Review of Flexible Temperature Sensing Networks for Wearable Physiological Monitoring
Physiological temperature varies temporally and spatially. Accurate and real‐time detection of localized temperature changes in biological tissues regardless of large deformation is crucial to understand thermal principle of homeostasis, to assess sophisticated health conditions, and further to offe...
Saved in:
Published in | Advanced healthcare materials Vol. 6; no. 12 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Physiological temperature varies temporally and spatially. Accurate and real‐time detection of localized temperature changes in biological tissues regardless of large deformation is crucial to understand thermal principle of homeostasis, to assess sophisticated health conditions, and further to offer possibilities of building a smart healthcare and medical system. Additionally, continuous temperature mapping in flexible and stretchable formats opens up many other potential areas, such as artificially electronic skins and reflection of emotional changes. This review exploits a comprehensive investigation onto recent advances in flexible temperature sensors, stretchable sensor networks, and platforms constructed in soft and compliant formats for wearable physiological monitoring. The most recent examples of flexible temperature sensors are first discussed regarding to their materials, structures, electrical and mechanical properties; temperature sensing network technologies in new materials and structural designs are then presented based on platforms comprised of multiple physical sensors and stretchable electronics. Finally, wearable applications of the sensing network are described, such as detection of human activities, monitoring of health conditions, and emotion‐related bodily sensations. Conclusions are made with emphasis on critical issues and new trends in the field of wearable temperature sensor network technologies.
Accurate and real‐time detection of localized temperature changes in biological tissues regardless of large deformation is crucial to understand thermal principle of homeostasis and to assess sophisticated health conditions. This review exploits recent advances in flexible temperature sensors, stretchable sensor networks, and platforms constructed in soft and compliant formats for wearable physiological monitoring. |
---|---|
AbstractList | Physiological temperature varies temporally and spatially. Accurate and real‐time detection of localized temperature changes in biological tissues regardless of large deformation is crucial to understand thermal principle of homeostasis, to assess sophisticated health conditions, and further to offer possibilities of building a smart healthcare and medical system. Additionally, continuous temperature mapping in flexible and stretchable formats opens up many other potential areas, such as artificially electronic skins and reflection of emotional changes. This review exploits a comprehensive investigation onto recent advances in flexible temperature sensors, stretchable sensor networks, and platforms constructed in soft and compliant formats for wearable physiological monitoring. The most recent examples of flexible temperature sensors are first discussed regarding to their materials, structures, electrical and mechanical properties; temperature sensing network technologies in new materials and structural designs are then presented based on platforms comprised of multiple physical sensors and stretchable electronics. Finally, wearable applications of the sensing network are described, such as detection of human activities, monitoring of health conditions, and emotion‐related bodily sensations. Conclusions are made with emphasis on critical issues and new trends in the field of wearable temperature sensor network technologies. Physiological temperature varies temporally and spatially. Accurate and real-time detection of localized temperature changes in biological tissues regardless of large deformation is crucial to understand thermal principle of homeostasis, to assess sophisticated health conditions, and further to offer possibilities of building a smart healthcare and medical system. Additionally, continuous temperature mapping in flexible and stretchable formats opens up many other potential areas, such as artificially electronic skins and reflection of emotional changes. This review exploits a comprehensive investigation onto recent advances in flexible temperature sensors, stretchable sensor networks, and platforms constructed in soft and compliant formats for wearable physiological monitoring. The most recent examples of flexible temperature sensors are first discussed regarding to their materials, structures, electrical and mechanical properties; temperature sensing network technologies in new materials and structural designs are then presented based on platforms comprised of multiple physical sensors and stretchable electronics. Finally, wearable applications of the sensing network are described, such as detection of human activities, monitoring of health conditions, and emotion-related bodily sensations. Conclusions are made with emphasis on critical issues and new trends in the field of wearable temperature sensor network technologies.Physiological temperature varies temporally and spatially. Accurate and real-time detection of localized temperature changes in biological tissues regardless of large deformation is crucial to understand thermal principle of homeostasis, to assess sophisticated health conditions, and further to offer possibilities of building a smart healthcare and medical system. Additionally, continuous temperature mapping in flexible and stretchable formats opens up many other potential areas, such as artificially electronic skins and reflection of emotional changes. This review exploits a comprehensive investigation onto recent advances in flexible temperature sensors, stretchable sensor networks, and platforms constructed in soft and compliant formats for wearable physiological monitoring. The most recent examples of flexible temperature sensors are first discussed regarding to their materials, structures, electrical and mechanical properties; temperature sensing network technologies in new materials and structural designs are then presented based on platforms comprised of multiple physical sensors and stretchable electronics. Finally, wearable applications of the sensing network are described, such as detection of human activities, monitoring of health conditions, and emotion-related bodily sensations. Conclusions are made with emphasis on critical issues and new trends in the field of wearable temperature sensor network technologies. Physiological temperature varies temporally and spatially. Accurate and real‐time detection of localized temperature changes in biological tissues regardless of large deformation is crucial to understand thermal principle of homeostasis, to assess sophisticated health conditions, and further to offer possibilities of building a smart healthcare and medical system. Additionally, continuous temperature mapping in flexible and stretchable formats opens up many other potential areas, such as artificially electronic skins and reflection of emotional changes. This review exploits a comprehensive investigation onto recent advances in flexible temperature sensors, stretchable sensor networks, and platforms constructed in soft and compliant formats for wearable physiological monitoring. The most recent examples of flexible temperature sensors are first discussed regarding to their materials, structures, electrical and mechanical properties; temperature sensing network technologies in new materials and structural designs are then presented based on platforms comprised of multiple physical sensors and stretchable electronics. Finally, wearable applications of the sensing network are described, such as detection of human activities, monitoring of health conditions, and emotion‐related bodily sensations. Conclusions are made with emphasis on critical issues and new trends in the field of wearable temperature sensor network technologies. Accurate and real‐time detection of localized temperature changes in biological tissues regardless of large deformation is crucial to understand thermal principle of homeostasis and to assess sophisticated health conditions. This review exploits recent advances in flexible temperature sensors, stretchable sensor networks, and platforms constructed in soft and compliant formats for wearable physiological monitoring. |
Author | Li, Qiao Zhang, Li‐Na Tao, Xiao‐Ming Ding, Xin |
Author_xml | – sequence: 1 givenname: Qiao surname: Li fullname: Li, Qiao organization: Donghua University – sequence: 2 givenname: Li‐Na surname: Zhang fullname: Zhang, Li‐Na organization: Donghua University – sequence: 3 givenname: Xiao‐Ming surname: Tao fullname: Tao, Xiao‐Ming email: xiao-ming.tao@polyu.edu.hk organization: The Hong Kong Polytechnic University – sequence: 4 givenname: Xin surname: Ding fullname: Ding, Xin email: xding@dhu.edu.cn organization: Donghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28547895$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0UtP3DAUBWCroirPbZdVJDbdzNTXsR17iWh5SLxEQV1GTnIDpk482EmH-fd4NDCVkBDe2Ivv-Fo-22Sj9z0S8hXoFChlP0xz300ZBUkhL-AT2WKg2YRJoTfWZ043yV6MDzQtKUAq-EI2mRK8UFpskdtr_Gdxnvk2O3L4ZCuH2Q12MwxmGANmv7GPtr_LLnCY-_A3Zq0P2R80wSzl1f0iWu_8na2Ny859bwcfEt8ln1vjIu697Dvk9ujXzeHJ5Ozy-PTw4GxSC1AwyUFz0TDT1LwxbU6ZYiBElTNd54pVOXCDSrNCt5WmnCsDEiVqUUhuisLofId8X907C_5xxDiUnY01Omd69GMsQdMcpBSqSHT_DX3wY-jT65KCNDYhmdS3FzVWHTblLNjOhEX5-mEJTFegDj7GgO2aAC2XpZTLUsp1KSnA3wRqO5jB-n4Ixrr3Y3oVm1uHiw-GlAc_T87_Z58BzqGfGA |
CitedBy_id | crossref_primary_10_1002_adfm_202407759 crossref_primary_10_1016_j_sna_2020_112282 crossref_primary_10_1016_j_measurement_2021_109391 crossref_primary_10_20517_ss_2024_05 crossref_primary_10_1002_adma_202002640 crossref_primary_10_1021_acsaelm_0c01017 crossref_primary_10_1016_j_jpowsour_2024_235991 crossref_primary_10_1021_acsmaterialslett_3c00144 crossref_primary_10_1063_5_0217328 crossref_primary_10_1002_adhm_201800074 crossref_primary_10_1016_j_foodres_2023_113464 crossref_primary_10_1088_1742_6596_2109_1_012017 crossref_primary_10_1002_admt_202201814 crossref_primary_10_1063_5_0215386 crossref_primary_10_1002_adfm_202314433 crossref_primary_10_1007_s11432_020_3175_6 crossref_primary_10_1021_acssensors_3c00630 crossref_primary_10_1039_D4ME00114A crossref_primary_10_1021_acs_nanolett_4c05235 crossref_primary_10_1088_1361_665X_aac0b8 crossref_primary_10_1016_j_ijmecsci_2017_11_006 crossref_primary_10_1039_C9TB02531F crossref_primary_10_1016_j_xphs_2019_04_025 crossref_primary_10_1002_admt_202201391 crossref_primary_10_1002_adfm_202419057 crossref_primary_10_1088_2058_8585_acaabc crossref_primary_10_1002_adhm_201901321 crossref_primary_10_1016_j_mtcomm_2019_100546 crossref_primary_10_1002_adhm_202303921 crossref_primary_10_1039_D0TC00372G crossref_primary_10_1002_admt_202201264 crossref_primary_10_1021_acsanm_2c02202 crossref_primary_10_1002_admt_202201020 crossref_primary_10_1016_j_jallcom_2025_179831 crossref_primary_10_1016_j_nanoen_2020_105155 crossref_primary_10_1002_sstr_202200080 crossref_primary_10_20517_ss_2024_09 crossref_primary_10_1021_acs_accounts_7b00604 crossref_primary_10_3390_app11146562 crossref_primary_10_1016_j_sna_2019_04_045 crossref_primary_10_1002_adma_202400110 crossref_primary_10_1021_acsnano_1c07388 crossref_primary_10_1002_admt_202100107 crossref_primary_10_1038_s41598_019_50247_4 crossref_primary_10_1002_marc_202300246 crossref_primary_10_1007_s40843_024_3111_2 crossref_primary_10_1016_j_cnc_2022_10_005 crossref_primary_10_1007_s10973_020_09467_4 crossref_primary_10_1016_j_matdes_2019_108451 crossref_primary_10_1109_JIOT_2022_3156608 crossref_primary_10_3390_s19173745 crossref_primary_10_1016_j_apmt_2025_102665 crossref_primary_10_1088_2058_8585_acdca1 crossref_primary_10_1021_acssensors_8b00249 crossref_primary_10_1142_S1793292020501453 crossref_primary_10_1039_D1TA06978K crossref_primary_10_3390_s18124271 crossref_primary_10_1002_eom2_12083 crossref_primary_10_1016_j_heliyon_2024_e26947 crossref_primary_10_1021_acsami_1c16514 crossref_primary_10_1038_s41598_023_33991_6 crossref_primary_10_1002_adma_201902062 crossref_primary_10_1109_TIM_2023_3334331 crossref_primary_10_1007_s12274_021_3906_x crossref_primary_10_1002_advs_202405003 crossref_primary_10_1109_RBME_2018_2887301 crossref_primary_10_1002_adsr_202200031 crossref_primary_10_1038_s41598_020_59432_2 crossref_primary_10_1088_2058_8585_ac32a9 crossref_primary_10_1002_advs_202201525 crossref_primary_10_1002_admt_201800574 crossref_primary_10_1007_s11814_024_00227_w crossref_primary_10_1177_07349041221079004 crossref_primary_10_1002_adfm_202417205 crossref_primary_10_1002_adhm_201900379 crossref_primary_10_3390_ani14010136 crossref_primary_10_1088_2752_5724_ad305e crossref_primary_10_1016_j_inoche_2024_113219 crossref_primary_10_1007_s12274_020_3082_4 crossref_primary_10_1073_pnas_2117962119 crossref_primary_10_1021_acsnano_4c09062 crossref_primary_10_1016_j_sna_2018_05_024 crossref_primary_10_1002_admt_202400149 crossref_primary_10_1002_adfm_202305252 crossref_primary_10_1039_D2CS00207H crossref_primary_10_1177_00405175211057132 crossref_primary_10_1109_MIM_2020_9200876 crossref_primary_10_3390_s20236835 crossref_primary_10_1016_j_ijleo_2024_172024 crossref_primary_10_1088_2631_7990_aca44d crossref_primary_10_1002_adma_201901924 crossref_primary_10_1021_acs_langmuir_4c00908 crossref_primary_10_1002_admt_202101182 crossref_primary_10_1002_aelm_201800605 crossref_primary_10_3390_diagnostics13010145 crossref_primary_10_1007_s10854_023_10683_5 crossref_primary_10_1002_admt_201800628 crossref_primary_10_1016_j_carbpol_2022_120052 crossref_primary_10_1039_D0TA09799C crossref_primary_10_1002_adhm_202000380 crossref_primary_10_1002_mame_202300379 crossref_primary_10_1007_s00466_020_01856_8 crossref_primary_10_1088_1361_6463_acaf38 crossref_primary_10_1016_j_jpowsour_2021_230142 crossref_primary_10_1002_adfm_202007254 crossref_primary_10_1002_cnma_202000361 crossref_primary_10_1109_JFLEX_2022_3227528 crossref_primary_10_3390_molecules30020396 crossref_primary_10_1016_j_optmat_2024_115927 crossref_primary_10_1088_1361_665X_ac50f3 crossref_primary_10_1002_aelm_202001084 crossref_primary_10_1002_smll_202103734 crossref_primary_10_1016_j_isci_2023_107303 crossref_primary_10_1021_acs_chemrev_8b00573 crossref_primary_10_1002_adma_201902670 crossref_primary_10_1016_j_measen_2023_100692 crossref_primary_10_1016_j_cej_2021_133782 crossref_primary_10_1021_acssensors_1c02606 crossref_primary_10_1002_adfm_202406651 crossref_primary_10_3390_bios13060572 crossref_primary_10_1016_j_ijbiomac_2023_128774 crossref_primary_10_54097_hset_v45i_7333 crossref_primary_10_1002_adma_202403150 crossref_primary_10_1063_1_5123680 crossref_primary_10_1039_D1MH00018G crossref_primary_10_1142_S1793604724510263 crossref_primary_10_1109_RBME_2021_3121480 crossref_primary_10_1002_aisy_202000117 crossref_primary_10_1002_adfm_201804604 crossref_primary_10_1088_2516_1091_ac2eae crossref_primary_10_1002_adom_202402077 crossref_primary_10_1002_aisy_202300631 crossref_primary_10_1002_adma_202107479 crossref_primary_10_1002_smll_202008079 crossref_primary_10_1021_acsnano_9b07874 crossref_primary_10_1088_2058_8585_acd860 crossref_primary_10_1002_admi_201902133 crossref_primary_10_1002_admt_201901155 crossref_primary_10_1016_j_mtbio_2025_101663 crossref_primary_10_1016_j_sna_2023_114224 crossref_primary_10_1109_JSEN_2021_3088466 crossref_primary_10_1002_adfm_202103375 crossref_primary_10_1016_j_mattod_2024_09_001 crossref_primary_10_1002_admt_201900327 crossref_primary_10_1002_admt_202300297 crossref_primary_10_1002_adhm_202401503 crossref_primary_10_1021_acsami_0c07649 crossref_primary_10_3390_polym11101549 crossref_primary_10_1002_chem_201901924 crossref_primary_10_1016_j_jtherbio_2022_103405 crossref_primary_10_1016_j_addma_2024_104510 crossref_primary_10_1016_j_eml_2020_100639 crossref_primary_10_1186_s11671_020_03428_4 crossref_primary_10_1039_C8RA06664G crossref_primary_10_1149_2754_2734_ac82bf crossref_primary_10_3390_s18051400 crossref_primary_10_1002_adfm_202210084 crossref_primary_10_3390_polym16020243 crossref_primary_10_1016_j_apsusc_2023_157251 crossref_primary_10_1002_adhm_202100221 crossref_primary_10_1002_admt_202300189 crossref_primary_10_1016_j_matlet_2025_138372 crossref_primary_10_1017_wtc_2020_3 crossref_primary_10_1016_j_flatc_2023_100521 crossref_primary_10_1002_adma_201901958 crossref_primary_10_46670_JSST_2022_31_2_71 crossref_primary_10_1002_eom2_12253 crossref_primary_10_1109_JSEN_2024_3432093 crossref_primary_10_1126_sciadv_abj8958 crossref_primary_10_1021_acsami_1c15014 crossref_primary_10_1021_acsnano_1c08993 crossref_primary_10_1016_j_trac_2023_117509 crossref_primary_10_1002_adfm_202109265 crossref_primary_10_1021_acsami_4c11251 crossref_primary_10_1002_adsr_202400100 crossref_primary_10_1038_s41378_021_00271_0 crossref_primary_10_1016_j_compositesa_2022_107269 crossref_primary_10_1021_acsami_8b16139 crossref_primary_10_1039_D3MH00056G crossref_primary_10_4018_IJRQEH_297089 crossref_primary_10_1016_j_nanoen_2018_06_059 crossref_primary_10_1002_smll_202405301 crossref_primary_10_1007_s10853_021_06248_8 crossref_primary_10_1039_C9TA09158K crossref_primary_10_1039_D4NR03423F crossref_primary_10_1002_admt_202201088 crossref_primary_10_1007_s11665_021_05658_8 crossref_primary_10_1038_s41598_022_18321_6 crossref_primary_10_1002_adma_201805921 crossref_primary_10_1016_j_mee_2023_112055 crossref_primary_10_1088_2053_1591_ab706d crossref_primary_10_1002_aelm_202000451 crossref_primary_10_1007_s10854_024_12545_0 crossref_primary_10_1007_s41664_023_00264_0 crossref_primary_10_1021_acs_chemrev_3c00502 crossref_primary_10_1016_j_mtchem_2023_101696 crossref_primary_10_1002_adma_201904911 crossref_primary_10_1002_admt_202300898 crossref_primary_10_1016_j_coco_2022_101131 crossref_primary_10_1016_j_cej_2025_159478 crossref_primary_10_1109_ACCESS_2022_3176822 crossref_primary_10_3389_fbioe_2023_1335188 crossref_primary_10_1016_j_talanta_2024_127085 crossref_primary_10_3390_s23146586 crossref_primary_10_1016_j_addma_2022_102996 crossref_primary_10_1007_s42114_022_00583_3 crossref_primary_10_20517_ss_2024_53 crossref_primary_10_1016_j_microc_2024_110746 crossref_primary_10_1002_adfm_202010824 crossref_primary_10_1016_j_cej_2024_158778 crossref_primary_10_3390_nano13050852 crossref_primary_10_3390_electronics8070768 crossref_primary_10_1002_cnma_202100496 crossref_primary_10_1016_j_sna_2024_115364 crossref_primary_10_1002_advs_202305241 crossref_primary_10_1021_acs_accounts_8b00502 crossref_primary_10_3390_ma13061271 crossref_primary_10_3390_s20185188 crossref_primary_10_1002_adhm_201700889 crossref_primary_10_20517_ss_2024_60 crossref_primary_10_1039_D3TB00099K crossref_primary_10_1007_s11227_024_06629_1 crossref_primary_10_1021_acsami_3c13700 crossref_primary_10_3389_fchem_2020_00194 crossref_primary_10_1016_j_mseb_2022_115856 crossref_primary_10_1002_aelm_202000267 crossref_primary_10_1016_j_sna_2025_116303 crossref_primary_10_1016_j_sna_2024_115018 crossref_primary_10_1039_D4AY01127A crossref_primary_10_1016_j_compositesa_2021_106350 crossref_primary_10_1039_C9NR04233D crossref_primary_10_1088_1674_4926_24100003 crossref_primary_10_1109_JSEN_2024_3456133 crossref_primary_10_1021_acsami_3c01160 crossref_primary_10_1016_j_vacuum_2024_113455 crossref_primary_10_1039_D3RA08471J crossref_primary_10_1039_D2NR06236D crossref_primary_10_1039_D1NR05068K crossref_primary_10_1002_adfm_202501683 crossref_primary_10_3390_chemosensors10080309 crossref_primary_10_1016_j_mee_2023_112015 |
Cites_doi | 10.1016/j.matpr.2016.02.005 10.1016/j.sna.2008.05.004 10.1002/adma.201201482 10.1002/adma.201401449 10.1038/nmat4731 10.1016/j.jpowsour.2010.06.051 10.3390/s111009942 10.1038/srep12705 10.1002/adma.201502200 10.1021/nn103189z 10.1039/b516741h 10.1109/TITB.2009.2038484 10.1002/adma.201504150 10.1063/1.2963364 10.1016/j.synthmet.2015.05.018 10.1088/0957-4484/21/8/085708 10.1109/50.580812 10.1016/j.sna.2005.10.026 10.1002/9783527691005 10.1109/JSEN.2014.2350077 10.1039/c2ee02414d 10.1002/adma.201304248 10.1002/adma.201000515 10.1109/TITB.2005.858429 10.1533/9781845697815 10.1063/1.4746397 10.1038/srep25784 10.1126/science.1154367 10.1063/1.1756194 10.1038/srep07887 10.1038/srep24270 10.1016/j.mseb.2015.11.003 10.1002/adma.201600040 10.1002/adma.201602541 10.1007/s12274-012-0272-8 10.1016/j.sna.2007.10.077 10.1007/s10800-015-0859-3 10.1002/adma.200900405 10.1149/05002.0301ecst 10.1088/0964-1726/23/1/015001 10.1002/1521-4095(200009)12:17<1249::AID-ADMA1249>3.0.CO;2-Y 10.1002/adma.201504958 10.3390/s100403597 10.3390/s16010099 10.1063/1.4803165 10.1007/BF02699704 10.1002/adfm.201505070 10.1038/nmat2834 10.1088/0964-1726/23/5/053001 10.1002/adma.201305182 10.1002/adma.201204082 10.1016/S0014-3057(98)00099-8 10.1177/0040517511399965 10.1002/pat.652 10.1073/pnas.1515650112 10.1109/TCPMT.2012.2185792 10.1002/smll.201303942 10.1039/c3nr33633f 10.1109/BSN.2009.51 10.1080/00405000.2012.664867 10.1080/02533839.2002.9670736 10.1002/smll.200900934 10.1002/adfm.201404535 10.1038/srep24771 10.1002/adma.201504104 10.1177/0040517507081314 10.1177/0040517507080679 10.1038/srep02609 10.1039/C5RA00871A 10.1088/0960-1317/7/3/017 10.1063/1.1806275 10.1109/LED.2004.825190 10.1002/3527603344 10.1039/c0sm00579g 10.1038/nnano.2014.38 10.1109/TIFS.2009.2019156 10.1007/978-3-540-70994-7_5 10.1039/b614793c 10.1002/adma.201400633 10.1016/j.mejo.2007.01.022 10.1126/science.1121401 10.1021/nl901450q 10.1177/1528083712438069 10.3390/s130811114 10.3390/fib1010002 10.1002/smll.200900853 10.1002/adma.201603527 10.1039/C5RA03110A 10.1021/nl0706244 10.1016/j.sna.2014.03.025 10.1088/0022-3727/45/10/103001 10.1002/adhm.201400647 10.1007/s00170-009-1940-z 10.1002/adma.201202728 10.1039/C4RA01511H 10.1021/nl403941a 10.1098/rspa.2014.0472 10.3390/photonics3020040 10.1021/nn9001769 10.1016/S1452-3981(23)14365-3 10.1039/c1ee02421c 10.1557/PROC-0920-S05-05 10.1109/JPROC.2005.851502 10.1016/j.ijleo.2015.04.012 10.1109/JSEN.2003.815771 10.1063/1.3555433 10.1002/adma.201602994 10.1177/0142331207070389 10.1364/OE.21.003213 10.1038/nnano.2011.36 10.1016/j.sna.2012.06.031 10.1109/JMEMS.2007.908437 10.1038/srep08603 10.1152/jappl.1998.85.1.5 10.1108/09556220710741704 10.1002/adma.201504244 10.1063/1.3268464 10.1109/LED.2004.839227 10.1063/1.3256185 10.1177/0748730403261560 10.1016/S0020-7683(08)00168-6 10.1038/nmat3779 10.1038/nmat3542 10.3390/s140711957 10.1109/TADVP.2007.898636 10.1038/nature19100 10.1038/s41598-016-0001-8 10.1063/1.2222339 10.1108/09556220710717053 10.1145/2370216.2370348 10.1126/sciadv.1500661 10.1109/LED.2006.879029 10.1002/adma.201004692 10.1177/0040517512468813 10.1063/1.4742728 10.1109/TADVP.2003.817329 10.1016/j.sna.2006.07.019 10.1002/adfm.201000900 10.1007/s10409-010-0384-x 10.1073/pnas.0905723106 10.1002/adhm.201500110 10.1063/1.4953458 10.1002/adfm.200801065 10.1002/adma.200306107 10.1002/adma.201670191 10.1007/BF01418152 10.1002/adma.201200644 10.1088/0957-0233/27/2/025105 10.1002/adma.201504659 10.1002/adma.201504236 10.1002/adfm.201600706 10.1002/adma.201601422 10.3390/s91209533 10.1002/adma.201002159 10.1002/adfm.201600713 10.1063/1.1565683 10.1073/pnas.1321664111 10.1016/j.nanoen.2016.10.054 10.1073/pnas.0502392102 10.1109/JSEN.2001.923586 10.1002/smll.201600952 10.1038/nphoton.2013.242 10.1002/adma.201504245 10.1016/j.cis.2005.05.002 10.1021/nl202000u 10.1109/LAWP.2012.2207941 10.1109/JSEN.2014.2375203 10.1002/adma.201302240 10.1038/srep11505 10.1002/adfm.201202405 10.1016/S0266-3538(00)00191-3 10.3390/s100907934 10.1088/0967-3334/31/2/009 10.1147/sj.393.0840 10.1016/j.mee.2007.08.004 10.1115/1.2936922 10.1021/la301775d 10.1063/1.4789795 10.3390/s110403706 10.1364/OE.24.001002 10.1016/j.jnn.2016.01.003 10.1002/adhm.201400546 10.1016/j.microrel.2008.03.025 10.1063/1.4928041 10.1002/adma.201603878 10.1002/adma.201302869 10.1002/adma.200490017 10.1002/adma.201505118 10.1038/ncomms2553 10.1038/ncomms2832 10.1002/admt.201600175 10.1063/1.2817234 10.1002/adma.201400842 10.1073/pnas.0807476105 10.1115/1.1516810 10.1063/1.2955829 10.1016/j.ijsolstr.2012.07.024 10.1002/adfm.201503277 10.1063/1.3148245 10.1557/mrs2003.170 10.1038/nmat2879 10.1002/adfm.201203802 10.1016/j.concog.2015.04.003 10.1002/adfm.201504755 10.1016/j.mseb.2009.07.014 10.1002/adfm.201600856 10.1016/S0010-4825(03)00086-6 10.1038/srep01291 10.4028/www.scientific.net/KEM.417-418.9 10.1002/adma.201100144 10.1088/0957-4484/24/16/165401 10.1108/03056120910928699 10.1002/adma.200801788 10.1039/c3ee41063c 10.1088/0957-0233/25/2/025006 10.1002/adma.200904054 10.1177/004051750407401011 10.1038/nnano.2011.184 10.3390/mi7120206 10.3390/s150510166 10.1109/TCPMT.2012.2189770 10.1002/adma.201501408 10.1038/ncomms5938 10.1557/mrs.2012.36 10.1002/app.42979 10.1002/adma.201504441 10.1039/c3ra41124a 10.1038/nnano.2006.131 10.1073/pnas.0902160106 10.1177/0040517510365948 10.1002/cssc.201300241 10.1109/JSEN.2011.2166064 10.1002/adma.201601186 10.1073/pnas.0401918101 10.1016/j.nanoen.2016.11.012 10.1063/1.3624848 10.1088/0022-3727/46/10/105305 10.1177/004051750407401103 10.1109/LED.2011.2168378 10.1016/j.sna.2010.10.018 10.1088/0960-1317/23/3/035040 10.3390/s90705068 10.1126/science.1182383 10.1002/adma.200600646 10.1109/LED.2007.897887 10.1063/1.2201874 10.1002/adma.201500582 10.1116/1.3168555 10.1002/adma.201204396 10.1007/s10956-012-9428-2 10.1126/science.1160309 10.1116/1.1756879 10.1109/TITB.2009.2038904 10.1002/hyp.7937 |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QP 7QQ 7SC 7SE 7SP 7SR 7T5 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D 7X8 |
DOI | 10.1002/adhm.201601371 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Immunology Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Oncogenes and Growth Factors Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Computer and Information Systems Abstracts Professional Immunology Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2192-2659 |
EndPage | n/a |
ExternalDocumentID | 28547895 10_1002_adhm_201601371 ADHM201601371 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Science Foundation of China funderid: 51603039 – fundername: Initial Research Funds for Young Teachers of Donghua University – fundername: Key Laboratory of Textile Science and Technology – fundername: Ministry of Education funderid: KLTST201623 – fundername: Fundamental Research Funds for the Central Universities |
GroupedDBID | 05W 0R~ 1OC 33P 53G 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAIPD AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABLJU ABQWH ABXGK ACAHQ ACCFJ ACCZN ACGFS ACGOF ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADBTR ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI C45 D-A D-B DCZOG DRFUL DRMAN DRSTM EBD EBS EJD EMOBN G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXMAN MXSTM MY. MY~ O9- OVD P2W PQQKQ ROL SUPJJ SV3 TEORI WBKPD WOHZO WXSBR WYJ ZZTAW 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION GODZA CGR CUY CVF ECM EIF NPM 7QF 7QP 7QQ 7SC 7SE 7SP 7SR 7T5 7TA 7TB 7TM 7TO 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c5181-31945d2adc4daf30282155b329c382b314ae89279fb90448a16e6e95764a77a93 |
ISSN | 2192-2640 2192-2659 |
IngestDate | Fri Jul 11 02:38:52 EDT 2025 Sun Jul 13 03:25:09 EDT 2025 Wed Feb 19 02:41:40 EST 2025 Thu Apr 24 23:09:23 EDT 2025 Tue Jul 01 03:06:25 EDT 2025 Wed Jan 22 16:58:07 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | wearable sensor networks temperature sensors stretchable electronics healthcare |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5181-31945d2adc4daf30282155b329c382b314ae89279fb90448a16e6e95764a77a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | http://ira.lib.polyu.edu.hk/bitstream/10397/102235/1/Tao_Review_Flexible_Temperature.pdf |
PMID | 28547895 |
PQID | 1911555876 |
PQPubID | 2032434 |
PageCount | 23 |
ParticipantIDs | proquest_miscellaneous_1903166587 proquest_journals_1911555876 pubmed_primary_28547895 crossref_primary_10_1002_adhm_201601371 crossref_citationtrail_10_1002_adhm_201601371 wiley_primary_10_1002_adhm_201601371_ADHM201601371 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-Jun |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-Jun |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced healthcare materials |
PublicationTitleAlternate | Adv Healthc Mater |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 22 2010; 10 2013; 3 2013; 4 2013; 1 2016 2016; 26 28 2016; 2938 2004; 25 2014; 26 2016; 30 2008; 105 2011; 196 2013; 7 1998; 85 2013; 8 2012; 12 2013; 5 2015 2016; 27 536 2012; 11 2013; 6 1997; 7 2004 2008; 84 75 2016 2017; 12 2 2010; 22 2001; 61 2010; 20 2010; 26 2009; 95 2000; 12 2005; 102 2006; 27 2013; 50 2014 2013 2010 2013 2010 2013 2003 2010 2012; 23 21 14 13 14 42 3 184 2006 2006 2007; 1 311 7 2004; 34 2009 2012 2008; 95 45 93 2012 2013 2012; 22 2013; 113 2012; 28 2008; 20 2012; 24 2009; 19 2016; 46 2010; 6 2010; 9 2014; 10 2007; 17 2007; 19 2012; 101 2010; 327 2011; 81 2013; 102 2016; 205 2009 2012 2015; 49 2012; 37 2011; 4 2016; 16 2011; 6 2011; 5 2007; 12 2016; 15 2007; 16 2016; 5 2016; 6 2016; 7 2010; 46 2016 2016; 25 28 2005; 9 2014 2014 2012; 26 23 112 2002; 124 2015; 112 2006 2004; 88 85 2008; 48 2003; 26 2009 2009 2009; 105 27 5 2009 2010 2011; 21 32 2016 2015 2016 1997; 16 126 24 15 2005; 93 2016; 28 2005; 16 2016; 27 2016; 26 2009 2007 2014 2014 2012; 4 29 25 5 2016; 22 2009; 106 2015; 34 2013; 25 2013 2006 2003 2004 2004 2012; 83 126 28 74 74 20 2010 2006 2002 1999 2012 2012 2012; 920 4 2013; 24 2013; 23 2011 2015; 25 15 2011; 11 2011; 99 2008; 78 2011; 98 2008; 147 2015; 107 2007; 30 2008; 143 2016 2016 2016; 28 108 3 2007; 38 2007; 28 2017; 31 2007; 135 2014; 5 2014 2011 2014; 23 6 26 2013; 12 2009; 165 2011; 23 2007 2000 2012 2007 2010; 1–2 39 103 13 31 2014; 9 2016 2015; 3 15 2011; 165 2004; 101 2007 2003 2014; 91 82 14 2015; 1 2007; 1 and 2 2015; 15 2008 2008; 93 45 2015; 5 2015; 4 2009; 21 2012 2010 2013; 46 2016 2013; 6 3 2008 2009 2002 2005 2006 2005; 88 1–15 116 2009 2007 2006; 18 2005 2014; 470 2015; 206 2003 2012 2016; 24 28 2006; 2 2008; 321 2008; 320 2014; 111 2010; 80 2008 2011 2007 2007 2006 2014; 78 81 77 19 14 2002; 25 2009; 35 2015; 25 2015; 28 2012; 2 2015; 27 2007; 1‐2 2006; 89 2004; 19 2004; 16 2016; 133 2009; 9 2016 2015 2008; 85 2009; 5 2014 2001; 1 2013 2012; 6 2009; 3 2010; 417–418 2012; 5 1998; 34 2014 2014 2014; 7 4 213 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_203_1 Kim H. (e_1_2_8_117_1) 2009 Yamashita T. (e_1_2_8_120_5) 2012 e_1_2_8_226_1 Holleczek T. (e_1_2_8_236_8) 2010 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 Tognetti A. (e_1_2_8_123_3) 2006 Zang Y. (e_1_2_8_241_1) 2016; 2938 Kazani I. (e_1_2_8_245_6) 2012; 20 e_1_2_8_9_1 e_1_2_8_170_1 e_1_2_8_193_1 Chen Y. (e_1_2_8_7_1) 2015; 5 e_1_2_8_1_1 e_1_2_8_230_1 Park S. (e_1_2_8_120_3) 2002 Li Q. (e_1_2_8_199_1) 2014 e_1_2_8_230_2 e_1_2_8_105_5 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_238_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_189_1 e_1_2_8_91_1 e_1_2_8_120_2 e_1_2_8_99_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_105_2 e_1_2_8_181_2 e_1_2_8_76_1 e_1_2_8_105_3 e_1_2_8_181_3 e_1_2_8_105_4 e_1_2_8_120_4 e_1_2_8_30_1 e_1_2_8_166_3 e_1_2_8_166_2 Liu P. (e_1_2_8_59_1) 2016; 133 e_1_2_8_242_2 e_1_2_8_25_1 e_1_2_8_118_3 e_1_2_8_48_1 Harada S. (e_1_2_8_95_1) 2015 e_1_2_8_227_1 e_1_2_8_204_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_110_1 e_1_2_8_171_1 e_1_2_8_63_2 e_1_2_8_118_2 e_1_2_8_171_2 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_194_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_156_1 e_1_2_8_231_1 e_1_2_8_14_1 e_1_2_8_239_1 e_1_2_8_216_1 e_1_2_8_90_1 Tada Y. (e_1_2_8_116_3) 2014 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_167_2 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_243_1 e_1_2_8_220_1 e_1_2_8_228_1 e_1_2_8_205_1 e_1_2_8_81_1 e_1_2_8_111_1 Harris J. E. J. (e_1_2_8_100_1) 2010 Löher T. (e_1_2_8_208_2) 2009 Someya T. (e_1_2_8_211_1) 2013 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_195_1 Suganuma K. (e_1_2_8_162_1) 2007 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_232_1 Im S. H. (e_1_2_8_191_1) 2009 e_1_2_8_232_2 e_1_2_8_217_1 e_1_2_8_232_3 Tsao L. C. (e_1_2_8_64_1) 2007 e_1_2_8_70_1 Yamashita T. (e_1_2_8_120_6) 2012 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_183_1 e_1_2_8_122_2 e_1_2_8_168_1 Lee H. B. (e_1_2_8_166_1) 2016; 28 e_1_2_8_221_1 e_1_2_8_27_1 Simon E. P. (e_1_2_8_120_7) 2012 Law M. K. (e_1_2_8_37_1) 2016; 16 e_1_2_8_229_1 e_1_2_8_244_1 e_1_2_8_206_1 Cao W. (e_1_2_8_112_1) 2013 e_1_2_8_80_1 Lee C. Y. (e_1_2_8_93_1) 2013; 8 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_65_2 e_1_2_8_42_1 e_1_2_8_65_1 e_1_2_8_173_1 e_1_2_8_158_1 e_1_2_8_196_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_210_1 e_1_2_8_16_1 e_1_2_8_233_6 Ray S. C. (e_1_2_8_122_1) 2012 e_1_2_8_218_1 e_1_2_8_233_1 e_1_2_8_233_2 e_1_2_8_233_3 e_1_2_8_233_4 e_1_2_8_92_1 e_1_2_8_161_1 Kim D. H. (e_1_2_8_159_1) 2009 e_1_2_8_31_1 e_1_2_8_77_1 Chia B. T. (e_1_2_8_87_1) 2007; 1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_184_1 e_1_2_8_123_2 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_123_4 e_1_2_8_146_1 e_1_2_8_68_1 e_1_2_8_245_4 e_1_2_8_245_5 e_1_2_8_222_1 e_1_2_8_207_1 e_1_2_8_245_1 e_1_2_8_245_2 e_1_2_8_245_3 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_136_3 e_1_2_8_159_2 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_174_1 e_1_2_8_197_1 e_1_2_8_136_2 e_1_2_8_60_1 e_1_2_8_83_1 Chi‐Yuan L. (e_1_2_8_88_1) 2007 e_1_2_8_19_1 Inoue M. (e_1_2_8_172_1) 2005 e_1_2_8_109_1 e_1_2_8_57_1 e_1_2_8_234_1 e_1_2_8_219_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_101_1 e_1_2_8_147_1 e_1_2_8_185_1 e_1_2_8_185_2 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_200_1 e_1_2_8_223_1 e_1_2_8_246_1 e_1_2_8_152_1 e_1_2_8_6_1 Vieroth R. (e_1_2_8_114_1) 2009 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_2 e_1_2_8_44_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_82_1 e_1_2_8_198_1 e_1_2_8_18_1 e_1_2_8_79_1 e_1_2_8_212_1 Wang S. (e_1_2_8_144_1) 2012 e_1_2_8_235_1 e_1_2_8_94_1 e_1_2_8_163_1 e_1_2_8_140_1 Rogers J. A. (e_1_2_8_145_1) 2009; 106 e_1_2_8_10_1 e_1_2_8_56_1 Behera B. K. (e_1_2_8_124_1) 2010 e_1_2_8_33_1 Ma Z. Q. (e_1_2_8_159_3) 2015 Ostmann A. (e_1_2_8_208_1) 2008 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_186_1 e_1_2_8_186_2 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_186_3 e_1_2_8_24_1 e_1_2_8_47_1 Katragadda R. B. (e_1_2_8_105_1) 2007 e_1_2_8_224_1 e_1_2_8_201_1 e_1_2_8_247_1 e_1_2_8_3_1 e_1_2_8_176_3 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_209_1 Wang X. (e_1_2_8_242_1) 2016; 25 Karimov K. S. (e_1_2_8_53_1) 2012; 6 e_1_2_8_191_2 e_1_2_8_191_3 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_176_1 e_1_2_8_176_2 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_13_2 e_1_2_8_13_3 e_1_2_8_190_1 Kelly G. S. (e_1_2_8_215_1) 2007; 12 e_1_2_8_36_2 e_1_2_8_236_2 e_1_2_8_213_1 e_1_2_8_236_3 e_1_2_8_236_4 e_1_2_8_236_5 e_1_2_8_236_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_236_6 e_1_2_8_236_7 e_1_2_8_236_9 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 Dunne L. E. (e_1_2_8_122_3) 2012 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_187_1 e_1_2_8_240_1 e_1_2_8_46_2 e_1_2_8_46_1 e_1_2_8_116_5 e_1_2_8_46_4 e_1_2_8_46_3 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_202_1 e_1_2_8_225_1 e_1_2_8_154_1 e_1_2_8_131_1 e_1_2_8_116_2 e_1_2_8_192_1 e_1_2_8_116_1 e_1_2_8_116_4 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_177_1 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_214_1 e_1_2_8_237_1 Tao X. M. (e_1_2_8_4_1) 2005 e_1_2_8_142_2 e_1_2_8_165_2 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_142_1 Mattila H. R. (e_1_2_8_233_5) 2006 Nakamura T. (e_1_2_8_41_1) 2016 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_188_1 |
References_xml | – volume: 48 start-page: 825 year: 2008 publication-title: Microelectron. Reliab. – volume: 106 start-page: 10901 year: 2009 publication-title: Proc. Natl. Acad. Sci. USA – volume: 26 23 112 start-page: 3451 053001 091301 year: 2014 2014 2012 publication-title: Adv. Mater. Smart Mater. Struct. J. Appl. Phys. – volume: 23 start-page: 4171 year: 2013 publication-title: Adv. Funct. Mater. – start-page: 78 year: 2003 – volume: 7 4 213 start-page: 308 17454 108 year: 2014 2014 2014 publication-title: ChemSusChem RSC Adv. Sens. Actuators, A – volume: 7 start-page: 817 year: 2013 publication-title: Nat. Photonics – volume: 35 start-page: 22 year: 2009 publication-title: Circuit World – volume: 16 start-page: 477 year: 2004 publication-title: Adv. Mater. – volume: 124 start-page: 638 year: 2002 publication-title: J. Biomech. Eng.‐Trans. ASME – volume: 101 start-page: 073511 year: 2012 publication-title: Appl. Phys. Lett. – volume: 6 start-page: 2631 year: 2013 publication-title: Energy Environ. Sci. – volume: 22 start-page: 5178 year: 2010 publication-title: Adv. Mater. – year: 2014 – volume: 21 32 start-page: 085708 1743 year: 2009 2010 2011 publication-title: Nanotechnology IEEE Electron Device Lett. – volume: 6 start-page: 296 year: 2011 publication-title: Nat. Nanotechnol. – volume: 34 start-page: 149 year: 2015 publication-title: Conscious. Cognit. – volume: 10 start-page: 3869 year: 2014 publication-title: Small – volume: 28 start-page: 4177 year: 2016 publication-title: Adv. Mater. – volume: 102 start-page: 12321 year: 2005 publication-title: Proc. Natl. Acad. Sci. USA – volume: 3 15 start-page: 739 3164 year: 2016 2015 publication-title: Mater. Today IEEE Sens. J. – volume: 9 start-page: 3214 year: 2009 publication-title: Nano Lett. – volume: 5 start-page: 888 year: 2012 publication-title: Nano Res. – volume: 25 start-page: 2138 year: 2015 publication-title: Adv. Funct. Mater. – volume: 81 start-page: 1171 year: 2011 publication-title: Text. Res. J. – volume: 147 start-page: 173 year: 2008 publication-title: Sens. Actuators, A – volume: 22 start-page: 751 649 year: 2012 2013 2012 publication-title: J. Sci. Educ. Technol. – volume: 10 start-page: 7934 year: 2010 publication-title: Sensors – volume: 28 start-page: 930 year: 2016 publication-title: Adv. Mater. – volume: 26 start-page: 796 year: 2014 publication-title: Adv. Mater. – volume: 28 start-page: 4338 year: 2016 publication-title: Adv. Mater. – volume: 25 28 start-page: 1 9313 year: 2016 2016 publication-title: Smart Mater. Struct. Adv. Mater. – volume: 28 108 3 start-page: 1505218 233505 40 year: 2016 2016 2016 publication-title: Adv. Mater. Appl. Phys. Lett. Photonics – volume: 5 start-page: 7887 year: 2015 publication-title: Sci. Rep. – volume: 6 start-page: 24270 year: 2016 publication-title: Sci. Rep. – year: 2007 – volume: 99 start-page: 061911 year: 2011 publication-title: Appl. Phys. Lett. – volume: 27 536 start-page: 3411 451 year: 2015 2016 publication-title: Adv. Mater. Nature – volume: 28 start-page: 10257 year: 2016 publication-title: Adv. Mater. – volume: 15 start-page: 723 year: 2015 publication-title: IEEE Sens. J. – volume: 135 start-page: 593 year: 2007 publication-title: Sens. Actuators, A – volume: 9 start-page: 929 year: 2010 publication-title: Nat. Mater. – volume: 30 start-page: 691 year: 2016 publication-title: Nano Energy – volume: 84 75 start-page: 4487 051002 year: 2004 2008 publication-title: Appl. Phys. Lett. J. Appl. Mech.‐Trans. ASME – volume: 16 start-page: 2272 year: 2016 publication-title: IEEE Sens. J. – volume: 26 start-page: 5310 year: 2014 publication-title: Adv. Mater. – volume: 22 start-page: 4030 year: 2010 publication-title: Adv. Mater. – volume: 133 start-page: 42979 year: 2016 publication-title: J. Appl. Polym. Sci. – volume: 93 45 start-page: 013109 3858 year: 2008 2008 publication-title: Appl. Phys. Lett. Int. J. Solids Struct. – volume: 37 start-page: 226 year: 2012 publication-title: MRS Bull. – volume: 26 28 start-page: 2900 4415 year: 2016 2016 publication-title: Adv. Funct. Mater. Adv. Mater. – volume: 143 start-page: 143 year: 2008 publication-title: Sens. Actuators, A – volume: 1 311 7 start-page: 201 208 1655 year: 2006 2006 2007 publication-title: Nat. Nanotechnol. Science Nano Lett. – volume: 7 start-page: 206 year: 2016 publication-title: Micromachines – volume: 21 start-page: 3703 year: 2009 publication-title: Adv. Mater. – year: 2008 2009 – year: 2013 – year: 2009 – volume: 28 start-page: 930 year: 2015 publication-title: Adv. Mater. – volume: 28 start-page: 502 year: 2016 publication-title: Adv. Mater. – volume: 920 4 start-page: 113 170 152 132 year: 2010 2006 2002 1999 2012 2012 2012 publication-title: Mater. Res. Soc. Symp. Proc. Virtual Reality – volume: 89 start-page: 032105 year: 2006 publication-title: Appl. Phys. Lett. – volume: 113 start-page: 044311 year: 2013 publication-title: J. Appl. Phys. – volume: 6 start-page: 25784 year: 2016 publication-title: Sci. Rep. – volume: 6 start-page: 5757 year: 2010 publication-title: Soft Matter – volume: 24 start-page: 165401 year: 2013 publication-title: Nanotechnology – volume: 5 start-page: 7887 year: 2014 publication-title: Sci. Rep. – volume: 5 start-page: 12705 year: 2015 publication-title: Sci. Rep. – volume: 28 start-page: 5765 year: 2016 publication-title: Adv. Mater. – volume: 1–2 39 103 13 31 start-page: 55 840 1139 29 233 year: 2007 2000 2012 2007 2010 publication-title: IBM Syst. J. J. Text. Inst. Physiol. Meas. – volume: 16 start-page: 744 year: 2005 publication-title: Polym. Adv. Technol. – volume: 46 start-page: 105305 year: 2013 publication-title: J. Phys. D: Appl. Phys. – volume: 12 start-page: 1078 year: 2013 publication-title: Nat. Mater. – volume: 1‐2 start-page: 119 year: 2007 publication-title: Proc. IEEE Microelectron. – volume: 78 81 77 19 14 start-page: 583 1171 837 59 xviii 11957 year: 2008 2011 2007 2007 2006 2014 publication-title: Text. Res. J. Text. Res. J. Text. Res. J. Int. J. Clothing Sci. Technol. Sensors – volume: 3 start-page: 1291 year: 2013 publication-title: Sci. Rep. – volume: 26 start-page: 5345 year: 2016 publication-title: Adv. Funct. Mater. – volume: 196 start-page: 228 year: 2011 publication-title: J. Power Sources – volume: 15 start-page: 921 year: 2016 publication-title: Nat. Mater. – volume: 23 start-page: 1935 year: 2011 publication-title: Adv. Mater. – volume: 1 start-page: 2 year: 2013 publication-title: Fibers – volume: 4 start-page: 1859 year: 2013 publication-title: Nat. Commun. – volume: 105 start-page: 18675 year: 2008 publication-title: Proc. Natl. Acad. Sci. USA – volume: 16 start-page: 393 year: 2004 publication-title: Adv. Mater. – volume: 8 start-page: 2968 year: 2013 publication-title: Int. J. Electrochem. Sci. – volume: 106 start-page: 10875 year: 2009 publication-title: Proc. Natl. Acad. Sci. – year: 2015 – volume: 5 start-page: 4938 year: 2014 publication-title: Nat. Commun. – volume: 107 start-page: 053301 year: 2015 publication-title: Appl. Phys. Lett. – volume: 34 start-page: 1221 year: 1998 publication-title: Eur. Polym. J. – volume: 9 start-page: 574 year: 2005 publication-title: IEEE Trans. Inf. Technol. B – volume: 4 29 25 5 start-page: 451 283 025006:1 6423 year: 2009 2007 2014 2014 2012 publication-title: IEEE Trans. Inf. Forensics Secur. Trans. Inst. Meas. Control J. Text. Inst. Meas. Sci. Technol. Energy Environ. Sci. – volume: 98 start-page: 73304 year: 2011 publication-title: Appl. Phys. Lett. – volume: 106 start-page: 16889 year: 2009 publication-title: Proc. Natl. Acad. Sci. USA – volume: 25 start-page: 578 year: 2013 publication-title: Adv. Mater. – volume: 25 15 start-page: 1841 10166 year: 2011 2015 publication-title: Hydrol. Processes Sensors – volume: 61 start-page: 949 year: 2001 publication-title: Compos. Sci. Technol. – volume: 5 start-page: 119 year: 2016 publication-title: Adv. Healthcare Mater. – volume: 49 start-page: 3416 year: 2009 2012 2015 publication-title: Int. J. Solids Struct. – volume: 5 start-page: 30170 year: 2015 publication-title: RSC Adv. – volume: 106 start-page: 10875 year: 2009 publication-title: Proc. Natl. Acad. Sci. USA – volume: 22 start-page: 2228 year: 2010 publication-title: Adv. Mater – volume: 28 start-page: 4832 year: 2016 publication-title: Adv. Mater. – volume: 28 start-page: 138 year: 2016 publication-title: Adv. Mater. – volume: 26 start-page: 182 year: 2003 publication-title: IEEE Trans. Adv. Packag. – volume: 26 start-page: 1678 year: 2016 publication-title: Adv. Funct. Mater. – volume: 165 start-page: 50 year: 2009 publication-title: Mater. Sci. Eng. B – volume: 20 start-page: 2893 year: 2010 publication-title: Adv. Funct. Mater. – volume: 17 start-page: 832 year: 2007 publication-title: J. Mater. Chem. – volume: 5 start-page: 25609 year: 2015 publication-title: RSC Adv. – volume: 26 start-page: 881 year: 2010 publication-title: Acta Mech. Sin. – volume: 23 21 14 13 14 42 3 184 start-page: 015001 3213 767 11114 364 303 460 732 57 year: 2014 2013 2010 2013 2010 2013 2003 2010 2012 publication-title: Smart Mater. Struct. Opt. Express IEEE Trans. Inf. Technol. B Sensors IEEE Trans. Inf. Technol. Biomed. J. Ind. Text. IEEE Sens. J. IEEE Sens. Sens. Actuators, A – volume: 28 start-page: 13467 year: 2012 publication-title: Langmuir – start-page: 1 year: 2013 – volume: 28 start-page: 552 year: 2007 publication-title: IEEE Electron Device Lett. – volume: 321 start-page: 1468 year: 2008 publication-title: Science – volume: 28 start-page: 10024 year: 2016 publication-title: Adv. Mater. – volume: 11 start-page: 9942 year: 2011 publication-title: Sensors – volume: 12 start-page: 49 year: 2007 publication-title: Altern. Med. Rev. – year: 2005 – volume: 50 start-page: 301 year: 2013 publication-title: ECS Trans. – volume: 3 start-page: 229 year: 2013 publication-title: IEEE Trans. Compon., Packag., Manuf. – volume: 6 start-page: 1 year: 2016 publication-title: Sci. Rep. – volume: 11 start-page: 3881 year: 2011 publication-title: Nano Lett. – volume: 88 1–15 116 start-page: 1 25 2761 165 year: 2002 2005 2006 2005 publication-title: Surf. Coat. Int., Part B Adv. Colloid Interface Sci. – volume: 25 start-page: 5997 year: 2013 publication-title: Adv. Mater. – volume: 27 start-page: 1 year: 2016 publication-title: Meas. Sci. Technol. – volume: 1 start-page: 41 year: 2001 publication-title: IEEE Sens. J. – volume: 4 start-page: 5060 year: 2011 publication-title: Energy Environ. Sci. – volume: 19 start-page: 1526 year: 2009 publication-title: Adv. Funct. Mater. – volume: 28 start-page: 9175 year: 2016 publication-title: Adv. Mater. – volume: 23 start-page: 035040 year: 2013 publication-title: J. Micromech. Microeng. – volume: 12 start-page: 864 year: 2012 publication-title: IEEE Sens. J. – volume: 80 start-page: 1738 year: 2010 publication-title: Text. Res. J. – volume: 46 start-page: 945 year: 2010 publication-title: Int. J. Adv. Manuf. Technol. – volume: 23 start-page: 2933 year: 2011 publication-title: Adv. Mater. – volume: 6 start-page: 194 year: 2012 publication-title: Optoelectron. Adv. Mater., Rapid Commun. – volume: 9 start-page: 9533 year: 2009 publication-title: Sensors – volume: 95 45 93 start-page: 214101 103001 044102 year: 2009 2012 2008 publication-title: Appl. Phys. Lett. J. Phys. D: Appl. Phys. Appl. Phys. Lett. – volume: 28 start-page: 4203 year: 2016 publication-title: Adv. Mater. – volume: 327 start-page: 1603 year: 2010 publication-title: Science – volume: 2 start-page: 310 year: 2006 publication-title: Soft Matter – volume: 26 start-page: 4386 year: 2016 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 397 year: 2014 publication-title: Nat. Nanotechnol. – volume: 24 28 start-page: 5782 4184 year: 2012 2016 publication-title: Adv. Mater. Adv. Mater. – volume: 112 start-page: 14533 year: 2015 publication-title: Proc. Natl. Acad. Sci. USA – volume: 7 start-page: 145 year: 1997 publication-title: J. Micromech. Microeng. – volume: 18 start-page: 2857 year: 2006 publication-title: Adv. Mater. – volume: 4 start-page: 487 year: 2015 publication-title: Adv. Healthcare Mater. – volume: 22 start-page: 196 year: 2016 publication-title: J. Neonat. Nurs. – volume: 3 start-page: 498 year: 2009 publication-title: ACS Nano – volume: 85 start-page: 452 year: 2008 publication-title: Microelectron. Eng. – volume: 78 start-page: 583 year: 2008 publication-title: Text. Res. J. – volume: 16 126 24 15 start-page: E99 1324 1002 779 year: 2016 2015 2016 1997 publication-title: Sensors Optik Opt. Express J. Lightwave Technol. – volume: 88 85 start-page: 204103 3435 year: 2006 2004 publication-title: Appl. Phys. Lett. Appl. Phys. Lett. – volume: 19 start-page: 157 year: 2004 publication-title: J. Biol. Rhythm – year: 2016 – volume: 1 and 2 start-page: U1152 year: 2007 – year: 2010 – start-page: 282 year: 2009 – volume: 320 start-page: 507 year: 2008 publication-title: Science – volume: 28 start-page: 4397 year: 2016 publication-title: Adv. Mater. – volume: 5 start-page: 2403 year: 2013 publication-title: Nanoscale – volume: 22 start-page: 1723 year: 2004 publication-title: J. Vac. Sci. Technol., A – volume: 34 start-page: 495 year: 2004 publication-title: Comput. Biol. Med. – volume: 5 start-page: 672 year: 2011 publication-title: ACS Nano – volume: 6 3 start-page: 24771 2609 year: 2016 2013 publication-title: Sci. Rep. Sci. Rep. – volume: 25 start-page: 1291 year: 2013 publication-title: Adv. Mater. – volume: 9 start-page: 5068 year: 2009 publication-title: Sensors – volume: 28 start-page: 4219 year: 2016 publication-title: Adv. Mater. – volume: 28 start-page: 10529 year: 2016 publication-title: Adv. Mater. – volume: 93 start-page: 1459 year: 2005 publication-title: Proc. IEEE – volume: 25 start-page: 619 year: 2002 publication-title: J. Chin. Inst. Eng. – volume: 101 start-page: 9966 year: 2004 publication-title: Proc. Natl. Acad. Sci. USA – volume: 12 start-page: 321 year: 2013 publication-title: Nat. Mater. – volume: 46 start-page: 945 year: 2010 publication-title: Int. J. Adv. Des. Manuf. Technol. – volume: 25 start-page: 179 year: 2004 publication-title: IEEE Electron Device Lett. – volume: 4 start-page: 665 year: 2015 publication-title: Adv. Healthcare Mater. – volume: 19 start-page: 234 year: 2007 publication-title: Int. J. Clothing Sci. Technol. – volume: 12 start-page: 1249 year: 2000 publication-title: Adv. Mater. – volume: 20 start-page: 4887 year: 2008 publication-title: Adv. Mater. – volume: 30 start-page: 541 year: 2007 publication-title: IEEE Trans. Adv. Packag. – volume: 105 27 5 start-page: 123516 1107 2703 year: 2009 2009 2009 publication-title: J. Appl. Phys. J. Vac. Sci. Technol., A Small – volume: 10 start-page: 3597 year: 2010 publication-title: Sensors – volume: 165 start-page: 194 year: 2011 publication-title: Sens. Actuators, A – volume: 23 6 26 start-page: 053001 788 1336 year: 2014 2011 2014 publication-title: Smart Mater. Struct. Nat. Nanotechnol. Adv. Mater. – volume: 3 start-page: 7219 year: 2013 publication-title: RSC Adv. – volume: 25 start-page: 6565 year: 2015 publication-title: Adv. Funct. Mater. – volume: 23 start-page: 2308 year: 2013 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 11505 year: 2015 publication-title: Sci. Rep. – volume: 31 start-page: 296 year: 2017 publication-title: Nano Energy – volume: 12 2 start-page: 5141 1600175 year: 2016 2017 publication-title: Small Adv. Mater. Technol. – volume: 16 start-page: 1349 year: 2007 publication-title: J. Microelectromech. Syst. – volume: 26 start-page: 4444 year: 2014 publication-title: Adv. Mater. – volume: 2938 start-page: 192 year: 2016 publication-title: Adv. Mater. – volume: 85 start-page: 5 year: 1998 publication-title: J. Appl. Physiol. – volume: 11 start-page: 3706 year: 2011 publication-title: Sensors – volume: 26 start-page: 3451 year: 2014 publication-title: Adv. Mater. – volume: 38 start-page: 360 year: 2007 publication-title: Microelectron. J. – volume: 2 start-page: 1107 year: 2012 publication-title: IEEE Trans. Compon., Packag., Manuf. – volume: 206 start-page: 154 year: 2015 publication-title: Synth. Met. – volume: 26 start-page: 4635 year: 2016 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 838 year: 2012 publication-title: IEEE Antennas Wireless Propag. Lett. – volume: 9 start-page: 859 year: 2010 publication-title: Nat. Mater. – volume: 1 start-page: e1500661 year: 2015 publication-title: Sci. Adv. – volume: 205 start-page: 1 year: 2016 publication-title: Mater. Sci. Eng., B – volume: 27 start-page: 4178 year: 2015 publication-title: Adv. Mater. – volume: 102 start-page: 163117 year: 2013 publication-title: Appl. Phys. Lett. – year: 2012 – volume: 111 start-page: 646 year: 2014 publication-title: Proc. Natl. Acad. Sci. USA – volume: 5 start-page: 2841 year: 2009 publication-title: Small – volume: 25 start-page: 850 year: 2013 publication-title: Adv. Mater. – volume: 24 start-page: 3275 year: 2012 publication-title: Adv. Mater. – volume: 83 126 28 74 74 20 start-page: 1130 129 585 955 913 57 year: 2013 2006 2003 2004 2004 2012 publication-title: Text. Res. J. Sens. Actuators, A MRS Bull. Text. Res. J. Text. Res. J. Fibres Text. East. Eur. – volume: 27 start-page: 650 year: 2006 publication-title: IEEE Electron Device Lett. – volume: 417–418 start-page: 9 year: 2010 publication-title: Key Eng. Mater. – start-page: 350 year: 2005 – volume: 27 start-page: 7109 year: 2015 publication-title: Adv. Mater. – volume: 95 start-page: 181912 year: 2009 publication-title: Appl. Phys. Lett. – volume: 46 start-page: 59 year: 2016 publication-title: J. Appl. Electrochem. – volume: 5 start-page: 8603 year: 2015 publication-title: Sci. Rep. – volume: 91 82 14 start-page: 221909 2404 682 year: 2007 2003 2014 publication-title: Appl. Phys. Lett. Appl. Phys. Lett. Nano Lett. – volume: 470 start-page: 20140472 year: 2014 publication-title: Proc. R. Soc. A – volume: 5 start-page: 1 year: 2015 publication-title: Sci. Rep. – volume: 25 start-page: 792 year: 2004 publication-title: IEEE Electron Device Lett. – volume: 4 start-page: 1543 year: 2013 publication-title: Nat. Commun. – volume: 27 start-page: 428 year: 2015 publication-title: Adv. Mater. – ident: e_1_2_8_65_1 doi: 10.1016/j.matpr.2016.02.005 – ident: e_1_2_8_40_1 doi: 10.1016/j.sna.2008.05.004 – ident: e_1_2_8_63_1 doi: 10.1002/adma.201201482 – ident: e_1_2_8_43_1 doi: 10.1002/adma.201401449 – ident: e_1_2_8_220_1 doi: 10.1038/nmat4731 – ident: e_1_2_8_38_1 doi: 10.1016/j.jpowsour.2010.06.051 – ident: e_1_2_8_39_1 doi: 10.3390/s111009942 – ident: e_1_2_8_131_1 doi: 10.1038/srep12705 – volume-title: Wrinkling of elastic thin films on compliant substrates year: 2009 ident: e_1_2_8_191_1 – ident: e_1_2_8_90_1 doi: 10.1002/adma.201502200 – ident: e_1_2_8_146_1 doi: 10.1021/nn103189z – ident: e_1_2_8_194_1 doi: 10.1039/b516741h – ident: e_1_2_8_236_5 doi: 10.1109/TITB.2009.2038484 – ident: e_1_2_8_22_1 doi: 10.1002/adma.201504150 – ident: e_1_2_8_136_3 doi: 10.1063/1.2963364 – ident: e_1_2_8_15_1 doi: 10.1016/j.synthmet.2015.05.018 – ident: e_1_2_8_191_2 doi: 10.1088/0957-4484/21/8/085708 – ident: e_1_2_8_46_4 doi: 10.1109/50.580812 – start-page: 1 volume-title: Stretchable Electronics year: 2013 ident: e_1_2_8_211_1 – ident: e_1_2_8_245_2 doi: 10.1016/j.sna.2005.10.026 – ident: e_1_2_8_168_1 doi: 10.1002/9783527691005 – ident: e_1_2_8_127_1 doi: 10.1109/JSEN.2014.2350077 – ident: e_1_2_8_116_5 doi: 10.1039/c2ee02414d – volume: 2938 start-page: 192 year: 2016 ident: e_1_2_8_241_1 publication-title: Adv. Mater. – ident: e_1_2_8_13_3 doi: 10.1002/adma.201304248 – ident: e_1_2_8_207_1 doi: 10.1002/adma.201000515 – ident: e_1_2_8_115_1 doi: 10.1109/TITB.2005.858429 – ident: e_1_2_8_120_1 doi: 10.1533/9781845697815 – ident: e_1_2_8_128_1 doi: 10.1063/1.4746397 – ident: e_1_2_8_138_1 doi: 10.1038/srep25784 – ident: e_1_2_8_197_1 doi: 10.1126/science.1154367 – volume-title: 2007 7th IEEE Conf. on Nanotechnology (IEEE NANO) year: 2007 ident: e_1_2_8_88_1 – ident: e_1_2_8_167_1 doi: 10.1063/1.1756194 – ident: e_1_2_8_240_1 doi: 10.1038/srep07887 – ident: e_1_2_8_68_1 doi: 10.1038/srep24270 – ident: e_1_2_8_54_1 doi: 10.1016/j.mseb.2015.11.003 – ident: e_1_2_8_55_1 doi: 10.1002/adma.201600040 – ident: e_1_2_8_242_2 doi: 10.1002/adma.201602541 – ident: e_1_2_8_243_1 doi: 10.1007/s12274-012-0272-8 – ident: e_1_2_8_129_1 doi: 10.1016/j.sna.2007.10.077 – volume-title: Materials Strategies and Devices for Flexible and Stretchable Electronics year: 2009 ident: e_1_2_8_159_1 – volume-title: 2009 Int. Symp. on Wearable Comput. year: 2009 ident: e_1_2_8_114_1 – ident: e_1_2_8_126_1 doi: 10.1007/s10800-015-0859-3 – ident: e_1_2_8_196_1 doi: 10.1002/adma.200900405 – ident: e_1_2_8_45_1 doi: 10.1149/05002.0301ecst – volume-title: Polytronic 2007 ‐ 6th Int. Conf. on Polymers and Adhesives in Microelectronics and Photonics year: 2007 ident: e_1_2_8_162_1 – year: 2014 ident: e_1_2_8_116_3 publication-title: J. Text. Inst. – ident: e_1_2_8_236_1 doi: 10.1088/0964-1726/23/1/015001 – ident: e_1_2_8_237_1 doi: 10.1002/1521-4095(200009)12:17<1249::AID-ADMA1249>3.0.CO;2-Y – ident: e_1_2_8_247_1 doi: 10.1002/adma.201504958 – ident: e_1_2_8_73_1 doi: 10.3390/s100403597 – ident: e_1_2_8_46_1 doi: 10.3390/s16010099 – ident: e_1_2_8_121_1 doi: 10.1063/1.4803165 – ident: e_1_2_8_123_2 doi: 10.1007/BF02699704 – ident: e_1_2_8_142_1 doi: 10.1002/adfm.201505070 – ident: e_1_2_8_12_1 doi: 10.1038/nmat2834 – volume: 20 start-page: 57 year: 2012 ident: e_1_2_8_245_6 publication-title: Fibres Text. East. Eur. – ident: e_1_2_8_118_2 doi: 10.1088/0964-1726/23/5/053001 – ident: e_1_2_8_14_1 doi: 10.1002/adma.201305182 – ident: e_1_2_8_19_1 doi: 10.1002/adma.201204082 – ident: e_1_2_8_50_1 doi: 10.1016/S0014-3057(98)00099-8 – ident: e_1_2_8_125_1 doi: 10.1177/0040517511399965 – ident: e_1_2_8_160_1 doi: 10.1002/pat.652 – ident: e_1_2_8_25_1 doi: 10.1073/pnas.1515650112 – ident: e_1_2_8_179_1 doi: 10.1109/TCPMT.2012.2185792 – ident: e_1_2_8_26_1 doi: 10.1002/smll.201303942 – volume-title: 2008 3rd Int. Microsystems, Packaging, Assembly & Circuits Technology Conf. year: 2008 ident: e_1_2_8_208_1 – ident: e_1_2_8_154_1 doi: 10.1039/c3nr33633f – start-page: 282 volume-title: Sixth Int. Workshop on Wearable and Implantable Body Sensor Networks, Proc. year: 2009 ident: e_1_2_8_117_1 doi: 10.1109/BSN.2009.51 – ident: e_1_2_8_105_3 doi: 10.1080/00405000.2012.664867 – ident: e_1_2_8_27_1 doi: 10.1080/02533839.2002.9670736 – ident: e_1_2_8_186_3 doi: 10.1002/smll.200900934 – ident: e_1_2_8_213_1 doi: 10.1002/adfm.201404535 – ident: e_1_2_8_165_1 doi: 10.1038/srep24771 – ident: e_1_2_8_130_1 doi: 10.1002/adma.201504104 – ident: e_1_2_8_198_1 doi: 10.1177/0040517507081314 – ident: e_1_2_8_233_3 doi: 10.1177/0040517507080679 – ident: e_1_2_8_165_2 doi: 10.1038/srep02609 – ident: e_1_2_8_13_1 doi: 10.1088/0964-1726/23/5/053001 – ident: e_1_2_8_16_1 doi: 10.1039/C5RA00871A – ident: e_1_2_8_107_1 doi: 10.1088/0960-1317/7/3/017 – ident: e_1_2_8_171_2 doi: 10.1063/1.1806275 – ident: e_1_2_8_175_1 doi: 10.1109/LED.2004.825190 – ident: e_1_2_8_123_1 doi: 10.1002/3527603344 – ident: e_1_2_8_212_1 doi: 10.1039/c0sm00579g – ident: e_1_2_8_5_1 doi: 10.1038/nnano.2014.38 – ident: e_1_2_8_116_1 doi: 10.1109/TIFS.2009.2019156 – ident: e_1_2_8_105_4 doi: 10.1007/978-3-540-70994-7_5 – ident: e_1_2_8_71_1 doi: 10.1039/C5RA00871A – ident: e_1_2_8_102_1 doi: 10.1039/b614793c – volume-title: 2012 IEEE 25th Int. Conf. Micro Electro Mechanical Systems (MEMS) year: 2012 ident: e_1_2_8_120_6 – ident: e_1_2_8_2_1 doi: 10.1002/adma.201400633 – start-page: 170 volume-title: 39th Des. Automation Conf. Proc. year: 2002 ident: e_1_2_8_120_3 – ident: e_1_2_8_30_1 doi: 10.1016/j.mejo.2007.01.022 – ident: e_1_2_8_181_2 doi: 10.1126/science.1121401 – ident: e_1_2_8_201_1 doi: 10.1021/nl901450q – ident: e_1_2_8_236_6 doi: 10.1177/1528083712438069 – start-page: 132 volume-title: 2012 Symp. on Design, Test, Integration and Packaging of Mems/Moems (DTIP) year: 2012 ident: e_1_2_8_120_5 – ident: e_1_2_8_236_4 doi: 10.3390/s130811114 – ident: e_1_2_8_78_1 doi: 10.3390/fib1010002 – ident: e_1_2_8_97_1 doi: 10.1002/smll.200900853 – ident: e_1_2_8_244_1 doi: 10.1002/adma.201603527 – volume: 6 start-page: 194 year: 2012 ident: e_1_2_8_53_1 publication-title: Optoelectron. Adv. Mater., Rapid Commun. – ident: e_1_2_8_10_1 doi: 10.1039/C5RA03110A – ident: e_1_2_8_181_3 doi: 10.1021/nl0706244 – ident: e_1_2_8_232_3 doi: 10.1016/j.sna.2014.03.025 – ident: e_1_2_8_136_2 doi: 10.1088/0022-3727/45/10/103001 – ident: e_1_2_8_11_1 doi: 10.1002/adhm.201400647 – ident: e_1_2_8_85_1 doi: 10.1007/s00170-009-1940-z – ident: e_1_2_8_155_1 doi: 10.1002/adma.201202728 – ident: e_1_2_8_232_2 doi: 10.1039/C4RA01511H – ident: e_1_2_8_218_1 doi: 10.1038/srep07887 – ident: e_1_2_8_176_3 doi: 10.1021/nl403941a – volume: 16 start-page: 2272 year: 2016 ident: e_1_2_8_37_1 publication-title: IEEE Sens. J. – volume: 25 start-page: 1 year: 2016 ident: e_1_2_8_242_1 publication-title: Smart Mater. Struct. – ident: e_1_2_8_3_1 doi: 10.1098/rspa.2014.0472 – ident: e_1_2_8_166_3 doi: 10.3390/photonics3020040 – ident: e_1_2_8_192_1 doi: 10.1021/nn9001769 – volume: 8 start-page: 2968 year: 2013 ident: e_1_2_8_93_1 publication-title: Int. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)14365-3 – ident: e_1_2_8_239_1 doi: 10.1039/c1ee02421c – ident: e_1_2_8_120_2 doi: 10.1557/PROC-0920-S05-05 – ident: e_1_2_8_174_1 doi: 10.1109/JPROC.2005.851502 – ident: e_1_2_8_46_2 doi: 10.1016/j.ijleo.2015.04.012 – ident: e_1_2_8_134_1 doi: 10.1002/adma.201504150 – ident: e_1_2_8_236_7 doi: 10.1109/JSEN.2003.815771 – ident: e_1_2_8_157_1 doi: 10.1063/1.3555433 – ident: e_1_2_8_61_1 doi: 10.1002/adma.201602994 – ident: e_1_2_8_116_2 doi: 10.1177/0142331207070389 – ident: e_1_2_8_236_2 doi: 10.1364/OE.21.003213 – ident: e_1_2_8_133_1 doi: 10.1038/nnano.2011.36 – ident: e_1_2_8_236_9 doi: 10.1016/j.sna.2012.06.031 – ident: e_1_2_8_77_1 doi: 10.1109/JMEMS.2007.908437 – ident: e_1_2_8_1_1 doi: 10.1038/srep08603 – ident: e_1_2_8_224_1 doi: 10.1152/jappl.1998.85.1.5 – volume-title: Mechanics of Curvilinear Electronics and Transfer Printing year: 2012 ident: e_1_2_8_144_1 – ident: e_1_2_8_225_1 doi: 10.1108/09556220710741704 – ident: e_1_2_8_18_1 doi: 10.1002/adma.201504244 – ident: e_1_2_8_136_1 doi: 10.1063/1.3268464 – ident: e_1_2_8_143_1 doi: 10.1109/LED.2004.839227 – ident: e_1_2_8_219_1 doi: 10.1063/1.3256185 – ident: e_1_2_8_222_1 doi: 10.1177/0748730403261560 – ident: e_1_2_8_185_2 doi: 10.1016/S0020-7683(08)00168-6 – ident: e_1_2_8_42_1 doi: 10.1038/nmat3779 – ident: e_1_2_8_151_1 doi: 10.1038/nmat3542 – ident: e_1_2_8_233_6 doi: 10.3390/s140711957 – volume: 5 start-page: 1 year: 2015 ident: e_1_2_8_7_1 publication-title: Sci. Rep. – ident: e_1_2_8_209_1 doi: 10.1109/TADVP.2007.898636 – ident: e_1_2_8_230_2 doi: 10.1038/nature19100 – volume: 28 start-page: 1505218 year: 2016 ident: e_1_2_8_166_1 publication-title: Adv. Mater. – ident: e_1_2_8_31_1 doi: 10.1038/s41598-016-0001-8 – ident: e_1_2_8_57_1 doi: 10.1063/1.2222339 – ident: e_1_2_8_233_4 doi: 10.1108/09556220710717053 – start-page: 649 volume-title: Proc. of the 2012 ACM Conf. on Ubiquitous Computing year: 2012 ident: e_1_2_8_122_3 doi: 10.1145/2370216.2370348 – ident: e_1_2_8_56_1 doi: 10.1126/sciadv.1500661 – ident: e_1_2_8_173_1 doi: 10.1109/LED.2006.879029 – ident: e_1_2_8_103_1 doi: 10.1002/adma.201004692 – ident: e_1_2_8_245_1 doi: 10.1177/0040517512468813 – ident: e_1_2_8_118_3 doi: 10.1063/1.4742728 – ident: e_1_2_8_106_1 doi: 10.1109/TADVP.2003.817329 – ident: e_1_2_8_67_1 doi: 10.1016/j.sna.2006.07.019 – ident: e_1_2_8_150_1 doi: 10.1002/adfm.201000900 – ident: e_1_2_8_195_1 doi: 10.1007/s10409-010-0384-x – ident: e_1_2_8_147_1 doi: 10.1073/pnas.0905723106 – ident: e_1_2_8_21_1 doi: 10.1002/adhm.201500110 – start-page: 350 volume-title: Wearable Electronics and Photonics year: 2005 ident: e_1_2_8_4_1 – ident: e_1_2_8_166_2 doi: 10.1063/1.4953458 – ident: e_1_2_8_137_1 doi: 10.1002/adfm.200801065 – ident: e_1_2_8_99_1 doi: 10.1002/adma.200306107 – ident: e_1_2_8_108_1 doi: 10.1002/adma.201670191 – ident: e_1_2_8_120_4 doi: 10.1007/BF01418152 – ident: e_1_2_8_34_1 doi: 10.1002/adma.201200644 – ident: e_1_2_8_48_1 doi: 10.1088/0957-0233/27/2/025105 – ident: e_1_2_8_246_1 doi: 10.1002/adma.201504659 – ident: e_1_2_8_163_1 doi: 10.1002/adma.201504236 – ident: e_1_2_8_23_1 doi: 10.1002/adfm.201600706 – ident: e_1_2_8_200_1 doi: 10.1098/rspa.2014.0472 – ident: e_1_2_8_32_1 doi: 10.1002/adma.201601422 – ident: e_1_2_8_81_1 doi: 10.3390/s91209533 – ident: e_1_2_8_113_1 doi: 10.1002/adma.201002159 – ident: e_1_2_8_96_1 doi: 10.1002/adfm.201600713 – ident: e_1_2_8_176_2 doi: 10.1063/1.1565683 – ident: e_1_2_8_228_1 doi: 10.1073/pnas.1321664111 – volume-title: Woodhead Publishing India in Textiles year: 2012 ident: e_1_2_8_122_1 – ident: e_1_2_8_188_1 doi: 10.1016/j.nanoen.2016.10.054 – ident: e_1_2_8_148_1 doi: 10.1073/pnas.0502392102 – ident: e_1_2_8_217_1 doi: 10.1109/JSEN.2001.923586 – ident: e_1_2_8_8_1 doi: 10.1002/adma.201601422 – volume-title: 2012 4th Electronic System‐Integration Technology Conf. (ESTC) year: 2012 ident: e_1_2_8_120_7 – ident: e_1_2_8_36_1 doi: 10.1002/smll.201600952 – ident: e_1_2_8_206_1 doi: 10.1038/nphoton.2013.242 – ident: e_1_2_8_63_2 doi: 10.1002/adma.201504245 – ident: e_1_2_8_123_4 doi: 10.1016/j.cis.2005.05.002 – ident: e_1_2_8_184_1 doi: 10.1021/nl202000u – volume-title: Electronics Packaging Technology Conf. 2009, EPTC ‘09 11th year: 2009 ident: e_1_2_8_208_2 – ident: e_1_2_8_235_1 doi: 10.1109/LAWP.2012.2207941 – ident: e_1_2_8_65_2 doi: 10.1109/JSEN.2014.2375203 – ident: e_1_2_8_58_1 doi: 10.1002/adma.201302240 – ident: e_1_2_8_141_1 doi: 10.1073/pnas.0905723106 – ident: e_1_2_8_75_1 doi: 10.1038/srep11505 – ident: e_1_2_8_170_1 doi: 10.1002/adfm.201202405 – ident: e_1_2_8_52_1 doi: 10.1016/S0266-3538(00)00191-3 – ident: e_1_2_8_70_1 doi: 10.3390/s100907934 – ident: e_1_2_8_105_5 doi: 10.1088/0967-3334/31/2/009 – ident: e_1_2_8_105_2 doi: 10.1147/sj.393.0840 – ident: e_1_2_8_84_1 doi: 10.1016/j.mee.2007.08.004 – volume-title: Woodhead Publishing Series in Textiles No. 115 year: 2010 ident: e_1_2_8_124_1 – volume-title: 2015 Transducers ‐ 2015 18th Int. Conf. on Solid‐State Sensors Actuators and Microsystems (TRANSDUCERS) year: 2015 ident: e_1_2_8_95_1 – ident: e_1_2_8_167_2 doi: 10.1115/1.2936922 – ident: e_1_2_8_82_1 doi: 10.1021/la301775d – ident: e_1_2_8_204_1 doi: 10.1063/1.4789795 – ident: e_1_2_8_94_1 doi: 10.3390/s110403706 – ident: e_1_2_8_46_3 doi: 10.1364/OE.24.001002 – ident: e_1_2_8_33_1 doi: 10.1016/j.jnn.2016.01.003 – ident: e_1_2_8_24_1 doi: 10.1002/adhm.201400546 – ident: e_1_2_8_101_1 doi: 10.1016/j.microrel.2008.03.025 – start-page: U1152 volume-title: Transducers ‘07 & Eurosensors XXI, Digest of Technical Papers year: 2007 ident: e_1_2_8_64_1 – ident: e_1_2_8_161_1 doi: 10.1063/1.4928041 – ident: e_1_2_8_169_1 doi: 10.1002/adma.201603878 – volume-title: IEEE‐Embs Int. Conf. on Biomedical and Health Informatics year: 2016 ident: e_1_2_8_41_1 – ident: e_1_2_8_139_1 doi: 10.1002/adma.201302869 – ident: e_1_2_8_178_1 doi: 10.1002/adma.200490017 – ident: e_1_2_8_35_1 doi: 10.1007/s00170-009-1940-z – ident: e_1_2_8_47_1 – ident: e_1_2_8_142_2 doi: 10.1002/adma.201505118 – ident: e_1_2_8_231_1 doi: 10.1038/ncomms2553 – ident: e_1_2_8_79_1 doi: 10.1016/j.jpowsour.2010.06.051 – start-page: 2761 volume-title: 2006 28th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. year: 2006 ident: e_1_2_8_123_3 – ident: e_1_2_8_6_1 doi: 10.1038/ncomms2832 – ident: e_1_2_8_36_2 doi: 10.1002/admt.201600175 – ident: e_1_2_8_176_1 doi: 10.1063/1.2817234 – ident: e_1_2_8_119_1 doi: 10.1002/adma.201400842 – ident: e_1_2_8_187_1 doi: 10.1073/pnas.0807476105 – ident: e_1_2_8_226_1 doi: 10.1115/1.1516810 – ident: e_1_2_8_185_1 doi: 10.1063/1.2955829 – ident: e_1_2_8_118_1 doi: 10.1002/adma.201305182 – volume: 1 start-page: 119 year: 2007 ident: e_1_2_8_87_1 publication-title: Proc. IEEE Microelectron. – ident: e_1_2_8_159_2 doi: 10.1016/j.ijsolstr.2012.07.024 – ident: e_1_2_8_177_1 doi: 10.1002/adfm.201503277 – ident: e_1_2_8_186_1 doi: 10.1063/1.3148245 – ident: e_1_2_8_245_3 doi: 10.1557/mrs2003.170 – ident: e_1_2_8_183_1 doi: 10.1038/nmat2879 – ident: e_1_2_8_205_1 doi: 10.1002/adfm.201203802 – ident: e_1_2_8_229_1 doi: 10.1016/j.concog.2015.04.003 – ident: e_1_2_8_227_1 doi: 10.1002/adfm.201504755 – ident: e_1_2_8_49_1 doi: 10.1016/j.mseb.2009.07.014 – ident: e_1_2_8_180_1 doi: 10.1002/adfm.201600856 – ident: e_1_2_8_233_2 doi: 10.1177/0040517511399965 – ident: e_1_2_8_17_1 doi: 10.1002/adfm.201600706 – ident: e_1_2_8_223_1 doi: 10.1016/S0010-4825(03)00086-6 – ident: e_1_2_8_164_1 doi: 10.1038/srep01291 – ident: e_1_2_8_111_1 doi: 10.4028/www.scientific.net/KEM.417-418.9 – ident: e_1_2_8_140_1 doi: 10.1002/adma.201100144 – ident: e_1_2_8_153_1 doi: 10.1088/0957-4484/24/16/165401 – ident: e_1_2_8_98_1 doi: 10.1108/03056120910928699 – volume-title: Fabrication and Modeling of Stretchable Conductors for Traumatic Brain Injury Research year: 2013 ident: e_1_2_8_112_1 – ident: e_1_2_8_89_1 doi: 10.3390/fib1010002 – ident: e_1_2_8_132_1 doi: 10.1002/adma.200801788 – ident: e_1_2_8_135_1 doi: 10.1038/nmat2879 – ident: e_1_2_8_60_1 doi: 10.3390/s100403597 – ident: e_1_2_8_238_1 doi: 10.1039/c3ee41063c – ident: e_1_2_8_116_4 doi: 10.1088/0957-0233/25/2/025006 – ident: e_1_2_8_202_1 doi: 10.1002/adma.200904054 – ident: e_1_2_8_72_1 doi: 10.1002/adma.201204082 – ident: e_1_2_8_245_5 doi: 10.1177/004051750407401011 – ident: e_1_2_8_13_2 doi: 10.1038/nnano.2011.184 – ident: e_1_2_8_91_1 doi: 10.3390/mi7120206 – ident: e_1_2_8_44_2 doi: 10.3390/s150510166 – ident: e_1_2_8_233_1 doi: 10.1177/0040517507081314 – ident: e_1_2_8_210_1 doi: 10.1109/TCPMT.2012.2189770 – ident: e_1_2_8_221_1 doi: 10.1002/adma.201501408 – ident: e_1_2_8_29_1 doi: 10.1038/ncomms5938 – ident: e_1_2_8_216_1 doi: 10.1557/mrs.2012.36 – volume: 133 start-page: 42979 year: 2016 ident: e_1_2_8_59_1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.42979 – ident: e_1_2_8_69_1 doi: 10.1002/adma.201504441 – ident: e_1_2_8_156_1 doi: 10.1039/c3ra41124a – ident: e_1_2_8_181_1 doi: 10.1038/nnano.2006.131 – volume-title: Packaging of Fabric Sensing Network with Flexible and Stretchable Electronic Components year: 2014 ident: e_1_2_8_199_1 – start-page: 55 volume-title: Proc. of the IEEE Twentieth Annual Int. Conf. on Micro Electro Mechanical Systems year: 2007 ident: e_1_2_8_105_1 – ident: e_1_2_8_109_1 doi: 10.1073/pnas.0902160106 – ident: e_1_2_8_234_1 doi: 10.1177/0040517510365948 – volume-title: 2015 IEEE Int. Electron Devices Meeting (IEDM) year: 2015 ident: e_1_2_8_159_3 – ident: e_1_2_8_232_1 doi: 10.1002/cssc.201300241 – ident: e_1_2_8_92_1 doi: 10.3390/fib1010002 – volume-title: Polytronic 2005 ‐ 5th Int. Conf. Polymers and Adhesives in Microelectronics and Photonics year: 2005 ident: e_1_2_8_172_1 – ident: e_1_2_8_28_1 doi: 10.1109/JSEN.2011.2166064 – ident: e_1_2_8_62_1 doi: 10.1002/adma.201601186 – ident: e_1_2_8_149_1 doi: 10.1073/pnas.0401918101 – ident: e_1_2_8_76_1 doi: 10.1016/j.mseb.2015.11.003 – ident: e_1_2_8_104_1 doi: 10.1016/j.nanoen.2016.11.012 – ident: e_1_2_8_193_1 doi: 10.1063/1.3624848 – volume: 12 start-page: 49 year: 2007 ident: e_1_2_8_215_1 publication-title: Altern. Med. Rev. – ident: e_1_2_8_203_1 doi: 10.1088/0022-3727/46/10/105305 – ident: e_1_2_8_245_4 doi: 10.1177/004051750407401103 – ident: e_1_2_8_191_3 doi: 10.1109/LED.2011.2168378 – ident: e_1_2_8_66_1 doi: 10.1016/j.sna.2010.10.018 – ident: e_1_2_8_110_1 doi: 10.1088/0960-1317/23/3/035040 – ident: e_1_2_8_86_1 doi: 10.3390/s90705068 – ident: e_1_2_8_189_1 doi: 10.1126/science.1182383 – ident: e_1_2_8_190_1 doi: 10.1002/adma.200600646 – ident: e_1_2_8_158_1 doi: 10.1109/LED.2007.897887 – ident: e_1_2_8_171_1 doi: 10.1063/1.2201874 – ident: e_1_2_8_230_1 doi: 10.1002/adma.201500582 – ident: e_1_2_8_9_1 doi: 10.1002/adma.201504244 – ident: e_1_2_8_186_2 doi: 10.1116/1.3168555 – ident: e_1_2_8_51_1 doi: 10.1002/adma.201504659 – ident: e_1_2_8_74_1 doi: 10.1002/adma.201504441 – ident: e_1_2_8_20_1 doi: 10.1002/adma.201204396 – volume-title: Elastically Stretchable Thin Film Conductors on an Elastomeric Substrate year: 2010 ident: e_1_2_8_100_1 – ident: e_1_2_8_122_2 doi: 10.1007/s10956-012-9428-2 – ident: e_1_2_8_83_1 doi: 10.1016/j.sna.2007.10.077 – ident: e_1_2_8_152_1 doi: 10.1126/science.1160309 – start-page: xviii volume-title: Intelligent Textiles and Clothing year: 2006 ident: e_1_2_8_233_5 – ident: e_1_2_8_80_1 doi: 10.1002/adma.201504104 – ident: e_1_2_8_182_1 doi: 10.1116/1.1756879 – ident: e_1_2_8_236_3 doi: 10.1109/TITB.2009.2038904 – start-page: 732 year: 2010 ident: e_1_2_8_236_8 publication-title: IEEE Sens. – volume: 106 start-page: 16889 year: 2009 ident: e_1_2_8_145_1 publication-title: Proc. Natl. Acad. Sci. USA – ident: e_1_2_8_214_1 doi: 10.1126/sciadv.1500661 – ident: e_1_2_8_44_1 doi: 10.1002/hyp.7937 |
SSID | ssj0000651681 |
Score | 2.5689156 |
SecondaryResourceType | review_article |
Snippet | Physiological temperature varies temporally and spatially. Accurate and real‐time detection of localized temperature changes in biological tissues regardless... Physiological temperature varies temporally and spatially. Accurate and real-time detection of localized temperature changes in biological tissues regardless... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Computer Communication Networks Detection Emotions healthcare Homeostasis Humans Mapping Mechanical properties Monitoring, Physiologic - methods Physiology Platforms Pliability sensor networks Sensors Skin stretchable electronics Structural health monitoring Temperature Temperature effects Temperature sensors Tissues wearable Wearable Electronic Devices Wearable technology |
Title | Review of Flexible Temperature Sensing Networks for Wearable Physiological Monitoring |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadhm.201601371 https://www.ncbi.nlm.nih.gov/pubmed/28547895 https://www.proquest.com/docview/1911555876 https://www.proquest.com/docview/1903166587 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELagvcAB8e7SgoyExAFtqR-xd48RpYpQEwlIRG4rr2OrldpNVdILv77j5ya0FY_LKtm17I3n83hmMvMZoXe0JUoJrUtrW1tyyWxZiQH4PNIwa5nmtWfnH0_EaMa_zAfz_rRNX12yavf1r1vrSv5HqnAP5OqqZP9BsrlTuAGfQb5wBQnD9a9k_C3XnRw5XktXBDU1YAcHnmTQA52PBExCqrdnXvjwA6Dty6V87mdWfWFtX6aNLPHSpgyBkz5NDEzc8NtyLo9PCPh6qpY3otDHp-Uk6_2p8mHZOTQsx2kgZ0PHY1XmkQQ8xiCI7HOl9o3XVaD3aElFJPeOilWs44feqq8D_6tanDhSACIc_yFZbwjzfXHupecqPWUVDuT8jSE7PbqPtik4C6DttoeH4-PvOdYGZhYRFUmcnQf04-aIjhE69rFpntzwOTZdGG-DTB-jR9F5wMOAhCfonumeoodrlJLP0CxgAi8tTpjAa5jAERM4YQIDJnDCBN7ABO4x8RzNjj5PP43KeHRGqQdgs8HOWvPBgqqF5gtlmXOswXBsGa01q2jLCFemqqmsbVsfgIeuiDDC1OB8ciWlqtkLtNUtO7ODMHRohCskrTTlipmaK86EtkxSW0nVFqhMM9boyCvvjjc5awIjNm3cZDd5sgv0Pre_CIwqd7bcSwJo4qr72RDYnR1HnRQFepsfg050f3SpziyvXBvYqgTY1rJAL4Pg8lBJ0AWiXpJ_eIdmeDga52-v7uxuFz3oF8Ye2lpdXpnXYK6u2jcRjddZGpGV |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+of+Flexible+Temperature+Sensing+Networks+for+Wearable+Physiological+Monitoring&rft.jtitle=Advanced+healthcare+materials&rft.au=Li%2C+Qiao&rft.au=Zhang%2C+Li-Na&rft.au=Tao%2C+Xiao-Ming&rft.au=Ding%2C+Xin&rft.date=2017-06-01&rft.eissn=2192-2659&rft.volume=6&rft.issue=12&rft_id=info:doi/10.1002%2Fadhm.201601371&rft_id=info%3Apmid%2F28547895&rft.externalDocID=28547895 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-2640&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-2640&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-2640&client=summon |