Pulmonary Arterial Hypertension

BACKGROUND—Enhanced proliferation, resistance to apoptosis, and metabolic shift to glycolysis of pulmonary arterial vascular smooth muscle cells (PAVSMCs) are key pathophysiological components of pulmonary vascular remodeling in idiopathic pulmonary arterial hypertension (PAH). The role of the disti...

Full description

Saved in:
Bibliographic Details
Published inCirculation (New York, N.Y.) Vol. 129; no. 8; pp. 864 - 874
Main Authors Goncharov, Dmitry A., Kudryashova, Tatiana V., Ziai, Houman, Ihida-Stansbury, Kaori, DeLisser, Horace, Krymskaya, Vera P., Tuder, Rubin M., Kawut, Steven M., Goncharova, Elena A.
Format Journal Article
LanguageEnglish
Published Hagerstown, MD by the American College of Cardiology Foundation and the American Heart Association, Inc 25.02.2014
Lippincott Williams & Wilkins
Subjects
AMP
Online AccessGet full text

Cover

Loading…
Abstract BACKGROUND—Enhanced proliferation, resistance to apoptosis, and metabolic shift to glycolysis of pulmonary arterial vascular smooth muscle cells (PAVSMCs) are key pathophysiological components of pulmonary vascular remodeling in idiopathic pulmonary arterial hypertension (PAH). The role of the distinct mammalian target of rapamycin (mTOR) complexes mTORC1 (mTOR-Raptor) and mTORC2 (mTOR-Rictor) in PAVSMC proliferation and survival in PAH and their therapeutic relevance are unknown. METHODS AND RESULTS—Immunohistochemical and immunoblot analyses revealed that mTORC1 and mTORC2 pathways are markedly upregulated in small remodeled pulmonary arteries and isolated distal PAVSMCs from subjects with idiopathic PAH that have increased ATP levels, proliferation, and survival that depend on glycolytic metabolism. Small interfering RNA– and pharmacology-based analysis showed that although both mTORC1 and mTORC2 contribute to proliferation, only mTORC2 is required for ATP generation and survival of idiopathic PAH PAVSMCs. mTORC2 downregulated the energy sensor AMP-activated protein kinase, which led to activation of mTORC1-S6 and increased proliferation, as well as a deficiency of the proapoptotic protein Bim and idiopathic PAH PAVSMC survival. NADPH oxidase 4 (Nox4) protein levels were increased in idiopathic PAH PAVSMCs, which was necessary for mTORC2 activation, proliferation, and survival. Nox4 levels and mTORC2 signaling were significantly upregulated in small pulmonary arteries from hypoxia-exposed rats at days 2 to 28 of hypoxia. Treatment with the mTOR kinase inhibitor PP242 at days 15 to 28 suppressed mTORC2 but not Nox4, induced smooth muscle–specific apoptosis in small pulmonary arteries, and reversed hypoxia-induced pulmonary vascular remodeling in rats. CONCLUSIONS—These data provide a novel mechanistic link of Nox4-dependent activation of mTORC2 via the energy sensor AMP-activated protein kinase to increased proliferation and survival of PAVSMCs in PAH, which suggests a new potential pathway for therapeutic interventions.
AbstractList Enhanced proliferation, resistance to apoptosis, and metabolic shift to glycolysis of pulmonary arterial vascular smooth muscle cells (PAVSMCs) are key pathophysiological components of pulmonary vascular remodeling in idiopathic pulmonary arterial hypertension (PAH). The role of the distinct mammalian target of rapamycin (mTOR) complexes mTORC1 (mTOR-Raptor) and mTORC2 (mTOR-Rictor) in PAVSMC proliferation and survival in PAH and their therapeutic relevance are unknown. Immunohistochemical and immunoblot analyses revealed that mTORC1 and mTORC2 pathways are markedly upregulated in small remodeled pulmonary arteries and isolated distal PAVSMCs from subjects with idiopathic PAH that have increased ATP levels, proliferation, and survival that depend on glycolytic metabolism. Small interfering RNA- and pharmacology-based analysis showed that although both mTORC1 and mTORC2 contribute to proliferation, only mTORC2 is required for ATP generation and survival of idiopathic PAH PAVSMCs. mTORC2 downregulated the energy sensor AMP-activated protein kinase, which led to activation of mTORC1-S6 and increased proliferation, as well as a deficiency of the proapoptotic protein Bim and idiopathic PAH PAVSMC survival. NADPH oxidase 4 (Nox4) protein levels were increased in idiopathic PAH PAVSMCs, which was necessary for mTORC2 activation, proliferation, and survival. Nox4 levels and mTORC2 signaling were significantly upregulated in small pulmonary arteries from hypoxia-exposed rats at days 2 to 28 of hypoxia. Treatment with the mTOR kinase inhibitor PP242 at days 15 to 28 suppressed mTORC2 but not Nox4, induced smooth muscle-specific apoptosis in small pulmonary arteries, and reversed hypoxia-induced pulmonary vascular remodeling in rats. These data provide a novel mechanistic link of Nox4-dependent activation of mTORC2 via the energy sensor AMP-activated protein kinase to increased proliferation and survival of PAVSMCs in PAH, which suggests a new potential pathway for therapeutic interventions.
BACKGROUND—Enhanced proliferation, resistance to apoptosis, and metabolic shift to glycolysis of pulmonary arterial vascular smooth muscle cells (PAVSMCs) are key pathophysiological components of pulmonary vascular remodeling in idiopathic pulmonary arterial hypertension (PAH). The role of the distinct mammalian target of rapamycin (mTOR) complexes mTORC1 (mTOR-Raptor) and mTORC2 (mTOR-Rictor) in PAVSMC proliferation and survival in PAH and their therapeutic relevance are unknown. METHODS AND RESULTS—Immunohistochemical and immunoblot analyses revealed that mTORC1 and mTORC2 pathways are markedly upregulated in small remodeled pulmonary arteries and isolated distal PAVSMCs from subjects with idiopathic PAH that have increased ATP levels, proliferation, and survival that depend on glycolytic metabolism. Small interfering RNA– and pharmacology-based analysis showed that although both mTORC1 and mTORC2 contribute to proliferation, only mTORC2 is required for ATP generation and survival of idiopathic PAH PAVSMCs. mTORC2 downregulated the energy sensor AMP-activated protein kinase, which led to activation of mTORC1-S6 and increased proliferation, as well as a deficiency of the proapoptotic protein Bim and idiopathic PAH PAVSMC survival. NADPH oxidase 4 (Nox4) protein levels were increased in idiopathic PAH PAVSMCs, which was necessary for mTORC2 activation, proliferation, and survival. Nox4 levels and mTORC2 signaling were significantly upregulated in small pulmonary arteries from hypoxia-exposed rats at days 2 to 28 of hypoxia. Treatment with the mTOR kinase inhibitor PP242 at days 15 to 28 suppressed mTORC2 but not Nox4, induced smooth muscle–specific apoptosis in small pulmonary arteries, and reversed hypoxia-induced pulmonary vascular remodeling in rats. CONCLUSIONS—These data provide a novel mechanistic link of Nox4-dependent activation of mTORC2 via the energy sensor AMP-activated protein kinase to increased proliferation and survival of PAVSMCs in PAH, which suggests a new potential pathway for therapeutic interventions.
Enhanced proliferation, resistance to apoptosis, and metabolic shift to glycolysis of pulmonary arterial vascular smooth muscle cells (PAVSMCs) are key pathophysiological components of pulmonary vascular remodeling in idiopathic pulmonary arterial hypertension (PAH). The role of the distinct mammalian target of rapamycin (mTOR) complexes mTORC1 (mTOR-Raptor) and mTORC2 (mTOR-Rictor) in PAVSMC proliferation and survival in PAH and their therapeutic relevance are unknown.BACKGROUNDEnhanced proliferation, resistance to apoptosis, and metabolic shift to glycolysis of pulmonary arterial vascular smooth muscle cells (PAVSMCs) are key pathophysiological components of pulmonary vascular remodeling in idiopathic pulmonary arterial hypertension (PAH). The role of the distinct mammalian target of rapamycin (mTOR) complexes mTORC1 (mTOR-Raptor) and mTORC2 (mTOR-Rictor) in PAVSMC proliferation and survival in PAH and their therapeutic relevance are unknown.Immunohistochemical and immunoblot analyses revealed that mTORC1 and mTORC2 pathways are markedly upregulated in small remodeled pulmonary arteries and isolated distal PAVSMCs from subjects with idiopathic PAH that have increased ATP levels, proliferation, and survival that depend on glycolytic metabolism. Small interfering RNA- and pharmacology-based analysis showed that although both mTORC1 and mTORC2 contribute to proliferation, only mTORC2 is required for ATP generation and survival of idiopathic PAH PAVSMCs. mTORC2 downregulated the energy sensor AMP-activated protein kinase, which led to activation of mTORC1-S6 and increased proliferation, as well as a deficiency of the proapoptotic protein Bim and idiopathic PAH PAVSMC survival. NADPH oxidase 4 (Nox4) protein levels were increased in idiopathic PAH PAVSMCs, which was necessary for mTORC2 activation, proliferation, and survival. Nox4 levels and mTORC2 signaling were significantly upregulated in small pulmonary arteries from hypoxia-exposed rats at days 2 to 28 of hypoxia. Treatment with the mTOR kinase inhibitor PP242 at days 15 to 28 suppressed mTORC2 but not Nox4, induced smooth muscle-specific apoptosis in small pulmonary arteries, and reversed hypoxia-induced pulmonary vascular remodeling in rats.METHODS AND RESULTSImmunohistochemical and immunoblot analyses revealed that mTORC1 and mTORC2 pathways are markedly upregulated in small remodeled pulmonary arteries and isolated distal PAVSMCs from subjects with idiopathic PAH that have increased ATP levels, proliferation, and survival that depend on glycolytic metabolism. Small interfering RNA- and pharmacology-based analysis showed that although both mTORC1 and mTORC2 contribute to proliferation, only mTORC2 is required for ATP generation and survival of idiopathic PAH PAVSMCs. mTORC2 downregulated the energy sensor AMP-activated protein kinase, which led to activation of mTORC1-S6 and increased proliferation, as well as a deficiency of the proapoptotic protein Bim and idiopathic PAH PAVSMC survival. NADPH oxidase 4 (Nox4) protein levels were increased in idiopathic PAH PAVSMCs, which was necessary for mTORC2 activation, proliferation, and survival. Nox4 levels and mTORC2 signaling were significantly upregulated in small pulmonary arteries from hypoxia-exposed rats at days 2 to 28 of hypoxia. Treatment with the mTOR kinase inhibitor PP242 at days 15 to 28 suppressed mTORC2 but not Nox4, induced smooth muscle-specific apoptosis in small pulmonary arteries, and reversed hypoxia-induced pulmonary vascular remodeling in rats.These data provide a novel mechanistic link of Nox4-dependent activation of mTORC2 via the energy sensor AMP-activated protein kinase to increased proliferation and survival of PAVSMCs in PAH, which suggests a new potential pathway for therapeutic interventions.CONCLUSIONSThese data provide a novel mechanistic link of Nox4-dependent activation of mTORC2 via the energy sensor AMP-activated protein kinase to increased proliferation and survival of PAVSMCs in PAH, which suggests a new potential pathway for therapeutic interventions.
Author Ihida-Stansbury, Kaori
Kawut, Steven M.
Tuder, Rubin M.
Ziai, Houman
Kudryashova, Tatiana V.
Goncharova, Elena A.
Krymskaya, Vera P.
DeLisser, Horace
Goncharov, Dmitry A.
AuthorAffiliation From the Pulmonary, Allergy & Critical Care Division (D.A.G., T.V.K., H.Z., H.D., V.P.K., S.M.K., E.A.G.), Department of Pathology and Laboratory Medicine (K.I.-S.), Pulmonary Vascular Disease Program (K.I.-S., H.D., V.P.K., S.M.K., E.A.G.), Center for Clinical Epidemiology and Biostatistics (S.M.K.), and Abramson Cancer Center (V.P.K.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, CO (R.M.T.); and Division of Pulmonary, Allergy and Critical Care Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA (D.A.G., T.V.K.). Dr Goncharova’s current affiliation is the Division of Pulmonary, Allergy and Critical Care Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
AuthorAffiliation_xml – name: From the Pulmonary, Allergy & Critical Care Division (D.A.G., T.V.K., H.Z., H.D., V.P.K., S.M.K., E.A.G.), Department of Pathology and Laboratory Medicine (K.I.-S.), Pulmonary Vascular Disease Program (K.I.-S., H.D., V.P.K., S.M.K., E.A.G.), Center for Clinical Epidemiology and Biostatistics (S.M.K.), and Abramson Cancer Center (V.P.K.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, CO (R.M.T.); and Division of Pulmonary, Allergy and Critical Care Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA (D.A.G., T.V.K.). Dr Goncharova’s current affiliation is the Division of Pulmonary, Allergy and Critical Care Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
Author_xml – sequence: 1
  givenname: Dmitry
  surname: Goncharov
  middlename: A.
  fullname: Goncharov, Dmitry A.
  organization: From the Pulmonary, Allergy & Critical Care Division (D.A.G., T.V.K., H.Z., H.D., V.P.K., S.M.K., E.A.G.), Department of Pathology and Laboratory Medicine (K.I.-S.), Pulmonary Vascular Disease Program (K.I.-S., H.D., V.P.K., S.M.K., E.A.G.), Center for Clinical Epidemiology and Biostatistics (S.M.K.), and Abramson Cancer Center (V.P.K.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, CO (R.M.T.); and Division of Pulmonary, Allergy and Critical Care Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA (D.A.G., T.V.K.). Dr Goncharova’s current affiliation is the Division of Pulmonary, Allergy and Critical Care Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
– sequence: 2
  givenname: Tatiana
  surname: Kudryashova
  middlename: V.
  fullname: Kudryashova, Tatiana V.
– sequence: 3
  givenname: Houman
  surname: Ziai
  fullname: Ziai, Houman
– sequence: 4
  givenname: Kaori
  surname: Ihida-Stansbury
  fullname: Ihida-Stansbury, Kaori
– sequence: 5
  givenname: Horace
  surname: DeLisser
  fullname: DeLisser, Horace
– sequence: 6
  givenname: Vera
  surname: Krymskaya
  middlename: P.
  fullname: Krymskaya, Vera P.
– sequence: 7
  givenname: Rubin
  surname: Tuder
  middlename: M.
  fullname: Tuder, Rubin M.
– sequence: 8
  givenname: Steven
  surname: Kawut
  middlename: M.
  fullname: Kawut, Steven M.
– sequence: 9
  givenname: Elena
  surname: Goncharova
  middlename: A.
  fullname: Goncharova, Elena A.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28282416$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24270265$$D View this record in MEDLINE/PubMed
BookMark eNqNUV1v0zAUtdAQ6wZ_AZkHpCGtw3biNH6YUBUBrdTRqeueI8e5oQZ_FDvZ6G_iT2JoJ8SeJj_c66NzzrXPPUFHzjtA6A0lF5QW9H01X1W3i-l6vvwynU0Tll0QkvOSPkMjylk-znkmjtCIECLGk4yxY3QS47d0LbIJf4GOWc4mhBV8hH5dSWul0dLhtQxfoce-wyu5lXantMOVt1sDPzHDZ3a9XFXsXYJ8aLWTPUR8PRjrnQw7PA09pHJjve83-GqIygCuwBh8Bb1svNHRnuPrkJoOguy1d-dYuhbfDOFO30mD07RHdjqhs90WUu9iErxEzztpIrw61FN0--njupqNF8vP82q6GCtOSzruUhSNaETZEcEVn1BFaAOMZaoQpGtKRdu85bwQjQJGWgVlLmkLE2jKLu-EyE7R2d53G_yPAWJfWx1V-ot04IdYU05YlnGR54n6-kAdGgttvQ3apvfXDwEnwtsDQUYlTRekUzr-45Xp5LRIvA97ngo-xgBdrXT_N6Y-SG1qSuo_q6__X33Csnq_-uQgHjk8DHmK9nKvvfcmBR-_m-EeQr0BafrNE_S_Ac8fykU
CODEN CIRCAZ
CitedBy_id crossref_primary_10_1093_rheumatology_key017
crossref_primary_10_1152_ajpheart_00520_2020
crossref_primary_10_1002_ppul_23777
crossref_primary_10_1371_journal_pone_0221728
crossref_primary_10_3390_ijms22116164
crossref_primary_10_3390_cells10061473
crossref_primary_10_3389_fmed_2022_894584
crossref_primary_10_1038_s41598_023_33779_8
crossref_primary_10_3389_fddsv_2022_1022971
crossref_primary_10_1152_ajplung_00527_2016
crossref_primary_10_23736_S2724_542X_20_02631_2
crossref_primary_10_1152_ajplung_00259_2017
crossref_primary_10_1161_ATVBAHA_119_312537
crossref_primary_10_1186_s12931_024_02957_1
crossref_primary_10_1089_ars_2015_6562
crossref_primary_10_1089_ars_2018_7673
crossref_primary_10_1086_683810
crossref_primary_10_4049_jimmunol_1601692
crossref_primary_10_1165_rcmb_2018_0329TR
crossref_primary_10_3390_antiox6030054
crossref_primary_10_1021_acs_jmedchem_0c01093
crossref_primary_10_4137_BMI_S29514
crossref_primary_10_1155_2021_9981589
crossref_primary_10_1007_s00210_017_1359_2
crossref_primary_10_1126_scisignal_aao5775
crossref_primary_10_1152_ajplung_00393_2018
crossref_primary_10_1038_s41467_018_06376_x
crossref_primary_10_1002_jcp_24670
crossref_primary_10_1038_s41419_022_05091_2
crossref_primary_10_1161_CIRCRESAHA_121_319100
crossref_primary_10_1038_s41598_020_67217_w
crossref_primary_10_1164_rccm_201812_2290OC
crossref_primary_10_1152_ajplung_00159_2021
crossref_primary_10_1016_j_vph_2015_05_008
crossref_primary_10_1111_bph_15016
crossref_primary_10_1152_ajplung_00447_2021
crossref_primary_10_1074_jbc_M115_672170
crossref_primary_10_1111_bph_14968
crossref_primary_10_1186_s13578_022_00762_1
crossref_primary_10_1152_ajpheart_00220_2020
crossref_primary_10_1096_fj_201500042
crossref_primary_10_1161_JAHA_122_027894
crossref_primary_10_3892_mmr_2015_4528
crossref_primary_10_4103_CJP_CJP_27_19
crossref_primary_10_3390_ijms25105403
crossref_primary_10_1093_cvr_cvaa050
crossref_primary_10_1177_1535370215584889
crossref_primary_10_1089_vim_2013_0130
crossref_primary_10_1152_ajplung_00010_2019
crossref_primary_10_1089_ars_2018_7699
crossref_primary_10_1111_bph_15442
crossref_primary_10_1016_j_biopha_2018_07_017
crossref_primary_10_1146_annurev_med_041717_085955
crossref_primary_10_1177_17534666241271990
crossref_primary_10_1080_10641963_2019_1583247
crossref_primary_10_1161_CIRCULATIONAHA_121_053889
crossref_primary_10_1164_rccm_201504_0829UP
crossref_primary_10_1016_j_ejphar_2015_09_031
crossref_primary_10_1152_ajpcell_00147_2021
crossref_primary_10_1113_JP272032
crossref_primary_10_1371_journal_pone_0114492
crossref_primary_10_1371_journal_pone_0153780
crossref_primary_10_1161_CIRCULATIONAHA_118_035427
crossref_primary_10_1371_journal_pone_0195780
crossref_primary_10_3390_ijms22136943
crossref_primary_10_1016_j_lfs_2020_118009
crossref_primary_10_1186_s12890_017_0477_4
crossref_primary_10_1164_rccm_201606_1226PP
crossref_primary_10_3390_molecules25204768
crossref_primary_10_3390_antiox8030056
crossref_primary_10_1111_bph_14866
crossref_primary_10_1126_scisignal_abn2743
crossref_primary_10_1016_j_jbc_2024_107952
crossref_primary_10_1016_j_hlc_2016_03_009
crossref_primary_10_1016_j_cellsig_2017_10_019
crossref_primary_10_3389_fimmu_2018_00215
crossref_primary_10_1161_CIRCRESAHA_119_315398
crossref_primary_10_1007_s11684_018_0634_z
crossref_primary_10_1016_j_bcp_2023_115892
crossref_primary_10_3389_fcell_2023_1268646
crossref_primary_10_1097_FJC_0000000000001208
crossref_primary_10_12659_MSMBR_897505
crossref_primary_10_1371_journal_pone_0123662
crossref_primary_10_1177_1074248419829172
crossref_primary_10_3390_ijms19102957
crossref_primary_10_1165_rcmb_2017_0245ED
crossref_primary_10_3390_ph15070900
crossref_primary_10_1172_jci_insight_93203
crossref_primary_10_1016_j_pharmthera_2016_05_005
crossref_primary_10_3389_fphys_2022_847172
crossref_primary_10_1161_HYPERTENSIONAHA_120_15058
crossref_primary_10_3390_ijms23116205
crossref_primary_10_1007_s12265_024_10581_z
crossref_primary_10_4199_C00158ED1V01Y201710ISP078
crossref_primary_10_1016_j_jacbts_2018_08_009
crossref_primary_10_3390_ijms22042144
crossref_primary_10_1016_j_freeradbiomed_2019_09_029
crossref_primary_10_1126_scisignal_aau0296
crossref_primary_10_3390_pharmaceutics16111375
crossref_primary_10_1164_rccm_201604_0882PP
crossref_primary_10_1016_j_athoracsur_2014_12_061
crossref_primary_10_1152_ajpcell_00295_2015
crossref_primary_10_1152_ajplung_00238_2014
crossref_primary_10_18632_oncotarget_13536
crossref_primary_10_3390_ijms252312858
crossref_primary_10_1177_2045893217701438
crossref_primary_10_1177_2045894019840646
crossref_primary_10_1016_j_jacbts_2018_08_003
crossref_primary_10_3390_ijms21103518
crossref_primary_10_1073_pnas_2010206118
crossref_primary_10_1164_rccm_201911_2137OC
crossref_primary_10_1186_s12964_023_01346_3
crossref_primary_10_3892_ijmm_2024_5439
crossref_primary_10_1165_rcmb_2015_0339OC
crossref_primary_10_1164_rccm_202001_0087ED
crossref_primary_10_1097_FJC_0000000000001187
crossref_primary_10_1016_j_biomaterials_2015_07_015
crossref_primary_10_3389_fped_2022_872313
crossref_primary_10_1038_s41419_020_03167_5
crossref_primary_10_1016_j_cbi_2019_108749
crossref_primary_10_1038_s41467_022_32568_7
crossref_primary_10_1371_journal_pone_0130806
crossref_primary_10_1111_1440_1681_13696
crossref_primary_10_1177_2045894019898593
crossref_primary_10_3390_antiox8050135
crossref_primary_10_1164_rccm_201510_2003OC
crossref_primary_10_1152_physiol_00039_2019
crossref_primary_10_1172_JCI172116
crossref_primary_10_1016_j_mito_2024_101928
crossref_primary_10_1177_2045894019889775
crossref_primary_10_1165_rcmb_2016_0364OC
crossref_primary_10_1371_journal_pone_0106155
crossref_primary_10_1002_jcp_28531
crossref_primary_10_1016_j_molmet_2016_06_007
crossref_primary_10_1152_physrev_00030_2021
crossref_primary_10_1186_s12929_015_0125_3
crossref_primary_10_3390_ijms20143575
crossref_primary_10_1007_s10495_018_1477_4
crossref_primary_10_1016_j_freeradbiomed_2018_03_006
crossref_primary_10_1016_j_cytogfr_2024_12_005
crossref_primary_10_1161_CIRCULATIONAHA_121_057001
crossref_primary_10_1016_j_ejphar_2016_09_003
crossref_primary_10_1152_ajplung_00415_2017
crossref_primary_10_3389_fcell_2020_00034
crossref_primary_10_1152_ajpcell_00149_2015
crossref_primary_10_1152_ajplung_00173_2017
crossref_primary_10_1161_CIRCULATIONAHA_124_068624
crossref_primary_10_1164_rccm_202108_1863OC
crossref_primary_10_1042_BCJ20160002
crossref_primary_10_3109_01902148_2014_913092
Cites_doi 10.1016/j.bbrc.2010.05.140
10.1083/jcb.200909166
10.1074/jbc.M900301200
10.1074/jbc.M502876200
10.1161/01.res.0000253094.03023.3f
10.1016/j.cmet.2012.03.015
10.2353/ajpath.2010.090832
10.1161/circresaha.111.300171
10.1016/j.jacc.2009.04.018
10.1152/ajplung.00090.2010
10.1172/JCI32503
10.1038/nrm3025
10.1164/ajrccm.163.2.2006093
10.1161/circulationaha.108.787200
10.1089/ars.2009.2599
10.1161/CIRCINTERVENTIONS.108.830018
10.1158/0008-5472.CAN-09-0299
10.1172/JCI57734
10.1165/rcmb.2012-0429OC
10.1056/NEJMp038141
10.1096/fj.12-222224
10.1164/rccm.200809-1472OC
10.1074/jbc.M305371200
10.1128/MCB.01061-10
10.1165/rcmb.2011-0418OC
10.1016/j.cell.2008.08.021
10.1164/rccm.201108-1536PP
10.1038/leu.2011.20
10.1371/journal.pbio.1000038
10.1126/science.1063518
10.1016/S0891-5849(01)00727-4
10.1126/scitranslmed.3001327
10.1038/onc.2011.328
10.1038/aps.2010.139
10.1152/ajplung.00310.2006
10.1152/ajpheart.01324.2007
10.1096/fj.10-175018
10.1155/2007/29632
10.1074/jbc.C800170200
10.1186/1465-9921-8-15
10.1016/j.molcel.2005.03.027
10.1161/01.RES.0000020404.01971.2F
10.1074/jbc.M109.096222
10.1152/ajplung.00428.2006
10.1038/nm.2091
10.1152/ajplung.90488.2008
10.1165/rcmb.2012-0446OC
10.1165/ajrcmb.22.1.3536
10.1161/circresaha.107.148015
ContentType Journal Article
Copyright 2014 by the American College of Cardiology Foundation and the American Heart Association, Inc.
2015 INIST-CNRS
Copyright_xml – notice: 2014 by the American College of Cardiology Foundation and the American Heart Association, Inc.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1161/CIRCULATIONAHA.113.004581
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1524-4539
EndPage 874
ExternalDocumentID 24270265
28282416
10_1161_CIRCULATIONAHA_113_004581
10.1161/CIRCULATIONAHA.113.004581
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: 1R01HL114085
– fundername: NHLBI NIH HHS
  grantid: R01HL113178
– fundername: NHLBI NIH HHS
  grantid: K24 HL103844
– fundername: NHLBI NIH HHS
  grantid: R01 HL114085
– fundername: NHLBI NIH HHS
  grantid: R01 HL113178
– fundername: NCATS NIH HHS
  grantid: UL1 TR000005
– fundername: NCATS NIH HHS
  grantid: UL1-TR-000005
– fundername: NHLBI NIH HHS
  grantid: R01 HL110551
GroupedDBID ---
.-D
.3C
.XZ
.Z2
01R
0R~
0ZK
18M
1J1
29B
2FS
2WC
354
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
6PF
71W
77Y
7O~
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAJCS
AAMOA
AAMTA
AARTV
AASOK
AAUEB
AAWTL
AAXQO
ABBUW
ABDIG
ABJNI
ABOCM
ABPMR
ABPXF
ABQRW
ABXVJ
ABZAD
ACCJW
ACDDN
ACDOF
ACEWG
ACGFO
ACGFS
ACILI
ACOAL
ACRKK
ACWDW
ACWRI
ACXNZ
ACZKN
ADBBV
ADCYY
ADGGA
ADHPY
AE3
AE6
AEETU
AENEX
AFCHL
AFDTB
AFEXH
AFNMH
AFUWQ
AGINI
AHMBA
AHOMT
AHQNM
AHRYX
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJZMW
ALKUP
ALMA_UNASSIGNED_HOLDINGS
AMJPA
AMNEI
ASPBG
AVWKF
AYCSE
AZFZN
BAWUL
BOYCO
BQLVK
BYPQX
C45
CS3
DIK
DIWNM
DU5
DUNZO
E3Z
EBS
EJD
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
GX1
H0~
H13
HZ~
IKREB
IKYAY
IN~
JF9
JG8
JK3
JK8
K-A
K-F
K8S
KD2
KMI
KQ8
L-C
L7B
N9A
N~7
N~B
O9-
OAG
OAH
OBH
OCB
ODMTH
OGEVE
OHH
OHYEH
OK1
OL1
OLB
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
OVD
OVDNE
OVIDH
OVLEI
OVOZU
OWBYB
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P2P
PQQKQ
RAH
RLZ
S4R
S4S
T8P
TEORI
TR2
UPT
V2I
VVN
W2D
W3M
W8F
WH7
WOQ
WOW
X3V
X3W
XXN
XYM
YFH
YOC
YSK
YYM
YZZ
ZFV
ZY1
ZZMQN
~H1
AAFWJ
AAYXX
CITATION
.55
.GJ
1CY
41~
AAEJM
AAQKA
AASCR
AASXQ
AAYOK
ABASU
ABVCZ
ABXYN
ABZZY
ACIJW
ACLDA
ACRZS
ACXJB
ADFPA
ADNKB
AEBDS
AFBFQ
AFFNX
AFMBP
AFSOK
AHQVU
AJJEV
AJNYG
AKCTQ
AKULP
ALMTX
AMKUR
AOHHW
AOQMC
BS7
C1A
E.X
EEVPB
ERAAH
FEDTE
FL-
FW0
GNXGY
GQDEL
HLJTE
HVGLF
H~9
IPNFZ
IQODW
J5H
M18
MVM
N4W
NEJ
N~M
OCUKA
ODA
OHT
ORVUJ
OUVQU
P-K
R58
RIG
TSPGW
WHG
X7M
YQJ
YXB
YYP
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c5181-f045b9b98f095c571c01be223c690fb8c1d4d5569bce20dce84a1de7eb8f4f993
ISSN 0009-7322
1524-4539
IngestDate Fri Jul 11 07:04:05 EDT 2025
Mon Jul 21 06:04:01 EDT 2025
Wed Apr 02 07:35:51 EDT 2025
Thu Apr 24 23:08:16 EDT 2025
Tue Jul 01 03:20:35 EDT 2025
Fri May 16 03:44:16 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Antineoplastic agent
Cell proliferation
Energy metabolism
remodeling
Prognosis
Sirolimus
Non-specific serine/threonine protein kinase
muscle, smooth, vascular
Smooth muscle
Cardiovascular disease
AMP-activated protein kinase
Macrocycle
Complexity
Vascular remodeling
Signal transduction
Target
Pulmonary vessel
Blood vessel
Protein synthesis inhibitor
Cardiology
AMP
Enzyme
Respiratory disease
Transferases
Idiopathic
Lactone
Macrolide
Complexes
Survival
Pulmonary artery
Pulmonary hypertension
idiopathic pulmonary arterial hypertension
Vertebrata
Antibiotic
Mammalia
Coordinate
Circulatory system
Immunosuppressive agent
Antibacterial agent
mTORC2
signal transduction
energy metabolism
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5181-f045b9b98f095c571c01be223c690fb8c1d4d5569bce20dce84a1de7eb8f4f993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ahajournals.org/doi/pdf/10.1161/CIRCULATIONAHA.113.004581
PMID 24270265
PQID 1502335944
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1502335944
pubmed_primary_24270265
pascalfrancis_primary_28282416
crossref_citationtrail_10_1161_CIRCULATIONAHA_113_004581
crossref_primary_10_1161_CIRCULATIONAHA_113_004581
wolterskluwer_health_10_1161_CIRCULATIONAHA_113_004581
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-February-25
PublicationDateYYYYMMDD 2014-02-25
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-February-25
  day: 25
PublicationDecade 2010
PublicationPlace Hagerstown, MD
PublicationPlace_xml – name: Hagerstown, MD
– name: United States
PublicationTitle Circulation (New York, N.Y.)
PublicationTitleAlternate Circulation
PublicationYear 2014
Publisher by the American College of Cardiology Foundation and the American Heart Association, Inc
Lippincott Williams & Wilkins
Publisher_xml – name: by the American College of Cardiology Foundation and the American Heart Association, Inc
– name: Lippincott Williams & Wilkins
References e_1_3_4_3_2
e_1_3_4_9_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_48_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_32_2
e_1_3_4_15_2
Kim D (e_1_3_4_27_2) 2002; 35
e_1_3_4_38_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_28_2
e_1_3_4_50_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_18_2
e_1_3_4_39_2
16027121 - J Biol Chem. 2005 Sep 16;280(37):32081-9
17526595 - Am J Physiol Lung Cell Mol Physiol. 2007 Sep;293(3):L548-54
11728818 - Free Radic Biol Med. 2001 Dec 1;31(11):1456-64
11179130 - Am J Respir Crit Care Med. 2001 Feb;163(2):498-502
23668615 - Am J Respir Cell Mol Biol. 2013 Oct;49(4):609-18
20022946 - J Biol Chem. 2010 Mar 12;285(11):7866-79
21804606 - Oncogene. 2012 Mar 15;31(11):1419-30
22521878 - Cell Metab. 2012 May 2;15(5):725-38
14523135 - N Engl J Med. 2003 Oct 2;349(14):1307-9
20702857 - Sci Transl Med. 2010 Aug 11;2(44):44ra58
20711221 - Acta Pharmacol Sin. 2010 Sep;31(9):1075-84
20110409 - Am J Pathol. 2010 Mar;176(3):1130-8
20622120 - Am J Physiol Lung Cell Mol Physiol. 2010 Oct;299(4):L559-66
23470622 - Am J Respir Cell Mol Biol. 2013 May;48(5):568-77
16248975 - J Biochem Mol Biol. 2002 Jan 31;35(1):106-15
19555855 - J Am Coll Cardiol. 2009 Jun 30;54(1 Suppl):S20-31
22904198 - Am J Respir Cell Mol Biol. 2012 Nov;47(5):718-26
22077069 - Am J Respir Crit Care Med. 2012 Feb 1;185(3):260-6
20515660 - Biochem Biophys Res Commun. 2010 Jul 2;397(3):486-92
17675370 - Am J Physiol Lung Cell Mol Physiol. 2007 Oct;293(4):L933-40
22005303 - J Clin Invest. 2011 Nov;121(11):4548-66
19584280 - Cancer Res. 2009 Aug 1;69(15):6232-40
12065324 - Circ Res. 2002 Jun 14;90(11):1205-13
18981303 - Circulation. 2008 Nov 18;118(21):2156-65
20031680 - Circ Cardiovasc Interv. 2008 Dec;1(3):209-16
11691993 - Science. 2001 Nov 2;294(5544):1102-5
21157483 - Nat Rev Mol Cell Biol. 2011 Jan;12(1):21-35
17597835 - PPAR Res. 2007;2007:29632
18945681 - J Biol Chem. 2008 Dec 12;283(50):34495-9
19036873 - Am J Physiol Lung Cell Mol Physiol. 2009 Mar;296(3):L489-99
17585072 - Circ Res. 2007 Aug 3;101(3):258-67
18382765 - J Clin Invest. 2008 May;118(5):1846-57
21482669 - Mol Cell Biol. 2011 Jun;31(12):2484-98
10615061 - Am J Respir Cell Mol Biol. 2000 Jan;22(1):15-25
12890675 - J Biol Chem. 2003 Oct 10;278(41):39422-7
21368105 - FASEB J. 2011 Jun;25(6):1922-33
19209957 - PLoS Biol. 2009 Feb 10;7(2):e38
15866171 - Mol Cell. 2005 Apr 29;18(3):283-93
20072130 - Nat Med. 2010 Feb;16(2):205-13
18083891 - Am J Physiol Heart Circ Physiol. 2008 Feb;294(2):H570-8
19150980 - J Biol Chem. 2009 Mar 20;284(12):8023-32
17319968 - Respir Res. 2007;8:15
19218192 - Am J Respir Crit Care Med. 2009 May 1;179(9):835-42
21331075 - Leukemia. 2011 May;25(5):781-91
20351066 - J Cell Biol. 2010 Apr 5;189(1):83-94
18775299 - Cell. 2008 Sep 5;134(5):703-7
17110594 - Circ Res. 2007 Jan 5;100(1):79-87
23355268 - FASEB J. 2013 May;27(5):1796-807
23476056 - Circ Res. 2013 Apr 12;112(8):1135-49
19331546 - Antioxid Redox Signal. 2009 Oct;11(10):2505-16
References_xml – ident: e_1_3_4_12_2
  doi: 10.1016/j.bbrc.2010.05.140
– ident: e_1_3_4_25_2
  doi: 10.1083/jcb.200909166
– ident: e_1_3_4_49_2
  doi: 10.1074/jbc.M900301200
– ident: e_1_3_4_36_2
  doi: 10.1074/jbc.M502876200
– ident: e_1_3_4_48_2
  doi: 10.1161/01.res.0000253094.03023.3f
– ident: e_1_3_4_15_2
  doi: 10.1016/j.cmet.2012.03.015
– ident: e_1_3_4_47_2
  doi: 10.2353/ajpath.2010.090832
– ident: e_1_3_4_18_2
  doi: 10.1161/circresaha.111.300171
– ident: e_1_3_4_2_2
  doi: 10.1016/j.jacc.2009.04.018
– ident: e_1_3_4_40_2
  doi: 10.1152/ajplung.00090.2010
– ident: e_1_3_4_43_2
  doi: 10.1172/JCI32503
– ident: e_1_3_4_7_2
  doi: 10.1038/nrm3025
– ident: e_1_3_4_11_2
  doi: 10.1164/ajrccm.163.2.2006093
– ident: e_1_3_4_37_2
  doi: 10.1161/circulationaha.108.787200
– ident: e_1_3_4_16_2
  doi: 10.1089/ars.2009.2599
– ident: e_1_3_4_29_2
  doi: 10.1161/CIRCINTERVENTIONS.108.830018
– ident: e_1_3_4_51_2
  doi: 10.1158/0008-5472.CAN-09-0299
– ident: e_1_3_4_22_2
  doi: 10.1172/JCI57734
– ident: e_1_3_4_31_2
  doi: 10.1165/rcmb.2012-0429OC
– ident: e_1_3_4_28_2
  doi: 10.1056/NEJMp038141
– ident: e_1_3_4_13_2
  doi: 10.1096/fj.12-222224
– ident: e_1_3_4_38_2
  doi: 10.1164/rccm.200809-1472OC
– ident: e_1_3_4_35_2
  doi: 10.1074/jbc.M305371200
– ident: e_1_3_4_20_2
  doi: 10.1128/MCB.01061-10
– ident: e_1_3_4_45_2
  doi: 10.1165/rcmb.2011-0418OC
– ident: e_1_3_4_8_2
  doi: 10.1016/j.cell.2008.08.021
– ident: e_1_3_4_6_2
  doi: 10.1164/rccm.201108-1536PP
– ident: e_1_3_4_19_2
  doi: 10.1038/leu.2011.20
– ident: e_1_3_4_50_2
  doi: 10.1371/journal.pbio.1000038
– ident: e_1_3_4_21_2
  doi: 10.1126/science.1063518
– ident: e_1_3_4_42_2
  doi: 10.1016/S0891-5849(01)00727-4
– ident: e_1_3_4_26_2
  doi: 10.1126/scitranslmed.3001327
– ident: e_1_3_4_24_2
  doi: 10.1038/onc.2011.328
– ident: e_1_3_4_32_2
  doi: 10.1038/aps.2010.139
– volume: 35
  start-page: 106
  year: 2002
  ident: e_1_3_4_27_2
  article-title: Akt: versatile mediator of cell survival and beyond.
  publication-title: J Biochem Mol Biol
– ident: e_1_3_4_30_2
  doi: 10.1152/ajplung.00310.2006
– ident: e_1_3_4_3_2
  doi: 10.1152/ajpheart.01324.2007
– ident: e_1_3_4_9_2
  doi: 10.1096/fj.10-175018
– ident: e_1_3_4_44_2
  doi: 10.1155/2007/29632
– ident: e_1_3_4_14_2
  doi: 10.1074/jbc.C800170200
– ident: e_1_3_4_10_2
  doi: 10.1186/1465-9921-8-15
– ident: e_1_3_4_34_2
  doi: 10.1016/j.molcel.2005.03.027
– ident: e_1_3_4_41_2
  doi: 10.1161/01.RES.0000020404.01971.2F
– ident: e_1_3_4_23_2
  doi: 10.1074/jbc.M109.096222
– ident: e_1_3_4_4_2
  doi: 10.1152/ajplung.00428.2006
– ident: e_1_3_4_46_2
  doi: 10.1038/nm.2091
– ident: e_1_3_4_17_2
  doi: 10.1152/ajplung.90488.2008
– ident: e_1_3_4_33_2
  doi: 10.1165/rcmb.2012-0446OC
– ident: e_1_3_4_5_2
  doi: 10.1165/ajrcmb.22.1.3536
– ident: e_1_3_4_39_2
  doi: 10.1161/circresaha.107.148015
– reference: 23476056 - Circ Res. 2013 Apr 12;112(8):1135-49
– reference: 19209957 - PLoS Biol. 2009 Feb 10;7(2):e38
– reference: 18945681 - J Biol Chem. 2008 Dec 12;283(50):34495-9
– reference: 20622120 - Am J Physiol Lung Cell Mol Physiol. 2010 Oct;299(4):L559-66
– reference: 20110409 - Am J Pathol. 2010 Mar;176(3):1130-8
– reference: 19036873 - Am J Physiol Lung Cell Mol Physiol. 2009 Mar;296(3):L489-99
– reference: 17319968 - Respir Res. 2007;8:15
– reference: 11179130 - Am J Respir Crit Care Med. 2001 Feb;163(2):498-502
– reference: 20702857 - Sci Transl Med. 2010 Aug 11;2(44):44ra58
– reference: 23668615 - Am J Respir Cell Mol Biol. 2013 Oct;49(4):609-18
– reference: 23470622 - Am J Respir Cell Mol Biol. 2013 May;48(5):568-77
– reference: 17675370 - Am J Physiol Lung Cell Mol Physiol. 2007 Oct;293(4):L933-40
– reference: 19555855 - J Am Coll Cardiol. 2009 Jun 30;54(1 Suppl):S20-31
– reference: 21482669 - Mol Cell Biol. 2011 Jun;31(12):2484-98
– reference: 17597835 - PPAR Res. 2007;2007:29632
– reference: 17526595 - Am J Physiol Lung Cell Mol Physiol. 2007 Sep;293(3):L548-54
– reference: 16248975 - J Biochem Mol Biol. 2002 Jan 31;35(1):106-15
– reference: 20022946 - J Biol Chem. 2010 Mar 12;285(11):7866-79
– reference: 22005303 - J Clin Invest. 2011 Nov;121(11):4548-66
– reference: 18775299 - Cell. 2008 Sep 5;134(5):703-7
– reference: 14523135 - N Engl J Med. 2003 Oct 2;349(14):1307-9
– reference: 11728818 - Free Radic Biol Med. 2001 Dec 1;31(11):1456-64
– reference: 22521878 - Cell Metab. 2012 May 2;15(5):725-38
– reference: 20351066 - J Cell Biol. 2010 Apr 5;189(1):83-94
– reference: 12890675 - J Biol Chem. 2003 Oct 10;278(41):39422-7
– reference: 20711221 - Acta Pharmacol Sin. 2010 Sep;31(9):1075-84
– reference: 18083891 - Am J Physiol Heart Circ Physiol. 2008 Feb;294(2):H570-8
– reference: 19331546 - Antioxid Redox Signal. 2009 Oct;11(10):2505-16
– reference: 10615061 - Am J Respir Cell Mol Biol. 2000 Jan;22(1):15-25
– reference: 22904198 - Am J Respir Cell Mol Biol. 2012 Nov;47(5):718-26
– reference: 18382765 - J Clin Invest. 2008 May;118(5):1846-57
– reference: 21331075 - Leukemia. 2011 May;25(5):781-91
– reference: 19150980 - J Biol Chem. 2009 Mar 20;284(12):8023-32
– reference: 12065324 - Circ Res. 2002 Jun 14;90(11):1205-13
– reference: 22077069 - Am J Respir Crit Care Med. 2012 Feb 1;185(3):260-6
– reference: 16027121 - J Biol Chem. 2005 Sep 16;280(37):32081-9
– reference: 21157483 - Nat Rev Mol Cell Biol. 2011 Jan;12(1):21-35
– reference: 21368105 - FASEB J. 2011 Jun;25(6):1922-33
– reference: 17585072 - Circ Res. 2007 Aug 3;101(3):258-67
– reference: 20031680 - Circ Cardiovasc Interv. 2008 Dec;1(3):209-16
– reference: 21804606 - Oncogene. 2012 Mar 15;31(11):1419-30
– reference: 20515660 - Biochem Biophys Res Commun. 2010 Jul 2;397(3):486-92
– reference: 23355268 - FASEB J. 2013 May;27(5):1796-807
– reference: 18981303 - Circulation. 2008 Nov 18;118(21):2156-65
– reference: 15866171 - Mol Cell. 2005 Apr 29;18(3):283-93
– reference: 17110594 - Circ Res. 2007 Jan 5;100(1):79-87
– reference: 19584280 - Cancer Res. 2009 Aug 1;69(15):6232-40
– reference: 11691993 - Science. 2001 Nov 2;294(5544):1102-5
– reference: 20072130 - Nat Med. 2010 Feb;16(2):205-13
– reference: 19218192 - Am J Respir Crit Care Med. 2009 May 1;179(9):835-42
SSID ssj0006375
Score 2.522587
Snippet BACKGROUND—Enhanced proliferation, resistance to apoptosis, and metabolic shift to glycolysis of pulmonary arterial vascular smooth muscle cells (PAVSMCs) are...
Enhanced proliferation, resistance to apoptosis, and metabolic shift to glycolysis of pulmonary arterial vascular smooth muscle cells (PAVSMCs) are key...
SourceID proquest
pubmed
pascalfrancis
crossref
wolterskluwer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 864
SubjectTerms Animals
Antibacterial agents
Antibiotics. Antiinfectious agents. Antiparasitic agents
Biological and medical sciences
Blood and lymphatic vessels
Cardiology. Vascular system
Carrier Proteins - metabolism
Cell Proliferation
Cell Survival - physiology
Cells, Cultured
Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous
Energy Metabolism - physiology
Familial Primary Pulmonary Hypertension
Female
Glycolysis - physiology
Humans
Hypertension, Pulmonary - metabolism
Hypertension, Pulmonary - pathology
Hypoxia - metabolism
Hypoxia - pathology
Male
Mechanistic Target of Rapamycin Complex 2
Medical sciences
Multiprotein Complexes - metabolism
Muscle, Smooth, Vascular - cytology
Muscle, Smooth, Vascular - metabolism
Pharmacology. Drug treatments
Pneumology
Pulmonary Artery - cytology
Pulmonary Artery - metabolism
Pulmonary hypertension. Acute cor pulmonale. Pulmonary embolism. Pulmonary vascular diseases
Rapamycin-Insensitive Companion of mTOR Protein
Rats
Rats, Sprague-Dawley
Signal Transduction - physiology
TOR Serine-Threonine Kinases - metabolism
Title Mammalian Target of Rapamycin Complex 2 (mTORC2) Coordinates Pulmonary Artery Smooth Muscle Cell Metabolism, Proliferation, and Survival in Pulmonary Arterial Hypertension
URI https://www.ncbi.nlm.nih.gov/pubmed/24270265
https://www.proquest.com/docview/1502335944
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9swEBZZB2UwxtbuJXspKoyxkbqLHVtxPpbQNtv6AiWBsC9GlmQaFschjrNlf2m_aP9md5LtOF3Gun0xQUQv-B5Jd-fn7gh53WI8tJXili-Fa7mceVanpaQlmtJx_JBzpuPWzi9Yb-B-HHrDWu1nhbWUzcND8X1jXMn_SBXaQK4YJfsPki0HhQb4DfKFJ0gYnreS8TmPY-OnMIRu1Pywonm8FDm9fKy-NRzUIuP-5VXXQR-ASMDeHE1Qx2xMszEsFolzmtq5bKRxAqJrxFkKUzXQq481pgEoY2RogDimWOUnUgY3BfUzzeDAWej0HTeHRIf8Ndi6M82UzzFQZEYYzURePWxTUaCKk-I0mWB4WLLQR2Q8msPwq7sik7MlT6-ThVaE-xwPLb5i734emZLbvQQ_WJR74XokuYVFlNOCS_CJJ7NR1Q1iuzqs3Kue3A5gzTOZkQ7VhrbiuM8Xb3DtVw5v3-RT__1SYXipdD9cdQdnJkVx7whr4RyiPmwKzqwn8r64DE4GZ2dB_3jYv0PuOmDBYHGN0-GKfcRaOgd0ucJtsp9P9f6PE62pTvenPIVdHJnyK5vsI_jP1wQpF-kXHXFR0Zv6D8mD3OChRwa9j0hNTXbI7hHgL4mX9A3VFGT9bWeHbJ_nTI9d8qPENjXYpklES2zTHNvUoW8Nst_RCq5pCUJqcE0NrqnBNUVc0xWuD-gaqg8oYJoWmKYw243hANO0iunHZHBy3O_2rLywiCU80GitCF5n2Ak7fgQGhvDatmjaoQJFWbBOMwp9YUtXeh7rhEI5TSmU73JbqrYK_ciNQKN_QrYmyUQ9I1Q6tvJlm7lt0MvtyOESE2CGSA6QOEyd-IXMApFn3cfiL-NAW9_MDtbFDW2twIi7Tpyy69SknrlNp701YJQ90bUC2jqrk_0CKQHcJPjC-UQlWRqAaei0Wl7HhUU_NRBa9XYxbpV5dcLWMBWYaO2_r-v5LaZ9Qe6tdvZLsjWfZeoVqPzzcE9vnl9gIQUZ
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mammalian+target+of+rapamycin+complex+2+%28mTORC2%29+coordinates+pulmonary+artery+smooth+muscle+cell+metabolism%2C+proliferation%2C+and+survival+in+pulmonary+arterial+hypertension&rft.jtitle=Circulation+%28New+York%2C+N.Y.%29&rft.au=Goncharov%2C+Dmitry+A&rft.au=Kudryashova%2C+Tatiana+V&rft.au=Ziai%2C+Houman&rft.au=Ihida-Stansbury%2C+Kaori&rft.date=2014-02-25&rft.issn=1524-4539&rft.eissn=1524-4539&rft.volume=129&rft.issue=8&rft.spage=864&rft_id=info:doi/10.1161%2FCIRCULATIONAHA.113.004581&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7322&client=summon