Heating strategies for Li-ion batteries operated from subzero temperatures

Electric vehicles (EVs) suffer from significant driving range loss in subzero temperature environments due to reduced energy and power capability of Li-ion batteries as well as severe battery degradation due to Li plating. Preheating batteries to room temperature is an essential function of an effec...

Full description

Saved in:
Bibliographic Details
Published inElectrochimica acta Vol. 107; pp. 664 - 674
Main Authors Ji, Yan, Wang, Chao Yang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 30.09.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electric vehicles (EVs) suffer from significant driving range loss in subzero temperature environments due to reduced energy and power capability of Li-ion batteries as well as severe battery degradation due to Li plating. Preheating batteries to room temperature is an essential function of an effective battery management system. The present study employs an electrochemical–thermal coupled model to simulate, for the first time, the process of heating Li-ion batteries from subzero temperatures. Three heating strategies are proposed and compared using battery power, namely self-internal heating, convective heating and mutual pulse heating, as well as one strategy (AC heating) using external power. Their advantages and disadvantages are discussed in terms of capacity loss, heating time, system durability, and cost. For heating using battery power, model predictions reveal that Li-ion batteries can be heated from −20°C to 20°C at the expense of only 5% battery capacity loss using mutual pulse heating with high-efficiency dc–dc converter, implying considerable potential for improved driving range of EVs in cold weather conditions. Moreover, the heating time can be reduced to within 2min by increasing cell output power using convective heating and mutual pulse heating. For external power heating, high frequency AC signal with large amplitude is a preferred choice, offering both high heating power and improved battery cycle life.
AbstractList Electric vehicles (EVs) suffer from significant driving range loss in subzero temperature environments due to reduced energy and power capability of Li-ion batteries as well as severe battery degradation due to Li plating. Preheating batteries to room temperature is an essential function of an effective battery management system. The present study employs an electrochemical-thermal coupled model to simulate, for the first time, the process of heating Li-ion batteries from subzero temperatures. Three heating strategies are proposed and compared using battery power, namely self-internal heating, convective heating and mutual pulse heating, as well as one strategy (AC heating) using external power. Their advantages and disadvantages are discussed in terms of capacity loss, heating time, system durability, and cost. For heating using battery power, model predictions reveal that Li-ion batteries can be heated from -20 [degrees]C to 20 [degrees]C at the expense of only 5% battery capacity loss using mutual pulse heating with high-efficiency dc-dc converter, implying considerable potential for improved driving range of EVs in cold weather conditions. Moreover, the heating time can be reduced to within 2 min by increasing cell output power using convective heating and mutual pulse heating. For external power heating, high frequency AC signal with large amplitude is a preferred choice, offering both high heating power and improved battery cycle life.
Electric vehicles (EVs) suffer from significant driving range loss in subzero temperature environments due to reduced energy and power capability of Li-ion batteries as well as severe battery degradation due to Li plating. Preheating batteries to room temperature is an essential function of an effective battery management system. The present study employs an electrochemicalathermal coupled model to simulate, for the first time, the process of heating Li-ion batteries from subzero temperatures. Three heating strategies are proposed and compared using battery power, namely self-internal heating, convective heating and mutual pulse heating, as well as one strategy (AC heating) using external power. Their advantages and disadvantages are discussed in terms of capacity loss, heating time, system durability, and cost. For heating using battery power, model predictions reveal that Li-ion batteries can be heated from a20 degree C to 20 degree C at the expense of only 5% battery capacity loss using mutual pulse heating with high-efficiency dcadc converter, implying considerable potential for improved driving range of EVs in cold weather conditions. Moreover, the heating time can be reduced to within 2 min by increasing cell output power using convective heating and mutual pulse heating. For external power heating, high frequency AC signal with large amplitude is a preferred choice, offering both high heating power and improved battery cycle life.
Electric vehicles (EVs) suffer from significant driving range loss in subzero temperature environments due to reduced energy and power capability of Li-ion batteries as well as severe battery degradation due to Li plating. Preheating batteries to room temperature is an essential function of an effective battery management system. The present study employs an electrochemical–thermal coupled model to simulate, for the first time, the process of heating Li-ion batteries from subzero temperatures. Three heating strategies are proposed and compared using battery power, namely self-internal heating, convective heating and mutual pulse heating, as well as one strategy (AC heating) using external power. Their advantages and disadvantages are discussed in terms of capacity loss, heating time, system durability, and cost. For heating using battery power, model predictions reveal that Li-ion batteries can be heated from −20°C to 20°C at the expense of only 5% battery capacity loss using mutual pulse heating with high-efficiency dc–dc converter, implying considerable potential for improved driving range of EVs in cold weather conditions. Moreover, the heating time can be reduced to within 2min by increasing cell output power using convective heating and mutual pulse heating. For external power heating, high frequency AC signal with large amplitude is a preferred choice, offering both high heating power and improved battery cycle life.
Author Ji, Yan
Wang, Chao Yang
Author_xml – sequence: 1
  givenname: Yan
  surname: Ji
  fullname: Ji, Yan
  organization: Electrochemical Engine Center (ECEC), Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, USA
– sequence: 2
  givenname: Chao Yang
  surname: Wang
  fullname: Wang, Chao Yang
  email: cxw31@psu.edu
  organization: Electrochemical Engine Center (ECEC), Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, USA
BookMark eNqNkU1LAzEQhoMoWD9-g3v0sutMk2x2Dx5E_KTgRc8hzc6WlO2mJqmgv97UigcvCgMDM887DO97xPZHPxJjZwgVAtYXy4oGssnkqqaAvAJeoVB7bIKN4iVvZLvPJpA3paib-pAdxbgEAFUrmLDHezLJjYsipmASLRzFovehmLnS-bGYm5QobId-TVugK_rgV0XczD8o-CLR6mu-CRRP2EFvhkin3_2YvdzePF_fl7Onu4frq1lpJapUEkmuJIGtwZI1JGwvAaVR-V1hW6RWSQkdmoZnvgMOqu8BxVTVtVK94sfsfHd3HfzrhmLSKxctDYMZyW-ixoy1NZ8i_I1KgUIiTNt_oMhF0wrEjF7uUBt8jIF6bV3KLvoxe-gGjaC3yeil_klGb5PRwHVOJuvVL_06uJUJ7_9QXu2UlP19cxR0tI5GS50Lmdedd3_e-AS8nq7t
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2022_119840
crossref_primary_10_1016_j_xinn_2023_100465
crossref_primary_10_1016_j_est_2022_106311
crossref_primary_10_1016_j_nanoen_2019_104175
crossref_primary_10_1016_j_applthermaleng_2024_123425
crossref_primary_10_1038_s41467_021_23603_0
crossref_primary_10_1016_j_ensm_2024_103173
crossref_primary_10_1016_j_etran_2022_100187
crossref_primary_10_3390_en10020243
crossref_primary_10_1016_j_energy_2019_03_007
crossref_primary_10_1016_j_jpowsour_2019_227435
crossref_primary_10_1016_j_etran_2023_100227
crossref_primary_10_1016_j_applthermaleng_2024_125285
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123449
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122184
crossref_primary_10_1109_TTE_2019_2920328
crossref_primary_10_1016_j_est_2022_104385
crossref_primary_10_1016_j_enconman_2017_08_016
crossref_primary_10_1016_j_applthermaleng_2022_118860
crossref_primary_10_1109_ACCESS_2021_3120406
crossref_primary_10_1016_j_rser_2025_115389
crossref_primary_10_1002_adfm_202415370
crossref_primary_10_1016_j_jallcom_2022_165142
crossref_primary_10_1039_C9TA02067E
crossref_primary_10_1016_j_applthermaleng_2020_114946
crossref_primary_10_1016_j_applthermaleng_2024_123890
crossref_primary_10_3390_en16207142
crossref_primary_10_1016_j_jechem_2020_03_056
crossref_primary_10_1016_j_est_2022_104709
crossref_primary_10_1016_j_jpowsour_2023_233177
crossref_primary_10_1016_j_energy_2022_124178
crossref_primary_10_1088_2631_8695_ad734d
crossref_primary_10_1109_TAES_2022_3151322
crossref_primary_10_1016_j_est_2023_109413
crossref_primary_10_1109_TVT_2021_3138254
crossref_primary_10_1007_s40430_024_04735_y
crossref_primary_10_3390_en13215711
crossref_primary_10_1016_j_applthermaleng_2021_116750
crossref_primary_10_3390_batteries8100179
crossref_primary_10_1016_j_energy_2020_119236
crossref_primary_10_1016_j_icheatmasstransfer_2023_106635
crossref_primary_10_1109_TIE_2018_2863187
crossref_primary_10_3390_en81010904
crossref_primary_10_3390_ma15228166
crossref_primary_10_1016_j_jpowsour_2022_232133
crossref_primary_10_1016_j_jpowsour_2023_232897
crossref_primary_10_1016_j_jpowsour_2022_232138
crossref_primary_10_1016_j_applthermaleng_2018_12_135
crossref_primary_10_1016_j_jpowsour_2025_236413
crossref_primary_10_1115_1_4032012
crossref_primary_10_1016_j_est_2021_103306
crossref_primary_10_1016_j_applthermaleng_2023_122035
crossref_primary_10_1016_j_tsep_2020_100805
crossref_primary_10_1109_TII_2019_2923446
crossref_primary_10_1115_1_4045326
crossref_primary_10_3390_batteries3010009
crossref_primary_10_1016_j_applthermaleng_2023_120303
crossref_primary_10_1016_j_ijft_2022_100171
crossref_primary_10_1016_j_est_2024_110968
crossref_primary_10_1016_j_enconman_2024_118289
crossref_primary_10_1016_j_est_2022_104240
crossref_primary_10_1016_j_est_2022_105572
crossref_primary_10_29047_01225383_746
crossref_primary_10_1016_j_apenergy_2020_115957
crossref_primary_10_1016_j_rser_2023_113861
crossref_primary_10_1016_j_ssi_2022_115989
crossref_primary_10_1016_j_applthermaleng_2022_119495
crossref_primary_10_1016_j_enconman_2018_12_051
crossref_primary_10_1016_j_est_2024_111133
crossref_primary_10_1016_j_joule_2018_01_017
crossref_primary_10_1016_j_jpowsour_2019_227228
crossref_primary_10_3390_en17153678
crossref_primary_10_1002_cjoc_202000512
crossref_primary_10_1021_acs_nanolett_0c04780
crossref_primary_10_1016_j_ensm_2021_06_008
crossref_primary_10_1016_j_est_2023_108585
crossref_primary_10_1016_j_enrev_2024_100118
crossref_primary_10_1016_j_jclepro_2022_134583
crossref_primary_10_1149_1945_7111_aceab4
crossref_primary_10_1016_j_electacta_2020_136652
crossref_primary_10_1016_j_icheatmasstransfer_2024_107581
crossref_primary_10_1016_j_jpowsour_2017_09_063
crossref_primary_10_1002_advs_202105119
crossref_primary_10_1016_j_jpowsour_2014_09_181
crossref_primary_10_1002_ente_201600083
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120494
crossref_primary_10_1016_j_apenergy_2016_05_151
crossref_primary_10_1016_j_ensm_2022_01_032
crossref_primary_10_1016_j_est_2024_112632
crossref_primary_10_1016_j_rser_2020_110685
crossref_primary_10_1021_acsenergylett_0c00109
crossref_primary_10_1016_j_applthermaleng_2018_03_072
crossref_primary_10_1016_j_est_2023_110050
crossref_primary_10_1016_j_applthermaleng_2024_124798
crossref_primary_10_1016_j_apenergy_2015_08_120
crossref_primary_10_1016_j_energy_2021_121652
crossref_primary_10_1007_s42797_019_00002_9
crossref_primary_10_1016_j_est_2023_107441
crossref_primary_10_1016_j_etran_2019_100005
crossref_primary_10_1002_er_7957
crossref_primary_10_1016_j_est_2022_106519
crossref_primary_10_1021_acs_energyfuels_4c06075
crossref_primary_10_1109_TTE_2021_3113945
crossref_primary_10_1016_j_est_2019_100878
crossref_primary_10_1002_ange_202209619
crossref_primary_10_1016_j_apenergy_2015_11_034
crossref_primary_10_1016_j_applthermaleng_2022_118548
crossref_primary_10_1016_j_ijoes_2024_100817
crossref_primary_10_1149_2_0051410jes
crossref_primary_10_1016_j_icheatmasstransfer_2024_108329
crossref_primary_10_1016_j_energy_2017_12_098
crossref_primary_10_1039_D1TA00998B
crossref_primary_10_1016_j_jpowsour_2018_08_093
crossref_primary_10_1088_1742_6596_2385_1_012073
crossref_primary_10_26599_EMD_2024_9370043
crossref_primary_10_1016_j_etran_2023_100307
crossref_primary_10_1109_ACCESS_2018_2837652
crossref_primary_10_1149_2_0961602jes
crossref_primary_10_1109_TPEL_2019_2954703
crossref_primary_10_1016_j_apenergy_2023_122232
crossref_primary_10_1016_j_compchemeng_2017_02_044
crossref_primary_10_1016_j_est_2024_114147
crossref_primary_10_1016_j_energy_2018_01_024
crossref_primary_10_3390_en15113930
crossref_primary_10_1016_j_est_2023_109852
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121853
crossref_primary_10_1109_TVT_2022_3229187
crossref_primary_10_1016_j_etran_2019_100011
crossref_primary_10_1149_2_061311jes
crossref_primary_10_1016_j_rser_2016_03_013
crossref_primary_10_1016_j_jpowsour_2015_09_001
crossref_primary_10_1115_1_4046983
crossref_primary_10_1016_j_est_2022_106293
crossref_primary_10_1016_j_jpowsour_2017_09_046
crossref_primary_10_1039_D1EE01789F
crossref_primary_10_3390_batteries8020017
crossref_primary_10_1016_j_apenergy_2014_07_024
crossref_primary_10_3390_batteries8020013
crossref_primary_10_1016_j_applthermaleng_2025_126119
crossref_primary_10_1016_j_rser_2022_112207
crossref_primary_10_3390_en11092439
crossref_primary_10_1016_j_jpowsour_2016_12_102
crossref_primary_10_3390_wevj10020018
crossref_primary_10_1002_er_3576
crossref_primary_10_1016_j_applthermaleng_2017_09_100
crossref_primary_10_1016_j_pecs_2019_100806
crossref_primary_10_3390_batteries8110219
crossref_primary_10_1016_j_ijheatmasstransfer_2017_12_159
crossref_primary_10_1038_s41560_021_00783_z
crossref_primary_10_1039_D1TA08538G
crossref_primary_10_1016_j_ijhydene_2022_01_008
crossref_primary_10_1016_j_tsep_2023_101908
crossref_primary_10_1016_j_matpr_2020_03_317
crossref_primary_10_1016_j_energy_2019_07_128
crossref_primary_10_1016_j_isci_2020_101921
crossref_primary_10_1115_1_4063611
crossref_primary_10_3390_en80910153
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124381
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121191
crossref_primary_10_1109_JSEN_2017_2691580
crossref_primary_10_20964_2020_09_50
crossref_primary_10_1016_j_est_2020_101816
crossref_primary_10_1016_j_xcrp_2021_100708
crossref_primary_10_1016_j_est_2019_101059
crossref_primary_10_1109_ACCESS_2021_3124786
crossref_primary_10_1016_j_applthermaleng_2022_118529
crossref_primary_10_1016_j_jpowsour_2017_10_029
crossref_primary_10_1016_j_applthermaleng_2025_126123
crossref_primary_10_3390_batteries8120287
crossref_primary_10_1016_j_apenergy_2022_118832
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122750
crossref_primary_10_3390_polym15051323
crossref_primary_10_1007_s10010_019_00316_x
crossref_primary_10_1109_TVT_2019_2906487
crossref_primary_10_1109_TEC_2016_2553700
crossref_primary_10_1016_j_cej_2021_130162
crossref_primary_10_1016_j_est_2023_110259
crossref_primary_10_1007_s10800_015_0887_z
crossref_primary_10_1016_j_asej_2022_101936
crossref_primary_10_1039_C9RA00490D
crossref_primary_10_1016_j_electacta_2016_10_037
crossref_primary_10_1016_j_jclepro_2022_134279
crossref_primary_10_1016_j_jpowsour_2014_07_090
crossref_primary_10_1021_acs_energyfuels_2c01984
crossref_primary_10_1016_j_est_2019_100833
crossref_primary_10_3390_su16188201
crossref_primary_10_1016_j_rser_2016_05_033
crossref_primary_10_3390_en10081121
crossref_primary_10_1109_JESTPE_2023_3289447
crossref_primary_10_1016_j_est_2021_103273
crossref_primary_10_1016_j_apenergy_2018_05_104
crossref_primary_10_1541_ieejias_145_37
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126440
crossref_primary_10_1109_JESTPE_2021_3127892
crossref_primary_10_1109_TIA_2023_3299904
crossref_primary_10_1002_aenm_202202944
crossref_primary_10_1016_j_est_2023_109255
crossref_primary_10_3390_en13082021
crossref_primary_10_3390_en16020750
crossref_primary_10_1016_j_rser_2020_110480
crossref_primary_10_2139_ssrn_4134864
crossref_primary_10_1016_j_jelechem_2020_113903
crossref_primary_10_1016_j_apenergy_2023_120659
crossref_primary_10_1109_TTE_2022_3208186
crossref_primary_10_3390_en14196141
crossref_primary_10_1109_TIE_2023_3288181
crossref_primary_10_1016_j_nanoen_2016_01_026
crossref_primary_10_1002_er_5049
crossref_primary_10_1007_s11431_020_1714_1
crossref_primary_10_1021_acsami_5c00342
crossref_primary_10_1016_j_ensm_2019_12_002
crossref_primary_10_3390_su14116544
crossref_primary_10_1002_anie_202209619
crossref_primary_10_1002_er_5715
crossref_primary_10_1016_j_enconman_2022_116571
crossref_primary_10_1038_s41560_018_0243_8
crossref_primary_10_1016_j_rser_2024_114868
crossref_primary_10_1016_j_energy_2023_129280
crossref_primary_10_3390_en17163873
crossref_primary_10_1016_j_egypro_2017_03_117
crossref_primary_10_1021_acsami_9b05468
crossref_primary_10_3390_batteries9070366
crossref_primary_10_3390_wevj12040239
crossref_primary_10_1002_est2_137
crossref_primary_10_1080_15435075_2022_2107396
crossref_primary_10_1016_j_applthermaleng_2023_120375
crossref_primary_10_1109_TPEL_2020_3015768
crossref_primary_10_1016_j_applthermaleng_2025_126155
crossref_primary_10_1016_j_est_2021_102977
crossref_primary_10_1002_tee_23360
crossref_primary_10_1109_TTE_2022_3223475
crossref_primary_10_1021_acsmaterialslett_1c00377
crossref_primary_10_1016_j_est_2019_100969
crossref_primary_10_1016_j_est_2022_105058
crossref_primary_10_22630_srees_4544
crossref_primary_10_1016_j_jpowsour_2023_233484
crossref_primary_10_1149_1945_7111_ab7fb9
crossref_primary_10_1016_j_jclepro_2020_124223
crossref_primary_10_1109_TII_2020_3020302
crossref_primary_10_1016_j_rser_2024_114732
crossref_primary_10_1016_j_matpr_2021_01_823
crossref_primary_10_1007_s42154_021_00166_w
crossref_primary_10_1016_j_tsep_2022_101244
crossref_primary_10_1109_TIE_2016_2523440
crossref_primary_10_19053_01217488_4234
crossref_primary_10_1016_j_ensm_2019_04_033
crossref_primary_10_1016_j_jclepro_2023_136024
crossref_primary_10_1109_TVT_2015_2473841
crossref_primary_10_26552_com_C_2016_1A_59_63
crossref_primary_10_1007_s43979_023_00052_w
crossref_primary_10_1007_s11431_017_9225_7
crossref_primary_10_1016_j_ifacol_2023_12_061
crossref_primary_10_1149_2_0871507jes
crossref_primary_10_1155_2023_5706355
crossref_primary_10_3390_en13071584
crossref_primary_10_1073_pnas_1807115115
crossref_primary_10_20964_2019_07_06
crossref_primary_10_2139_ssrn_4123758
crossref_primary_10_3390_en15061963
crossref_primary_10_1016_j_jechem_2022_05_010
crossref_primary_10_1016_j_est_2020_101746
crossref_primary_10_1109_TVT_2015_2486040
crossref_primary_10_1016_j_applthermaleng_2024_122770
crossref_primary_10_1016_j_etran_2021_100145
crossref_primary_10_1016_j_jpowsour_2018_08_020
crossref_primary_10_1038_nature16502
crossref_primary_10_1016_j_jpowsour_2016_08_028
crossref_primary_10_1002_est2_70000
crossref_primary_10_1016_j_mtener_2021_100652
crossref_primary_10_1177_0954407020982865
crossref_primary_10_3390_wevj14040099
crossref_primary_10_1002_apj_1999
crossref_primary_10_1002_er_5497
crossref_primary_10_1007_s11367_019_01615_9
crossref_primary_10_1016_j_jpowsour_2021_230416
crossref_primary_10_1016_j_egypro_2017_12_456
crossref_primary_10_1002_bte2_20230030
crossref_primary_10_3390_en13092212
crossref_primary_10_3390_en15041326
crossref_primary_10_1109_TVT_2015_2391053
crossref_primary_10_1002_aenm_202203719
crossref_primary_10_1016_j_energy_2021_121809
crossref_primary_10_1016_j_nanoen_2016_09_024
crossref_primary_10_1002_anie_201908913
crossref_primary_10_1016_j_ensm_2023_103144
crossref_primary_10_1016_j_jpowsour_2024_236074
crossref_primary_10_1541_ieejias_141_453
crossref_primary_10_1016_j_ifacol_2020_12_1861
crossref_primary_10_1002_ange_201908913
crossref_primary_10_1016_j_pnsc_2018_11_002
crossref_primary_10_1002_est2_520
crossref_primary_10_12677_mos_2024_133248
crossref_primary_10_1016_j_apenergy_2019_113797
crossref_primary_10_1016_j_enconman_2025_119493
crossref_primary_10_1002_er_7665
crossref_primary_10_1002_anie_201912167
crossref_primary_10_1002_ese3_279
crossref_primary_10_1002_er_4158
crossref_primary_10_1016_j_etran_2020_100097
crossref_primary_10_1109_ACCESS_2023_3309728
crossref_primary_10_1016_j_apenergy_2022_119509
crossref_primary_10_1002_tcr_202200068
crossref_primary_10_1016_j_energy_2018_04_148
crossref_primary_10_1016_j_applthermaleng_2020_116158
crossref_primary_10_1016_j_applthermaleng_2023_121389
crossref_primary_10_1016_j_electacta_2016_09_117
crossref_primary_10_1016_j_est_2018_05_001
crossref_primary_10_1039_D1EE03422G
crossref_primary_10_1016_j_applthermaleng_2025_125429
crossref_primary_10_1016_j_apenergy_2018_08_070
crossref_primary_10_1016_j_apenergy_2018_03_052
crossref_primary_10_1016_j_applthermaleng_2017_08_022
crossref_primary_10_1016_j_applthermaleng_2019_114792
crossref_primary_10_3390_batteries4040067
crossref_primary_10_3390_batteries5040070
crossref_primary_10_1021_acs_jpclett_9b01670
crossref_primary_10_1115_1_4056823
crossref_primary_10_1109_TITS_2020_3032447
crossref_primary_10_1016_j_renene_2025_122716
crossref_primary_10_1109_TPEL_2017_2768661
crossref_primary_10_1016_j_ijheatmasstransfer_2019_02_020
crossref_primary_10_1021_acsami_0c04355
crossref_primary_10_1016_j_cej_2024_154729
crossref_primary_10_1016_j_est_2020_101885
crossref_primary_10_1039_C6RA19482F
crossref_primary_10_1002_ange_201912167
crossref_primary_10_1016_j_applthermaleng_2023_120502
crossref_primary_10_1002_adma_202202848
crossref_primary_10_1002_er_3847
crossref_primary_10_1016_j_ensm_2025_104051
crossref_primary_10_1039_D3TA03190J
crossref_primary_10_1016_j_ifacol_2023_10_363
crossref_primary_10_3390_batteries11030105
crossref_primary_10_1541_ieejias_144_427
crossref_primary_10_1016_j_egypro_2017_03_602
crossref_primary_10_1039_C8TA01124A
crossref_primary_10_3390_batteries10120419
crossref_primary_10_1016_j_ijhydene_2024_11_093
crossref_primary_10_1016_j_applthermaleng_2023_120860
crossref_primary_10_1109_TCST_2017_2785833
Cites_doi 10.1149/1.1393622
10.1016/S0013-4686(02)00620-5
10.1016/j.electacta.2003.10.016
10.1115/IECEC2001-ET-07
10.1016/S0378-7753(02)00618-3
10.1149/1.2221597
10.1134/S1023193506030086
10.1149/1.1391633
10.1149/1.1526512
10.1002/er.1652
10.1149/1.1775218
10.1023/A:1004113825283
10.1149/1.1836921
10.1149/1.1872737
10.1016/j.jpowsour.2003.10.014
10.1149/1.2349287
10.1149/2.047304jes
10.1149/1.2455585
10.1149/1.1553788
10.1149/1.1368736
10.1149/1.1393625
10.1149/1.2190029
10.1016/j.jpowsour.2006.03.037
10.1149/1.2054684
10.1149/2.079205jes
10.1149/1.1453407
10.1149/1.1646152
ContentType Journal Article
Copyright 2013 Elsevier Ltd
Copyright_xml – notice: 2013 Elsevier Ltd
DBID AAYXX
CITATION
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
DOI 10.1016/j.electacta.2013.03.147
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
Materials Research Database
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-3859
EndPage 674
ExternalDocumentID 10_1016_j_electacta_2013_03_147
S0013468613005707
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADIYS
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSK
SSZ
T5K
TWZ
UPT
WH7
XPP
YK3
ZMT
~02
~G-
29G
41~
53G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIDUJ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
LPU
R2-
SC5
SCB
SCH
SEW
SSH
T9H
VH1
WUQ
XOL
ZY4
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
EFKBS
ID FETCH-LOGICAL-c517t-ee5375e0c60cecae4cf5015a71874c91e97550d1a83517d0307ff014276677f73
IEDL.DBID .~1
ISSN 0013-4686
IngestDate Tue Aug 05 10:09:48 EDT 2025
Fri Jul 11 13:19:49 EDT 2025
Fri Jul 11 16:30:17 EDT 2025
Tue Jul 01 01:52:36 EDT 2025
Thu Apr 24 23:16:11 EDT 2025
Fri Feb 23 02:17:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion batteries
Thermal management
Heating
Modeling
Low temperature
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-ee5375e0c60cecae4cf5015a71874c91e97550d1a83517d0307ff014276677f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 1513489411
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1677963210
proquest_miscellaneous_1541451029
proquest_miscellaneous_1513489411
crossref_citationtrail_10_1016_j_electacta_2013_03_147
crossref_primary_10_1016_j_electacta_2013_03_147
elsevier_sciencedirect_doi_10_1016_j_electacta_2013_03_147
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-30
PublicationDateYYYYMMDD 2013-09-30
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-30
  day: 30
PublicationDecade 2010
PublicationTitle Electrochimica acta
PublicationYear 2013
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yabuuchi, Makimura, Ohzuku (bib0145) 2007; 154
Jow, Marx, Allen (bib0120) 2012; 159
Vlahinos, Pesaran (bib0070) 2002
Zolot, Kelly, Keyser, Mihalic, Pesaran, Hieronymus (bib0055) 2001
Pesaran, Vlahinos, Stuart (bib0060) 2003
Srinivasan, Wang (bib0085) 2003; 150
Fan, Tan (bib0025) 2006; 153
Zhang, Xu, Jow (bib0015) 2004; 49
Doyle, Fuller, Newman (bib0100) 1993; 140
Ji, Zhang, Wang (bib0095) 2013; 160
Shaffer (bib0115) 2012
Reynier, Yazami, Fultz (bib0150) 2004; 151
Doyle, Newman, Gozdz, Schmutz, Tarascon (bib0110) 1996; 143
Smart, Ratnakumar, Surampudi (bib0040) 1999; 146
Gu, Wang (bib0080) 2000; 147
NissanUSA, How conditions affect range, 2012.
Nagasubramanian (bib0010) 2001; 31
Zhang, Xu, Jow (bib0035) 2003; 115
Valoen, Reimers (bib0160) 2005; 152
Lin, Chua, Salomon, Shiao, Hendrickson, Plichta, Slane (bib0020) 2001; 4
Kulova, Skundin, Nizhnikovskii, Fesenko (bib0135) 2006; 42
Lu, Belharouak, Vissers, Amine (bib0155) 2006; 153
Huang, Sakamoto, Wolfenstine, Surampudi (bib0030) 2000; 147
.
Zhang, Xu, Jow (bib0050) 2002; 48
Stuart, Hande (bib0075) 2004; 129
Fang, Kwon, Wang (bib0125) 2010; 34
Smart, Ratnakumar, Surampudi (bib0045) 2002; 149
Zhang, Xu, Jow (bib0065) 2006; 160
Fuller, Doyle, Newman (bib0105) 1994; 141
Shaju, Rao, Chowdari (bib0130) 2004; 151
Verbrugge, Koch (bib0140) 2003; 150
Luo, Wang, Multidimensional (bib0090) 2012
Nagasubramanian (10.1016/j.electacta.2013.03.147_bib0010) 2001; 31
Reynier (10.1016/j.electacta.2013.03.147_bib0150) 2004; 151
Srinivasan (10.1016/j.electacta.2013.03.147_bib0085) 2003; 150
Ji (10.1016/j.electacta.2013.03.147_bib0095) 2013; 160
Doyle (10.1016/j.electacta.2013.03.147_bib0110) 1996; 143
Fan (10.1016/j.electacta.2013.03.147_bib0025) 2006; 153
Doyle (10.1016/j.electacta.2013.03.147_bib0100) 1993; 140
Huang (10.1016/j.electacta.2013.03.147_bib0030) 2000; 147
Smart (10.1016/j.electacta.2013.03.147_bib0045) 2002; 149
Zhang (10.1016/j.electacta.2013.03.147_bib0050) 2002; 48
10.1016/j.electacta.2013.03.147_bib0005
Gu (10.1016/j.electacta.2013.03.147_bib0080) 2000; 147
Zhang (10.1016/j.electacta.2013.03.147_bib0065) 2006; 160
Stuart (10.1016/j.electacta.2013.03.147_bib0075) 2004; 129
Yabuuchi (10.1016/j.electacta.2013.03.147_bib0145) 2007; 154
Lu (10.1016/j.electacta.2013.03.147_bib0155) 2006; 153
Shaffer (10.1016/j.electacta.2013.03.147_bib0115) 2012
Smart (10.1016/j.electacta.2013.03.147_bib0040) 1999; 146
Pesaran (10.1016/j.electacta.2013.03.147_bib0060) 2003
Vlahinos (10.1016/j.electacta.2013.03.147_bib0070) 2002
Zolot (10.1016/j.electacta.2013.03.147_bib0055) 2001
Valoen (10.1016/j.electacta.2013.03.147_bib0160) 2005; 152
Fuller (10.1016/j.electacta.2013.03.147_bib0105) 1994; 141
Lin (10.1016/j.electacta.2013.03.147_bib0020) 2001; 4
Fang (10.1016/j.electacta.2013.03.147_bib0125) 2010; 34
Jow (10.1016/j.electacta.2013.03.147_bib0120) 2012; 159
Kulova (10.1016/j.electacta.2013.03.147_bib0135) 2006; 42
Zhang (10.1016/j.electacta.2013.03.147_bib0015) 2004; 49
Luo (10.1016/j.electacta.2013.03.147_bib0090) 2012
Zhang (10.1016/j.electacta.2013.03.147_bib0035) 2003; 115
Shaju (10.1016/j.electacta.2013.03.147_bib0130) 2004; 151
Verbrugge (10.1016/j.electacta.2013.03.147_bib0140) 2003; 150
References_xml – volume: 151
  start-page: A422
  year: 2004
  ident: bib0150
  article-title: Thermodynamics of lithium intercalation into graphites and disordered carbons
  publication-title: Journal of the Electrochemical Society
– reference: NissanUSA, How conditions affect range, 2012.
– volume: 48
  start-page: 241
  year: 2002
  ident: bib0050
  article-title: Low temperature performance of graphite electrode in Li-ion cells
  publication-title: Electrochimica Acta
– start-page: 923
  year: 2001
  ident: bib0055
  article-title: Thermal evaluation of the Honda insight battery pack
  publication-title: 36th Intersociety Energy Conversion Engineering Conference
– volume: 150
  start-page: A98
  year: 2003
  ident: bib0085
  article-title: Analysis of electrochemical and thermal behavior of Li-ion cells
  publication-title: Journal of the Electrochemical Society
– volume: 143
  start-page: 1890
  year: 1996
  ident: bib0110
  article-title: Comparison of modeling predictions with experimental data from plastic lithium ion cells
  publication-title: Journal of the Electrochemical Society
– volume: 34
  start-page: 107
  year: 2010
  ident: bib0125
  article-title: Electrochemical–thermal modeling of automotive Li-ion batteries and experimental validation using a three-electrode cell
  publication-title: International Journal of Energy Research
– volume: 115
  start-page: 137
  year: 2003
  ident: bib0035
  article-title: The low temperature performance of Li-ion batteries
  publication-title: Journal of Power Sources
– volume: 141
  start-page: 1
  year: 1994
  ident: bib0105
  article-title: Simulation, optimization of the dual lithium ion insertion cell
  publication-title: Journal of the Electrochemical Society
– volume: 31
  start-page: 99
  year: 2001
  ident: bib0010
  article-title: Electrical characteristics of 18650 Li-ion cells at low temperatures
  publication-title: Journal of Applied Electrochemistry
– volume: 4
  start-page: A71
  year: 2001
  ident: bib0020
  article-title: Low-temperature behavior of Li-ion cells
  publication-title: Electrochemical and Solid-State Letters
– volume: 160
  start-page: 1403
  year: 2006
  ident: bib0065
  article-title: Charge and discharge characteristics of a commercial LiCoO(2)-based 18650 Li-ion battery
  publication-title: Journal of Power Sources
– volume: 42
  start-page: 259
  year: 2006
  ident: bib0135
  article-title: Temperature effect on the lithium diffusion rate in graphite
  publication-title: Russian Journal of Electrochemistry
– volume: 152
  start-page: A882
  year: 2005
  ident: bib0160
  article-title: Transport properties of LiPF
  publication-title: Journal of the Electrochemical Society
– volume: 153
  start-page: A1081
  year: 2006
  ident: bib0025
  article-title: Studies on charging lithium-ion cells at low temperatures
  publication-title: Journal of the Electrochemical Society
– volume: 160
  start-page: A636
  year: 2013
  ident: bib0095
  article-title: Li-ion cell operation at low temperatures
  publication-title: Journal of the Electrochemical Society
– volume: 140
  start-page: 1526
  year: 1993
  ident: bib0100
  article-title: Modeling of galvanostatic charge and discharge of the lithium polymer insertion cell
  publication-title: Journal of the Electrochemical Society
– volume: 147
  start-page: 2910
  year: 2000
  ident: bib0080
  article-title: Thermal–electrochemical modeling of battery systems
  publication-title: Journal of the Electrochemical Society
– year: 2003
  ident: bib0060
  article-title: Cooling and preheating of batteries in hybrid electric vehicles
  publication-title: The 6th ASME-JSME Thermal Engineering Joint Conference
– volume: 147
  start-page: 2893
  year: 2000
  ident: bib0030
  article-title: The limits of low-temperature performance of Li-ion cells
  publication-title: Journal of the Electrochemical Society
– volume: 149
  year: 2002
  ident: bib0045
  article-title: Use of organic esters as cosolvents in electrolytes for lithium-ion batteries with improved low temperature performance
  publication-title: Journal of the Electrochemical Society
– volume: 153
  start-page: A2147
  year: 2006
  ident: bib0155
  article-title: In situ thermal study of Li
  publication-title: Journal of the Electrochemical Society
– volume: 129
  start-page: 368
  year: 2004
  ident: bib0075
  article-title: HEV battery heating using AC currents
  publication-title: Journal of Power Sources
– volume: 151
  start-page: A1324
  year: 2004
  ident: bib0130
  article-title: Influence of Li-ion kinetics in the cathodic performance of layered Li(Ni
  publication-title: Journal of the Electrochemical Society
– start-page: 303
  year: 2012
  ident: bib0090
  article-title: Electrochemical–thermal coupled lithium-ion battery model
  publication-title: Lithium-Ion Batteries: Advanced Materials and Technologies
– volume: 49
  start-page: 1057
  year: 2004
  ident: bib0015
  article-title: Electrochemical impedance study on the low temperature of Li-ion batteries
  publication-title: Electrochimica Acta
– volume: 159
  start-page: A604
  year: 2012
  ident: bib0120
  article-title: Distinguishing Li
  publication-title: Journal of the Electrochemical Society
– volume: 150
  start-page: A374
  year: 2003
  ident: bib0140
  article-title: Electrochemical analysis of lithiated graphite anodes
  publication-title: Journal of the Electrochemical Society
– reference: .
– year: 2012
  ident: bib0115
  article-title: Development of cell/pack level models for automotive Li-ion batteries with experimental validation
  publication-title: Proc. DOE Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting
– year: 2002
  ident: bib0070
  article-title: Energy efficient battery heating in cold climates
  publication-title: The Future Car Congress
– volume: 146
  start-page: 486
  year: 1999
  ident: bib0040
  article-title: Electrolytes for low-temperature lithium batteries based on ternary mixtures of aliphatic carbonates
  publication-title: Journal of the Electrochemical Society
– volume: 154
  start-page: A314
  year: 2007
  ident: bib0145
  article-title: Solid-state chemistry and electrochemistry of LiCo
  publication-title: Journal of the Electrochemical Society
– year: 2012
  ident: 10.1016/j.electacta.2013.03.147_bib0115
  article-title: Development of cell/pack level models for automotive Li-ion batteries with experimental validation
– volume: 147
  start-page: 2893
  year: 2000
  ident: 10.1016/j.electacta.2013.03.147_bib0030
  article-title: The limits of low-temperature performance of Li-ion cells
  publication-title: Journal of the Electrochemical Society
  doi: 10.1149/1.1393622
– volume: 48
  start-page: 241
  year: 2002
  ident: 10.1016/j.electacta.2013.03.147_bib0050
  article-title: Low temperature performance of graphite electrode in Li-ion cells
  publication-title: Electrochimica Acta
  doi: 10.1016/S0013-4686(02)00620-5
– volume: 49
  start-page: 1057
  year: 2004
  ident: 10.1016/j.electacta.2013.03.147_bib0015
  article-title: Electrochemical impedance study on the low temperature of Li-ion batteries
  publication-title: Electrochimica Acta
  doi: 10.1016/j.electacta.2003.10.016
– start-page: 923
  year: 2001
  ident: 10.1016/j.electacta.2013.03.147_bib0055
  article-title: Thermal evaluation of the Honda insight battery pack
  doi: 10.1115/IECEC2001-ET-07
– start-page: 303
  year: 2012
  ident: 10.1016/j.electacta.2013.03.147_bib0090
  article-title: Electrochemical–thermal coupled lithium-ion battery model
– volume: 115
  start-page: 137
  year: 2003
  ident: 10.1016/j.electacta.2013.03.147_bib0035
  article-title: The low temperature performance of Li-ion batteries
  publication-title: Journal of Power Sources
  doi: 10.1016/S0378-7753(02)00618-3
– volume: 140
  start-page: 1526
  year: 1993
  ident: 10.1016/j.electacta.2013.03.147_bib0100
  article-title: Modeling of galvanostatic charge and discharge of the lithium polymer insertion cell
  publication-title: Journal of the Electrochemical Society
  doi: 10.1149/1.2221597
– volume: 42
  start-page: 259
  year: 2006
  ident: 10.1016/j.electacta.2013.03.147_bib0135
  article-title: Temperature effect on the lithium diffusion rate in graphite
  publication-title: Russian Journal of Electrochemistry
  doi: 10.1134/S1023193506030086
– volume: 146
  start-page: 486
  year: 1999
  ident: 10.1016/j.electacta.2013.03.147_bib0040
  article-title: Electrolytes for low-temperature lithium batteries based on ternary mixtures of aliphatic carbonates
  publication-title: Journal of the Electrochemical Society
  doi: 10.1149/1.1391633
– volume: 150
  start-page: A98
  year: 2003
  ident: 10.1016/j.electacta.2013.03.147_bib0085
  article-title: Analysis of electrochemical and thermal behavior of Li-ion cells
  publication-title: Journal of the Electrochemical Society
  doi: 10.1149/1.1526512
– volume: 34
  start-page: 107
  year: 2010
  ident: 10.1016/j.electacta.2013.03.147_bib0125
  article-title: Electrochemical–thermal modeling of automotive Li-ion batteries and experimental validation using a three-electrode cell
  publication-title: International Journal of Energy Research
  doi: 10.1002/er.1652
– ident: 10.1016/j.electacta.2013.03.147_bib0005
– volume: 151
  start-page: A1324
  year: 2004
  ident: 10.1016/j.electacta.2013.03.147_bib0130
  article-title: Influence of Li-ion kinetics in the cathodic performance of layered Li(Ni1/3Co1/3Mn1/3)O2
  publication-title: Journal of the Electrochemical Society
  doi: 10.1149/1.1775218
– volume: 31
  start-page: 99
  year: 2001
  ident: 10.1016/j.electacta.2013.03.147_bib0010
  article-title: Electrical characteristics of 18650 Li-ion cells at low temperatures
  publication-title: Journal of Applied Electrochemistry
  doi: 10.1023/A:1004113825283
– volume: 143
  start-page: 1890
  year: 1996
  ident: 10.1016/j.electacta.2013.03.147_bib0110
  article-title: Comparison of modeling predictions with experimental data from plastic lithium ion cells
  publication-title: Journal of the Electrochemical Society
  doi: 10.1149/1.1836921
– volume: 152
  start-page: A882
  year: 2005
  ident: 10.1016/j.electacta.2013.03.147_bib0160
  article-title: Transport properties of LiPF6-based Li-ion battery electrolytes
  publication-title: Journal of the Electrochemical Society
  doi: 10.1149/1.1872737
– year: 2003
  ident: 10.1016/j.electacta.2013.03.147_bib0060
  article-title: Cooling and preheating of batteries in hybrid electric vehicles
– volume: 129
  start-page: 368
  year: 2004
  ident: 10.1016/j.electacta.2013.03.147_bib0075
  article-title: HEV battery heating using AC currents
  publication-title: Journal of Power Sources
  doi: 10.1016/j.jpowsour.2003.10.014
– volume: 153
  start-page: A2147
  year: 2006
  ident: 10.1016/j.electacta.2013.03.147_bib0155
  article-title: In situ thermal study of Li1+x[Ni1/3Co1/3Mn1/3](1−x)O2 using isothermal micro-clorimetric techniques
  publication-title: Journal of the Electrochemical Society
  doi: 10.1149/1.2349287
– volume: 160
  start-page: A636
  year: 2013
  ident: 10.1016/j.electacta.2013.03.147_bib0095
  article-title: Li-ion cell operation at low temperatures
  publication-title: Journal of the Electrochemical Society
  doi: 10.1149/2.047304jes
– volume: 154
  start-page: A314
  year: 2007
  ident: 10.1016/j.electacta.2013.03.147_bib0145
  article-title: Solid-state chemistry and electrochemistry of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries III. Rechargeable capacity and cycleability
  publication-title: Journal of the Electrochemical Society
  doi: 10.1149/1.2455585
– volume: 150
  start-page: A374
  year: 2003
  ident: 10.1016/j.electacta.2013.03.147_bib0140
  article-title: Electrochemical analysis of lithiated graphite anodes
  publication-title: Journal of the Electrochemical Society
  doi: 10.1149/1.1553788
– volume: 4
  start-page: A71
  year: 2001
  ident: 10.1016/j.electacta.2013.03.147_bib0020
  article-title: Low-temperature behavior of Li-ion cells
  publication-title: Electrochemical and Solid-State Letters
  doi: 10.1149/1.1368736
– volume: 147
  start-page: 2910
  year: 2000
  ident: 10.1016/j.electacta.2013.03.147_bib0080
  article-title: Thermal–electrochemical modeling of battery systems
  publication-title: Journal of the Electrochemical Society
  doi: 10.1149/1.1393625
– volume: 153
  start-page: A1081
  year: 2006
  ident: 10.1016/j.electacta.2013.03.147_bib0025
  article-title: Studies on charging lithium-ion cells at low temperatures
  publication-title: Journal of the Electrochemical Society
  doi: 10.1149/1.2190029
– volume: 160
  start-page: 1403
  year: 2006
  ident: 10.1016/j.electacta.2013.03.147_bib0065
  article-title: Charge and discharge characteristics of a commercial LiCoO(2)-based 18650 Li-ion battery
  publication-title: Journal of Power Sources
  doi: 10.1016/j.jpowsour.2006.03.037
– volume: 141
  start-page: 1
  year: 1994
  ident: 10.1016/j.electacta.2013.03.147_bib0105
  article-title: Simulation, optimization of the dual lithium ion insertion cell
  publication-title: Journal of the Electrochemical Society
  doi: 10.1149/1.2054684
– volume: 159
  start-page: A604
  year: 2012
  ident: 10.1016/j.electacta.2013.03.147_bib0120
  article-title: Distinguishing Li+ charge transfer kinetics at NCA/electrolyte and graphite/electrolyte interfaces, and NCA/electrolyte and LFP/electrolyte interfaces in Li-ion cells
  publication-title: Journal of the Electrochemical Society
  doi: 10.1149/2.079205jes
– volume: 149
  year: 2002
  ident: 10.1016/j.electacta.2013.03.147_bib0045
  article-title: Use of organic esters as cosolvents in electrolytes for lithium-ion batteries with improved low temperature performance
  publication-title: Journal of the Electrochemical Society
  doi: 10.1149/1.1453407
– year: 2002
  ident: 10.1016/j.electacta.2013.03.147_bib0070
  article-title: Energy efficient battery heating in cold climates
– volume: 151
  start-page: A422
  year: 2004
  ident: 10.1016/j.electacta.2013.03.147_bib0150
  article-title: Thermodynamics of lithium intercalation into graphites and disordered carbons
  publication-title: Journal of the Electrochemical Society
  doi: 10.1149/1.1646152
SSID ssj0007670
Score 2.576461
Snippet Electric vehicles (EVs) suffer from significant driving range loss in subzero temperature environments due to reduced energy and power capability of Li-ion...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 664
SubjectTerms Electric batteries
Electric power generation
Electric vehicles
Heating
Lithium batteries
Lithium-ion batteries
Low temperature
Modeling
Pulse heating
Strategy
Subzero temperature
Thermal management
Title Heating strategies for Li-ion batteries operated from subzero temperatures
URI https://dx.doi.org/10.1016/j.electacta.2013.03.147
https://www.proquest.com/docview/1513489411
https://www.proquest.com/docview/1541451029
https://www.proquest.com/docview/1677963210
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SD-pBfGJ9lAhe1ya72WTXWymWWh8nC72F3WwiFdmWPi4e_O3ObHfVirQHYU8hgTDJznxDZr6PkCs_NMwY6TzpIucJl6RezETqKXwFgvAdKYf9zo9PstsXvUE42CDtqhcGyypL37_w6YW3LkeapTWb4-EQe3x5IGSEABhAR9FRLoTCW3798V3moaRilYoBzl6q8SqkZhL4sMYrQLZTjjorf0eoX766CECdPbJbIkfaWmxun2zY_IBstSvBtgOy84Nb8JD0uogG8xc6nVVsEBQAKn0YenAUNC14NXFwNEZeZZtR7DSh03n6bicjipRVJd_y9Ij0O7fP7a5XCid4JuRq5lkbBiq0zEhmrEmsMC6EsJ8oFOAzMbexgsQk4wnAL64y_M-dg1zJV1Iq5VRwTGr5KLcnhIowzuIsiABHgbG5ibM08NNMMPDxRgi_TmRlLG1KVnEUt3jTVfnYq_6yskYraxZAvqHqhH0tHC-INdYvualOQy_dEQ3uf_3iy-r8NJwLPoskuR3NpxowTyCiWHC-ao5ASWPmxyvmgO3AnUEOffqfjZ6Rbb-Q3MCalHNSm03m9gKAzyxtFDe7QTZbd_fdp08XCQLv
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5kPagH8YlvI3gtJm2atN5kUaque1LwFto0kRXpLvu4-Oud6baLiuhB6ClkIEzSmS9k5vsAzsPYcmuVD5RPfCB9XgQpl0Wg6RUI03eiPfU7P_RV9iTvnuPnJei2vTBUVtnE_nlMr6N1M3LRePNiNBhQj6-IpEoIACPooI7yZWKnijuwfHV7n_UXAVkrzVshAzL4UuZVq83k-FGZV0SEp4KkVn5OUt_CdZ2DbjZgvQGP7Gq-vk1YctUWrHRbzbYtWPtEL7gNdxkBwuqFTaYtIQRDjMp6gwB3gxU1tSYNDkdErexKRs0mbDIr3t14yIi1qqFcnuzA0831YzcLGu2EwMZCTwPn4kjHjlvFrbO5k9bHmPlzTRp8NhUu1Xg3KUWOCEzokn517_G6FGqltPY62oVONazcHjAZp2VaRglCKfS3sGlZRGFRSo5h3koZ7oNqnWVsQyxO-hZvpq0gezULLxvysuERXjn0PvCF4WjOrfG3yWW7G-bLMTGYAf42Pmv3z-C-0MtIXrnhbGIQ9kQySaUQv82RpGrMw_SXOeg7jGh4jT74z0JPYSV7fOiZ3m3__hBWw1qBg0pUjqAzHc_cMeKgaXHSnPMP7m8FoA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heating+strategies+for+Li-ion+batteries+operated+from+subzero+temperatures&rft.jtitle=Electrochimica+acta&rft.au=Ji%2C+Yan&rft.au=Wang%2C+Chao&rft.date=2013-09-30&rft.issn=0013-4686&rft.volume=107&rft.spage=664&rft.epage=674&rft_id=info:doi/10.1016%2Fj.electacta.2013.03.147&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon