Compaction of Single-Molecule Megabase-Long Chromatin under the Influence of Macromolecular Crowding
The megabase-sized length of chromatin is highly relevant to the state of chromatin in vivo, where it is subject to a highly crowded environment and is organized in topologically associating domains of similar dimension. We developed an in vitro experimental chromatin model system reconstituted from...
Saved in:
Published in | Biophysical journal Vol. 114; no. 10; pp. 2326 - 2335 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
22.05.2018
The Biophysical Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The megabase-sized length of chromatin is highly relevant to the state of chromatin in vivo, where it is subject to a highly crowded environment and is organized in topologically associating domains of similar dimension. We developed an in vitro experimental chromatin model system reconstituted from T4 DNA (approximately 166 kbp) and histone octamers and studied the monomolecular compaction of this megabase-sized chromatin fiber under the influence of macromolecular crowding. We used single-molecule fluorescence microscopy and observed compaction in aqueous solutions containing poly(ethylene glycol) in the presence of monovalent (Na+ and K+) and divalent (Mg2+) cations. Both DNA and chromatin demonstrated compaction under comparable conditions in the presence of poly(ethylene glycol) and Na+ or Mg2+ salt. However, the mechanism of the compaction changed from a first-order phase transition for DNA to a continuous folding for megabase-sized chromatin fibers. A more efficient and pronounced chromatin compaction was observed in the presence of Na+ compared to K+. A flow-stretching technique to unfold DNA and chromatin coils was used to gain further insight into the morphology of partially folded chromatin fibers. The results revealed a distribution of partially folded chromatin fibers. This variability is likely the result of the heterogeneous distribution of nucleosomes on the DNA chain. The packaging of DNA in the form of chromatin in the crowded nuclear environment appears essential to ensure gradual conformational changes of DNA. |
---|---|
AbstractList | The megabase-sized length of chromatin is highly relevant to the state of chromatin in vivo, where it is subject to a highly crowded environment and is organized in topologically associating domains of similar dimension. We developed an in vitro experimental chromatin model system reconstituted from T4 DNA (approximately 166 kbp) and histone octamers and studied the monomolecular compaction of this megabase-sized chromatin fiber under the influence of macromolecular crowding. We used single-molecule fluorescence microscopy and observed compaction in aqueous solutions containing poly(ethylene glycol) in the presence of monovalent (Na
and K
) and divalent (Mg
) cations. Both DNA and chromatin demonstrated compaction under comparable conditions in the presence of poly(ethylene glycol) and Na
or Mg
salt. However, the mechanism of the compaction changed from a first-order phase transition for DNA to a continuous folding for megabase-sized chromatin fibers. A more efficient and pronounced chromatin compaction was observed in the presence of Na
compared to K
. A flow-stretching technique to unfold DNA and chromatin coils was used to gain further insight into the morphology of partially folded chromatin fibers. The results revealed a distribution of partially folded chromatin fibers. This variability is likely the result of the heterogeneous distribution of nucleosomes on the DNA chain. The packaging of DNA in the form of chromatin in the crowded nuclear environment appears essential to ensure gradual conformational changes of DNA. The megabase-sized length of chromatin is highly relevant to the state of chromatin in vivo, where it is subject to a highly crowded environment and is organized in topologically associating domains of similar dimension. We developed an in vitro experimental chromatin model system reconstituted from T4 DNA (approximately 166 kbp) and histone octamers and studied the monomolecular compaction of this megabase-sized chromatin fiber under the influence of macromolecular crowding. We used single-molecule fluorescence microscopy and observed compaction in aqueous solutions containing poly(ethylene glycol) in the presence of monovalent (Na+ and K+) and divalent (Mg2+) cations. Both DNA and chromatin demonstrated compaction under comparable conditions in the presence of poly(ethylene glycol) and Na+ or Mg2+ salt. However, the mechanism of the compaction changed from a first-order phase transition for DNA to a continuous folding for megabase-sized chromatin fibers. A more efficient and pronounced chromatin compaction was observed in the presence of Na+ compared to K+. A flow-stretching technique to unfold DNA and chromatin coils was used to gain further insight into the morphology of partially folded chromatin fibers. The results revealed a distribution of partially folded chromatin fibers. This variability is likely the result of the heterogeneous distribution of nucleosomes on the DNA chain. The packaging of DNA in the form of chromatin in the crowded nuclear environment appears essential to ensure gradual conformational changes of DNA. The megabase-sized length of chromatin is highly relevant to the state of chromatin in vivo, where it is subject to a highly crowded environment and is organized in topologically associating domains of similar dimension. We developed an in vitro experimental chromatin model system reconstituted from T4 DNA (approximately 166 kbp) and histone octamers and studied the monomolecular compaction of this megabase-sized chromatin fiber under the influence of macromolecular crowding. We used single-molecule fluorescence microscopy and observed compaction in aqueous solutions containing poly(ethylene glycol) in the presence of monovalent (Na + and K + ) and divalent (Mg 2+ ) cations. Both DNA and chromatin demonstrated compaction under comparable conditions in the presence of poly(ethylene glycol) and Na + or Mg 2+ salt. However, the mechanism of the compaction changed from a first-order phase transition for DNA to a continuous folding for megabase-sized chromatin fibers. A more efficient and pronounced chromatin compaction was observed in the presence of Na + compared to K + . A flow-stretching technique to unfold DNA and chromatin coils was used to gain further insight into the morphology of partially folded chromatin fibers. The results revealed a distribution of partially folded chromatin fibers. This variability is likely the result of the heterogeneous distribution of nucleosomes on the DNA chain. The packaging of DNA in the form of chromatin in the crowded nuclear environment appears essential to ensure gradual conformational changes of DNA. The megabase-sized length of chromatin is highly relevant to the state of chromatin in vivo, where it is subject to a highly crowded environment and is organized in topologically associating domains of similar dimension. We developed an in vitro experimental chromatin model system reconstituted from T4 DNA (approximately 166 kbp) and histone octamers and studied the monomolecular compaction of this megabase-sized chromatin fiber under the influence of macromolecular crowding. We used single-molecule fluorescence microscopy and observed compaction in aqueous solutions containing poly(ethylene glycol) in the presence of monovalent (Na+ and K+) and divalent (Mg2+) cations. Both DNA and chromatin demonstrated compaction under comparable conditions in the presence of poly(ethylene glycol) and Na+ or Mg2+ salt. However, the mechanism of the compaction changed from a first-order phase transition for DNA to a continuous folding for megabase-sized chromatin fibers. A more efficient and pronounced chromatin compaction was observed in the presence of Na+ compared to K+. A flow-stretching technique to unfold DNA and chromatin coils was used to gain further insight into the morphology of partially folded chromatin fibers. The results revealed a distribution of partially folded chromatin fibers. This variability is likely the result of the heterogeneous distribution of nucleosomes on the DNA chain. The packaging of DNA in the form of chromatin in the crowded nuclear environment appears essential to ensure gradual conformational changes of DNA.The megabase-sized length of chromatin is highly relevant to the state of chromatin in vivo, where it is subject to a highly crowded environment and is organized in topologically associating domains of similar dimension. We developed an in vitro experimental chromatin model system reconstituted from T4 DNA (approximately 166 kbp) and histone octamers and studied the monomolecular compaction of this megabase-sized chromatin fiber under the influence of macromolecular crowding. We used single-molecule fluorescence microscopy and observed compaction in aqueous solutions containing poly(ethylene glycol) in the presence of monovalent (Na+ and K+) and divalent (Mg2+) cations. Both DNA and chromatin demonstrated compaction under comparable conditions in the presence of poly(ethylene glycol) and Na+ or Mg2+ salt. However, the mechanism of the compaction changed from a first-order phase transition for DNA to a continuous folding for megabase-sized chromatin fibers. A more efficient and pronounced chromatin compaction was observed in the presence of Na+ compared to K+. A flow-stretching technique to unfold DNA and chromatin coils was used to gain further insight into the morphology of partially folded chromatin fibers. The results revealed a distribution of partially folded chromatin fibers. This variability is likely the result of the heterogeneous distribution of nucleosomes on the DNA chain. The packaging of DNA in the form of chromatin in the crowded nuclear environment appears essential to ensure gradual conformational changes of DNA. |
Author | Nordenskiöld, Lars Berezhnoy, Nikolay V. Zinchenko, Anatoly Chen, Qinming |
AuthorAffiliation | 1 Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan 2 School of Biological Sciences, Nanyang Technological University, Singapore, Singapore |
AuthorAffiliation_xml | – name: 1 Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan – name: 2 School of Biological Sciences, Nanyang Technological University, Singapore, Singapore |
Author_xml | – sequence: 1 givenname: Anatoly surname: Zinchenko fullname: Zinchenko, Anatoly email: zinchenko@urban.env.nagoya-u.ac.jp organization: Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan – sequence: 2 givenname: Nikolay V. surname: Berezhnoy fullname: Berezhnoy, Nikolay V. organization: School of Biological Sciences, Nanyang Technological University, Singapore, Singapore – sequence: 3 givenname: Qinming surname: Chen fullname: Chen, Qinming organization: School of Biological Sciences, Nanyang Technological University, Singapore, Singapore – sequence: 4 givenname: Lars surname: Nordenskiöld fullname: Nordenskiöld, Lars email: larsnor@ntu.edu.sg organization: School of Biological Sciences, Nanyang Technological University, Singapore, Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29729833$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcFu1DAQhi1URLeFB-CCcuSSMI7jxBESEopoqbQrDsDZcuzJrleJvdhJEW-Poy0VcOjJh_m_f6z5rsiF8w4JeU2hoEDrd8eiPx2LEqgooCqAls_IhvKqzAFEfUE2AFDnrGr5JbmK8QgpwYG-IJdl25StYGxDTOenk9Kz9S7zQ_bVuv2I-c6PqJcRsx3uVa8i5lvv9ll3CH5Ss3XZ4gyGbD5gdueGcUGnccV3SqfEGVYh64L_aVLjS_J8UGPEVw_vNfl-8-lb9znffrm96z5uc81pM-eDEaJhuik1M4xxrnldl6Boq7nqUfSNEAOvaSUMpQx7XjeU6taICvQAClp2TT6ce09LP6HR6OagRnkKdlLhl_TKyn8nzh7k3t_LmpZtVTep4O1DQfA_FoyznGzUOI7KoV-iLIHxBnjV0hR98_euxyV_TpsC9BxIJ4kx4PAYoSBXffIokz656pNQySQnMc1_jLazWuWk79rxSfL9mcR033uLQUZtVy3GBtSzNN4-Qf8GFZq1ig |
CitedBy_id | crossref_primary_10_1016_j_saa_2019_117464 crossref_primary_10_1039_D0SM00162G crossref_primary_10_3390_cells11081368 crossref_primary_10_1073_pnas_1907342116 crossref_primary_10_1017_S0033583521000019 crossref_primary_10_1016_j_bpj_2020_10_018 crossref_primary_10_1186_s13072_020_00381_5 crossref_primary_10_1039_D3AN00102D crossref_primary_10_1021_acs_jpcb_9b00782 crossref_primary_10_1016_j_biomaterials_2021_120943 crossref_primary_10_1073_pnas_2403153121 crossref_primary_10_1038_s41598_022_19471_3 crossref_primary_10_1039_C8SM00998H crossref_primary_10_1021_acsmacrolett_1c00463 crossref_primary_10_1093_nar_gkaa261 crossref_primary_10_1063_5_0241529 |
Cites_doi | 10.1016/j.bbamcr.2008.07.017 10.1073/pnas.72.11.4288 10.1146/annurev.biophys.37.032807.125817 10.1038/srep08512 10.1017/S0033583500002031 10.1146/annurev.bb.22.060193.000331 10.1016/j.bpj.2010.07.017 10.1038/38444 10.1006/jtbi.1997.0525 10.1063/1.469375 10.1016/S0022-2836(02)00386-8 10.1016/j.bpj.2015.02.002 10.1016/S0006-3495(01)75769-4 10.1088/0953-8984/15/19/203 10.1063/1.477121 10.1016/j.gde.2011.01.022 10.1093/nar/gkq900 10.1038/nsmb.1590 10.1073/pnas.94.12.6185 10.1039/c2sm25662b 10.1038/nature10002 10.1016/S0301-4622(03)00138-8 10.1016/S0006-3495(02)75627-0 10.1093/nar/gkr712 10.1126/science.1074200 10.1021/bm301436x 10.1021/bi00578a009 10.1093/nar/gkx1135 10.1103/PhysRevLett.105.128302 10.1038/nature11082 10.1021/jp0527103 10.1103/PhysRevLett.76.3029 10.1016/j.cocis.2014.12.005 10.1006/excr.1995.1137 10.1021/jp4107712 10.1021/jacs.5b11829 10.1021/jp2124907 10.1016/j.cplett.2006.05.120 10.1021/ja028804x 10.1073/pnas.0904741106 10.1051/jphyslet:0197500360305500 10.1002/bip.1979.360180612 10.1016/S0006-3495(97)78207-9 10.1007/s00249-008-0276-1 10.1016/j.cis.2016.01.004 10.1242/jcs.03440 10.1073/pnas.97.1.127 10.1021/bi9525684 10.1039/C5SM00619H 10.1016/j.cell.2015.01.054 10.1021/jp810375d 10.1038/ncomms2620 10.1021/ja042509q 10.1002/bip.360211105 10.1103/PhysRevLett.114.068303 10.1093/nar/gkj434 10.1006/jsbi.2001.4420 10.1063/1.1325230 10.1016/j.biochi.2008.02.009 10.1002/pol.1958.1203312618 10.1038/emboj.2009.340 10.1529/biophysj.104.057323 10.1016/j.bpj.2009.06.057 10.1038/nature11049 10.1016/j.semcdb.2007.08.006 10.1073/pnas.68.8.1886 10.1146/annurev.biophys.31.101101.140858 |
ContentType | Journal Article |
Copyright | 2018 Biophysical Society Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved. 2018 Biophysical Society. 2018 Biophysical Society |
Copyright_xml | – notice: 2018 Biophysical Society – notice: Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved. – notice: 2018 Biophysical Society. 2018 Biophysical Society |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.bpj.2018.04.012 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1542-0086 |
EndPage | 2335 |
ExternalDocumentID | PMC6129467 29729833 10_1016_j_bpj_2018_04_012 S0006349518304533 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .55 0R~ 23N 2WC 4.4 457 5GY 5RE 62- 6I. 6J9 AACTN AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACBEA ACGFO ACGFS ACGOD ACIWK ACNCT ACPRK ADBBV ADEZE ADJPV AENEX AEXQZ AFRAH AFTJW AGKMS AHMBA AHPSJ AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS AYCSE AZFZN BAWUL CS3 D0L DIK DU5 E3Z EBS EJD F5P FCP FDB FRP HYE IH2 IXB JIG KQ8 L7B M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG RNS ROL RPM RWL SES SSZ TAE TBP TN5 WH7 WOQ WOW WQ6 X7M YNY YWH ZA5 ~02 --K .GJ 3O- 53G 6TJ 7X2 7X7 88E 88I 8AF 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 AAEDT AAIKJ AAMRU AAQXK AAYWO AAYXX ABDGV ABUWG ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AEUPX AEUYN AFKRA AFPUW AGCQF AGHFR AGQPQ AI. AIGII AKAPO AKBMS AKRWK AKYEP ALIPV APXCP ARAPS ASPBG ATCPS AVWKF AZQEC BBNVY BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU CITATION DWQXO FEDTE FGOYB FYUFA G-2 GNUQQ GUQSH GX1 H13 HCIFZ HMCUK HVGLF HX~ HZ~ LK8 M0K M1P M2O M2P M2Q M7P MVM OZT P62 PHGZM PHGZT PQQKQ PRG PROAC PSQYO Q2X R2- S0X UKHRP UKR VH1 YYP ZGI ZXP ~KM 0SF CGR CUY CVF ECM EIF NPM 7X8 5PM EFKBS |
ID | FETCH-LOGICAL-c517t-fd8873c72c3d3355c56620a19c5abe8b788f56148d113eb56711c9d840cf0a093 |
IEDL.DBID | IXB |
ISSN | 0006-3495 1542-0086 |
IngestDate | Thu Aug 21 13:56:21 EDT 2025 Fri Jul 11 12:16:39 EDT 2025 Wed Feb 19 02:33:35 EST 2025 Thu Apr 24 22:58:44 EDT 2025 Tue Jul 01 00:49:57 EDT 2025 Fri Feb 23 02:27:08 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-fd8873c72c3d3355c56620a19c5abe8b788f56148d113eb56711c9d840cf0a093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0006349518304533 |
PMID | 29729833 |
PQID | 2035705491 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6129467 proquest_miscellaneous_2035705491 pubmed_primary_29729833 crossref_primary_10_1016_j_bpj_2018_04_012 crossref_citationtrail_10_1016_j_bpj_2018_04_012 elsevier_sciencedirect_doi_10_1016_j_bpj_2018_04_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-22 |
PublicationDateYYYYMMDD | 2018-05-22 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biophysical journal |
PublicationTitleAlternate | Biophys J |
PublicationYear | 2018 |
Publisher | Elsevier Inc The Biophysical Society |
Publisher_xml | – name: Elsevier Inc – name: The Biophysical Society |
References | Cheng, Jia, Ran (bib50) 2015; 11 Yoshikawa, Takahashi, Khokhlov (bib39) 1996; 76 Hibino, Yoshikawa, Yoshikawa (bib40) 2006; 426 Cunha, Woldringh, Odijk (bib25) 2001; 136 Baltierra-Jasso, Morten, Magennis (bib6) 2015; 137 Hancock (bib28) 2008; 37 Cui, Bustamante (bib38) 2000; 97 Davey, Sargent, Richmond (bib21) 2002; 319 Horn, Peterson (bib57) 2002; 297 Chapman, Gorczyca, Robertson-Anderson (bib8) 2015; 108 Zinchenko, Yoshikawa (bib41) 2005; 88 Li, Reinberg (bib56) 2011; 21 Laemmli (bib11) 1975; 72 Krotova, Vasilevskaya, Khokhlov (bib13) 2010; 105 Lerman (bib9) 1971; 68 Schiessel (bib54) 2003; 15 Tsumoto, Luckel, Yoshikawa (bib55) 2003; 106 Post, Zimm (bib63) 1982; 21 Berezhnoy, Lundberg, Nordenskiöld (bib35) 2012; 13 Pegado, Jönsson, Wennerström (bib60) 2016; 232 Akabayov, Akabayov, Richardson (bib7) 2013; 4 de Frutos, Raspaud, Livolant (bib47) 2001; 81 Zinchenko, Tsumoto, Yoshikawa (bib14) 2014; 118 Korolev, Allahverdi, Nordenskiold (bib53) 2012; 8 Zhang, Shao, van der Maarel (bib17) 2009; 106 Zhang, Gong, van der Maarel (bib16) 2012; 116 Manning (bib48) 1978; 11 Allahverdi, Chen, Nordenskiöld (bib45) 2015; 5 Luger, Mäder, Richmond (bib20) 1997; 389 Wilson, Bloomfield (bib49) 1979; 18 Cheng, Korolev, Nordenskiöld (bib42) 2006; 34 Zhou, Rivas, Minton (bib3) 2008; 37 Minsky, Ghirlando, Reich (bib69) 1997; 188 Miyoshi, Sugimoto (bib2) 2008; 90 Zinchenko, Sergeyev, Yoshikawa (bib36) 2003; 125 Korolev, Allahverdi, Nordenskiöld (bib43) 2010; 99 Diesinger, Heermann (bib68) 2009; 97 Chen, Zinchenko, Yoshikawa (bib67) 2005; 127 Ramos, de Vries, Ruggiero Neto (bib10) 2005; 109 Kang, Pincus, Thirumalai (bib29) 2015; 114 Arya, Schlick (bib59) 2009; 113 Gelbart, Bruinsma, Parsegian (bib61) 2000; 53 Asakura, Oosawa (bib18) 1958; 33 Valouev, Johnson, Sidow (bib30) 2011; 474 Lebeaupin, Smith, Huet (bib5) 2018 Allahverdi, Yang, Nordenskiöld (bib44) 2011; 39 Rosania, Swanson (bib23) 1995; 218 Leforestier, Livolant (bib27) 1997; 73 Richter, Nessling, Lichter (bib24) 2007; 120 Noguchi, Yoshikawa (bib58) 1998; 109 Baumann, Smith, Bustamante (bib37) 1997; 94 Zinchenko, Berezhnoy, Nordenskiöld (bib32) 2018; 46 Vasilevskaya, Khokhlov, Yoshikawa (bib12) 1995; 102 Nora, Lajoie, Heard (bib34) 2012; 485 Wolffe (bib19) 1998 de Gennes (bib64) 1975; 36 Bancaud, Huet, Ellenberg (bib26) 2009; 28 Zinchenko, Yoshikawa (bib15) 2015; 20 Hirano, Ichikawa, Yoshikawa (bib51) 2012; 40 Post, Zimm (bib62) 1979; 18 Dixon, Selvaraj, Ren (bib33) 2012; 485 Hansen (bib46) 2002; 31 Kruithof, Chien, van Noort (bib65) 2009; 16 Hancock (bib22) 2007; 18 Richter, Nessling, Lichter (bib4) 2008; 1783 Zimmerman, Minton (bib1) 1993; 22 Ricci, Manzo, Cosma (bib31) 2015; 160 Wedemann, Langowski (bib66) 2002; 82 Schwarz, Felthauser, Hansen (bib52) 1996; 35 Yoshikawa (10.1016/j.bpj.2018.04.012_bib39) 1996; 76 de Gennes (10.1016/j.bpj.2018.04.012_bib64) 1975; 36 Cheng (10.1016/j.bpj.2018.04.012_bib42) 2006; 34 Krotova (10.1016/j.bpj.2018.04.012_bib13) 2010; 105 Korolev (10.1016/j.bpj.2018.04.012_bib43) 2010; 99 Gelbart (10.1016/j.bpj.2018.04.012_bib61) 2000; 53 Wedemann (10.1016/j.bpj.2018.04.012_bib66) 2002; 82 Zhang (10.1016/j.bpj.2018.04.012_bib17) 2009; 106 Horn (10.1016/j.bpj.2018.04.012_bib57) 2002; 297 de Frutos (10.1016/j.bpj.2018.04.012_bib47) 2001; 81 Allahverdi (10.1016/j.bpj.2018.04.012_bib44) 2011; 39 Allahverdi (10.1016/j.bpj.2018.04.012_bib45) 2015; 5 Miyoshi (10.1016/j.bpj.2018.04.012_bib2) 2008; 90 Manning (10.1016/j.bpj.2018.04.012_bib48) 1978; 11 Leforestier (10.1016/j.bpj.2018.04.012_bib27) 1997; 73 Valouev (10.1016/j.bpj.2018.04.012_bib30) 2011; 474 Hansen (10.1016/j.bpj.2018.04.012_bib46) 2002; 31 Chapman (10.1016/j.bpj.2018.04.012_bib8) 2015; 108 Schiessel (10.1016/j.bpj.2018.04.012_bib54) 2003; 15 Cui (10.1016/j.bpj.2018.04.012_bib38) 2000; 97 Minsky (10.1016/j.bpj.2018.04.012_bib69) 1997; 188 Hancock (10.1016/j.bpj.2018.04.012_bib28) 2008; 37 Li (10.1016/j.bpj.2018.04.012_bib56) 2011; 21 Korolev (10.1016/j.bpj.2018.04.012_bib53) 2012; 8 Pegado (10.1016/j.bpj.2018.04.012_bib60) 2016; 232 Hibino (10.1016/j.bpj.2018.04.012_bib40) 2006; 426 Cheng (10.1016/j.bpj.2018.04.012_bib50) 2015; 11 Baumann (10.1016/j.bpj.2018.04.012_bib37) 1997; 94 Laemmli (10.1016/j.bpj.2018.04.012_bib11) 1975; 72 Bancaud (10.1016/j.bpj.2018.04.012_bib26) 2009; 28 Berezhnoy (10.1016/j.bpj.2018.04.012_bib35) 2012; 13 Wolffe (10.1016/j.bpj.2018.04.012_bib19) 1998 Nora (10.1016/j.bpj.2018.04.012_bib34) 2012; 485 Tsumoto (10.1016/j.bpj.2018.04.012_bib55) 2003; 106 Chen (10.1016/j.bpj.2018.04.012_bib67) 2005; 127 Zhou (10.1016/j.bpj.2018.04.012_bib3) 2008; 37 Kang (10.1016/j.bpj.2018.04.012_bib29) 2015; 114 Noguchi (10.1016/j.bpj.2018.04.012_bib58) 1998; 109 Zhang (10.1016/j.bpj.2018.04.012_bib16) 2012; 116 Ricci (10.1016/j.bpj.2018.04.012_bib31) 2015; 160 Dixon (10.1016/j.bpj.2018.04.012_bib33) 2012; 485 Zinchenko (10.1016/j.bpj.2018.04.012_bib36) 2003; 125 Richter (10.1016/j.bpj.2018.04.012_bib24) 2007; 120 Post (10.1016/j.bpj.2018.04.012_bib62) 1979; 18 Ramos (10.1016/j.bpj.2018.04.012_bib10) 2005; 109 Zinchenko (10.1016/j.bpj.2018.04.012_bib32) 2018; 46 Cunha (10.1016/j.bpj.2018.04.012_bib25) 2001; 136 Kruithof (10.1016/j.bpj.2018.04.012_bib65) 2009; 16 Luger (10.1016/j.bpj.2018.04.012_bib20) 1997; 389 Rosania (10.1016/j.bpj.2018.04.012_bib23) 1995; 218 Vasilevskaya (10.1016/j.bpj.2018.04.012_bib12) 1995; 102 Richter (10.1016/j.bpj.2018.04.012_bib4) 2008; 1783 Akabayov (10.1016/j.bpj.2018.04.012_bib7) 2013; 4 Diesinger (10.1016/j.bpj.2018.04.012_bib68) 2009; 97 Baltierra-Jasso (10.1016/j.bpj.2018.04.012_bib6) 2015; 137 Lebeaupin (10.1016/j.bpj.2018.04.012_bib5) 2018 Zinchenko (10.1016/j.bpj.2018.04.012_bib14) 2014; 118 Hirano (10.1016/j.bpj.2018.04.012_bib51) 2012; 40 Hancock (10.1016/j.bpj.2018.04.012_bib22) 2007; 18 Schwarz (10.1016/j.bpj.2018.04.012_bib52) 1996; 35 Post (10.1016/j.bpj.2018.04.012_bib63) 1982; 21 Zinchenko (10.1016/j.bpj.2018.04.012_bib41) 2005; 88 Asakura (10.1016/j.bpj.2018.04.012_bib18) 1958; 33 Arya (10.1016/j.bpj.2018.04.012_bib59) 2009; 113 Lerman (10.1016/j.bpj.2018.04.012_bib9) 1971; 68 Davey (10.1016/j.bpj.2018.04.012_bib21) 2002; 319 Zimmerman (10.1016/j.bpj.2018.04.012_bib1) 1993; 22 Wilson (10.1016/j.bpj.2018.04.012_bib49) 1979; 18 Zinchenko (10.1016/j.bpj.2018.04.012_bib15) 2015; 20 |
References_xml | – volume: 105 start-page: 128302 year: 2010 ident: bib13 article-title: DNA compaction in a crowded environment with negatively charged proteins publication-title: Phys. Rev. Lett – volume: 160 start-page: 1145 year: 2015 end-page: 1158 ident: bib31 article-title: Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo publication-title: Cell – volume: 102 start-page: 6595 year: 1995 end-page: 6602 ident: bib12 article-title: Collapse of single DNA molecule in poly(ethylene glycol) solutions publication-title: J. Chem. Phys – volume: 426 start-page: 405 year: 2006 end-page: 409 ident: bib40 article-title: Na+ more strongly inhibits DNA compaction by spermidine (3+) than K+ publication-title: Chem. Phys. Lett – volume: 474 start-page: 516 year: 2011 end-page: 520 ident: bib30 article-title: Determinants of nucleosome organization in primary human cells publication-title: Nature – volume: 106 start-page: 23 year: 2003 end-page: 29 ident: bib55 article-title: Giant DNA molecules exhibit on/off switching of transcriptional activity through conformational transition publication-title: Biophys. Chem – volume: 108 start-page: 1220 year: 2015 end-page: 1228 ident: bib8 article-title: Crowding induces complex ergodic diffusion and dynamic elongation of large DNA molecules publication-title: Biophys. J – volume: 109 start-page: 5070 year: 1998 end-page: 5077 ident: bib58 article-title: Morphological variation in a collapsed single homopolymer chain publication-title: J. Chem. Phys – volume: 218 start-page: 114 year: 1995 end-page: 122 ident: bib23 article-title: Effects of macromolecular crowding on nuclear size publication-title: Exp. Cell Res – volume: 97 start-page: 2146 year: 2009 end-page: 2153 ident: bib68 article-title: Depletion effects massively change chromatin properties and influence genome folding publication-title: Biophys. J – volume: 188 start-page: 379 year: 1997 end-page: 385 ident: bib69 article-title: Nucleosomes: a solution to a crowded intracellular environment? publication-title: J. Theor. Biol – volume: 88 start-page: 4118 year: 2005 end-page: 4123 ident: bib41 article-title: Na+ shows a markedly higher potential than K+ in DNA compaction in a crowded environment publication-title: Biophys. J – volume: 18 start-page: 668 year: 2007 end-page: 675 ident: bib22 article-title: Packing of the polynucleosome chain in interphase chromosomes: evidence for a contribution of crowding and entropic forces publication-title: Semin. Cell Dev. Biol – volume: 113 start-page: 4045 year: 2009 end-page: 4059 ident: bib59 article-title: A tale of tails: how histone tails mediate chromatin compaction in different salt and linker histone environments publication-title: J. Phys. Chem. A – volume: 297 start-page: 1824 year: 2002 end-page: 1827 ident: bib57 article-title: Molecular biology. Chromatin higher order folding--wrapping up transcription publication-title: Science – volume: 33 start-page: 183 year: 1958 end-page: 192 ident: bib18 article-title: Interaction between particles suspended in solutions of macromolecules publication-title: J. Polym. Sci – volume: 20 start-page: 60 year: 2015 end-page: 65 ident: bib15 article-title: Compaction of double-stranded DNA by negatively charged proteins and colloids publication-title: Curr. Opin. Colloid Interface Sci – volume: 125 start-page: 4414 year: 2003 end-page: 4415 ident: bib36 article-title: Controlling the intrachain segregation on a single DNA molecule publication-title: J. Am. Chem. Soc – volume: 53 start-page: 38 year: 2000 end-page: 44 ident: bib61 article-title: DNA-inspired electrostatics publication-title: Phys. Today – volume: 35 start-page: 4009 year: 1996 end-page: 4015 ident: bib52 article-title: Reversible oligonucleosome self-association: dependence on divalent cations and core histone tail domains publication-title: Biochemistry – volume: 136 start-page: 53 year: 2001 end-page: 66 ident: bib25 article-title: Polymer-mediated compaction and internal dynamics of isolated Escherichia coli nucleoids publication-title: J. Struct. Biol – volume: 68 start-page: 1886 year: 1971 end-page: 1890 ident: bib9 article-title: A transition to a compact form of DNA in polymer solutions publication-title: Proc. Natl. Acad. Sci. USA – volume: 46 start-page: 635 year: 2018 end-page: 649 ident: bib32 article-title: Single-molecule compaction of megabase-long chromatin molecules by multivalent cations publication-title: Nucleic Acids Res – volume: 21 start-page: 175 year: 2011 end-page: 186 ident: bib56 article-title: Chromatin higher-order structures and gene regulation publication-title: Curr. Opin. Genet. Dev – volume: 11 start-page: 3927 year: 2015 end-page: 3935 ident: bib50 article-title: Polyethylene glycol and divalent salt-induced DNA reentrant condensation revealed by single molecule measurements publication-title: Soft Matter – volume: 82 start-page: 2847 year: 2002 end-page: 2859 ident: bib66 article-title: Computer simulation of the 30-nanometer chromatin fiber publication-title: Biophys. J – volume: 28 start-page: 3785 year: 2009 end-page: 3798 ident: bib26 article-title: Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin publication-title: EMBO J – volume: 116 start-page: 3031 year: 2012 end-page: 3036 ident: bib16 article-title: Nanouidic compaction of DNA by like-charged protein publication-title: J. Phys. Chem. B – volume: 31 start-page: 361 year: 2002 end-page: 392 ident: bib46 article-title: Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions publication-title: Annu. Rev. Biophys. Biomol. Struct – volume: 18 start-page: 1487 year: 1979 end-page: 1501 ident: bib62 article-title: Internal condensation of a single DNA molecule publication-title: Biopolymers – volume: 13 start-page: 4146 year: 2012 end-page: 4157 ident: bib35 article-title: Supramolecular organization in self-assembly of chromatin and cationic lipid bilayers is controlled by membrane charge density publication-title: Biomacromolecules – volume: 40 start-page: 284 year: 2012 end-page: 289 ident: bib51 article-title: How environmental solution conditions determine the compaction velocity of single DNA molecules publication-title: Nucleic Acids Res – volume: 485 start-page: 381 year: 2012 end-page: 385 ident: bib34 article-title: Spatial partitioning of the regulatory landscape of the X-inactivation centre publication-title: Nature – volume: 76 start-page: 3029 year: 1996 end-page: 3031 ident: bib39 article-title: Large discrete transition in a single DNA molecule appears continuous in the ensemble publication-title: Phys. Rev. Lett – volume: 39 start-page: 1680 year: 2011 end-page: 1691 ident: bib44 article-title: The effects of histone H4 tail acetylations on cation-induced chromatin folding and self-association publication-title: Nucleic Acids Res – volume: 319 start-page: 1097 year: 2002 end-page: 1113 ident: bib21 article-title: Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution publication-title: J. Mol. Biol – volume: 15 start-page: R699 year: 2003 end-page: R774 ident: bib54 article-title: The physics of chromatin publication-title: J. Phys. Condens. Matter – volume: 118 start-page: 1256 year: 2014 end-page: 1262 ident: bib14 article-title: Crowding by anionic nanoparticles causes DNA double-strand instability and compaction publication-title: J. Phys. Chem. B – volume: 485 start-page: 376 year: 2012 end-page: 380 ident: bib33 article-title: Topological domains in mammalian genomes identified by analysis of chromatin interactions publication-title: Nature – volume: 90 start-page: 1040 year: 2008 end-page: 1051 ident: bib2 article-title: Molecular crowding effects on structure and stability of DNA publication-title: Biochimie – volume: 34 start-page: 686 year: 2006 end-page: 696 ident: bib42 article-title: Similarities and differences in interaction of K+ and Na+ with condensed ordered DNA. A molecular dynamics computer simulation study publication-title: Nucleic Acids Res – volume: 16 start-page: 534 year: 2009 end-page: 540 ident: bib65 article-title: Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber publication-title: Nat. Struct. Mol. Biol – volume: 106 start-page: 16651 year: 2009 end-page: 16656 ident: bib17 article-title: Macromolecular crowding induced elongation and compaction of single DNA molecules confined in a nanochannel publication-title: Proc. Natl. Acad. Sci. USA – year: 1998 ident: bib19 article-title: Chromatin: Structure and Function – volume: 389 start-page: 251 year: 1997 end-page: 260 ident: bib20 article-title: Crystal structure of the nucleosome core particle at 2.8 A resolution publication-title: Nature – volume: 72 start-page: 4288 year: 1975 end-page: 4292 ident: bib11 article-title: Characterization of DNA condensates induced by poly(ethylene oxide) and polylysine publication-title: Proc. Natl. Acad. Sci. USA – volume: 21 start-page: 2139 year: 1982 end-page: 2160 ident: bib63 article-title: Light-scattering study of DNA condensation: competition between collapse and aggregation publication-title: Biopolymers – volume: 18 start-page: 2192 year: 1979 end-page: 2196 ident: bib49 article-title: Counterion-induced condesation of deoxyribonucleic acid. A light-scattering study publication-title: Biochemistry – volume: 1783 start-page: 2100 year: 2008 end-page: 2107 ident: bib4 article-title: Macromolecular crowding and its potential impact on nuclear function publication-title: Biochim. Biophys. Acta – volume: 97 start-page: 127 year: 2000 end-page: 132 ident: bib38 article-title: Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure publication-title: Proc. Natl. Acad. Sci. USA – volume: 137 start-page: 16020 year: 2015 end-page: 16023 ident: bib6 article-title: Crowding-induced hybridization of single DNA hairpins publication-title: J. Am. Chem. Soc – volume: 109 start-page: 23661 year: 2005 end-page: 23665 ident: bib10 article-title: DNA psi-condensation and reentrant decondensation: effect of the PEG degree of polymerization publication-title: J. Phys. Chem. B – volume: 37 start-page: 1059 year: 2008 end-page: 1064 ident: bib28 article-title: Self-association of polynucleosome chains by macromolecular crowding publication-title: Eur. Biophys. J – volume: 127 start-page: 10910 year: 2005 end-page: 10916 ident: bib67 article-title: Specific formation of beads-on-a-chain structures on giant DNA using a designed polyamine derivative publication-title: J. Am. Chem. Soc – volume: 114 start-page: 068303 year: 2015 ident: bib29 article-title: Effects of macromolecular crowding on the collapse of biopolymers publication-title: Phys. Rev. Lett – volume: 22 start-page: 27 year: 1993 end-page: 65 ident: bib1 article-title: Macromolecular crowding: biochemical, biophysical, and physiological consequences publication-title: Annu. Rev. Biophys. Biomol. Struct – volume: 11 start-page: 179 year: 1978 end-page: 246 ident: bib48 article-title: The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides publication-title: Q. Rev. Biophys – volume: 120 start-page: 1673 year: 2007 end-page: 1680 ident: bib24 article-title: Experimental evidence for the influence of molecular crowding on nuclear architecture publication-title: J. Cell Sci – volume: 99 start-page: 1896 year: 2010 end-page: 1905 ident: bib43 article-title: Electrostatic origin of salt-induced nucleosome array compaction publication-title: Biophys. J – volume: 37 start-page: 375 year: 2008 end-page: 397 ident: bib3 article-title: Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences publication-title: Annu. Rev. Biophys – volume: 8 start-page: 9322 year: 2012 end-page: 9333 ident: bib53 article-title: The polyelectrolyte properties of chromatin publication-title: Soft Matter – volume: 36 start-page: L55 year: 1975 end-page: L57 ident: bib64 article-title: Collapse of a polymer-chain in poor solvents publication-title: J Phys Lett-Paris – volume: 232 start-page: 1 year: 2016 end-page: 8 ident: bib60 article-title: Attractive ion-ion correlation forces and the dielectric approximation publication-title: Adv. Colloid Interface Sci – volume: 73 start-page: 1771 year: 1997 end-page: 1776 ident: bib27 article-title: Liquid crystalline ordering of nucleosome core particles under macromolecular crowding conditions: evidence for a discotic columnar hexagonal phase publication-title: Biophys. J – volume: 4 start-page: 1615 year: 2013 ident: bib7 article-title: Impact of macromolecular crowding on DNA replication publication-title: Nat. Commun – start-page: 209 year: 2018 end-page: 232 ident: bib5 article-title: The multiple effects of molecular crowding in the cell nucleus: from molecular dynamics to the regulation of nuclear architecture publication-title: Nuclear Architecture and Dynamics – volume: 94 start-page: 6185 year: 1997 end-page: 6190 ident: bib37 article-title: Ionic effects on the elasticity of single DNA molecules publication-title: Proc. Natl. Acad. Sci. USA – volume: 5 start-page: 8512 year: 2015 ident: bib45 article-title: Chromatin compaction under mixed salt conditions: opposite effects of sodium and potassium ions on nucleosome array folding publication-title: Sci. Rep – volume: 81 start-page: 1127 year: 2001 end-page: 1132 ident: bib47 article-title: Aggregation of nucleosomes by divalent cations publication-title: Biophys. J – volume: 1783 start-page: 2100 year: 2008 ident: 10.1016/j.bpj.2018.04.012_bib4 article-title: Macromolecular crowding and its potential impact on nuclear function publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2008.07.017 – volume: 72 start-page: 4288 year: 1975 ident: 10.1016/j.bpj.2018.04.012_bib11 article-title: Characterization of DNA condensates induced by poly(ethylene oxide) and polylysine publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.72.11.4288 – volume: 37 start-page: 375 year: 2008 ident: 10.1016/j.bpj.2018.04.012_bib3 article-title: Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences publication-title: Annu. Rev. Biophys doi: 10.1146/annurev.biophys.37.032807.125817 – start-page: 209 year: 2018 ident: 10.1016/j.bpj.2018.04.012_bib5 article-title: The multiple effects of molecular crowding in the cell nucleus: from molecular dynamics to the regulation of nuclear architecture – volume: 5 start-page: 8512 year: 2015 ident: 10.1016/j.bpj.2018.04.012_bib45 article-title: Chromatin compaction under mixed salt conditions: opposite effects of sodium and potassium ions on nucleosome array folding publication-title: Sci. Rep doi: 10.1038/srep08512 – volume: 11 start-page: 179 year: 1978 ident: 10.1016/j.bpj.2018.04.012_bib48 article-title: The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides publication-title: Q. Rev. Biophys doi: 10.1017/S0033583500002031 – volume: 22 start-page: 27 year: 1993 ident: 10.1016/j.bpj.2018.04.012_bib1 article-title: Macromolecular crowding: biochemical, biophysical, and physiological consequences publication-title: Annu. Rev. Biophys. Biomol. Struct doi: 10.1146/annurev.bb.22.060193.000331 – volume: 99 start-page: 1896 year: 2010 ident: 10.1016/j.bpj.2018.04.012_bib43 article-title: Electrostatic origin of salt-induced nucleosome array compaction publication-title: Biophys. J doi: 10.1016/j.bpj.2010.07.017 – volume: 389 start-page: 251 year: 1997 ident: 10.1016/j.bpj.2018.04.012_bib20 article-title: Crystal structure of the nucleosome core particle at 2.8 A resolution publication-title: Nature doi: 10.1038/38444 – volume: 188 start-page: 379 year: 1997 ident: 10.1016/j.bpj.2018.04.012_bib69 article-title: Nucleosomes: a solution to a crowded intracellular environment? publication-title: J. Theor. Biol doi: 10.1006/jtbi.1997.0525 – volume: 102 start-page: 6595 year: 1995 ident: 10.1016/j.bpj.2018.04.012_bib12 article-title: Collapse of single DNA molecule in poly(ethylene glycol) solutions publication-title: J. Chem. Phys doi: 10.1063/1.469375 – volume: 319 start-page: 1097 year: 2002 ident: 10.1016/j.bpj.2018.04.012_bib21 article-title: Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution publication-title: J. Mol. Biol doi: 10.1016/S0022-2836(02)00386-8 – volume: 108 start-page: 1220 year: 2015 ident: 10.1016/j.bpj.2018.04.012_bib8 article-title: Crowding induces complex ergodic diffusion and dynamic elongation of large DNA molecules publication-title: Biophys. J doi: 10.1016/j.bpj.2015.02.002 – volume: 81 start-page: 1127 year: 2001 ident: 10.1016/j.bpj.2018.04.012_bib47 article-title: Aggregation of nucleosomes by divalent cations publication-title: Biophys. J doi: 10.1016/S0006-3495(01)75769-4 – volume: 15 start-page: R699 year: 2003 ident: 10.1016/j.bpj.2018.04.012_bib54 article-title: The physics of chromatin publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/15/19/203 – volume: 109 start-page: 5070 year: 1998 ident: 10.1016/j.bpj.2018.04.012_bib58 article-title: Morphological variation in a collapsed single homopolymer chain publication-title: J. Chem. Phys doi: 10.1063/1.477121 – volume: 21 start-page: 175 year: 2011 ident: 10.1016/j.bpj.2018.04.012_bib56 article-title: Chromatin higher-order structures and gene regulation publication-title: Curr. Opin. Genet. Dev doi: 10.1016/j.gde.2011.01.022 – volume: 39 start-page: 1680 year: 2011 ident: 10.1016/j.bpj.2018.04.012_bib44 article-title: The effects of histone H4 tail acetylations on cation-induced chromatin folding and self-association publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq900 – volume: 16 start-page: 534 year: 2009 ident: 10.1016/j.bpj.2018.04.012_bib65 article-title: Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber publication-title: Nat. Struct. Mol. Biol doi: 10.1038/nsmb.1590 – volume: 94 start-page: 6185 year: 1997 ident: 10.1016/j.bpj.2018.04.012_bib37 article-title: Ionic effects on the elasticity of single DNA molecules publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.94.12.6185 – volume: 8 start-page: 9322 year: 2012 ident: 10.1016/j.bpj.2018.04.012_bib53 article-title: The polyelectrolyte properties of chromatin publication-title: Soft Matter doi: 10.1039/c2sm25662b – volume: 474 start-page: 516 year: 2011 ident: 10.1016/j.bpj.2018.04.012_bib30 article-title: Determinants of nucleosome organization in primary human cells publication-title: Nature doi: 10.1038/nature10002 – volume: 106 start-page: 23 year: 2003 ident: 10.1016/j.bpj.2018.04.012_bib55 article-title: Giant DNA molecules exhibit on/off switching of transcriptional activity through conformational transition publication-title: Biophys. Chem doi: 10.1016/S0301-4622(03)00138-8 – volume: 82 start-page: 2847 year: 2002 ident: 10.1016/j.bpj.2018.04.012_bib66 article-title: Computer simulation of the 30-nanometer chromatin fiber publication-title: Biophys. J doi: 10.1016/S0006-3495(02)75627-0 – year: 1998 ident: 10.1016/j.bpj.2018.04.012_bib19 – volume: 40 start-page: 284 year: 2012 ident: 10.1016/j.bpj.2018.04.012_bib51 article-title: How environmental solution conditions determine the compaction velocity of single DNA molecules publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr712 – volume: 297 start-page: 1824 year: 2002 ident: 10.1016/j.bpj.2018.04.012_bib57 article-title: Molecular biology. Chromatin higher order folding--wrapping up transcription publication-title: Science doi: 10.1126/science.1074200 – volume: 13 start-page: 4146 year: 2012 ident: 10.1016/j.bpj.2018.04.012_bib35 article-title: Supramolecular organization in self-assembly of chromatin and cationic lipid bilayers is controlled by membrane charge density publication-title: Biomacromolecules doi: 10.1021/bm301436x – volume: 18 start-page: 2192 year: 1979 ident: 10.1016/j.bpj.2018.04.012_bib49 article-title: Counterion-induced condesation of deoxyribonucleic acid. A light-scattering study publication-title: Biochemistry doi: 10.1021/bi00578a009 – volume: 46 start-page: 635 year: 2018 ident: 10.1016/j.bpj.2018.04.012_bib32 article-title: Single-molecule compaction of megabase-long chromatin molecules by multivalent cations publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1135 – volume: 105 start-page: 128302 year: 2010 ident: 10.1016/j.bpj.2018.04.012_bib13 article-title: DNA compaction in a crowded environment with negatively charged proteins publication-title: Phys. Rev. Lett doi: 10.1103/PhysRevLett.105.128302 – volume: 485 start-page: 376 year: 2012 ident: 10.1016/j.bpj.2018.04.012_bib33 article-title: Topological domains in mammalian genomes identified by analysis of chromatin interactions publication-title: Nature doi: 10.1038/nature11082 – volume: 109 start-page: 23661 year: 2005 ident: 10.1016/j.bpj.2018.04.012_bib10 article-title: DNA psi-condensation and reentrant decondensation: effect of the PEG degree of polymerization publication-title: J. Phys. Chem. B doi: 10.1021/jp0527103 – volume: 76 start-page: 3029 year: 1996 ident: 10.1016/j.bpj.2018.04.012_bib39 article-title: Large discrete transition in a single DNA molecule appears continuous in the ensemble publication-title: Phys. Rev. Lett doi: 10.1103/PhysRevLett.76.3029 – volume: 20 start-page: 60 year: 2015 ident: 10.1016/j.bpj.2018.04.012_bib15 article-title: Compaction of double-stranded DNA by negatively charged proteins and colloids publication-title: Curr. Opin. Colloid Interface Sci doi: 10.1016/j.cocis.2014.12.005 – volume: 218 start-page: 114 year: 1995 ident: 10.1016/j.bpj.2018.04.012_bib23 article-title: Effects of macromolecular crowding on nuclear size publication-title: Exp. Cell Res doi: 10.1006/excr.1995.1137 – volume: 118 start-page: 1256 year: 2014 ident: 10.1016/j.bpj.2018.04.012_bib14 article-title: Crowding by anionic nanoparticles causes DNA double-strand instability and compaction publication-title: J. Phys. Chem. B doi: 10.1021/jp4107712 – volume: 137 start-page: 16020 year: 2015 ident: 10.1016/j.bpj.2018.04.012_bib6 article-title: Crowding-induced hybridization of single DNA hairpins publication-title: J. Am. Chem. Soc doi: 10.1021/jacs.5b11829 – volume: 116 start-page: 3031 year: 2012 ident: 10.1016/j.bpj.2018.04.012_bib16 article-title: Nanouidic compaction of DNA by like-charged protein publication-title: J. Phys. Chem. B doi: 10.1021/jp2124907 – volume: 426 start-page: 405 year: 2006 ident: 10.1016/j.bpj.2018.04.012_bib40 article-title: Na+ more strongly inhibits DNA compaction by spermidine (3+) than K+ publication-title: Chem. Phys. Lett doi: 10.1016/j.cplett.2006.05.120 – volume: 125 start-page: 4414 year: 2003 ident: 10.1016/j.bpj.2018.04.012_bib36 article-title: Controlling the intrachain segregation on a single DNA molecule publication-title: J. Am. Chem. Soc doi: 10.1021/ja028804x – volume: 106 start-page: 16651 year: 2009 ident: 10.1016/j.bpj.2018.04.012_bib17 article-title: Macromolecular crowding induced elongation and compaction of single DNA molecules confined in a nanochannel publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0904741106 – volume: 36 start-page: L55 year: 1975 ident: 10.1016/j.bpj.2018.04.012_bib64 article-title: Collapse of a polymer-chain in poor solvents publication-title: J Phys Lett-Paris doi: 10.1051/jphyslet:0197500360305500 – volume: 18 start-page: 1487 year: 1979 ident: 10.1016/j.bpj.2018.04.012_bib62 article-title: Internal condensation of a single DNA molecule publication-title: Biopolymers doi: 10.1002/bip.1979.360180612 – volume: 73 start-page: 1771 year: 1997 ident: 10.1016/j.bpj.2018.04.012_bib27 article-title: Liquid crystalline ordering of nucleosome core particles under macromolecular crowding conditions: evidence for a discotic columnar hexagonal phase publication-title: Biophys. J doi: 10.1016/S0006-3495(97)78207-9 – volume: 37 start-page: 1059 year: 2008 ident: 10.1016/j.bpj.2018.04.012_bib28 article-title: Self-association of polynucleosome chains by macromolecular crowding publication-title: Eur. Biophys. J doi: 10.1007/s00249-008-0276-1 – volume: 232 start-page: 1 year: 2016 ident: 10.1016/j.bpj.2018.04.012_bib60 article-title: Attractive ion-ion correlation forces and the dielectric approximation publication-title: Adv. Colloid Interface Sci doi: 10.1016/j.cis.2016.01.004 – volume: 120 start-page: 1673 year: 2007 ident: 10.1016/j.bpj.2018.04.012_bib24 article-title: Experimental evidence for the influence of molecular crowding on nuclear architecture publication-title: J. Cell Sci doi: 10.1242/jcs.03440 – volume: 97 start-page: 127 year: 2000 ident: 10.1016/j.bpj.2018.04.012_bib38 article-title: Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.97.1.127 – volume: 35 start-page: 4009 year: 1996 ident: 10.1016/j.bpj.2018.04.012_bib52 article-title: Reversible oligonucleosome self-association: dependence on divalent cations and core histone tail domains publication-title: Biochemistry doi: 10.1021/bi9525684 – volume: 11 start-page: 3927 year: 2015 ident: 10.1016/j.bpj.2018.04.012_bib50 article-title: Polyethylene glycol and divalent salt-induced DNA reentrant condensation revealed by single molecule measurements publication-title: Soft Matter doi: 10.1039/C5SM00619H – volume: 160 start-page: 1145 year: 2015 ident: 10.1016/j.bpj.2018.04.012_bib31 article-title: Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo publication-title: Cell doi: 10.1016/j.cell.2015.01.054 – volume: 113 start-page: 4045 year: 2009 ident: 10.1016/j.bpj.2018.04.012_bib59 article-title: A tale of tails: how histone tails mediate chromatin compaction in different salt and linker histone environments publication-title: J. Phys. Chem. A doi: 10.1021/jp810375d – volume: 4 start-page: 1615 year: 2013 ident: 10.1016/j.bpj.2018.04.012_bib7 article-title: Impact of macromolecular crowding on DNA replication publication-title: Nat. Commun doi: 10.1038/ncomms2620 – volume: 127 start-page: 10910 year: 2005 ident: 10.1016/j.bpj.2018.04.012_bib67 article-title: Specific formation of beads-on-a-chain structures on giant DNA using a designed polyamine derivative publication-title: J. Am. Chem. Soc doi: 10.1021/ja042509q – volume: 21 start-page: 2139 year: 1982 ident: 10.1016/j.bpj.2018.04.012_bib63 article-title: Light-scattering study of DNA condensation: competition between collapse and aggregation publication-title: Biopolymers doi: 10.1002/bip.360211105 – volume: 114 start-page: 068303 year: 2015 ident: 10.1016/j.bpj.2018.04.012_bib29 article-title: Effects of macromolecular crowding on the collapse of biopolymers publication-title: Phys. Rev. Lett doi: 10.1103/PhysRevLett.114.068303 – volume: 34 start-page: 686 year: 2006 ident: 10.1016/j.bpj.2018.04.012_bib42 article-title: Similarities and differences in interaction of K+ and Na+ with condensed ordered DNA. A molecular dynamics computer simulation study publication-title: Nucleic Acids Res doi: 10.1093/nar/gkj434 – volume: 136 start-page: 53 year: 2001 ident: 10.1016/j.bpj.2018.04.012_bib25 article-title: Polymer-mediated compaction and internal dynamics of isolated Escherichia coli nucleoids publication-title: J. Struct. Biol doi: 10.1006/jsbi.2001.4420 – volume: 53 start-page: 38 year: 2000 ident: 10.1016/j.bpj.2018.04.012_bib61 article-title: DNA-inspired electrostatics publication-title: Phys. Today doi: 10.1063/1.1325230 – volume: 90 start-page: 1040 year: 2008 ident: 10.1016/j.bpj.2018.04.012_bib2 article-title: Molecular crowding effects on structure and stability of DNA publication-title: Biochimie doi: 10.1016/j.biochi.2008.02.009 – volume: 33 start-page: 183 year: 1958 ident: 10.1016/j.bpj.2018.04.012_bib18 article-title: Interaction between particles suspended in solutions of macromolecules publication-title: J. Polym. Sci doi: 10.1002/pol.1958.1203312618 – volume: 28 start-page: 3785 year: 2009 ident: 10.1016/j.bpj.2018.04.012_bib26 article-title: Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin publication-title: EMBO J doi: 10.1038/emboj.2009.340 – volume: 88 start-page: 4118 year: 2005 ident: 10.1016/j.bpj.2018.04.012_bib41 article-title: Na+ shows a markedly higher potential than K+ in DNA compaction in a crowded environment publication-title: Biophys. J doi: 10.1529/biophysj.104.057323 – volume: 97 start-page: 2146 year: 2009 ident: 10.1016/j.bpj.2018.04.012_bib68 article-title: Depletion effects massively change chromatin properties and influence genome folding publication-title: Biophys. J doi: 10.1016/j.bpj.2009.06.057 – volume: 485 start-page: 381 year: 2012 ident: 10.1016/j.bpj.2018.04.012_bib34 article-title: Spatial partitioning of the regulatory landscape of the X-inactivation centre publication-title: Nature doi: 10.1038/nature11049 – volume: 18 start-page: 668 year: 2007 ident: 10.1016/j.bpj.2018.04.012_bib22 article-title: Packing of the polynucleosome chain in interphase chromosomes: evidence for a contribution of crowding and entropic forces publication-title: Semin. Cell Dev. Biol doi: 10.1016/j.semcdb.2007.08.006 – volume: 68 start-page: 1886 year: 1971 ident: 10.1016/j.bpj.2018.04.012_bib9 article-title: A transition to a compact form of DNA in polymer solutions publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.68.8.1886 – volume: 31 start-page: 361 year: 2002 ident: 10.1016/j.bpj.2018.04.012_bib46 article-title: Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions publication-title: Annu. Rev. Biophys. Biomol. Struct doi: 10.1146/annurev.biophys.31.101101.140858 |
SSID | ssj0012501 |
Score | 2.3591833 |
Snippet | The megabase-sized length of chromatin is highly relevant to the state of chromatin in vivo, where it is subject to a highly crowded environment and is... The megabase-sized length of chromatin is highly relevant to the state of chromatin in vivo, where it is subject to a highly crowded environment and is... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2326 |
SubjectTerms | Bacteriophage T4 Chromatin - drug effects Chromatin - metabolism DNA, Viral - metabolism Histones - metabolism Humans Magnesium - pharmacology Nucleic Acids and Genome Biophysics Nucleosomes - drug effects Nucleosomes - metabolism Polyethylene Glycols - pharmacology Sodium - pharmacology |
Title | Compaction of Single-Molecule Megabase-Long Chromatin under the Influence of Macromolecular Crowding |
URI | https://dx.doi.org/10.1016/j.bpj.2018.04.012 https://www.ncbi.nlm.nih.gov/pubmed/29729833 https://www.proquest.com/docview/2035705491 https://pubmed.ncbi.nlm.nih.gov/PMC6129467 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iCF7Et-uLCJ6EYNKk2_aoi8v6WEFU2Fto89BdpLvoevDfO5O2i6vowUuh7QRCJp3vm2YehBwn2PQIPVXQb5spzz0D0OOMF156L3Jb5PhroH_b7j2qq0E8WCCdJhcGwypr21_Z9GCt6yen9WqeToZDzPEFeAV-D5sSeInEip9SpSGJb3A-O0kAiK-75rUZSjcnmyHGq5iMMLorDdVORfQbNv3knt9DKL9gUneVrNRkkp5V810jC65cJ0tVe8mPDWLDxx4SF-jY03tAqRfH-lVDXEf77ilHEGM34_KJYpVcZK8lxbSyVwrEkF42HUxweD8PoXt1N13aAf8dcW-TPHYvHjo9VndVYCYWyZR5C3ZFmiQy0kpgGwYIXcRzkZk4L1xagE_sQ3lQK4R0RdxOhDCZBUfQeJ7zTG6RxXJcuh1CXZyYuLAu5tYopWymlLTKKxjtE8uzFuHNempTlxzHzhcvuoktG2lQgUYVaK40qKBFTmZDJlW9jb-EVaMkPbdpNODBX8OOGoVq-JjwhCQv3fj9DYRknACJzUSLbFcKns0iysAPSaVskWRO9TMBLNQ9_6YcPoeC3cAiMwCk3f9Nd48s4x2GLETRPlmcvr67A2BC0-IwbHW4Xt-ln1ooB3I |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB7xUEUvVWmBpg9wpZ6QLOy1N5s9tlFRAlkuBSk3a9ePEIQ2EQ2H_vvOeHejphUcel3bkuWx_X2znpkP4EtGokfkqaJ9-1wHETiCnuCiCioEWbqqpF8DxVV_dKMvpul0C4ZdLgyFVbZ3f3Onx9u6_XLWrubZcj6nHF-EV-T3uCmRlyi1DbvIBjLSbxhPv62fEhDjW9m8Pqfu3dNmDPKqlncU3jWI5U5l8hQ4_Us-_46h_AOUzl_Dq5ZNsq_NhPdhy9dv4EWjL_nrLbh42mPmAlsE9gNh6t7zolHE9azws5JQjE8W9YxRmVyirzWjvLIHhsyQjTsJExpelDF2r5XTZUN04An4DuDm_Pv1cMRbWQVuU5mteHB4sSibJVY5hXTDIqNLRClzm5aVH1ToFIdYH9RJqXyFSyqlzR16gjaIUuTqEHbqRe3fAfNpZtPK-VQ4q7V2udbK6aBxdMicyHsguvU0tq05TtIX96YLLrszaAJDJjBCGzRBD07XQ5ZNwY3nOuvOSGZj1xgEhOeGfe4MavA00RNJWfvF40_spNIMWWwue3DUGHg9iyRHR2SgVA-yDdOvO1Cl7s2Wen4bK3YjjcwRkd7_33RPYG90XUzMZHx1-QFeUgvFLyTJR9hZPTz6T0iLVtVx3Pa_AWEjCZw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compaction+of+Single-Molecule+Megabase-Long+Chromatin+under+the+Influence+of+Macromolecular+Crowding&rft.jtitle=Biophysical+journal&rft.au=Zinchenko%2C+Anatoly&rft.au=Berezhnoy%2C+Nikolay+V.&rft.au=Chen%2C+Qinming&rft.au=Nordenski%C3%B6ld%2C+Lars&rft.date=2018-05-22&rft.pub=Elsevier+Inc&rft.issn=0006-3495&rft.eissn=1542-0086&rft.volume=114&rft.issue=10&rft.spage=2326&rft.epage=2335&rft_id=info:doi/10.1016%2Fj.bpj.2018.04.012&rft.externalDocID=S0006349518304533 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3495&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3495&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3495&client=summon |