Ropinirole, a New ALS Drug Candidate Developed Using iPSCs

Induced pluripotent stem cells (iPSCs) are increasingly used in the study of disease mechanisms and the development of effective disease-modifying therapies for neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Recently, three candidate anti-ALS drugs – ropinirole (ROPI), re...

Full description

Saved in:
Bibliographic Details
Published inTrends in pharmacological sciences (Regular ed.) Vol. 41; no. 2; pp. 99 - 109
Main Authors Okano, Hideyuki, Yasuda, Daisuke, Fujimori, Koki, Morimoto, Satoru, Takahashi, Shinichi
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Induced pluripotent stem cells (iPSCs) are increasingly used in the study of disease mechanisms and the development of effective disease-modifying therapies for neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Recently, three candidate anti-ALS drugs – ropinirole (ROPI), retigabine, and bosutinib – have been identified in iPSC-based drug screens and are now being evaluated in clinical trials for safety and effectiveness. We review the preclinical data, clinical research design, and rationale for ROPI as an anti-ALS drug candidate compared with those of the other two drugs. We also discuss the use of iPSCs for understanding and monitoring treatment response as well as for new insights into the development of new drugs and therapeutic interventions for major neurodegenerative diseases. iPSC-based drug discovery is a promising technology for developing novel therapeutics for neurodegenerative diseases lacking useful disease models, such as amyotrophic lateral sclerosis (ALS).Ropinirole, retigabine, and bosutinib were identified as candidate therapeutic agents for ALS by the combination of iPSC-based drug discovery and drug repositioning.The potential anti-ALS mechanism of ropinirole is independent of antioxidant activity, rescue of mitochondria, reduction of stress granules, and abnormal proteins such as phosphorylated TDP-43 and FUS, and dopamine D2 receptor (D2R) agonism.Retigabine inhibits the hyperexcitability of motor neurons in ALS and bosutinib prompts autophagy and reduces abnormal proteins such as SOD-1 and phosphorylated TDP-43 via the Src/c-Abl pathway in motor neurons in ALS.Stratification of ALS, personalized medicine strategies, and the identification of common mechanisms with other neurodegenerative diseases are key aspects in the development of ALS therapies.
AbstractList Induced pluripotent stem cells (iPSCs) are increasingly used in the study of disease mechanisms and the development of effective disease-modifying therapies for neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Recently, three candidate anti-ALS drugs – ropinirole (ROPI), retigabine, and bosutinib – have been identified in iPSC-based drug screens and are now being evaluated in clinical trials for safety and effectiveness. We review the preclinical data, clinical research design, and rationale for ROPI as an anti-ALS drug candidate compared with those of the other two drugs. We also discuss the use of iPSCs for understanding and monitoring treatment response as well as for new insights into the development of new drugs and therapeutic interventions for major neurodegenerative diseases. iPSC-based drug discovery is a promising technology for developing novel therapeutics for neurodegenerative diseases lacking useful disease models, such as amyotrophic lateral sclerosis (ALS).Ropinirole, retigabine, and bosutinib were identified as candidate therapeutic agents for ALS by the combination of iPSC-based drug discovery and drug repositioning.The potential anti-ALS mechanism of ropinirole is independent of antioxidant activity, rescue of mitochondria, reduction of stress granules, and abnormal proteins such as phosphorylated TDP-43 and FUS, and dopamine D2 receptor (D2R) agonism.Retigabine inhibits the hyperexcitability of motor neurons in ALS and bosutinib prompts autophagy and reduces abnormal proteins such as SOD-1 and phosphorylated TDP-43 via the Src/c-Abl pathway in motor neurons in ALS.Stratification of ALS, personalized medicine strategies, and the identification of common mechanisms with other neurodegenerative diseases are key aspects in the development of ALS therapies.
Induced pluripotent stem cells (iPSCs) are increasingly used in the study of disease mechanisms and the development of effective disease-modifying therapies for neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Recently, three candidate anti-ALS drugs - ropinirole (ROPI), retigabine, and bosutinib - have been identified in iPSC-based drug screens and are now being evaluated in clinical trials for safety and effectiveness. We review the preclinical data, clinical research design, and rationale for ROPI as an anti-ALS drug candidate compared with those of the other two drugs. We also discuss the use of iPSCs for understanding and monitoring treatment response as well as for new insights into the development of new drugs and therapeutic interventions for major neurodegenerative diseases.Induced pluripotent stem cells (iPSCs) are increasingly used in the study of disease mechanisms and the development of effective disease-modifying therapies for neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Recently, three candidate anti-ALS drugs - ropinirole (ROPI), retigabine, and bosutinib - have been identified in iPSC-based drug screens and are now being evaluated in clinical trials for safety and effectiveness. We review the preclinical data, clinical research design, and rationale for ROPI as an anti-ALS drug candidate compared with those of the other two drugs. We also discuss the use of iPSCs for understanding and monitoring treatment response as well as for new insights into the development of new drugs and therapeutic interventions for major neurodegenerative diseases.
Induced pluripotent stem cells (iPSCs) are increasingly used in the study of disease mechanisms and the development of effective disease-modifying therapies for neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Recently, three candidate anti-ALS drugs - ropinirole (ROPI), retigabine, and bosutinib - have been identified in iPSC-based drug screens and are now being evaluated in clinical trials for safety and effectiveness. We review the preclinical data, clinical research design, and rationale for ROPI as an anti-ALS drug candidate compared with those of the other two drugs. We also discuss the use of iPSCs for understanding and monitoring treatment response as well as for new insights into the development of new drugs and therapeutic interventions for major neurodegenerative diseases.
Author Fujimori, Koki
Morimoto, Satoru
Yasuda, Daisuke
Takahashi, Shinichi
Okano, Hideyuki
Author_xml – sequence: 1
  givenname: Hideyuki
  surname: Okano
  fullname: Okano, Hideyuki
  email: hidokano@a2.keio.jp
  organization: Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
– sequence: 2
  givenname: Daisuke
  surname: Yasuda
  fullname: Yasuda, Daisuke
  organization: Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, Japan
– sequence: 3
  givenname: Koki
  surname: Fujimori
  fullname: Fujimori, Koki
  organization: Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
– sequence: 4
  givenname: Satoru
  surname: Morimoto
  fullname: Morimoto, Satoru
  organization: Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
– sequence: 5
  givenname: Shinichi
  surname: Takahashi
  fullname: Takahashi, Shinichi
  organization: Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31926602$$D View this record in MEDLINE/PubMed
BookMark eNqFkTtPwzAURi0EglL4AwwoIwMJfjR2W7FU4SlVgHjMlmPfIJc0DnZa1H9PQsvCUCYv53zSPT5Eu5WrAKETghOCCb-YJY2tQ0IxGSWEJhjTHdQjQ8FiJli6i3otlMacDMQBOgxhhjFmjJJ9dMDIiHKOaQ-Nn11tK-tdCeeRih7gK5pMX6Irv3iPMlUZa1QD0RUsoXQ1mOgt2Oo9sk8vWThCe4UqAxxv3j56u7l-ze7i6ePtfTaZxjolookLMRDDNB-ApnlBeT7kKTcKGNUjJrAoBCt0jqnhBVemUAM-ahGhOAYtGM8J66Oz9W7t3ecCQiPnNmgoS1WBWwRJWbeD07RDTzfoIp-DkbW3c-VX8vfeFhiuAe1dCB4KqW2jGuuqxitbSoJll1bOZJdWdmkloRL_qPSP-ru-VbpcS9AGWlrwMmgLlQZjPehGGme36-M_ui7b39Kq_IDVf_I3syOjrQ
CitedBy_id crossref_primary_10_3389_fddsv_2021_773424
crossref_primary_10_1016_j_neulet_2021_135911
crossref_primary_10_3390_jpm12101601
crossref_primary_10_3390_molecules26082398
crossref_primary_10_1016_j_ejmech_2024_117080
crossref_primary_10_1007_s11418_023_01751_5
crossref_primary_10_1039_D0MD00328J
crossref_primary_10_3389_fncel_2024_1364164
crossref_primary_10_3390_metabo12020101
crossref_primary_10_1016_j_stem_2021_12_008
crossref_primary_10_1002_adbi_202000223
crossref_primary_10_1016_j_mcn_2022_103745
crossref_primary_10_3389_fnmol_2021_767041
crossref_primary_10_3390_ijms252413448
crossref_primary_10_1002_adhm_202100581
crossref_primary_10_1186_s13023_020_01413_9
crossref_primary_10_1007_s00415_021_10862_6
crossref_primary_10_21518_2079_701X_2022_16_2_86_93
crossref_primary_10_1002_glia_24157
crossref_primary_10_3390_ijms25189966
crossref_primary_10_1186_s13041_020_00662_w
crossref_primary_10_1038_s41598_023_31720_7
crossref_primary_10_1038_s41598_024_77710_1
crossref_primary_10_1097_MD_0000000000037401
crossref_primary_10_1093_brain_awac306
crossref_primary_10_1016_j_neuroscience_2024_11_028
crossref_primary_10_3389_fcell_2024_1357204
crossref_primary_10_3390_cells10113246
crossref_primary_10_3390_antiox11010170
crossref_primary_10_3390_ijms22126568
crossref_primary_10_3390_ijms23052400
crossref_primary_10_3390_ijms22116068
crossref_primary_10_3389_fnagi_2021_768948
crossref_primary_10_1016_j_psychres_2024_116033
crossref_primary_10_2903_sp_efsa_2022_EN_7341
crossref_primary_10_3390_ijms231911333
crossref_primary_10_1038_s41582_021_00465_0
crossref_primary_10_1186_s41232_024_00346_1
crossref_primary_10_3390_ijms22094596
crossref_primary_10_3389_fphar_2020_01148
crossref_primary_10_1016_j_stemcr_2024_11_007
crossref_primary_10_3389_fnmol_2022_953365
crossref_primary_10_4103_1673_5374_382985
crossref_primary_10_3389_fneur_2022_884439
crossref_primary_10_1038_s41598_020_79189_y
crossref_primary_10_1111_jnc_16005
crossref_primary_10_1002_ange_202306533
crossref_primary_10_1007_s11419_021_00593_8
crossref_primary_10_3390_antiox9060460
crossref_primary_10_1007_s12015_024_10713_7
crossref_primary_10_2174_1574888X18666230608105703
crossref_primary_10_3390_ph17101286
crossref_primary_10_1002_acn3_51697
crossref_primary_10_1186_s40035_021_00250_5
crossref_primary_10_1016_j_stem_2023_04_017
crossref_primary_10_3390_cells12060971
crossref_primary_10_3390_molecules25112691
crossref_primary_10_4103_1673_5374_308077
crossref_primary_10_1007_s00401_024_02734_w
crossref_primary_10_1093_brain_awac169
crossref_primary_10_3389_fcell_2023_1236553
crossref_primary_10_1016_j_stem_2022_01_007
crossref_primary_10_3389_fphar_2022_805379
crossref_primary_10_1002_anie_202306533
crossref_primary_10_1016_j_arr_2023_102085
crossref_primary_10_1080_17460441_2020_1767579
Cites_doi 10.1021/jm00390a009
10.1039/c2md20287e
10.1016/j.cell.2017.10.011
10.1038/ng1001-166
10.1038/nature20413
10.1016/j.neuron.2011.09.011
10.1080/004982599238696
10.1016/j.expneurol.2017.10.019
10.1126/scitranslmed.aaf3962
10.1021/jm00361a001
10.3389/fneur.2018.01167
10.1056/NEJM199403033300901
10.1080/15548627.2015.1100930
10.1056/NEJMra1603471
10.3390/cells7110219
10.1016/j.bbrc.2006.10.093
10.1038/nature08971
10.1038/s41591-018-0140-5
10.1523/JNEUROSCI.2092-18.2019
10.1021/jm00148a028
10.1007/s12035-018-0947-6
10.1126/science.1165942
10.1016/j.stemcr.2016.02.011
10.1126/science.1158799
10.1016/j.reth.2019.07.002
10.1016/S1474-4422(13)70221-7
10.1016/j.stemcr.2017.09.024
10.1126/science.1134108
10.1111/j.1365-2710.2012.01336.x
10.1038/nn.4273
10.1038/362059a0
10.1016/j.bbabio.2008.03.029
10.1002/cpt.1096
10.1016/j.celrep.2014.03.019
10.1093/geront/20.6.649
10.1016/j.neurobiolaging.2017.01.004
10.1007/s11910-016-0658-1
10.1126/science.1166066
10.1186/1471-2210-10-2
10.1186/1756-6606-7-22
10.1038/s41582-019-0157-5
ContentType Journal Article
Copyright 2019 The Authors
Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2019 The Authors
– notice: Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.tips.2019.12.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-3735
EndPage 109
ExternalDocumentID 31926602
10_1016_j_tips_2019_12_002
S0165614719302743
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
123
1B1
1CY
1KJ
1P~
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
7-5
71M
8P~
8WZ
9JM
A6W
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAMRU
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABCQJ
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABOCM
ABXDB
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMQ
HMT
HVGLF
HZ~
IH2
IHE
J1W
KOM
M2V
M34
M41
MO0
MOBAO
MVM
N9A
O-L
O9-
O9.
OAUVE
OGGZJ
OK~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SPT
SSN
SSP
SSZ
T5K
TAE
WUQ
X7M
XJT
Z5R
ZGI
ZKB
ZXP
~02
~G-
6I.
AACTN
AADPK
AAFTH
AAIAV
AATCM
AAYOK
ABYKQ
AFCTW
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
EFLBG
RIG
XFK
ZA5
AAYXX
AGRNS
BNPGV
CITATION
SSH
NPM
7X8
ID FETCH-LOGICAL-c517t-f74785b4ec2bf26b8656dae32c93707f73fcb02d6f6adfa469b867a60ec736b13
IEDL.DBID .~1
ISSN 0165-6147
1873-3735
IngestDate Fri Jul 11 07:04:51 EDT 2025
Wed Feb 19 02:31:44 EST 2025
Thu Apr 24 23:03:03 EDT 2025
Tue Jul 01 02:55:46 EDT 2025
Fri Feb 23 02:49:01 EST 2024
Tue Aug 26 16:58:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords induced pluripotent stem cells
ropinirole
drug repositioning
amyotrophic lateral sclerosis
disease modeling
Language English
License This is an open access article under the CC BY license.
Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-f74785b4ec2bf26b8656dae32c93707f73fcb02d6f6adfa469b867a60ec736b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0165614719302743
PMID 31926602
PQID 2337070551
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2337070551
pubmed_primary_31926602
crossref_citationtrail_10_1016_j_tips_2019_12_002
crossref_primary_10_1016_j_tips_2019_12_002
elsevier_sciencedirect_doi_10_1016_j_tips_2019_12_002
elsevier_clinicalkey_doi_10_1016_j_tips_2019_12_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
2020-Feb
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Trends in pharmacological sciences (Regular ed.)
PublicationTitleAlternate Trends Pharmacol Sci
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kohli (bb0150) 1978; 207
Ramji (bb0175) 1999; 29
Murphy (bb0165) 2008; 1777
Fujimori (bb0225) 2017; 9
Dimos (bb0050) 2008; 321
Kwiatkowski (bb0090) 2009; 323
Vance (bb0095) 2009; 323
GlaxoSmithKline (bb0180) 2012
Imamura (bb0040) 2017; 9
GlaxoSmithKline (bb0185) 2011
Nedelsky, Taylor (bb0110) 2019; 15
DeJesus-Hernandez (bb0105) 2011; 72
Zarit (bb0220) 1980; 20
Neumann (bb0085) 2006; 314
Hadano (bb0075) 2001; 29
Brown (bb0005) 2017; 377
Weinstock (bb0145) 1987; 30
Cudkowicz (bb0115) 2013; 12
Fujimori (bb0060) 2018; 24
Yasuda (bb0160) 2013; 4
Rothstein (bb0025) 2017; 171
Ricci (bb0210) 2018; 7
Okano, Yamanaka (bb0030) 2014; 7
Nishiyama (bb0215) 2017; 53
Wainger (bb0035) 2014; 7
Ichiyanagi (bb0045) 2016; 6
Maruyama (bb0100) 2010; 465
Ferrari-Toninelli (bb0155) 2010; 10
Morimoto (bb0015) 2019; 11
Luis-Ravelo (bb0125) 2017; 299
Hattori (bb0170) 2012; 37
Feneberg (bb0205) 2018; 55
Bensimon (bb0020) 1994; 330
Kovalchuk (bb0190) 2018; 104
Rosen (bb0070) 1993; 362
Pfizer (bb0195) 2014
Arai (bb0080) 2006; 351
Huffman (bb0140) 1983; 26
de Castro (bb0130) 2019; 39
Therrien (bb0065) 2016; 16
Poesen (bb0200) 2019; 9
Sances (bb0055) 2016; 19
Wang (bb0120) 2015; 11
Gallagher (bb0135) 1985; 28
Taylor (bb0010) 2016; 539
Arai (10.1016/j.tips.2019.12.002_bb0080) 2006; 351
Okano (10.1016/j.tips.2019.12.002_bb0030) 2014; 7
Gallagher (10.1016/j.tips.2019.12.002_bb0135) 1985; 28
Wang (10.1016/j.tips.2019.12.002_bb0120) 2015; 11
Hattori (10.1016/j.tips.2019.12.002_bb0170) 2012; 37
Fujimori (10.1016/j.tips.2019.12.002_bb0225) 2017; 9
Kohli (10.1016/j.tips.2019.12.002_bb0150) 1978; 207
Kwiatkowski (10.1016/j.tips.2019.12.002_bb0090) 2009; 323
Taylor (10.1016/j.tips.2019.12.002_bb0010) 2016; 539
Murphy (10.1016/j.tips.2019.12.002_bb0165) 2008; 1777
Dimos (10.1016/j.tips.2019.12.002_bb0050) 2008; 321
Weinstock (10.1016/j.tips.2019.12.002_bb0145) 1987; 30
Pfizer (10.1016/j.tips.2019.12.002_bb0195) 2014
Ichiyanagi (10.1016/j.tips.2019.12.002_bb0045) 2016; 6
Yasuda (10.1016/j.tips.2019.12.002_bb0160) 2013; 4
Kovalchuk (10.1016/j.tips.2019.12.002_bb0190) 2018; 104
Ricci (10.1016/j.tips.2019.12.002_bb0210) 2018; 7
Rosen (10.1016/j.tips.2019.12.002_bb0070) 1993; 362
Morimoto (10.1016/j.tips.2019.12.002_bb0015) 2019; 11
Cudkowicz (10.1016/j.tips.2019.12.002_bb0115) 2013; 12
Poesen (10.1016/j.tips.2019.12.002_bb0200) 2019; 9
Sances (10.1016/j.tips.2019.12.002_bb0055) 2016; 19
Feneberg (10.1016/j.tips.2019.12.002_bb0205) 2018; 55
Maruyama (10.1016/j.tips.2019.12.002_bb0100) 2010; 465
Imamura (10.1016/j.tips.2019.12.002_bb0040) 2017; 9
Nishiyama (10.1016/j.tips.2019.12.002_bb0215) 2017; 53
Nedelsky (10.1016/j.tips.2019.12.002_bb0110) 2019; 15
Zarit (10.1016/j.tips.2019.12.002_bb0220) 1980; 20
Huffman (10.1016/j.tips.2019.12.002_bb0140) 1983; 26
de Castro (10.1016/j.tips.2019.12.002_bb0130) 2019; 39
Fujimori (10.1016/j.tips.2019.12.002_bb0060) 2018; 24
Neumann (10.1016/j.tips.2019.12.002_bb0085) 2006; 314
Luis-Ravelo (10.1016/j.tips.2019.12.002_bb0125) 2017; 299
GlaxoSmithKline (10.1016/j.tips.2019.12.002_bb0185) 2011
Brown (10.1016/j.tips.2019.12.002_bb0005) 2017; 377
Bensimon (10.1016/j.tips.2019.12.002_bb0020) 1994; 330
GlaxoSmithKline (10.1016/j.tips.2019.12.002_bb0180) 2012
Ramji (10.1016/j.tips.2019.12.002_bb0175) 1999; 29
Hadano (10.1016/j.tips.2019.12.002_bb0075) 2001; 29
DeJesus-Hernandez (10.1016/j.tips.2019.12.002_bb0105) 2011; 72
Ferrari-Toninelli (10.1016/j.tips.2019.12.002_bb0155) 2010; 10
Vance (10.1016/j.tips.2019.12.002_bb0095) 2009; 323
Rothstein (10.1016/j.tips.2019.12.002_bb0025) 2017; 171
Wainger (10.1016/j.tips.2019.12.002_bb0035) 2014; 7
Therrien (10.1016/j.tips.2019.12.002_bb0065) 2016; 16
References_xml – volume: 314
  start-page: 130
  year: 2006
  end-page: 133
  ident: bb0085
  article-title: Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis
  publication-title: Science
– volume: 19
  start-page: 542
  year: 2016
  end-page: 553
  ident: bb0055
  article-title: Modeling ALS with motor neurons derived from human induced pluripotent stem cells
  publication-title: Nat. Neurosci.
– volume: 1777
  start-page: 1028
  year: 2008
  end-page: 1031
  ident: bb0165
  article-title: Targeting lipophilic cations to mitochondria
  publication-title: Biochim. Biophys. Acta
– volume: 207
  start-page: 16
  year: 1978
  end-page: 22
  ident: bb0150
  article-title: ,
  publication-title: J. Pharmacol. Exp. Ther.
– volume: 321
  start-page: 1218
  year: 2008
  end-page: 1221
  ident: bb0050
  article-title: Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons
  publication-title: Science
– volume: 330
  start-page: 585
  year: 1994
  end-page: 591
  ident: bb0020
  article-title: A controlled trial of riluzole in amyotrophic lateral sclerosis
  publication-title: N. Engl. J. Med.
– year: 2012
  ident: bb0180
  article-title: ReQuip CR Tablet [package insert]; revised December 2017 (Edition 5)
– volume: 7
  start-page: 22
  year: 2014
  ident: bb0030
  article-title: iPS cell technologies: significance and applications to CNS regeneration and disease
  publication-title: Mol. Brain
– volume: 7
  start-page: 1
  year: 2014
  end-page: 11
  ident: bb0035
  article-title: Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons
  publication-title: Cell Rep.
– year: 2014
  ident: bb0195
  article-title: BOSULIF® Tablet [package insert]; revised May 2017 (Edition 5)
– volume: 16
  start-page: 59
  year: 2016
  end-page: 71
  ident: bb0065
  article-title: ALS: recent developments from genetics studies
  publication-title: Curr. Neurol. Neurosci. Rep.
– volume: 323
  start-page: 1208
  year: 2009
  end-page: 1211
  ident: bb0095
  article-title: Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6
  publication-title: Science
– volume: 6
  start-page: 496
  year: 2016
  end-page: 510
  ident: bb0045
  article-title: Establishment of
  publication-title: Stem Cell Rep.
– volume: 26
  start-page: 933
  year: 1983
  end-page: 935
  ident: bb0140
  article-title: 4-(Aminoalkyl)-7-hydroxy-2(3
  publication-title: J. Med. Chem.
– year: 2011
  ident: bb0185
  article-title: POTIGA – ezogabine tablet, film coated [package insert]; revised May 2016
– volume: 28
  start-page: 1533
  year: 1985
  end-page: 1536
  ident: bb0135
  article-title: 4-[2-(di-
  publication-title: J. Med. Chem.
– volume: 55
  start-page: 7789
  year: 2018
  end-page: 7801
  ident: bb0205
  article-title: Towards a TDP-43-based biomarker for ALS and FTLD
  publication-title: Mol. Neurobiol.
– volume: 362
  start-page: 59
  year: 1993
  end-page: 62
  ident: bb0070
  article-title: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis
  publication-title: Nature
– volume: 7
  start-page: 219
  year: 2018
  ident: bb0210
  article-title: MicroRNAs as biomarkers in amyotrophic lateral sclerosis
  publication-title: Cells
– volume: 9
  start-page: 1167
  year: 2019
  ident: bb0200
  article-title: Diagnostic and prognostic performance of neurofilaments in ALS
  publication-title: Front. Neurol.
– volume: 30
  start-page: 1166
  year: 1987
  end-page: 1176
  ident: bb0145
  article-title: Synthesis and evaluation of non-catechol D-1 and D-2 dopamine receptor agonists: benzimidazol-2-one, benzoxazol-2-one, and the highly potent benzothiazol-2-one 7-ethylamines
  publication-title: J. Med. Chem.
– volume: 10
  start-page: 2
  year: 2010
  ident: bb0155
  article-title: Mitochondria-targeted antioxidant effects of S
  publication-title: BMC Pharmacol.
– volume: 9
  year: 2017
  ident: bb0040
  article-title: The Src/c-Abl pathway is a potential therapeutic target in amyotrophic lateral sclerosis
  publication-title: Sci. Transl. Med.
– volume: 323
  start-page: 1205
  year: 2009
  end-page: 1208
  ident: bb0090
  article-title: Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis
  publication-title: Science
– volume: 171
  start-page: 725
  year: 2017
  ident: bb0025
  article-title: Edaravone: a new drug approved for ALS
  publication-title: Cell
– volume: 4
  start-page: 527
  year: 2013
  end-page: 529
  ident: bb0160
  article-title: Synthesis, radical scavenging activity and structure–activity relationship of uric acid analogs
  publication-title: Med. Chem. Commun.
– volume: 104
  start-page: 1136
  year: 2018
  end-page: 1145
  ident: bb0190
  article-title: Acute effects of riluzole and retigabine on axonal excitability in patients with amyotrophic lateral sclerosis: a randomized, double-blind, placebo-controlled, crossover trial
  publication-title: Clin. Pharmacol. Ther.
– volume: 20
  start-page: 649
  year: 1980
  end-page: 655
  ident: bb0220
  article-title: Relatives of the impaired elderly: correlates of feelings of burden
  publication-title: Gerontologist
– volume: 24
  start-page: 1579
  year: 2018
  end-page: 1589
  ident: bb0060
  article-title: Modeling sporadic ALS in iPSC-derived motor neurons identifies a potential therapeutic agent
  publication-title: Nat. Med.
– volume: 11
  start-page: 2057
  year: 2015
  end-page: 2073
  ident: bb0120
  article-title: A pivotal role of FOS-mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonist-induced autophagy activation
  publication-title: Autophagy
– volume: 377
  start-page: 162
  year: 2017
  end-page: 172
  ident: bb0005
  article-title: Amyotrophic lateral sclerosis
  publication-title: N. Engl. J. Med.
– volume: 12
  start-page: 1059
  year: 2013
  end-page: 1067
  ident: bb0115
  article-title: Dexpramipexole versus placebo for patients with amyotrophic lateral sclerosis (EMPOWER): a randomised, double-blind, Phase 3 trial
  publication-title: Lancet Neurol.
– volume: 465
  start-page: 223
  year: 2010
  end-page: 226
  ident: bb0100
  article-title: Mutations of optineurin in amyotrophic lateral sclerosis
  publication-title: Nature
– volume: 37
  start-page: 571
  year: 2012
  end-page: 577
  ident: bb0170
  article-title: Pharmacokinetics and effect of food after oral administration of prolonged-release tablets of ropinirole hydrochloride in Japanese patients with Parkinson’s disease
  publication-title: J. Clin. Pharm. Ther.
– volume: 9
  start-page: 1675
  year: 2017
  end-page: 1691
  ident: bb0225
  article-title: Escape from pluripotency via inhibition of TGF-β/BMP and activation of Wnt signaling accelerates differentiation and aging in hPSC progeny cells
  publication-title: Stem Cell Rep.
– volume: 351
  start-page: 602
  year: 2006
  end-page: 611
  ident: bb0080
  article-title: TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 11
  start-page: 143
  year: 2019
  end-page: 166
  ident: bb0015
  article-title: Ropinirole hydrochloride remedy for amyotrophic lateral sclerosis – protocol for a randomized, double-blind, placebo-controlled, single-center, and open-label continuation Phase I/IIa clinical trial (ROPALS trial)
  publication-title: Regen. Ther.
– volume: 72
  start-page: 245
  year: 2011
  end-page: 256
  ident: bb0105
  article-title: Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS
  publication-title: Neuron
– volume: 15
  start-page: 272
  year: 2019
  end-page: 286
  ident: bb0110
  article-title: Bridging biophysics and neurology: aberrant phase transitions in neurodegenerative disease
  publication-title: Nat. Rev. Neurol.
– volume: 539
  start-page: 197
  year: 2016
  end-page: 206
  ident: bb0010
  article-title: Decoding ALS: from genes to mechanism
  publication-title: Nature
– volume: 29
  start-page: 311
  year: 1999
  end-page: 325
  ident: bb0175
  article-title: Disposition of ropinirole in animals and man
  publication-title: Xenobiotica
– volume: 53
  start-page: 194.e1
  year: 2017
  end-page: 194.e8
  ident: bb0215
  article-title: Comprehensive targeted next-generation sequencing in Japanese familial amyotrophic lateral sclerosis
  publication-title: Neurobiol. Aging
– volume: 39
  start-page: 4422
  year: 2019
  end-page: 4433
  ident: bb0130
  article-title: The lactate receptor HCAR1 modulates neuronal network activity through the activation of Gα and Gβγ subunits
  publication-title: J. Neurosci.
– volume: 299
  start-page: 137
  year: 2017
  end-page: 147
  ident: bb0125
  article-title: Pramipexole reduces soluble mutant huntingtin and protects striatal neurons through dopamine D3 receptors in a genetic model of Huntington’s disease
  publication-title: Exp. Neurol.
– volume: 29
  start-page: 166
  year: 2001
  end-page: 173
  ident: bb0075
  article-title: A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2
  publication-title: Nat
– volume: 30
  start-page: 1166
  year: 1987
  ident: 10.1016/j.tips.2019.12.002_bb0145
  article-title: Synthesis and evaluation of non-catechol D-1 and D-2 dopamine receptor agonists: benzimidazol-2-one, benzoxazol-2-one, and the highly potent benzothiazol-2-one 7-ethylamines
  publication-title: J. Med. Chem.
  doi: 10.1021/jm00390a009
– volume: 4
  start-page: 527
  year: 2013
  ident: 10.1016/j.tips.2019.12.002_bb0160
  article-title: Synthesis, radical scavenging activity and structure–activity relationship of uric acid analogs
  publication-title: Med. Chem. Commun.
  doi: 10.1039/c2md20287e
– volume: 171
  start-page: 725
  year: 2017
  ident: 10.1016/j.tips.2019.12.002_bb0025
  article-title: Edaravone: a new drug approved for ALS
  publication-title: Cell
  doi: 10.1016/j.cell.2017.10.011
– volume: 29
  start-page: 166
  year: 2001
  ident: 10.1016/j.tips.2019.12.002_bb0075
  article-title: A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2
  publication-title: Nat. Genet.
  doi: 10.1038/ng1001-166
– volume: 539
  start-page: 197
  year: 2016
  ident: 10.1016/j.tips.2019.12.002_bb0010
  article-title: Decoding ALS: from genes to mechanism
  publication-title: Nature
  doi: 10.1038/nature20413
– volume: 72
  start-page: 245
  year: 2011
  ident: 10.1016/j.tips.2019.12.002_bb0105
  article-title: Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.09.011
– volume: 29
  start-page: 311
  year: 1999
  ident: 10.1016/j.tips.2019.12.002_bb0175
  article-title: Disposition of ropinirole in animals and man
  publication-title: Xenobiotica
  doi: 10.1080/004982599238696
– volume: 299
  start-page: 137
  year: 2017
  ident: 10.1016/j.tips.2019.12.002_bb0125
  article-title: Pramipexole reduces soluble mutant huntingtin and protects striatal neurons through dopamine D3 receptors in a genetic model of Huntington’s disease
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2017.10.019
– volume: 9
  year: 2017
  ident: 10.1016/j.tips.2019.12.002_bb0040
  article-title: The Src/c-Abl pathway is a potential therapeutic target in amyotrophic lateral sclerosis
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aaf3962
– volume: 26
  start-page: 933
  year: 1983
  ident: 10.1016/j.tips.2019.12.002_bb0140
  article-title: 4-(Aminoalkyl)-7-hydroxy-2(3H)-indolones, a novel class of potent presynaptic dopamine receptor agonists
  publication-title: J. Med. Chem.
  doi: 10.1021/jm00361a001
– volume: 9
  start-page: 1167
  year: 2019
  ident: 10.1016/j.tips.2019.12.002_bb0200
  article-title: Diagnostic and prognostic performance of neurofilaments in ALS
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2018.01167
– year: 2011
  ident: 10.1016/j.tips.2019.12.002_bb0185
– volume: 330
  start-page: 585
  year: 1994
  ident: 10.1016/j.tips.2019.12.002_bb0020
  article-title: A controlled trial of riluzole in amyotrophic lateral sclerosis
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM199403033300901
– volume: 11
  start-page: 2057
  year: 2015
  ident: 10.1016/j.tips.2019.12.002_bb0120
  article-title: A pivotal role of FOS-mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonist-induced autophagy activation
  publication-title: Autophagy
  doi: 10.1080/15548627.2015.1100930
– volume: 377
  start-page: 162
  year: 2017
  ident: 10.1016/j.tips.2019.12.002_bb0005
  article-title: Amyotrophic lateral sclerosis
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1603471
– volume: 7
  start-page: 219
  year: 2018
  ident: 10.1016/j.tips.2019.12.002_bb0210
  article-title: MicroRNAs as biomarkers in amyotrophic lateral sclerosis
  publication-title: Cells
  doi: 10.3390/cells7110219
– volume: 351
  start-page: 602
  year: 2006
  ident: 10.1016/j.tips.2019.12.002_bb0080
  article-title: TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2006.10.093
– volume: 465
  start-page: 223
  year: 2010
  ident: 10.1016/j.tips.2019.12.002_bb0100
  article-title: Mutations of optineurin in amyotrophic lateral sclerosis
  publication-title: Nature
  doi: 10.1038/nature08971
– volume: 24
  start-page: 1579
  year: 2018
  ident: 10.1016/j.tips.2019.12.002_bb0060
  article-title: Modeling sporadic ALS in iPSC-derived motor neurons identifies a potential therapeutic agent
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0140-5
– volume: 39
  start-page: 4422
  year: 2019
  ident: 10.1016/j.tips.2019.12.002_bb0130
  article-title: The lactate receptor HCAR1 modulates neuronal network activity through the activation of Gα and Gβγ subunits
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2092-18.2019
– volume: 28
  start-page: 1533
  year: 1985
  ident: 10.1016/j.tips.2019.12.002_bb0135
  article-title: 4-[2-(di-n-Propylamino)ethyl]-2(3H)-indolone: a prejunctional dopamine receptor agonist
  publication-title: J. Med. Chem.
  doi: 10.1021/jm00148a028
– volume: 55
  start-page: 7789
  year: 2018
  ident: 10.1016/j.tips.2019.12.002_bb0205
  article-title: Towards a TDP-43-based biomarker for ALS and FTLD
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-018-0947-6
– volume: 323
  start-page: 1208
  year: 2009
  ident: 10.1016/j.tips.2019.12.002_bb0095
  article-title: Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6
  publication-title: Science
  doi: 10.1126/science.1165942
– volume: 6
  start-page: 496
  year: 2016
  ident: 10.1016/j.tips.2019.12.002_bb0045
  article-title: Establishment of in vitro FUS-associated familial amyotrophic lateral sclerosis model using human induced pluripotent stem cells
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2016.02.011
– volume: 321
  start-page: 1218
  year: 2008
  ident: 10.1016/j.tips.2019.12.002_bb0050
  article-title: Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons
  publication-title: Science
  doi: 10.1126/science.1158799
– volume: 11
  start-page: 143
  year: 2019
  ident: 10.1016/j.tips.2019.12.002_bb0015
  article-title: Ropinirole hydrochloride remedy for amyotrophic lateral sclerosis – protocol for a randomized, double-blind, placebo-controlled, single-center, and open-label continuation Phase I/IIa clinical trial (ROPALS trial)
  publication-title: Regen. Ther.
  doi: 10.1016/j.reth.2019.07.002
– volume: 12
  start-page: 1059
  year: 2013
  ident: 10.1016/j.tips.2019.12.002_bb0115
  article-title: Dexpramipexole versus placebo for patients with amyotrophic lateral sclerosis (EMPOWER): a randomised, double-blind, Phase 3 trial
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(13)70221-7
– year: 2014
  ident: 10.1016/j.tips.2019.12.002_bb0195
– volume: 9
  start-page: 1675
  year: 2017
  ident: 10.1016/j.tips.2019.12.002_bb0225
  article-title: Escape from pluripotency via inhibition of TGF-β/BMP and activation of Wnt signaling accelerates differentiation and aging in hPSC progeny cells
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2017.09.024
– volume: 314
  start-page: 130
  year: 2006
  ident: 10.1016/j.tips.2019.12.002_bb0085
  article-title: Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis
  publication-title: Science
  doi: 10.1126/science.1134108
– volume: 37
  start-page: 571
  year: 2012
  ident: 10.1016/j.tips.2019.12.002_bb0170
  article-title: Pharmacokinetics and effect of food after oral administration of prolonged-release tablets of ropinirole hydrochloride in Japanese patients with Parkinson’s disease
  publication-title: J. Clin. Pharm. Ther.
  doi: 10.1111/j.1365-2710.2012.01336.x
– volume: 19
  start-page: 542
  year: 2016
  ident: 10.1016/j.tips.2019.12.002_bb0055
  article-title: Modeling ALS with motor neurons derived from human induced pluripotent stem cells
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4273
– volume: 362
  start-page: 59
  year: 1993
  ident: 10.1016/j.tips.2019.12.002_bb0070
  article-title: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis
  publication-title: Nature
  doi: 10.1038/362059a0
– volume: 1777
  start-page: 1028
  year: 2008
  ident: 10.1016/j.tips.2019.12.002_bb0165
  article-title: Targeting lipophilic cations to mitochondria
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2008.03.029
– volume: 104
  start-page: 1136
  year: 2018
  ident: 10.1016/j.tips.2019.12.002_bb0190
  article-title: Acute effects of riluzole and retigabine on axonal excitability in patients with amyotrophic lateral sclerosis: a randomized, double-blind, placebo-controlled, crossover trial
  publication-title: Clin. Pharmacol. Ther.
  doi: 10.1002/cpt.1096
– volume: 7
  start-page: 1
  year: 2014
  ident: 10.1016/j.tips.2019.12.002_bb0035
  article-title: Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.03.019
– volume: 207
  start-page: 16
  year: 1978
  ident: 10.1016/j.tips.2019.12.002_bb0150
  article-title: N,N-di-n-Propyl dopamine; a qualitatively different dopamine vascular agonist
  publication-title: J. Pharmacol. Exp. Ther.
– year: 2012
  ident: 10.1016/j.tips.2019.12.002_bb0180
– volume: 20
  start-page: 649
  year: 1980
  ident: 10.1016/j.tips.2019.12.002_bb0220
  article-title: Relatives of the impaired elderly: correlates of feelings of burden
  publication-title: Gerontologist
  doi: 10.1093/geront/20.6.649
– volume: 53
  start-page: 194.e1
  year: 2017
  ident: 10.1016/j.tips.2019.12.002_bb0215
  article-title: Comprehensive targeted next-generation sequencing in Japanese familial amyotrophic lateral sclerosis
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2017.01.004
– volume: 16
  start-page: 59
  year: 2016
  ident: 10.1016/j.tips.2019.12.002_bb0065
  article-title: ALS: recent developments from genetics studies
  publication-title: Curr. Neurol. Neurosci. Rep.
  doi: 10.1007/s11910-016-0658-1
– volume: 323
  start-page: 1205
  year: 2009
  ident: 10.1016/j.tips.2019.12.002_bb0090
  article-title: Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis
  publication-title: Science
  doi: 10.1126/science.1166066
– volume: 10
  start-page: 2
  year: 2010
  ident: 10.1016/j.tips.2019.12.002_bb0155
  article-title: Mitochondria-targeted antioxidant effects of S– and R+ pramipexole
  publication-title: BMC Pharmacol.
  doi: 10.1186/1471-2210-10-2
– volume: 7
  start-page: 22
  year: 2014
  ident: 10.1016/j.tips.2019.12.002_bb0030
  article-title: iPS cell technologies: significance and applications to CNS regeneration and disease
  publication-title: Mol. Brain
  doi: 10.1186/1756-6606-7-22
– volume: 15
  start-page: 272
  year: 2019
  ident: 10.1016/j.tips.2019.12.002_bb0110
  article-title: Bridging biophysics and neurology: aberrant phase transitions in neurodegenerative disease
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/s41582-019-0157-5
SSID ssj0003321
Score 2.5432067
SecondaryResourceType review_article
Snippet Induced pluripotent stem cells (iPSCs) are increasingly used in the study of disease mechanisms and the development of effective disease-modifying therapies...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 99
SubjectTerms amyotrophic lateral sclerosis
disease modeling
drug repositioning
induced pluripotent stem cells
ropinirole
Title Ropinirole, a New ALS Drug Candidate Developed Using iPSCs
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0165614719302743
https://dx.doi.org/10.1016/j.tips.2019.12.002
https://www.ncbi.nlm.nih.gov/pubmed/31926602
https://www.proquest.com/docview/2337070551
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swELYQvOwFDRisY0NGmnihWRP_SspbVUBlG6iiIPFm2Yk9BaFS0fahL_vbd5c4rZCASbxGd7J1Pp_vnO8-E_Jd2ExwAxvQFYpHoutlZGNbRJ4V3sc-t3HFeHN5pQa34uedvFsj_aYXBmGVIfbXMb2K1uFLJ1izMynLzggbceBwSSEFwdoKGT-FSNHLf_xdwTw4Z_WbhEpGKB0aZ2qM16ycIGV30q2uBMPVyguH02vJZ3UInX8kmyF7pL16gltkzY23ydGwpp9etOnNqptq2qZHdLgipl7skJNr7I4qEVDYpoZCfKO93yN6-jT_Q_vY3oLVPw0wIlfQCk5Ay-GoP_1Ebs_PbvqDKLydEOUySWeRR158aYXLmfVM2QxsVRjHWQ75SJz6lOM6sEJ5ZQpvoEgGkdSo2OUpVzbhu2R9_Dh2nwm1MvMqM9xl3UR4F1uPF0deCelk1xnWIkljNJ0HYnF83-JBNwiye42G1mhonTANhm6R46XOpKbVeFOaN2uhm4ZRCHEaov6bWnKp9cyl_qt32Cy3hr2GP1DM2D3OQYij7WJIMltkr_aD5ewhlEGuE7Mv7xx1n3xgWMpXgPCvZH32NHffIN-Z2YPKoQ_IRu_i1-DqH_Su_Xs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcoBLVZ5Ny8NI0AtZsmuvvRskDlVKldK0ikgq9WbsXRstqtKoSYRy4U_xB5nZRyIkKBJSryvPrvXZnhnPfjMD8Dq2aSwMHkCXKxHEXS8DG9o88Dz3PvSZDcuKN6dnqn8ef7qQFxvws8mFIVplrfsrnV5q6_pJp0azMy2KzogScdC4JOiC0N2q6WB94pbf8d42-3B8iIv8hvOjj-NeP6hbCwSZjJJ54KlsvLSxy7j1XNkUX5UbJ3iG5jpMfCJomjxXXpncG7xD4pDEqNBliVA2EvjeO3A3RnVBbRPe_VjzSoTgVRNEJQOaXp2pU5HK5sWUaoRH3TIGWcdy_mAN_-btllbvaBu2aneVHVSIPIANN3kI-8Oq3vWyzcbr9K1Zm-2z4boS9vIRvP9M6VgFMRjbzDBUqOxgMGKH14uvrEf5NBRuYDVvyeWs5C-wYjjqzR7D-a0g-gQ2J1cTtwPMytSr1AiXdqPYu9B6ilR5FUsnu87wFkQNaDqrK5lTQ41L3VDWvmkCWhPQOuIagW7B25XMtKrjceNo0ayFbjJUUadqNDM3SsmV1G97-J9yr5rl1ni46Y-NmbirBQ4ShF2IXm0Lnlb7YDV71J3oXIV89z-_-hLu9cenAz04PjvZg_uc4gglG_0ZbM6vF-45Oltz-6Lc3Ay-3PZp-gUUyjnW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ropinirole%2C+a+New+ALS+Drug+Candidate+Developed+Using+iPSCs&rft.jtitle=Trends+in+pharmacological+sciences+%28Regular+ed.%29&rft.au=Okano%2C+Hideyuki&rft.au=Yasuda%2C+Daisuke&rft.au=Fujimori%2C+Koki&rft.au=Morimoto%2C+Satoru&rft.date=2020-02-01&rft.pub=Elsevier+Ltd&rft.issn=0165-6147&rft.volume=41&rft.issue=2&rft.spage=99&rft.epage=109&rft_id=info:doi/10.1016%2Fj.tips.2019.12.002&rft.externalDocID=S0165614719302743
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-6147&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-6147&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-6147&client=summon