Transcriptional regulator-mediated activation of adaptation genes triggers CRISPR de novo spacer acquisition
Acquisition of de novo spacer sequences confers CRISPR-Cas with a memory to defend against invading genetic elements. However, the mechanism of regulation of CRISPR spacer acquisition remains unknown. Here we examine the transcriptional regulation of the conserved spacer acquisition genes in Type I-...
Saved in:
Published in | Nucleic acids research Vol. 43; no. 2; pp. 1044 - 1055 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
30.01.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Acquisition of de novo spacer sequences confers CRISPR-Cas with a memory to defend against invading genetic elements. However, the mechanism of regulation of CRISPR spacer acquisition remains unknown. Here we examine the transcriptional regulation of the conserved spacer acquisition genes in Type I-A of Sulfolobus islandicus REY15A. Csa3a, a MarR-like transcription factor encoded by the gene located adjacent to csa1, cas1, cas2 and cas4 cluster, but on the reverse strand, was demonstrated to specifically bind to the csa1 and cas1 promoters with the imperfect palindromic sequence. Importantly, it was demonstrated that the transcription level of csa1, cas1, cas2 and cas4 was significantly enhanced in a csa3a-overexpression strain and, moreover, the Csa1 and Cas1 protein levels were increased in this strain. Furthermore, we demonstrated the hyperactive uptake of unique spacers within both CRISPR loci in the presence of the csa3a overexpression vector. The spacer acquisition process is dependent on the CCN PAM sequence and protospacer selection is random and non-directional. These results suggested a regulation mechanism of CRISPR spacer acquisition where a single transcriptional regulator senses the presence of an invading element and then activates spacer acquisition gene expression which leads to de novo spacer uptake from the invading element. |
---|---|
AbstractList | Acquisition of de novo spacer sequences confers CRISPR-Cas with a memory to defend against invading genetic elements. However, the mechanism of regulation of CRISPR spacer acquisition remains unknown. Here we examine the transcriptional regulation of the conserved spacer acquisition genes in Type I-A of Sulfolobus islandicus REY15A. Csa3a, a MarR-like transcription factor encoded by the gene located adjacent to csa1, cas1, cas2 and cas4 cluster, but on the reverse strand, was demonstrated to specifically bind to the csa1 and cas1 promoters with the imperfect palindromic sequence. Importantly, it was demonstrated that the transcription level of csa1, cas1, cas2 and cas4 was significantly enhanced in a csa3a-overexpression strain and, moreover, the Csa1 and Cas1 protein levels were increased in this strain. Furthermore, we demonstrated the hyperactive uptake of unique spacers within both CRISPR loci in the presence of the csa3a overexpression vector. The spacer acquisition process is dependent on the CCN PAM sequence and protospacer selection is random and non-directional. These results suggested a regulation mechanism of CRISPR spacer acquisition where a single transcriptional regulator senses the presence of an invading element and then activates spacer acquisition gene expression which leads to de novo spacer uptake from the invading element.Acquisition of de novo spacer sequences confers CRISPR-Cas with a memory to defend against invading genetic elements. However, the mechanism of regulation of CRISPR spacer acquisition remains unknown. Here we examine the transcriptional regulation of the conserved spacer acquisition genes in Type I-A of Sulfolobus islandicus REY15A. Csa3a, a MarR-like transcription factor encoded by the gene located adjacent to csa1, cas1, cas2 and cas4 cluster, but on the reverse strand, was demonstrated to specifically bind to the csa1 and cas1 promoters with the imperfect palindromic sequence. Importantly, it was demonstrated that the transcription level of csa1, cas1, cas2 and cas4 was significantly enhanced in a csa3a-overexpression strain and, moreover, the Csa1 and Cas1 protein levels were increased in this strain. Furthermore, we demonstrated the hyperactive uptake of unique spacers within both CRISPR loci in the presence of the csa3a overexpression vector. The spacer acquisition process is dependent on the CCN PAM sequence and protospacer selection is random and non-directional. These results suggested a regulation mechanism of CRISPR spacer acquisition where a single transcriptional regulator senses the presence of an invading element and then activates spacer acquisition gene expression which leads to de novo spacer uptake from the invading element. Acquisition of de novo spacer sequences confers CRISPR-Cas with a memory to defend against invading genetic elements. However, the mechanism of regulation of CRISPR spacer acquisition remains unknown. Here we examine the transcriptional regulation of the conserved spacer acquisition genes in Type I-A of Sulfolobus islandicus REY15A. Csa3a, a MarR-like transcription factor encoded by the gene located adjacent to csa1, cas1, cas2 and cas4 cluster, but on the reverse strand, was demonstrated to specifically bind to the csa1 and cas1 promoters with the imperfect palindromic sequence. Importantly, it was demonstrated that the transcription level of csa1, cas1, cas2 and cas4 was significantly enhanced in a csa3a-overexpression strain and, moreover, the Csa1 and Cas1 protein levels were increased in this strain. Furthermore, we demonstrated the hyperactive uptake of unique spacers within both CRISPR loci in the presence of the csa3a overexpression vector. The spacer acquisition process is dependent on the CCN PAM sequence and protospacer selection is random and non-directional. These results suggested a regulation mechanism of CRISPR spacer acquisition where a single transcriptional regulator senses the presence of an invading element and then activates spacer acquisition gene expression which leads to de novo spacer uptake from the invading element. Acquisition of de novo spacer sequences confers CRISPR-Cas with a memory to defend against invading genetic elements. However, the mechanism of regulation of CRISPR spacer acquisition remains unknown. Here we examine the transcriptional regulation of the conserved spacer acquisition genes in Type I-A of Sulfolobus islandicus REY15A. Csa3a, a MarR-like transcription factor encoded by the gene located adjacent to csa1, cas1, cas2 and cas4 cluster, but on the reverse strand, was demonstrated to specifically bind to the csa1 and cas1 promoters with the imperfect palindromic sequence. Importantly, it was demonstrated that the transcription level of csa1, cas1, cas2 and cas4 was significantly enhanced in a csa3a- overexpression strain and, moreover, the Csa1 and Cas1 protein levels were increased in this strain. Furthermore, we demonstrated the hyperactive uptake of unique spacers within both CRISPR loci in the presence of the csa3a overexpression vector. The spacer acquisition process is dependent on the CCN PAM sequence and protospacer selection is random and non-directional. These results suggested a regulation mechanism of CRISPR spacer acquisition where a single transcriptional regulator senses the presence of an invading element and then activates spacer acquisition gene expression which leads to de novo spacer uptake from the invading element. |
Author | Liang, Yunxiang Wang, Xiaodi She, Qunxin Li, Huan Li, Yingjun Liu, Tao Peng, Nan Ye, Qing |
Author_xml | – sequence: 1 givenname: Tao surname: Liu fullname: Liu, Tao – sequence: 2 givenname: Yingjun surname: Li fullname: Li, Yingjun – sequence: 3 givenname: Xiaodi surname: Wang fullname: Wang, Xiaodi – sequence: 4 givenname: Qing surname: Ye fullname: Ye, Qing – sequence: 5 givenname: Huan surname: Li fullname: Li, Huan – sequence: 6 givenname: Yunxiang surname: Liang fullname: Liang, Yunxiang – sequence: 7 givenname: Qunxin surname: She fullname: She, Qunxin – sequence: 8 givenname: Nan surname: Peng fullname: Peng, Nan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25567986$$D View this record in MEDLINE/PubMed |
BookMark | eNptkd1rFDEUxYNU7Hb1yXfJoyBj8zEzybwIsthaKFja-hzuJJkxOptMk8xC__tm2a2o-BTC_Z1zuPecoRMfvEXoLSUfKen4uYd4Pv5aKJf8BVpR3rKq7lp2glaEk6aipJan6Cyln4TQmjb1K3TKmqYVnWxXaLqP4JOObs4ueJhwtOMyQQ6x2lrjIFuDQWe3g_0chwGDgTkffqP1NuEc3TjamPDm9uru5hYbi33YBZxm0DYW9cPiktsLXqOXA0zJvjm-a_T94sv95mt1_e3yavP5utINFbkyw9CThggxdJ0kXPCeSk6A9oPgGmSrJTOcGMMkMFJ3mspuYIKawgsuesHX6NPBd176soW2PkeY1BzdFuKjCuDU3xPvfqgx7FTNOa9L2Bq9PxrE8LDYlNXWJW2nCbwNS1K0bVjNKWvagr77M-t3yPOJC0APgI4hpWgHpd3hfiXaTYoSta9RlRrVscai-fCP5tn2f_QTT7uiqA |
CitedBy_id | crossref_primary_10_1099_mic_0_000414 crossref_primary_10_1128_AEM_00948_21 crossref_primary_10_3390_ijms231710178 crossref_primary_10_3390_biom11121852 crossref_primary_10_3389_fmicb_2022_822304 crossref_primary_10_3389_fmicb_2019_02471 crossref_primary_10_1016_j_biochi_2015_03_025 crossref_primary_10_1093_nar_gkx791 crossref_primary_10_1016_j_jmb_2018_08_030 crossref_primary_10_1093_nar_gkaa694 crossref_primary_10_1016_j_fm_2023_104385 crossref_primary_10_3389_fmicb_2023_1060337 crossref_primary_10_1093_nar_gkw1265 crossref_primary_10_3390_biom10111523 crossref_primary_10_1016_j_jbc_2024_107295 crossref_primary_10_1016_j_ggedit_2022_100013 crossref_primary_10_1016_j_jbc_2022_101591 crossref_primary_10_1016_j_jgg_2021_02_012 crossref_primary_10_1371_journal_pcbi_1004603 crossref_primary_10_1074_jbc_RA120_014030 crossref_primary_10_1128_JB_00747_18 crossref_primary_10_1016_j_molcel_2016_01_030 crossref_primary_10_1039_D2FO03695A crossref_primary_10_1007_s10123_021_00208_7 crossref_primary_10_1016_j_cell_2020_12_017 crossref_primary_10_7554_eLife_55852 crossref_primary_10_1016_j_mib_2017_02_004 crossref_primary_10_1093_nar_gkv517 crossref_primary_10_1093_nar_gkx612 crossref_primary_10_1186_s12862_017_1081_1 crossref_primary_10_3390_life5010783 crossref_primary_10_1371_journal_pcbi_1005891 crossref_primary_10_1016_j_ijbiomac_2024_134097 crossref_primary_10_1093_nar_gkw286 crossref_primary_10_1093_nar_gkv1044 crossref_primary_10_3390_biom10081161 crossref_primary_10_1128_mSystems_00020_17 crossref_primary_10_3390_microorganisms12091772 crossref_primary_10_1261_rna_039842_113 crossref_primary_10_1093_nar_gkaa635 crossref_primary_10_1007_s13721_020_0223_3 crossref_primary_10_1080_15476286_2018_1514234 crossref_primary_10_1016_j_ggedit_2024_100031 crossref_primary_10_3389_fmicb_2020_02038 crossref_primary_10_1111_mmi_13263 crossref_primary_10_1146_annurev_genet_120116_023413 crossref_primary_10_1007_s11427_016_0355_8 crossref_primary_10_1261_rna_078739_121 crossref_primary_10_3389_fmicb_2019_03078 crossref_primary_10_1093_nar_gky475 crossref_primary_10_1016_j_crmicr_2021_100040 crossref_primary_10_1007_s11427_020_1745_0 crossref_primary_10_1007_s12223_022_00993_2 |
Cites_doi | 10.1126/science.1159689 10.4161/rna.23764 10.1128/JB.01184-12 10.4161/rna.23798 10.1099/mic.0.042523-0 10.1073/pnas.1400071111 10.1126/science.1138140 10.1128/JVI.01020-13 10.1093/nar/gku510 10.1093/nar/gkr1111 10.1371/journal.pcbi.0010060 10.1111/mmi.12640 10.1073/pnas.1300108110 10.1128/JB.00768-13 10.1038/ncomms1937 10.1111/j.1365-2958.2012.08171.x 10.1371/journal.pone.0035888 10.1093/nar/gku527 10.1111/mmi.12152 10.1038/ncomms5399 10.1128/JB.01480-10 10.1111/mmi.12503 10.4161/rna.24023 10.1016/j.jmb.2009.10.057 10.1186/1745-6150-1-7 10.1128/AEM.00855-12 10.4161/rna.24022 10.1146/annurev-genet-110711-155447 10.1099/mic.0.27437-0 10.1111/j.1365-2958.2010.07073.x 10.1093/nar/gku389 10.1038/nrmicro2577 10.1128/JB.01739-06 10.1016/j.tim.2011.08.002 10.1111/j.1365-2958.2011.07586.x 10.1093/nar/gkm782 10.1111/j.1365-2958.2009.06908.x 10.1016/j.jmb.2010.11.019 10.1042/BST0370023 10.1093/nar/gkt1154 10.1007/s00792-009-0254-2 10.1111/j.1365-2958.2010.07315.x 10.1016/j.celrep.2013.01.002 10.1099/mic.0.28048-0 10.1186/gb-2007-8-4-r61 10.1038/nrmicro1793 10.1093/nar/gks216 10.1111/j.1365-2958.2010.07265.x 10.1007/s00239-004-0046-3 10.1111/j.1365-2958.2010.07452.x |
ContentType | Journal Article |
Copyright | The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research. The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research. 2015 |
Copyright_xml | – notice: The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research. – notice: The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research. 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/nar/gku1383 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 1055 |
ExternalDocumentID | PMC4333418 25567986 10_1093_nar_gku1383 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .I3 0R~ 123 18M 1TH 29N 2WC 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPXW AAUQX AAVAP AAYXX ABEJV ABGNP ABPTD ABQLI ABXVV ACGFO ACGFS ACIWK ACNCT ACPRK ACUTJ ADBBV ADHZD AEGXH AENEX AENZO AFFNX AFPKN AFRAH AFYAG AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL AOIJS BAWUL BAYMD BCNDV CAG CIDKT CITATION CS3 CZ4 DIK DU5 D~K E3Z EBD EBS EJD EMOBN F5P GROUPED_DOAJ GX1 H13 HH5 HYE HZ~ IH2 KAQDR KQ8 KSI OAWHX OBC OBS OEB OES OJQWA OVD OVT P2P PEELM PQQKQ R44 RD5 RNS ROL ROZ RPM RXO SV3 TEORI TN5 TOX TR2 WG7 WOQ X7H XSB YSK ZKX ~91 ~D7 ~KM .55 .GJ 3O- AAWDT AAYJJ ABIME ABNGD ABPIB ABSMQ ABZEO ACFRR ACIPB ACPQN ACUKT ACVCV ACZBC AEHUL AEKPW AFSHK AGKRT AGMDO AGQPQ ANFBD APJGH AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN BEYMZ C1A CGR COF CUY CVF CXTWN D0S DFGAJ ECM EIF ELUNK FEDTE HVGLF H~9 MBTAY MVM NPM NTWIH O~Y PB- QBD RNI RZF RZO SJN TCN UHB X7M XSW ZXP 7X8 5PM |
ID | FETCH-LOGICAL-c517t-dffb05077f9980373b1830a1bf73ca86c82d30dd28a2049c189f271d7f9737b73 |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 18:21:03 EDT 2025 Fri Jul 11 06:46:57 EDT 2025 Mon Jul 21 05:47:52 EDT 2025 Thu Apr 24 23:04:05 EDT 2025 Tue Jul 01 02:06:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c517t-dffb05077f9980373b1830a1bf73ca86c82d30dd28a2049c189f271d7f9737b73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1093/nar/gku1383 |
PMID | 25567986 |
PQID | 1652431256 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4333418 proquest_miscellaneous_1652431256 pubmed_primary_25567986 crossref_citationtrail_10_1093_nar_gku1383 crossref_primary_10_1093_nar_gku1383 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-30 |
PublicationDateYYYYMMDD | 2015-01-30 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2015 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Lintner ( key 20171011192252_B49) 2011; 405 Erdmann ( key 20171011192252_B20) 2012; 85 Richter ( key 20171011192252_B27) 2014; 42 Haft ( key 20171011192252_B12) 2005; 1 Makarova ( key 20171011192252_B2) 2011; 9 Agari ( key 20171011192252_B10) 2010; 395 Li ( key 20171011192252_B23) 2014; 42 Deng ( key 20171011192252_B32) 2012; 40 Mojica ( key 20171011192252_B4) 2005; 60 Samson ( key 20171011192252_B43) 2013; 3 Gudbergsdottir ( key 20171011192252_B39) 2011; 79 Pul ( key 20171011192252_B34) 2010; 75 Peng ( key 20171011192252_B50) 2009; 74 Westra ( key 20171011192252_B15) 2012; 46 Swarts ( key 20171011192252_B16) 2012; 7 Garrett ( key 20171011192252_B46) 2011; 19 Yosef ( key 20171011192252_B17) 2012; 40 Erdmann ( key 20171011192252_B21) 2014; 91 Li ( key 20171011192252_B22) 2014; 42 Deng ( key 20171011192252_B37) 2013; 87 Ao ( key 20171011192252_B45) 2013; 195 Heler ( key 20171011192252_B31) 2014; 93 Peng ( key 20171011192252_B41) 2012; 78 Barrangou ( key 20171011192252_B1) 2007; 315 Cady ( key 20171011192252_B19) 2012; 194 Shah ( key 20171011192252_B8) 2009; 37 Brouns ( key 20171011192252_B14) 2008; 321 Richter ( key 20171011192252_B24) 2014; 42 Makarova ( key 20171011192252_B9) 2006; 1 Bolotin ( key 20171011192252_B7) 2005; 151 Shinkai ( key 20171011192252_B33) 2007; 189 Quax ( key 20171011192252_B48) 2013; 87 Westra ( key 20171011192252_B35) 2010; 77 Pougach ( key 20171011192252_B11) 2010; 77 Diez-Villasenor ( key 20171011192252_B28) 2013; 10 Deng ( key 20171011192252_B40) 2009; 13 Yosef ( key 20171011192252_B18) 2013; 110 Arslan ( key 20171011192252_B26) 2014; 42 Zhang ( key 20171011192252_B44) 2010; 156 Peng ( key 20171011192252_B38) 2013; 10 Manica ( key 20171011192252_B47) 2011; 80 Kunin ( key 20171011192252_B5) 2007; 8 Fineran ( key 20171011192252_B29) 2014; 111 Hynes ( key 20171011192252_B30) 2014; 5 Shah ( key 20171011192252_B51) 2013; 10 Medina-Aparicio ( key 20171011192252_B36) 2011; 193 Datsenko ( key 20171011192252_B25) 2012; 3 Sorek ( key 20171011192252_B3) 2008; 6 Abella ( key 20171011192252_B42) 2007; 35 Koonin ( key 20171011192252_B13) 2013; 10 Pourcel ( key 20171011192252_B6) 2005; 151 23392249 - RNA Biol. 2013 May;10(5):738-48 21385233 - Mol Microbiol. 2011 Apr;80(2):481-91 22558257 - PLoS One. 2012;7(4):e35888 19891975 - J Mol Biol. 2010 Jan 15;395(2):270-81 23403393 - RNA Biol. 2013 May;10(5):891-9 22402487 - Nucleic Acids Res. 2012 Jul;40(12):5569-76 24433295 - Mol Microbiol. 2014 Mar;91(5):900-17 21093452 - J Mol Biol. 2011 Jan 28;405(4):939-55 22834906 - Mol Microbiol. 2012 Sep;85(6):1044-56 23940313 - Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14396-401 22781758 - Nat Commun. 2012;3:945 23145983 - Annu Rev Genet. 2012;46:311-39 19143596 - Biochem Soc Trans. 2009 Feb;37(Pt 1):23-8 17379808 - Science. 2007 Mar 23;315(5819):1709-12 22139923 - Nucleic Acids Res. 2012 Mar;40(6):2470-80 20624226 - Mol Microbiol. 2010 Sep;77(6):1367-79 24265226 - Nucleic Acids Res. 2014 Feb;42(4):2483-92 24711427 - Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):E1629-38 18703739 - Science. 2008 Aug 15;321(5891):960-4 19513584 - Extremophiles. 2009 Jul;13(4):735-46 24920831 - Nucleic Acids Res. 2014 Jul;42(12):7884-93 24039266 - J Bacteriol. 2013 Nov;195(22):5216-22 23698312 - J Virol. 2013 Aug;87(15):8419-28 24806524 - Mol Microbiol. 2014 Jul;93(1):1-9 22885297 - J Bacteriol. 2012 Nov;194(21):5728-38 21945420 - Trends Microbiol. 2011 Nov;19(11):549-56 16545108 - Biol Direct. 2006 Mar 16;1:7 23445770 - RNA Biol. 2013 May;10(5):792-802 20705666 - Microbiology. 2010 Nov;156(Pt 11):3386-97 15791728 - J Mol Evol. 2005 Feb;60(2):174-82 17921500 - Nucleic Acids Res. 2007;35(20):6788-97 24990370 - Nucleic Acids Res. 2014 Jul;42(13):8516-26 17369302 - J Bacteriol. 2007 May;189(10):3891-901 20659289 - Mol Microbiol. 2010 Sep;77(6):1380-93 19818017 - Mol Microbiol. 2009 Nov;74(4):928-39 18157154 - Nat Rev Microbiol. 2008 Mar;6(3):181-6 24803673 - Nucleic Acids Res. 2014 Jun;42(11):7226-35 23320564 - Mol Microbiol. 2013 Mar;87(5):1088-99 21552286 - Nat Rev Microbiol. 2011 Jun;9(6):467-77 15758212 - Microbiology. 2005 Mar;151(Pt 3):653-63 20132443 - Mol Microbiol. 2010 Mar;75(6):1495-512 23375370 - Cell Rep. 2013 Feb 21;3(2):485-96 21398529 - J Bacteriol. 2011 May;193(10):2396-407 16292354 - PLoS Comput Biol. 2005 Nov;1(6):e60 21166892 - Mol Microbiol. 2011 Jan;79(1):35-49 17442114 - Genome Biol. 2007;8(4):R61 23439366 - RNA Biol. 2013 May;10(5):679-86 25056268 - Nat Commun. 2014;5:4399 16079334 - Microbiology. 2005 Aug;151(Pt 8):2551-61 22660711 - Appl Environ Microbiol. 2012 Aug;78(16):5630-7 |
References_xml | – volume: 321 start-page: 960 year: 2008 ident: key 20171011192252_B14 article-title: Small CRISPR RNAs guide antiviral defense in prokaryotes publication-title: Science doi: 10.1126/science.1159689 – volume: 10 start-page: 891 year: 2013 ident: key 20171011192252_B51 article-title: Protospacer recognition motifs: mixed identities and functional diversity publication-title: RNA Biol. doi: 10.4161/rna.23764 – volume: 194 start-page: 5728 year: 2012 ident: key 20171011192252_B19 article-title: The CRISPR/Cas adaptive immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring and engineered phages publication-title: J. Bacteriol. doi: 10.1128/JB.01184-12 – volume: 10 start-page: 738 year: 2013 ident: key 20171011192252_B38 article-title: Genetic determinants of PAM-dependent DNA targeting and pre-crRNA processing in Sulfolobus islandicus publication-title: RNA Biol. doi: 10.4161/rna.23798 – volume: 156 start-page: 3386 year: 2010 ident: key 20171011192252_B44 article-title: Revealing the essentiality of multiple archaeal pcna genes using a mutant propagation assay based on an improved knockout method publication-title: Microbiology doi: 10.1099/mic.0.042523-0 – volume: 111 start-page: 1629 year: 2014 ident: key 20171011192252_B29 article-title: Degenerate target sites mediate rapid primed CRISPR adaptation publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1400071111 – volume: 315 start-page: 1709 year: 2007 ident: key 20171011192252_B1 article-title: CRISPR provides acquired resistance against viruses in prokaryotes publication-title: Science doi: 10.1126/science.1138140 – volume: 87 start-page: 8419 year: 2013 ident: key 20171011192252_B48 article-title: Massive activation of archaeal defense genes during viral infection publication-title: J. Virol. doi: 10.1128/JVI.01020-13 – volume: 42 start-page: 7884 year: 2014 ident: key 20171011192252_B26 article-title: Detection and characterization of spacer integration intermediates in type I-E CRISPR-Cas system publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku510 – volume: 40 start-page: 2470 year: 2012 ident: key 20171011192252_B32 article-title: Modulation of CRISPR locus transcription by the repeat-binding protein Cbp1 in Sulfolobus publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr1111 – volume: 1 start-page: e60 year: 2005 ident: key 20171011192252_B12 article-title: A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes publication-title: PLoS Comp. Biol. doi: 10.1371/journal.pcbi.0010060 – volume: 93 start-page: 1 year: 2014 ident: key 20171011192252_B31 article-title: Adapting to new threats: the generation of memory by CRISPR-Cas immune systems publication-title: Mol. Microbiol. doi: 10.1111/mmi.12640 – volume: 110 start-page: 14396 year: 2013 ident: key 20171011192252_B18 article-title: DNA motifs determining the efficiency of adaptation into the Escherichia coli CRISPR array publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1300108110 – volume: 195 start-page: 5216 year: 2013 ident: key 20171011192252_B45 article-title: The Sulfolobus initiator element is an important contributor to promoter strength publication-title: J. Bacteriol. doi: 10.1128/JB.00768-13 – volume: 3 start-page: 945 year: 2012 ident: key 20171011192252_B25 article-title: Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system publication-title: Nat. Commun. doi: 10.1038/ncomms1937 – volume: 85 start-page: 1044 year: 2012 ident: key 20171011192252_B20 article-title: Selective and hyperactive uptake of foreign DNA by adaptive immune systems of an archaeon via two distinct mechanisms publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2012.08171.x – volume: 7 start-page: e35888 year: 2012 ident: key 20171011192252_B16 article-title: CRISPR interference directs strand specific spacer acquisition publication-title: PLoS One doi: 10.1371/journal.pone.0035888 – volume: 42 start-page: 8516 year: 2014 ident: key 20171011192252_B24 article-title: Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer publication-title: Nucleic Acids Res doi: 10.1093/nar/gku527 – volume: 87 start-page: 1088 year: 2013 ident: key 20171011192252_B37 article-title: A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus publication-title: Mol. Microbiol. doi: 10.1111/mmi.12152 – volume: 5 start-page: 4399 year: 2014 ident: key 20171011192252_B30 article-title: Adaptation in bacterial CRISPR-Cas immunity can be driven by defective phages publication-title: Nat. Commun. doi: 10.1038/ncomms5399 – volume: 193 start-page: 2396 year: 2011 ident: key 20171011192252_B36 article-title: The CRISPR/Cas immune system is an operon regulated by LeuO, H-NS, and leucine-responsive regulatory protein in Salmonella enterica serovar Typhi publication-title: J. Bacteriol. doi: 10.1128/JB.01480-10 – volume: 91 start-page: 900 year: 2014 ident: key 20171011192252_B21 article-title: Inter-viral conflicts that exploit host CRISPR immune systems of Sulfolobus publication-title: Mol. Microbiol. doi: 10.1111/mmi.12503 – volume: 10 start-page: 792 year: 2013 ident: key 20171011192252_B28 article-title: CRISPR-spacer integration reporter plasmids reveal distinct genuine acquisition specificities among CRISPR-Cas I-E variants of Escherichia coli publication-title: RNA Biol. doi: 10.4161/rna.24023 – volume: 395 start-page: 270 year: 2010 ident: key 20171011192252_B10 article-title: Transcription profile of Thermus thermophilus CRISPR systems after phage infection publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2009.10.057 – volume: 1 start-page: 7 year: 2006 ident: key 20171011192252_B9 article-title: A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action publication-title: Biol. Direct. doi: 10.1186/1745-6150-1-7 – volume: 78 start-page: 5630 year: 2012 ident: key 20171011192252_B41 article-title: A synthetic arabinose-inducible promoter confers high levels of recombinant protein expression in hyperthermophilic archaeon Sulfolobus islandicus publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00855-12 – volume: 10 start-page: 679 year: 2013 ident: key 20171011192252_B13 article-title: CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes publication-title: RNA Biol. doi: 10.4161/rna.24022 – volume: 46 start-page: 311 year: 2012 ident: key 20171011192252_B15 article-title: The CRISPRs, they are a-changin’: how prokaryotes generate adaptive immunity publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-110711-155447 – volume: 151 start-page: 653 year: 2005 ident: key 20171011192252_B6 article-title: CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies publication-title: Microbiology doi: 10.1099/mic.0.27437-0 – volume: 75 start-page: 1495 year: 2010 ident: key 20171011192252_B34 article-title: Identification and characterization of E. coli CRISPR-cas promoters and their silencing by H-NS publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2010.07073.x – volume: 42 start-page: 7226 year: 2014 ident: key 20171011192252_B23 article-title: Haloarcula hispanica CRISPR authenticates PAM of a target sequence to prime discriminative adaptation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku389 – volume: 9 start-page: 467 year: 2011 ident: key 20171011192252_B2 article-title: Evolution and classification of the CRISPR-Cas systems publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2577 – volume: 189 start-page: 3891 year: 2007 ident: key 20171011192252_B33 article-title: Transcription activation mediated by a cyclic AMP receptor protein from Thermus thermophilus HB8 publication-title: J. Bacteriol. doi: 10.1128/JB.01739-06 – volume: 19 start-page: 549 year: 2011 ident: key 20171011192252_B46 article-title: Archaeal CRISPR-based immune systems: exchangeable functional modules publication-title: Trends Microbiol. doi: 10.1016/j.tim.2011.08.002 – volume: 80 start-page: 481 year: 2011 ident: key 20171011192252_B47 article-title: In vivo activity of CRISPR-mediated virus defence in a hyperthermophilic archaeon publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2011.07586.x – volume: 35 start-page: 6788 year: 2007 ident: key 20171011192252_B42 article-title: The Sulfolobus solfataricus radA paralogue sso0777 is DNA damage inducible and positively regulated by the Sta1 protein publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm782 – volume: 74 start-page: 928 year: 2009 ident: key 20171011192252_B50 article-title: An upstream activation element exerting differential transcriptional activation on an archaeal promoter publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2009.06908.x – volume: 405 start-page: 939 year: 2011 ident: key 20171011192252_B49 article-title: The structure of the CRISPR-associated protein Csa3 provides insight into the regulation of the CRISPR/Cas system publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2010.11.019 – volume: 37 start-page: 23 year: 2009 ident: key 20171011192252_B8 article-title: Distribution of CRISPR spacer matches in viruses and plasmids of crenarchaeal acidothermophiles and implications for their inhibitory mechanism publication-title: Biochem. Soc. Trans. doi: 10.1042/BST0370023 – volume: 42 start-page: 2483 year: 2014 ident: key 20171011192252_B22 article-title: Adaptation of the Haloarcula hispanica CRISPR-Cas system to a purified virus strictly requires a priming process publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1154 – volume: 13 start-page: 735 year: 2009 ident: key 20171011192252_B40 article-title: Unmarked gene deletion and host-vector system for the hyperthermophilic crenarchaeon Sulfolobus islandicus publication-title: Extremophiles doi: 10.1007/s00792-009-0254-2 – volume: 77 start-page: 1380 year: 2010 ident: key 20171011192252_B35 article-title: H-NS-mediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2010.07315.x – volume: 3 start-page: 485 year: 2013 ident: key 20171011192252_B43 article-title: Specificity and function of archaeal DNA replication initiator proteins publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.01.002 – volume: 151 start-page: 2551 year: 2005 ident: key 20171011192252_B7 article-title: Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin publication-title: Microbiology doi: 10.1099/mic.0.28048-0 – volume: 8 start-page: R61 year: 2007 ident: key 20171011192252_B5 article-title: Evolutionary conservation of sequence and secondary structures in CRISPR repeats publication-title: Genome Biol. doi: 10.1186/gb-2007-8-4-r61 – volume: 6 start-page: 181 year: 2008 ident: key 20171011192252_B3 article-title: CRISPR–a widespread system that provides acquired resistance against phages in bacteria and archaea publication-title: Nat. Rev Microbiol. doi: 10.1038/nrmicro1793 – volume: 40 start-page: 5569 year: 2012 ident: key 20171011192252_B17 article-title: Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks216 – volume: 42 start-page: 8516 year: 2014 ident: key 20171011192252_B27 article-title: Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku527 – volume: 77 start-page: 1367 year: 2010 ident: key 20171011192252_B11 article-title: Transcription, processing and function of CRISPR cassettes in Escherichia coli publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2010.07265.x – volume: 60 start-page: 174 year: 2005 ident: key 20171011192252_B4 article-title: Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements publication-title: J. Mol. Evol. doi: 10.1007/s00239-004-0046-3 – volume: 79 start-page: 35 year: 2011 ident: key 20171011192252_B39 article-title: Dynamic properties of the Sulfolobus CRISPR/Cas and CRISPR/Cmr systems when challenged with vector-borne viral and plasmid genes and protospacers publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2010.07452.x – reference: 22558257 - PLoS One. 2012;7(4):e35888 – reference: 19818017 - Mol Microbiol. 2009 Nov;74(4):928-39 – reference: 24990370 - Nucleic Acids Res. 2014 Jul;42(13):8516-26 – reference: 23940313 - Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14396-401 – reference: 17442114 - Genome Biol. 2007;8(4):R61 – reference: 24433295 - Mol Microbiol. 2014 Mar;91(5):900-17 – reference: 20624226 - Mol Microbiol. 2010 Sep;77(6):1367-79 – reference: 18157154 - Nat Rev Microbiol. 2008 Mar;6(3):181-6 – reference: 19143596 - Biochem Soc Trans. 2009 Feb;37(Pt 1):23-8 – reference: 16079334 - Microbiology. 2005 Aug;151(Pt 8):2551-61 – reference: 22885297 - J Bacteriol. 2012 Nov;194(21):5728-38 – reference: 21093452 - J Mol Biol. 2011 Jan 28;405(4):939-55 – reference: 24039266 - J Bacteriol. 2013 Nov;195(22):5216-22 – reference: 17369302 - J Bacteriol. 2007 May;189(10):3891-901 – reference: 16292354 - PLoS Comput Biol. 2005 Nov;1(6):e60 – reference: 21398529 - J Bacteriol. 2011 May;193(10):2396-407 – reference: 23403393 - RNA Biol. 2013 May;10(5):891-9 – reference: 23320564 - Mol Microbiol. 2013 Mar;87(5):1088-99 – reference: 22402487 - Nucleic Acids Res. 2012 Jul;40(12):5569-76 – reference: 21166892 - Mol Microbiol. 2011 Jan;79(1):35-49 – reference: 24265226 - Nucleic Acids Res. 2014 Feb;42(4):2483-92 – reference: 22660711 - Appl Environ Microbiol. 2012 Aug;78(16):5630-7 – reference: 19891975 - J Mol Biol. 2010 Jan 15;395(2):270-81 – reference: 15791728 - J Mol Evol. 2005 Feb;60(2):174-82 – reference: 22139923 - Nucleic Acids Res. 2012 Mar;40(6):2470-80 – reference: 22781758 - Nat Commun. 2012;3:945 – reference: 16545108 - Biol Direct. 2006 Mar 16;1:7 – reference: 21385233 - Mol Microbiol. 2011 Apr;80(2):481-91 – reference: 21552286 - Nat Rev Microbiol. 2011 Jun;9(6):467-77 – reference: 24803673 - Nucleic Acids Res. 2014 Jun;42(11):7226-35 – reference: 20705666 - Microbiology. 2010 Nov;156(Pt 11):3386-97 – reference: 17921500 - Nucleic Acids Res. 2007;35(20):6788-97 – reference: 23445770 - RNA Biol. 2013 May;10(5):792-802 – reference: 19513584 - Extremophiles. 2009 Jul;13(4):735-46 – reference: 25056268 - Nat Commun. 2014;5:4399 – reference: 23145983 - Annu Rev Genet. 2012;46:311-39 – reference: 18703739 - Science. 2008 Aug 15;321(5891):960-4 – reference: 23392249 - RNA Biol. 2013 May;10(5):738-48 – reference: 22834906 - Mol Microbiol. 2012 Sep;85(6):1044-56 – reference: 20659289 - Mol Microbiol. 2010 Sep;77(6):1380-93 – reference: 15758212 - Microbiology. 2005 Mar;151(Pt 3):653-63 – reference: 23698312 - J Virol. 2013 Aug;87(15):8419-28 – reference: 24711427 - Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):E1629-38 – reference: 24920831 - Nucleic Acids Res. 2014 Jul;42(12):7884-93 – reference: 17379808 - Science. 2007 Mar 23;315(5819):1709-12 – reference: 20132443 - Mol Microbiol. 2010 Mar;75(6):1495-512 – reference: 21945420 - Trends Microbiol. 2011 Nov;19(11):549-56 – reference: 23375370 - Cell Rep. 2013 Feb 21;3(2):485-96 – reference: 24806524 - Mol Microbiol. 2014 Jul;93(1):1-9 – reference: 23439366 - RNA Biol. 2013 May;10(5):679-86 |
SSID | ssj0014154 |
Score | 2.3957775 |
Snippet | Acquisition of de novo spacer sequences confers CRISPR-Cas with a memory to defend against invading genetic elements. However, the mechanism of regulation of... Acquisition of de novo spacer sequences confers CRISPR-Cas with a memory to defend against invading genetic elements. However, the mechanism of regulation of... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1044 |
SubjectTerms | Binding Sites Clustered Regularly Interspaced Short Palindromic Repeats CRISPR-Associated Proteins - genetics CRISPR-Associated Proteins - metabolism CRISPR-Cas Systems DNA, Archaeal - chemistry DNA, Archaeal - metabolism Molecular Biology Promoter Regions, Genetic Sulfolobus - genetics Sulfolobus - metabolism Trans-Activators - metabolism Transcriptional Activation |
Title | Transcriptional regulator-mediated activation of adaptation genes triggers CRISPR de novo spacer acquisition |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25567986 https://www.proquest.com/docview/1652431256 https://pubmed.ncbi.nlm.nih.gov/PMC4333418 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeIAXBBuXcpmMNPFAlS2Jkzh9nKpNA2nTGJvoWxTHThfYklKaSfBz-KWcYztp2lUI9hJVrhMrPl_OxT7nMyE7QSxcnoXKSbM8cAJPuY5QfuREUkgZCoihh1jvfHwSHV0EH8fhuNf73claqudiN_u1tq7kLlKFNpArVsn-h2Tbh0ID_Ab5whUkDNd_kzEamuaz1wz9-mD5auboghB0JrFu4aZ1C1OZTm164QSV3GAOwfkEa3hHZx8-n54NpBqU1U01AD2TqRnc_b0uTFZX14s9QRJkJHrNConbDp0VMcztKWqNgrRatGhND1bya92C8YtdqR4XaSWLxdottn1qDKpdj_Aw9a_ZWvlLnWNHrTHNfWr4NXeVUbu6dmu4rJcNfZPFn99RsnBz0DHYeMTnWmNgiLJKTFQ_nHyrPWaOzOkAY3qtkYE0bHy4Ssmtjfzp8ShgDEx9fI_c9yEUQV3K3YN2pwocIENRZt_K1oDC2Hsw8p4dFzmn7SDLDtCtqGY1Obfj7Zw_Jo9smEL3DeaekJ4qN8nWfgnguv5J31GdOKx3ZDbJg1FzaOAWuVqBJL0NSbqAJK1yuoAk1ZCkDSSpgSSViiIkqYEk7UDyKbk4PDgfHTn2QA8nCz0-d2SeCxcCEJ5DkO8yzgQYFDf1RM5ZlsZRFvuSuVL6cepD5Jp58TD3uSehP2dccPaMbJRVqV4Q6sKkZuBaDV0FPmkYCIFkfZIrxkLu-6JP3jeznGSW7R4PXblKTNYFS0A6iZVOn-y0naeG5GV9t7eNuBKYVtxZS0tV1T8SLwp98MQhfOiT50Z87YMaufcJXxJs2wEJ3pf_KYtLTfRukffyzne-Ig8Xn-hrsjGf1eoNONFzsa1RvK2XoP4A9hzQmg |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptional+regulator-mediated+activation+of+adaptation+genes+triggers+CRISPR+de+novo+spacer+acquisition&rft.jtitle=Nucleic+acids+research&rft.au=Liu%2C+Tao&rft.au=Li%2C+Yingjun&rft.au=Wang%2C+Xiaodi&rft.au=Ye%2C+Qing&rft.date=2015-01-30&rft.pub=Oxford+University+Press&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=43&rft.issue=2&rft.spage=1044&rft.epage=1055&rft_id=info:doi/10.1093%2Fnar%2Fgku1383&rft_id=info%3Apmid%2F25567986&rft.externalDocID=PMC4333418 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |