Tannase production by Paecilomyces variotii
Surface response methodology was applied to the optimization of the laboratory scale production of tannase using a lineage of Paecilomyces variotii. A preliminary study was conducted to evaluate the effects of variables, including temperature (°C), residue (%) (coffee husk:wheat bran), tannic acid (...
Saved in:
Published in | Bioresource technology Vol. 98; no. 9; pp. 1832 - 1837 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.07.2007
Elsevier Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Surface response methodology was applied to the optimization of the laboratory scale production of tannase using a lineage of
Paecilomyces variotii. A preliminary study was conducted to evaluate the effects of variables, including temperature (°C), residue (%) (coffee husk:wheat bran), tannic acid (%) and salt solutions (%) on the production of tannase during 3, 5 and 7 days of fermentation. Among these variables, temperature, residues and tannic acid had significant effects on tannase production. The variables were optimized using surface response methodology. The best conditions for tannase production were: temperature (29–34
°C); tannic acid (8.5–14%); % residue (coffee husk:wheat bran 50:50) and incubation time of 5 days. The supplementation of external nitrogen and carbon sources at 0.4%, 0.8% and 1.2% concentration on tannase production were studied in the optimized medium. Three different nitrogen sources included yeast extract, ammonia nitrate and sodium nitrate along with carbon source (starch) were studied. Only ammonia nitrate showed a significant effect on tannase production. After the optimization process, the tannase activity increased 8.6-fold. |
---|---|
AbstractList | Surface response methodology was applied to the optimization of the laboratory scale production of tannase using a lineage of Paecilomyces variotii. A preliminary study was conducted to evaluate the effects of variables, including temperature ( not equal to ), residue (%) (coffee husk:wheat bran), tannic acid (%) and salt solutions (%) on the production of tannase during 3, 5 and 7 days of fermentation. Among these variables, temperature, residues and tannic acid had significant effects on tannase production. The variables were optimized using surface response methodology. The best conditions for tannase production were: temperature (29-34 not equal to ); tannic acid (8.5-14%); % residue (coffee husk:wheat bran 50:50) and incubation time of 5 days. The supplementation of external nitrogen and carbon sources at 0.4%, 0.8% and 1.2% concentration on tannase production were studied in the optimized medium. Three different nitrogen sources included yeast extract, ammonia nitrate and sodium nitrate along with carbon source (starch) were studied. Only ammonia nitrate showed a significant effect on tannase production. After the optimization process, the tannase activity increased 8.6-fold. Surface response methodology was applied to the optimization of the laboratory scale production of tannase using a lineage of Paecilomyces variotii. A preliminary study was conducted to evaluate the effects of variables, including temperature (°C), residue (%) (coffee husk:wheat bran), tannic acid (%) and salt solutions (%) on the production of tannase during 3, 5 and 7 days of fermentation. Among these variables, temperature, residues and tannic acid had significant effects on tannase production. The variables were optimized using surface response methodology. The best conditions for tannase production were: temperature (29–34 °C); tannic acid (8.5–14%); % residue (coffee husk:wheat bran 50:50) and incubation time of 5 days. The supplementation of external nitrogen and carbon sources at 0.4%, 0.8% and 1.2% concentration on tannase production were studied in the optimized medium. Three different nitrogen sources included yeast extract, ammonia nitrate and sodium nitrate along with carbon source (starch) were studied. Only ammonia nitrate showed a significant effect on tannase production. After the optimization process, the tannase activity increased 8.6-fold. Surface response methodology was applied to the optimization of the laboratory scale production of tannase using a lineage of Paecilomyces variotii. A preliminary study was conducted to evaluate the effects of variables, including temperature (°C), residue (%) (coffee husk:wheat bran), tannic acid (%) and salt solutions (%) on the production of tannase during 3, 5 and 7 days of fermentation. Among these variables, temperature, residues and tannic acid had significant effects on tannase production. The variables were optimized using surface response methodology. The best conditions for tannase production were: temperature (29-34 °C); tannic acid (8.5-14%); % residue (coffee husk:wheat bran 50:50) and incubation time of 5 days. The supplementation of external nitrogen and carbon sources at 0.4%, 0.8% and 1.2% concentration on tannase production were studied in the optimized medium. Three different nitrogen sources included yeast extract, ammonia nitrate and sodium nitrate along with carbon source (starch) were studied. Only ammonia nitrate showed a significant effect on tannase production. After the optimization process, the tannase activity increased 8.6-fold. Surface response methodology was applied to the optimization of the laboratory scale production of tannase using a lineage of Paecilomyces variotii. A preliminary study was conducted to evaluate the effects of variables, including temperature ( degrees C), residue (%) (coffee husk:wheat bran), tannic acid (%) and salt solutions (%) on the production of tannase during 3, 5 and 7 days of fermentation. Among these variables, temperature, residues and tannic acid had significant effects on tannase production. The variables were optimized using surface response methodology. The best conditions for tannase production were: temperature (29-34 degrees C); tannic acid (8.5-14%); % residue (coffee husk:wheat bran 50:50) and incubation time of 5 days. The supplementation of external nitrogen and carbon sources at 0.4%, 0.8% and 1.2% concentration on tannase production were studied in the optimized medium. Three different nitrogen sources included yeast extract, ammonia nitrate and sodium nitrate along with carbon source (starch) were studied. Only ammonia nitrate showed a significant effect on tannase production. After the optimization process, the tannase activity increased 8.6-fold. |
Author | Macedo, Gabriela Alves Battestin, Vania |
Author_xml | – sequence: 1 givenname: Vania surname: Battestin fullname: Battestin, Vania email: vania@fea.unicamp.br – sequence: 2 givenname: Gabriela Alves surname: Macedo fullname: Macedo, Gabriela Alves |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18539041$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17045475$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0MuKFDEUBuAgI07P6CuMvdGNVHuSVG47ZfAGAwq265DLiaaproxJ9UC_vVV0yywHDmTznZOf_4pcjGVEQm4obChQ-X638bnUCcOfDQOQm2U4fUZWVCveMaPkBVmBkdBpwfpLctXaDmAmir0gl1RBL3olVuTd1o2ja7i-ryUewpTLuPbH9Q-HIQ9lfwzY1g-u5jLl_JI8T25o-Or8XpPt50_b26_d3fcv324_3nVBUDV10XEQjoL0LpjIvUoiCaojOo99jN4w6noaGYKLwUclkvaJCc81muQlvyZvT2fnSH8P2Ca7zy3gMLgRy6FZqY3hjIonITVaKgpmhvIEQy2tVUz2vua9q0dLwS512p39X6dd6rTLcDov3px_OPg9xse1c38zeHMGrgU3pOrGkNuj04Ib6JdDr08uuWLd7zqbXz8ZUA6gZc_pkvHDSeDc7EPGalvIOAaMuWKYbCz5qbT_AF3ooh8 |
CitedBy_id | crossref_primary_10_1016_j_fbio_2024_104664 crossref_primary_10_1016_j_biteb_2022_101103 crossref_primary_10_1080_10826068_2018_1487853 crossref_primary_10_1134_S0003683813060045 crossref_primary_10_1111_jam_12934 crossref_primary_10_3109_07388551_2012_659172 crossref_primary_10_1080_08905436_2020_1869564 crossref_primary_10_3109_07388551_2013_803020 crossref_primary_10_1007_s12649_020_01208_w crossref_primary_10_1016_j_foodres_2018_05_004 crossref_primary_10_1039_C7FO01645J crossref_primary_10_1016_j_foodres_2013_01_018 crossref_primary_10_1080_10826068_2023_2256011 crossref_primary_10_5897_AJMR2014_7234 crossref_primary_10_1016_j_foodchem_2012_01_041 crossref_primary_10_3390_fermentation9090781 crossref_primary_10_1007_s00449_012_0771_8 crossref_primary_10_1590_S0104_66322012000100006 crossref_primary_10_1016_j_foodchem_2007_10_068 crossref_primary_10_1590_S0104_66322011000300004 crossref_primary_10_1016_j_biortech_2007_04_026 crossref_primary_10_1080_14786419_2017_1380010 crossref_primary_10_1111_jfbc_13149 crossref_primary_10_1111_jfbc_12850 crossref_primary_10_1007_s00253_007_1000_2 crossref_primary_10_1002_btpr_2126 crossref_primary_10_1016_j_ibiod_2011_08_006 crossref_primary_10_1016_j_jbiosc_2011_02_008 crossref_primary_10_1016_j_molcatb_2012_09_001 crossref_primary_10_1007_s12649_022_01981_w crossref_primary_10_1016_j_fbio_2020_100787 crossref_primary_10_1016_j_foodcont_2020_107525 crossref_primary_10_1039_D0FO01963A crossref_primary_10_1007_s00253_018_9408_4 crossref_primary_10_1186_s13068_018_1093_0 crossref_primary_10_1007_s13213_012_0541_5 crossref_primary_10_1016_j_fbio_2022_101957 crossref_primary_10_1128_AEM_01761_07 crossref_primary_10_1016_j_biortech_2012_11_057 crossref_primary_10_1007_s12247_008_9042_2 crossref_primary_10_1016_j_bej_2017_05_018 crossref_primary_10_1016_j_foodchem_2010_11_026 crossref_primary_10_1016_j_molcatb_2011_03_005 crossref_primary_10_1039_C6FO00373G crossref_primary_10_1016_j_cherd_2014_07_014 crossref_primary_10_1080_00986445_2020_1780212 crossref_primary_10_1007_s13197_015_1858_4 crossref_primary_10_3109_02652048_2011_552988 crossref_primary_10_3390_foods12203754 crossref_primary_10_4061_2011_823619 crossref_primary_10_1016_j_bcab_2019_01_052 crossref_primary_10_1007_s12257_010_0058_3 crossref_primary_10_1016_j_resconrec_2012_06_005 crossref_primary_10_1016_j_envres_2021_111625 crossref_primary_10_1016_j_indcrop_2021_113791 crossref_primary_10_1016_j_biortech_2011_04_099 crossref_primary_10_1016_j_biortech_2007_07_047 crossref_primary_10_3389_fmicb_2018_03058 crossref_primary_10_3390_su132011432 crossref_primary_10_1016_j_resconrec_2017_10_001 crossref_primary_10_1007_s00449_011_0587_y crossref_primary_10_1007_s12010_009_8542_y crossref_primary_10_1016_j_bcab_2014_11_005 crossref_primary_10_1007_s13213_012_0508_6 crossref_primary_10_1007_s11274_010_0311_0 crossref_primary_10_1016_j_bcab_2019_101481 crossref_primary_10_1016_j_sjbs_2017_11_025 crossref_primary_10_1016_j_bcab_2018_07_005 crossref_primary_10_1111_j_1365_2621_2011_02620_x crossref_primary_10_1007_s12257_009_3029_9 crossref_primary_10_1016_j_molcatb_2013_11_018 crossref_primary_10_1080_00986445_2018_1452201 crossref_primary_10_1186_s40694_021_00111_w crossref_primary_10_1016_j_jff_2018_06_026 crossref_primary_10_1007_s10086_008_1005_1 crossref_primary_10_1007_s10086_013_1366_y crossref_primary_10_1007_s10068_016_0130_7 crossref_primary_10_1016_j_fbio_2020_100607 crossref_primary_10_2323_jgam_55_255 |
ContentType | Journal Article |
Copyright | 2006 Elsevier Ltd 2007 INIST-CNRS |
Copyright_xml | – notice: 2006 Elsevier Ltd – notice: 2007 INIST-CNRS |
DBID | FBQ IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7T7 8FD C1K FR3 M7N P64 7X8 |
DOI | 10.1016/j.biortech.2006.06.031 |
DatabaseName | AGRIS Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Biotechnology Research Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
EndPage | 1837 |
ExternalDocumentID | 10_1016_j_biortech_2006_06_031 17045475 18539041 US201300864319 S0960852406003774 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM ABPIF ABPTK FBQ AAPBV IQODW AAHBH AAXKI AFJKZ AKRWK CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7T7 8FD C1K FR3 M7N P64 7X8 |
ID | FETCH-LOGICAL-c517t-da305a106bac9d3b7f5f518deabe4ddb921a41d2e0adcbd75f8bf25b38e9fb63 |
IEDL.DBID | AIKHN |
ISSN | 0960-8524 |
IngestDate | Fri Oct 25 08:50:00 EDT 2024 Fri Oct 25 13:20:00 EDT 2024 Thu Sep 26 19:08:52 EDT 2024 Sat Sep 28 07:50:00 EDT 2024 Sun Oct 22 16:07:14 EDT 2023 Wed Dec 27 18:46:57 EST 2023 Fri Feb 23 02:29:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Residues Tannase Response surface Fungi Paecilomyces variotii Enzyme Residue Hydrolases Esterases Fungi Imperfecti Carboxylic ester hydrolases Thallophyta |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-da305a106bac9d3b7f5f518deabe4ddb921a41d2e0adcbd75f8bf25b38e9fb63 |
Notes | http://dx.doi.org/10.1016/j.biortech.2006.06.031 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 17045475 |
PQID | 19867109 |
PQPubID | 23462 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_68993215 proquest_miscellaneous_19867109 crossref_primary_10_1016_j_biortech_2006_06_031 pubmed_primary_17045475 pascalfrancis_primary_18539041 fao_agris_US201300864319 elsevier_sciencedirect_doi_10_1016_j_biortech_2006_06_031 |
PublicationCentury | 2000 |
PublicationDate | 2007-07-01 |
PublicationDateYYYYMMDD | 2007-07-01 |
PublicationDate_xml | – month: 07 year: 2007 text: 2007-07-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2007 |
Publisher | Elsevier Ltd Elsevier Science |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science |
References | Lekha, Lonsane (bib12) 1997; 44 Mondal, Banerjee, Jana, Pati (bib14) 2001; 295 Batra, Saxena (bib4) 2005; 40 Lagemaat, Pyle (bib10) 2001; 84 Aguilar, Gutiérrez-Sanchez (bib1) 2001; 7 Banerjee, Mukherjee, Patra (bib3) 2005; 96 Belmares, Contreras-Esquival, Rodriguez-Herrera, Coronel, Aguilar (bib5) 2004; 37 Djekrif-Dakhmouche, Gheribi-Aoulmi, Meraihi, Bennamoun (bib8) 2006; 73 Kar, Banerjee, Bhattacharyya (bib9) 2002; 37 Banerjee, Mondal, Pati (bib2) 2001; 41 Macedo, Pastore, Rodrigues (bib13) 2003; 1 Bradoo, Gupta, Saxena (bib6) 1997; 32 Yu, Li, Wu (bib17) 2004; 30 Patel, Dodia, Singh (bib15) 2005; 40 Couri, Terzi, Silva, Freitas, Pinto (bib7) 1998; 7 Lekha, Lonsane (bib11) 1994; 29 Pinto, G.A.S., 2003. Produção de Tannase por Ph.D. Thesis, Rio de Janeiro, 213p. |
References_xml | – volume: 96 start-page: 949 year: 2005 end-page: 953 ident: bib3 article-title: Microbial transformation of tannin-rich to gallic acid through co-culture method publication-title: Bioresour. Technol. contributor: fullname: Patra – volume: 37 start-page: 857 year: 2004 end-page: 864 ident: bib5 article-title: Microbial production of tannase: an enzyme with potential use in food industry publication-title: Lebensm. –Wiss. Technol. contributor: fullname: Aguilar – volume: 37 start-page: 1395 year: 2002 end-page: 1401 ident: bib9 article-title: Optimization of physicochemical parameters for gallic acid production by evolutionary operation-factorial design technique publication-title: Process Biochem. contributor: fullname: Bhattacharyya – volume: 29 start-page: 497 year: 1994 end-page: 503 ident: bib11 article-title: Comparative titres, location and properties of tannin acyl hydrolase produced by publication-title: Process Biochem. contributor: fullname: Lonsane – volume: 41 start-page: 313 year: 2001 end-page: 318 ident: bib2 article-title: Production and characterization of extracellular and intracellular tannase from newly isolated publication-title: J. Basic Microbiol. contributor: fullname: Pati – volume: 73 start-page: 190 year: 2006 end-page: 197 ident: bib8 article-title: Application of a statistical design to the optimization of culture medium for α-amylase production by publication-title: J. Food Eng. contributor: fullname: Bennamoun – volume: 40 start-page: 1553-1557 year: 2005 ident: bib4 article-title: Potential tannase producers from the genera publication-title: Process Biochem. contributor: fullname: Saxena – volume: 44 start-page: 215 year: 1997 end-page: 260 ident: bib12 article-title: Production and application of tannin acyl hydrolase: state of the art publication-title: Adv. Appl. Biochem. Microbiol. contributor: fullname: Lonsane – volume: 1 start-page: 59 year: 2003 end-page: 63 ident: bib13 article-title: Lipase-catalyzed synthesis of isoamyl acetate in free-solvent media-optimization using a central composite design publication-title: Food Agric. Environ. contributor: fullname: Rodrigues – volume: 295 start-page: 168 year: 2001 end-page: 171 ident: bib14 article-title: Colorimetric assay method for determination of the tannin acyl hydrolase activity publication-title: Anal. Biochem. contributor: fullname: Pati – volume: 84 start-page: 15 year: 2001 end-page: 123 ident: bib10 article-title: Solid-state fermentation and bioremediation: development of a continuous process for the production of fungal tannase publication-title: Chem. Eng. J. contributor: fullname: Pyle – volume: 40 start-page: 3569 year: 2005 end-page: 3575 ident: bib15 article-title: Extracellular alkaline protease from a newly isolated haloalkaliphilic publication-title: Process Biochem. contributor: fullname: Singh – volume: 32 start-page: 135 year: 1997 end-page: 139 ident: bib6 article-title: Parametric optimization and biochemical regulation of extracellular tannase from publication-title: Process Biochem. contributor: fullname: Saxena – volume: 7 start-page: 373 year: 2001 end-page: 382 ident: bib1 article-title: Review: sources, properties, applications and potential uses of tannin acyl hydrolase publication-title: Food Sci. Technol. Int. contributor: fullname: Gutiérrez-Sanchez – volume: 7 start-page: 29 year: 1998 end-page: 31 ident: bib7 article-title: Seleção de linhagens mutantes de publication-title: Ciência e Engenharia contributor: fullname: Pinto – volume: 30 start-page: 69 year: 2004 end-page: 73 ident: bib17 article-title: Enzymatic synthesis of gallic acid esters using microencapsulated tannase: effect of organic solvents and enzyme specificity publication-title: J. Mol. Catal. B: Enzyme contributor: fullname: Wu |
SSID | ssj0003172 |
Score | 2.2844007 |
Snippet | Surface response methodology was applied to the optimization of the laboratory scale production of tannase using a lineage of
Paecilomyces variotii. A... Surface response methodology was applied to the optimization of the laboratory scale production of tannase using a lineage of Paecilomyces variotii. A... |
SourceID | proquest crossref pubmed pascalfrancis fao elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1832 |
SubjectTerms | Biological and medical sciences biosynthesis Carbon - chemistry Carboxylic Ester Hydrolases - biosynthesis Coffee - chemistry Dietary Fiber - analysis Fermentation Fundamental and applied biological sciences. Psychology Kinetics Nitrogen - chemistry Paecilomyces Paecilomyces - enzymology Paecilomyces - metabolism Paecilomyces variotii Residues Response surface Salts - chemistry Salts - pharmacology Tannase Tannins - chemistry Temperature |
Title | Tannase production by Paecilomyces variotii |
URI | https://dx.doi.org/10.1016/j.biortech.2006.06.031 https://www.ncbi.nlm.nih.gov/pubmed/17045475 https://search.proquest.com/docview/19867109 https://search.proquest.com/docview/68993215 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swED7EztBkKFo3D7epo6FbodiURIscDSOG2wJBgNiAN-IokoGCRDJiJ0CW_PYeLSmPwehQgJNECtR94t13uuMR4EdCLFdEaEPnV1NimAt1xLJQCpSxFZaLbJPlezGczpPfC77YgXGzF8anVda6v9LpG21dX-nX0uwv87x_5cm34N4i-SIqadKCXTJHkWjD7ujXn-nFi0ImE7kJJlD_0A94s1H45kznPqn1JS5BLWbbbFTLYemTJ3FF8nPVwRfbmenGQk0-wceaWgajavafYccWHdgfXd_X5TVsBz6Mm_Pd6M6bUoRf4OcMi4IsWrCsSsASXIF-Ci7RZvltefdE6iR4JL-6XOf5Acwm57PxNKwPUggzztJ1aJBWNZLzpzGTJtap444zYSxqmxijZcQwYSayAzSZNil3QruI61hY6fQwPoR2URb2GAKTJQYzwteRIyYijaQRYkTCW6AmV7ML_UZyalmVy1BNHtmNamTtz74cKt9i1gXZCFi9A16RTv_n2GNCRCEJcqXmV5GPwpKLRpyIJtJ7B9PrbIifyEFCY08b3BQJ3odJsLDlw0ox6Wv-DeT2HkNyUmPiSl04qgB_fXrqSxqm_Ot_vNU32Gt-IA_YCbTX9w_2OzGfte5B6-yZ9erv-y_c0AE0 |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xONAeKkpb2JZCDtxQ2HVib-wjWoGWQlElFombNY5tFESTFbtU4tLf3nEeLBxWHCrllNiRM589801mPAY44MRyZYIu9mE1cct8bBKWx0qiSp10QuZ1lu_lcHzNf9yImxUYdXthQlplq_sbnV5r6_ZOv5Vmf1oU_atAvqUIFikUUcn4KqzzwI9pUh_9XeR5kIGsQwnUOg7NX2wTvjsyRUhpfY5K0JWyZRZq1WMVUidxRtLzzbEXy3lpbZ9ON-FDSyyj42bsH2HFlVvw_vj2oS2u4bZgY9Sd7kZPXhQi_ASHEyxLsmfRtCkAS2BF5in6hS4v7qvfT6RMoj_kVVfzovgMk9OTyWgct8coxLlg2Ty2SGsayfUzmCubmswLL5i0Do3j1hqVMOTMJm6ANjc2E14anwiTSqe8GaZfYK2sSrcDkc25xZzQ9eSGycQg6YMUkdCWaMjR7EG_k5yeNsUydJdFdqc7WYeTL4c6XCnrgeoErF_Brkmjv9l3hxDRSIKc6eurJMRgyUEjRkQD2XsF02I0xE7UgFPf_Q43TYIPQRIsXfU400yFin8DtbzFkFzUlJhSD7YbwBdvz0JBw0x8_Y-v2oeN8eTnhb44uzz_Bu-6X8kDtgtr84dH95040Nzs1XP8HzH5Ag0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tannase+production+by+Paecilomyces+variotii&rft.jtitle=Bioresource+technology&rft.au=Battestin%2C+Vania&rft.au=Macedo%2C+Gabriela+Alves&rft.date=2007-07-01&rft.pub=Elsevier+Ltd&rft.issn=0960-8524&rft.eissn=1873-2976&rft.volume=98&rft.issue=9&rft.spage=1832&rft.epage=1837&rft_id=info:doi/10.1016%2Fj.biortech.2006.06.031&rft.externalDocID=S0960852406003774 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |