Medullary serotonergic neurones modulate the ventilatory response to hypercapnia, but not hypoxia in conscious rats

Serotonergic neurones in the mammalian medullary raphe region (MRR) have been implicated in central chemoreception and the modulation of the ventilatory response to hypercapnia, and may also be involved in the ventilatory response to hypoxia. In this study, we ask whether ventilatory responses acros...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 566; no. 2; pp. 543 - 557
Main Authors Taylor, Natalie C., Li, Aihua, Nattie, Eugene E.
Format Journal Article
LanguageEnglish
Published 9600 Garsington Road , Oxford , OX4 2DQ , UK The Physiological Society 15.07.2005
Blackwell Science Ltd
Blackwell Science Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Serotonergic neurones in the mammalian medullary raphe region (MRR) have been implicated in central chemoreception and the modulation of the ventilatory response to hypercapnia, and may also be involved in the ventilatory response to hypoxia. In this study, we ask whether ventilatory responses across arousal states are affected when the 5-hydroxytryptamine 1A receptor (5-HT 1A ) agonist ( R )-(+)-8-hydroxy-2(di- n -propylamino)tetralin (DPAT) is microdialysed into the MRR of the unanaesthetized adult rat. Microdialysis of 1, 10 and 30 m m DPAT into the MRR significantly decreased absolute ventilation values during 7% CO 2 breathing by 21%, 19% and 30%, respectively, in wakefulness compared to artificial cerebrospinal fluid (aCSF) microdialysis, due to decreases in tidal volume ( V T ) and not in frequency ( f ), similar to what occurred during non-rapid eye movement (NREM) sleep. The concentration-dependence of the hypercapnic ventilatory effect might be due to differences in tissue distribution of DPAT. DPAT (30 m m ) changed room air breathing pattern by increasing f and decreasing V T . As evidenced by a sham control group, repeated experimentation and microdialysis of aCSF alone had no effect on the ventilatory response to 7% CO 2 during wakefulness or sleep. Unlike during hypercapnia, microdialysis of 30 m m DPAT into the MRR did not change the ventilatory response to 10% O 2 . Additionally, 10 and 30 m m DPAT MRR microdialysis decreased body temperature, and 30 m m DPAT increased the percentage of experimental time in wakefulness. We conclude that serotonergic activity in the MRR plays a role in the ventilatory response to hypercapnia, but not to hypoxia, and that MRR 5-HT 1A receptors are also involved in thermoregulation and arousal.
AbstractList Serotonergic neurones in the mammalian medullary raphe region (MRR) have been implicated in central chemoreception and the modulation of the ventilatory response to hypercapnia, and may also be involved in the ventilatory response to hypoxia. In this study, we ask whether ventilatory responses across arousal states are affected when the 5-hydroxytryptamine 1A receptor (5-HT 1A ) agonist ( R )-(+)-8-hydroxy-2(di- n -propylamino)tetralin (DPAT) is microdialysed into the MRR of the unanaesthetized adult rat. Microdialysis of 1, 10 and 30 m m DPAT into the MRR significantly decreased absolute ventilation values during 7% CO 2 breathing by 21%, 19% and 30%, respectively, in wakefulness compared to artificial cerebrospinal fluid (aCSF) microdialysis, due to decreases in tidal volume ( V T ) and not in frequency ( f ), similar to what occurred during non-rapid eye movement (NREM) sleep. The concentration-dependence of the hypercapnic ventilatory effect might be due to differences in tissue distribution of DPAT. DPAT (30 m m ) changed room air breathing pattern by increasing f and decreasing V T . As evidenced by a sham control group, repeated experimentation and microdialysis of aCSF alone had no effect on the ventilatory response to 7% CO 2 during wakefulness or sleep. Unlike during hypercapnia, microdialysis of 30 m m DPAT into the MRR did not change the ventilatory response to 10% O 2 . Additionally, 10 and 30 m m DPAT MRR microdialysis decreased body temperature, and 30 m m DPAT increased the percentage of experimental time in wakefulness. We conclude that serotonergic activity in the MRR plays a role in the ventilatory response to hypercapnia, but not to hypoxia, and that MRR 5-HT 1A receptors are also involved in thermoregulation and arousal.
Serotonergic neurones in the mammalian medullary raphe region (MRR) have been implicated in central chemoreception and the modulation of the ventilatory response to hypercapnia, and may also be involved in the ventilatory response to hypoxia. In this study, we ask whether ventilatory responses across arousal states are affected when the 5-hydroxytryptamine 1A receptor (5-HT1A) agonist (R)-(+)-8-hydroxy-2(di-n-propylamino)tetralin (DPAT) is microdialysed into the MRR of the unanaesthetized adult rat. Microdialysis of 1, 10 and 30 mM DPAT into the MRR significantly decreased absolute ventilation values(VE) during 7% CO2 breathing by 21%, 19% and 30%, respectively, in wakefulness compared to artificial cerebrospinal fluid (aCSF) microdialysis, due to decreases in tidal volume (VT) and not in frequency (f), similar to what occurred during non-rapid eye movement (NREM) sleep. The concentration-dependence of the hypercapnic ventilatory effect might be due to differences in tissue distribution of DPAT. DPAT (30 mM) changed room air breathing pattern by increasing f and decreasing VT. As evidenced by a sham control group, repeated experimentation and microdialysis of aCSF alone had no effect on the ventilatory response to 7% CO2 during wakefulness or sleep. Unlike during hypercapnia, microdialysis of 30 mM DPAT into the MRR did not change the ventilatory response to 10% O2. Additionally, 10 and 30 mM DPAT MRR microdialysis decreased body temperature, and 30 mM DPAT increased the percentage of experimental time in wakefulness. We conclude that serotonergic activity in the MRR plays a role in the ventilatory response to hypercapnia, but not to hypoxia, and that MRR 5-HT1A receptors are also involved in thermoregulation and arousal.
Serotonergic neurones in the mammalian medullary raphe region (MRR) have been implicated in central chemoreception and the modulation of the ventilatory response to hypercapnia, and may also be involved in the ventilatory response to hypoxia. In this study, we ask whether ventilatory responses across arousal states are affected when the 5‐hydroxytryptamine 1A receptor (5‐HT1A) agonist (R)‐(+)‐8‐hydroxy‐2(di‐n‐propylamino)tetralin (DPAT) is microdialysed into the MRR of the unanaesthetized adult rat. Microdialysis of 1, 10 and 30 mm DPAT into the MRR significantly decreased absolute ventilation values during 7% CO2 breathing by 21%, 19% and 30%, respectively, in wakefulness compared to artificial cerebrospinal fluid (aCSF) microdialysis, due to decreases in tidal volume (VT) and not in frequency (f), similar to what occurred during non‐rapid eye movement (NREM) sleep. The concentration‐dependence of the hypercapnic ventilatory effect might be due to differences in tissue distribution of DPAT. DPAT (30 mm) changed room air breathing pattern by increasing f and decreasing VT. As evidenced by a sham control group, repeated experimentation and microdialysis of aCSF alone had no effect on the ventilatory response to 7% CO2 during wakefulness or sleep. Unlike during hypercapnia, microdialysis of 30 mm DPAT into the MRR did not change the ventilatory response to 10% O2. Additionally, 10 and 30 mm DPAT MRR microdialysis decreased body temperature, and 30 mm DPAT increased the percentage of experimental time in wakefulness. We conclude that serotonergic activity in the MRR plays a role in the ventilatory response to hypercapnia, but not to hypoxia, and that MRR 5‐HT1A receptors are also involved in thermoregulation and arousal.
Serotonergic neurones in the mammalian medullary raphe region (MRR) have been implicated in central chemoreception and the modulation of the ventilatory response to hypercapnia, and may also be involved in the ventilatory response to hypoxia. In this study, we ask whether ventilatory responses across arousal states are affected when the 5-hydroxytryptamine 1A receptor (5-HT sub(1A)) agonist (R)-(+)-8-hydroxy-2(di-n-propylamino)tetralin (DPAT) is microdialysed into the MRR of the unanaesthetized adult rat. Microdialysis of 1, 10 and 30 mM DPAT into the MRR significantly decreased absolute ventilation values {tjp_960_mu1} during 7% CO sub(2) breathing by 21%, 19% and 30%, respectively, in wakefulness compared to artificial cerebrospinal fluid (aCSF) microdialysis, due to decreases in tidal volume (V sub(T)) and not in frequency (f), similar to what occurred during non-rapid eye movement (NREM) sleep. The concentration-dependence of the hypercapnic ventilatory effect might be due to differences in tissue distribution of DPAT. DPAT (30 mM) changed room air breathing pattern by increasing f and decreasing V sub(T). As evidenced by a sham control group, repeated experimentation and microdialysis of aCSF alone had no effect on the ventilatory response to 7% CO sub(2) during wakefulness or sleep. Unlike during hypercapnia, microdialysis of 30 mM DPAT into the MRR did not change the ventilatory response to 10% O sub(2). Additionally, 10 and 30 mM DPAT MRR microdialysis decreased body temperature, and 30 mM DPAT increased the percentage of experimental time in wakefulness. We conclude that serotonergic activity in the MRR plays a role in the ventilatory response to hypercapnia, but not to hypoxia, and that MRR 5-HT sub(1A) receptors are also involved in thermoregulation and arousal.
Serotonergic neurones in the mammalian medullary raphe region (MRR) have been implicated in central chemoreception and the modulation of the ventilatory response to hypercapnia, and may also be involved in the ventilatory response to hypoxia. In this study, we ask whether ventilatory responses across arousal states are affected when the 5-hydroxytryptamine 1A receptor (5-HT 1A ) agonist ( R )-(+)-8-hydroxy-2(di- n -propylamino)tetralin (DPAT) is microdialysed into the MRR of the unanaesthetized adult rat. Microdialysis of 1, 10 and 30 m m DPAT into the MRR significantly decreased absolute ventilation values during 7% CO 2 breathing by 21%, 19% and 30%, respectively, in wakefulness compared to artificial cerebrospinal fluid (aCSF) microdialysis, due to decreases in tidal volume ( V T ) and not in frequency ( f ), similar to what occurred during non-rapid eye movement (NREM) sleep. The concentration-dependence of the hypercapnic ventilatory effect might be due to differences in tissue distribution of DPAT. DPAT (30 m m ) changed room air breathing pattern by increasing f and decreasing V T . As evidenced by a sham control group, repeated experimentation and microdialysis of aCSF alone had no effect on the ventilatory response to 7% CO 2 during wakefulness or sleep. Unlike during hypercapnia, microdialysis of 30 m m DPAT into the MRR did not change the ventilatory response to 10% O 2 . Additionally, 10 and 30 m m DPAT MRR microdialysis decreased body temperature, and 30 m m DPAT increased the percentage of experimental time in wakefulness. We conclude that serotonergic activity in the MRR plays a role in the ventilatory response to hypercapnia, but not to hypoxia, and that MRR 5-HT 1A receptors are also involved in thermoregulation and arousal.
Author Aihua Li
Natalie C Taylor
Eugene E Nattie
Author_xml – sequence: 1
  givenname: Natalie C.
  surname: Taylor
  fullname: Taylor, Natalie C.
– sequence: 2
  givenname: Aihua
  surname: Li
  fullname: Li, Aihua
– sequence: 3
  givenname: Eugene E.
  surname: Nattie
  fullname: Nattie, Eugene E.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15878953$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v1DAQhi1URLeFf4CQT3BplnEmieMLUlVRPlQEh3K2HO_sxlU2DnbSkn-PV1m-TiBZ8sc873hm3jN20vueGHsuYC2EwNd3QztH57t1DlCuocZa4iO2EkWlMikVnrAVQJ5nKEtxys5ivAMQCEo9YaeirGWtSlyx-Ik2U9eZMPNIwY_pj7Bzlvc0hXSOfO9T3IzEx5b4PfWjSzef8EBx8H1MAc_beaBgzdA7c8GbaeS9Hw-P_rsz3PXcJtA6P0UezBifssdb00V6dtzP2dfrt7dX77Obz-8-XF3eZLYUNWRWVUoaKBRJiWAlKKStQpvjBgoysskFbBqQFlWOOZSK0moK29RWNQIRz9mbJe8wNXva2FR8MJ0egtunfrU3Tv8d6V2rd_5epxkWsjokeHlMEPy3ieKo9y5aSuPqKTWjqxpkXqD6JyhkqQALkcBiAW3wMQba_qpGgD7Yqn_aqg-26sXWJHvxZye_RUcfE1AvwIPraP6vpPr24xdVQZK-WqSt27UPLpBe4Oito3HWZVXpXJcF4g_EKMYj
CitedBy_id crossref_primary_10_1113_jphysiol_2014_285171
crossref_primary_10_1523_JNEUROSCI_0864_13_2014
crossref_primary_10_1152_japplphysiol_01389_2006
crossref_primary_10_1152_ajpregu_00655_2007
crossref_primary_10_1152_physrev_00043_2008
crossref_primary_10_1016_j_autneu_2006_02_003
crossref_primary_10_1152_japplphysiol_00435_2020
crossref_primary_10_1016_j_resp_2010_09_015
crossref_primary_10_1007_s00424_007_0338_8
crossref_primary_10_1016_j_cbpa_2006_11_003
crossref_primary_10_1152_japplphysiol_00120_2008
crossref_primary_10_1016_j_jchemneu_2011_05_004
crossref_primary_10_1016_j_meatsci_2016_03_011
crossref_primary_10_1152_japplphysiol_00560_2014
crossref_primary_10_1152_japplphysiol_01310_2013
crossref_primary_10_1113_jphysiol_2006_114504
crossref_primary_10_1152_japplphysiol_00939_2012
crossref_primary_10_1523_JNEUROSCI_4729_07_2008
crossref_primary_10_1089_cap_2020_0176
crossref_primary_10_1016_j_resp_2009_05_010
crossref_primary_10_1002_cne_22265
crossref_primary_10_1113_jphysiol_2008_152231
crossref_primary_10_1152_japplphysiol_01061_2010
crossref_primary_10_1152_japplphysiol_00112_2008
crossref_primary_10_1152_jn_00288_2013
crossref_primary_10_1523_JNEUROSCI_4167_07_2007
crossref_primary_10_1016_j_neuroscience_2020_08_012
crossref_primary_10_1016_j_brainres_2007_03_037
crossref_primary_10_1016_j_resp_2008_09_004
crossref_primary_10_1152_jn_00478_2023
crossref_primary_10_1016_j_resp_2010_03_014
crossref_primary_10_1152_jn_00776_2017
crossref_primary_10_1016_j_resp_2005_11_005
crossref_primary_10_1152_jn_00497_2020
crossref_primary_10_1152_japplphysiol_00411_2015
crossref_primary_10_1002_cne_21105
crossref_primary_10_1016_j_clp_2006_10_004
crossref_primary_10_1152_japplphysiol_00424_2007
crossref_primary_10_1126_science_1157871
crossref_primary_10_1152_japplphysiol_01508_2005
crossref_primary_10_1016_j_arcped_2007_02_063
crossref_primary_10_1016_j_resp_2009_04_014
crossref_primary_10_1152_ajpregu_00498_2006
crossref_primary_10_1152_japplphysiol_00347_2006
crossref_primary_10_1002_ejhf_2819
crossref_primary_10_1002_ajmg_a_32112
crossref_primary_10_1007_s00401_008_0468_x
crossref_primary_10_1016_j_neuroscience_2020_11_005
crossref_primary_10_1152_japplphysiol_00838_2020
crossref_primary_10_1002_cne_22435
crossref_primary_10_1016_j_resp_2011_03_011
crossref_primary_10_1007_s11010_011_0814_5
crossref_primary_10_1016_j_neuroscience_2009_09_078
crossref_primary_10_1152_jn_01073_2014
crossref_primary_10_15369_sujms_26_211
crossref_primary_10_1016_j_resp_2009_07_015
crossref_primary_10_1002_jcp_21169
crossref_primary_10_1016_j_ejphar_2013_02_009
crossref_primary_10_1152_ajpregu_00576_2010
crossref_primary_10_1093_jnen_nlad030
crossref_primary_10_1002_ejhf_1854
crossref_primary_10_1016_j_resp_2008_06_012
crossref_primary_10_1113_EP085161
crossref_primary_10_1152_japplphysiol_00020_2022
crossref_primary_10_1111_j_1748_1716_2008_01853_x
crossref_primary_10_1113_jphysiol_2011_214759
crossref_primary_10_1152_japplphysiol_00376_2006
crossref_primary_10_1016_j_resp_2012_09_007
crossref_primary_10_1016_j_resp_2013_04_008
crossref_primary_10_1097_JCP_0b013e318173aa2e
crossref_primary_10_1007_s00424_011_0990_x
crossref_primary_10_1016_j_resp_2008_12_004
crossref_primary_10_7554_eLife_83654
crossref_primary_10_1016_j_resp_2013_02_015
crossref_primary_10_1016_j_resp_2017_11_009
crossref_primary_10_1016_j_resp_2008_05_011
crossref_primary_10_4103_1673_5374_160101
crossref_primary_10_1016_j_brainres_2009_05_003
crossref_primary_10_1016_j_resp_2019_103313
crossref_primary_10_3390_ijms25084403
crossref_primary_10_1152_jn_00813_2007
crossref_primary_10_3389_fphys_2023_1332810
crossref_primary_10_1016_j_resp_2010_08_017
crossref_primary_10_1007_s00424_020_02455_5
crossref_primary_10_1016_j_resp_2012_05_026
crossref_primary_10_1152_ajpregu_00122_2009
crossref_primary_10_1152_japplphysiol_00069_2008
crossref_primary_10_1016_j_resp_2008_04_017
crossref_primary_10_1113_JP272199
crossref_primary_10_1186_s12931_022_01970_6
crossref_primary_10_1016_j_resp_2008_04_014
crossref_primary_10_1113_EP089335
crossref_primary_10_1152_physrev_00029_2009
Cites_doi 10.1152/jappl.1999.87.3.910
10.1152/japplphysiol.00992.2003
10.1016/0165-1838(85)90054-2
10.1016/j.autneu.2003.10.004
10.1016/S0006-8993(97)01437-6
10.1152/japplphysiol.00496.2004
10.1111/j.1469-7793.1999.567ae.x
10.1016/S0034-5687(00)00161-4
10.1152/japplphysiol.00805.2003
10.1113/jphysiol.2002.020032
10.1111/j.1469-7793.2001.0467f.x
10.1016/0031-9384(72)90384-8
10.1093/jnen/60.3.228
10.1002/(SICI)1096-9861(19970310)379:2<261::AID-CNE7>3.0.CO;2-1
10.1016/0304-3940(89)90007-4
10.1002/(SICI)1097-4547(19961215)46:6<697::AID-JNR7>3.0.CO;2-A
10.1152/jappl.1999.87.2.673
10.1016/S0024-3205(99)00649-9
10.1016/0304-3940(90)90649-T
10.1101/lm.6.2.153
10.1016/0306-4522(93)90582-Z
10.1016/S0306-4522(02)00584-5
10.1016/S0006-8993(99)01426-2
10.1002/cne.902950205
10.1002/cne.902220308
10.1152/jn.2001.85.5.2224
10.1111/j.1469-445X.2005.tb00002.x
10.1111/j.1469-7793.1998.433bh.x
10.1016/0006-8993(86)90338-0
10.1021/jm00140a002
10.1152/ajpregu.1990.259.3.R492
10.1016/S0893-133X(96)80057-1
10.1139/y82-057
10.1002/cne.903480202
10.1113/jphysiol.1988.sp017371
10.1016/S0165-6147(99)01432-7
10.1016/S0304-3940(03)00671-2
10.1002/cne.902650210
10.1016/j.neulet.2003.11.067
10.1113/jphysiol.1986.sp016291
10.1152/jappl.2001.90.4.1247
10.1016/S0165-0173(02)00187-X
10.1002/cne.903470106
10.1097/00001756-199507100-00003
10.1111/j.1469-445X.2005.t01-1-00134.x
10.1038/nn1357
10.1113/jphysiol.2003.059766
10.1113/jphysiol.1977.sp011763
10.1016/0006-8993(82)90743-0
10.1152/japplphysiol.01128.2001
10.1007/BF00179315
10.1002/cne.903300410
ContentType Journal Article
Copyright 2005 The Journal of Physiology © 2005 The Physiological Society
The Physiological society 2005 2005
Copyright_xml – notice: 2005 The Journal of Physiology © 2005 The Physiological Society
– notice: The Physiological society 2005 2005
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QR
7TK
8FD
FR3
P64
7X8
5PM
DOI 10.1113/jphysiol.2005.083873
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Chemoreception Abstracts
Engineering Research Database
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef

Chemoreception Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-7793
EndPage 557
ExternalDocumentID 10_1113_jphysiol_2005_083873
15878953
TJP960
566_2_543
Genre article
Research Support, U.S. Gov't, P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R37 HL028066
– fundername: NHLBI NIH HHS
  grantid: HL 28066
– fundername: NHLBI NIH HHS
  grantid: R01 HL028066
– fundername: PHS HHS
  grantid: 36379
GroupedDBID -
05W
0R
0YM
10A
123
1OB
1OC
24P
29L
2WC
31
33P
3N
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
55
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAONW
AAVGM
AAZKR
ABCUV
ABFLS
ABHUG
ABITZ
ABIVO
ABOCM
ABPPZ
ABPTK
ABPVW
ABUFD
ABWRO
ACAHQ
ACFBH
ACGFS
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACXME
ACXQS
ADACO
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADXAS
ADZMN
AEIMD
AEUQT
AFBPY
AFFNX
AFPWT
AFZJQ
AGJLS
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C1A
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DZ
E3Z
EBS
EJD
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GA
GJ
GODZA
GX1
H.X
H13
HZ
HZI
IA
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LI0
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NEJ
NF
O0-
O66
O9-
OHT
OK1
OVD
P2P
P2W
P2X
P2Z
P4A
P4B
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RPM
RX1
SUPJJ
TLM
TN5
UB1
UNR
UPT
UQL
V8K
VH1
W8V
W99
WBKPD
WH7
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WT
WXI
WYISQ
X
X7M
XG1
Y3
YZZ
ZA5
ZZTAW
---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
0R~
18M
31~
36B
3EH
AAFWJ
AAHHS
AANLZ
AASGY
AAXRX
AAYJJ
ABCQN
ABEML
ABJNI
ABQWH
ABXGK
ACCFJ
ACCZN
ACGFO
ACGOF
ACSCC
ACXBN
ADBTR
ADKYN
ADMGS
ADOZA
AEEZP
AEGXH
AEIGN
AEQDE
AEUYR
AFEBI
AFFPM
AFGKR
AHBTC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AMYDB
AOIJS
CHEAL
EMOBN
FA8
HF~
HGLYW
HZ~
H~9
IHE
IPNFZ
KBYEO
LH4
NF~
OIG
SAMSI
TEORI
TR2
UKR
W8F
WHG
WXSBR
XOL
YBU
YHG
YKV
YQT
YSK
YXB
YYP
ZGI
ZXP
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QR
7TK
8FD
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c5180-c9697a049e7730c7093ef93c23d04ea7b210db07c39232059e59eb4cb8c9b1333
IEDL.DBID RPM
ISSN 0022-3751
IngestDate Tue Sep 17 21:14:07 EDT 2024
Fri Aug 16 21:50:02 EDT 2024
Fri Aug 16 21:00:42 EDT 2024
Fri Aug 23 00:48:14 EDT 2024
Sat Sep 28 07:43:30 EDT 2024
Sat Aug 24 01:02:29 EDT 2024
Fri Jan 15 02:11:32 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5180-c9697a049e7730c7093ef93c23d04ea7b210db07c39232059e59eb4cb8c9b1333
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1464763
PMID 15878953
PQID 17590341
PQPubID 23462
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_1464763
proquest_miscellaneous_68072439
proquest_miscellaneous_17590341
crossref_primary_10_1113_jphysiol_2005_083873
pubmed_primary_15878953
wiley_primary_10_1113_jphysiol_2005_083873_TJP960
highwire_physiosociety_566_2_543
PublicationCentury 2000
PublicationDate 2005-07-15
PublicationDateYYYYMMDD 2005-07-15
PublicationDate_xml – month: 07
  year: 2005
  text: 2005-07-15
  day: 15
PublicationDecade 2000
PublicationPlace 9600 Garsington Road , Oxford , OX4 2DQ , UK
PublicationPlace_xml – name: 9600 Garsington Road , Oxford , OX4 2DQ , UK
– name: England
PublicationTitle The Journal of physiology
PublicationTitleAlternate J Physiol
PublicationYear 2005
Publisher The Physiological Society
Blackwell Science Ltd
Blackwell Science Inc
Publisher_xml – name: The Physiological Society
– name: Blackwell Science Ltd
– name: Blackwell Science Inc
References 1990; 108
2003; 116
2001; 90
1987; 265
1986; 373
2004; 7
1999; 87
1998; 511
2001; 85
2001; 60
1989; 105
1994; 347
1990; 259
1994; 348
1982; 60
2002; 40
1986; 380
1982
2000; 122
1985; 12
2002a; 92
1988; 338
1993; 330
1990; 295
1982; 251
2001; 532
1997; 379
1972; 8
2002b; 544
1984; 222
2005; 90
2000; 21
2000; 66
1981; 24
1996; 14
1977; 266
1988; 406
1999; 6
1995; 6
2004; 96
2004; 110
2004; 97
2004; 556
2004; 357
2003; 347
2004; 19
1993; 54
1998; 786
1996; 46
1999; 514
1999; 831
12873742 - Neurosci Lett. 2003 Aug 21;347(2):121-5
2447131 - J Comp Neurol. 1987 Nov 8;265(2):275-93
15728136 - Exp Physiol. 2005 May;90(3):247-53; discussion 253-7
15273241 - J Appl Physiol (1985). 2004 Nov;97(5):1763-73
7488727 - Neuroreport. 1995 Jul 10;6(10):1373-6
3612566 - J Physiol. 1986 Nov;380:373-85
3087574 - Brain Res. 1986 May 14;373(1-2):246-51
2358513 - J Comp Neurol. 1990 May 8;295(2):208-18
14752121 - J Appl Physiol (1985). 2004 May;96(5):1909-19
15016906 - News Physiol Sci. 2004 Apr;19:67-74
7074424 - Can J Physiol Pharmacol. 1982 Mar;60(3):392-8
15728134 - Exp Physiol. 2005 May;90(3):259-66; discussion 266-9
10967346 - Respir Physiol. 2000 Sep;122(2-3):223-35
2118731 - Am J Physiol. 1990 Sep;259(3 Pt 2):R492-8
9706021 - J Physiol. 1998 Sep 1;511 ( Pt 2):433-50
15558061 - Nat Neurosci. 2004 Dec;7(12):1360-9
15046730 - Auton Neurosci. 2004 Feb 27;110(2):65-80
8393540 - Neuroscience. 1993 Jun;54(4):881-92
9554992 - Brain Res. 1998 Mar 9;786(1-2):153-64
6199382 - J Comp Neurol. 1984 Jan 20;222(3):409-44
8719028 - Neuropsychopharmacology. 1996 Jan;14(1):35-46
2469021 - Naunyn Schmiedebergs Arch Pharmacol. 1988 Nov;338(5):463-71
8978504 - J Neurosci Res. 1996 Dec 15;46(6):697-708
10664612 - Trends Pharmacol Sci. 2000 Feb;21(2):70-7
12573710 - Neuroscience. 2003;116(3):669-83
11960965 - J Appl Physiol (1985). 2002 May;92(5):2119-30
12381830 - J Physiol. 2002 Oct 15;544(Pt 2):603-16
10484557 - J Appl Physiol (1985). 1999 Sep;87(3):910-9
11245208 - J Neuropathol Exp Neurol. 2001 Mar;60(3):228-47
7686567 - J Comp Neurol. 1993 Apr 22;330(4):543-56
4353054 - Physiol Behav. 1972 Feb;8(2):363-71
2137565 - Neurosci Lett. 1990 Jan 22;108(3):249-54
856998 - J Physiol. 1977 Mar;266(1):191-207
7139326 - Brain Res. 1982 Nov 18;251(2):259-76
9050789 - J Comp Neurol. 1997 Mar 10;379(2):261-70
2485883 - Neurosci Lett. 1989 Oct 23;105(1-2):34-40
3254424 - J Physiol. 1988 Dec;406:99-114
10411995 - Brain Res. 1999 Jun 12;831(1-2):155-64
2860149 - J Auton Nerv Syst. 1985 Feb-Mar;12(2-3):95-115
14672965 - J Appl Physiol (1985). 2004 May;96(5):1815-24
11353037 - J Neurophysiol. 2001 May;85(5):2224-35
6460101 - J Med Chem. 1981 Aug;24(8):921-3
11247921 - J Appl Physiol (1985). 2001 Apr;90(4):1247-57
7814687 - J Comp Neurol. 1994 Oct 8;348(2):161-82
7798382 - J Comp Neurol. 1994 Sep 1;347(1):64-86
15036613 - Neurosci Lett. 2004 Feb 26;357(1):58-62
11306665 - J Physiol. 2001 Apr 15;532(Pt 2):467-81
10327240 - Learn Mem. 1999 Mar-Apr;6(2):153-67
10444627 - J Appl Physiol (1985). 1999 Aug;87(2):673-82
9852336 - J Physiol. 1999 Jan 15;514 ( Pt 2):567-78
10823340 - Life Sci. 2000 Apr 14;66(21):1999-2012
14724193 - J Physiol. 2004 Apr 1;556(Pt 1):235-53
12589905 - Brain Res Brain Res Rev. 2002 Oct;40(1-3):45-52
e_1_2_5_27_1
Morrison SF (e_1_2_5_29_1) 2004; 19
e_1_2_5_25_1
e_1_2_5_48_1
Guyenet PG (e_1_2_5_11_1) 2005; 90
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
Nitz DA (e_1_2_5_37_1) 1999; 6
e_1_2_5_20_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_31_1
e_1_2_5_52_1
Paxinos G (e_1_2_5_41_1) 1982
e_1_2_5_50_1
References_xml – volume: 12
  start-page: 95
  year: 1985
  end-page: 115
  article-title: Blood pressure control by neurotransmitters in the medulla oblongata and spinal cord
  publication-title: J Auton Nerv Syst
– volume: 60
  start-page: 392
  year: 1982
  end-page: 398
  article-title: Evidence for on‐off control of heat dissipation from the tail of the rat
  publication-title: Can J Physiol Pharmacol
– volume: 97
  start-page: 1763
  year: 2004
  end-page: 1773
  article-title: Chronic fluoxetine microdialysis into the medullary raphe nuclei of the rat, but not systemic administration, increases the ventilatory response to CO
  publication-title: J Appl Physiol
– volume: 46
  start-page: 697
  year: 1996
  end-page: 708
  article-title: Ultrastructural localization of 5‐hydroxytryptamine1A receptors in the rat brain
  publication-title: J Neurosci Res
– volume: 85
  start-page: 2224
  year: 2001
  end-page: 2235
  article-title: Acidosis‐stimulated neurons of the medullary raphe are serotonergic
  publication-title: J Neurophysiol
– volume: 786
  start-page: 153
  year: 1998
  end-page: 164
  article-title: CNS cell groups projecting to sympathetic outflow of tail artery: neural circuits involved in heat loss in the rat
  publication-title: Brain Res
– volume: 222
  start-page: 409
  year: 1984
  end-page: 444
  article-title: Distribution of neuropeptide immunoreactive nerve terminals within the subnuclei of the nucleus of the tractus solitarius of the rat
  publication-title: J Comp Neurol
– volume: 8
  start-page: 363
  year: 1972
  end-page: 371
  article-title: Influence of environmental temperature on the sleep‐wakefulness cycle in the rat
  publication-title: Physiol Behav
– volume: 259
  start-page: R492
  year: 1990
  end-page: R498
  article-title: Body temperature effects on hypoxic and hypercapnic responses in awake rats
  publication-title: Am J Physiol
– volume: 266
  start-page: 191
  year: 1977
  end-page: 207
  article-title: Sleep and respiration of rats during hypoxia
  publication-title: J Physiol
– volume: 251
  start-page: 259
  year: 1982
  end-page: 276
  article-title: Activity of serotonin‐containing neurons in the nucleus raphe pallidus of freely moving cats
  publication-title: Brain Res
– year: 1982
– volume: 330
  start-page: 543
  year: 1993
  end-page: 556
  article-title: Aminergic and cholinergic afferents to REM sleep induction regions of the pontine reticular formation in the rat
  publication-title: J Comp Neurol
– volume: 87
  start-page: 910
  year: 1999
  end-page: 919
  article-title: CO microdialysis in retrotrapezoid nucleus of the rat increases breathing in wakefulness but not in sleep
  publication-title: J Appl Physiol
– volume: 96
  start-page: 1815
  year: 2004
  end-page: 1824
  article-title: Effects on breathing in awake and sleeping goats of focal acidosis in the medullary raphe
  publication-title: J Appl Physiol
– volume: 40
  start-page: 45
  year: 2002
  end-page: 52
  article-title: Activity of medullary serotonergic neurons in freely moving animals
  publication-title: Brain Res Brain Res Rev
– volume: 60
  start-page: 228
  year: 2001
  end-page: 247
  article-title: Medullary serotonergic network deficiency in the sudden infant death syndrome: review of a 15‐year study of a single dataset
  publication-title: J Neuropathol Exp Neurol
– volume: 406
  start-page: 99
  year: 1988
  end-page: 114
  article-title: Localization by kainic acid lesions of neurones transmitting the carotid chemoreceptor stimulus for respiration in rat
  publication-title: J Physiol
– volume: 265
  start-page: 275
  year: 1987
  end-page: 293
  article-title: Serotonin‐ and substance P‐containing projections to the nucleus tractus solitarii of the rat
  publication-title: J Comp Neurol
– volume: 116
  start-page: 669
  year: 2003
  end-page: 683
  article-title: Distinguishing characteristics of serotonin and non‐serotonin‐containing cells in the dorsal raphe nucleus: electrophysiological and immunohistochemical studies
  publication-title: Neuroscience
– volume: 108
  start-page: 249
  year: 1990
  end-page: 254
  article-title: Discrete localization of high‐density 5‐HT1A binding sites in the midline raphe and parapyramidal region of the ventral medulla oblongata of the rat
  publication-title: Neurosci Lett
– volume: 373
  start-page: 246
  year: 1986
  end-page: 251
  article-title: Innervation of the nucleus of the solitary tract and the dorsal vagal nucleus by thyrotropin‐releasing hormone‐containing raphe neurons
  publication-title: Brain Res
– volume: 6
  start-page: 1373
  year: 1995
  end-page: 1376
  article-title: Medullary responses to chemoreceptor activation are inhibited by locus coeruleus and nucleus raphe magnus
  publication-title: Neuroreport
– volume: 96
  start-page: 1909
  year: 2004
  end-page: 1919
  article-title: Inhibition of medullary raphe serotonergic neurons has age‐dependent effects on the CO response in newborn piglets
  publication-title: J Appl Physiol
– volume: 532
  start-page: 467
  year: 2001
  end-page: 481
  article-title: Microdialysis perfusion of 5‐HT into hypoglossal motor nucleus differentially modulates genioglossus activity across natural sleep‐wake states in rats
  publication-title: J Physiol
– volume: 122
  start-page: 223
  year: 2000
  end-page: 235
  article-title: Multiple sites for central chemoreception: their roles in response sensitivity and in sleep and wakefulness
  publication-title: Respir Physiol
– volume: 347
  start-page: 121
  year: 2003
  end-page: 125
  article-title: The nucleus raphe magnus modulates hypoxia‐induced hyperventilation but not anapyrexia in rats
  publication-title: Neurosci Lett
– volume: 514
  start-page: 567
  year: 1999
  end-page: 578
  article-title: Neurotransmitters and neuromodulators controlling the hypoxic respiratory response in anaesthetized cats
  publication-title: J Physiol
– volume: 7
  start-page: 1360
  year: 2004
  end-page: 1369
  article-title: Respiratory control by ventral surface chemoreceptor neurons in rats
  publication-title: Nat Neurosci
– volume: 24
  start-page: 921
  year: 1981
  end-page: 923
  article-title: 8‐Hydroxy‐2‐(di‐n‐propylamino) tetralin, a new centrally acting 5‐hydroxytryptamine receptor agonist
  publication-title: J Med Chem
– volume: 347
  start-page: 64
  year: 1994
  end-page: 86
  article-title: Brainstem network controlling descending drive to phrenic motoneurons in rat
  publication-title: J Comp Neurol
– volume: 105
  start-page: 34
  year: 1989
  end-page: 40
  article-title: Are there serotonergic projections from raphe and retrotrapezoid nuclei to the ventral respiratory group in the rat
  publication-title: Neurosci Lett
– volume: 14
  start-page: 35
  year: 1996
  end-page: 46
  article-title: Cellular localization of the 5‐HT1A receptor in primate brain neurons and glial cells
  publication-title: Neuropsychopharmacology
– volume: 54
  start-page: 881
  year: 1993
  end-page: 892
  article-title: Neuron specific expression of GABAA‐receptor subtypes: differential association of the [alpha]1‐ and [alpha]3‐ subunits with serotonergic and gabaergic neurons
  publication-title: Neuroscience
– volume: 92
  start-page: 2119
  year: 2002a
  end-page: 2130
  article-title: CO dialysis in nucleus tractus solitarius region of rat increases ventilation in sleep and wakefulness
  publication-title: J Appl Physiol
– volume: 295
  start-page: 208
  year: 1990
  end-page: 218
  article-title: Serotonin immunoreactive boutons form close appositions with respiratory neurons of the dorsal respiratory group in the cat
  publication-title: J Comp Neurol
– volume: 357
  start-page: 58
  year: 2004
  end-page: 62
  article-title: Inhibition of rostral medullary raphe neurons prevents cold‐induced activity in sympathetic nerves to rat tail and rabbit ear arteries
  publication-title: Neurosci Lett
– volume: 348
  start-page: 161
  year: 1994
  end-page: 182
  article-title: Hypoxia and electrical stimulation of the carotid sinus nerve induce Fos‐like immunoreactivity within catecholaminergic and serotoninergic neurons of the rat brainstem
  publication-title: J Comp Neurol
– volume: 380
  start-page: 373
  year: 1986
  end-page: 385
  article-title: Serotoninergic and non‐serotoninergic responses of phrenic motoneurones to raphe stimulation in the cat
  publication-title: J Physiol
– volume: 90
  start-page: 247
  year: 2005
  end-page: 253
  article-title: Retrotrapezoid nucleus: a litmus test for the identification of central chemoreceptors
  publication-title: Exp Physiol
– volume: 511
  start-page: 433
  year: 1998
  end-page: 450
  article-title: Chemosensitivity of rat medullary raphe neurones in primary tissue culture
  publication-title: J Physiol
– volume: 556
  start-page: 235
  year: 2004
  end-page: 253
  article-title: Medullary serotonergic neurones and adjacent neurones that express neurokinin‐1 receptors are both involved in chemoreception
  publication-title: J Physiol
– volume: 90
  start-page: 1247
  year: 2001
  end-page: 1257
  article-title: CO dialysis in the medullary raphe of the rat increases ventilation in sleep
  publication-title: J Appl Physiol
– volume: 379
  start-page: 261
  year: 1997
  end-page: 270
  article-title: Immunocytochemical studies of the 5‐HT(1A) receptor in ventral medullary neurons that project to the intermediolateral cell column and contain serotonin or tyrosine hydroxylase immunoreactivity
  publication-title: J Comp Neurol
– volume: 21
  start-page: 70
  year: 2000
  end-page: 77
  article-title: 5‐HT7 receptors: current knowledge and future prospects
  publication-title: Trends Pharmacol Sci
– volume: 6
  start-page: 153
  year: 1999
  end-page: 167
  article-title: Hippocampal EEG and unit activity responses to modulation of serotonergic median raphe neurons in the freely behaving rat
  publication-title: Learn Mem
– volume: 110
  start-page: 65
  year: 2004
  end-page: 80
  article-title: The development of the medullary serotonergic system in the piglet
  publication-title: Auton Neurosci
– volume: 831
  start-page: 155
  year: 1999
  end-page: 164
  article-title: 8‐OH‐DPAT‐sensitive neurons in the nucleus raphe magnus modulate thermoregulatory output in rats
  publication-title: Brain Res
– volume: 87
  start-page: 673
  year: 1999
  end-page: 682
  article-title: TRH microdialysis into the RTN of the conscious rat increases breathing, metabolism, and temperature
  publication-title: J Appl Physiol
– volume: 90
  start-page: 259
  year: 2005
  end-page: 266
  article-title: Homing in on the specific phenotype (s) of central respiratory chemoreceptors
  publication-title: Exp Physiol
– volume: 66
  start-page: 1999
  year: 2000
  end-page: 2012
  article-title: Role of dorsal raphe nucleus serotonin 5‐HT1A receptor in the regulation of REM sleep
  publication-title: Life Sci
– volume: 338
  start-page: 463
  year: 1988
  end-page: 471
  article-title: The 5‐HT 1A receptor agonist, 8‐OH‐DPAT, preferentially activates cell body 5‐HT autoreceptors in rat brain in vivo
  publication-title: Naunyn Schmiedebergs Arch Pharmacol
– volume: 544
  start-page: 603
  year: 2002b
  end-page: 616
  article-title: Substance P‐saporin lesion of neurons with NK1 receptors in one chemoreceptor site in rats decreases ventilation and chemosensitivity
  publication-title: J Physiol
– volume: 19
  start-page: 67
  year: 2004
  end-page: 74
  article-title: Central pathways controlling brown adipose tissue thermogenesis
  publication-title: News Physiol Sci
– ident: e_1_2_5_25_1
  doi: 10.1152/jappl.1999.87.3.910
– ident: e_1_2_5_15_1
  doi: 10.1152/japplphysiol.00992.2003
– ident: e_1_2_5_17_1
  doi: 10.1016/0165-1838(85)90054-2
– ident: e_1_2_5_36_1
  doi: 10.1016/j.autneu.2003.10.004
– ident: e_1_2_5_47_1
  doi: 10.1016/S0006-8993(97)01437-6
– ident: e_1_2_5_48_1
  doi: 10.1152/japplphysiol.00496.2004
– ident: e_1_2_5_44_1
  doi: 10.1111/j.1469-7793.1999.567ae.x
– ident: e_1_2_5_31_1
  doi: 10.1016/S0034-5687(00)00161-4
– ident: e_1_2_5_27_1
  doi: 10.1152/japplphysiol.00805.2003
– ident: e_1_2_5_34_1
  doi: 10.1113/jphysiol.2002.020032
– ident: e_1_2_5_19_1
  doi: 10.1111/j.1469-7793.2001.0467f.x
– ident: e_1_2_5_45_1
  doi: 10.1016/0031-9384(72)90384-8
– ident: e_1_2_5_22_1
  doi: 10.1093/jnen/60.3.228
– ident: e_1_2_5_12_1
  doi: 10.1002/(SICI)1096-9861(19970310)379:2<261::AID-CNE7>3.0.CO;2-1
– ident: e_1_2_5_5_1
  doi: 10.1016/0304-3940(89)90007-4
– ident: e_1_2_5_21_1
  doi: 10.1002/(SICI)1097-4547(19961215)46:6<697::AID-JNR7>3.0.CO;2-A
– ident: e_1_2_5_6_1
  doi: 10.1152/jappl.1999.87.2.673
– ident: e_1_2_5_28_1
  doi: 10.1016/S0024-3205(99)00649-9
– ident: e_1_2_5_49_1
  doi: 10.1016/0304-3940(90)90649-T
– volume: 19
  start-page: 67
  year: 2004
  ident: e_1_2_5_29_1
  article-title: Central pathways controlling brown adipose tissue thermogenesis
  publication-title: News Physiol Sci
  contributor:
    fullname: Morrison SF
– volume: 6
  start-page: 153
  year: 1999
  ident: e_1_2_5_37_1
  article-title: Hippocampal EEG and unit activity responses to modulation of serotonergic median raphe neurons in the freely behaving rat
  publication-title: Learn Mem
  doi: 10.1101/lm.6.2.153
  contributor:
    fullname: Nitz DA
– ident: e_1_2_5_9_1
  doi: 10.1016/0306-4522(93)90582-Z
– ident: e_1_2_5_23_1
  doi: 10.1016/S0306-4522(02)00584-5
– ident: e_1_2_5_4_1
  doi: 10.1016/S0006-8993(99)01426-2
– ident: e_1_2_5_52_1
  doi: 10.1002/cne.902950205
– ident: e_1_2_5_20_1
  doi: 10.1002/cne.902220308
– ident: e_1_2_5_54_1
  doi: 10.1152/jn.2001.85.5.2224
– ident: e_1_2_5_43_1
  doi: 10.1111/j.1469-445X.2005.tb00002.x
– ident: e_1_2_5_53_1
  doi: 10.1111/j.1469-7793.1998.433bh.x
– ident: e_1_2_5_39_1
  doi: 10.1016/0006-8993(86)90338-0
– ident: e_1_2_5_2_1
  doi: 10.1021/jm00140a002
– ident: e_1_2_5_26_1
  doi: 10.1152/ajpregu.1990.259.3.R492
– ident: e_1_2_5_3_1
  doi: 10.1016/S0893-133X(96)80057-1
– ident: e_1_2_5_55_1
  doi: 10.1139/y82-057
– ident: e_1_2_5_8_1
  doi: 10.1002/cne.903480202
– ident: e_1_2_5_16_1
  doi: 10.1113/jphysiol.1988.sp017371
– volume-title: The Rat Brain in Sterotaxic Coordinates
  year: 1982
  ident: e_1_2_5_41_1
  contributor:
    fullname: Paxinos G
– ident: e_1_2_5_51_1
  doi: 10.1016/S0165-6147(99)01432-7
– ident: e_1_2_5_10_1
  doi: 10.1016/S0304-3940(03)00671-2
– ident: e_1_2_5_50_1
  doi: 10.1002/cne.902650210
– ident: e_1_2_5_38_1
  doi: 10.1016/j.neulet.2003.11.067
– ident: e_1_2_5_24_1
  doi: 10.1113/jphysiol.1986.sp016291
– ident: e_1_2_5_32_1
  doi: 10.1152/jappl.2001.90.4.1247
– ident: e_1_2_5_18_1
  doi: 10.1016/S0165-0173(02)00187-X
– ident: e_1_2_5_7_1
  doi: 10.1002/cne.903470106
– ident: e_1_2_5_42_1
  doi: 10.1097/00001756-199507100-00003
– volume: 90
  start-page: 247
  year: 2005
  ident: e_1_2_5_11_1
  article-title: Retrotrapezoid nucleus: a litmus test for the identification of central chemoreceptors
  publication-title: Exp Physiol
  doi: 10.1111/j.1469-445X.2005.t01-1-00134.x
  contributor:
    fullname: Guyenet PG
– ident: e_1_2_5_30_1
  doi: 10.1038/nn1357
– ident: e_1_2_5_35_1
  doi: 10.1113/jphysiol.2003.059766
– ident: e_1_2_5_40_1
  doi: 10.1113/jphysiol.1977.sp011763
– ident: e_1_2_5_13_1
  doi: 10.1016/0006-8993(82)90743-0
– ident: e_1_2_5_33_1
  doi: 10.1152/japplphysiol.01128.2001
– ident: e_1_2_5_14_1
  doi: 10.1007/BF00179315
– ident: e_1_2_5_46_1
  doi: 10.1002/cne.903300410
SSID ssj0013099
Score 2.2144692
Snippet Serotonergic neurones in the mammalian medullary raphe region (MRR) have been implicated in central chemoreception and the modulation of the ventilatory...
Serotonergic neurones in the mammalian medullary raphe region (MRR) have been implicated in central chemoreception and the modulation of the ventilatory...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 543
SubjectTerms 8-Hydroxy-2-(di-n-propylamino)tetralin - pharmacology
Animals
Body Temperature - physiology
Electroencephalography
Electromyography
Hypercapnia - pathology
Hypercapnia - physiopathology
Hypoxia - pathology
Hypoxia - physiopathology
Integrative Physiology
Male
Medulla Oblongata - cytology
Medulla Oblongata - pathology
Medulla Oblongata - physiology
Microdialysis
Neurons - physiology
Oxygen Consumption - physiology
Plethysmography, Whole Body
Raphe Nuclei - cytology
Raphe Nuclei - pathology
Raphe Nuclei - physiology
Rats
Rats, Sprague-Dawley
Receptor, Serotonin, 5-HT1A - drug effects
Receptor, Serotonin, 5-HT1A - metabolism
Respiratory Mechanics - physiology
Serotonin - physiology
Serotonin Receptor Agonists - pharmacology
Sleep Stages - physiology
Wakefulness - physiology
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwGLSqnrjwKo_l6QPiREoSx7F9rIBVVamoQq3Um2U7Sbu0TarsrsTy6xnbyZaFIiGQ9rR2rDgZ-5uxv4wJeaPKIjNGNQnYdJoU3HtAMi4T5xqGkNKIKiy4HX4u90-Kg1N-ukWm47cw0R9iveDmR0aYr_0AN3Y4hSTzZgNfg_TvLod1Ecmk8KafGRM-s-vjl_xmMyFVam0aLng2fEGHZt7f1shmhBpdg29joL8nUv5McEOEmt4jZ2PfYmLKxe5yYXfd919sH_-_8_fJ3YHE0r2Iugdkq24fkp29FgL-akXf0qN4WXe22iHzQwQzYK1fUaC9897fPWZbGow0Mc_Sq67yR4jVFFSUhuzLy7DzT_uYvouCjp5DLvfOXLcz847a5YK23cL_2X2bGTprKVQ9Ynm3nFMgev6InEw_HX_YT4aTHhLHM5kmTpVKGIiVWmDGcSJVrG4Uczmr0qI2wkKYVjYVDmyO5WCENX62cFY6ZaGy2WOy3eKenxLayErZJq-dVFlRldLwRqVNVTEnhEXhhCTj29XX0dBDRyHE9PhU_dmcXMenOiF0hICOxfOYTqtBhHWueYEqr0doaAxOv-Ni2hpd1uBmKgVP-HONUqYiBymckCcRSjc3xaWQiqN1sQGydQVvDL5Z0s7Og0E4ol-BuDEhWcDQX_VTHx8cQc0--4drnpM7wdDW243yF2R70S_rl6BqC_sqDMQfPls-jw
  priority: 102
  providerName: Wiley-Blackwell
Title Medullary serotonergic neurones modulate the ventilatory response to hypercapnia, but not hypoxia in conscious rats
URI http://jp.physoc.org/content/566/2/543.abstract
https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fjphysiol.2005.083873
https://www.ncbi.nlm.nih.gov/pubmed/15878953
https://search.proquest.com/docview/17590341
https://search.proquest.com/docview/68072439
https://pubmed.ncbi.nlm.nih.gov/PMC1464763
Volume 566
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwGLW2nbggYPwIjOED4kTWJI5j-zhNTGOoqEKbtJsVOwnL1CZV2kr0v9-zkwwqQEJIUQ6xpdj-Pud7z_7yTMh7laVxnqsqBJqOwpQ7DUjGZWhtxRBSKlH4Bbfp1-ziOr284Td7hI__wvikfWvqk2a-OGnqW59buVzYyZgnNplNzzC7U8yLyT7Zh4OOFH3cOoiUepAIFzwe_peLYza586sF7XxYSpFMCn-ODpdCKs52Q9MoF_wn6Pl7BuWvyNaHpvMn5PGAKelp3_anZK9snpHD0wZ8erGlH-isb0_7fXtIVlPEFpi-21I4X-ukuDt8_KjXtcRnjy7awp3oVVIgQ-qTIed-I552fTYtClp6C_ba2XzZ1PlHajZr2rRr97D9Uee0bihINkJru1lRONjqObk-_3R1dhEOBy-ElscyCq3KlMjBHUqB8bUiUqysFLMJK6K0zIUBTyxMJCzAFUsA0EpcJrVGWmVAetkLctCgza8IrWShTJWUVqo4LTKZ80pFVVEwK4RBYUDCccz1stfX0D0vYXo0lzsqk-veXAGho2F0X7zqs1s1cKlONE9R5d1oMI254jZA8qZElzWgkooQtv9eI5ORSIDRAvKyN_DPRg1OEhCxY_qHCk6ne7cE7uv1ugd3DUjsneSf-qmvLmcgl6__-21vyCOvMus0QPkROVh3m_It8NPaHIM5fP7i7t-SYz937gHDSh8s
link.rule.ids 230,315,730,783,787,888,1378,27938,27939,46308,46732,53806,53808
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2VcoBLKRTo8lUfECdSkjiO7WNFKUvpVhXaSr1ZsZOw24-kymYlll_P2E62LBQJIaScYseKnRnPe_bkGeC1TJMoy2QZIJoOg4RZDUjKRGBMSTGklDx3C26j43R4mhyesbM1-Nj_C-P1IZYLbtYz3HxtHdwuSHdebtUGzh33ry-7hRFBBad34C56PrVHGex_iW-2E0Ipl7LhnEXdP3TYzrvbWlmNUb1u8G0Y9PdUyp8hrotRBw9g0vfOp6Zc7M5bvWu-_yL8-B-6vwkbHY4le97wHsJaUT2Crb0KOfzVgrwhJ_6x-utiC2YjjGdobs2CoMHXVv67wQmXOC1NnGrJVZ3bU8QKgmiUuATMS7f5TxqfwYsFNZkgY25Mdl1Ns7dEz1tS1a29WX-bZmRaEST2GM7r-YygUc8ew-nBh_H7YdAd9hAYFokwMDKVPEO-UnCcdAwPJS1KSU1M8zApMq6Rm-Y65AYBHY0RFBZ46cRoYaRGok2fwHqF77wNpBS51GVcGCGjJE9FxkoZlnlODecaCwcQ9J9XXXtND-W5EFX9qNrjOZnyozoA0tuA8sUzn1GrEAurWLEEq-z0tqHQP-2mS1YV2GWF8EyGCBX-XCMVIY8RFw7gqbelm5diggvJsHW-YmXLClYbfLWkmk6cRjgGwARDxwAiZ0R_1U81PjxBQvvsH57ZgXvD8ehIHX06_vwc7jt9W6s-yl7AetvMi5eI3Fr9ynnlD-O6Qqk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIiEuvMpjedUHxIkUJ45j-1hRVqXQaoVaqTcrdpJ2oU1W2azE8usZ28mWhSIhkHKKHSt2ZjzfZ08-A7xSWRrnuaoiRNM0SrnTgGRcRtZWDENKJQq_4HZ4lO2fpAen_HQDxsO_MEEfYrXg5jzDz9fOwWdF1Tu5Exv44ql_c9Gvi0gmBbsBN9OMUZfatfc5udpNoEqtVMMFj_tf6LCdt9e1sh6iBtng6yDo75mUPyNcH6LGd-Fs6FzITPm6s-jMjv3-i-7j__f-HtzpUSzZDWZ3HzbK-gFs7dbI4C-X5DWZhMeas-UWzA8xmqGxtUuC5t448e8Wp1vilTRxoiWXTeHOECsJYlHi0y8v_NY_aUP-LhY05Bz5cmvzWT3N3xCz6EjddO5m822ak2lNkNZjMG8Wc4ImPX8IJ-P3x-_2o_6oh8jyWNLIqkyJHNlKKXDKsYIqVlaK2YQVNC1zYZCZFoYKi3COJQgJS7xMao20yiDNZo9gs8Z3fgKkkoUyVVJaqeK0yGTOK0WromBWCIOFI4iGr6tnQdFDBybE9DCq7nBOrsOojoAMJqBD8Tzk02pEwjrRPMUq24NpaPROt-WS1yV2WSM4UxSBwp9rZJKKBFHhCB4HU7p6KS6FVBxbF2tGtqrglMHXS-rpuVcIx_CXYuAYQext6K_6qY8PJkhnn_7DM9twa7I31p8-HH18Bre9uK2THuXPYbNrF-ULhG2deel98gf9z0FY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Medullary+serotonergic+neurones+modulate+the+ventilatory+response+to+hypercapnia%2C+but+not+hypoxia+in+conscious+rats&rft.jtitle=The+Journal+of+physiology&rft.au=Taylor%2C+Natalie+C.&rft.au=Li%2C+Aihua&rft.au=Nattie%2C+Eugene+E.&rft.date=2005-07-15&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=566&rft.issue=2&rft.spage=543&rft.epage=557&rft_id=info:doi/10.1113%2Fjphysiol.2005.083873&rft.externalDBID=n%2Fa&rft.externalDocID=10_1113_jphysiol_2005_083873
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon