Compaction of Single-Molecule Megabase-Long Chromatin under the Influence of Macromolecular Crowding

The megabase-sized length of chromatin is highly relevant to the state of chromatin in vivo, where it is subject to a highly crowded environment and is organized in topologically associating domains of similar dimension. We developed an in vitro experimental chromatin model system reconstituted from...

Full description

Saved in:
Bibliographic Details
Published inBiophysical journal Vol. 114; no. 10; pp. 2326 - 2335
Main Authors Zinchenko, Anatoly, Berezhnoy, Nikolay V., Chen, Qinming, Nordenskiöld, Lars
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 22.05.2018
The Biophysical Society
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The megabase-sized length of chromatin is highly relevant to the state of chromatin in vivo, where it is subject to a highly crowded environment and is organized in topologically associating domains of similar dimension. We developed an in vitro experimental chromatin model system reconstituted from T4 DNA (approximately 166 kbp) and histone octamers and studied the monomolecular compaction of this megabase-sized chromatin fiber under the influence of macromolecular crowding. We used single-molecule fluorescence microscopy and observed compaction in aqueous solutions containing poly(ethylene glycol) in the presence of monovalent (Na+ and K+) and divalent (Mg2+) cations. Both DNA and chromatin demonstrated compaction under comparable conditions in the presence of poly(ethylene glycol) and Na+ or Mg2+ salt. However, the mechanism of the compaction changed from a first-order phase transition for DNA to a continuous folding for megabase-sized chromatin fibers. A more efficient and pronounced chromatin compaction was observed in the presence of Na+ compared to K+. A flow-stretching technique to unfold DNA and chromatin coils was used to gain further insight into the morphology of partially folded chromatin fibers. The results revealed a distribution of partially folded chromatin fibers. This variability is likely the result of the heterogeneous distribution of nucleosomes on the DNA chain. The packaging of DNA in the form of chromatin in the crowded nuclear environment appears essential to ensure gradual conformational changes of DNA.
AbstractList The megabase-sized length of chromatin is highly relevant to the state of chromatin in vivo, where it is subject to a highly crowded environment and is organized in topologically associating domains of similar dimension. We developed an in vitro experimental chromatin model system reconstituted from T4 DNA (approximately 166 kbp) and histone octamers and studied the monomolecular compaction of this megabase-sized chromatin fiber under the influence of macromolecular crowding. We used single-molecule fluorescence microscopy and observed compaction in aqueous solutions containing poly(ethylene glycol) in the presence of monovalent (Na and K ) and divalent (Mg ) cations. Both DNA and chromatin demonstrated compaction under comparable conditions in the presence of poly(ethylene glycol) and Na or Mg salt. However, the mechanism of the compaction changed from a first-order phase transition for DNA to a continuous folding for megabase-sized chromatin fibers. A more efficient and pronounced chromatin compaction was observed in the presence of Na compared to K . A flow-stretching technique to unfold DNA and chromatin coils was used to gain further insight into the morphology of partially folded chromatin fibers. The results revealed a distribution of partially folded chromatin fibers. This variability is likely the result of the heterogeneous distribution of nucleosomes on the DNA chain. The packaging of DNA in the form of chromatin in the crowded nuclear environment appears essential to ensure gradual conformational changes of DNA.
The megabase-sized length of chromatin is highly relevant to the state of chromatin in vivo, where it is subject to a highly crowded environment and is organized in topologically associating domains of similar dimension. We developed an in vitro experimental chromatin model system reconstituted from T4 DNA (approximately 166 kbp) and histone octamers and studied the monomolecular compaction of this megabase-sized chromatin fiber under the influence of macromolecular crowding. We used single-molecule fluorescence microscopy and observed compaction in aqueous solutions containing poly(ethylene glycol) in the presence of monovalent (Na+ and K+) and divalent (Mg2+) cations. Both DNA and chromatin demonstrated compaction under comparable conditions in the presence of poly(ethylene glycol) and Na+ or Mg2+ salt. However, the mechanism of the compaction changed from a first-order phase transition for DNA to a continuous folding for megabase-sized chromatin fibers. A more efficient and pronounced chromatin compaction was observed in the presence of Na+ compared to K+. A flow-stretching technique to unfold DNA and chromatin coils was used to gain further insight into the morphology of partially folded chromatin fibers. The results revealed a distribution of partially folded chromatin fibers. This variability is likely the result of the heterogeneous distribution of nucleosomes on the DNA chain. The packaging of DNA in the form of chromatin in the crowded nuclear environment appears essential to ensure gradual conformational changes of DNA.
The megabase-sized length of chromatin is highly relevant to the state of chromatin in vivo, where it is subject to a highly crowded environment and is organized in topologically associating domains of similar dimension. We developed an in vitro experimental chromatin model system reconstituted from T4 DNA (approximately 166 kbp) and histone octamers and studied the monomolecular compaction of this megabase-sized chromatin fiber under the influence of macromolecular crowding. We used single-molecule fluorescence microscopy and observed compaction in aqueous solutions containing poly(ethylene glycol) in the presence of monovalent (Na + and K + ) and divalent (Mg 2+ ) cations. Both DNA and chromatin demonstrated compaction under comparable conditions in the presence of poly(ethylene glycol) and Na + or Mg 2+ salt. However, the mechanism of the compaction changed from a first-order phase transition for DNA to a continuous folding for megabase-sized chromatin fibers. A more efficient and pronounced chromatin compaction was observed in the presence of Na + compared to K + . A flow-stretching technique to unfold DNA and chromatin coils was used to gain further insight into the morphology of partially folded chromatin fibers. The results revealed a distribution of partially folded chromatin fibers. This variability is likely the result of the heterogeneous distribution of nucleosomes on the DNA chain. The packaging of DNA in the form of chromatin in the crowded nuclear environment appears essential to ensure gradual conformational changes of DNA.
The megabase-sized length of chromatin is highly relevant to the state of chromatin in vivo, where it is subject to a highly crowded environment and is organized in topologically associating domains of similar dimension. We developed an in vitro experimental chromatin model system reconstituted from T4 DNA (approximately 166 kbp) and histone octamers and studied the monomolecular compaction of this megabase-sized chromatin fiber under the influence of macromolecular crowding. We used single-molecule fluorescence microscopy and observed compaction in aqueous solutions containing poly(ethylene glycol) in the presence of monovalent (Na+ and K+) and divalent (Mg2+) cations. Both DNA and chromatin demonstrated compaction under comparable conditions in the presence of poly(ethylene glycol) and Na+ or Mg2+ salt. However, the mechanism of the compaction changed from a first-order phase transition for DNA to a continuous folding for megabase-sized chromatin fibers. A more efficient and pronounced chromatin compaction was observed in the presence of Na+ compared to K+. A flow-stretching technique to unfold DNA and chromatin coils was used to gain further insight into the morphology of partially folded chromatin fibers. The results revealed a distribution of partially folded chromatin fibers. This variability is likely the result of the heterogeneous distribution of nucleosomes on the DNA chain. The packaging of DNA in the form of chromatin in the crowded nuclear environment appears essential to ensure gradual conformational changes of DNA.The megabase-sized length of chromatin is highly relevant to the state of chromatin in vivo, where it is subject to a highly crowded environment and is organized in topologically associating domains of similar dimension. We developed an in vitro experimental chromatin model system reconstituted from T4 DNA (approximately 166 kbp) and histone octamers and studied the monomolecular compaction of this megabase-sized chromatin fiber under the influence of macromolecular crowding. We used single-molecule fluorescence microscopy and observed compaction in aqueous solutions containing poly(ethylene glycol) in the presence of monovalent (Na+ and K+) and divalent (Mg2+) cations. Both DNA and chromatin demonstrated compaction under comparable conditions in the presence of poly(ethylene glycol) and Na+ or Mg2+ salt. However, the mechanism of the compaction changed from a first-order phase transition for DNA to a continuous folding for megabase-sized chromatin fibers. A more efficient and pronounced chromatin compaction was observed in the presence of Na+ compared to K+. A flow-stretching technique to unfold DNA and chromatin coils was used to gain further insight into the morphology of partially folded chromatin fibers. The results revealed a distribution of partially folded chromatin fibers. This variability is likely the result of the heterogeneous distribution of nucleosomes on the DNA chain. The packaging of DNA in the form of chromatin in the crowded nuclear environment appears essential to ensure gradual conformational changes of DNA.
Author Nordenskiöld, Lars
Berezhnoy, Nikolay V.
Zinchenko, Anatoly
Chen, Qinming
AuthorAffiliation 1 Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
2 School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
AuthorAffiliation_xml – name: 1 Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
– name: 2 School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
Author_xml – sequence: 1
  givenname: Anatoly
  surname: Zinchenko
  fullname: Zinchenko, Anatoly
  email: zinchenko@urban.env.nagoya-u.ac.jp
  organization: Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
– sequence: 2
  givenname: Nikolay V.
  surname: Berezhnoy
  fullname: Berezhnoy, Nikolay V.
  organization: School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
– sequence: 3
  givenname: Qinming
  surname: Chen
  fullname: Chen, Qinming
  organization: School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
– sequence: 4
  givenname: Lars
  surname: Nordenskiöld
  fullname: Nordenskiöld, Lars
  email: larsnor@ntu.edu.sg
  organization: School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29729833$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFu1DAQhi1URLeFB-CCcuSSMI7jxBESEopoqbQrDsDZcuzJrleJvdhJEW-Poy0VcOjJh_m_f6z5rsiF8w4JeU2hoEDrd8eiPx2LEqgooCqAls_IhvKqzAFEfUE2AFDnrGr5JbmK8QgpwYG-IJdl25StYGxDTOenk9Kz9S7zQ_bVuv2I-c6PqJcRsx3uVa8i5lvv9ll3CH5Ss3XZ4gyGbD5gdueGcUGnccV3SqfEGVYh64L_aVLjS_J8UGPEVw_vNfl-8-lb9znffrm96z5uc81pM-eDEaJhuik1M4xxrnldl6Boq7nqUfSNEAOvaSUMpQx7XjeU6taICvQAClp2TT6ce09LP6HR6OagRnkKdlLhl_TKyn8nzh7k3t_LmpZtVTep4O1DQfA_FoyznGzUOI7KoV-iLIHxBnjV0hR98_euxyV_TpsC9BxIJ4kx4PAYoSBXffIokz656pNQySQnMc1_jLazWuWk79rxSfL9mcR033uLQUZtVy3GBtSzNN4-Qf8GFZq1ig
CitedBy_id crossref_primary_10_1016_j_saa_2019_117464
crossref_primary_10_1039_D0SM00162G
crossref_primary_10_3390_cells11081368
crossref_primary_10_1073_pnas_1907342116
crossref_primary_10_1017_S0033583521000019
crossref_primary_10_1016_j_bpj_2020_10_018
crossref_primary_10_1186_s13072_020_00381_5
crossref_primary_10_1039_D3AN00102D
crossref_primary_10_1021_acs_jpcb_9b00782
crossref_primary_10_1016_j_biomaterials_2021_120943
crossref_primary_10_1073_pnas_2403153121
crossref_primary_10_1038_s41598_022_19471_3
crossref_primary_10_1039_C8SM00998H
crossref_primary_10_1021_acsmacrolett_1c00463
crossref_primary_10_1093_nar_gkaa261
crossref_primary_10_1063_5_0241529
Cites_doi 10.1016/j.bbamcr.2008.07.017
10.1073/pnas.72.11.4288
10.1146/annurev.biophys.37.032807.125817
10.1038/srep08512
10.1017/S0033583500002031
10.1146/annurev.bb.22.060193.000331
10.1016/j.bpj.2010.07.017
10.1038/38444
10.1006/jtbi.1997.0525
10.1063/1.469375
10.1016/S0022-2836(02)00386-8
10.1016/j.bpj.2015.02.002
10.1016/S0006-3495(01)75769-4
10.1088/0953-8984/15/19/203
10.1063/1.477121
10.1016/j.gde.2011.01.022
10.1093/nar/gkq900
10.1038/nsmb.1590
10.1073/pnas.94.12.6185
10.1039/c2sm25662b
10.1038/nature10002
10.1016/S0301-4622(03)00138-8
10.1016/S0006-3495(02)75627-0
10.1093/nar/gkr712
10.1126/science.1074200
10.1021/bm301436x
10.1021/bi00578a009
10.1093/nar/gkx1135
10.1103/PhysRevLett.105.128302
10.1038/nature11082
10.1021/jp0527103
10.1103/PhysRevLett.76.3029
10.1016/j.cocis.2014.12.005
10.1006/excr.1995.1137
10.1021/jp4107712
10.1021/jacs.5b11829
10.1021/jp2124907
10.1016/j.cplett.2006.05.120
10.1021/ja028804x
10.1073/pnas.0904741106
10.1051/jphyslet:0197500360305500
10.1002/bip.1979.360180612
10.1016/S0006-3495(97)78207-9
10.1007/s00249-008-0276-1
10.1016/j.cis.2016.01.004
10.1242/jcs.03440
10.1073/pnas.97.1.127
10.1021/bi9525684
10.1039/C5SM00619H
10.1016/j.cell.2015.01.054
10.1021/jp810375d
10.1038/ncomms2620
10.1021/ja042509q
10.1002/bip.360211105
10.1103/PhysRevLett.114.068303
10.1093/nar/gkj434
10.1006/jsbi.2001.4420
10.1063/1.1325230
10.1016/j.biochi.2008.02.009
10.1002/pol.1958.1203312618
10.1038/emboj.2009.340
10.1529/biophysj.104.057323
10.1016/j.bpj.2009.06.057
10.1038/nature11049
10.1016/j.semcdb.2007.08.006
10.1073/pnas.68.8.1886
10.1146/annurev.biophys.31.101101.140858
ContentType Journal Article
Copyright 2018 Biophysical Society
Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
2018 Biophysical Society. 2018 Biophysical Society
Copyright_xml – notice: 2018 Biophysical Society
– notice: Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
– notice: 2018 Biophysical Society. 2018 Biophysical Society
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.bpj.2018.04.012
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1542-0086
EndPage 2335
ExternalDocumentID PMC6129467
29729833
10_1016_j_bpj_2018_04_012
S0006349518304533
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
23N
2WC
4.4
457
5GY
5RE
62-
6I.
6J9
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACBEA
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADJPV
AENEX
AEXQZ
AFRAH
AFTJW
AGKMS
AHMBA
AHPSJ
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
AYCSE
AZFZN
BAWUL
CS3
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FRP
HYE
IH2
IXB
JIG
KQ8
L7B
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
RNS
ROL
RPM
RWL
SES
SSZ
TAE
TBP
TN5
WH7
WOQ
WOW
WQ6
X7M
YNY
YWH
ZA5
~02
--K
.GJ
3O-
53G
6TJ
7X2
7X7
88E
88I
8AF
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
AAEDT
AAIKJ
AAMRU
AAQXK
AAYWO
AAYXX
ABDGV
ABUWG
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AEUPX
AEUYN
AFKRA
AFPUW
AGCQF
AGHFR
AGQPQ
AI.
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
ALIPV
APXCP
ARAPS
ASPBG
ATCPS
AVWKF
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DWQXO
FEDTE
FGOYB
FYUFA
G-2
GNUQQ
GUQSH
GX1
H13
HCIFZ
HMCUK
HVGLF
HX~
HZ~
LK8
M0K
M1P
M2O
M2P
M2Q
M7P
MVM
OZT
P62
PHGZM
PHGZT
PQQKQ
PRG
PROAC
PSQYO
Q2X
R2-
S0X
UKHRP
UKR
VH1
YYP
ZGI
ZXP
~KM
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
EFKBS
ID FETCH-LOGICAL-c517t-fd8873c72c3d3355c56620a19c5abe8b788f56148d113eb56711c9d840cf0a093
IEDL.DBID IXB
ISSN 0006-3495
1542-0086
IngestDate Thu Aug 21 13:56:21 EDT 2025
Fri Jul 11 12:16:39 EDT 2025
Wed Feb 19 02:33:35 EST 2025
Thu Apr 24 22:58:44 EDT 2025
Tue Jul 01 00:49:57 EDT 2025
Fri Feb 23 02:27:08 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License This article is made available under the Elsevier license.
Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-fd8873c72c3d3355c56620a19c5abe8b788f56148d113eb56711c9d840cf0a093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0006349518304533
PMID 29729833
PQID 2035705491
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6129467
proquest_miscellaneous_2035705491
pubmed_primary_29729833
crossref_primary_10_1016_j_bpj_2018_04_012
crossref_citationtrail_10_1016_j_bpj_2018_04_012
elsevier_sciencedirect_doi_10_1016_j_bpj_2018_04_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-22
PublicationDateYYYYMMDD 2018-05-22
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biophysical journal
PublicationTitleAlternate Biophys J
PublicationYear 2018
Publisher Elsevier Inc
The Biophysical Society
Publisher_xml – name: Elsevier Inc
– name: The Biophysical Society
References Cheng, Jia, Ran (bib50) 2015; 11
Yoshikawa, Takahashi, Khokhlov (bib39) 1996; 76
Hibino, Yoshikawa, Yoshikawa (bib40) 2006; 426
Cunha, Woldringh, Odijk (bib25) 2001; 136
Baltierra-Jasso, Morten, Magennis (bib6) 2015; 137
Hancock (bib28) 2008; 37
Cui, Bustamante (bib38) 2000; 97
Davey, Sargent, Richmond (bib21) 2002; 319
Horn, Peterson (bib57) 2002; 297
Chapman, Gorczyca, Robertson-Anderson (bib8) 2015; 108
Zinchenko, Yoshikawa (bib41) 2005; 88
Li, Reinberg (bib56) 2011; 21
Laemmli (bib11) 1975; 72
Krotova, Vasilevskaya, Khokhlov (bib13) 2010; 105
Lerman (bib9) 1971; 68
Schiessel (bib54) 2003; 15
Tsumoto, Luckel, Yoshikawa (bib55) 2003; 106
Post, Zimm (bib63) 1982; 21
Berezhnoy, Lundberg, Nordenskiöld (bib35) 2012; 13
Pegado, Jönsson, Wennerström (bib60) 2016; 232
Akabayov, Akabayov, Richardson (bib7) 2013; 4
de Frutos, Raspaud, Livolant (bib47) 2001; 81
Zinchenko, Tsumoto, Yoshikawa (bib14) 2014; 118
Korolev, Allahverdi, Nordenskiold (bib53) 2012; 8
Zhang, Shao, van der Maarel (bib17) 2009; 106
Zhang, Gong, van der Maarel (bib16) 2012; 116
Manning (bib48) 1978; 11
Allahverdi, Chen, Nordenskiöld (bib45) 2015; 5
Luger, Mäder, Richmond (bib20) 1997; 389
Wilson, Bloomfield (bib49) 1979; 18
Cheng, Korolev, Nordenskiöld (bib42) 2006; 34
Zhou, Rivas, Minton (bib3) 2008; 37
Minsky, Ghirlando, Reich (bib69) 1997; 188
Miyoshi, Sugimoto (bib2) 2008; 90
Zinchenko, Sergeyev, Yoshikawa (bib36) 2003; 125
Korolev, Allahverdi, Nordenskiöld (bib43) 2010; 99
Diesinger, Heermann (bib68) 2009; 97
Chen, Zinchenko, Yoshikawa (bib67) 2005; 127
Ramos, de Vries, Ruggiero Neto (bib10) 2005; 109
Kang, Pincus, Thirumalai (bib29) 2015; 114
Arya, Schlick (bib59) 2009; 113
Gelbart, Bruinsma, Parsegian (bib61) 2000; 53
Asakura, Oosawa (bib18) 1958; 33
Valouev, Johnson, Sidow (bib30) 2011; 474
Lebeaupin, Smith, Huet (bib5) 2018
Allahverdi, Yang, Nordenskiöld (bib44) 2011; 39
Rosania, Swanson (bib23) 1995; 218
Leforestier, Livolant (bib27) 1997; 73
Richter, Nessling, Lichter (bib24) 2007; 120
Noguchi, Yoshikawa (bib58) 1998; 109
Baumann, Smith, Bustamante (bib37) 1997; 94
Zinchenko, Berezhnoy, Nordenskiöld (bib32) 2018; 46
Vasilevskaya, Khokhlov, Yoshikawa (bib12) 1995; 102
Nora, Lajoie, Heard (bib34) 2012; 485
Wolffe (bib19) 1998
de Gennes (bib64) 1975; 36
Bancaud, Huet, Ellenberg (bib26) 2009; 28
Zinchenko, Yoshikawa (bib15) 2015; 20
Hirano, Ichikawa, Yoshikawa (bib51) 2012; 40
Post, Zimm (bib62) 1979; 18
Dixon, Selvaraj, Ren (bib33) 2012; 485
Hansen (bib46) 2002; 31
Kruithof, Chien, van Noort (bib65) 2009; 16
Hancock (bib22) 2007; 18
Richter, Nessling, Lichter (bib4) 2008; 1783
Zimmerman, Minton (bib1) 1993; 22
Ricci, Manzo, Cosma (bib31) 2015; 160
Wedemann, Langowski (bib66) 2002; 82
Schwarz, Felthauser, Hansen (bib52) 1996; 35
Yoshikawa (10.1016/j.bpj.2018.04.012_bib39) 1996; 76
de Gennes (10.1016/j.bpj.2018.04.012_bib64) 1975; 36
Cheng (10.1016/j.bpj.2018.04.012_bib42) 2006; 34
Krotova (10.1016/j.bpj.2018.04.012_bib13) 2010; 105
Korolev (10.1016/j.bpj.2018.04.012_bib43) 2010; 99
Gelbart (10.1016/j.bpj.2018.04.012_bib61) 2000; 53
Wedemann (10.1016/j.bpj.2018.04.012_bib66) 2002; 82
Zhang (10.1016/j.bpj.2018.04.012_bib17) 2009; 106
Horn (10.1016/j.bpj.2018.04.012_bib57) 2002; 297
de Frutos (10.1016/j.bpj.2018.04.012_bib47) 2001; 81
Allahverdi (10.1016/j.bpj.2018.04.012_bib44) 2011; 39
Allahverdi (10.1016/j.bpj.2018.04.012_bib45) 2015; 5
Miyoshi (10.1016/j.bpj.2018.04.012_bib2) 2008; 90
Manning (10.1016/j.bpj.2018.04.012_bib48) 1978; 11
Leforestier (10.1016/j.bpj.2018.04.012_bib27) 1997; 73
Valouev (10.1016/j.bpj.2018.04.012_bib30) 2011; 474
Hansen (10.1016/j.bpj.2018.04.012_bib46) 2002; 31
Chapman (10.1016/j.bpj.2018.04.012_bib8) 2015; 108
Schiessel (10.1016/j.bpj.2018.04.012_bib54) 2003; 15
Cui (10.1016/j.bpj.2018.04.012_bib38) 2000; 97
Minsky (10.1016/j.bpj.2018.04.012_bib69) 1997; 188
Hancock (10.1016/j.bpj.2018.04.012_bib28) 2008; 37
Li (10.1016/j.bpj.2018.04.012_bib56) 2011; 21
Korolev (10.1016/j.bpj.2018.04.012_bib53) 2012; 8
Pegado (10.1016/j.bpj.2018.04.012_bib60) 2016; 232
Hibino (10.1016/j.bpj.2018.04.012_bib40) 2006; 426
Cheng (10.1016/j.bpj.2018.04.012_bib50) 2015; 11
Baumann (10.1016/j.bpj.2018.04.012_bib37) 1997; 94
Laemmli (10.1016/j.bpj.2018.04.012_bib11) 1975; 72
Bancaud (10.1016/j.bpj.2018.04.012_bib26) 2009; 28
Berezhnoy (10.1016/j.bpj.2018.04.012_bib35) 2012; 13
Wolffe (10.1016/j.bpj.2018.04.012_bib19) 1998
Nora (10.1016/j.bpj.2018.04.012_bib34) 2012; 485
Tsumoto (10.1016/j.bpj.2018.04.012_bib55) 2003; 106
Chen (10.1016/j.bpj.2018.04.012_bib67) 2005; 127
Zhou (10.1016/j.bpj.2018.04.012_bib3) 2008; 37
Kang (10.1016/j.bpj.2018.04.012_bib29) 2015; 114
Noguchi (10.1016/j.bpj.2018.04.012_bib58) 1998; 109
Zhang (10.1016/j.bpj.2018.04.012_bib16) 2012; 116
Ricci (10.1016/j.bpj.2018.04.012_bib31) 2015; 160
Dixon (10.1016/j.bpj.2018.04.012_bib33) 2012; 485
Zinchenko (10.1016/j.bpj.2018.04.012_bib36) 2003; 125
Richter (10.1016/j.bpj.2018.04.012_bib24) 2007; 120
Post (10.1016/j.bpj.2018.04.012_bib62) 1979; 18
Ramos (10.1016/j.bpj.2018.04.012_bib10) 2005; 109
Zinchenko (10.1016/j.bpj.2018.04.012_bib32) 2018; 46
Cunha (10.1016/j.bpj.2018.04.012_bib25) 2001; 136
Kruithof (10.1016/j.bpj.2018.04.012_bib65) 2009; 16
Luger (10.1016/j.bpj.2018.04.012_bib20) 1997; 389
Rosania (10.1016/j.bpj.2018.04.012_bib23) 1995; 218
Vasilevskaya (10.1016/j.bpj.2018.04.012_bib12) 1995; 102
Richter (10.1016/j.bpj.2018.04.012_bib4) 2008; 1783
Akabayov (10.1016/j.bpj.2018.04.012_bib7) 2013; 4
Diesinger (10.1016/j.bpj.2018.04.012_bib68) 2009; 97
Baltierra-Jasso (10.1016/j.bpj.2018.04.012_bib6) 2015; 137
Lebeaupin (10.1016/j.bpj.2018.04.012_bib5) 2018
Zinchenko (10.1016/j.bpj.2018.04.012_bib14) 2014; 118
Hirano (10.1016/j.bpj.2018.04.012_bib51) 2012; 40
Hancock (10.1016/j.bpj.2018.04.012_bib22) 2007; 18
Schwarz (10.1016/j.bpj.2018.04.012_bib52) 1996; 35
Post (10.1016/j.bpj.2018.04.012_bib63) 1982; 21
Zinchenko (10.1016/j.bpj.2018.04.012_bib41) 2005; 88
Asakura (10.1016/j.bpj.2018.04.012_bib18) 1958; 33
Arya (10.1016/j.bpj.2018.04.012_bib59) 2009; 113
Lerman (10.1016/j.bpj.2018.04.012_bib9) 1971; 68
Davey (10.1016/j.bpj.2018.04.012_bib21) 2002; 319
Zimmerman (10.1016/j.bpj.2018.04.012_bib1) 1993; 22
Wilson (10.1016/j.bpj.2018.04.012_bib49) 1979; 18
Zinchenko (10.1016/j.bpj.2018.04.012_bib15) 2015; 20
References_xml – volume: 105
  start-page: 128302
  year: 2010
  ident: bib13
  article-title: DNA compaction in a crowded environment with negatively charged proteins
  publication-title: Phys. Rev. Lett
– volume: 160
  start-page: 1145
  year: 2015
  end-page: 1158
  ident: bib31
  article-title: Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo
  publication-title: Cell
– volume: 102
  start-page: 6595
  year: 1995
  end-page: 6602
  ident: bib12
  article-title: Collapse of single DNA molecule in poly(ethylene glycol) solutions
  publication-title: J. Chem. Phys
– volume: 426
  start-page: 405
  year: 2006
  end-page: 409
  ident: bib40
  article-title: Na+ more strongly inhibits DNA compaction by spermidine (3+) than K+
  publication-title: Chem. Phys. Lett
– volume: 474
  start-page: 516
  year: 2011
  end-page: 520
  ident: bib30
  article-title: Determinants of nucleosome organization in primary human cells
  publication-title: Nature
– volume: 106
  start-page: 23
  year: 2003
  end-page: 29
  ident: bib55
  article-title: Giant DNA molecules exhibit on/off switching of transcriptional activity through conformational transition
  publication-title: Biophys. Chem
– volume: 108
  start-page: 1220
  year: 2015
  end-page: 1228
  ident: bib8
  article-title: Crowding induces complex ergodic diffusion and dynamic elongation of large DNA molecules
  publication-title: Biophys. J
– volume: 109
  start-page: 5070
  year: 1998
  end-page: 5077
  ident: bib58
  article-title: Morphological variation in a collapsed single homopolymer chain
  publication-title: J. Chem. Phys
– volume: 218
  start-page: 114
  year: 1995
  end-page: 122
  ident: bib23
  article-title: Effects of macromolecular crowding on nuclear size
  publication-title: Exp. Cell Res
– volume: 97
  start-page: 2146
  year: 2009
  end-page: 2153
  ident: bib68
  article-title: Depletion effects massively change chromatin properties and influence genome folding
  publication-title: Biophys. J
– volume: 188
  start-page: 379
  year: 1997
  end-page: 385
  ident: bib69
  article-title: Nucleosomes: a solution to a crowded intracellular environment?
  publication-title: J. Theor. Biol
– volume: 88
  start-page: 4118
  year: 2005
  end-page: 4123
  ident: bib41
  article-title: Na+ shows a markedly higher potential than K+ in DNA compaction in a crowded environment
  publication-title: Biophys. J
– volume: 18
  start-page: 668
  year: 2007
  end-page: 675
  ident: bib22
  article-title: Packing of the polynucleosome chain in interphase chromosomes: evidence for a contribution of crowding and entropic forces
  publication-title: Semin. Cell Dev. Biol
– volume: 113
  start-page: 4045
  year: 2009
  end-page: 4059
  ident: bib59
  article-title: A tale of tails: how histone tails mediate chromatin compaction in different salt and linker histone environments
  publication-title: J. Phys. Chem. A
– volume: 297
  start-page: 1824
  year: 2002
  end-page: 1827
  ident: bib57
  article-title: Molecular biology. Chromatin higher order folding--wrapping up transcription
  publication-title: Science
– volume: 33
  start-page: 183
  year: 1958
  end-page: 192
  ident: bib18
  article-title: Interaction between particles suspended in solutions of macromolecules
  publication-title: J. Polym. Sci
– volume: 20
  start-page: 60
  year: 2015
  end-page: 65
  ident: bib15
  article-title: Compaction of double-stranded DNA by negatively charged proteins and colloids
  publication-title: Curr. Opin. Colloid Interface Sci
– volume: 125
  start-page: 4414
  year: 2003
  end-page: 4415
  ident: bib36
  article-title: Controlling the intrachain segregation on a single DNA molecule
  publication-title: J. Am. Chem. Soc
– volume: 53
  start-page: 38
  year: 2000
  end-page: 44
  ident: bib61
  article-title: DNA-inspired electrostatics
  publication-title: Phys. Today
– volume: 35
  start-page: 4009
  year: 1996
  end-page: 4015
  ident: bib52
  article-title: Reversible oligonucleosome self-association: dependence on divalent cations and core histone tail domains
  publication-title: Biochemistry
– volume: 136
  start-page: 53
  year: 2001
  end-page: 66
  ident: bib25
  article-title: Polymer-mediated compaction and internal dynamics of isolated Escherichia coli nucleoids
  publication-title: J. Struct. Biol
– volume: 68
  start-page: 1886
  year: 1971
  end-page: 1890
  ident: bib9
  article-title: A transition to a compact form of DNA in polymer solutions
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 46
  start-page: 635
  year: 2018
  end-page: 649
  ident: bib32
  article-title: Single-molecule compaction of megabase-long chromatin molecules by multivalent cations
  publication-title: Nucleic Acids Res
– volume: 21
  start-page: 175
  year: 2011
  end-page: 186
  ident: bib56
  article-title: Chromatin higher-order structures and gene regulation
  publication-title: Curr. Opin. Genet. Dev
– volume: 11
  start-page: 3927
  year: 2015
  end-page: 3935
  ident: bib50
  article-title: Polyethylene glycol and divalent salt-induced DNA reentrant condensation revealed by single molecule measurements
  publication-title: Soft Matter
– volume: 82
  start-page: 2847
  year: 2002
  end-page: 2859
  ident: bib66
  article-title: Computer simulation of the 30-nanometer chromatin fiber
  publication-title: Biophys. J
– volume: 28
  start-page: 3785
  year: 2009
  end-page: 3798
  ident: bib26
  article-title: Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin
  publication-title: EMBO J
– volume: 116
  start-page: 3031
  year: 2012
  end-page: 3036
  ident: bib16
  article-title: Nanouidic compaction of DNA by like-charged protein
  publication-title: J. Phys. Chem. B
– volume: 31
  start-page: 361
  year: 2002
  end-page: 392
  ident: bib46
  article-title: Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions
  publication-title: Annu. Rev. Biophys. Biomol. Struct
– volume: 18
  start-page: 1487
  year: 1979
  end-page: 1501
  ident: bib62
  article-title: Internal condensation of a single DNA molecule
  publication-title: Biopolymers
– volume: 13
  start-page: 4146
  year: 2012
  end-page: 4157
  ident: bib35
  article-title: Supramolecular organization in self-assembly of chromatin and cationic lipid bilayers is controlled by membrane charge density
  publication-title: Biomacromolecules
– volume: 40
  start-page: 284
  year: 2012
  end-page: 289
  ident: bib51
  article-title: How environmental solution conditions determine the compaction velocity of single DNA molecules
  publication-title: Nucleic Acids Res
– volume: 485
  start-page: 381
  year: 2012
  end-page: 385
  ident: bib34
  article-title: Spatial partitioning of the regulatory landscape of the X-inactivation centre
  publication-title: Nature
– volume: 76
  start-page: 3029
  year: 1996
  end-page: 3031
  ident: bib39
  article-title: Large discrete transition in a single DNA molecule appears continuous in the ensemble
  publication-title: Phys. Rev. Lett
– volume: 39
  start-page: 1680
  year: 2011
  end-page: 1691
  ident: bib44
  article-title: The effects of histone H4 tail acetylations on cation-induced chromatin folding and self-association
  publication-title: Nucleic Acids Res
– volume: 319
  start-page: 1097
  year: 2002
  end-page: 1113
  ident: bib21
  article-title: Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution
  publication-title: J. Mol. Biol
– volume: 15
  start-page: R699
  year: 2003
  end-page: R774
  ident: bib54
  article-title: The physics of chromatin
  publication-title: J. Phys. Condens. Matter
– volume: 118
  start-page: 1256
  year: 2014
  end-page: 1262
  ident: bib14
  article-title: Crowding by anionic nanoparticles causes DNA double-strand instability and compaction
  publication-title: J. Phys. Chem. B
– volume: 485
  start-page: 376
  year: 2012
  end-page: 380
  ident: bib33
  article-title: Topological domains in mammalian genomes identified by analysis of chromatin interactions
  publication-title: Nature
– volume: 90
  start-page: 1040
  year: 2008
  end-page: 1051
  ident: bib2
  article-title: Molecular crowding effects on structure and stability of DNA
  publication-title: Biochimie
– volume: 34
  start-page: 686
  year: 2006
  end-page: 696
  ident: bib42
  article-title: Similarities and differences in interaction of K+ and Na+ with condensed ordered DNA. A molecular dynamics computer simulation study
  publication-title: Nucleic Acids Res
– volume: 16
  start-page: 534
  year: 2009
  end-page: 540
  ident: bib65
  article-title: Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber
  publication-title: Nat. Struct. Mol. Biol
– volume: 106
  start-page: 16651
  year: 2009
  end-page: 16656
  ident: bib17
  article-title: Macromolecular crowding induced elongation and compaction of single DNA molecules confined in a nanochannel
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 1998
  ident: bib19
  article-title: Chromatin: Structure and Function
– volume: 389
  start-page: 251
  year: 1997
  end-page: 260
  ident: bib20
  article-title: Crystal structure of the nucleosome core particle at 2.8 A resolution
  publication-title: Nature
– volume: 72
  start-page: 4288
  year: 1975
  end-page: 4292
  ident: bib11
  article-title: Characterization of DNA condensates induced by poly(ethylene oxide) and polylysine
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 21
  start-page: 2139
  year: 1982
  end-page: 2160
  ident: bib63
  article-title: Light-scattering study of DNA condensation: competition between collapse and aggregation
  publication-title: Biopolymers
– volume: 18
  start-page: 2192
  year: 1979
  end-page: 2196
  ident: bib49
  article-title: Counterion-induced condesation of deoxyribonucleic acid. A light-scattering study
  publication-title: Biochemistry
– volume: 1783
  start-page: 2100
  year: 2008
  end-page: 2107
  ident: bib4
  article-title: Macromolecular crowding and its potential impact on nuclear function
  publication-title: Biochim. Biophys. Acta
– volume: 97
  start-page: 127
  year: 2000
  end-page: 132
  ident: bib38
  article-title: Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 137
  start-page: 16020
  year: 2015
  end-page: 16023
  ident: bib6
  article-title: Crowding-induced hybridization of single DNA hairpins
  publication-title: J. Am. Chem. Soc
– volume: 109
  start-page: 23661
  year: 2005
  end-page: 23665
  ident: bib10
  article-title: DNA psi-condensation and reentrant decondensation: effect of the PEG degree of polymerization
  publication-title: J. Phys. Chem. B
– volume: 37
  start-page: 1059
  year: 2008
  end-page: 1064
  ident: bib28
  article-title: Self-association of polynucleosome chains by macromolecular crowding
  publication-title: Eur. Biophys. J
– volume: 127
  start-page: 10910
  year: 2005
  end-page: 10916
  ident: bib67
  article-title: Specific formation of beads-on-a-chain structures on giant DNA using a designed polyamine derivative
  publication-title: J. Am. Chem. Soc
– volume: 114
  start-page: 068303
  year: 2015
  ident: bib29
  article-title: Effects of macromolecular crowding on the collapse of biopolymers
  publication-title: Phys. Rev. Lett
– volume: 22
  start-page: 27
  year: 1993
  end-page: 65
  ident: bib1
  article-title: Macromolecular crowding: biochemical, biophysical, and physiological consequences
  publication-title: Annu. Rev. Biophys. Biomol. Struct
– volume: 11
  start-page: 179
  year: 1978
  end-page: 246
  ident: bib48
  article-title: The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides
  publication-title: Q. Rev. Biophys
– volume: 120
  start-page: 1673
  year: 2007
  end-page: 1680
  ident: bib24
  article-title: Experimental evidence for the influence of molecular crowding on nuclear architecture
  publication-title: J. Cell Sci
– volume: 99
  start-page: 1896
  year: 2010
  end-page: 1905
  ident: bib43
  article-title: Electrostatic origin of salt-induced nucleosome array compaction
  publication-title: Biophys. J
– volume: 37
  start-page: 375
  year: 2008
  end-page: 397
  ident: bib3
  article-title: Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences
  publication-title: Annu. Rev. Biophys
– volume: 8
  start-page: 9322
  year: 2012
  end-page: 9333
  ident: bib53
  article-title: The polyelectrolyte properties of chromatin
  publication-title: Soft Matter
– volume: 36
  start-page: L55
  year: 1975
  end-page: L57
  ident: bib64
  article-title: Collapse of a polymer-chain in poor solvents
  publication-title: J Phys Lett-Paris
– volume: 232
  start-page: 1
  year: 2016
  end-page: 8
  ident: bib60
  article-title: Attractive ion-ion correlation forces and the dielectric approximation
  publication-title: Adv. Colloid Interface Sci
– volume: 73
  start-page: 1771
  year: 1997
  end-page: 1776
  ident: bib27
  article-title: Liquid crystalline ordering of nucleosome core particles under macromolecular crowding conditions: evidence for a discotic columnar hexagonal phase
  publication-title: Biophys. J
– volume: 4
  start-page: 1615
  year: 2013
  ident: bib7
  article-title: Impact of macromolecular crowding on DNA replication
  publication-title: Nat. Commun
– start-page: 209
  year: 2018
  end-page: 232
  ident: bib5
  article-title: The multiple effects of molecular crowding in the cell nucleus: from molecular dynamics to the regulation of nuclear architecture
  publication-title: Nuclear Architecture and Dynamics
– volume: 94
  start-page: 6185
  year: 1997
  end-page: 6190
  ident: bib37
  article-title: Ionic effects on the elasticity of single DNA molecules
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 5
  start-page: 8512
  year: 2015
  ident: bib45
  article-title: Chromatin compaction under mixed salt conditions: opposite effects of sodium and potassium ions on nucleosome array folding
  publication-title: Sci. Rep
– volume: 81
  start-page: 1127
  year: 2001
  end-page: 1132
  ident: bib47
  article-title: Aggregation of nucleosomes by divalent cations
  publication-title: Biophys. J
– volume: 1783
  start-page: 2100
  year: 2008
  ident: 10.1016/j.bpj.2018.04.012_bib4
  article-title: Macromolecular crowding and its potential impact on nuclear function
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2008.07.017
– volume: 72
  start-page: 4288
  year: 1975
  ident: 10.1016/j.bpj.2018.04.012_bib11
  article-title: Characterization of DNA condensates induced by poly(ethylene oxide) and polylysine
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.72.11.4288
– volume: 37
  start-page: 375
  year: 2008
  ident: 10.1016/j.bpj.2018.04.012_bib3
  article-title: Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences
  publication-title: Annu. Rev. Biophys
  doi: 10.1146/annurev.biophys.37.032807.125817
– start-page: 209
  year: 2018
  ident: 10.1016/j.bpj.2018.04.012_bib5
  article-title: The multiple effects of molecular crowding in the cell nucleus: from molecular dynamics to the regulation of nuclear architecture
– volume: 5
  start-page: 8512
  year: 2015
  ident: 10.1016/j.bpj.2018.04.012_bib45
  article-title: Chromatin compaction under mixed salt conditions: opposite effects of sodium and potassium ions on nucleosome array folding
  publication-title: Sci. Rep
  doi: 10.1038/srep08512
– volume: 11
  start-page: 179
  year: 1978
  ident: 10.1016/j.bpj.2018.04.012_bib48
  article-title: The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides
  publication-title: Q. Rev. Biophys
  doi: 10.1017/S0033583500002031
– volume: 22
  start-page: 27
  year: 1993
  ident: 10.1016/j.bpj.2018.04.012_bib1
  article-title: Macromolecular crowding: biochemical, biophysical, and physiological consequences
  publication-title: Annu. Rev. Biophys. Biomol. Struct
  doi: 10.1146/annurev.bb.22.060193.000331
– volume: 99
  start-page: 1896
  year: 2010
  ident: 10.1016/j.bpj.2018.04.012_bib43
  article-title: Electrostatic origin of salt-induced nucleosome array compaction
  publication-title: Biophys. J
  doi: 10.1016/j.bpj.2010.07.017
– volume: 389
  start-page: 251
  year: 1997
  ident: 10.1016/j.bpj.2018.04.012_bib20
  article-title: Crystal structure of the nucleosome core particle at 2.8 A resolution
  publication-title: Nature
  doi: 10.1038/38444
– volume: 188
  start-page: 379
  year: 1997
  ident: 10.1016/j.bpj.2018.04.012_bib69
  article-title: Nucleosomes: a solution to a crowded intracellular environment?
  publication-title: J. Theor. Biol
  doi: 10.1006/jtbi.1997.0525
– volume: 102
  start-page: 6595
  year: 1995
  ident: 10.1016/j.bpj.2018.04.012_bib12
  article-title: Collapse of single DNA molecule in poly(ethylene glycol) solutions
  publication-title: J. Chem. Phys
  doi: 10.1063/1.469375
– volume: 319
  start-page: 1097
  year: 2002
  ident: 10.1016/j.bpj.2018.04.012_bib21
  article-title: Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution
  publication-title: J. Mol. Biol
  doi: 10.1016/S0022-2836(02)00386-8
– volume: 108
  start-page: 1220
  year: 2015
  ident: 10.1016/j.bpj.2018.04.012_bib8
  article-title: Crowding induces complex ergodic diffusion and dynamic elongation of large DNA molecules
  publication-title: Biophys. J
  doi: 10.1016/j.bpj.2015.02.002
– volume: 81
  start-page: 1127
  year: 2001
  ident: 10.1016/j.bpj.2018.04.012_bib47
  article-title: Aggregation of nucleosomes by divalent cations
  publication-title: Biophys. J
  doi: 10.1016/S0006-3495(01)75769-4
– volume: 15
  start-page: R699
  year: 2003
  ident: 10.1016/j.bpj.2018.04.012_bib54
  article-title: The physics of chromatin
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/15/19/203
– volume: 109
  start-page: 5070
  year: 1998
  ident: 10.1016/j.bpj.2018.04.012_bib58
  article-title: Morphological variation in a collapsed single homopolymer chain
  publication-title: J. Chem. Phys
  doi: 10.1063/1.477121
– volume: 21
  start-page: 175
  year: 2011
  ident: 10.1016/j.bpj.2018.04.012_bib56
  article-title: Chromatin higher-order structures and gene regulation
  publication-title: Curr. Opin. Genet. Dev
  doi: 10.1016/j.gde.2011.01.022
– volume: 39
  start-page: 1680
  year: 2011
  ident: 10.1016/j.bpj.2018.04.012_bib44
  article-title: The effects of histone H4 tail acetylations on cation-induced chromatin folding and self-association
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq900
– volume: 16
  start-page: 534
  year: 2009
  ident: 10.1016/j.bpj.2018.04.012_bib65
  article-title: Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber
  publication-title: Nat. Struct. Mol. Biol
  doi: 10.1038/nsmb.1590
– volume: 94
  start-page: 6185
  year: 1997
  ident: 10.1016/j.bpj.2018.04.012_bib37
  article-title: Ionic effects on the elasticity of single DNA molecules
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.94.12.6185
– volume: 8
  start-page: 9322
  year: 2012
  ident: 10.1016/j.bpj.2018.04.012_bib53
  article-title: The polyelectrolyte properties of chromatin
  publication-title: Soft Matter
  doi: 10.1039/c2sm25662b
– volume: 474
  start-page: 516
  year: 2011
  ident: 10.1016/j.bpj.2018.04.012_bib30
  article-title: Determinants of nucleosome organization in primary human cells
  publication-title: Nature
  doi: 10.1038/nature10002
– volume: 106
  start-page: 23
  year: 2003
  ident: 10.1016/j.bpj.2018.04.012_bib55
  article-title: Giant DNA molecules exhibit on/off switching of transcriptional activity through conformational transition
  publication-title: Biophys. Chem
  doi: 10.1016/S0301-4622(03)00138-8
– volume: 82
  start-page: 2847
  year: 2002
  ident: 10.1016/j.bpj.2018.04.012_bib66
  article-title: Computer simulation of the 30-nanometer chromatin fiber
  publication-title: Biophys. J
  doi: 10.1016/S0006-3495(02)75627-0
– year: 1998
  ident: 10.1016/j.bpj.2018.04.012_bib19
– volume: 40
  start-page: 284
  year: 2012
  ident: 10.1016/j.bpj.2018.04.012_bib51
  article-title: How environmental solution conditions determine the compaction velocity of single DNA molecules
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr712
– volume: 297
  start-page: 1824
  year: 2002
  ident: 10.1016/j.bpj.2018.04.012_bib57
  article-title: Molecular biology. Chromatin higher order folding--wrapping up transcription
  publication-title: Science
  doi: 10.1126/science.1074200
– volume: 13
  start-page: 4146
  year: 2012
  ident: 10.1016/j.bpj.2018.04.012_bib35
  article-title: Supramolecular organization in self-assembly of chromatin and cationic lipid bilayers is controlled by membrane charge density
  publication-title: Biomacromolecules
  doi: 10.1021/bm301436x
– volume: 18
  start-page: 2192
  year: 1979
  ident: 10.1016/j.bpj.2018.04.012_bib49
  article-title: Counterion-induced condesation of deoxyribonucleic acid. A light-scattering study
  publication-title: Biochemistry
  doi: 10.1021/bi00578a009
– volume: 46
  start-page: 635
  year: 2018
  ident: 10.1016/j.bpj.2018.04.012_bib32
  article-title: Single-molecule compaction of megabase-long chromatin molecules by multivalent cations
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1135
– volume: 105
  start-page: 128302
  year: 2010
  ident: 10.1016/j.bpj.2018.04.012_bib13
  article-title: DNA compaction in a crowded environment with negatively charged proteins
  publication-title: Phys. Rev. Lett
  doi: 10.1103/PhysRevLett.105.128302
– volume: 485
  start-page: 376
  year: 2012
  ident: 10.1016/j.bpj.2018.04.012_bib33
  article-title: Topological domains in mammalian genomes identified by analysis of chromatin interactions
  publication-title: Nature
  doi: 10.1038/nature11082
– volume: 109
  start-page: 23661
  year: 2005
  ident: 10.1016/j.bpj.2018.04.012_bib10
  article-title: DNA psi-condensation and reentrant decondensation: effect of the PEG degree of polymerization
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0527103
– volume: 76
  start-page: 3029
  year: 1996
  ident: 10.1016/j.bpj.2018.04.012_bib39
  article-title: Large discrete transition in a single DNA molecule appears continuous in the ensemble
  publication-title: Phys. Rev. Lett
  doi: 10.1103/PhysRevLett.76.3029
– volume: 20
  start-page: 60
  year: 2015
  ident: 10.1016/j.bpj.2018.04.012_bib15
  article-title: Compaction of double-stranded DNA by negatively charged proteins and colloids
  publication-title: Curr. Opin. Colloid Interface Sci
  doi: 10.1016/j.cocis.2014.12.005
– volume: 218
  start-page: 114
  year: 1995
  ident: 10.1016/j.bpj.2018.04.012_bib23
  article-title: Effects of macromolecular crowding on nuclear size
  publication-title: Exp. Cell Res
  doi: 10.1006/excr.1995.1137
– volume: 118
  start-page: 1256
  year: 2014
  ident: 10.1016/j.bpj.2018.04.012_bib14
  article-title: Crowding by anionic nanoparticles causes DNA double-strand instability and compaction
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp4107712
– volume: 137
  start-page: 16020
  year: 2015
  ident: 10.1016/j.bpj.2018.04.012_bib6
  article-title: Crowding-induced hybridization of single DNA hairpins
  publication-title: J. Am. Chem. Soc
  doi: 10.1021/jacs.5b11829
– volume: 116
  start-page: 3031
  year: 2012
  ident: 10.1016/j.bpj.2018.04.012_bib16
  article-title: Nanouidic compaction of DNA by like-charged protein
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp2124907
– volume: 426
  start-page: 405
  year: 2006
  ident: 10.1016/j.bpj.2018.04.012_bib40
  article-title: Na+ more strongly inhibits DNA compaction by spermidine (3+) than K+
  publication-title: Chem. Phys. Lett
  doi: 10.1016/j.cplett.2006.05.120
– volume: 125
  start-page: 4414
  year: 2003
  ident: 10.1016/j.bpj.2018.04.012_bib36
  article-title: Controlling the intrachain segregation on a single DNA molecule
  publication-title: J. Am. Chem. Soc
  doi: 10.1021/ja028804x
– volume: 106
  start-page: 16651
  year: 2009
  ident: 10.1016/j.bpj.2018.04.012_bib17
  article-title: Macromolecular crowding induced elongation and compaction of single DNA molecules confined in a nanochannel
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0904741106
– volume: 36
  start-page: L55
  year: 1975
  ident: 10.1016/j.bpj.2018.04.012_bib64
  article-title: Collapse of a polymer-chain in poor solvents
  publication-title: J Phys Lett-Paris
  doi: 10.1051/jphyslet:0197500360305500
– volume: 18
  start-page: 1487
  year: 1979
  ident: 10.1016/j.bpj.2018.04.012_bib62
  article-title: Internal condensation of a single DNA molecule
  publication-title: Biopolymers
  doi: 10.1002/bip.1979.360180612
– volume: 73
  start-page: 1771
  year: 1997
  ident: 10.1016/j.bpj.2018.04.012_bib27
  article-title: Liquid crystalline ordering of nucleosome core particles under macromolecular crowding conditions: evidence for a discotic columnar hexagonal phase
  publication-title: Biophys. J
  doi: 10.1016/S0006-3495(97)78207-9
– volume: 37
  start-page: 1059
  year: 2008
  ident: 10.1016/j.bpj.2018.04.012_bib28
  article-title: Self-association of polynucleosome chains by macromolecular crowding
  publication-title: Eur. Biophys. J
  doi: 10.1007/s00249-008-0276-1
– volume: 232
  start-page: 1
  year: 2016
  ident: 10.1016/j.bpj.2018.04.012_bib60
  article-title: Attractive ion-ion correlation forces and the dielectric approximation
  publication-title: Adv. Colloid Interface Sci
  doi: 10.1016/j.cis.2016.01.004
– volume: 120
  start-page: 1673
  year: 2007
  ident: 10.1016/j.bpj.2018.04.012_bib24
  article-title: Experimental evidence for the influence of molecular crowding on nuclear architecture
  publication-title: J. Cell Sci
  doi: 10.1242/jcs.03440
– volume: 97
  start-page: 127
  year: 2000
  ident: 10.1016/j.bpj.2018.04.012_bib38
  article-title: Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.97.1.127
– volume: 35
  start-page: 4009
  year: 1996
  ident: 10.1016/j.bpj.2018.04.012_bib52
  article-title: Reversible oligonucleosome self-association: dependence on divalent cations and core histone tail domains
  publication-title: Biochemistry
  doi: 10.1021/bi9525684
– volume: 11
  start-page: 3927
  year: 2015
  ident: 10.1016/j.bpj.2018.04.012_bib50
  article-title: Polyethylene glycol and divalent salt-induced DNA reentrant condensation revealed by single molecule measurements
  publication-title: Soft Matter
  doi: 10.1039/C5SM00619H
– volume: 160
  start-page: 1145
  year: 2015
  ident: 10.1016/j.bpj.2018.04.012_bib31
  article-title: Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo
  publication-title: Cell
  doi: 10.1016/j.cell.2015.01.054
– volume: 113
  start-page: 4045
  year: 2009
  ident: 10.1016/j.bpj.2018.04.012_bib59
  article-title: A tale of tails: how histone tails mediate chromatin compaction in different salt and linker histone environments
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp810375d
– volume: 4
  start-page: 1615
  year: 2013
  ident: 10.1016/j.bpj.2018.04.012_bib7
  article-title: Impact of macromolecular crowding on DNA replication
  publication-title: Nat. Commun
  doi: 10.1038/ncomms2620
– volume: 127
  start-page: 10910
  year: 2005
  ident: 10.1016/j.bpj.2018.04.012_bib67
  article-title: Specific formation of beads-on-a-chain structures on giant DNA using a designed polyamine derivative
  publication-title: J. Am. Chem. Soc
  doi: 10.1021/ja042509q
– volume: 21
  start-page: 2139
  year: 1982
  ident: 10.1016/j.bpj.2018.04.012_bib63
  article-title: Light-scattering study of DNA condensation: competition between collapse and aggregation
  publication-title: Biopolymers
  doi: 10.1002/bip.360211105
– volume: 114
  start-page: 068303
  year: 2015
  ident: 10.1016/j.bpj.2018.04.012_bib29
  article-title: Effects of macromolecular crowding on the collapse of biopolymers
  publication-title: Phys. Rev. Lett
  doi: 10.1103/PhysRevLett.114.068303
– volume: 34
  start-page: 686
  year: 2006
  ident: 10.1016/j.bpj.2018.04.012_bib42
  article-title: Similarities and differences in interaction of K+ and Na+ with condensed ordered DNA. A molecular dynamics computer simulation study
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkj434
– volume: 136
  start-page: 53
  year: 2001
  ident: 10.1016/j.bpj.2018.04.012_bib25
  article-title: Polymer-mediated compaction and internal dynamics of isolated Escherichia coli nucleoids
  publication-title: J. Struct. Biol
  doi: 10.1006/jsbi.2001.4420
– volume: 53
  start-page: 38
  year: 2000
  ident: 10.1016/j.bpj.2018.04.012_bib61
  article-title: DNA-inspired electrostatics
  publication-title: Phys. Today
  doi: 10.1063/1.1325230
– volume: 90
  start-page: 1040
  year: 2008
  ident: 10.1016/j.bpj.2018.04.012_bib2
  article-title: Molecular crowding effects on structure and stability of DNA
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2008.02.009
– volume: 33
  start-page: 183
  year: 1958
  ident: 10.1016/j.bpj.2018.04.012_bib18
  article-title: Interaction between particles suspended in solutions of macromolecules
  publication-title: J. Polym. Sci
  doi: 10.1002/pol.1958.1203312618
– volume: 28
  start-page: 3785
  year: 2009
  ident: 10.1016/j.bpj.2018.04.012_bib26
  article-title: Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin
  publication-title: EMBO J
  doi: 10.1038/emboj.2009.340
– volume: 88
  start-page: 4118
  year: 2005
  ident: 10.1016/j.bpj.2018.04.012_bib41
  article-title: Na+ shows a markedly higher potential than K+ in DNA compaction in a crowded environment
  publication-title: Biophys. J
  doi: 10.1529/biophysj.104.057323
– volume: 97
  start-page: 2146
  year: 2009
  ident: 10.1016/j.bpj.2018.04.012_bib68
  article-title: Depletion effects massively change chromatin properties and influence genome folding
  publication-title: Biophys. J
  doi: 10.1016/j.bpj.2009.06.057
– volume: 485
  start-page: 381
  year: 2012
  ident: 10.1016/j.bpj.2018.04.012_bib34
  article-title: Spatial partitioning of the regulatory landscape of the X-inactivation centre
  publication-title: Nature
  doi: 10.1038/nature11049
– volume: 18
  start-page: 668
  year: 2007
  ident: 10.1016/j.bpj.2018.04.012_bib22
  article-title: Packing of the polynucleosome chain in interphase chromosomes: evidence for a contribution of crowding and entropic forces
  publication-title: Semin. Cell Dev. Biol
  doi: 10.1016/j.semcdb.2007.08.006
– volume: 68
  start-page: 1886
  year: 1971
  ident: 10.1016/j.bpj.2018.04.012_bib9
  article-title: A transition to a compact form of DNA in polymer solutions
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.68.8.1886
– volume: 31
  start-page: 361
  year: 2002
  ident: 10.1016/j.bpj.2018.04.012_bib46
  article-title: Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions
  publication-title: Annu. Rev. Biophys. Biomol. Struct
  doi: 10.1146/annurev.biophys.31.101101.140858
SSID ssj0012501
Score 2.3591833
Snippet The megabase-sized length of chromatin is highly relevant to the state of chromatin in vivo, where it is subject to a highly crowded environment and is...
The megabase-sized length of chromatin is highly relevant to the state of chromatin in vivo, where it is subject to a highly crowded environment and is...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2326
SubjectTerms Bacteriophage T4
Chromatin - drug effects
Chromatin - metabolism
DNA, Viral - metabolism
Histones - metabolism
Humans
Magnesium - pharmacology
Nucleic Acids and Genome Biophysics
Nucleosomes - drug effects
Nucleosomes - metabolism
Polyethylene Glycols - pharmacology
Sodium - pharmacology
Title Compaction of Single-Molecule Megabase-Long Chromatin under the Influence of Macromolecular Crowding
URI https://dx.doi.org/10.1016/j.bpj.2018.04.012
https://www.ncbi.nlm.nih.gov/pubmed/29729833
https://www.proquest.com/docview/2035705491
https://pubmed.ncbi.nlm.nih.gov/PMC6129467
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iCF7Et-uLCJ6EYNKk2_aoi8v6WEFU2Fto89BdpLvoevDfO5O2i6vowUuh7QRCJp3vm2YehBwn2PQIPVXQb5spzz0D0OOMF156L3Jb5PhroH_b7j2qq0E8WCCdJhcGwypr21_Z9GCt6yen9WqeToZDzPEFeAV-D5sSeInEip9SpSGJb3A-O0kAiK-75rUZSjcnmyHGq5iMMLorDdVORfQbNv3knt9DKL9gUneVrNRkkp5V810jC65cJ0tVe8mPDWLDxx4SF-jY03tAqRfH-lVDXEf77ilHEGM34_KJYpVcZK8lxbSyVwrEkF42HUxweD8PoXt1N13aAf8dcW-TPHYvHjo9VndVYCYWyZR5C3ZFmiQy0kpgGwYIXcRzkZk4L1xagE_sQ3lQK4R0RdxOhDCZBUfQeJ7zTG6RxXJcuh1CXZyYuLAu5tYopWymlLTKKxjtE8uzFuHNempTlxzHzhcvuoktG2lQgUYVaK40qKBFTmZDJlW9jb-EVaMkPbdpNODBX8OOGoVq-JjwhCQv3fj9DYRknACJzUSLbFcKns0iysAPSaVskWRO9TMBLNQ9_6YcPoeC3cAiMwCk3f9Nd48s4x2GLETRPlmcvr67A2BC0-IwbHW4Xt-ln1ooB3I
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB7xUEUvVWmBpg9wpZ6QLOy1N5s9tlFRAlkuBSk3a9ePEIQ2EQ2H_vvOeHejphUcel3bkuWx_X2znpkP4EtGokfkqaJ9-1wHETiCnuCiCioEWbqqpF8DxVV_dKMvpul0C4ZdLgyFVbZ3f3Onx9u6_XLWrubZcj6nHF-EV-T3uCmRlyi1DbvIBjLSbxhPv62fEhDjW9m8Pqfu3dNmDPKqlncU3jWI5U5l8hQ4_Us-_46h_AOUzl_Dq5ZNsq_NhPdhy9dv4EWjL_nrLbh42mPmAlsE9gNh6t7zolHE9azws5JQjE8W9YxRmVyirzWjvLIHhsyQjTsJExpelDF2r5XTZUN04An4DuDm_Pv1cMRbWQVuU5mteHB4sSibJVY5hXTDIqNLRClzm5aVH1ToFIdYH9RJqXyFSyqlzR16gjaIUuTqEHbqRe3fAfNpZtPK-VQ4q7V2udbK6aBxdMicyHsguvU0tq05TtIX96YLLrszaAJDJjBCGzRBD07XQ5ZNwY3nOuvOSGZj1xgEhOeGfe4MavA00RNJWfvF40_spNIMWWwue3DUGHg9iyRHR2SgVA-yDdOvO1Cl7s2Wen4bK3YjjcwRkd7_33RPYG90XUzMZHx1-QFeUgvFLyTJR9hZPTz6T0iLVtVx3Pa_AWEjCZw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compaction+of+Single-Molecule+Megabase-Long+Chromatin+under+the+Influence+of+Macromolecular+Crowding&rft.jtitle=Biophysical+journal&rft.au=Zinchenko%2C+Anatoly&rft.au=Berezhnoy%2C+Nikolay+V.&rft.au=Chen%2C+Qinming&rft.au=Nordenski%C3%B6ld%2C+Lars&rft.date=2018-05-22&rft.pub=Elsevier+Inc&rft.issn=0006-3495&rft.eissn=1542-0086&rft.volume=114&rft.issue=10&rft.spage=2326&rft.epage=2335&rft_id=info:doi/10.1016%2Fj.bpj.2018.04.012&rft.externalDocID=S0006349518304533
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3495&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3495&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3495&client=summon