Transcriptional regulator-mediated activation of adaptation genes triggers CRISPR de novo spacer acquisition

Acquisition of de novo spacer sequences confers CRISPR-Cas with a memory to defend against invading genetic elements. However, the mechanism of regulation of CRISPR spacer acquisition remains unknown. Here we examine the transcriptional regulation of the conserved spacer acquisition genes in Type I-...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 43; no. 2; pp. 1044 - 1055
Main Authors Liu, Tao, Li, Yingjun, Wang, Xiaodi, Ye, Qing, Li, Huan, Liang, Yunxiang, She, Qunxin, Peng, Nan
Format Journal Article
LanguageEnglish
Published England Oxford University Press 30.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Acquisition of de novo spacer sequences confers CRISPR-Cas with a memory to defend against invading genetic elements. However, the mechanism of regulation of CRISPR spacer acquisition remains unknown. Here we examine the transcriptional regulation of the conserved spacer acquisition genes in Type I-A of Sulfolobus islandicus REY15A. Csa3a, a MarR-like transcription factor encoded by the gene located adjacent to csa1, cas1, cas2 and cas4 cluster, but on the reverse strand, was demonstrated to specifically bind to the csa1 and cas1 promoters with the imperfect palindromic sequence. Importantly, it was demonstrated that the transcription level of csa1, cas1, cas2 and cas4 was significantly enhanced in a csa3a-overexpression strain and, moreover, the Csa1 and Cas1 protein levels were increased in this strain. Furthermore, we demonstrated the hyperactive uptake of unique spacers within both CRISPR loci in the presence of the csa3a overexpression vector. The spacer acquisition process is dependent on the CCN PAM sequence and protospacer selection is random and non-directional. These results suggested a regulation mechanism of CRISPR spacer acquisition where a single transcriptional regulator senses the presence of an invading element and then activates spacer acquisition gene expression which leads to de novo spacer uptake from the invading element.
AbstractList Acquisition of de novo spacer sequences confers CRISPR-Cas with a memory to defend against invading genetic elements. However, the mechanism of regulation of CRISPR spacer acquisition remains unknown. Here we examine the transcriptional regulation of the conserved spacer acquisition genes in Type I-A of Sulfolobus islandicus REY15A. Csa3a, a MarR-like transcription factor encoded by the gene located adjacent to csa1, cas1, cas2 and cas4 cluster, but on the reverse strand, was demonstrated to specifically bind to the csa1 and cas1 promoters with the imperfect palindromic sequence. Importantly, it was demonstrated that the transcription level of csa1, cas1, cas2 and cas4 was significantly enhanced in a csa3a-overexpression strain and, moreover, the Csa1 and Cas1 protein levels were increased in this strain. Furthermore, we demonstrated the hyperactive uptake of unique spacers within both CRISPR loci in the presence of the csa3a overexpression vector. The spacer acquisition process is dependent on the CCN PAM sequence and protospacer selection is random and non-directional. These results suggested a regulation mechanism of CRISPR spacer acquisition where a single transcriptional regulator senses the presence of an invading element and then activates spacer acquisition gene expression which leads to de novo spacer uptake from the invading element.Acquisition of de novo spacer sequences confers CRISPR-Cas with a memory to defend against invading genetic elements. However, the mechanism of regulation of CRISPR spacer acquisition remains unknown. Here we examine the transcriptional regulation of the conserved spacer acquisition genes in Type I-A of Sulfolobus islandicus REY15A. Csa3a, a MarR-like transcription factor encoded by the gene located adjacent to csa1, cas1, cas2 and cas4 cluster, but on the reverse strand, was demonstrated to specifically bind to the csa1 and cas1 promoters with the imperfect palindromic sequence. Importantly, it was demonstrated that the transcription level of csa1, cas1, cas2 and cas4 was significantly enhanced in a csa3a-overexpression strain and, moreover, the Csa1 and Cas1 protein levels were increased in this strain. Furthermore, we demonstrated the hyperactive uptake of unique spacers within both CRISPR loci in the presence of the csa3a overexpression vector. The spacer acquisition process is dependent on the CCN PAM sequence and protospacer selection is random and non-directional. These results suggested a regulation mechanism of CRISPR spacer acquisition where a single transcriptional regulator senses the presence of an invading element and then activates spacer acquisition gene expression which leads to de novo spacer uptake from the invading element.
Acquisition of de novo spacer sequences confers CRISPR-Cas with a memory to defend against invading genetic elements. However, the mechanism of regulation of CRISPR spacer acquisition remains unknown. Here we examine the transcriptional regulation of the conserved spacer acquisition genes in Type I-A of Sulfolobus islandicus REY15A. Csa3a, a MarR-like transcription factor encoded by the gene located adjacent to csa1, cas1, cas2 and cas4 cluster, but on the reverse strand, was demonstrated to specifically bind to the csa1 and cas1 promoters with the imperfect palindromic sequence. Importantly, it was demonstrated that the transcription level of csa1, cas1, cas2 and cas4 was significantly enhanced in a csa3a-overexpression strain and, moreover, the Csa1 and Cas1 protein levels were increased in this strain. Furthermore, we demonstrated the hyperactive uptake of unique spacers within both CRISPR loci in the presence of the csa3a overexpression vector. The spacer acquisition process is dependent on the CCN PAM sequence and protospacer selection is random and non-directional. These results suggested a regulation mechanism of CRISPR spacer acquisition where a single transcriptional regulator senses the presence of an invading element and then activates spacer acquisition gene expression which leads to de novo spacer uptake from the invading element.
Acquisition of de novo spacer sequences confers CRISPR-Cas with a memory to defend against invading genetic elements. However, the mechanism of regulation of CRISPR spacer acquisition remains unknown. Here we examine the transcriptional regulation of the conserved spacer acquisition genes in Type I-A of Sulfolobus islandicus REY15A. Csa3a, a MarR-like transcription factor encoded by the gene located adjacent to csa1, cas1, cas2 and cas4 cluster, but on the reverse strand, was demonstrated to specifically bind to the csa1 and cas1 promoters with the imperfect palindromic sequence. Importantly, it was demonstrated that the transcription level of csa1, cas1, cas2 and cas4 was significantly enhanced in a csa3a- overexpression strain and, moreover, the Csa1 and Cas1 protein levels were increased in this strain. Furthermore, we demonstrated the hyperactive uptake of unique spacers within both CRISPR loci in the presence of the csa3a overexpression vector. The spacer acquisition process is dependent on the CCN PAM sequence and protospacer selection is random and non-directional. These results suggested a regulation mechanism of CRISPR spacer acquisition where a single transcriptional regulator senses the presence of an invading element and then activates spacer acquisition gene expression which leads to de novo spacer uptake from the invading element.
Author Liang, Yunxiang
Wang, Xiaodi
She, Qunxin
Li, Huan
Li, Yingjun
Liu, Tao
Peng, Nan
Ye, Qing
Author_xml – sequence: 1
  givenname: Tao
  surname: Liu
  fullname: Liu, Tao
– sequence: 2
  givenname: Yingjun
  surname: Li
  fullname: Li, Yingjun
– sequence: 3
  givenname: Xiaodi
  surname: Wang
  fullname: Wang, Xiaodi
– sequence: 4
  givenname: Qing
  surname: Ye
  fullname: Ye, Qing
– sequence: 5
  givenname: Huan
  surname: Li
  fullname: Li, Huan
– sequence: 6
  givenname: Yunxiang
  surname: Liang
  fullname: Liang, Yunxiang
– sequence: 7
  givenname: Qunxin
  surname: She
  fullname: She, Qunxin
– sequence: 8
  givenname: Nan
  surname: Peng
  fullname: Peng, Nan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25567986$$D View this record in MEDLINE/PubMed
BookMark eNptkd1rFDEUxYNU7Hb1yXfJoyBj8zEzybwIsthaKFja-hzuJJkxOptMk8xC__tm2a2o-BTC_Z1zuPecoRMfvEXoLSUfKen4uYd4Pv5aKJf8BVpR3rKq7lp2glaEk6aipJan6Cyln4TQmjb1K3TKmqYVnWxXaLqP4JOObs4ueJhwtOMyQQ6x2lrjIFuDQWe3g_0chwGDgTkffqP1NuEc3TjamPDm9uru5hYbi33YBZxm0DYW9cPiktsLXqOXA0zJvjm-a_T94sv95mt1_e3yavP5utINFbkyw9CThggxdJ0kXPCeSk6A9oPgGmSrJTOcGMMkMFJ3mspuYIKawgsuesHX6NPBd176soW2PkeY1BzdFuKjCuDU3xPvfqgx7FTNOa9L2Bq9PxrE8LDYlNXWJW2nCbwNS1K0bVjNKWvagr77M-t3yPOJC0APgI4hpWgHpd3hfiXaTYoSta9RlRrVscai-fCP5tn2f_QTT7uiqA
CitedBy_id crossref_primary_10_1099_mic_0_000414
crossref_primary_10_1128_AEM_00948_21
crossref_primary_10_3390_ijms231710178
crossref_primary_10_3390_biom11121852
crossref_primary_10_3389_fmicb_2022_822304
crossref_primary_10_3389_fmicb_2019_02471
crossref_primary_10_1016_j_biochi_2015_03_025
crossref_primary_10_1093_nar_gkx791
crossref_primary_10_1016_j_jmb_2018_08_030
crossref_primary_10_1093_nar_gkaa694
crossref_primary_10_1016_j_fm_2023_104385
crossref_primary_10_3389_fmicb_2023_1060337
crossref_primary_10_1093_nar_gkw1265
crossref_primary_10_3390_biom10111523
crossref_primary_10_1016_j_jbc_2024_107295
crossref_primary_10_1016_j_ggedit_2022_100013
crossref_primary_10_1016_j_jbc_2022_101591
crossref_primary_10_1016_j_jgg_2021_02_012
crossref_primary_10_1371_journal_pcbi_1004603
crossref_primary_10_1074_jbc_RA120_014030
crossref_primary_10_1128_JB_00747_18
crossref_primary_10_1016_j_molcel_2016_01_030
crossref_primary_10_1039_D2FO03695A
crossref_primary_10_1007_s10123_021_00208_7
crossref_primary_10_1016_j_cell_2020_12_017
crossref_primary_10_7554_eLife_55852
crossref_primary_10_1016_j_mib_2017_02_004
crossref_primary_10_1093_nar_gkv517
crossref_primary_10_1093_nar_gkx612
crossref_primary_10_1186_s12862_017_1081_1
crossref_primary_10_3390_life5010783
crossref_primary_10_1371_journal_pcbi_1005891
crossref_primary_10_1016_j_ijbiomac_2024_134097
crossref_primary_10_1093_nar_gkw286
crossref_primary_10_1093_nar_gkv1044
crossref_primary_10_3390_biom10081161
crossref_primary_10_1128_mSystems_00020_17
crossref_primary_10_3390_microorganisms12091772
crossref_primary_10_1261_rna_039842_113
crossref_primary_10_1093_nar_gkaa635
crossref_primary_10_1007_s13721_020_0223_3
crossref_primary_10_1080_15476286_2018_1514234
crossref_primary_10_1016_j_ggedit_2024_100031
crossref_primary_10_3389_fmicb_2020_02038
crossref_primary_10_1111_mmi_13263
crossref_primary_10_1146_annurev_genet_120116_023413
crossref_primary_10_1007_s11427_016_0355_8
crossref_primary_10_1261_rna_078739_121
crossref_primary_10_3389_fmicb_2019_03078
crossref_primary_10_1093_nar_gky475
crossref_primary_10_1016_j_crmicr_2021_100040
crossref_primary_10_1007_s11427_020_1745_0
crossref_primary_10_1007_s12223_022_00993_2
Cites_doi 10.1126/science.1159689
10.4161/rna.23764
10.1128/JB.01184-12
10.4161/rna.23798
10.1099/mic.0.042523-0
10.1073/pnas.1400071111
10.1126/science.1138140
10.1128/JVI.01020-13
10.1093/nar/gku510
10.1093/nar/gkr1111
10.1371/journal.pcbi.0010060
10.1111/mmi.12640
10.1073/pnas.1300108110
10.1128/JB.00768-13
10.1038/ncomms1937
10.1111/j.1365-2958.2012.08171.x
10.1371/journal.pone.0035888
10.1093/nar/gku527
10.1111/mmi.12152
10.1038/ncomms5399
10.1128/JB.01480-10
10.1111/mmi.12503
10.4161/rna.24023
10.1016/j.jmb.2009.10.057
10.1186/1745-6150-1-7
10.1128/AEM.00855-12
10.4161/rna.24022
10.1146/annurev-genet-110711-155447
10.1099/mic.0.27437-0
10.1111/j.1365-2958.2010.07073.x
10.1093/nar/gku389
10.1038/nrmicro2577
10.1128/JB.01739-06
10.1016/j.tim.2011.08.002
10.1111/j.1365-2958.2011.07586.x
10.1093/nar/gkm782
10.1111/j.1365-2958.2009.06908.x
10.1016/j.jmb.2010.11.019
10.1042/BST0370023
10.1093/nar/gkt1154
10.1007/s00792-009-0254-2
10.1111/j.1365-2958.2010.07315.x
10.1016/j.celrep.2013.01.002
10.1099/mic.0.28048-0
10.1186/gb-2007-8-4-r61
10.1038/nrmicro1793
10.1093/nar/gks216
10.1111/j.1365-2958.2010.07265.x
10.1007/s00239-004-0046-3
10.1111/j.1365-2958.2010.07452.x
ContentType Journal Article
Copyright The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research. 2015
Copyright_xml – notice: The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
– notice: The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research. 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/nar/gku1383
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 1055
ExternalDocumentID PMC4333418
25567986
10_1093_nar_gku1383
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.I3
0R~
123
18M
1TH
29N
2WC
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAUQX
AAVAP
AAYXX
ABEJV
ABGNP
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACUTJ
ADBBV
ADHZD
AEGXH
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFYAG
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AOIJS
BAWUL
BAYMD
BCNDV
CAG
CIDKT
CITATION
CS3
CZ4
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
EMOBN
F5P
GROUPED_DOAJ
GX1
H13
HH5
HYE
HZ~
IH2
KAQDR
KQ8
KSI
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVD
OVT
P2P
PEELM
PQQKQ
R44
RD5
RNS
ROL
ROZ
RPM
RXO
SV3
TEORI
TN5
TOX
TR2
WG7
WOQ
X7H
XSB
YSK
ZKX
~91
~D7
~KM
.55
.GJ
3O-
AAWDT
AAYJJ
ABIME
ABNGD
ABPIB
ABSMQ
ABZEO
ACFRR
ACIPB
ACPQN
ACUKT
ACVCV
ACZBC
AEHUL
AEKPW
AFSHK
AGKRT
AGMDO
AGQPQ
ANFBD
APJGH
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
BEYMZ
C1A
CGR
COF
CUY
CVF
CXTWN
D0S
DFGAJ
ECM
EIF
ELUNK
FEDTE
HVGLF
H~9
MBTAY
MVM
NPM
NTWIH
O~Y
PB-
QBD
RNI
RZF
RZO
SJN
TCN
UHB
X7M
XSW
ZXP
7X8
5PM
ID FETCH-LOGICAL-c517t-dffb05077f9980373b1830a1bf73ca86c82d30dd28a2049c189f271d7f9737b73
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 18:21:03 EDT 2025
Fri Jul 11 06:46:57 EDT 2025
Mon Jul 21 05:47:52 EDT 2025
Thu Apr 24 23:04:05 EDT 2025
Tue Jul 01 02:06:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://creativecommons.org/licenses/by/4.0
The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c517t-dffb05077f9980373b1830a1bf73ca86c82d30dd28a2049c189f271d7f9737b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1093/nar/gku1383
PMID 25567986
PQID 1652431256
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4333418
proquest_miscellaneous_1652431256
pubmed_primary_25567986
crossref_citationtrail_10_1093_nar_gku1383
crossref_primary_10_1093_nar_gku1383
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-30
PublicationDateYYYYMMDD 2015-01-30
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-30
  day: 30
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2015
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Lintner ( key 20171011192252_B49) 2011; 405
Erdmann ( key 20171011192252_B20) 2012; 85
Richter ( key 20171011192252_B27) 2014; 42
Haft ( key 20171011192252_B12) 2005; 1
Makarova ( key 20171011192252_B2) 2011; 9
Agari ( key 20171011192252_B10) 2010; 395
Li ( key 20171011192252_B23) 2014; 42
Deng ( key 20171011192252_B32) 2012; 40
Mojica ( key 20171011192252_B4) 2005; 60
Samson ( key 20171011192252_B43) 2013; 3
Gudbergsdottir ( key 20171011192252_B39) 2011; 79
Pul ( key 20171011192252_B34) 2010; 75
Peng ( key 20171011192252_B50) 2009; 74
Westra ( key 20171011192252_B15) 2012; 46
Swarts ( key 20171011192252_B16) 2012; 7
Garrett ( key 20171011192252_B46) 2011; 19
Yosef ( key 20171011192252_B17) 2012; 40
Erdmann ( key 20171011192252_B21) 2014; 91
Li ( key 20171011192252_B22) 2014; 42
Deng ( key 20171011192252_B37) 2013; 87
Ao ( key 20171011192252_B45) 2013; 195
Heler ( key 20171011192252_B31) 2014; 93
Peng ( key 20171011192252_B41) 2012; 78
Barrangou ( key 20171011192252_B1) 2007; 315
Cady ( key 20171011192252_B19) 2012; 194
Shah ( key 20171011192252_B8) 2009; 37
Brouns ( key 20171011192252_B14) 2008; 321
Richter ( key 20171011192252_B24) 2014; 42
Makarova ( key 20171011192252_B9) 2006; 1
Bolotin ( key 20171011192252_B7) 2005; 151
Shinkai ( key 20171011192252_B33) 2007; 189
Quax ( key 20171011192252_B48) 2013; 87
Westra ( key 20171011192252_B35) 2010; 77
Pougach ( key 20171011192252_B11) 2010; 77
Diez-Villasenor ( key 20171011192252_B28) 2013; 10
Deng ( key 20171011192252_B40) 2009; 13
Yosef ( key 20171011192252_B18) 2013; 110
Arslan ( key 20171011192252_B26) 2014; 42
Zhang ( key 20171011192252_B44) 2010; 156
Peng ( key 20171011192252_B38) 2013; 10
Manica ( key 20171011192252_B47) 2011; 80
Kunin ( key 20171011192252_B5) 2007; 8
Fineran ( key 20171011192252_B29) 2014; 111
Hynes ( key 20171011192252_B30) 2014; 5
Shah ( key 20171011192252_B51) 2013; 10
Medina-Aparicio ( key 20171011192252_B36) 2011; 193
Datsenko ( key 20171011192252_B25) 2012; 3
Sorek ( key 20171011192252_B3) 2008; 6
Abella ( key 20171011192252_B42) 2007; 35
Koonin ( key 20171011192252_B13) 2013; 10
Pourcel ( key 20171011192252_B6) 2005; 151
23392249 - RNA Biol. 2013 May;10(5):738-48
21385233 - Mol Microbiol. 2011 Apr;80(2):481-91
22558257 - PLoS One. 2012;7(4):e35888
19891975 - J Mol Biol. 2010 Jan 15;395(2):270-81
23403393 - RNA Biol. 2013 May;10(5):891-9
22402487 - Nucleic Acids Res. 2012 Jul;40(12):5569-76
24433295 - Mol Microbiol. 2014 Mar;91(5):900-17
21093452 - J Mol Biol. 2011 Jan 28;405(4):939-55
22834906 - Mol Microbiol. 2012 Sep;85(6):1044-56
23940313 - Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14396-401
22781758 - Nat Commun. 2012;3:945
23145983 - Annu Rev Genet. 2012;46:311-39
19143596 - Biochem Soc Trans. 2009 Feb;37(Pt 1):23-8
17379808 - Science. 2007 Mar 23;315(5819):1709-12
22139923 - Nucleic Acids Res. 2012 Mar;40(6):2470-80
20624226 - Mol Microbiol. 2010 Sep;77(6):1367-79
24265226 - Nucleic Acids Res. 2014 Feb;42(4):2483-92
24711427 - Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):E1629-38
18703739 - Science. 2008 Aug 15;321(5891):960-4
19513584 - Extremophiles. 2009 Jul;13(4):735-46
24920831 - Nucleic Acids Res. 2014 Jul;42(12):7884-93
24039266 - J Bacteriol. 2013 Nov;195(22):5216-22
23698312 - J Virol. 2013 Aug;87(15):8419-28
24806524 - Mol Microbiol. 2014 Jul;93(1):1-9
22885297 - J Bacteriol. 2012 Nov;194(21):5728-38
21945420 - Trends Microbiol. 2011 Nov;19(11):549-56
16545108 - Biol Direct. 2006 Mar 16;1:7
23445770 - RNA Biol. 2013 May;10(5):792-802
20705666 - Microbiology. 2010 Nov;156(Pt 11):3386-97
15791728 - J Mol Evol. 2005 Feb;60(2):174-82
17921500 - Nucleic Acids Res. 2007;35(20):6788-97
24990370 - Nucleic Acids Res. 2014 Jul;42(13):8516-26
17369302 - J Bacteriol. 2007 May;189(10):3891-901
20659289 - Mol Microbiol. 2010 Sep;77(6):1380-93
19818017 - Mol Microbiol. 2009 Nov;74(4):928-39
18157154 - Nat Rev Microbiol. 2008 Mar;6(3):181-6
24803673 - Nucleic Acids Res. 2014 Jun;42(11):7226-35
23320564 - Mol Microbiol. 2013 Mar;87(5):1088-99
21552286 - Nat Rev Microbiol. 2011 Jun;9(6):467-77
15758212 - Microbiology. 2005 Mar;151(Pt 3):653-63
20132443 - Mol Microbiol. 2010 Mar;75(6):1495-512
23375370 - Cell Rep. 2013 Feb 21;3(2):485-96
21398529 - J Bacteriol. 2011 May;193(10):2396-407
16292354 - PLoS Comput Biol. 2005 Nov;1(6):e60
21166892 - Mol Microbiol. 2011 Jan;79(1):35-49
17442114 - Genome Biol. 2007;8(4):R61
23439366 - RNA Biol. 2013 May;10(5):679-86
25056268 - Nat Commun. 2014;5:4399
16079334 - Microbiology. 2005 Aug;151(Pt 8):2551-61
22660711 - Appl Environ Microbiol. 2012 Aug;78(16):5630-7
References_xml – volume: 321
  start-page: 960
  year: 2008
  ident: key 20171011192252_B14
  article-title: Small CRISPR RNAs guide antiviral defense in prokaryotes
  publication-title: Science
  doi: 10.1126/science.1159689
– volume: 10
  start-page: 891
  year: 2013
  ident: key 20171011192252_B51
  article-title: Protospacer recognition motifs: mixed identities and functional diversity
  publication-title: RNA Biol.
  doi: 10.4161/rna.23764
– volume: 194
  start-page: 5728
  year: 2012
  ident: key 20171011192252_B19
  article-title: The CRISPR/Cas adaptive immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring and engineered phages
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01184-12
– volume: 10
  start-page: 738
  year: 2013
  ident: key 20171011192252_B38
  article-title: Genetic determinants of PAM-dependent DNA targeting and pre-crRNA processing in Sulfolobus islandicus
  publication-title: RNA Biol.
  doi: 10.4161/rna.23798
– volume: 156
  start-page: 3386
  year: 2010
  ident: key 20171011192252_B44
  article-title: Revealing the essentiality of multiple archaeal pcna genes using a mutant propagation assay based on an improved knockout method
  publication-title: Microbiology
  doi: 10.1099/mic.0.042523-0
– volume: 111
  start-page: 1629
  year: 2014
  ident: key 20171011192252_B29
  article-title: Degenerate target sites mediate rapid primed CRISPR adaptation
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1400071111
– volume: 315
  start-page: 1709
  year: 2007
  ident: key 20171011192252_B1
  article-title: CRISPR provides acquired resistance against viruses in prokaryotes
  publication-title: Science
  doi: 10.1126/science.1138140
– volume: 87
  start-page: 8419
  year: 2013
  ident: key 20171011192252_B48
  article-title: Massive activation of archaeal defense genes during viral infection
  publication-title: J. Virol.
  doi: 10.1128/JVI.01020-13
– volume: 42
  start-page: 7884
  year: 2014
  ident: key 20171011192252_B26
  article-title: Detection and characterization of spacer integration intermediates in type I-E CRISPR-Cas system
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku510
– volume: 40
  start-page: 2470
  year: 2012
  ident: key 20171011192252_B32
  article-title: Modulation of CRISPR locus transcription by the repeat-binding protein Cbp1 in Sulfolobus
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr1111
– volume: 1
  start-page: e60
  year: 2005
  ident: key 20171011192252_B12
  article-title: A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes
  publication-title: PLoS Comp. Biol.
  doi: 10.1371/journal.pcbi.0010060
– volume: 93
  start-page: 1
  year: 2014
  ident: key 20171011192252_B31
  article-title: Adapting to new threats: the generation of memory by CRISPR-Cas immune systems
  publication-title: Mol. Microbiol.
  doi: 10.1111/mmi.12640
– volume: 110
  start-page: 14396
  year: 2013
  ident: key 20171011192252_B18
  article-title: DNA motifs determining the efficiency of adaptation into the Escherichia coli CRISPR array
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1300108110
– volume: 195
  start-page: 5216
  year: 2013
  ident: key 20171011192252_B45
  article-title: The Sulfolobus initiator element is an important contributor to promoter strength
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00768-13
– volume: 3
  start-page: 945
  year: 2012
  ident: key 20171011192252_B25
  article-title: Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1937
– volume: 85
  start-page: 1044
  year: 2012
  ident: key 20171011192252_B20
  article-title: Selective and hyperactive uptake of foreign DNA by adaptive immune systems of an archaeon via two distinct mechanisms
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2012.08171.x
– volume: 7
  start-page: e35888
  year: 2012
  ident: key 20171011192252_B16
  article-title: CRISPR interference directs strand specific spacer acquisition
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0035888
– volume: 42
  start-page: 8516
  year: 2014
  ident: key 20171011192252_B24
  article-title: Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku527
– volume: 87
  start-page: 1088
  year: 2013
  ident: key 20171011192252_B37
  article-title: A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus
  publication-title: Mol. Microbiol.
  doi: 10.1111/mmi.12152
– volume: 5
  start-page: 4399
  year: 2014
  ident: key 20171011192252_B30
  article-title: Adaptation in bacterial CRISPR-Cas immunity can be driven by defective phages
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5399
– volume: 193
  start-page: 2396
  year: 2011
  ident: key 20171011192252_B36
  article-title: The CRISPR/Cas immune system is an operon regulated by LeuO, H-NS, and leucine-responsive regulatory protein in Salmonella enterica serovar Typhi
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01480-10
– volume: 91
  start-page: 900
  year: 2014
  ident: key 20171011192252_B21
  article-title: Inter-viral conflicts that exploit host CRISPR immune systems of Sulfolobus
  publication-title: Mol. Microbiol.
  doi: 10.1111/mmi.12503
– volume: 10
  start-page: 792
  year: 2013
  ident: key 20171011192252_B28
  article-title: CRISPR-spacer integration reporter plasmids reveal distinct genuine acquisition specificities among CRISPR-Cas I-E variants of Escherichia coli
  publication-title: RNA Biol.
  doi: 10.4161/rna.24023
– volume: 395
  start-page: 270
  year: 2010
  ident: key 20171011192252_B10
  article-title: Transcription profile of Thermus thermophilus CRISPR systems after phage infection
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2009.10.057
– volume: 1
  start-page: 7
  year: 2006
  ident: key 20171011192252_B9
  article-title: A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action
  publication-title: Biol. Direct.
  doi: 10.1186/1745-6150-1-7
– volume: 78
  start-page: 5630
  year: 2012
  ident: key 20171011192252_B41
  article-title: A synthetic arabinose-inducible promoter confers high levels of recombinant protein expression in hyperthermophilic archaeon Sulfolobus islandicus
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00855-12
– volume: 10
  start-page: 679
  year: 2013
  ident: key 20171011192252_B13
  article-title: CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes
  publication-title: RNA Biol.
  doi: 10.4161/rna.24022
– volume: 46
  start-page: 311
  year: 2012
  ident: key 20171011192252_B15
  article-title: The CRISPRs, they are a-changin’: how prokaryotes generate adaptive immunity
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-110711-155447
– volume: 151
  start-page: 653
  year: 2005
  ident: key 20171011192252_B6
  article-title: CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies
  publication-title: Microbiology
  doi: 10.1099/mic.0.27437-0
– volume: 75
  start-page: 1495
  year: 2010
  ident: key 20171011192252_B34
  article-title: Identification and characterization of E. coli CRISPR-cas promoters and their silencing by H-NS
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2010.07073.x
– volume: 42
  start-page: 7226
  year: 2014
  ident: key 20171011192252_B23
  article-title: Haloarcula hispanica CRISPR authenticates PAM of a target sequence to prime discriminative adaptation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku389
– volume: 9
  start-page: 467
  year: 2011
  ident: key 20171011192252_B2
  article-title: Evolution and classification of the CRISPR-Cas systems
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2577
– volume: 189
  start-page: 3891
  year: 2007
  ident: key 20171011192252_B33
  article-title: Transcription activation mediated by a cyclic AMP receptor protein from Thermus thermophilus HB8
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01739-06
– volume: 19
  start-page: 549
  year: 2011
  ident: key 20171011192252_B46
  article-title: Archaeal CRISPR-based immune systems: exchangeable functional modules
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2011.08.002
– volume: 80
  start-page: 481
  year: 2011
  ident: key 20171011192252_B47
  article-title: In vivo activity of CRISPR-mediated virus defence in a hyperthermophilic archaeon
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2011.07586.x
– volume: 35
  start-page: 6788
  year: 2007
  ident: key 20171011192252_B42
  article-title: The Sulfolobus solfataricus radA paralogue sso0777 is DNA damage inducible and positively regulated by the Sta1 protein
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm782
– volume: 74
  start-page: 928
  year: 2009
  ident: key 20171011192252_B50
  article-title: An upstream activation element exerting differential transcriptional activation on an archaeal promoter
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2009.06908.x
– volume: 405
  start-page: 939
  year: 2011
  ident: key 20171011192252_B49
  article-title: The structure of the CRISPR-associated protein Csa3 provides insight into the regulation of the CRISPR/Cas system
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2010.11.019
– volume: 37
  start-page: 23
  year: 2009
  ident: key 20171011192252_B8
  article-title: Distribution of CRISPR spacer matches in viruses and plasmids of crenarchaeal acidothermophiles and implications for their inhibitory mechanism
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST0370023
– volume: 42
  start-page: 2483
  year: 2014
  ident: key 20171011192252_B22
  article-title: Adaptation of the Haloarcula hispanica CRISPR-Cas system to a purified virus strictly requires a priming process
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1154
– volume: 13
  start-page: 735
  year: 2009
  ident: key 20171011192252_B40
  article-title: Unmarked gene deletion and host-vector system for the hyperthermophilic crenarchaeon Sulfolobus islandicus
  publication-title: Extremophiles
  doi: 10.1007/s00792-009-0254-2
– volume: 77
  start-page: 1380
  year: 2010
  ident: key 20171011192252_B35
  article-title: H-NS-mediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2010.07315.x
– volume: 3
  start-page: 485
  year: 2013
  ident: key 20171011192252_B43
  article-title: Specificity and function of archaeal DNA replication initiator proteins
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.01.002
– volume: 151
  start-page: 2551
  year: 2005
  ident: key 20171011192252_B7
  article-title: Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin
  publication-title: Microbiology
  doi: 10.1099/mic.0.28048-0
– volume: 8
  start-page: R61
  year: 2007
  ident: key 20171011192252_B5
  article-title: Evolutionary conservation of sequence and secondary structures in CRISPR repeats
  publication-title: Genome Biol.
  doi: 10.1186/gb-2007-8-4-r61
– volume: 6
  start-page: 181
  year: 2008
  ident: key 20171011192252_B3
  article-title: CRISPR–a widespread system that provides acquired resistance against phages in bacteria and archaea
  publication-title: Nat. Rev Microbiol.
  doi: 10.1038/nrmicro1793
– volume: 40
  start-page: 5569
  year: 2012
  ident: key 20171011192252_B17
  article-title: Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks216
– volume: 42
  start-page: 8516
  year: 2014
  ident: key 20171011192252_B27
  article-title: Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku527
– volume: 77
  start-page: 1367
  year: 2010
  ident: key 20171011192252_B11
  article-title: Transcription, processing and function of CRISPR cassettes in Escherichia coli
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2010.07265.x
– volume: 60
  start-page: 174
  year: 2005
  ident: key 20171011192252_B4
  article-title: Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements
  publication-title: J. Mol. Evol.
  doi: 10.1007/s00239-004-0046-3
– volume: 79
  start-page: 35
  year: 2011
  ident: key 20171011192252_B39
  article-title: Dynamic properties of the Sulfolobus CRISPR/Cas and CRISPR/Cmr systems when challenged with vector-borne viral and plasmid genes and protospacers
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2010.07452.x
– reference: 22558257 - PLoS One. 2012;7(4):e35888
– reference: 19818017 - Mol Microbiol. 2009 Nov;74(4):928-39
– reference: 24990370 - Nucleic Acids Res. 2014 Jul;42(13):8516-26
– reference: 23940313 - Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14396-401
– reference: 17442114 - Genome Biol. 2007;8(4):R61
– reference: 24433295 - Mol Microbiol. 2014 Mar;91(5):900-17
– reference: 20624226 - Mol Microbiol. 2010 Sep;77(6):1367-79
– reference: 18157154 - Nat Rev Microbiol. 2008 Mar;6(3):181-6
– reference: 19143596 - Biochem Soc Trans. 2009 Feb;37(Pt 1):23-8
– reference: 16079334 - Microbiology. 2005 Aug;151(Pt 8):2551-61
– reference: 22885297 - J Bacteriol. 2012 Nov;194(21):5728-38
– reference: 21093452 - J Mol Biol. 2011 Jan 28;405(4):939-55
– reference: 24039266 - J Bacteriol. 2013 Nov;195(22):5216-22
– reference: 17369302 - J Bacteriol. 2007 May;189(10):3891-901
– reference: 16292354 - PLoS Comput Biol. 2005 Nov;1(6):e60
– reference: 21398529 - J Bacteriol. 2011 May;193(10):2396-407
– reference: 23403393 - RNA Biol. 2013 May;10(5):891-9
– reference: 23320564 - Mol Microbiol. 2013 Mar;87(5):1088-99
– reference: 22402487 - Nucleic Acids Res. 2012 Jul;40(12):5569-76
– reference: 21166892 - Mol Microbiol. 2011 Jan;79(1):35-49
– reference: 24265226 - Nucleic Acids Res. 2014 Feb;42(4):2483-92
– reference: 22660711 - Appl Environ Microbiol. 2012 Aug;78(16):5630-7
– reference: 19891975 - J Mol Biol. 2010 Jan 15;395(2):270-81
– reference: 15791728 - J Mol Evol. 2005 Feb;60(2):174-82
– reference: 22139923 - Nucleic Acids Res. 2012 Mar;40(6):2470-80
– reference: 22781758 - Nat Commun. 2012;3:945
– reference: 16545108 - Biol Direct. 2006 Mar 16;1:7
– reference: 21385233 - Mol Microbiol. 2011 Apr;80(2):481-91
– reference: 21552286 - Nat Rev Microbiol. 2011 Jun;9(6):467-77
– reference: 24803673 - Nucleic Acids Res. 2014 Jun;42(11):7226-35
– reference: 20705666 - Microbiology. 2010 Nov;156(Pt 11):3386-97
– reference: 17921500 - Nucleic Acids Res. 2007;35(20):6788-97
– reference: 23445770 - RNA Biol. 2013 May;10(5):792-802
– reference: 19513584 - Extremophiles. 2009 Jul;13(4):735-46
– reference: 25056268 - Nat Commun. 2014;5:4399
– reference: 23145983 - Annu Rev Genet. 2012;46:311-39
– reference: 18703739 - Science. 2008 Aug 15;321(5891):960-4
– reference: 23392249 - RNA Biol. 2013 May;10(5):738-48
– reference: 22834906 - Mol Microbiol. 2012 Sep;85(6):1044-56
– reference: 20659289 - Mol Microbiol. 2010 Sep;77(6):1380-93
– reference: 15758212 - Microbiology. 2005 Mar;151(Pt 3):653-63
– reference: 23698312 - J Virol. 2013 Aug;87(15):8419-28
– reference: 24711427 - Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):E1629-38
– reference: 24920831 - Nucleic Acids Res. 2014 Jul;42(12):7884-93
– reference: 17379808 - Science. 2007 Mar 23;315(5819):1709-12
– reference: 20132443 - Mol Microbiol. 2010 Mar;75(6):1495-512
– reference: 21945420 - Trends Microbiol. 2011 Nov;19(11):549-56
– reference: 23375370 - Cell Rep. 2013 Feb 21;3(2):485-96
– reference: 24806524 - Mol Microbiol. 2014 Jul;93(1):1-9
– reference: 23439366 - RNA Biol. 2013 May;10(5):679-86
SSID ssj0014154
Score 2.3957775
Snippet Acquisition of de novo spacer sequences confers CRISPR-Cas with a memory to defend against invading genetic elements. However, the mechanism of regulation of...
Acquisition of de novo spacer sequences confers CRISPR-Cas with a memory to defend against invading genetic elements. However, the mechanism of regulation of...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1044
SubjectTerms Binding Sites
Clustered Regularly Interspaced Short Palindromic Repeats
CRISPR-Associated Proteins - genetics
CRISPR-Associated Proteins - metabolism
CRISPR-Cas Systems
DNA, Archaeal - chemistry
DNA, Archaeal - metabolism
Molecular Biology
Promoter Regions, Genetic
Sulfolobus - genetics
Sulfolobus - metabolism
Trans-Activators - metabolism
Transcriptional Activation
Title Transcriptional regulator-mediated activation of adaptation genes triggers CRISPR de novo spacer acquisition
URI https://www.ncbi.nlm.nih.gov/pubmed/25567986
https://www.proquest.com/docview/1652431256
https://pubmed.ncbi.nlm.nih.gov/PMC4333418
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeIAXBBuXcpmMNPFAlS2Jkzh9nKpNA2nTGJvoWxTHThfYklKaSfBz-KWcYztp2lUI9hJVrhMrPl_OxT7nMyE7QSxcnoXKSbM8cAJPuY5QfuREUkgZCoihh1jvfHwSHV0EH8fhuNf73claqudiN_u1tq7kLlKFNpArVsn-h2Tbh0ID_Ab5whUkDNd_kzEamuaz1wz9-mD5auboghB0JrFu4aZ1C1OZTm164QSV3GAOwfkEa3hHZx8-n54NpBqU1U01AD2TqRnc_b0uTFZX14s9QRJkJHrNConbDp0VMcztKWqNgrRatGhND1bya92C8YtdqR4XaSWLxdottn1qDKpdj_Aw9a_ZWvlLnWNHrTHNfWr4NXeVUbu6dmu4rJcNfZPFn99RsnBz0DHYeMTnWmNgiLJKTFQ_nHyrPWaOzOkAY3qtkYE0bHy4Ssmtjfzp8ShgDEx9fI_c9yEUQV3K3YN2pwocIENRZt_K1oDC2Hsw8p4dFzmn7SDLDtCtqGY1Obfj7Zw_Jo9smEL3DeaekJ4qN8nWfgnguv5J31GdOKx3ZDbJg1FzaOAWuVqBJL0NSbqAJK1yuoAk1ZCkDSSpgSSViiIkqYEk7UDyKbk4PDgfHTn2QA8nCz0-d2SeCxcCEJ5DkO8yzgQYFDf1RM5ZlsZRFvuSuVL6cepD5Jp58TD3uSehP2dccPaMbJRVqV4Q6sKkZuBaDV0FPmkYCIFkfZIrxkLu-6JP3jeznGSW7R4PXblKTNYFS0A6iZVOn-y0naeG5GV9t7eNuBKYVtxZS0tV1T8SLwp98MQhfOiT50Z87YMaufcJXxJs2wEJ3pf_KYtLTfRukffyzne-Ig8Xn-hrsjGf1eoNONFzsa1RvK2XoP4A9hzQmg
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptional+regulator-mediated+activation+of+adaptation+genes+triggers+CRISPR+de+novo+spacer+acquisition&rft.jtitle=Nucleic+acids+research&rft.au=Liu%2C+Tao&rft.au=Li%2C+Yingjun&rft.au=Wang%2C+Xiaodi&rft.au=Ye%2C+Qing&rft.date=2015-01-30&rft.pub=Oxford+University+Press&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=43&rft.issue=2&rft.spage=1044&rft.epage=1055&rft_id=info:doi/10.1093%2Fnar%2Fgku1383&rft_id=info%3Apmid%2F25567986&rft.externalDocID=PMC4333418
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon