Tree-based machine learning performed in-memory with memristive analog CAM

Tree-based machine learning techniques, such as Decision Trees and Random Forests, are top performers in several domains as they do well with limited training datasets and offer improved interpretability compared to Deep Neural Networks (DNN). However, these models are difficult to optimize for fast...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; p. 5806
Main Authors Pedretti, Giacomo, Graves, Catherine E., Serebryakov, Sergey, Mao, Ruibin, Sheng, Xia, Foltin, Martin, Li, Can, Strachan, John Paul
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 04.10.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tree-based machine learning techniques, such as Decision Trees and Random Forests, are top performers in several domains as they do well with limited training datasets and offer improved interpretability compared to Deep Neural Networks (DNN). However, these models are difficult to optimize for fast inference at scale without accuracy loss in von Neumann architectures due to non-uniform memory access patterns. Recently, we proposed a novel analog content addressable memory (CAM) based on emerging memristor devices for fast look-up table operations. Here, we propose for the first time to use the analog CAM as an in-memory computational primitive to accelerate tree-based model inference. We demonstrate an efficient mapping algorithm leveraging the new analog CAM capabilities such that each root to leaf path of a Decision Tree is programmed into a row. This new in-memory compute concept for enables few-cycle model inference, dramatically increasing 10 3  × the throughput over conventional approaches. Tree-based machine learning algorithms are known to be explainable and effective even trained on limited datasets, however difficult to optimize on conventional digital hardware. The authors apply analog content addressable memory to accelerate tree-based model inference for improved performance.
AbstractList Abstract Tree-based machine learning techniques, such as Decision Trees and Random Forests, are top performers in several domains as they do well with limited training datasets and offer improved interpretability compared to Deep Neural Networks (DNN). However, these models are difficult to optimize for fast inference at scale without accuracy loss in von Neumann architectures due to non-uniform memory access patterns. Recently, we proposed a novel analog content addressable memory (CAM) based on emerging memristor devices for fast look-up table operations. Here, we propose for the first time to use the analog CAM as an in-memory computational primitive to accelerate tree-based model inference. We demonstrate an efficient mapping algorithm leveraging the new analog CAM capabilities such that each root to leaf path of a Decision Tree is programmed into a row. This new in-memory compute concept for enables few-cycle model inference, dramatically increasing 10 3  × the throughput over conventional approaches.
Tree-based machine learning techniques, such as Decision Trees and Random Forests, are top performers in several domains as they do well with limited training datasets and offer improved interpretability compared to Deep Neural Networks (DNN). However, these models are difficult to optimize for fast inference at scale without accuracy loss in von Neumann architectures due to non-uniform memory access patterns. Recently, we proposed a novel analog content addressable memory (CAM) based on emerging memristor devices for fast look-up table operations. Here, we propose for the first time to use the analog CAM as an in-memory computational primitive to accelerate tree-based model inference. We demonstrate an efficient mapping algorithm leveraging the new analog CAM capabilities such that each root to leaf path of a Decision Tree is programmed into a row. This new in-memory compute concept for enables few-cycle model inference, dramatically increasing 103 × the throughput over conventional approaches.Tree-based machine learning algorithms are known to be explainable and effective even trained on limited datasets, however difficult to optimize on conventional digital hardware. The authors apply analog content addressable memory to accelerate tree-based model inference for improved performance.
Tree-based machine learning algorithms are known to be explainable and effective even trained on limited datasets, however difficult to optimize on conventional digital hardware. The authors apply analog content addressable memory to accelerate tree-based model inference for improved performance.
Tree-based machine learning techniques, such as Decision Trees and Random Forests, are top performers in several domains as they do well with limited training datasets and offer improved interpretability compared to Deep Neural Networks (DNN). However, these models are difficult to optimize for fast inference at scale without accuracy loss in von Neumann architectures due to non-uniform memory access patterns. Recently, we proposed a novel analog content addressable memory (CAM) based on emerging memristor devices for fast look-up table operations. Here, we propose for the first time to use the analog CAM as an in-memory computational primitive to accelerate tree-based model inference. We demonstrate an efficient mapping algorithm leveraging the new analog CAM capabilities such that each root to leaf path of a Decision Tree is programmed into a row. This new in-memory compute concept for enables few-cycle model inference, dramatically increasing 10 3  × the throughput over conventional approaches. Tree-based machine learning algorithms are known to be explainable and effective even trained on limited datasets, however difficult to optimize on conventional digital hardware. The authors apply analog content addressable memory to accelerate tree-based model inference for improved performance.
ArticleNumber 5806
Author Pedretti, Giacomo
Sheng, Xia
Mao, Ruibin
Graves, Catherine E.
Strachan, John Paul
Serebryakov, Sergey
Li, Can
Foltin, Martin
Author_xml – sequence: 1
  givenname: Giacomo
  orcidid: 0000-0002-4501-8672
  surname: Pedretti
  fullname: Pedretti, Giacomo
  email: giacomo.pedretti@hpe.com
  organization: Hewlett Packard Labs, Hewlett Packard Enterprise
– sequence: 2
  givenname: Catherine E.
  orcidid: 0000-0002-0907-583X
  surname: Graves
  fullname: Graves, Catherine E.
  email: catherine.graves@hpe.com
  organization: Hewlett Packard Labs, Hewlett Packard Enterprise
– sequence: 3
  givenname: Sergey
  surname: Serebryakov
  fullname: Serebryakov, Sergey
  organization: Hewlett Packard Labs, Hewlett Packard Enterprise
– sequence: 4
  givenname: Ruibin
  surname: Mao
  fullname: Mao, Ruibin
  organization: The University of Hong Kong
– sequence: 5
  givenname: Xia
  surname: Sheng
  fullname: Sheng, Xia
  organization: Hewlett Packard Labs, Hewlett Packard Enterprise
– sequence: 6
  givenname: Martin
  surname: Foltin
  fullname: Foltin, Martin
  organization: Hewlett Packard Labs, Hewlett Packard Enterprise
– sequence: 7
  givenname: Can
  orcidid: 0000-0003-3795-2008
  surname: Li
  fullname: Li, Can
  organization: Hewlett Packard Labs, Hewlett Packard Enterprise, The University of Hong Kong
– sequence: 8
  givenname: John Paul
  orcidid: 0000-0002-1382-3677
  surname: Strachan
  fullname: Strachan, John Paul
  email: j.strachan@fz-juelich.de
  organization: Peter Grünberg Institute (PGI-14), Forschungszentrum Jülich GmbH, RWTH Aachen University
BookMark eNp9kUtv1DAUhS1UREvpH2AViQ0bg59JvEGqRjyKitiUtWU71xmPEnuwM63673EnFVAWeOMr33O-a_u8RCcxRUDoNSXvKOH9-yKoaDtMGMVM9h3H5Bk6Y0RQTDvGT_6qT9FFKTtSF1e0F-IFOuWiJT3l_Ax9vckA2JoCQzMbtw0RmglMjiGOzR6yT3murRDxDHPK981dWLZNrXMoS7iFxkQzpbHZXH57hZ57MxW4eNzP0Y9PH282X_D1989Xm8tr7CTtFgzMD23PGVfGKU_kYJlnxCjvByUtcN5JpwQMkirBHPEgJQwOBpDUUmtbfo6uVu6QzE7vc5hNvtfJBH08SHnUJi_BTaBZfbC31lVXK_hArGnrUCV8HdxKxSvrw8raH-z8MCYu2UxPoE87MWz1mG51L1RNgVbA20dATj8PUBY9h-JgmkyEdCiayU7xTknVV-mbf6S7dMj1-46qXlEplKoqtqpcTqVk8L8vQ4l-SF6vyeuavD4mr0k18dVUqjiOkP-g_-P6BXuvsZ4
CitedBy_id crossref_primary_10_1109_TCSII_2022_3170468
crossref_primary_10_1038_s41598_022_24476_z
crossref_primary_10_1080_15320383_2023_2249993
crossref_primary_10_1109_TETCI_2024_3369320
crossref_primary_10_1515_nanoph_2023_0406
crossref_primary_10_1002_adma_202307218
crossref_primary_10_1088_1361_6641_ac92a3
crossref_primary_10_1088_2634_4386_ac9012
crossref_primary_10_1109_TC_2024_3386065
crossref_primary_10_1109_TED_2022_3217996
crossref_primary_10_1002_aisy_202200268
crossref_primary_10_1021_acsnano_3c03900
crossref_primary_10_1002_aelm_202101198
crossref_primary_10_1002_inf2_12416
crossref_primary_10_1038_s44172_024_00197_1
crossref_primary_10_1109_TCAD_2022_3199903
crossref_primary_10_1109_TETC_2023_3261748
crossref_primary_10_1109_TED_2023_3288842
crossref_primary_10_1063_5_0167743
crossref_primary_10_1039_D3DT00327B
crossref_primary_10_1063_5_0136403
crossref_primary_10_1109_JSAIT_2023_3279333
crossref_primary_10_1109_TC_2021_3136576
crossref_primary_10_3389_felec_2023_1343612
crossref_primary_10_1021_acsnano_3c06510
crossref_primary_10_1016_j_dyepig_2023_111425
crossref_primary_10_1007_s11432_021_3502_4
crossref_primary_10_1002_adfm_202209907
crossref_primary_10_1016_j_nantod_2023_102144
crossref_primary_10_1038_s44287_024_00037_6
crossref_primary_10_1126_sciadv_adk8471
crossref_primary_10_1002_adma_202310704
crossref_primary_10_1039_D2DT03289A
crossref_primary_10_1109_LED_2024_3406042
Cites_doi 10.1038/s41928-018-0054-8
10.1002/adma.202003437
10.1109/TVLSI.2011.2170203
10.1002/aisy.202000040
10.1038/nnano.2017.83
10.1038/s41928-017-0002-z
10.1073/pnas.1815682116
10.1109/JPROC.2015.2434888
10.1038/s41928-019-0321-3
10.1109/JSSC.2018.2822703
10.1038/s42256-020-0180-7
10.1109/JSSC.2014.2380790
10.1038/s41467-020-15254-4
10.1038/s41467-018-04484-2
10.1038/s41586-020-1942-4
10.1038/s41928-017-0006-8
10.1109/TKDE.2013.73
10.1109/JSSC.2005.864128
10.1038/s41586-020-03051-4
10.1111/j.1469-1809.1936.tb02137.x
10.1038/s41928-018-0092-2
10.1038/nature06932
10.1002/aelm.201800876
10.1038/s41928-018-0100-6
10.1038/s42256-019-0138-9
10.1088/0268-1242/31/6/063002
10.1038/s41586-018-0180-5
10.1038/s41551-018-0304-0
10.1007/s11749-016-0481-7
10.1109/85.238389
10.1007/978-3-319-41321-1_11
10.1109/IMW48823.2020.9108112
10.1145/2897937.2898010
10.24963/ijcai.2017/497
10.1145/2485922.2485939
10.1109/ISCA.2016.12
10.1109/ICPR.2010.816
10.1145/2155620.2155660
10.1109/ISSCC.2016.7417944
10.1109/FCCM.2012.47
10.1109/ISCA45697.2020.00044
10.1038/nature14539
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
COVID
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-021-25873-0
DatabaseName SpringerOpen
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Technology Collection
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database



Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 5806
ExternalDocumentID oai_doaj_org_article_2918fbbcb63643d0ba6ac994f9f06593
10_1038_s41467_021_25873_0
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADRAZ
AENEX
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AAYXX
CITATION
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
COVID
DWQXO
FR3
GNUQQ
H94
K9.
P64
PQEST
PQUKI
PRINS
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c517t-e2fd683239ac9f05db2f20a9ffd95be3375c94ed51942c0fe55edcede51b1bb63
IEDL.DBID RPM
ISSN 2041-1723
IngestDate Tue Oct 22 15:10:09 EDT 2024
Tue Sep 17 21:24:58 EDT 2024
Fri Oct 25 07:47:25 EDT 2024
Thu Oct 10 19:02:54 EDT 2024
Fri Aug 23 01:13:32 EDT 2024
Fri Oct 11 20:51:52 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-e2fd683239ac9f05db2f20a9ffd95be3375c94ed51942c0fe55edcede51b1bb63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1382-3677
0000-0002-4501-8672
0000-0002-0907-583X
0000-0003-3795-2008
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8490381/
PMID 34608133
PQID 2578915499
PQPubID 546298
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_2918fbbcb63643d0ba6ac994f9f06593
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8490381
proquest_miscellaneous_2579379598
proquest_journals_2578915499
crossref_primary_10_1038_s41467_021_25873_0
springer_journals_10_1038_s41467_021_25873_0
PublicationCentury 2000
PublicationDate 2021-10-04
PublicationDateYYYYMMDD 2021-10-04
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-04
  day: 04
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Li (CR17) 2018; 9
Ni (CR34) 2019; 2
Li (CR36) 2020; 11
Kang, Gonugondla, Lim, Shanbhag (CR27) 2018; 53
Biau, Scornet (CR6) 2016; 25
Lee, Kim, Park, Yoo (CR14) 2015; 50
CR16
Graves (CR33) 2020; 32
CR37
Sheridan (CR20) 2017; 12
CR35
Yao (CR19) 2020; 577
Yan (CR5) 2020; 2
CR10
CR32
Lundberg (CR8) 2020; 2
CR31
CR30
Strukov, Snider, Stewart, Williams (CR25) 2008; 453
Asadi, Lin, de Vries (CR13) 2014; 26
Li (CR21) 2018; 1
Lundberg (CR4) 2018; 2
Zidan, Strachan, Lu (CR11) 2018; 1
Karam, Ruchir, Swaroop, Swarup (CR38) 2015; 103
LeCun, Bengio, Hinton (CR1) 2015; 521
Pagiamtzis, Sheikholeslami (CR28) 2006; 41
CR2
CR3
Sheng (CR39) 2019; 5
CR7
CR29
Ielmini (CR26) 2016; 31
Ielmini, Pedretti (CR40) 2020; 2
CR9
Ielmini, Wong (CR15) 2018; 1
CR44
Schrittwieser (CR45) 2020; 588
Le Gallo (CR23) 2018; 1
Fisher (CR42) 1936; 7
CR43
Ambrogio (CR18) 2018; 558
CR41
Sun (CR24) 2019; 116
Zidan (CR22) 2018; 1
Chen (CR12) 2012; 20
T-W Chen (25873_CR12) 2012; 20
25873_CR10
25873_CR32
25873_CR35
R Karam (25873_CR38) 2015; 103
DB Strukov (25873_CR25) 2008; 453
25873_CR31
SM Lundberg (25873_CR8) 2020; 2
S Ambrogio (25873_CR18) 2018; 558
25873_CR30
Z Sun (25873_CR24) 2019; 116
D Ielmini (25873_CR40) 2020; 2
K Ni (25873_CR34) 2019; 2
X Sheng (25873_CR39) 2019; 5
M Kang (25873_CR27) 2018; 53
N Asadi (25873_CR13) 2014; 26
25873_CR29
G Biau (25873_CR6) 2016; 25
RA Fisher (25873_CR42) 1936; 7
25873_CR44
P Yao (25873_CR19) 2020; 577
25873_CR43
CE Graves (25873_CR33) 2020; 32
D Ielmini (25873_CR15) 2018; 1
C Li (25873_CR17) 2018; 9
MA Zidan (25873_CR22) 2018; 1
25873_CR41
D Ielmini (25873_CR26) 2016; 31
SM Lundberg (25873_CR4) 2018; 2
L Yan (25873_CR5) 2020; 2
K Pagiamtzis (25873_CR28) 2006; 41
MA Zidan (25873_CR11) 2018; 1
C Li (25873_CR36) 2020; 11
C Li (25873_CR21) 2018; 1
25873_CR9
J Schrittwieser (25873_CR45) 2020; 588
PM Sheridan (25873_CR20) 2017; 12
25873_CR7
M Le Gallo (25873_CR23) 2018; 1
Y LeCun (25873_CR1) 2015; 521
25873_CR3
25873_CR2
25873_CR37
KJ Lee (25873_CR14) 2015; 50
25873_CR16
References_xml – volume: 1
  start-page: 246
  year: 2018
  end-page: 253
  ident: CR23
  article-title: Mixed-precision in-memory computing
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0054-8
  contributor:
    fullname: Le Gallo
– ident: CR43
– volume: 32
  start-page: 2003437
  year: 2020
  ident: CR33
  article-title: In–memory computing with memristor content addressable memories for pattern matching
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003437
  contributor:
    fullname: Graves
– volume: 20
  start-page: 2329
  year: 2012
  end-page: 2332
  ident: CR12
  article-title: Visual vocabulary processor based on binary tree architecture for real-time object recognition in Full-HD resolution
  publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
  doi: 10.1109/TVLSI.2011.2170203
  contributor:
    fullname: Chen
– volume: 2
  start-page: 2000040
  year: 2020
  ident: CR40
  article-title: Device and circuit architectures for in-memory computing
  publication-title: Adv. Intell. Syst.
  doi: 10.1002/aisy.202000040
  contributor:
    fullname: Pedretti
– volume: 12
  start-page: 784
  year: 2017
  end-page: 789
  ident: CR20
  article-title: Sparse coding with memristor networks
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.83
  contributor:
    fullname: Sheridan
– ident: CR2
– ident: CR16
– volume: 1
  start-page: 52
  year: 2018
  end-page: 59
  ident: CR21
  article-title: Analogue signal and image processing with large memristor crossbars
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-017-0002-z
  contributor:
    fullname: Li
– ident: CR37
– volume: 116
  start-page: 4123
  year: 2019
  end-page: 4128
  ident: CR24
  article-title: Solving matrix equations in one step with cross-point resistive arrays
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1815682116
  contributor:
    fullname: Sun
– ident: CR30
– volume: 103
  start-page: 20
  year: 2015
  ident: CR38
  article-title: Emerging trends in design and applications of memory-based computing and content-addressable memories
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2434888
  contributor:
    fullname: Swarup
– ident: CR10
– volume: 2
  start-page: 521
  year: 2019
  end-page: 529
  ident: CR34
  article-title: Ferroelectric ternary content-addressable memory for one-shot learning
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0321-3
  contributor:
    fullname: Ni
– ident: CR35
– ident: CR29
– volume: 53
  start-page: 2126
  year: 2018
  end-page: 2135
  ident: CR27
  article-title: A 19.4-nJ/decision, 364-K decisions/s, in-memory random forest multi-class inference accelerator
  publication-title: IEEE J. Solid State Circuits
  doi: 10.1109/JSSC.2018.2822703
  contributor:
    fullname: Shanbhag
– volume: 2
  start-page: 283
  year: 2020
  end-page: 288
  ident: CR5
  article-title: An interpretable mortality prediction model for COVID-19 patients
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-0180-7
  contributor:
    fullname: Yan
– volume: 50
  start-page: 1059
  year: 2015
  end-page: 1069
  ident: CR14
  article-title: A vocabulary forest object matching processor with 2.07 M-vector/s throughput and 13.3 nJ/vector per-vector energy for full-HD 60 fps video object recognition
  publication-title: IEEE J. Solid State Circuits
  doi: 10.1109/JSSC.2014.2380790
  contributor:
    fullname: Yoo
– volume: 11
  year: 2020
  ident: CR36
  article-title: Analog content-addressable memories with memristors
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15254-4
  contributor:
    fullname: Li
– volume: 9
  year: 2018
  ident: CR17
  article-title: Efficient and self-adaptive in-situ learning in multilayer memristor neural networks
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04484-2
  contributor:
    fullname: Li
– volume: 577
  start-page: 641
  year: 2020
  end-page: 646
  ident: CR19
  article-title: Fully hardware-implemented memristor convolutional neural network
  publication-title: Nature
  doi: 10.1038/s41586-020-1942-4
  contributor:
    fullname: Yao
– volume: 1
  start-page: 22
  year: 2018
  end-page: 29
  ident: CR11
  article-title: The future of electronics based on memristive systems
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-017-0006-8
  contributor:
    fullname: Lu
– ident: CR44
– volume: 26
  start-page: 2281
  year: 2014
  end-page: 2292
  ident: CR13
  article-title: Runtime optimizations for tree-based machine learning models
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2013.73
  contributor:
    fullname: de Vries
– volume: 41
  start-page: 712
  year: 2006
  end-page: 727
  ident: CR28
  article-title: Content-addressable memory (CAM) circuits and architectures: a tutorial and survey
  publication-title: IEEE J. Solid State Circuits
  doi: 10.1109/JSSC.2005.864128
  contributor:
    fullname: Sheikholeslami
– ident: CR3
– volume: 588
  start-page: 604
  year: 2020
  end-page: 609
  ident: CR45
  article-title: Mastering Atari, Go, chess and shogi by planning with a learned model
  publication-title: Nature
  doi: 10.1038/s41586-020-03051-4
  contributor:
    fullname: Schrittwieser
– volume: 7
  start-page: 179
  year: 1936
  end-page: 188
  ident: CR42
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Ann. Eugen.
  doi: 10.1111/j.1469-1809.1936.tb02137.x
  contributor:
    fullname: Fisher
– ident: CR31
– ident: CR9
– ident: CR32
– volume: 1
  start-page: 333
  year: 2018
  end-page: 343
  ident: CR15
  article-title: In-memory computing with resistive switching devices
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0092-2
  contributor:
    fullname: Wong
– volume: 453
  start-page: 80
  year: 2008
  end-page: 83
  ident: CR25
  article-title: The missing memristor found
  publication-title: Nature
  doi: 10.1038/nature06932
  contributor:
    fullname: Williams
– volume: 5
  start-page: 1800876
  year: 2019
  ident: CR39
  article-title: Low-conductance and multilevel CMOS-integrated nanoscale oxide memristors
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201800876
  contributor:
    fullname: Sheng
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: CR1
  article-title: Deep learning
  publication-title: Nature
  contributor:
    fullname: Hinton
– ident: CR7
– volume: 1
  start-page: 411
  year: 2018
  end-page: 420
  ident: CR22
  article-title: A general memristor-based partial differential equation solver
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0100-6
  contributor:
    fullname: Zidan
– ident: CR41
– volume: 2
  start-page: 56
  year: 2020
  end-page: 67
  ident: CR8
  article-title: From local explanations to global understanding with explainable AI for trees
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0138-9
  contributor:
    fullname: Lundberg
– volume: 31
  start-page: 063002
  year: 2016
  ident: CR26
  article-title: Resistive switching memories based on metal oxides: mechanisms, reliability and scaling
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/31/6/063002
  contributor:
    fullname: Ielmini
– volume: 558
  start-page: 60
  year: 2018
  end-page: 67
  ident: CR18
  article-title: Equivalent-accuracy accelerated neural-network training using analogue memory
  publication-title: Nature
  doi: 10.1038/s41586-018-0180-5
  contributor:
    fullname: Ambrogio
– volume: 2
  start-page: 749
  year: 2018
  end-page: 760
  ident: CR4
  article-title: Explainable machine-learning predictions for the prevention of hypoxaemia during surgery
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0304-0
  contributor:
    fullname: Lundberg
– volume: 25
  start-page: 197
  year: 2016
  end-page: 227
  ident: CR6
  article-title: A random forest guided tour
  publication-title: TEST
  doi: 10.1007/s11749-016-0481-7
  contributor:
    fullname: Scornet
– volume: 2
  start-page: 521
  year: 2019
  ident: 25873_CR34
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0321-3
  contributor:
    fullname: K Ni
– ident: 25873_CR10
  doi: 10.1109/85.238389
– volume: 2
  start-page: 2000040
  year: 2020
  ident: 25873_CR40
  publication-title: Adv. Intell. Syst.
  doi: 10.1002/aisy.202000040
  contributor:
    fullname: D Ielmini
– volume: 7
  start-page: 179
  year: 1936
  ident: 25873_CR42
  publication-title: Ann. Eugen.
  doi: 10.1111/j.1469-1809.1936.tb02137.x
  contributor:
    fullname: RA Fisher
– volume: 2
  start-page: 283
  year: 2020
  ident: 25873_CR5
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-0180-7
  contributor:
    fullname: L Yan
– ident: 25873_CR9
  doi: 10.1007/978-3-319-41321-1_11
– volume: 32
  start-page: 2003437
  year: 2020
  ident: 25873_CR33
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003437
  contributor:
    fullname: CE Graves
– volume: 1
  start-page: 22
  year: 2018
  ident: 25873_CR11
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-017-0006-8
  contributor:
    fullname: MA Zidan
– volume: 2
  start-page: 749
  year: 2018
  ident: 25873_CR4
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0304-0
  contributor:
    fullname: SM Lundberg
– ident: 25873_CR37
  doi: 10.1109/IMW48823.2020.9108112
– volume: 2
  start-page: 56
  year: 2020
  ident: 25873_CR8
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0138-9
  contributor:
    fullname: SM Lundberg
– ident: 25873_CR16
  doi: 10.1145/2897937.2898010
– volume: 1
  start-page: 52
  year: 2018
  ident: 25873_CR21
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-017-0002-z
  contributor:
    fullname: C Li
– volume: 31
  start-page: 063002
  year: 2016
  ident: 25873_CR26
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/31/6/063002
  contributor:
    fullname: D Ielmini
– ident: 25873_CR3
– volume: 20
  start-page: 2329
  year: 2012
  ident: 25873_CR12
  publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
  doi: 10.1109/TVLSI.2011.2170203
  contributor:
    fullname: T-W Chen
– ident: 25873_CR2
– volume: 103
  start-page: 20
  year: 2015
  ident: 25873_CR38
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2434888
  contributor:
    fullname: R Karam
– volume: 25
  start-page: 197
  year: 2016
  ident: 25873_CR6
  publication-title: TEST
  doi: 10.1007/s11749-016-0481-7
  contributor:
    fullname: G Biau
– volume: 53
  start-page: 2126
  year: 2018
  ident: 25873_CR27
  publication-title: IEEE J. Solid State Circuits
  doi: 10.1109/JSSC.2018.2822703
  contributor:
    fullname: M Kang
– volume: 41
  start-page: 712
  year: 2006
  ident: 25873_CR28
  publication-title: IEEE J. Solid State Circuits
  doi: 10.1109/JSSC.2005.864128
  contributor:
    fullname: K Pagiamtzis
– ident: 25873_CR7
  doi: 10.24963/ijcai.2017/497
– volume: 558
  start-page: 60
  year: 2018
  ident: 25873_CR18
  publication-title: Nature
  doi: 10.1038/s41586-018-0180-5
  contributor:
    fullname: S Ambrogio
– volume: 11
  year: 2020
  ident: 25873_CR36
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15254-4
  contributor:
    fullname: C Li
– ident: 25873_CR30
  doi: 10.1145/2485922.2485939
– volume: 9
  year: 2018
  ident: 25873_CR17
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04484-2
  contributor:
    fullname: C Li
– volume: 1
  start-page: 333
  year: 2018
  ident: 25873_CR15
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0092-2
  contributor:
    fullname: D Ielmini
– volume: 5
  start-page: 1800876
  year: 2019
  ident: 25873_CR39
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201800876
  contributor:
    fullname: X Sheng
– volume: 577
  start-page: 641
  year: 2020
  ident: 25873_CR19
  publication-title: Nature
  doi: 10.1038/s41586-020-1942-4
  contributor:
    fullname: P Yao
– ident: 25873_CR41
  doi: 10.1109/ISCA.2016.12
– ident: 25873_CR31
– volume: 1
  start-page: 411
  year: 2018
  ident: 25873_CR22
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0100-6
  contributor:
    fullname: MA Zidan
– ident: 25873_CR43
  doi: 10.1109/ICPR.2010.816
– volume: 588
  start-page: 604
  year: 2020
  ident: 25873_CR45
  publication-title: Nature
  doi: 10.1038/s41586-020-03051-4
  contributor:
    fullname: J Schrittwieser
– ident: 25873_CR29
  doi: 10.1145/2155620.2155660
– volume: 1
  start-page: 246
  year: 2018
  ident: 25873_CR23
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0054-8
  contributor:
    fullname: M Le Gallo
– volume: 26
  start-page: 2281
  year: 2014
  ident: 25873_CR13
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2013.73
  contributor:
    fullname: N Asadi
– volume: 453
  start-page: 80
  year: 2008
  ident: 25873_CR25
  publication-title: Nature
  doi: 10.1038/nature06932
  contributor:
    fullname: DB Strukov
– ident: 25873_CR32
  doi: 10.1109/ISSCC.2016.7417944
– ident: 25873_CR44
  doi: 10.1109/FCCM.2012.47
– ident: 25873_CR35
  doi: 10.1109/ISCA45697.2020.00044
– volume: 12
  start-page: 784
  year: 2017
  ident: 25873_CR20
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.83
  contributor:
    fullname: PM Sheridan
– volume: 50
  start-page: 1059
  year: 2015
  ident: 25873_CR14
  publication-title: IEEE J. Solid State Circuits
  doi: 10.1109/JSSC.2014.2380790
  contributor:
    fullname: KJ Lee
– volume: 521
  start-page: 436
  year: 2015
  ident: 25873_CR1
  publication-title: Nature
  doi: 10.1038/nature14539
  contributor:
    fullname: Y LeCun
– volume: 116
  start-page: 4123
  year: 2019
  ident: 25873_CR24
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1815682116
  contributor:
    fullname: Z Sun
SSID ssj0000391844
Score 2.5783145
Snippet Tree-based machine learning techniques, such as Decision Trees and Random Forests, are top performers in several domains as they do well with limited training...
Abstract Tree-based machine learning techniques, such as Decision Trees and Random Forests, are top performers in several domains as they do well with limited...
Tree-based machine learning algorithms are known to be explainable and effective even trained on limited datasets, however difficult to optimize on...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Publisher
StartPage 5806
SubjectTerms 639/166/987
639/925/927/1007
Algorithms
Artificial neural networks
Associative memory
Computer applications
Datasets
Decision trees
Humanities and Social Sciences
Inference
Learning algorithms
Lookup tables
Machine learning
Memristors
multidisciplinary
Neural networks
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS98wED9EGPgi--FYNzcy8G0G0yZpe49OJiLok4JvIWkS9cEq-nXgf79L0q-zgvjiW2nSNvlcLvk0d7kD2Ops16rBSa58o7mq64FbKRXvAxKfQFuXXARHx-3BqTo802dPUn0ln7ASHrgAt9Ng3UfnBtdKWjy9cLa1A6KKGJNJsMT5FPjkZyrPwZIeU2o6JSNkv3On8pyQPBIa3XeSi9lKlAP2z1jmcx_JZ4bSvP7sv4f1iTiy3dLgD7ASxo_wrqSSfPgEhye3IfC0Jnl2lR0kA5syQpyzm3I6gIouR36VfGsfWNqAZXSdlfxvYHZM2zhsb_doA073_5zsHfApTwIfdN0teGiib0kzJRIyUWjvmtgIizF61C5I2ekBVfBE1lQziBi0Tv3yQdeudgTsZ1gdr8fwBZhQA1EiQtsFqzxaF4jg0BuJpXXRWV_BryVm5qaEwzDZjC17UxA2hLDJCBtRwe8E62PNFMo63yABm0nA5jUBV7C5FIqZ9OvOpIkGU3Q5rODnYzFpRjJ32DFc3-c6xL1QY19BNxPmrEHzkvHyIsfY7hUmG2oF20ux___4yx3--hYd_gZrTRqmyUtBbcLq4vY-fCfms3A_8iD_B3e0AHQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEB_sSaEvxdqWbqtlC31rg9lNsrt5KiqKCEopCr6FfFof3DvvTsH_3kk2d7JC-7ZswiYzk0l-OzOZAfje6rbh1jDCXS0IrypLNGOcdF4inpC6GmoRnJ03J5f89EpcZYPbIodVrvbEtFG7qY028r24tGTMJyZ_ze5IrBoVvau5hMYr2KzxT4FOYPPg6Pz3n7WVJeY_7zjPt2Uo6_YWPO0NMTKhFl3LCB2dSClx_whtvoyVfOEwTefQ8Ra8zQCy3B8k_g42fL8Nr4eSko_v4fRi7j2JZ5Mrb1OgpC9zZYjrcjbcEsCmm57cxhjbxzIaYkt8Tsr-4EvdR3NOebh_9gEuj48uDk9IrpdArKjaJfF1cA1qKJPaykCFM3WoqZYhOCmMZ6wVVnLvELTx2tLghYh0OS8qUxnTsI8w6ae9_wQl5RahkbHGeM2d1MYj0MEvIlprg9GugB8rnqnZkBZDJXc269TAYYUcVonDihZwENm67hlTWqcX0_m1yhqiapRUMDhkwxAlOWp0g2RIHpCURkhWwM5KKCrr2UI9r4oCvq2bUUOi20P3fnqf-iAGk0J2BbQjYY4mNG7pb_6mXNsdl9GXWsDPldifB_83wZ__P9cv8KaOCzDGIfAdmCzn934Xsc3SfM0L-AkSQPkz
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access(OpenAccess)
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT90wDLcQCGkXNMYQ5WPKpN22sDYfbXNAE6AhhMROPIlblDQJII0-eDymvf9-TtqCitiBW9WkH7bj5OfYsQG-VKYqRWM5FY5JKoqioYZzQWuvEE8oU3S1CM5_lacTcXYpL5dgKHfUM_DhVdMu1pOazH7v_71f_ECFP-iOjNffH0RS9xhswGRdcYom_AoTaKnHUL4e7qeZmSs0aER_dub1R0frU0rjP8KeLyMnX7hP06p08h7WejhJDjv5r8OSbz_AaldgcrEBZxcz72lcqRy5TWGTnvR1Iq7IXXdmAJtuWnobI24XJG7LErxOqv_HE9PGzR1yfHj-ESYnPy-OT2lfPYE2sqjm1LPgStRXrkyjQi6dZYHlRoXglLSe80o2SniHEE6wJg9eykiX87KwhbUl34Tldtr6LSC5aBAo2cZab4RTxnqEPfhGxG5VsMZl8HXgmb7rkmTo5Nzmte44rJHDOnFY5xkcRbY-9YwJrtON6exK9_qiGUoqWPxkyREzudyaEslQIiAppVQ8g91BKHoYNDpOPyrmnFMZfH5qRn2JThDT-ulj6oOITElVZ1CNhDn6oXFLe3OdMm_XQkXPagbfBrE_f_z_BG-_rfsOvGNxQMYoBbELy_PZo99D5DO3n9Jw_gdEyP8b
  priority: 102
  providerName: Scholars Portal
– databaseName: SpringerOpen
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS-UwEB9EEbwsfmLXDyJ402DbJG1z1Icigp4UvIWkSXY9WEWfC_73zqR9Typ62Ftp0qYzk-n8kpnMABzWtq5k6wSXvlRcFkXLrRCSN0EjntC26GsRXN9Ul3fy6l7dD2ly6CzMyH8vmpNXmVSZAglK1dSC4_J8CW1wQ-Fbk2oy30-hTOeNlMO5mO8fHdmelKJ_hCu_RkV-cY0mi3OxCr8GqMhOe9muwULo1mG5Lx75vgFXty8hcLJCnj2mkMjAhhoQf9hzfx4Amx46_kjRtO-MtlwZXie1_heY7Wjjhk1Orzfh7uL8dnLJh8oIvFVFPeWhjL5CXRTatjrmyrsylrnVMXqtXBCiVq2WwSM8k2Wbx6AU0eWDKlzhXCW2YLF76sI2sFy2CIJc61yw0mvrAkIafCPisjo66zM4mvHMPPcJMExyXIvG9Bw2yGGTOGzyDM6IrfOelLw63UCZmkEXTImSig6HrATiIZ87WyEZWkYkpVJaZLA7E4oZNOrV0K9FUz45ncHBvBl1gRwctgtPb6kPoi2tdJNBPRLm6IPGLd3D35RVu5GavKYZHM_E_jn4zwT__r_uO7BS0oSkCAS5C4vTl7ewh6hm6vbTdP4AqXXwnQ
  priority: 102
  providerName: Springer Nature
Title Tree-based machine learning performed in-memory with memristive analog CAM
URI https://link.springer.com/article/10.1038/s41467-021-25873-0
https://www.proquest.com/docview/2578915499
https://search.proquest.com/docview/2579379598
https://pubmed.ncbi.nlm.nih.gov/PMC8490381
https://doaj.org/article/2918fbbcb63643d0ba6ac994f9f06593
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH_ahpC4THyKsFEFiRt4TWI7iY9dWBmVOibYUG-Wv7JVomnVdUj773l2kkEnceHiJLYVx-_D_sV-fg_gfaGKnBlNCbMZJyxNDVGUMlI6gXhCqLSNRTA9y08v2WTGZzvA-7MwwWjf6PlR83Nx1Myvg23lamGGvZ3Y8HxalUz4Da7hLuyigP71ix6GXyrwr4V1B2Sw3vCGheHAGyNkvCwo8eHfKMtxNqR0az4Kbvu3sOZDS8kH26VhFho_hf0OPsaj9jOfwY5rnsPjNqDk3QuYXKydI35msvEimEm6uIsLcRWv2jMCWDRvyMJb2N7Ffhk2xvug6r9crBq_mBNXo-lLuByfXFSnpIuWQAxPiw1xWW1z1E8qlBF1wq3O6ixRoq6t4NpRWnAjmLMI2Vhmktpx7vtlHU91qnVOX8Fes2zca4gTZhAYaaO1U8wKpR3CHHwjYrWi1spG8KGnmVy1TjFk2MympWyJLZHYMhBbJhEce7Le1_QOrUPGcn0lO7bKDJlWa2wyp4iRbKJVjt0QrMau5FzQCA57pshOy26kH26E9zEnInh3X4z64Tc9VOOWt6EOIjDBRRlBscXMrQ_aLkHBC562O0GL4GPP9j-N_7vDb_67oQN4knkx9QYK7BD2Nutb9xZBz0YPUNRnBabl-PMAHo1Gk-8TvB6fnJ1_w9wqr_Cp-vrjy6dBWFbAdMrKQVCN32wfCe4
link.rule.ids 230,315,730,783,787,867,888,2109,12068,12777,21400,24330,27936,27937,31731,31732,33385,33386,33756,33757,38528,41132,42201,43322,43612,43817,43907,51588,53804,53806,74079,74369,74636,74746
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BEYIL4ikCBYzEDawmsR3HJ1QqqqV0e9pKe7Ps2C49NLvsbpH67_E43q1SCW5RbMWZl_1pZjwD8Eka2fDOMspdLSivqo4axjhtvYp4Qplq6EUwPWsm5_xkLubZ4bbOaZXbPTFt1G7RoY_8AFVLYT0x9XX5m2LXKIyu5hYa9-EB1uHCDgZyLnc-Fqx-3nKe78qUrD1Y87QzYF5CLVrJaDk6j1LZ_hHWvJspeSdcmk6h46fwJMNHcjjI-xnc8_1zeDg0lLx5ASezlfcUTyZHrlKapCe5L8QFWQ53BOLQZU-vMMP2hqAblsTnZOp_PDE9OnPI0eH0JZwff58dTWjulkA7UckN9XVwTbRPpkynQimcrUNdGhWCU8J6xqToFPcuQjZed2XwQiBdzovKVtY27BXs9YvevwZS8i4CI9tZ6w13ylgfYU78YsRqMljjCvi85ZleDkUxdApms1YPHNaRwzpxWJcFfEO27mZiQev0YrG60Nk-dB0lFWxcsmERI7nSmiaSoXiIpDRCsQL2t0LR2crW-lYnCvi4G472gUEP0_vFdZoTEZgSqi1AjoQ5-qHxSH_5K1XabrnCSGoBX7Ziv1383wS_-f-_foBHk9n0VJ_-OPv5Fh7XqIyYkcD3YW-zuvbvIsrZ2PdJlf8Cv076vg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BEYgL4ilSCgSJG1ibxHYSn1ApLKXQikMr9WbZsV16aHbZ3Vbqv2fG8W6VSnCLYivOvOxPM-MZgPeNaWrRWc6EqyQTZdkxw7lgrVeIJ5Qph14Eh0f1_ok4OJWnKf9pmdIq13ti3KjdrCMf-YRUS1E9MTUJKS3i15fpp_kfRh2kKNKa2mnchXt4Ktak4e3028bfQpXQWyHSvZmCt5OliLsE5ShUsm04K0ZnUyzhP8Kdt7Mmb4VO44k0fQyPEpTMdwfZP4E7vn8K94fmktfP4OB44T2jU8rlFzFl0uepR8RZPh_uC-DQec8uKNv2OieXbI7P0eyvfG56cuzke7uHz-Fk-vV4b5-lzgmsk2WzYr4KrkZb5cp0KhTS2SpUhVEhOCWt57yRnRLeIXwTVVcELyXR5bwsbWltzV_AVj_r_UvIC9EhSLKdtd4Ip4z1CHnwi4jbmmCNy-DDmmd6PhTI0DGwzVs9cFgjh3XksC4y-Exs3cyk4tbxxWxxppOt6AolFSwuWXPES66wpkYylAhISi0Vz2BnLRSdLG6pb_Qjg3ebYbQVCoCY3s8u4xxEY0qqNoNmJMzRD41H-vPfsep2KxRFVTP4uBb7zeL_Jnj7___6Fh6gFuuf349-vIKHFekiJSeIHdhaLS79awQ8K_smavJfjqj-_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tree-based+machine+learning+performed+in-memory+with+memristive+analog+CAM&rft.jtitle=Nature+communications&rft.au=Pedretti%2C+Giacomo&rft.au=Graves%2C+Catherine+E.&rft.au=Serebryakov%2C+Sergey&rft.au=Mao%2C+Ruibin&rft.date=2021-10-04&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-021-25873-0&rft.externalDocID=10_1038_s41467_021_25873_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon