Heating strategies for Li-ion batteries operated from subzero temperatures
Electric vehicles (EVs) suffer from significant driving range loss in subzero temperature environments due to reduced energy and power capability of Li-ion batteries as well as severe battery degradation due to Li plating. Preheating batteries to room temperature is an essential function of an effec...
Saved in:
Published in | Electrochimica acta Vol. 107; pp. 664 - 674 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
30.09.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electric vehicles (EVs) suffer from significant driving range loss in subzero temperature environments due to reduced energy and power capability of Li-ion batteries as well as severe battery degradation due to Li plating. Preheating batteries to room temperature is an essential function of an effective battery management system. The present study employs an electrochemical–thermal coupled model to simulate, for the first time, the process of heating Li-ion batteries from subzero temperatures. Three heating strategies are proposed and compared using battery power, namely self-internal heating, convective heating and mutual pulse heating, as well as one strategy (AC heating) using external power. Their advantages and disadvantages are discussed in terms of capacity loss, heating time, system durability, and cost. For heating using battery power, model predictions reveal that Li-ion batteries can be heated from −20°C to 20°C at the expense of only 5% battery capacity loss using mutual pulse heating with high-efficiency dc–dc converter, implying considerable potential for improved driving range of EVs in cold weather conditions. Moreover, the heating time can be reduced to within 2min by increasing cell output power using convective heating and mutual pulse heating. For external power heating, high frequency AC signal with large amplitude is a preferred choice, offering both high heating power and improved battery cycle life. |
---|---|
AbstractList | Electric vehicles (EVs) suffer from significant driving range loss in subzero temperature environments due to reduced energy and power capability of Li-ion batteries as well as severe battery degradation due to Li plating. Preheating batteries to room temperature is an essential function of an effective battery management system. The present study employs an electrochemical-thermal coupled model to simulate, for the first time, the process of heating Li-ion batteries from subzero temperatures. Three heating strategies are proposed and compared using battery power, namely self-internal heating, convective heating and mutual pulse heating, as well as one strategy (AC heating) using external power. Their advantages and disadvantages are discussed in terms of capacity loss, heating time, system durability, and cost. For heating using battery power, model predictions reveal that Li-ion batteries can be heated from -20 [degrees]C to 20 [degrees]C at the expense of only 5% battery capacity loss using mutual pulse heating with high-efficiency dc-dc converter, implying considerable potential for improved driving range of EVs in cold weather conditions. Moreover, the heating time can be reduced to within 2 min by increasing cell output power using convective heating and mutual pulse heating. For external power heating, high frequency AC signal with large amplitude is a preferred choice, offering both high heating power and improved battery cycle life. Electric vehicles (EVs) suffer from significant driving range loss in subzero temperature environments due to reduced energy and power capability of Li-ion batteries as well as severe battery degradation due to Li plating. Preheating batteries to room temperature is an essential function of an effective battery management system. The present study employs an electrochemicalathermal coupled model to simulate, for the first time, the process of heating Li-ion batteries from subzero temperatures. Three heating strategies are proposed and compared using battery power, namely self-internal heating, convective heating and mutual pulse heating, as well as one strategy (AC heating) using external power. Their advantages and disadvantages are discussed in terms of capacity loss, heating time, system durability, and cost. For heating using battery power, model predictions reveal that Li-ion batteries can be heated from a20 degree C to 20 degree C at the expense of only 5% battery capacity loss using mutual pulse heating with high-efficiency dcadc converter, implying considerable potential for improved driving range of EVs in cold weather conditions. Moreover, the heating time can be reduced to within 2 min by increasing cell output power using convective heating and mutual pulse heating. For external power heating, high frequency AC signal with large amplitude is a preferred choice, offering both high heating power and improved battery cycle life. Electric vehicles (EVs) suffer from significant driving range loss in subzero temperature environments due to reduced energy and power capability of Li-ion batteries as well as severe battery degradation due to Li plating. Preheating batteries to room temperature is an essential function of an effective battery management system. The present study employs an electrochemical–thermal coupled model to simulate, for the first time, the process of heating Li-ion batteries from subzero temperatures. Three heating strategies are proposed and compared using battery power, namely self-internal heating, convective heating and mutual pulse heating, as well as one strategy (AC heating) using external power. Their advantages and disadvantages are discussed in terms of capacity loss, heating time, system durability, and cost. For heating using battery power, model predictions reveal that Li-ion batteries can be heated from −20°C to 20°C at the expense of only 5% battery capacity loss using mutual pulse heating with high-efficiency dc–dc converter, implying considerable potential for improved driving range of EVs in cold weather conditions. Moreover, the heating time can be reduced to within 2min by increasing cell output power using convective heating and mutual pulse heating. For external power heating, high frequency AC signal with large amplitude is a preferred choice, offering both high heating power and improved battery cycle life. |
Author | Ji, Yan Wang, Chao Yang |
Author_xml | – sequence: 1 givenname: Yan surname: Ji fullname: Ji, Yan organization: Electrochemical Engine Center (ECEC), Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, USA – sequence: 2 givenname: Chao Yang surname: Wang fullname: Wang, Chao Yang email: cxw31@psu.edu organization: Electrochemical Engine Center (ECEC), Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, USA |
BookMark | eNqNkU1LAzEQhoMoWD9-g3v0sutMk2x2Dx5E_KTgRc8hzc6WlO2mJqmgv97UigcvCgMDM887DO97xPZHPxJjZwgVAtYXy4oGssnkqqaAvAJeoVB7bIKN4iVvZLvPJpA3paib-pAdxbgEAFUrmLDHezLJjYsipmASLRzFovehmLnS-bGYm5QobId-TVugK_rgV0XczD8o-CLR6mu-CRRP2EFvhkin3_2YvdzePF_fl7Onu4frq1lpJapUEkmuJIGtwZI1JGwvAaVR-V1hW6RWSQkdmoZnvgMOqu8BxVTVtVK94sfsfHd3HfzrhmLSKxctDYMZyW-ixoy1NZ8i_I1KgUIiTNt_oMhF0wrEjF7uUBt8jIF6bV3KLvoxe-gGjaC3yeil_klGb5PRwHVOJuvVL_06uJUJ7_9QXu2UlP19cxR0tI5GS50Lmdedd3_e-AS8nq7t |
CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2022_119840 crossref_primary_10_1016_j_xinn_2023_100465 crossref_primary_10_1016_j_est_2022_106311 crossref_primary_10_1016_j_nanoen_2019_104175 crossref_primary_10_1016_j_applthermaleng_2024_123425 crossref_primary_10_1038_s41467_021_23603_0 crossref_primary_10_1016_j_ensm_2024_103173 crossref_primary_10_1016_j_etran_2022_100187 crossref_primary_10_3390_en10020243 crossref_primary_10_1016_j_energy_2019_03_007 crossref_primary_10_1016_j_jpowsour_2019_227435 crossref_primary_10_1016_j_etran_2023_100227 crossref_primary_10_1016_j_applthermaleng_2024_125285 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123449 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122184 crossref_primary_10_1109_TTE_2019_2920328 crossref_primary_10_1016_j_est_2022_104385 crossref_primary_10_1016_j_enconman_2017_08_016 crossref_primary_10_1016_j_applthermaleng_2022_118860 crossref_primary_10_1109_ACCESS_2021_3120406 crossref_primary_10_1016_j_rser_2025_115389 crossref_primary_10_1002_adfm_202415370 crossref_primary_10_1016_j_jallcom_2022_165142 crossref_primary_10_1039_C9TA02067E crossref_primary_10_1016_j_applthermaleng_2020_114946 crossref_primary_10_1016_j_applthermaleng_2024_123890 crossref_primary_10_3390_en16207142 crossref_primary_10_1016_j_jechem_2020_03_056 crossref_primary_10_1016_j_est_2022_104709 crossref_primary_10_1016_j_jpowsour_2023_233177 crossref_primary_10_1016_j_energy_2022_124178 crossref_primary_10_1088_2631_8695_ad734d crossref_primary_10_1109_TAES_2022_3151322 crossref_primary_10_1016_j_est_2023_109413 crossref_primary_10_1109_TVT_2021_3138254 crossref_primary_10_1007_s40430_024_04735_y crossref_primary_10_3390_en13215711 crossref_primary_10_1016_j_applthermaleng_2021_116750 crossref_primary_10_3390_batteries8100179 crossref_primary_10_1016_j_energy_2020_119236 crossref_primary_10_1016_j_icheatmasstransfer_2023_106635 crossref_primary_10_1109_TIE_2018_2863187 crossref_primary_10_3390_en81010904 crossref_primary_10_3390_ma15228166 crossref_primary_10_1016_j_jpowsour_2022_232133 crossref_primary_10_1016_j_jpowsour_2023_232897 crossref_primary_10_1016_j_jpowsour_2022_232138 crossref_primary_10_1016_j_applthermaleng_2018_12_135 crossref_primary_10_1016_j_jpowsour_2025_236413 crossref_primary_10_1115_1_4032012 crossref_primary_10_1016_j_est_2021_103306 crossref_primary_10_1016_j_applthermaleng_2023_122035 crossref_primary_10_1016_j_tsep_2020_100805 crossref_primary_10_1109_TII_2019_2923446 crossref_primary_10_1115_1_4045326 crossref_primary_10_3390_batteries3010009 crossref_primary_10_1016_j_applthermaleng_2023_120303 crossref_primary_10_1016_j_ijft_2022_100171 crossref_primary_10_1016_j_est_2024_110968 crossref_primary_10_1016_j_enconman_2024_118289 crossref_primary_10_1016_j_est_2022_104240 crossref_primary_10_1016_j_est_2022_105572 crossref_primary_10_29047_01225383_746 crossref_primary_10_1016_j_apenergy_2020_115957 crossref_primary_10_1016_j_rser_2023_113861 crossref_primary_10_1016_j_ssi_2022_115989 crossref_primary_10_1016_j_applthermaleng_2022_119495 crossref_primary_10_1016_j_enconman_2018_12_051 crossref_primary_10_1016_j_est_2024_111133 crossref_primary_10_1016_j_joule_2018_01_017 crossref_primary_10_1016_j_jpowsour_2019_227228 crossref_primary_10_3390_en17153678 crossref_primary_10_1002_cjoc_202000512 crossref_primary_10_1021_acs_nanolett_0c04780 crossref_primary_10_1016_j_ensm_2021_06_008 crossref_primary_10_1016_j_est_2023_108585 crossref_primary_10_1016_j_enrev_2024_100118 crossref_primary_10_1016_j_jclepro_2022_134583 crossref_primary_10_1149_1945_7111_aceab4 crossref_primary_10_1016_j_electacta_2020_136652 crossref_primary_10_1016_j_icheatmasstransfer_2024_107581 crossref_primary_10_1016_j_jpowsour_2017_09_063 crossref_primary_10_1002_advs_202105119 crossref_primary_10_1016_j_jpowsour_2014_09_181 crossref_primary_10_1002_ente_201600083 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120494 crossref_primary_10_1016_j_apenergy_2016_05_151 crossref_primary_10_1016_j_ensm_2022_01_032 crossref_primary_10_1016_j_est_2024_112632 crossref_primary_10_1016_j_rser_2020_110685 crossref_primary_10_1021_acsenergylett_0c00109 crossref_primary_10_1016_j_applthermaleng_2018_03_072 crossref_primary_10_1016_j_est_2023_110050 crossref_primary_10_1016_j_applthermaleng_2024_124798 crossref_primary_10_1016_j_apenergy_2015_08_120 crossref_primary_10_1016_j_energy_2021_121652 crossref_primary_10_1007_s42797_019_00002_9 crossref_primary_10_1016_j_est_2023_107441 crossref_primary_10_1016_j_etran_2019_100005 crossref_primary_10_1002_er_7957 crossref_primary_10_1016_j_est_2022_106519 crossref_primary_10_1021_acs_energyfuels_4c06075 crossref_primary_10_1109_TTE_2021_3113945 crossref_primary_10_1016_j_est_2019_100878 crossref_primary_10_1002_ange_202209619 crossref_primary_10_1016_j_apenergy_2015_11_034 crossref_primary_10_1016_j_applthermaleng_2022_118548 crossref_primary_10_1016_j_ijoes_2024_100817 crossref_primary_10_1149_2_0051410jes crossref_primary_10_1016_j_icheatmasstransfer_2024_108329 crossref_primary_10_1016_j_energy_2017_12_098 crossref_primary_10_1039_D1TA00998B crossref_primary_10_1016_j_jpowsour_2018_08_093 crossref_primary_10_1088_1742_6596_2385_1_012073 crossref_primary_10_26599_EMD_2024_9370043 crossref_primary_10_1016_j_etran_2023_100307 crossref_primary_10_1109_ACCESS_2018_2837652 crossref_primary_10_1149_2_0961602jes crossref_primary_10_1109_TPEL_2019_2954703 crossref_primary_10_1016_j_apenergy_2023_122232 crossref_primary_10_1016_j_compchemeng_2017_02_044 crossref_primary_10_1016_j_est_2024_114147 crossref_primary_10_1016_j_energy_2018_01_024 crossref_primary_10_3390_en15113930 crossref_primary_10_1016_j_est_2023_109852 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121853 crossref_primary_10_1109_TVT_2022_3229187 crossref_primary_10_1016_j_etran_2019_100011 crossref_primary_10_1149_2_061311jes crossref_primary_10_1016_j_rser_2016_03_013 crossref_primary_10_1016_j_jpowsour_2015_09_001 crossref_primary_10_1115_1_4046983 crossref_primary_10_1016_j_est_2022_106293 crossref_primary_10_1016_j_jpowsour_2017_09_046 crossref_primary_10_1039_D1EE01789F crossref_primary_10_3390_batteries8020017 crossref_primary_10_1016_j_apenergy_2014_07_024 crossref_primary_10_3390_batteries8020013 crossref_primary_10_1016_j_applthermaleng_2025_126119 crossref_primary_10_1016_j_rser_2022_112207 crossref_primary_10_3390_en11092439 crossref_primary_10_1016_j_jpowsour_2016_12_102 crossref_primary_10_3390_wevj10020018 crossref_primary_10_1002_er_3576 crossref_primary_10_1016_j_applthermaleng_2017_09_100 crossref_primary_10_1016_j_pecs_2019_100806 crossref_primary_10_3390_batteries8110219 crossref_primary_10_1016_j_ijheatmasstransfer_2017_12_159 crossref_primary_10_1038_s41560_021_00783_z crossref_primary_10_1039_D1TA08538G crossref_primary_10_1016_j_ijhydene_2022_01_008 crossref_primary_10_1016_j_tsep_2023_101908 crossref_primary_10_1016_j_matpr_2020_03_317 crossref_primary_10_1016_j_energy_2019_07_128 crossref_primary_10_1016_j_isci_2020_101921 crossref_primary_10_1115_1_4063611 crossref_primary_10_3390_en80910153 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124381 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121191 crossref_primary_10_1109_JSEN_2017_2691580 crossref_primary_10_20964_2020_09_50 crossref_primary_10_1016_j_est_2020_101816 crossref_primary_10_1016_j_xcrp_2021_100708 crossref_primary_10_1016_j_est_2019_101059 crossref_primary_10_1109_ACCESS_2021_3124786 crossref_primary_10_1016_j_applthermaleng_2022_118529 crossref_primary_10_1016_j_jpowsour_2017_10_029 crossref_primary_10_1016_j_applthermaleng_2025_126123 crossref_primary_10_3390_batteries8120287 crossref_primary_10_1016_j_apenergy_2022_118832 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122750 crossref_primary_10_3390_polym15051323 crossref_primary_10_1007_s10010_019_00316_x crossref_primary_10_1109_TVT_2019_2906487 crossref_primary_10_1109_TEC_2016_2553700 crossref_primary_10_1016_j_cej_2021_130162 crossref_primary_10_1016_j_est_2023_110259 crossref_primary_10_1007_s10800_015_0887_z crossref_primary_10_1016_j_asej_2022_101936 crossref_primary_10_1039_C9RA00490D crossref_primary_10_1016_j_electacta_2016_10_037 crossref_primary_10_1016_j_jclepro_2022_134279 crossref_primary_10_1016_j_jpowsour_2014_07_090 crossref_primary_10_1021_acs_energyfuels_2c01984 crossref_primary_10_1016_j_est_2019_100833 crossref_primary_10_3390_su16188201 crossref_primary_10_1016_j_rser_2016_05_033 crossref_primary_10_3390_en10081121 crossref_primary_10_1109_JESTPE_2023_3289447 crossref_primary_10_1016_j_est_2021_103273 crossref_primary_10_1016_j_apenergy_2018_05_104 crossref_primary_10_1541_ieejias_145_37 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126440 crossref_primary_10_1109_JESTPE_2021_3127892 crossref_primary_10_1109_TIA_2023_3299904 crossref_primary_10_1002_aenm_202202944 crossref_primary_10_1016_j_est_2023_109255 crossref_primary_10_3390_en13082021 crossref_primary_10_3390_en16020750 crossref_primary_10_1016_j_rser_2020_110480 crossref_primary_10_2139_ssrn_4134864 crossref_primary_10_1016_j_jelechem_2020_113903 crossref_primary_10_1016_j_apenergy_2023_120659 crossref_primary_10_1109_TTE_2022_3208186 crossref_primary_10_3390_en14196141 crossref_primary_10_1109_TIE_2023_3288181 crossref_primary_10_1016_j_nanoen_2016_01_026 crossref_primary_10_1002_er_5049 crossref_primary_10_1007_s11431_020_1714_1 crossref_primary_10_1021_acsami_5c00342 crossref_primary_10_1016_j_ensm_2019_12_002 crossref_primary_10_3390_su14116544 crossref_primary_10_1002_anie_202209619 crossref_primary_10_1002_er_5715 crossref_primary_10_1016_j_enconman_2022_116571 crossref_primary_10_1038_s41560_018_0243_8 crossref_primary_10_1016_j_rser_2024_114868 crossref_primary_10_1016_j_energy_2023_129280 crossref_primary_10_3390_en17163873 crossref_primary_10_1016_j_egypro_2017_03_117 crossref_primary_10_1021_acsami_9b05468 crossref_primary_10_3390_batteries9070366 crossref_primary_10_3390_wevj12040239 crossref_primary_10_1002_est2_137 crossref_primary_10_1080_15435075_2022_2107396 crossref_primary_10_1016_j_applthermaleng_2023_120375 crossref_primary_10_1109_TPEL_2020_3015768 crossref_primary_10_1016_j_applthermaleng_2025_126155 crossref_primary_10_1016_j_est_2021_102977 crossref_primary_10_1002_tee_23360 crossref_primary_10_1109_TTE_2022_3223475 crossref_primary_10_1021_acsmaterialslett_1c00377 crossref_primary_10_1016_j_est_2019_100969 crossref_primary_10_1016_j_est_2022_105058 crossref_primary_10_22630_srees_4544 crossref_primary_10_1016_j_jpowsour_2023_233484 crossref_primary_10_1149_1945_7111_ab7fb9 crossref_primary_10_1016_j_jclepro_2020_124223 crossref_primary_10_1109_TII_2020_3020302 crossref_primary_10_1016_j_rser_2024_114732 crossref_primary_10_1016_j_matpr_2021_01_823 crossref_primary_10_1007_s42154_021_00166_w crossref_primary_10_1016_j_tsep_2022_101244 crossref_primary_10_1109_TIE_2016_2523440 crossref_primary_10_19053_01217488_4234 crossref_primary_10_1016_j_ensm_2019_04_033 crossref_primary_10_1016_j_jclepro_2023_136024 crossref_primary_10_1109_TVT_2015_2473841 crossref_primary_10_26552_com_C_2016_1A_59_63 crossref_primary_10_1007_s43979_023_00052_w crossref_primary_10_1007_s11431_017_9225_7 crossref_primary_10_1016_j_ifacol_2023_12_061 crossref_primary_10_1149_2_0871507jes crossref_primary_10_1155_2023_5706355 crossref_primary_10_3390_en13071584 crossref_primary_10_1073_pnas_1807115115 crossref_primary_10_20964_2019_07_06 crossref_primary_10_2139_ssrn_4123758 crossref_primary_10_3390_en15061963 crossref_primary_10_1016_j_jechem_2022_05_010 crossref_primary_10_1016_j_est_2020_101746 crossref_primary_10_1109_TVT_2015_2486040 crossref_primary_10_1016_j_applthermaleng_2024_122770 crossref_primary_10_1016_j_etran_2021_100145 crossref_primary_10_1016_j_jpowsour_2018_08_020 crossref_primary_10_1038_nature16502 crossref_primary_10_1016_j_jpowsour_2016_08_028 crossref_primary_10_1002_est2_70000 crossref_primary_10_1016_j_mtener_2021_100652 crossref_primary_10_1177_0954407020982865 crossref_primary_10_3390_wevj14040099 crossref_primary_10_1002_apj_1999 crossref_primary_10_1002_er_5497 crossref_primary_10_1007_s11367_019_01615_9 crossref_primary_10_1016_j_jpowsour_2021_230416 crossref_primary_10_1016_j_egypro_2017_12_456 crossref_primary_10_1002_bte2_20230030 crossref_primary_10_3390_en13092212 crossref_primary_10_3390_en15041326 crossref_primary_10_1109_TVT_2015_2391053 crossref_primary_10_1002_aenm_202203719 crossref_primary_10_1016_j_energy_2021_121809 crossref_primary_10_1016_j_nanoen_2016_09_024 crossref_primary_10_1002_anie_201908913 crossref_primary_10_1016_j_ensm_2023_103144 crossref_primary_10_1016_j_jpowsour_2024_236074 crossref_primary_10_1541_ieejias_141_453 crossref_primary_10_1016_j_ifacol_2020_12_1861 crossref_primary_10_1002_ange_201908913 crossref_primary_10_1016_j_pnsc_2018_11_002 crossref_primary_10_1002_est2_520 crossref_primary_10_12677_mos_2024_133248 crossref_primary_10_1016_j_apenergy_2019_113797 crossref_primary_10_1016_j_enconman_2025_119493 crossref_primary_10_1002_er_7665 crossref_primary_10_1002_anie_201912167 crossref_primary_10_1002_ese3_279 crossref_primary_10_1002_er_4158 crossref_primary_10_1016_j_etran_2020_100097 crossref_primary_10_1109_ACCESS_2023_3309728 crossref_primary_10_1016_j_apenergy_2022_119509 crossref_primary_10_1002_tcr_202200068 crossref_primary_10_1016_j_energy_2018_04_148 crossref_primary_10_1016_j_applthermaleng_2020_116158 crossref_primary_10_1016_j_applthermaleng_2023_121389 crossref_primary_10_1016_j_electacta_2016_09_117 crossref_primary_10_1016_j_est_2018_05_001 crossref_primary_10_1039_D1EE03422G crossref_primary_10_1016_j_applthermaleng_2025_125429 crossref_primary_10_1016_j_apenergy_2018_08_070 crossref_primary_10_1016_j_apenergy_2018_03_052 crossref_primary_10_1016_j_applthermaleng_2017_08_022 crossref_primary_10_1016_j_applthermaleng_2019_114792 crossref_primary_10_3390_batteries4040067 crossref_primary_10_3390_batteries5040070 crossref_primary_10_1021_acs_jpclett_9b01670 crossref_primary_10_1115_1_4056823 crossref_primary_10_1109_TITS_2020_3032447 crossref_primary_10_1016_j_renene_2025_122716 crossref_primary_10_1109_TPEL_2017_2768661 crossref_primary_10_1016_j_ijheatmasstransfer_2019_02_020 crossref_primary_10_1021_acsami_0c04355 crossref_primary_10_1016_j_cej_2024_154729 crossref_primary_10_1016_j_est_2020_101885 crossref_primary_10_1039_C6RA19482F crossref_primary_10_1002_ange_201912167 crossref_primary_10_1016_j_applthermaleng_2023_120502 crossref_primary_10_1002_adma_202202848 crossref_primary_10_1002_er_3847 crossref_primary_10_1016_j_ensm_2025_104051 crossref_primary_10_1039_D3TA03190J crossref_primary_10_1016_j_ifacol_2023_10_363 crossref_primary_10_3390_batteries11030105 crossref_primary_10_1541_ieejias_144_427 crossref_primary_10_1016_j_egypro_2017_03_602 crossref_primary_10_1039_C8TA01124A crossref_primary_10_3390_batteries10120419 crossref_primary_10_1016_j_ijhydene_2024_11_093 crossref_primary_10_1016_j_applthermaleng_2023_120860 crossref_primary_10_1109_TCST_2017_2785833 |
Cites_doi | 10.1149/1.1393622 10.1016/S0013-4686(02)00620-5 10.1016/j.electacta.2003.10.016 10.1115/IECEC2001-ET-07 10.1016/S0378-7753(02)00618-3 10.1149/1.2221597 10.1134/S1023193506030086 10.1149/1.1391633 10.1149/1.1526512 10.1002/er.1652 10.1149/1.1775218 10.1023/A:1004113825283 10.1149/1.1836921 10.1149/1.1872737 10.1016/j.jpowsour.2003.10.014 10.1149/1.2349287 10.1149/2.047304jes 10.1149/1.2455585 10.1149/1.1553788 10.1149/1.1368736 10.1149/1.1393625 10.1149/1.2190029 10.1016/j.jpowsour.2006.03.037 10.1149/1.2054684 10.1149/2.079205jes 10.1149/1.1453407 10.1149/1.1646152 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd |
Copyright_xml | – notice: 2013 Elsevier Ltd |
DBID | AAYXX CITATION 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M |
DOI | 10.1016/j.electacta.2013.03.147 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database Materials Research Database Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-3859 |
EndPage | 674 |
ExternalDocumentID | 10_1016_j_electacta_2013_03_147 S0013468613005707 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADECG ADEWK ADEZE ADIYS AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSK SSZ T5K TWZ UPT WH7 XPP YK3 ZMT ~02 ~G- 29G 41~ 53G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIDUJ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HMU HVGLF HZ~ H~9 LPU R2- SC5 SCB SCH SEW SSH T9H VH1 WUQ XOL ZY4 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M EFKBS |
ID | FETCH-LOGICAL-c517t-ee5375e0c60cecae4cf5015a71874c91e97550d1a83517d0307ff014276677f73 |
IEDL.DBID | .~1 |
ISSN | 0013-4686 |
IngestDate | Tue Aug 05 10:09:48 EDT 2025 Fri Jul 11 13:19:49 EDT 2025 Fri Jul 11 16:30:17 EDT 2025 Tue Jul 01 01:52:36 EDT 2025 Thu Apr 24 23:16:11 EDT 2025 Fri Feb 23 02:17:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lithium-ion batteries Thermal management Heating Modeling Low temperature |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-ee5375e0c60cecae4cf5015a71874c91e97550d1a83517d0307ff014276677f73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PQID | 1513489411 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1677963210 proquest_miscellaneous_1541451029 proquest_miscellaneous_1513489411 crossref_citationtrail_10_1016_j_electacta_2013_03_147 crossref_primary_10_1016_j_electacta_2013_03_147 elsevier_sciencedirect_doi_10_1016_j_electacta_2013_03_147 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-09-30 |
PublicationDateYYYYMMDD | 2013-09-30 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-30 day: 30 |
PublicationDecade | 2010 |
PublicationTitle | Electrochimica acta |
PublicationYear | 2013 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yabuuchi, Makimura, Ohzuku (bib0145) 2007; 154 Jow, Marx, Allen (bib0120) 2012; 159 Vlahinos, Pesaran (bib0070) 2002 Zolot, Kelly, Keyser, Mihalic, Pesaran, Hieronymus (bib0055) 2001 Pesaran, Vlahinos, Stuart (bib0060) 2003 Srinivasan, Wang (bib0085) 2003; 150 Fan, Tan (bib0025) 2006; 153 Zhang, Xu, Jow (bib0015) 2004; 49 Doyle, Fuller, Newman (bib0100) 1993; 140 Ji, Zhang, Wang (bib0095) 2013; 160 Shaffer (bib0115) 2012 Reynier, Yazami, Fultz (bib0150) 2004; 151 Doyle, Newman, Gozdz, Schmutz, Tarascon (bib0110) 1996; 143 Smart, Ratnakumar, Surampudi (bib0040) 1999; 146 Gu, Wang (bib0080) 2000; 147 NissanUSA, How conditions affect range, 2012. Nagasubramanian (bib0010) 2001; 31 Zhang, Xu, Jow (bib0035) 2003; 115 Valoen, Reimers (bib0160) 2005; 152 Lin, Chua, Salomon, Shiao, Hendrickson, Plichta, Slane (bib0020) 2001; 4 Kulova, Skundin, Nizhnikovskii, Fesenko (bib0135) 2006; 42 Lu, Belharouak, Vissers, Amine (bib0155) 2006; 153 Huang, Sakamoto, Wolfenstine, Surampudi (bib0030) 2000; 147 . Zhang, Xu, Jow (bib0050) 2002; 48 Stuart, Hande (bib0075) 2004; 129 Fang, Kwon, Wang (bib0125) 2010; 34 Smart, Ratnakumar, Surampudi (bib0045) 2002; 149 Zhang, Xu, Jow (bib0065) 2006; 160 Fuller, Doyle, Newman (bib0105) 1994; 141 Shaju, Rao, Chowdari (bib0130) 2004; 151 Verbrugge, Koch (bib0140) 2003; 150 Luo, Wang, Multidimensional (bib0090) 2012 Nagasubramanian (10.1016/j.electacta.2013.03.147_bib0010) 2001; 31 Reynier (10.1016/j.electacta.2013.03.147_bib0150) 2004; 151 Srinivasan (10.1016/j.electacta.2013.03.147_bib0085) 2003; 150 Ji (10.1016/j.electacta.2013.03.147_bib0095) 2013; 160 Doyle (10.1016/j.electacta.2013.03.147_bib0110) 1996; 143 Fan (10.1016/j.electacta.2013.03.147_bib0025) 2006; 153 Doyle (10.1016/j.electacta.2013.03.147_bib0100) 1993; 140 Huang (10.1016/j.electacta.2013.03.147_bib0030) 2000; 147 Smart (10.1016/j.electacta.2013.03.147_bib0045) 2002; 149 Zhang (10.1016/j.electacta.2013.03.147_bib0050) 2002; 48 10.1016/j.electacta.2013.03.147_bib0005 Gu (10.1016/j.electacta.2013.03.147_bib0080) 2000; 147 Zhang (10.1016/j.electacta.2013.03.147_bib0065) 2006; 160 Stuart (10.1016/j.electacta.2013.03.147_bib0075) 2004; 129 Yabuuchi (10.1016/j.electacta.2013.03.147_bib0145) 2007; 154 Lu (10.1016/j.electacta.2013.03.147_bib0155) 2006; 153 Shaffer (10.1016/j.electacta.2013.03.147_bib0115) 2012 Smart (10.1016/j.electacta.2013.03.147_bib0040) 1999; 146 Pesaran (10.1016/j.electacta.2013.03.147_bib0060) 2003 Vlahinos (10.1016/j.electacta.2013.03.147_bib0070) 2002 Zolot (10.1016/j.electacta.2013.03.147_bib0055) 2001 Valoen (10.1016/j.electacta.2013.03.147_bib0160) 2005; 152 Fuller (10.1016/j.electacta.2013.03.147_bib0105) 1994; 141 Lin (10.1016/j.electacta.2013.03.147_bib0020) 2001; 4 Fang (10.1016/j.electacta.2013.03.147_bib0125) 2010; 34 Jow (10.1016/j.electacta.2013.03.147_bib0120) 2012; 159 Kulova (10.1016/j.electacta.2013.03.147_bib0135) 2006; 42 Zhang (10.1016/j.electacta.2013.03.147_bib0015) 2004; 49 Luo (10.1016/j.electacta.2013.03.147_bib0090) 2012 Zhang (10.1016/j.electacta.2013.03.147_bib0035) 2003; 115 Shaju (10.1016/j.electacta.2013.03.147_bib0130) 2004; 151 Verbrugge (10.1016/j.electacta.2013.03.147_bib0140) 2003; 150 |
References_xml | – volume: 151 start-page: A422 year: 2004 ident: bib0150 article-title: Thermodynamics of lithium intercalation into graphites and disordered carbons publication-title: Journal of the Electrochemical Society – reference: NissanUSA, How conditions affect range, 2012. – volume: 48 start-page: 241 year: 2002 ident: bib0050 article-title: Low temperature performance of graphite electrode in Li-ion cells publication-title: Electrochimica Acta – start-page: 923 year: 2001 ident: bib0055 article-title: Thermal evaluation of the Honda insight battery pack publication-title: 36th Intersociety Energy Conversion Engineering Conference – volume: 150 start-page: A98 year: 2003 ident: bib0085 article-title: Analysis of electrochemical and thermal behavior of Li-ion cells publication-title: Journal of the Electrochemical Society – volume: 143 start-page: 1890 year: 1996 ident: bib0110 article-title: Comparison of modeling predictions with experimental data from plastic lithium ion cells publication-title: Journal of the Electrochemical Society – volume: 34 start-page: 107 year: 2010 ident: bib0125 article-title: Electrochemical–thermal modeling of automotive Li-ion batteries and experimental validation using a three-electrode cell publication-title: International Journal of Energy Research – volume: 115 start-page: 137 year: 2003 ident: bib0035 article-title: The low temperature performance of Li-ion batteries publication-title: Journal of Power Sources – volume: 141 start-page: 1 year: 1994 ident: bib0105 article-title: Simulation, optimization of the dual lithium ion insertion cell publication-title: Journal of the Electrochemical Society – volume: 31 start-page: 99 year: 2001 ident: bib0010 article-title: Electrical characteristics of 18650 Li-ion cells at low temperatures publication-title: Journal of Applied Electrochemistry – volume: 4 start-page: A71 year: 2001 ident: bib0020 article-title: Low-temperature behavior of Li-ion cells publication-title: Electrochemical and Solid-State Letters – volume: 160 start-page: 1403 year: 2006 ident: bib0065 article-title: Charge and discharge characteristics of a commercial LiCoO(2)-based 18650 Li-ion battery publication-title: Journal of Power Sources – volume: 42 start-page: 259 year: 2006 ident: bib0135 article-title: Temperature effect on the lithium diffusion rate in graphite publication-title: Russian Journal of Electrochemistry – volume: 152 start-page: A882 year: 2005 ident: bib0160 article-title: Transport properties of LiPF publication-title: Journal of the Electrochemical Society – volume: 153 start-page: A1081 year: 2006 ident: bib0025 article-title: Studies on charging lithium-ion cells at low temperatures publication-title: Journal of the Electrochemical Society – volume: 160 start-page: A636 year: 2013 ident: bib0095 article-title: Li-ion cell operation at low temperatures publication-title: Journal of the Electrochemical Society – volume: 140 start-page: 1526 year: 1993 ident: bib0100 article-title: Modeling of galvanostatic charge and discharge of the lithium polymer insertion cell publication-title: Journal of the Electrochemical Society – volume: 147 start-page: 2910 year: 2000 ident: bib0080 article-title: Thermal–electrochemical modeling of battery systems publication-title: Journal of the Electrochemical Society – year: 2003 ident: bib0060 article-title: Cooling and preheating of batteries in hybrid electric vehicles publication-title: The 6th ASME-JSME Thermal Engineering Joint Conference – volume: 147 start-page: 2893 year: 2000 ident: bib0030 article-title: The limits of low-temperature performance of Li-ion cells publication-title: Journal of the Electrochemical Society – volume: 149 year: 2002 ident: bib0045 article-title: Use of organic esters as cosolvents in electrolytes for lithium-ion batteries with improved low temperature performance publication-title: Journal of the Electrochemical Society – volume: 153 start-page: A2147 year: 2006 ident: bib0155 article-title: In situ thermal study of Li publication-title: Journal of the Electrochemical Society – volume: 129 start-page: 368 year: 2004 ident: bib0075 article-title: HEV battery heating using AC currents publication-title: Journal of Power Sources – volume: 151 start-page: A1324 year: 2004 ident: bib0130 article-title: Influence of Li-ion kinetics in the cathodic performance of layered Li(Ni publication-title: Journal of the Electrochemical Society – start-page: 303 year: 2012 ident: bib0090 article-title: Electrochemical–thermal coupled lithium-ion battery model publication-title: Lithium-Ion Batteries: Advanced Materials and Technologies – volume: 49 start-page: 1057 year: 2004 ident: bib0015 article-title: Electrochemical impedance study on the low temperature of Li-ion batteries publication-title: Electrochimica Acta – volume: 159 start-page: A604 year: 2012 ident: bib0120 article-title: Distinguishing Li publication-title: Journal of the Electrochemical Society – volume: 150 start-page: A374 year: 2003 ident: bib0140 article-title: Electrochemical analysis of lithiated graphite anodes publication-title: Journal of the Electrochemical Society – reference: . – year: 2012 ident: bib0115 article-title: Development of cell/pack level models for automotive Li-ion batteries with experimental validation publication-title: Proc. DOE Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting – year: 2002 ident: bib0070 article-title: Energy efficient battery heating in cold climates publication-title: The Future Car Congress – volume: 146 start-page: 486 year: 1999 ident: bib0040 article-title: Electrolytes for low-temperature lithium batteries based on ternary mixtures of aliphatic carbonates publication-title: Journal of the Electrochemical Society – volume: 154 start-page: A314 year: 2007 ident: bib0145 article-title: Solid-state chemistry and electrochemistry of LiCo publication-title: Journal of the Electrochemical Society – year: 2012 ident: 10.1016/j.electacta.2013.03.147_bib0115 article-title: Development of cell/pack level models for automotive Li-ion batteries with experimental validation – volume: 147 start-page: 2893 year: 2000 ident: 10.1016/j.electacta.2013.03.147_bib0030 article-title: The limits of low-temperature performance of Li-ion cells publication-title: Journal of the Electrochemical Society doi: 10.1149/1.1393622 – volume: 48 start-page: 241 year: 2002 ident: 10.1016/j.electacta.2013.03.147_bib0050 article-title: Low temperature performance of graphite electrode in Li-ion cells publication-title: Electrochimica Acta doi: 10.1016/S0013-4686(02)00620-5 – volume: 49 start-page: 1057 year: 2004 ident: 10.1016/j.electacta.2013.03.147_bib0015 article-title: Electrochemical impedance study on the low temperature of Li-ion batteries publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2003.10.016 – start-page: 923 year: 2001 ident: 10.1016/j.electacta.2013.03.147_bib0055 article-title: Thermal evaluation of the Honda insight battery pack doi: 10.1115/IECEC2001-ET-07 – start-page: 303 year: 2012 ident: 10.1016/j.electacta.2013.03.147_bib0090 article-title: Electrochemical–thermal coupled lithium-ion battery model – volume: 115 start-page: 137 year: 2003 ident: 10.1016/j.electacta.2013.03.147_bib0035 article-title: The low temperature performance of Li-ion batteries publication-title: Journal of Power Sources doi: 10.1016/S0378-7753(02)00618-3 – volume: 140 start-page: 1526 year: 1993 ident: 10.1016/j.electacta.2013.03.147_bib0100 article-title: Modeling of galvanostatic charge and discharge of the lithium polymer insertion cell publication-title: Journal of the Electrochemical Society doi: 10.1149/1.2221597 – volume: 42 start-page: 259 year: 2006 ident: 10.1016/j.electacta.2013.03.147_bib0135 article-title: Temperature effect on the lithium diffusion rate in graphite publication-title: Russian Journal of Electrochemistry doi: 10.1134/S1023193506030086 – volume: 146 start-page: 486 year: 1999 ident: 10.1016/j.electacta.2013.03.147_bib0040 article-title: Electrolytes for low-temperature lithium batteries based on ternary mixtures of aliphatic carbonates publication-title: Journal of the Electrochemical Society doi: 10.1149/1.1391633 – volume: 150 start-page: A98 year: 2003 ident: 10.1016/j.electacta.2013.03.147_bib0085 article-title: Analysis of electrochemical and thermal behavior of Li-ion cells publication-title: Journal of the Electrochemical Society doi: 10.1149/1.1526512 – volume: 34 start-page: 107 year: 2010 ident: 10.1016/j.electacta.2013.03.147_bib0125 article-title: Electrochemical–thermal modeling of automotive Li-ion batteries and experimental validation using a three-electrode cell publication-title: International Journal of Energy Research doi: 10.1002/er.1652 – ident: 10.1016/j.electacta.2013.03.147_bib0005 – volume: 151 start-page: A1324 year: 2004 ident: 10.1016/j.electacta.2013.03.147_bib0130 article-title: Influence of Li-ion kinetics in the cathodic performance of layered Li(Ni1/3Co1/3Mn1/3)O2 publication-title: Journal of the Electrochemical Society doi: 10.1149/1.1775218 – volume: 31 start-page: 99 year: 2001 ident: 10.1016/j.electacta.2013.03.147_bib0010 article-title: Electrical characteristics of 18650 Li-ion cells at low temperatures publication-title: Journal of Applied Electrochemistry doi: 10.1023/A:1004113825283 – volume: 143 start-page: 1890 year: 1996 ident: 10.1016/j.electacta.2013.03.147_bib0110 article-title: Comparison of modeling predictions with experimental data from plastic lithium ion cells publication-title: Journal of the Electrochemical Society doi: 10.1149/1.1836921 – volume: 152 start-page: A882 year: 2005 ident: 10.1016/j.electacta.2013.03.147_bib0160 article-title: Transport properties of LiPF6-based Li-ion battery electrolytes publication-title: Journal of the Electrochemical Society doi: 10.1149/1.1872737 – year: 2003 ident: 10.1016/j.electacta.2013.03.147_bib0060 article-title: Cooling and preheating of batteries in hybrid electric vehicles – volume: 129 start-page: 368 year: 2004 ident: 10.1016/j.electacta.2013.03.147_bib0075 article-title: HEV battery heating using AC currents publication-title: Journal of Power Sources doi: 10.1016/j.jpowsour.2003.10.014 – volume: 153 start-page: A2147 year: 2006 ident: 10.1016/j.electacta.2013.03.147_bib0155 article-title: In situ thermal study of Li1+x[Ni1/3Co1/3Mn1/3](1−x)O2 using isothermal micro-clorimetric techniques publication-title: Journal of the Electrochemical Society doi: 10.1149/1.2349287 – volume: 160 start-page: A636 year: 2013 ident: 10.1016/j.electacta.2013.03.147_bib0095 article-title: Li-ion cell operation at low temperatures publication-title: Journal of the Electrochemical Society doi: 10.1149/2.047304jes – volume: 154 start-page: A314 year: 2007 ident: 10.1016/j.electacta.2013.03.147_bib0145 article-title: Solid-state chemistry and electrochemistry of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries III. Rechargeable capacity and cycleability publication-title: Journal of the Electrochemical Society doi: 10.1149/1.2455585 – volume: 150 start-page: A374 year: 2003 ident: 10.1016/j.electacta.2013.03.147_bib0140 article-title: Electrochemical analysis of lithiated graphite anodes publication-title: Journal of the Electrochemical Society doi: 10.1149/1.1553788 – volume: 4 start-page: A71 year: 2001 ident: 10.1016/j.electacta.2013.03.147_bib0020 article-title: Low-temperature behavior of Li-ion cells publication-title: Electrochemical and Solid-State Letters doi: 10.1149/1.1368736 – volume: 147 start-page: 2910 year: 2000 ident: 10.1016/j.electacta.2013.03.147_bib0080 article-title: Thermal–electrochemical modeling of battery systems publication-title: Journal of the Electrochemical Society doi: 10.1149/1.1393625 – volume: 153 start-page: A1081 year: 2006 ident: 10.1016/j.electacta.2013.03.147_bib0025 article-title: Studies on charging lithium-ion cells at low temperatures publication-title: Journal of the Electrochemical Society doi: 10.1149/1.2190029 – volume: 160 start-page: 1403 year: 2006 ident: 10.1016/j.electacta.2013.03.147_bib0065 article-title: Charge and discharge characteristics of a commercial LiCoO(2)-based 18650 Li-ion battery publication-title: Journal of Power Sources doi: 10.1016/j.jpowsour.2006.03.037 – volume: 141 start-page: 1 year: 1994 ident: 10.1016/j.electacta.2013.03.147_bib0105 article-title: Simulation, optimization of the dual lithium ion insertion cell publication-title: Journal of the Electrochemical Society doi: 10.1149/1.2054684 – volume: 159 start-page: A604 year: 2012 ident: 10.1016/j.electacta.2013.03.147_bib0120 article-title: Distinguishing Li+ charge transfer kinetics at NCA/electrolyte and graphite/electrolyte interfaces, and NCA/electrolyte and LFP/electrolyte interfaces in Li-ion cells publication-title: Journal of the Electrochemical Society doi: 10.1149/2.079205jes – volume: 149 year: 2002 ident: 10.1016/j.electacta.2013.03.147_bib0045 article-title: Use of organic esters as cosolvents in electrolytes for lithium-ion batteries with improved low temperature performance publication-title: Journal of the Electrochemical Society doi: 10.1149/1.1453407 – year: 2002 ident: 10.1016/j.electacta.2013.03.147_bib0070 article-title: Energy efficient battery heating in cold climates – volume: 151 start-page: A422 year: 2004 ident: 10.1016/j.electacta.2013.03.147_bib0150 article-title: Thermodynamics of lithium intercalation into graphites and disordered carbons publication-title: Journal of the Electrochemical Society doi: 10.1149/1.1646152 |
SSID | ssj0007670 |
Score | 2.576461 |
Snippet | Electric vehicles (EVs) suffer from significant driving range loss in subzero temperature environments due to reduced energy and power capability of Li-ion... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 664 |
SubjectTerms | Electric batteries Electric power generation Electric vehicles Heating Lithium batteries Lithium-ion batteries Low temperature Modeling Pulse heating Strategy Subzero temperature Thermal management |
Title | Heating strategies for Li-ion batteries operated from subzero temperatures |
URI | https://dx.doi.org/10.1016/j.electacta.2013.03.147 https://www.proquest.com/docview/1513489411 https://www.proquest.com/docview/1541451029 https://www.proquest.com/docview/1677963210 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SD-pBfGJ9lAhe1ya72WTXWymWWh8nC72F3WwiFdmWPi4e_O3ObHfVirQHYU8hgTDJznxDZr6PkCs_NMwY6TzpIucJl6RezETqKXwFgvAdKYf9zo9PstsXvUE42CDtqhcGyypL37_w6YW3LkeapTWb4-EQe3x5IGSEABhAR9FRLoTCW3798V3moaRilYoBzl6q8SqkZhL4sMYrQLZTjjorf0eoX766CECdPbJbIkfaWmxun2zY_IBstSvBtgOy84Nb8JD0uogG8xc6nVVsEBQAKn0YenAUNC14NXFwNEZeZZtR7DSh03n6bicjipRVJd_y9Ij0O7fP7a5XCid4JuRq5lkbBiq0zEhmrEmsMC6EsJ8oFOAzMbexgsQk4wnAL64y_M-dg1zJV1Iq5VRwTGr5KLcnhIowzuIsiABHgbG5ibM08NNMMPDxRgi_TmRlLG1KVnEUt3jTVfnYq_6yskYraxZAvqHqhH0tHC-INdYvualOQy_dEQ3uf_3iy-r8NJwLPoskuR3NpxowTyCiWHC-ao5ASWPmxyvmgO3AnUEOffqfjZ6Rbb-Q3MCalHNSm03m9gKAzyxtFDe7QTZbd_fdp08XCQLv |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5kPagH8YlvI3gtJm2atN5kUaque1LwFto0kRXpLvu4-Oud6baLiuhB6ClkIEzSmS9k5vsAzsPYcmuVD5RPfCB9XgQpl0Wg6RUI03eiPfU7P_RV9iTvnuPnJei2vTBUVtnE_nlMr6N1M3LRePNiNBhQj6-IpEoIACPooI7yZWKnijuwfHV7n_UXAVkrzVshAzL4UuZVq83k-FGZV0SEp4KkVn5OUt_CdZ2DbjZgvQGP7Gq-vk1YctUWrHRbzbYtWPtEL7gNdxkBwuqFTaYtIQRDjMp6gwB3gxU1tSYNDkdErexKRs0mbDIr3t14yIi1qqFcnuzA0831YzcLGu2EwMZCTwPn4kjHjlvFrbO5k9bHmPlzTRp8NhUu1Xg3KUWOCEzokn517_G6FGqltPY62oVONazcHjAZp2VaRglCKfS3sGlZRGFRSo5h3koZ7oNqnWVsQyxO-hZvpq0gezULLxvysuERXjn0PvCF4WjOrfG3yWW7G-bLMTGYAf42Pmv3z-C-0MtIXrnhbGIQ9kQySaUQv82RpGrMw_SXOeg7jGh4jT74z0JPYSV7fOiZ3m3__hBWw1qBg0pUjqAzHc_cMeKgaXHSnPMP7m8FoA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heating+strategies+for+Li-ion+batteries+operated+from+subzero+temperatures&rft.jtitle=Electrochimica+acta&rft.au=Ji%2C+Yan&rft.au=Wang%2C+Chao&rft.date=2013-09-30&rft.issn=0013-4686&rft.volume=107&rft.spage=664&rft.epage=674&rft_id=info:doi/10.1016%2Fj.electacta.2013.03.147&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon |