Medullary serotonergic neurones modulate the ventilatory response to hypercapnia, but not hypoxia in conscious rats
Serotonergic neurones in the mammalian medullary raphe region (MRR) have been implicated in central chemoreception and the modulation of the ventilatory response to hypercapnia, and may also be involved in the ventilatory response to hypoxia. In this study, we ask whether ventilatory responses acros...
Saved in:
Published in | The Journal of physiology Vol. 566; no. 2; pp. 543 - 557 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
9600 Garsington Road , Oxford , OX4 2DQ , UK
The Physiological Society
15.07.2005
Blackwell Science Ltd Blackwell Science Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Serotonergic neurones in the mammalian medullary raphe region (MRR) have been implicated in central chemoreception and the
modulation of the ventilatory response to hypercapnia, and may also be involved in the ventilatory response to hypoxia. In
this study, we ask whether ventilatory responses across arousal states are affected when the 5-hydroxytryptamine 1A receptor
(5-HT 1A ) agonist ( R )-(+)-8-hydroxy-2(di- n -propylamino)tetralin (DPAT) is microdialysed into the MRR of the unanaesthetized adult rat. Microdialysis of 1, 10 and 30
m m DPAT into the MRR significantly decreased absolute ventilation values during 7% CO 2 breathing by 21%, 19% and 30%, respectively, in wakefulness compared to artificial cerebrospinal fluid (aCSF) microdialysis,
due to decreases in tidal volume ( V T ) and not in frequency ( f ), similar to what occurred during non-rapid eye movement (NREM) sleep. The concentration-dependence of the hypercapnic ventilatory
effect might be due to differences in tissue distribution of DPAT. DPAT (30 m m ) changed room air breathing pattern by increasing f and decreasing V T . As evidenced by a sham control group, repeated experimentation and microdialysis of aCSF alone had no effect on the ventilatory
response to 7% CO 2 during wakefulness or sleep. Unlike during hypercapnia, microdialysis of 30 m m DPAT into the MRR did not change the ventilatory response to 10% O 2 . Additionally, 10 and 30 m m DPAT MRR microdialysis decreased body temperature, and 30 m m DPAT increased the percentage of experimental time in wakefulness. We conclude that serotonergic activity in the MRR plays
a role in the ventilatory response to hypercapnia, but not to hypoxia, and that MRR 5-HT 1A receptors are also involved in thermoregulation and arousal. |
---|---|
AbstractList | Serotonergic neurones in the mammalian medullary raphe region (MRR) have been implicated in central chemoreception and the modulation of the ventilatory response to hypercapnia, and may also be involved in the ventilatory response to hypoxia. In this study, we ask whether ventilatory responses across arousal states are affected when the 5-hydroxytryptamine 1A receptor (5-HT
1A
) agonist (
R
)-(+)-8-hydroxy-2(di-
n
-propylamino)tetralin (DPAT) is microdialysed into the MRR of the unanaesthetized adult rat. Microdialysis of 1, 10 and 30 m
m
DPAT into the MRR significantly decreased absolute ventilation values
during 7% CO
2
breathing by 21%, 19% and 30%, respectively, in wakefulness compared to artificial cerebrospinal fluid (aCSF) microdialysis, due to decreases in tidal volume (
V
T
) and not in frequency (
f
), similar to what occurred during non-rapid eye movement (NREM) sleep. The concentration-dependence of the hypercapnic ventilatory effect might be due to differences in tissue distribution of DPAT. DPAT (30 m
m
) changed room air breathing pattern by increasing
f
and decreasing
V
T
. As evidenced by a sham control group, repeated experimentation and microdialysis of aCSF alone had no effect on the ventilatory response to 7% CO
2
during wakefulness or sleep. Unlike during hypercapnia, microdialysis of 30 m
m
DPAT into the MRR did not change the ventilatory response to 10% O
2
. Additionally, 10 and 30 m
m
DPAT MRR microdialysis decreased body temperature, and 30 m
m
DPAT increased the percentage of experimental time in wakefulness. We conclude that serotonergic activity in the MRR plays a role in the ventilatory response to hypercapnia, but not to hypoxia, and that MRR 5-HT
1A
receptors are also involved in thermoregulation and arousal. Serotonergic neurones in the mammalian medullary raphe region (MRR) have been implicated in central chemoreception and the modulation of the ventilatory response to hypercapnia, and may also be involved in the ventilatory response to hypoxia. In this study, we ask whether ventilatory responses across arousal states are affected when the 5-hydroxytryptamine 1A receptor (5-HT1A) agonist (R)-(+)-8-hydroxy-2(di-n-propylamino)tetralin (DPAT) is microdialysed into the MRR of the unanaesthetized adult rat. Microdialysis of 1, 10 and 30 mM DPAT into the MRR significantly decreased absolute ventilation values(VE) during 7% CO2 breathing by 21%, 19% and 30%, respectively, in wakefulness compared to artificial cerebrospinal fluid (aCSF) microdialysis, due to decreases in tidal volume (VT) and not in frequency (f), similar to what occurred during non-rapid eye movement (NREM) sleep. The concentration-dependence of the hypercapnic ventilatory effect might be due to differences in tissue distribution of DPAT. DPAT (30 mM) changed room air breathing pattern by increasing f and decreasing VT. As evidenced by a sham control group, repeated experimentation and microdialysis of aCSF alone had no effect on the ventilatory response to 7% CO2 during wakefulness or sleep. Unlike during hypercapnia, microdialysis of 30 mM DPAT into the MRR did not change the ventilatory response to 10% O2. Additionally, 10 and 30 mM DPAT MRR microdialysis decreased body temperature, and 30 mM DPAT increased the percentage of experimental time in wakefulness. We conclude that serotonergic activity in the MRR plays a role in the ventilatory response to hypercapnia, but not to hypoxia, and that MRR 5-HT1A receptors are also involved in thermoregulation and arousal. Serotonergic neurones in the mammalian medullary raphe region (MRR) have been implicated in central chemoreception and the modulation of the ventilatory response to hypercapnia, and may also be involved in the ventilatory response to hypoxia. In this study, we ask whether ventilatory responses across arousal states are affected when the 5‐hydroxytryptamine 1A receptor (5‐HT1A) agonist (R)‐(+)‐8‐hydroxy‐2(di‐n‐propylamino)tetralin (DPAT) is microdialysed into the MRR of the unanaesthetized adult rat. Microdialysis of 1, 10 and 30 mm DPAT into the MRR significantly decreased absolute ventilation values during 7% CO2 breathing by 21%, 19% and 30%, respectively, in wakefulness compared to artificial cerebrospinal fluid (aCSF) microdialysis, due to decreases in tidal volume (VT) and not in frequency (f), similar to what occurred during non‐rapid eye movement (NREM) sleep. The concentration‐dependence of the hypercapnic ventilatory effect might be due to differences in tissue distribution of DPAT. DPAT (30 mm) changed room air breathing pattern by increasing f and decreasing VT. As evidenced by a sham control group, repeated experimentation and microdialysis of aCSF alone had no effect on the ventilatory response to 7% CO2 during wakefulness or sleep. Unlike during hypercapnia, microdialysis of 30 mm DPAT into the MRR did not change the ventilatory response to 10% O2. Additionally, 10 and 30 mm DPAT MRR microdialysis decreased body temperature, and 30 mm DPAT increased the percentage of experimental time in wakefulness. We conclude that serotonergic activity in the MRR plays a role in the ventilatory response to hypercapnia, but not to hypoxia, and that MRR 5‐HT1A receptors are also involved in thermoregulation and arousal. Serotonergic neurones in the mammalian medullary raphe region (MRR) have been implicated in central chemoreception and the modulation of the ventilatory response to hypercapnia, and may also be involved in the ventilatory response to hypoxia. In this study, we ask whether ventilatory responses across arousal states are affected when the 5-hydroxytryptamine 1A receptor (5-HT sub(1A)) agonist (R)-(+)-8-hydroxy-2(di-n-propylamino)tetralin (DPAT) is microdialysed into the MRR of the unanaesthetized adult rat. Microdialysis of 1, 10 and 30 mM DPAT into the MRR significantly decreased absolute ventilation values {tjp_960_mu1} during 7% CO sub(2) breathing by 21%, 19% and 30%, respectively, in wakefulness compared to artificial cerebrospinal fluid (aCSF) microdialysis, due to decreases in tidal volume (V sub(T)) and not in frequency (f), similar to what occurred during non-rapid eye movement (NREM) sleep. The concentration-dependence of the hypercapnic ventilatory effect might be due to differences in tissue distribution of DPAT. DPAT (30 mM) changed room air breathing pattern by increasing f and decreasing V sub(T). As evidenced by a sham control group, repeated experimentation and microdialysis of aCSF alone had no effect on the ventilatory response to 7% CO sub(2) during wakefulness or sleep. Unlike during hypercapnia, microdialysis of 30 mM DPAT into the MRR did not change the ventilatory response to 10% O sub(2). Additionally, 10 and 30 mM DPAT MRR microdialysis decreased body temperature, and 30 mM DPAT increased the percentage of experimental time in wakefulness. We conclude that serotonergic activity in the MRR plays a role in the ventilatory response to hypercapnia, but not to hypoxia, and that MRR 5-HT sub(1A) receptors are also involved in thermoregulation and arousal. Serotonergic neurones in the mammalian medullary raphe region (MRR) have been implicated in central chemoreception and the modulation of the ventilatory response to hypercapnia, and may also be involved in the ventilatory response to hypoxia. In this study, we ask whether ventilatory responses across arousal states are affected when the 5-hydroxytryptamine 1A receptor (5-HT 1A ) agonist ( R )-(+)-8-hydroxy-2(di- n -propylamino)tetralin (DPAT) is microdialysed into the MRR of the unanaesthetized adult rat. Microdialysis of 1, 10 and 30 m m DPAT into the MRR significantly decreased absolute ventilation values during 7% CO 2 breathing by 21%, 19% and 30%, respectively, in wakefulness compared to artificial cerebrospinal fluid (aCSF) microdialysis, due to decreases in tidal volume ( V T ) and not in frequency ( f ), similar to what occurred during non-rapid eye movement (NREM) sleep. The concentration-dependence of the hypercapnic ventilatory effect might be due to differences in tissue distribution of DPAT. DPAT (30 m m ) changed room air breathing pattern by increasing f and decreasing V T . As evidenced by a sham control group, repeated experimentation and microdialysis of aCSF alone had no effect on the ventilatory response to 7% CO 2 during wakefulness or sleep. Unlike during hypercapnia, microdialysis of 30 m m DPAT into the MRR did not change the ventilatory response to 10% O 2 . Additionally, 10 and 30 m m DPAT MRR microdialysis decreased body temperature, and 30 m m DPAT increased the percentage of experimental time in wakefulness. We conclude that serotonergic activity in the MRR plays a role in the ventilatory response to hypercapnia, but not to hypoxia, and that MRR 5-HT 1A receptors are also involved in thermoregulation and arousal. |
Author | Aihua Li Natalie C Taylor Eugene E Nattie |
Author_xml | – sequence: 1 givenname: Natalie C. surname: Taylor fullname: Taylor, Natalie C. – sequence: 2 givenname: Aihua surname: Li fullname: Li, Aihua – sequence: 3 givenname: Eugene E. surname: Nattie fullname: Nattie, Eugene E. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15878953$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1v1DAQhi1URLeFf4CQT3BplnEmieMLUlVRPlQEh3K2HO_sxlU2DnbSkn-PV1m-TiBZ8sc873hm3jN20vueGHsuYC2EwNd3QztH57t1DlCuocZa4iO2EkWlMikVnrAVQJ5nKEtxys5ivAMQCEo9YaeirGWtSlyx-Ik2U9eZMPNIwY_pj7Bzlvc0hXSOfO9T3IzEx5b4PfWjSzef8EBx8H1MAc_beaBgzdA7c8GbaeS9Hw-P_rsz3PXcJtA6P0UezBifssdb00V6dtzP2dfrt7dX77Obz-8-XF3eZLYUNWRWVUoaKBRJiWAlKKStQpvjBgoysskFbBqQFlWOOZSK0moK29RWNQIRz9mbJe8wNXva2FR8MJ0egtunfrU3Tv8d6V2rd_5epxkWsjokeHlMEPy3ieKo9y5aSuPqKTWjqxpkXqD6JyhkqQALkcBiAW3wMQba_qpGgD7Yqn_aqg-26sXWJHvxZye_RUcfE1AvwIPraP6vpPr24xdVQZK-WqSt27UPLpBe4Oito3HWZVXpXJcF4g_EKMYj |
CitedBy_id | crossref_primary_10_1113_jphysiol_2014_285171 crossref_primary_10_1523_JNEUROSCI_0864_13_2014 crossref_primary_10_1152_japplphysiol_01389_2006 crossref_primary_10_1152_ajpregu_00655_2007 crossref_primary_10_1152_physrev_00043_2008 crossref_primary_10_1016_j_autneu_2006_02_003 crossref_primary_10_1152_japplphysiol_00435_2020 crossref_primary_10_1016_j_resp_2010_09_015 crossref_primary_10_1007_s00424_007_0338_8 crossref_primary_10_1016_j_cbpa_2006_11_003 crossref_primary_10_1152_japplphysiol_00120_2008 crossref_primary_10_1016_j_jchemneu_2011_05_004 crossref_primary_10_1016_j_meatsci_2016_03_011 crossref_primary_10_1152_japplphysiol_00560_2014 crossref_primary_10_1152_japplphysiol_01310_2013 crossref_primary_10_1113_jphysiol_2006_114504 crossref_primary_10_1152_japplphysiol_00939_2012 crossref_primary_10_1523_JNEUROSCI_4729_07_2008 crossref_primary_10_1089_cap_2020_0176 crossref_primary_10_1016_j_resp_2009_05_010 crossref_primary_10_1002_cne_22265 crossref_primary_10_1113_jphysiol_2008_152231 crossref_primary_10_1152_japplphysiol_01061_2010 crossref_primary_10_1152_japplphysiol_00112_2008 crossref_primary_10_1152_jn_00288_2013 crossref_primary_10_1523_JNEUROSCI_4167_07_2007 crossref_primary_10_1016_j_neuroscience_2020_08_012 crossref_primary_10_1016_j_brainres_2007_03_037 crossref_primary_10_1016_j_resp_2008_09_004 crossref_primary_10_1152_jn_00478_2023 crossref_primary_10_1016_j_resp_2010_03_014 crossref_primary_10_1152_jn_00776_2017 crossref_primary_10_1016_j_resp_2005_11_005 crossref_primary_10_1152_jn_00497_2020 crossref_primary_10_1152_japplphysiol_00411_2015 crossref_primary_10_1002_cne_21105 crossref_primary_10_1016_j_clp_2006_10_004 crossref_primary_10_1152_japplphysiol_00424_2007 crossref_primary_10_1126_science_1157871 crossref_primary_10_1152_japplphysiol_01508_2005 crossref_primary_10_1016_j_arcped_2007_02_063 crossref_primary_10_1016_j_resp_2009_04_014 crossref_primary_10_1152_ajpregu_00498_2006 crossref_primary_10_1152_japplphysiol_00347_2006 crossref_primary_10_1002_ejhf_2819 crossref_primary_10_1002_ajmg_a_32112 crossref_primary_10_1007_s00401_008_0468_x crossref_primary_10_1016_j_neuroscience_2020_11_005 crossref_primary_10_1152_japplphysiol_00838_2020 crossref_primary_10_1002_cne_22435 crossref_primary_10_1016_j_resp_2011_03_011 crossref_primary_10_1007_s11010_011_0814_5 crossref_primary_10_1016_j_neuroscience_2009_09_078 crossref_primary_10_1152_jn_01073_2014 crossref_primary_10_15369_sujms_26_211 crossref_primary_10_1016_j_resp_2009_07_015 crossref_primary_10_1002_jcp_21169 crossref_primary_10_1016_j_ejphar_2013_02_009 crossref_primary_10_1152_ajpregu_00576_2010 crossref_primary_10_1093_jnen_nlad030 crossref_primary_10_1002_ejhf_1854 crossref_primary_10_1016_j_resp_2008_06_012 crossref_primary_10_1113_EP085161 crossref_primary_10_1152_japplphysiol_00020_2022 crossref_primary_10_1111_j_1748_1716_2008_01853_x crossref_primary_10_1113_jphysiol_2011_214759 crossref_primary_10_1152_japplphysiol_00376_2006 crossref_primary_10_1016_j_resp_2012_09_007 crossref_primary_10_1016_j_resp_2013_04_008 crossref_primary_10_1097_JCP_0b013e318173aa2e crossref_primary_10_1007_s00424_011_0990_x crossref_primary_10_1016_j_resp_2008_12_004 crossref_primary_10_7554_eLife_83654 crossref_primary_10_1016_j_resp_2013_02_015 crossref_primary_10_1016_j_resp_2017_11_009 crossref_primary_10_1016_j_resp_2008_05_011 crossref_primary_10_4103_1673_5374_160101 crossref_primary_10_1016_j_brainres_2009_05_003 crossref_primary_10_1016_j_resp_2019_103313 crossref_primary_10_3390_ijms25084403 crossref_primary_10_1152_jn_00813_2007 crossref_primary_10_3389_fphys_2023_1332810 crossref_primary_10_1016_j_resp_2010_08_017 crossref_primary_10_1007_s00424_020_02455_5 crossref_primary_10_1016_j_resp_2012_05_026 crossref_primary_10_1152_ajpregu_00122_2009 crossref_primary_10_1152_japplphysiol_00069_2008 crossref_primary_10_1016_j_resp_2008_04_017 crossref_primary_10_1113_JP272199 crossref_primary_10_1186_s12931_022_01970_6 crossref_primary_10_1016_j_resp_2008_04_014 crossref_primary_10_1113_EP089335 crossref_primary_10_1152_physrev_00029_2009 |
Cites_doi | 10.1152/jappl.1999.87.3.910 10.1152/japplphysiol.00992.2003 10.1016/0165-1838(85)90054-2 10.1016/j.autneu.2003.10.004 10.1016/S0006-8993(97)01437-6 10.1152/japplphysiol.00496.2004 10.1111/j.1469-7793.1999.567ae.x 10.1016/S0034-5687(00)00161-4 10.1152/japplphysiol.00805.2003 10.1113/jphysiol.2002.020032 10.1111/j.1469-7793.2001.0467f.x 10.1016/0031-9384(72)90384-8 10.1093/jnen/60.3.228 10.1002/(SICI)1096-9861(19970310)379:2<261::AID-CNE7>3.0.CO;2-1 10.1016/0304-3940(89)90007-4 10.1002/(SICI)1097-4547(19961215)46:6<697::AID-JNR7>3.0.CO;2-A 10.1152/jappl.1999.87.2.673 10.1016/S0024-3205(99)00649-9 10.1016/0304-3940(90)90649-T 10.1101/lm.6.2.153 10.1016/0306-4522(93)90582-Z 10.1016/S0306-4522(02)00584-5 10.1016/S0006-8993(99)01426-2 10.1002/cne.902950205 10.1002/cne.902220308 10.1152/jn.2001.85.5.2224 10.1111/j.1469-445X.2005.tb00002.x 10.1111/j.1469-7793.1998.433bh.x 10.1016/0006-8993(86)90338-0 10.1021/jm00140a002 10.1152/ajpregu.1990.259.3.R492 10.1016/S0893-133X(96)80057-1 10.1139/y82-057 10.1002/cne.903480202 10.1113/jphysiol.1988.sp017371 10.1016/S0165-6147(99)01432-7 10.1016/S0304-3940(03)00671-2 10.1002/cne.902650210 10.1016/j.neulet.2003.11.067 10.1113/jphysiol.1986.sp016291 10.1152/jappl.2001.90.4.1247 10.1016/S0165-0173(02)00187-X 10.1002/cne.903470106 10.1097/00001756-199507100-00003 10.1111/j.1469-445X.2005.t01-1-00134.x 10.1038/nn1357 10.1113/jphysiol.2003.059766 10.1113/jphysiol.1977.sp011763 10.1016/0006-8993(82)90743-0 10.1152/japplphysiol.01128.2001 10.1007/BF00179315 10.1002/cne.903300410 |
ContentType | Journal Article |
Copyright | 2005 The Journal of Physiology © 2005 The Physiological Society The Physiological society 2005 2005 |
Copyright_xml | – notice: 2005 The Journal of Physiology © 2005 The Physiological Society – notice: The Physiological society 2005 2005 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QR 7TK 8FD FR3 P64 7X8 5PM |
DOI | 10.1113/jphysiol.2005.083873 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Chemoreception Abstracts Engineering Research Database Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Chemoreception Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1469-7793 |
EndPage | 557 |
ExternalDocumentID | 10_1113_jphysiol_2005_083873 15878953 TJP960 566_2_543 |
Genre | article Research Support, U.S. Gov't, P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R37 HL028066 – fundername: NHLBI NIH HHS grantid: HL 28066 – fundername: NHLBI NIH HHS grantid: R01 HL028066 – fundername: PHS HHS grantid: 36379 |
GroupedDBID | - 05W 0R 0YM 10A 123 1OB 1OC 24P 29L 2WC 31 33P 3N 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 55 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAONW AAVGM AAZKR ABCUV ABFLS ABHUG ABITZ ABIVO ABOCM ABPPZ ABPTK ABPVW ABUFD ABWRO ACAHQ ACFBH ACGFS ACIWK ACMXC ACNCT ACPOU ACPRK ACXME ACXQS ADACO ADAWD ADBBV ADDAD ADEOM ADIZJ ADXAS ADZMN AEIMD AEUQT AFBPY AFFNX AFPWT AFZJQ AGJLS ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C1A C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DZ E3Z EBS EJD EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GA GJ GODZA GX1 H.X H13 HZ HZI IA IX1 J0M K48 LATKE LC2 LC3 LEEKS LI0 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NEJ NF O0- O66 O9- OHT OK1 OVD P2P P2W P2X P2Z P4A P4B P4D Q.N Q11 QB0 R.K RIG ROL RPM RX1 SUPJJ TLM TN5 UB1 UNR UPT UQL V8K VH1 W8V W99 WBKPD WH7 WIH WIJ WIK WIN WNSPC WOHZO WOQ WOW WQJ WRC WT WXI WYISQ X X7M XG1 Y3 YZZ ZA5 ZZTAW --- -DZ -~X .3N .55 .GA .GJ .Y3 0R~ 18M 31~ 36B 3EH AAFWJ AAHHS AANLZ AASGY AAXRX AAYJJ ABCQN ABEML ABJNI ABQWH ABXGK ACCFJ ACCZN ACGFO ACGOF ACSCC ACXBN ADBTR ADKYN ADMGS ADOZA AEEZP AEGXH AEIGN AEQDE AEUYR AFEBI AFFPM AFGKR AHBTC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE AMYDB AOIJS CHEAL EMOBN FA8 HF~ HGLYW HZ~ H~9 IHE IPNFZ KBYEO LH4 NF~ OIG SAMSI TEORI TR2 UKR W8F WHG WXSBR XOL YBU YHG YKV YQT YSK YXB YYP ZGI ZXP ~IA ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QR 7TK 8FD FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c5180-c9697a049e7730c7093ef93c23d04ea7b210db07c39232059e59eb4cb8c9b1333 |
IEDL.DBID | RPM |
ISSN | 0022-3751 |
IngestDate | Tue Sep 17 21:14:07 EDT 2024 Fri Aug 16 21:50:02 EDT 2024 Fri Aug 16 21:00:42 EDT 2024 Fri Aug 23 00:48:14 EDT 2024 Sat Sep 28 07:43:30 EDT 2024 Sat Aug 24 01:02:29 EDT 2024 Fri Jan 15 02:11:32 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5180-c9697a049e7730c7093ef93c23d04ea7b210db07c39232059e59eb4cb8c9b1333 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1464763 |
PMID | 15878953 |
PQID | 17590341 |
PQPubID | 23462 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_1464763 proquest_miscellaneous_68072439 proquest_miscellaneous_17590341 crossref_primary_10_1113_jphysiol_2005_083873 pubmed_primary_15878953 wiley_primary_10_1113_jphysiol_2005_083873_TJP960 highwire_physiosociety_566_2_543 |
PublicationCentury | 2000 |
PublicationDate | 2005-07-15 |
PublicationDateYYYYMMDD | 2005-07-15 |
PublicationDate_xml | – month: 07 year: 2005 text: 2005-07-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | 9600 Garsington Road , Oxford , OX4 2DQ , UK |
PublicationPlace_xml | – name: 9600 Garsington Road , Oxford , OX4 2DQ , UK – name: England |
PublicationTitle | The Journal of physiology |
PublicationTitleAlternate | J Physiol |
PublicationYear | 2005 |
Publisher | The Physiological Society Blackwell Science Ltd Blackwell Science Inc |
Publisher_xml | – name: The Physiological Society – name: Blackwell Science Ltd – name: Blackwell Science Inc |
References | 1990; 108 2003; 116 2001; 90 1987; 265 1986; 373 2004; 7 1999; 87 1998; 511 2001; 85 2001; 60 1989; 105 1994; 347 1990; 259 1994; 348 1982; 60 2002; 40 1986; 380 1982 2000; 122 1985; 12 2002a; 92 1988; 338 1993; 330 1990; 295 1982; 251 2001; 532 1997; 379 1972; 8 2002b; 544 1984; 222 2005; 90 2000; 21 2000; 66 1981; 24 1996; 14 1977; 266 1988; 406 1999; 6 1995; 6 2004; 96 2004; 110 2004; 97 2004; 556 2004; 357 2003; 347 2004; 19 1993; 54 1998; 786 1996; 46 1999; 514 1999; 831 12873742 - Neurosci Lett. 2003 Aug 21;347(2):121-5 2447131 - J Comp Neurol. 1987 Nov 8;265(2):275-93 15728136 - Exp Physiol. 2005 May;90(3):247-53; discussion 253-7 15273241 - J Appl Physiol (1985). 2004 Nov;97(5):1763-73 7488727 - Neuroreport. 1995 Jul 10;6(10):1373-6 3612566 - J Physiol. 1986 Nov;380:373-85 3087574 - Brain Res. 1986 May 14;373(1-2):246-51 2358513 - J Comp Neurol. 1990 May 8;295(2):208-18 14752121 - J Appl Physiol (1985). 2004 May;96(5):1909-19 15016906 - News Physiol Sci. 2004 Apr;19:67-74 7074424 - Can J Physiol Pharmacol. 1982 Mar;60(3):392-8 15728134 - Exp Physiol. 2005 May;90(3):259-66; discussion 266-9 10967346 - Respir Physiol. 2000 Sep;122(2-3):223-35 2118731 - Am J Physiol. 1990 Sep;259(3 Pt 2):R492-8 9706021 - J Physiol. 1998 Sep 1;511 ( Pt 2):433-50 15558061 - Nat Neurosci. 2004 Dec;7(12):1360-9 15046730 - Auton Neurosci. 2004 Feb 27;110(2):65-80 8393540 - Neuroscience. 1993 Jun;54(4):881-92 9554992 - Brain Res. 1998 Mar 9;786(1-2):153-64 6199382 - J Comp Neurol. 1984 Jan 20;222(3):409-44 8719028 - Neuropsychopharmacology. 1996 Jan;14(1):35-46 2469021 - Naunyn Schmiedebergs Arch Pharmacol. 1988 Nov;338(5):463-71 8978504 - J Neurosci Res. 1996 Dec 15;46(6):697-708 10664612 - Trends Pharmacol Sci. 2000 Feb;21(2):70-7 12573710 - Neuroscience. 2003;116(3):669-83 11960965 - J Appl Physiol (1985). 2002 May;92(5):2119-30 12381830 - J Physiol. 2002 Oct 15;544(Pt 2):603-16 10484557 - J Appl Physiol (1985). 1999 Sep;87(3):910-9 11245208 - J Neuropathol Exp Neurol. 2001 Mar;60(3):228-47 7686567 - J Comp Neurol. 1993 Apr 22;330(4):543-56 4353054 - Physiol Behav. 1972 Feb;8(2):363-71 2137565 - Neurosci Lett. 1990 Jan 22;108(3):249-54 856998 - J Physiol. 1977 Mar;266(1):191-207 7139326 - Brain Res. 1982 Nov 18;251(2):259-76 9050789 - J Comp Neurol. 1997 Mar 10;379(2):261-70 2485883 - Neurosci Lett. 1989 Oct 23;105(1-2):34-40 3254424 - J Physiol. 1988 Dec;406:99-114 10411995 - Brain Res. 1999 Jun 12;831(1-2):155-64 2860149 - J Auton Nerv Syst. 1985 Feb-Mar;12(2-3):95-115 14672965 - J Appl Physiol (1985). 2004 May;96(5):1815-24 11353037 - J Neurophysiol. 2001 May;85(5):2224-35 6460101 - J Med Chem. 1981 Aug;24(8):921-3 11247921 - J Appl Physiol (1985). 2001 Apr;90(4):1247-57 7814687 - J Comp Neurol. 1994 Oct 8;348(2):161-82 7798382 - J Comp Neurol. 1994 Sep 1;347(1):64-86 15036613 - Neurosci Lett. 2004 Feb 26;357(1):58-62 11306665 - J Physiol. 2001 Apr 15;532(Pt 2):467-81 10327240 - Learn Mem. 1999 Mar-Apr;6(2):153-67 10444627 - J Appl Physiol (1985). 1999 Aug;87(2):673-82 9852336 - J Physiol. 1999 Jan 15;514 ( Pt 2):567-78 10823340 - Life Sci. 2000 Apr 14;66(21):1999-2012 14724193 - J Physiol. 2004 Apr 1;556(Pt 1):235-53 12589905 - Brain Res Brain Res Rev. 2002 Oct;40(1-3):45-52 e_1_2_5_27_1 Morrison SF (e_1_2_5_29_1) 2004; 19 e_1_2_5_25_1 e_1_2_5_48_1 Guyenet PG (e_1_2_5_11_1) 2005; 90 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_55_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_51_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 Nitz DA (e_1_2_5_37_1) 1999; 6 e_1_2_5_20_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_54_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 e_1_2_5_31_1 e_1_2_5_52_1 Paxinos G (e_1_2_5_41_1) 1982 e_1_2_5_50_1 |
References_xml | – volume: 12 start-page: 95 year: 1985 end-page: 115 article-title: Blood pressure control by neurotransmitters in the medulla oblongata and spinal cord publication-title: J Auton Nerv Syst – volume: 60 start-page: 392 year: 1982 end-page: 398 article-title: Evidence for on‐off control of heat dissipation from the tail of the rat publication-title: Can J Physiol Pharmacol – volume: 97 start-page: 1763 year: 2004 end-page: 1773 article-title: Chronic fluoxetine microdialysis into the medullary raphe nuclei of the rat, but not systemic administration, increases the ventilatory response to CO publication-title: J Appl Physiol – volume: 46 start-page: 697 year: 1996 end-page: 708 article-title: Ultrastructural localization of 5‐hydroxytryptamine1A receptors in the rat brain publication-title: J Neurosci Res – volume: 85 start-page: 2224 year: 2001 end-page: 2235 article-title: Acidosis‐stimulated neurons of the medullary raphe are serotonergic publication-title: J Neurophysiol – volume: 786 start-page: 153 year: 1998 end-page: 164 article-title: CNS cell groups projecting to sympathetic outflow of tail artery: neural circuits involved in heat loss in the rat publication-title: Brain Res – volume: 222 start-page: 409 year: 1984 end-page: 444 article-title: Distribution of neuropeptide immunoreactive nerve terminals within the subnuclei of the nucleus of the tractus solitarius of the rat publication-title: J Comp Neurol – volume: 8 start-page: 363 year: 1972 end-page: 371 article-title: Influence of environmental temperature on the sleep‐wakefulness cycle in the rat publication-title: Physiol Behav – volume: 259 start-page: R492 year: 1990 end-page: R498 article-title: Body temperature effects on hypoxic and hypercapnic responses in awake rats publication-title: Am J Physiol – volume: 266 start-page: 191 year: 1977 end-page: 207 article-title: Sleep and respiration of rats during hypoxia publication-title: J Physiol – volume: 251 start-page: 259 year: 1982 end-page: 276 article-title: Activity of serotonin‐containing neurons in the nucleus raphe pallidus of freely moving cats publication-title: Brain Res – year: 1982 – volume: 330 start-page: 543 year: 1993 end-page: 556 article-title: Aminergic and cholinergic afferents to REM sleep induction regions of the pontine reticular formation in the rat publication-title: J Comp Neurol – volume: 87 start-page: 910 year: 1999 end-page: 919 article-title: CO microdialysis in retrotrapezoid nucleus of the rat increases breathing in wakefulness but not in sleep publication-title: J Appl Physiol – volume: 96 start-page: 1815 year: 2004 end-page: 1824 article-title: Effects on breathing in awake and sleeping goats of focal acidosis in the medullary raphe publication-title: J Appl Physiol – volume: 40 start-page: 45 year: 2002 end-page: 52 article-title: Activity of medullary serotonergic neurons in freely moving animals publication-title: Brain Res Brain Res Rev – volume: 60 start-page: 228 year: 2001 end-page: 247 article-title: Medullary serotonergic network deficiency in the sudden infant death syndrome: review of a 15‐year study of a single dataset publication-title: J Neuropathol Exp Neurol – volume: 406 start-page: 99 year: 1988 end-page: 114 article-title: Localization by kainic acid lesions of neurones transmitting the carotid chemoreceptor stimulus for respiration in rat publication-title: J Physiol – volume: 265 start-page: 275 year: 1987 end-page: 293 article-title: Serotonin‐ and substance P‐containing projections to the nucleus tractus solitarii of the rat publication-title: J Comp Neurol – volume: 116 start-page: 669 year: 2003 end-page: 683 article-title: Distinguishing characteristics of serotonin and non‐serotonin‐containing cells in the dorsal raphe nucleus: electrophysiological and immunohistochemical studies publication-title: Neuroscience – volume: 108 start-page: 249 year: 1990 end-page: 254 article-title: Discrete localization of high‐density 5‐HT1A binding sites in the midline raphe and parapyramidal region of the ventral medulla oblongata of the rat publication-title: Neurosci Lett – volume: 373 start-page: 246 year: 1986 end-page: 251 article-title: Innervation of the nucleus of the solitary tract and the dorsal vagal nucleus by thyrotropin‐releasing hormone‐containing raphe neurons publication-title: Brain Res – volume: 6 start-page: 1373 year: 1995 end-page: 1376 article-title: Medullary responses to chemoreceptor activation are inhibited by locus coeruleus and nucleus raphe magnus publication-title: Neuroreport – volume: 96 start-page: 1909 year: 2004 end-page: 1919 article-title: Inhibition of medullary raphe serotonergic neurons has age‐dependent effects on the CO response in newborn piglets publication-title: J Appl Physiol – volume: 532 start-page: 467 year: 2001 end-page: 481 article-title: Microdialysis perfusion of 5‐HT into hypoglossal motor nucleus differentially modulates genioglossus activity across natural sleep‐wake states in rats publication-title: J Physiol – volume: 122 start-page: 223 year: 2000 end-page: 235 article-title: Multiple sites for central chemoreception: their roles in response sensitivity and in sleep and wakefulness publication-title: Respir Physiol – volume: 347 start-page: 121 year: 2003 end-page: 125 article-title: The nucleus raphe magnus modulates hypoxia‐induced hyperventilation but not anapyrexia in rats publication-title: Neurosci Lett – volume: 514 start-page: 567 year: 1999 end-page: 578 article-title: Neurotransmitters and neuromodulators controlling the hypoxic respiratory response in anaesthetized cats publication-title: J Physiol – volume: 7 start-page: 1360 year: 2004 end-page: 1369 article-title: Respiratory control by ventral surface chemoreceptor neurons in rats publication-title: Nat Neurosci – volume: 24 start-page: 921 year: 1981 end-page: 923 article-title: 8‐Hydroxy‐2‐(di‐n‐propylamino) tetralin, a new centrally acting 5‐hydroxytryptamine receptor agonist publication-title: J Med Chem – volume: 347 start-page: 64 year: 1994 end-page: 86 article-title: Brainstem network controlling descending drive to phrenic motoneurons in rat publication-title: J Comp Neurol – volume: 105 start-page: 34 year: 1989 end-page: 40 article-title: Are there serotonergic projections from raphe and retrotrapezoid nuclei to the ventral respiratory group in the rat publication-title: Neurosci Lett – volume: 14 start-page: 35 year: 1996 end-page: 46 article-title: Cellular localization of the 5‐HT1A receptor in primate brain neurons and glial cells publication-title: Neuropsychopharmacology – volume: 54 start-page: 881 year: 1993 end-page: 892 article-title: Neuron specific expression of GABAA‐receptor subtypes: differential association of the [alpha]1‐ and [alpha]3‐ subunits with serotonergic and gabaergic neurons publication-title: Neuroscience – volume: 92 start-page: 2119 year: 2002a end-page: 2130 article-title: CO dialysis in nucleus tractus solitarius region of rat increases ventilation in sleep and wakefulness publication-title: J Appl Physiol – volume: 295 start-page: 208 year: 1990 end-page: 218 article-title: Serotonin immunoreactive boutons form close appositions with respiratory neurons of the dorsal respiratory group in the cat publication-title: J Comp Neurol – volume: 357 start-page: 58 year: 2004 end-page: 62 article-title: Inhibition of rostral medullary raphe neurons prevents cold‐induced activity in sympathetic nerves to rat tail and rabbit ear arteries publication-title: Neurosci Lett – volume: 348 start-page: 161 year: 1994 end-page: 182 article-title: Hypoxia and electrical stimulation of the carotid sinus nerve induce Fos‐like immunoreactivity within catecholaminergic and serotoninergic neurons of the rat brainstem publication-title: J Comp Neurol – volume: 380 start-page: 373 year: 1986 end-page: 385 article-title: Serotoninergic and non‐serotoninergic responses of phrenic motoneurones to raphe stimulation in the cat publication-title: J Physiol – volume: 90 start-page: 247 year: 2005 end-page: 253 article-title: Retrotrapezoid nucleus: a litmus test for the identification of central chemoreceptors publication-title: Exp Physiol – volume: 511 start-page: 433 year: 1998 end-page: 450 article-title: Chemosensitivity of rat medullary raphe neurones in primary tissue culture publication-title: J Physiol – volume: 556 start-page: 235 year: 2004 end-page: 253 article-title: Medullary serotonergic neurones and adjacent neurones that express neurokinin‐1 receptors are both involved in chemoreception publication-title: J Physiol – volume: 90 start-page: 1247 year: 2001 end-page: 1257 article-title: CO dialysis in the medullary raphe of the rat increases ventilation in sleep publication-title: J Appl Physiol – volume: 379 start-page: 261 year: 1997 end-page: 270 article-title: Immunocytochemical studies of the 5‐HT(1A) receptor in ventral medullary neurons that project to the intermediolateral cell column and contain serotonin or tyrosine hydroxylase immunoreactivity publication-title: J Comp Neurol – volume: 21 start-page: 70 year: 2000 end-page: 77 article-title: 5‐HT7 receptors: current knowledge and future prospects publication-title: Trends Pharmacol Sci – volume: 6 start-page: 153 year: 1999 end-page: 167 article-title: Hippocampal EEG and unit activity responses to modulation of serotonergic median raphe neurons in the freely behaving rat publication-title: Learn Mem – volume: 110 start-page: 65 year: 2004 end-page: 80 article-title: The development of the medullary serotonergic system in the piglet publication-title: Auton Neurosci – volume: 831 start-page: 155 year: 1999 end-page: 164 article-title: 8‐OH‐DPAT‐sensitive neurons in the nucleus raphe magnus modulate thermoregulatory output in rats publication-title: Brain Res – volume: 87 start-page: 673 year: 1999 end-page: 682 article-title: TRH microdialysis into the RTN of the conscious rat increases breathing, metabolism, and temperature publication-title: J Appl Physiol – volume: 90 start-page: 259 year: 2005 end-page: 266 article-title: Homing in on the specific phenotype (s) of central respiratory chemoreceptors publication-title: Exp Physiol – volume: 66 start-page: 1999 year: 2000 end-page: 2012 article-title: Role of dorsal raphe nucleus serotonin 5‐HT1A receptor in the regulation of REM sleep publication-title: Life Sci – volume: 338 start-page: 463 year: 1988 end-page: 471 article-title: The 5‐HT 1A receptor agonist, 8‐OH‐DPAT, preferentially activates cell body 5‐HT autoreceptors in rat brain in vivo publication-title: Naunyn Schmiedebergs Arch Pharmacol – volume: 544 start-page: 603 year: 2002b end-page: 616 article-title: Substance P‐saporin lesion of neurons with NK1 receptors in one chemoreceptor site in rats decreases ventilation and chemosensitivity publication-title: J Physiol – volume: 19 start-page: 67 year: 2004 end-page: 74 article-title: Central pathways controlling brown adipose tissue thermogenesis publication-title: News Physiol Sci – ident: e_1_2_5_25_1 doi: 10.1152/jappl.1999.87.3.910 – ident: e_1_2_5_15_1 doi: 10.1152/japplphysiol.00992.2003 – ident: e_1_2_5_17_1 doi: 10.1016/0165-1838(85)90054-2 – ident: e_1_2_5_36_1 doi: 10.1016/j.autneu.2003.10.004 – ident: e_1_2_5_47_1 doi: 10.1016/S0006-8993(97)01437-6 – ident: e_1_2_5_48_1 doi: 10.1152/japplphysiol.00496.2004 – ident: e_1_2_5_44_1 doi: 10.1111/j.1469-7793.1999.567ae.x – ident: e_1_2_5_31_1 doi: 10.1016/S0034-5687(00)00161-4 – ident: e_1_2_5_27_1 doi: 10.1152/japplphysiol.00805.2003 – ident: e_1_2_5_34_1 doi: 10.1113/jphysiol.2002.020032 – ident: e_1_2_5_19_1 doi: 10.1111/j.1469-7793.2001.0467f.x – ident: e_1_2_5_45_1 doi: 10.1016/0031-9384(72)90384-8 – ident: e_1_2_5_22_1 doi: 10.1093/jnen/60.3.228 – ident: e_1_2_5_12_1 doi: 10.1002/(SICI)1096-9861(19970310)379:2<261::AID-CNE7>3.0.CO;2-1 – ident: e_1_2_5_5_1 doi: 10.1016/0304-3940(89)90007-4 – ident: e_1_2_5_21_1 doi: 10.1002/(SICI)1097-4547(19961215)46:6<697::AID-JNR7>3.0.CO;2-A – ident: e_1_2_5_6_1 doi: 10.1152/jappl.1999.87.2.673 – ident: e_1_2_5_28_1 doi: 10.1016/S0024-3205(99)00649-9 – ident: e_1_2_5_49_1 doi: 10.1016/0304-3940(90)90649-T – volume: 19 start-page: 67 year: 2004 ident: e_1_2_5_29_1 article-title: Central pathways controlling brown adipose tissue thermogenesis publication-title: News Physiol Sci contributor: fullname: Morrison SF – volume: 6 start-page: 153 year: 1999 ident: e_1_2_5_37_1 article-title: Hippocampal EEG and unit activity responses to modulation of serotonergic median raphe neurons in the freely behaving rat publication-title: Learn Mem doi: 10.1101/lm.6.2.153 contributor: fullname: Nitz DA – ident: e_1_2_5_9_1 doi: 10.1016/0306-4522(93)90582-Z – ident: e_1_2_5_23_1 doi: 10.1016/S0306-4522(02)00584-5 – ident: e_1_2_5_4_1 doi: 10.1016/S0006-8993(99)01426-2 – ident: e_1_2_5_52_1 doi: 10.1002/cne.902950205 – ident: e_1_2_5_20_1 doi: 10.1002/cne.902220308 – ident: e_1_2_5_54_1 doi: 10.1152/jn.2001.85.5.2224 – ident: e_1_2_5_43_1 doi: 10.1111/j.1469-445X.2005.tb00002.x – ident: e_1_2_5_53_1 doi: 10.1111/j.1469-7793.1998.433bh.x – ident: e_1_2_5_39_1 doi: 10.1016/0006-8993(86)90338-0 – ident: e_1_2_5_2_1 doi: 10.1021/jm00140a002 – ident: e_1_2_5_26_1 doi: 10.1152/ajpregu.1990.259.3.R492 – ident: e_1_2_5_3_1 doi: 10.1016/S0893-133X(96)80057-1 – ident: e_1_2_5_55_1 doi: 10.1139/y82-057 – ident: e_1_2_5_8_1 doi: 10.1002/cne.903480202 – ident: e_1_2_5_16_1 doi: 10.1113/jphysiol.1988.sp017371 – volume-title: The Rat Brain in Sterotaxic Coordinates year: 1982 ident: e_1_2_5_41_1 contributor: fullname: Paxinos G – ident: e_1_2_5_51_1 doi: 10.1016/S0165-6147(99)01432-7 – ident: e_1_2_5_10_1 doi: 10.1016/S0304-3940(03)00671-2 – ident: e_1_2_5_50_1 doi: 10.1002/cne.902650210 – ident: e_1_2_5_38_1 doi: 10.1016/j.neulet.2003.11.067 – ident: e_1_2_5_24_1 doi: 10.1113/jphysiol.1986.sp016291 – ident: e_1_2_5_32_1 doi: 10.1152/jappl.2001.90.4.1247 – ident: e_1_2_5_18_1 doi: 10.1016/S0165-0173(02)00187-X – ident: e_1_2_5_7_1 doi: 10.1002/cne.903470106 – ident: e_1_2_5_42_1 doi: 10.1097/00001756-199507100-00003 – volume: 90 start-page: 247 year: 2005 ident: e_1_2_5_11_1 article-title: Retrotrapezoid nucleus: a litmus test for the identification of central chemoreceptors publication-title: Exp Physiol doi: 10.1111/j.1469-445X.2005.t01-1-00134.x contributor: fullname: Guyenet PG – ident: e_1_2_5_30_1 doi: 10.1038/nn1357 – ident: e_1_2_5_35_1 doi: 10.1113/jphysiol.2003.059766 – ident: e_1_2_5_40_1 doi: 10.1113/jphysiol.1977.sp011763 – ident: e_1_2_5_13_1 doi: 10.1016/0006-8993(82)90743-0 – ident: e_1_2_5_33_1 doi: 10.1152/japplphysiol.01128.2001 – ident: e_1_2_5_14_1 doi: 10.1007/BF00179315 – ident: e_1_2_5_46_1 doi: 10.1002/cne.903300410 |
SSID | ssj0013099 |
Score | 2.2144692 |
Snippet | Serotonergic neurones in the mammalian medullary raphe region (MRR) have been implicated in central chemoreception and the
modulation of the ventilatory... Serotonergic neurones in the mammalian medullary raphe region (MRR) have been implicated in central chemoreception and the modulation of the ventilatory... |
SourceID | pubmedcentral proquest crossref pubmed wiley highwire |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 543 |
SubjectTerms | 8-Hydroxy-2-(di-n-propylamino)tetralin - pharmacology Animals Body Temperature - physiology Electroencephalography Electromyography Hypercapnia - pathology Hypercapnia - physiopathology Hypoxia - pathology Hypoxia - physiopathology Integrative Physiology Male Medulla Oblongata - cytology Medulla Oblongata - pathology Medulla Oblongata - physiology Microdialysis Neurons - physiology Oxygen Consumption - physiology Plethysmography, Whole Body Raphe Nuclei - cytology Raphe Nuclei - pathology Raphe Nuclei - physiology Rats Rats, Sprague-Dawley Receptor, Serotonin, 5-HT1A - drug effects Receptor, Serotonin, 5-HT1A - metabolism Respiratory Mechanics - physiology Serotonin - physiology Serotonin Receptor Agonists - pharmacology Sleep Stages - physiology Wakefulness - physiology |
SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwGLSqnrjwKo_l6QPiREoSx7F9rIBVVamoQq3Um2U7Sbu0TarsrsTy6xnbyZaFIiGQ9rR2rDgZ-5uxv4wJeaPKIjNGNQnYdJoU3HtAMi4T5xqGkNKIKiy4HX4u90-Kg1N-ukWm47cw0R9iveDmR0aYr_0AN3Y4hSTzZgNfg_TvLod1Ecmk8KafGRM-s-vjl_xmMyFVam0aLng2fEGHZt7f1shmhBpdg29joL8nUv5McEOEmt4jZ2PfYmLKxe5yYXfd919sH_-_8_fJ3YHE0r2Iugdkq24fkp29FgL-akXf0qN4WXe22iHzQwQzYK1fUaC9897fPWZbGow0Mc_Sq67yR4jVFFSUhuzLy7DzT_uYvouCjp5DLvfOXLcz847a5YK23cL_2X2bGTprKVQ9Ynm3nFMgev6InEw_HX_YT4aTHhLHM5kmTpVKGIiVWmDGcSJVrG4Uczmr0qI2wkKYVjYVDmyO5WCENX62cFY6ZaGy2WOy3eKenxLayErZJq-dVFlRldLwRqVNVTEnhEXhhCTj29XX0dBDRyHE9PhU_dmcXMenOiF0hICOxfOYTqtBhHWueYEqr0doaAxOv-Ni2hpd1uBmKgVP-HONUqYiBymckCcRSjc3xaWQiqN1sQGydQVvDL5Z0s7Og0E4ol-BuDEhWcDQX_VTHx8cQc0--4drnpM7wdDW243yF2R70S_rl6BqC_sqDMQfPls-jw priority: 102 providerName: Wiley-Blackwell |
Title | Medullary serotonergic neurones modulate the ventilatory response to hypercapnia, but not hypoxia in conscious rats |
URI | http://jp.physoc.org/content/566/2/543.abstract https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fjphysiol.2005.083873 https://www.ncbi.nlm.nih.gov/pubmed/15878953 https://search.proquest.com/docview/17590341 https://search.proquest.com/docview/68072439 https://pubmed.ncbi.nlm.nih.gov/PMC1464763 |
Volume | 566 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwGLW2nbggYPwIjOED4kTWJI5j-zhNTGOoqEKbtJsVOwnL1CZV2kr0v9-zkwwqQEJIUQ6xpdj-Pud7z_7yTMh7laVxnqsqBJqOwpQ7DUjGZWhtxRBSKlH4Bbfp1-ziOr284Td7hI__wvikfWvqk2a-OGnqW59buVzYyZgnNplNzzC7U8yLyT7Zh4OOFH3cOoiUepAIFzwe_peLYza586sF7XxYSpFMCn-ODpdCKs52Q9MoF_wn6Pl7BuWvyNaHpvMn5PGAKelp3_anZK9snpHD0wZ8erGlH-isb0_7fXtIVlPEFpi-21I4X-ukuDt8_KjXtcRnjy7awp3oVVIgQ-qTIed-I552fTYtClp6C_ba2XzZ1PlHajZr2rRr97D9Uee0bihINkJru1lRONjqObk-_3R1dhEOBy-ElscyCq3KlMjBHUqB8bUiUqysFLMJK6K0zIUBTyxMJCzAFUsA0EpcJrVGWmVAetkLctCgza8IrWShTJWUVqo4LTKZ80pFVVEwK4RBYUDCccz1stfX0D0vYXo0lzsqk-veXAGho2F0X7zqs1s1cKlONE9R5d1oMI254jZA8qZElzWgkooQtv9eI5ORSIDRAvKyN_DPRg1OEhCxY_qHCk6ne7cE7uv1ugd3DUjsneSf-qmvLmcgl6__-21vyCOvMus0QPkROVh3m_It8NPaHIM5fP7i7t-SYz937gHDSh8s |
link.rule.ids | 230,315,730,783,787,888,1378,27938,27939,46308,46732,53806,53808 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2VcoBLKRTo8lUfECdSkjiO7WNFKUvpVhXaSr1ZsZOw24-kymYlll_P2E62LBQJIaScYseKnRnPe_bkGeC1TJMoy2QZIJoOg4RZDUjKRGBMSTGklDx3C26j43R4mhyesbM1-Nj_C-P1IZYLbtYz3HxtHdwuSHdebtUGzh33ry-7hRFBBad34C56PrVHGex_iW-2E0Ipl7LhnEXdP3TYzrvbWlmNUb1u8G0Y9PdUyp8hrotRBw9g0vfOp6Zc7M5bvWu-_yL8-B-6vwkbHY4le97wHsJaUT2Crb0KOfzVgrwhJ_6x-utiC2YjjGdobs2CoMHXVv67wQmXOC1NnGrJVZ3bU8QKgmiUuATMS7f5TxqfwYsFNZkgY25Mdl1Ns7dEz1tS1a29WX-bZmRaEST2GM7r-YygUc8ew-nBh_H7YdAd9hAYFokwMDKVPEO-UnCcdAwPJS1KSU1M8zApMq6Rm-Y65AYBHY0RFBZ46cRoYaRGok2fwHqF77wNpBS51GVcGCGjJE9FxkoZlnlODecaCwcQ9J9XXXtND-W5EFX9qNrjOZnyozoA0tuA8sUzn1GrEAurWLEEq-z0tqHQP-2mS1YV2GWF8EyGCBX-XCMVIY8RFw7gqbelm5diggvJsHW-YmXLClYbfLWkmk6cRjgGwARDxwAiZ0R_1U81PjxBQvvsH57ZgXvD8ehIHX06_vwc7jt9W6s-yl7AetvMi5eI3Fr9ynnlD-O6Qqk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIiEuvMpjedUHxIkUJ45j-1hRVqXQaoVaqTcrdpJ2oU1W2azE8usZ28mWhSIhkHKKHSt2ZjzfZ08-A7xSWRrnuaoiRNM0SrnTgGRcRtZWDENKJQq_4HZ4lO2fpAen_HQDxsO_MEEfYrXg5jzDz9fOwWdF1Tu5Exv44ql_c9Gvi0gmBbsBN9OMUZfatfc5udpNoEqtVMMFj_tf6LCdt9e1sh6iBtng6yDo75mUPyNcH6LGd-Fs6FzITPm6s-jMjv3-i-7j__f-HtzpUSzZDWZ3HzbK-gFs7dbI4C-X5DWZhMeas-UWzA8xmqGxtUuC5t448e8Wp1vilTRxoiWXTeHOECsJYlHi0y8v_NY_aUP-LhY05Bz5cmvzWT3N3xCz6EjddO5m822ak2lNkNZjMG8Wc4ImPX8IJ-P3x-_2o_6oh8jyWNLIqkyJHNlKKXDKsYIqVlaK2YQVNC1zYZCZFoYKi3COJQgJS7xMao20yiDNZo9gs8Z3fgKkkoUyVVJaqeK0yGTOK0WromBWCIOFI4iGr6tnQdFDBybE9DCq7nBOrsOojoAMJqBD8Tzk02pEwjrRPMUq24NpaPROt-WS1yV2WSM4UxSBwp9rZJKKBFHhCB4HU7p6KS6FVBxbF2tGtqrglMHXS-rpuVcIx_CXYuAYQext6K_6qY8PJkhnn_7DM9twa7I31p8-HH18Bre9uK2THuXPYbNrF-ULhG2deel98gf9z0FY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Medullary+serotonergic+neurones+modulate+the+ventilatory+response+to+hypercapnia%2C+but+not+hypoxia+in+conscious+rats&rft.jtitle=The+Journal+of+physiology&rft.au=Taylor%2C+Natalie+C.&rft.au=Li%2C+Aihua&rft.au=Nattie%2C+Eugene+E.&rft.date=2005-07-15&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=566&rft.issue=2&rft.spage=543&rft.epage=557&rft_id=info:doi/10.1113%2Fjphysiol.2005.083873&rft.externalDBID=n%2Fa&rft.externalDocID=10_1113_jphysiol_2005_083873 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon |