Ropinirole, a New ALS Drug Candidate Developed Using iPSCs
Induced pluripotent stem cells (iPSCs) are increasingly used in the study of disease mechanisms and the development of effective disease-modifying therapies for neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Recently, three candidate anti-ALS drugs – ropinirole (ROPI), re...
Saved in:
Published in | Trends in pharmacological sciences (Regular ed.) Vol. 41; no. 2; pp. 99 - 109 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Induced pluripotent stem cells (iPSCs) are increasingly used in the study of disease mechanisms and the development of effective disease-modifying therapies for neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Recently, three candidate anti-ALS drugs – ropinirole (ROPI), retigabine, and bosutinib – have been identified in iPSC-based drug screens and are now being evaluated in clinical trials for safety and effectiveness. We review the preclinical data, clinical research design, and rationale for ROPI as an anti-ALS drug candidate compared with those of the other two drugs. We also discuss the use of iPSCs for understanding and monitoring treatment response as well as for new insights into the development of new drugs and therapeutic interventions for major neurodegenerative diseases.
iPSC-based drug discovery is a promising technology for developing novel therapeutics for neurodegenerative diseases lacking useful disease models, such as amyotrophic lateral sclerosis (ALS).Ropinirole, retigabine, and bosutinib were identified as candidate therapeutic agents for ALS by the combination of iPSC-based drug discovery and drug repositioning.The potential anti-ALS mechanism of ropinirole is independent of antioxidant activity, rescue of mitochondria, reduction of stress granules, and abnormal proteins such as phosphorylated TDP-43 and FUS, and dopamine D2 receptor (D2R) agonism.Retigabine inhibits the hyperexcitability of motor neurons in ALS and bosutinib prompts autophagy and reduces abnormal proteins such as SOD-1 and phosphorylated TDP-43 via the Src/c-Abl pathway in motor neurons in ALS.Stratification of ALS, personalized medicine strategies, and the identification of common mechanisms with other neurodegenerative diseases are key aspects in the development of ALS therapies. |
---|---|
AbstractList | Induced pluripotent stem cells (iPSCs) are increasingly used in the study of disease mechanisms and the development of effective disease-modifying therapies for neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Recently, three candidate anti-ALS drugs – ropinirole (ROPI), retigabine, and bosutinib – have been identified in iPSC-based drug screens and are now being evaluated in clinical trials for safety and effectiveness. We review the preclinical data, clinical research design, and rationale for ROPI as an anti-ALS drug candidate compared with those of the other two drugs. We also discuss the use of iPSCs for understanding and monitoring treatment response as well as for new insights into the development of new drugs and therapeutic interventions for major neurodegenerative diseases.
iPSC-based drug discovery is a promising technology for developing novel therapeutics for neurodegenerative diseases lacking useful disease models, such as amyotrophic lateral sclerosis (ALS).Ropinirole, retigabine, and bosutinib were identified as candidate therapeutic agents for ALS by the combination of iPSC-based drug discovery and drug repositioning.The potential anti-ALS mechanism of ropinirole is independent of antioxidant activity, rescue of mitochondria, reduction of stress granules, and abnormal proteins such as phosphorylated TDP-43 and FUS, and dopamine D2 receptor (D2R) agonism.Retigabine inhibits the hyperexcitability of motor neurons in ALS and bosutinib prompts autophagy and reduces abnormal proteins such as SOD-1 and phosphorylated TDP-43 via the Src/c-Abl pathway in motor neurons in ALS.Stratification of ALS, personalized medicine strategies, and the identification of common mechanisms with other neurodegenerative diseases are key aspects in the development of ALS therapies. Induced pluripotent stem cells (iPSCs) are increasingly used in the study of disease mechanisms and the development of effective disease-modifying therapies for neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Recently, three candidate anti-ALS drugs - ropinirole (ROPI), retigabine, and bosutinib - have been identified in iPSC-based drug screens and are now being evaluated in clinical trials for safety and effectiveness. We review the preclinical data, clinical research design, and rationale for ROPI as an anti-ALS drug candidate compared with those of the other two drugs. We also discuss the use of iPSCs for understanding and monitoring treatment response as well as for new insights into the development of new drugs and therapeutic interventions for major neurodegenerative diseases.Induced pluripotent stem cells (iPSCs) are increasingly used in the study of disease mechanisms and the development of effective disease-modifying therapies for neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Recently, three candidate anti-ALS drugs - ropinirole (ROPI), retigabine, and bosutinib - have been identified in iPSC-based drug screens and are now being evaluated in clinical trials for safety and effectiveness. We review the preclinical data, clinical research design, and rationale for ROPI as an anti-ALS drug candidate compared with those of the other two drugs. We also discuss the use of iPSCs for understanding and monitoring treatment response as well as for new insights into the development of new drugs and therapeutic interventions for major neurodegenerative diseases. Induced pluripotent stem cells (iPSCs) are increasingly used in the study of disease mechanisms and the development of effective disease-modifying therapies for neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Recently, three candidate anti-ALS drugs - ropinirole (ROPI), retigabine, and bosutinib - have been identified in iPSC-based drug screens and are now being evaluated in clinical trials for safety and effectiveness. We review the preclinical data, clinical research design, and rationale for ROPI as an anti-ALS drug candidate compared with those of the other two drugs. We also discuss the use of iPSCs for understanding and monitoring treatment response as well as for new insights into the development of new drugs and therapeutic interventions for major neurodegenerative diseases. |
Author | Fujimori, Koki Morimoto, Satoru Yasuda, Daisuke Takahashi, Shinichi Okano, Hideyuki |
Author_xml | – sequence: 1 givenname: Hideyuki surname: Okano fullname: Okano, Hideyuki email: hidokano@a2.keio.jp organization: Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan – sequence: 2 givenname: Daisuke surname: Yasuda fullname: Yasuda, Daisuke organization: Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, Japan – sequence: 3 givenname: Koki surname: Fujimori fullname: Fujimori, Koki organization: Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan – sequence: 4 givenname: Satoru surname: Morimoto fullname: Morimoto, Satoru organization: Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan – sequence: 5 givenname: Shinichi surname: Takahashi fullname: Takahashi, Shinichi organization: Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31926602$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkTtPwzAURi0EglL4AwwoIwMJfjR2W7FU4SlVgHjMlmPfIJc0DnZa1H9PQsvCUCYv53zSPT5Eu5WrAKETghOCCb-YJY2tQ0IxGSWEJhjTHdQjQ8FiJli6i3otlMacDMQBOgxhhjFmjJJ9dMDIiHKOaQ-Nn11tK-tdCeeRih7gK5pMX6Irv3iPMlUZa1QD0RUsoXQ1mOgt2Oo9sk8vWThCe4UqAxxv3j56u7l-ze7i6ePtfTaZxjolookLMRDDNB-ApnlBeT7kKTcKGNUjJrAoBCt0jqnhBVemUAM-ahGhOAYtGM8J66Oz9W7t3ecCQiPnNmgoS1WBWwRJWbeD07RDTzfoIp-DkbW3c-VX8vfeFhiuAe1dCB4KqW2jGuuqxitbSoJll1bOZJdWdmkloRL_qPSP-ru-VbpcS9AGWlrwMmgLlQZjPehGGme36-M_ui7b39Kq_IDVf_I3syOjrQ |
CitedBy_id | crossref_primary_10_3389_fddsv_2021_773424 crossref_primary_10_1016_j_neulet_2021_135911 crossref_primary_10_3390_jpm12101601 crossref_primary_10_3390_molecules26082398 crossref_primary_10_1016_j_ejmech_2024_117080 crossref_primary_10_1007_s11418_023_01751_5 crossref_primary_10_1039_D0MD00328J crossref_primary_10_3389_fncel_2024_1364164 crossref_primary_10_3390_metabo12020101 crossref_primary_10_1016_j_stem_2021_12_008 crossref_primary_10_1002_adbi_202000223 crossref_primary_10_1016_j_mcn_2022_103745 crossref_primary_10_3389_fnmol_2021_767041 crossref_primary_10_3390_ijms252413448 crossref_primary_10_1002_adhm_202100581 crossref_primary_10_1186_s13023_020_01413_9 crossref_primary_10_1007_s00415_021_10862_6 crossref_primary_10_21518_2079_701X_2022_16_2_86_93 crossref_primary_10_1002_glia_24157 crossref_primary_10_3390_ijms25189966 crossref_primary_10_1186_s13041_020_00662_w crossref_primary_10_1038_s41598_023_31720_7 crossref_primary_10_1038_s41598_024_77710_1 crossref_primary_10_1097_MD_0000000000037401 crossref_primary_10_1093_brain_awac306 crossref_primary_10_1016_j_neuroscience_2024_11_028 crossref_primary_10_3389_fcell_2024_1357204 crossref_primary_10_3390_cells10113246 crossref_primary_10_3390_antiox11010170 crossref_primary_10_3390_ijms22126568 crossref_primary_10_3390_ijms23052400 crossref_primary_10_3390_ijms22116068 crossref_primary_10_3389_fnagi_2021_768948 crossref_primary_10_1016_j_psychres_2024_116033 crossref_primary_10_2903_sp_efsa_2022_EN_7341 crossref_primary_10_3390_ijms231911333 crossref_primary_10_1038_s41582_021_00465_0 crossref_primary_10_1186_s41232_024_00346_1 crossref_primary_10_3390_ijms22094596 crossref_primary_10_3389_fphar_2020_01148 crossref_primary_10_1016_j_stemcr_2024_11_007 crossref_primary_10_3389_fnmol_2022_953365 crossref_primary_10_4103_1673_5374_382985 crossref_primary_10_3389_fneur_2022_884439 crossref_primary_10_1038_s41598_020_79189_y crossref_primary_10_1111_jnc_16005 crossref_primary_10_1002_ange_202306533 crossref_primary_10_1007_s11419_021_00593_8 crossref_primary_10_3390_antiox9060460 crossref_primary_10_1007_s12015_024_10713_7 crossref_primary_10_2174_1574888X18666230608105703 crossref_primary_10_3390_ph17101286 crossref_primary_10_1002_acn3_51697 crossref_primary_10_1186_s40035_021_00250_5 crossref_primary_10_1016_j_stem_2023_04_017 crossref_primary_10_3390_cells12060971 crossref_primary_10_3390_molecules25112691 crossref_primary_10_4103_1673_5374_308077 crossref_primary_10_1007_s00401_024_02734_w crossref_primary_10_1093_brain_awac169 crossref_primary_10_3389_fcell_2023_1236553 crossref_primary_10_1016_j_stem_2022_01_007 crossref_primary_10_3389_fphar_2022_805379 crossref_primary_10_1002_anie_202306533 crossref_primary_10_1016_j_arr_2023_102085 crossref_primary_10_1080_17460441_2020_1767579 |
Cites_doi | 10.1021/jm00390a009 10.1039/c2md20287e 10.1016/j.cell.2017.10.011 10.1038/ng1001-166 10.1038/nature20413 10.1016/j.neuron.2011.09.011 10.1080/004982599238696 10.1016/j.expneurol.2017.10.019 10.1126/scitranslmed.aaf3962 10.1021/jm00361a001 10.3389/fneur.2018.01167 10.1056/NEJM199403033300901 10.1080/15548627.2015.1100930 10.1056/NEJMra1603471 10.3390/cells7110219 10.1016/j.bbrc.2006.10.093 10.1038/nature08971 10.1038/s41591-018-0140-5 10.1523/JNEUROSCI.2092-18.2019 10.1021/jm00148a028 10.1007/s12035-018-0947-6 10.1126/science.1165942 10.1016/j.stemcr.2016.02.011 10.1126/science.1158799 10.1016/j.reth.2019.07.002 10.1016/S1474-4422(13)70221-7 10.1016/j.stemcr.2017.09.024 10.1126/science.1134108 10.1111/j.1365-2710.2012.01336.x 10.1038/nn.4273 10.1038/362059a0 10.1016/j.bbabio.2008.03.029 10.1002/cpt.1096 10.1016/j.celrep.2014.03.019 10.1093/geront/20.6.649 10.1016/j.neurobiolaging.2017.01.004 10.1007/s11910-016-0658-1 10.1126/science.1166066 10.1186/1471-2210-10-2 10.1186/1756-6606-7-22 10.1038/s41582-019-0157-5 |
ContentType | Journal Article |
Copyright | 2019 The Authors Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2019 The Authors – notice: Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.tips.2019.12.002 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-3735 |
EndPage | 109 |
ExternalDocumentID | 31926602 10_1016_j_tips_2019_12_002 S0165614719302743 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 123 1B1 1CY 1KJ 1P~ 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 8WZ 9JM A6W AAEDT AAEDW AAIKJ AAKOC AALRI AAMRU AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABCQJ ABFNM ABFRF ABJNI ABLJU ABMAC ABOCM ABXDB ABZDS ACDAQ ACGFO ACGFS ACIUM ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGWIK AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALCLG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMQ HMT HVGLF HZ~ IH2 IHE J1W KOM M2V M34 M41 MO0 MOBAO MVM N9A O-L O9- O9. OAUVE OGGZJ OK~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ RXW SCC SDF SDG SDP SES SEW SNS SPCBC SPT SSN SSP SSZ T5K TAE WUQ X7M XJT Z5R ZGI ZKB ZXP ~02 ~G- 6I. AACTN AADPK AAFTH AAIAV AATCM AAYOK ABYKQ AFCTW AFKWA AHPSJ AJBFU AJOXV AMFUW EFLBG RIG XFK ZA5 AAYXX AGRNS BNPGV CITATION SSH NPM 7X8 |
ID | FETCH-LOGICAL-c517t-f74785b4ec2bf26b8656dae32c93707f73fcb02d6f6adfa469b867a60ec736b13 |
IEDL.DBID | .~1 |
ISSN | 0165-6147 1873-3735 |
IngestDate | Fri Jul 11 07:04:51 EDT 2025 Wed Feb 19 02:31:44 EST 2025 Thu Apr 24 23:03:03 EDT 2025 Tue Jul 01 02:55:46 EDT 2025 Fri Feb 23 02:49:01 EST 2024 Tue Aug 26 16:58:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | induced pluripotent stem cells ropinirole drug repositioning amyotrophic lateral sclerosis disease modeling |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-f74785b4ec2bf26b8656dae32c93707f73fcb02d6f6adfa469b867a60ec736b13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0165614719302743 |
PMID | 31926602 |
PQID | 2337070551 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2337070551 pubmed_primary_31926602 crossref_citationtrail_10_1016_j_tips_2019_12_002 crossref_primary_10_1016_j_tips_2019_12_002 elsevier_sciencedirect_doi_10_1016_j_tips_2019_12_002 elsevier_clinicalkey_doi_10_1016_j_tips_2019_12_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2020 2020-02-00 2020-Feb 20200201 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Trends in pharmacological sciences (Regular ed.) |
PublicationTitleAlternate | Trends Pharmacol Sci |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kohli (bb0150) 1978; 207 Ramji (bb0175) 1999; 29 Murphy (bb0165) 2008; 1777 Fujimori (bb0225) 2017; 9 Dimos (bb0050) 2008; 321 Kwiatkowski (bb0090) 2009; 323 Vance (bb0095) 2009; 323 GlaxoSmithKline (bb0180) 2012 Imamura (bb0040) 2017; 9 GlaxoSmithKline (bb0185) 2011 Nedelsky, Taylor (bb0110) 2019; 15 DeJesus-Hernandez (bb0105) 2011; 72 Zarit (bb0220) 1980; 20 Neumann (bb0085) 2006; 314 Hadano (bb0075) 2001; 29 Brown (bb0005) 2017; 377 Weinstock (bb0145) 1987; 30 Cudkowicz (bb0115) 2013; 12 Fujimori (bb0060) 2018; 24 Yasuda (bb0160) 2013; 4 Rothstein (bb0025) 2017; 171 Ricci (bb0210) 2018; 7 Okano, Yamanaka (bb0030) 2014; 7 Nishiyama (bb0215) 2017; 53 Wainger (bb0035) 2014; 7 Ichiyanagi (bb0045) 2016; 6 Maruyama (bb0100) 2010; 465 Ferrari-Toninelli (bb0155) 2010; 10 Morimoto (bb0015) 2019; 11 Luis-Ravelo (bb0125) 2017; 299 Hattori (bb0170) 2012; 37 Feneberg (bb0205) 2018; 55 Bensimon (bb0020) 1994; 330 Kovalchuk (bb0190) 2018; 104 Rosen (bb0070) 1993; 362 Pfizer (bb0195) 2014 Arai (bb0080) 2006; 351 Huffman (bb0140) 1983; 26 de Castro (bb0130) 2019; 39 Therrien (bb0065) 2016; 16 Poesen (bb0200) 2019; 9 Sances (bb0055) 2016; 19 Wang (bb0120) 2015; 11 Gallagher (bb0135) 1985; 28 Taylor (bb0010) 2016; 539 Arai (10.1016/j.tips.2019.12.002_bb0080) 2006; 351 Okano (10.1016/j.tips.2019.12.002_bb0030) 2014; 7 Gallagher (10.1016/j.tips.2019.12.002_bb0135) 1985; 28 Wang (10.1016/j.tips.2019.12.002_bb0120) 2015; 11 Hattori (10.1016/j.tips.2019.12.002_bb0170) 2012; 37 Fujimori (10.1016/j.tips.2019.12.002_bb0225) 2017; 9 Kohli (10.1016/j.tips.2019.12.002_bb0150) 1978; 207 Kwiatkowski (10.1016/j.tips.2019.12.002_bb0090) 2009; 323 Taylor (10.1016/j.tips.2019.12.002_bb0010) 2016; 539 Murphy (10.1016/j.tips.2019.12.002_bb0165) 2008; 1777 Dimos (10.1016/j.tips.2019.12.002_bb0050) 2008; 321 Weinstock (10.1016/j.tips.2019.12.002_bb0145) 1987; 30 Pfizer (10.1016/j.tips.2019.12.002_bb0195) 2014 Ichiyanagi (10.1016/j.tips.2019.12.002_bb0045) 2016; 6 Yasuda (10.1016/j.tips.2019.12.002_bb0160) 2013; 4 Kovalchuk (10.1016/j.tips.2019.12.002_bb0190) 2018; 104 Ricci (10.1016/j.tips.2019.12.002_bb0210) 2018; 7 Rosen (10.1016/j.tips.2019.12.002_bb0070) 1993; 362 Morimoto (10.1016/j.tips.2019.12.002_bb0015) 2019; 11 Cudkowicz (10.1016/j.tips.2019.12.002_bb0115) 2013; 12 Poesen (10.1016/j.tips.2019.12.002_bb0200) 2019; 9 Sances (10.1016/j.tips.2019.12.002_bb0055) 2016; 19 Feneberg (10.1016/j.tips.2019.12.002_bb0205) 2018; 55 Maruyama (10.1016/j.tips.2019.12.002_bb0100) 2010; 465 Imamura (10.1016/j.tips.2019.12.002_bb0040) 2017; 9 Nishiyama (10.1016/j.tips.2019.12.002_bb0215) 2017; 53 Nedelsky (10.1016/j.tips.2019.12.002_bb0110) 2019; 15 Zarit (10.1016/j.tips.2019.12.002_bb0220) 1980; 20 Huffman (10.1016/j.tips.2019.12.002_bb0140) 1983; 26 de Castro (10.1016/j.tips.2019.12.002_bb0130) 2019; 39 Fujimori (10.1016/j.tips.2019.12.002_bb0060) 2018; 24 Neumann (10.1016/j.tips.2019.12.002_bb0085) 2006; 314 Luis-Ravelo (10.1016/j.tips.2019.12.002_bb0125) 2017; 299 GlaxoSmithKline (10.1016/j.tips.2019.12.002_bb0185) 2011 Brown (10.1016/j.tips.2019.12.002_bb0005) 2017; 377 Bensimon (10.1016/j.tips.2019.12.002_bb0020) 1994; 330 GlaxoSmithKline (10.1016/j.tips.2019.12.002_bb0180) 2012 Ramji (10.1016/j.tips.2019.12.002_bb0175) 1999; 29 Hadano (10.1016/j.tips.2019.12.002_bb0075) 2001; 29 DeJesus-Hernandez (10.1016/j.tips.2019.12.002_bb0105) 2011; 72 Ferrari-Toninelli (10.1016/j.tips.2019.12.002_bb0155) 2010; 10 Vance (10.1016/j.tips.2019.12.002_bb0095) 2009; 323 Rothstein (10.1016/j.tips.2019.12.002_bb0025) 2017; 171 Wainger (10.1016/j.tips.2019.12.002_bb0035) 2014; 7 Therrien (10.1016/j.tips.2019.12.002_bb0065) 2016; 16 |
References_xml | – volume: 314 start-page: 130 year: 2006 end-page: 133 ident: bb0085 article-title: Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis publication-title: Science – volume: 19 start-page: 542 year: 2016 end-page: 553 ident: bb0055 article-title: Modeling ALS with motor neurons derived from human induced pluripotent stem cells publication-title: Nat. Neurosci. – volume: 1777 start-page: 1028 year: 2008 end-page: 1031 ident: bb0165 article-title: Targeting lipophilic cations to mitochondria publication-title: Biochim. Biophys. Acta – volume: 207 start-page: 16 year: 1978 end-page: 22 ident: bb0150 article-title: , publication-title: J. Pharmacol. Exp. Ther. – volume: 321 start-page: 1218 year: 2008 end-page: 1221 ident: bb0050 article-title: Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons publication-title: Science – volume: 330 start-page: 585 year: 1994 end-page: 591 ident: bb0020 article-title: A controlled trial of riluzole in amyotrophic lateral sclerosis publication-title: N. Engl. J. Med. – year: 2012 ident: bb0180 article-title: ReQuip CR Tablet [package insert]; revised December 2017 (Edition 5) – volume: 7 start-page: 22 year: 2014 ident: bb0030 article-title: iPS cell technologies: significance and applications to CNS regeneration and disease publication-title: Mol. Brain – volume: 7 start-page: 1 year: 2014 end-page: 11 ident: bb0035 article-title: Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons publication-title: Cell Rep. – year: 2014 ident: bb0195 article-title: BOSULIF® Tablet [package insert]; revised May 2017 (Edition 5) – volume: 16 start-page: 59 year: 2016 end-page: 71 ident: bb0065 article-title: ALS: recent developments from genetics studies publication-title: Curr. Neurol. Neurosci. Rep. – volume: 323 start-page: 1208 year: 2009 end-page: 1211 ident: bb0095 article-title: Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6 publication-title: Science – volume: 6 start-page: 496 year: 2016 end-page: 510 ident: bb0045 article-title: Establishment of publication-title: Stem Cell Rep. – volume: 26 start-page: 933 year: 1983 end-page: 935 ident: bb0140 article-title: 4-(Aminoalkyl)-7-hydroxy-2(3 publication-title: J. Med. Chem. – year: 2011 ident: bb0185 article-title: POTIGA – ezogabine tablet, film coated [package insert]; revised May 2016 – volume: 28 start-page: 1533 year: 1985 end-page: 1536 ident: bb0135 article-title: 4-[2-(di- publication-title: J. Med. Chem. – volume: 55 start-page: 7789 year: 2018 end-page: 7801 ident: bb0205 article-title: Towards a TDP-43-based biomarker for ALS and FTLD publication-title: Mol. Neurobiol. – volume: 362 start-page: 59 year: 1993 end-page: 62 ident: bb0070 article-title: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis publication-title: Nature – volume: 7 start-page: 219 year: 2018 ident: bb0210 article-title: MicroRNAs as biomarkers in amyotrophic lateral sclerosis publication-title: Cells – volume: 9 start-page: 1167 year: 2019 ident: bb0200 article-title: Diagnostic and prognostic performance of neurofilaments in ALS publication-title: Front. Neurol. – volume: 30 start-page: 1166 year: 1987 end-page: 1176 ident: bb0145 article-title: Synthesis and evaluation of non-catechol D-1 and D-2 dopamine receptor agonists: benzimidazol-2-one, benzoxazol-2-one, and the highly potent benzothiazol-2-one 7-ethylamines publication-title: J. Med. Chem. – volume: 10 start-page: 2 year: 2010 ident: bb0155 article-title: Mitochondria-targeted antioxidant effects of S publication-title: BMC Pharmacol. – volume: 9 year: 2017 ident: bb0040 article-title: The Src/c-Abl pathway is a potential therapeutic target in amyotrophic lateral sclerosis publication-title: Sci. Transl. Med. – volume: 323 start-page: 1205 year: 2009 end-page: 1208 ident: bb0090 article-title: Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis publication-title: Science – volume: 171 start-page: 725 year: 2017 ident: bb0025 article-title: Edaravone: a new drug approved for ALS publication-title: Cell – volume: 4 start-page: 527 year: 2013 end-page: 529 ident: bb0160 article-title: Synthesis, radical scavenging activity and structure–activity relationship of uric acid analogs publication-title: Med. Chem. Commun. – volume: 104 start-page: 1136 year: 2018 end-page: 1145 ident: bb0190 article-title: Acute effects of riluzole and retigabine on axonal excitability in patients with amyotrophic lateral sclerosis: a randomized, double-blind, placebo-controlled, crossover trial publication-title: Clin. Pharmacol. Ther. – volume: 20 start-page: 649 year: 1980 end-page: 655 ident: bb0220 article-title: Relatives of the impaired elderly: correlates of feelings of burden publication-title: Gerontologist – volume: 24 start-page: 1579 year: 2018 end-page: 1589 ident: bb0060 article-title: Modeling sporadic ALS in iPSC-derived motor neurons identifies a potential therapeutic agent publication-title: Nat. Med. – volume: 11 start-page: 2057 year: 2015 end-page: 2073 ident: bb0120 article-title: A pivotal role of FOS-mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonist-induced autophagy activation publication-title: Autophagy – volume: 377 start-page: 162 year: 2017 end-page: 172 ident: bb0005 article-title: Amyotrophic lateral sclerosis publication-title: N. Engl. J. Med. – volume: 12 start-page: 1059 year: 2013 end-page: 1067 ident: bb0115 article-title: Dexpramipexole versus placebo for patients with amyotrophic lateral sclerosis (EMPOWER): a randomised, double-blind, Phase 3 trial publication-title: Lancet Neurol. – volume: 465 start-page: 223 year: 2010 end-page: 226 ident: bb0100 article-title: Mutations of optineurin in amyotrophic lateral sclerosis publication-title: Nature – volume: 37 start-page: 571 year: 2012 end-page: 577 ident: bb0170 article-title: Pharmacokinetics and effect of food after oral administration of prolonged-release tablets of ropinirole hydrochloride in Japanese patients with Parkinson’s disease publication-title: J. Clin. Pharm. Ther. – volume: 9 start-page: 1675 year: 2017 end-page: 1691 ident: bb0225 article-title: Escape from pluripotency via inhibition of TGF-β/BMP and activation of Wnt signaling accelerates differentiation and aging in hPSC progeny cells publication-title: Stem Cell Rep. – volume: 351 start-page: 602 year: 2006 end-page: 611 ident: bb0080 article-title: TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis publication-title: Biochem. Biophys. Res. Commun. – volume: 11 start-page: 143 year: 2019 end-page: 166 ident: bb0015 article-title: Ropinirole hydrochloride remedy for amyotrophic lateral sclerosis – protocol for a randomized, double-blind, placebo-controlled, single-center, and open-label continuation Phase I/IIa clinical trial (ROPALS trial) publication-title: Regen. Ther. – volume: 72 start-page: 245 year: 2011 end-page: 256 ident: bb0105 article-title: Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS publication-title: Neuron – volume: 15 start-page: 272 year: 2019 end-page: 286 ident: bb0110 article-title: Bridging biophysics and neurology: aberrant phase transitions in neurodegenerative disease publication-title: Nat. Rev. Neurol. – volume: 539 start-page: 197 year: 2016 end-page: 206 ident: bb0010 article-title: Decoding ALS: from genes to mechanism publication-title: Nature – volume: 29 start-page: 311 year: 1999 end-page: 325 ident: bb0175 article-title: Disposition of ropinirole in animals and man publication-title: Xenobiotica – volume: 53 start-page: 194.e1 year: 2017 end-page: 194.e8 ident: bb0215 article-title: Comprehensive targeted next-generation sequencing in Japanese familial amyotrophic lateral sclerosis publication-title: Neurobiol. Aging – volume: 39 start-page: 4422 year: 2019 end-page: 4433 ident: bb0130 article-title: The lactate receptor HCAR1 modulates neuronal network activity through the activation of Gα and Gβγ subunits publication-title: J. Neurosci. – volume: 299 start-page: 137 year: 2017 end-page: 147 ident: bb0125 article-title: Pramipexole reduces soluble mutant huntingtin and protects striatal neurons through dopamine D3 receptors in a genetic model of Huntington’s disease publication-title: Exp. Neurol. – volume: 29 start-page: 166 year: 2001 end-page: 173 ident: bb0075 article-title: A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2 publication-title: Nat – volume: 30 start-page: 1166 year: 1987 ident: 10.1016/j.tips.2019.12.002_bb0145 article-title: Synthesis and evaluation of non-catechol D-1 and D-2 dopamine receptor agonists: benzimidazol-2-one, benzoxazol-2-one, and the highly potent benzothiazol-2-one 7-ethylamines publication-title: J. Med. Chem. doi: 10.1021/jm00390a009 – volume: 4 start-page: 527 year: 2013 ident: 10.1016/j.tips.2019.12.002_bb0160 article-title: Synthesis, radical scavenging activity and structure–activity relationship of uric acid analogs publication-title: Med. Chem. Commun. doi: 10.1039/c2md20287e – volume: 171 start-page: 725 year: 2017 ident: 10.1016/j.tips.2019.12.002_bb0025 article-title: Edaravone: a new drug approved for ALS publication-title: Cell doi: 10.1016/j.cell.2017.10.011 – volume: 29 start-page: 166 year: 2001 ident: 10.1016/j.tips.2019.12.002_bb0075 article-title: A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2 publication-title: Nat. Genet. doi: 10.1038/ng1001-166 – volume: 539 start-page: 197 year: 2016 ident: 10.1016/j.tips.2019.12.002_bb0010 article-title: Decoding ALS: from genes to mechanism publication-title: Nature doi: 10.1038/nature20413 – volume: 72 start-page: 245 year: 2011 ident: 10.1016/j.tips.2019.12.002_bb0105 article-title: Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS publication-title: Neuron doi: 10.1016/j.neuron.2011.09.011 – volume: 29 start-page: 311 year: 1999 ident: 10.1016/j.tips.2019.12.002_bb0175 article-title: Disposition of ropinirole in animals and man publication-title: Xenobiotica doi: 10.1080/004982599238696 – volume: 299 start-page: 137 year: 2017 ident: 10.1016/j.tips.2019.12.002_bb0125 article-title: Pramipexole reduces soluble mutant huntingtin and protects striatal neurons through dopamine D3 receptors in a genetic model of Huntington’s disease publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2017.10.019 – volume: 9 year: 2017 ident: 10.1016/j.tips.2019.12.002_bb0040 article-title: The Src/c-Abl pathway is a potential therapeutic target in amyotrophic lateral sclerosis publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaf3962 – volume: 26 start-page: 933 year: 1983 ident: 10.1016/j.tips.2019.12.002_bb0140 article-title: 4-(Aminoalkyl)-7-hydroxy-2(3H)-indolones, a novel class of potent presynaptic dopamine receptor agonists publication-title: J. Med. Chem. doi: 10.1021/jm00361a001 – volume: 9 start-page: 1167 year: 2019 ident: 10.1016/j.tips.2019.12.002_bb0200 article-title: Diagnostic and prognostic performance of neurofilaments in ALS publication-title: Front. Neurol. doi: 10.3389/fneur.2018.01167 – year: 2011 ident: 10.1016/j.tips.2019.12.002_bb0185 – volume: 330 start-page: 585 year: 1994 ident: 10.1016/j.tips.2019.12.002_bb0020 article-title: A controlled trial of riluzole in amyotrophic lateral sclerosis publication-title: N. Engl. J. Med. doi: 10.1056/NEJM199403033300901 – volume: 11 start-page: 2057 year: 2015 ident: 10.1016/j.tips.2019.12.002_bb0120 article-title: A pivotal role of FOS-mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonist-induced autophagy activation publication-title: Autophagy doi: 10.1080/15548627.2015.1100930 – volume: 377 start-page: 162 year: 2017 ident: 10.1016/j.tips.2019.12.002_bb0005 article-title: Amyotrophic lateral sclerosis publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1603471 – volume: 7 start-page: 219 year: 2018 ident: 10.1016/j.tips.2019.12.002_bb0210 article-title: MicroRNAs as biomarkers in amyotrophic lateral sclerosis publication-title: Cells doi: 10.3390/cells7110219 – volume: 351 start-page: 602 year: 2006 ident: 10.1016/j.tips.2019.12.002_bb0080 article-title: TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2006.10.093 – volume: 465 start-page: 223 year: 2010 ident: 10.1016/j.tips.2019.12.002_bb0100 article-title: Mutations of optineurin in amyotrophic lateral sclerosis publication-title: Nature doi: 10.1038/nature08971 – volume: 24 start-page: 1579 year: 2018 ident: 10.1016/j.tips.2019.12.002_bb0060 article-title: Modeling sporadic ALS in iPSC-derived motor neurons identifies a potential therapeutic agent publication-title: Nat. Med. doi: 10.1038/s41591-018-0140-5 – volume: 39 start-page: 4422 year: 2019 ident: 10.1016/j.tips.2019.12.002_bb0130 article-title: The lactate receptor HCAR1 modulates neuronal network activity through the activation of Gα and Gβγ subunits publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2092-18.2019 – volume: 28 start-page: 1533 year: 1985 ident: 10.1016/j.tips.2019.12.002_bb0135 article-title: 4-[2-(di-n-Propylamino)ethyl]-2(3H)-indolone: a prejunctional dopamine receptor agonist publication-title: J. Med. Chem. doi: 10.1021/jm00148a028 – volume: 55 start-page: 7789 year: 2018 ident: 10.1016/j.tips.2019.12.002_bb0205 article-title: Towards a TDP-43-based biomarker for ALS and FTLD publication-title: Mol. Neurobiol. doi: 10.1007/s12035-018-0947-6 – volume: 323 start-page: 1208 year: 2009 ident: 10.1016/j.tips.2019.12.002_bb0095 article-title: Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6 publication-title: Science doi: 10.1126/science.1165942 – volume: 6 start-page: 496 year: 2016 ident: 10.1016/j.tips.2019.12.002_bb0045 article-title: Establishment of in vitro FUS-associated familial amyotrophic lateral sclerosis model using human induced pluripotent stem cells publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2016.02.011 – volume: 321 start-page: 1218 year: 2008 ident: 10.1016/j.tips.2019.12.002_bb0050 article-title: Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons publication-title: Science doi: 10.1126/science.1158799 – volume: 11 start-page: 143 year: 2019 ident: 10.1016/j.tips.2019.12.002_bb0015 article-title: Ropinirole hydrochloride remedy for amyotrophic lateral sclerosis – protocol for a randomized, double-blind, placebo-controlled, single-center, and open-label continuation Phase I/IIa clinical trial (ROPALS trial) publication-title: Regen. Ther. doi: 10.1016/j.reth.2019.07.002 – volume: 12 start-page: 1059 year: 2013 ident: 10.1016/j.tips.2019.12.002_bb0115 article-title: Dexpramipexole versus placebo for patients with amyotrophic lateral sclerosis (EMPOWER): a randomised, double-blind, Phase 3 trial publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(13)70221-7 – year: 2014 ident: 10.1016/j.tips.2019.12.002_bb0195 – volume: 9 start-page: 1675 year: 2017 ident: 10.1016/j.tips.2019.12.002_bb0225 article-title: Escape from pluripotency via inhibition of TGF-β/BMP and activation of Wnt signaling accelerates differentiation and aging in hPSC progeny cells publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2017.09.024 – volume: 314 start-page: 130 year: 2006 ident: 10.1016/j.tips.2019.12.002_bb0085 article-title: Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis publication-title: Science doi: 10.1126/science.1134108 – volume: 37 start-page: 571 year: 2012 ident: 10.1016/j.tips.2019.12.002_bb0170 article-title: Pharmacokinetics and effect of food after oral administration of prolonged-release tablets of ropinirole hydrochloride in Japanese patients with Parkinson’s disease publication-title: J. Clin. Pharm. Ther. doi: 10.1111/j.1365-2710.2012.01336.x – volume: 19 start-page: 542 year: 2016 ident: 10.1016/j.tips.2019.12.002_bb0055 article-title: Modeling ALS with motor neurons derived from human induced pluripotent stem cells publication-title: Nat. Neurosci. doi: 10.1038/nn.4273 – volume: 362 start-page: 59 year: 1993 ident: 10.1016/j.tips.2019.12.002_bb0070 article-title: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis publication-title: Nature doi: 10.1038/362059a0 – volume: 1777 start-page: 1028 year: 2008 ident: 10.1016/j.tips.2019.12.002_bb0165 article-title: Targeting lipophilic cations to mitochondria publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2008.03.029 – volume: 104 start-page: 1136 year: 2018 ident: 10.1016/j.tips.2019.12.002_bb0190 article-title: Acute effects of riluzole and retigabine on axonal excitability in patients with amyotrophic lateral sclerosis: a randomized, double-blind, placebo-controlled, crossover trial publication-title: Clin. Pharmacol. Ther. doi: 10.1002/cpt.1096 – volume: 7 start-page: 1 year: 2014 ident: 10.1016/j.tips.2019.12.002_bb0035 article-title: Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.03.019 – volume: 207 start-page: 16 year: 1978 ident: 10.1016/j.tips.2019.12.002_bb0150 article-title: N,N-di-n-Propyl dopamine; a qualitatively different dopamine vascular agonist publication-title: J. Pharmacol. Exp. Ther. – year: 2012 ident: 10.1016/j.tips.2019.12.002_bb0180 – volume: 20 start-page: 649 year: 1980 ident: 10.1016/j.tips.2019.12.002_bb0220 article-title: Relatives of the impaired elderly: correlates of feelings of burden publication-title: Gerontologist doi: 10.1093/geront/20.6.649 – volume: 53 start-page: 194.e1 year: 2017 ident: 10.1016/j.tips.2019.12.002_bb0215 article-title: Comprehensive targeted next-generation sequencing in Japanese familial amyotrophic lateral sclerosis publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2017.01.004 – volume: 16 start-page: 59 year: 2016 ident: 10.1016/j.tips.2019.12.002_bb0065 article-title: ALS: recent developments from genetics studies publication-title: Curr. Neurol. Neurosci. Rep. doi: 10.1007/s11910-016-0658-1 – volume: 323 start-page: 1205 year: 2009 ident: 10.1016/j.tips.2019.12.002_bb0090 article-title: Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis publication-title: Science doi: 10.1126/science.1166066 – volume: 10 start-page: 2 year: 2010 ident: 10.1016/j.tips.2019.12.002_bb0155 article-title: Mitochondria-targeted antioxidant effects of S– and R+ pramipexole publication-title: BMC Pharmacol. doi: 10.1186/1471-2210-10-2 – volume: 7 start-page: 22 year: 2014 ident: 10.1016/j.tips.2019.12.002_bb0030 article-title: iPS cell technologies: significance and applications to CNS regeneration and disease publication-title: Mol. Brain doi: 10.1186/1756-6606-7-22 – volume: 15 start-page: 272 year: 2019 ident: 10.1016/j.tips.2019.12.002_bb0110 article-title: Bridging biophysics and neurology: aberrant phase transitions in neurodegenerative disease publication-title: Nat. Rev. Neurol. doi: 10.1038/s41582-019-0157-5 |
SSID | ssj0003321 |
Score | 2.5432067 |
SecondaryResourceType | review_article |
Snippet | Induced pluripotent stem cells (iPSCs) are increasingly used in the study of disease mechanisms and the development of effective disease-modifying therapies... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 99 |
SubjectTerms | amyotrophic lateral sclerosis disease modeling drug repositioning induced pluripotent stem cells ropinirole |
Title | Ropinirole, a New ALS Drug Candidate Developed Using iPSCs |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0165614719302743 https://dx.doi.org/10.1016/j.tips.2019.12.002 https://www.ncbi.nlm.nih.gov/pubmed/31926602 https://www.proquest.com/docview/2337070551 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swELYQvOwFDRisY0NGmnihWRP_SspbVUBlG6iiIPFm2Yk9BaFS0fahL_vbd5c4rZCASbxGd7J1Pp_vnO8-E_Jd2ExwAxvQFYpHoutlZGNbRJ4V3sc-t3HFeHN5pQa34uedvFsj_aYXBmGVIfbXMb2K1uFLJ1izMynLzggbceBwSSEFwdoKGT-FSNHLf_xdwTw4Z_WbhEpGKB0aZ2qM16ycIGV30q2uBMPVyguH02vJZ3UInX8kmyF7pL16gltkzY23ydGwpp9etOnNqptq2qZHdLgipl7skJNr7I4qEVDYpoZCfKO93yN6-jT_Q_vY3oLVPw0wIlfQCk5Ay-GoP_1Ebs_PbvqDKLydEOUySWeRR158aYXLmfVM2QxsVRjHWQ75SJz6lOM6sEJ5ZQpvoEgGkdSo2OUpVzbhu2R9_Dh2nwm1MvMqM9xl3UR4F1uPF0deCelk1xnWIkljNJ0HYnF83-JBNwiye42G1mhonTANhm6R46XOpKbVeFOaN2uhm4ZRCHEaov6bWnKp9cyl_qt32Cy3hr2GP1DM2D3OQYij7WJIMltkr_aD5ewhlEGuE7Mv7xx1n3xgWMpXgPCvZH32NHffIN-Z2YPKoQ_IRu_i1-DqH_Su_Xs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcoBLVZ5Ny8NI0AtZsmuvvRskDlVKldK0ikgq9WbsXRstqtKoSYRy4U_xB5nZRyIkKBJSryvPrvXZnhnPfjMD8Dq2aSwMHkCXKxHEXS8DG9o88Dz3PvSZDcuKN6dnqn8ef7qQFxvws8mFIVplrfsrnV5q6_pJp0azMy2KzogScdC4JOiC0N2q6WB94pbf8d42-3B8iIv8hvOjj-NeP6hbCwSZjJJ54KlsvLSxy7j1XNkUX5UbJ3iG5jpMfCJomjxXXpncG7xD4pDEqNBliVA2EvjeO3A3RnVBbRPe_VjzSoTgVRNEJQOaXp2pU5HK5sWUaoRH3TIGWcdy_mAN_-btllbvaBu2aneVHVSIPIANN3kI-8Oq3vWyzcbr9K1Zm-2z4boS9vIRvP9M6VgFMRjbzDBUqOxgMGKH14uvrEf5NBRuYDVvyeWs5C-wYjjqzR7D-a0g-gQ2J1cTtwPMytSr1AiXdqPYu9B6ilR5FUsnu87wFkQNaDqrK5lTQ41L3VDWvmkCWhPQOuIagW7B25XMtKrjceNo0ayFbjJUUadqNDM3SsmV1G97-J9yr5rl1ni46Y-NmbirBQ4ShF2IXm0Lnlb7YDV71J3oXIV89z-_-hLu9cenAz04PjvZg_uc4gglG_0ZbM6vF-45Oltz-6Lc3Ay-3PZp-gUUyjnW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ropinirole%2C+a+New+ALS+Drug+Candidate+Developed+Using+iPSCs&rft.jtitle=Trends+in+pharmacological+sciences+%28Regular+ed.%29&rft.au=Okano%2C+Hideyuki&rft.au=Yasuda%2C+Daisuke&rft.au=Fujimori%2C+Koki&rft.au=Morimoto%2C+Satoru&rft.date=2020-02-01&rft.pub=Elsevier+Ltd&rft.issn=0165-6147&rft.volume=41&rft.issue=2&rft.spage=99&rft.epage=109&rft_id=info:doi/10.1016%2Fj.tips.2019.12.002&rft.externalDocID=S0165614719302743 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-6147&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-6147&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-6147&client=summon |