Tannase production by Paecilomyces variotii

Surface response methodology was applied to the optimization of the laboratory scale production of tannase using a lineage of Paecilomyces variotii. A preliminary study was conducted to evaluate the effects of variables, including temperature (°C), residue (%) (coffee husk:wheat bran), tannic acid (...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 98; no. 9; pp. 1832 - 1837
Main Authors Battestin, Vania, Macedo, Gabriela Alves
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.07.2007
Elsevier Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Surface response methodology was applied to the optimization of the laboratory scale production of tannase using a lineage of Paecilomyces variotii. A preliminary study was conducted to evaluate the effects of variables, including temperature (°C), residue (%) (coffee husk:wheat bran), tannic acid (%) and salt solutions (%) on the production of tannase during 3, 5 and 7 days of fermentation. Among these variables, temperature, residues and tannic acid had significant effects on tannase production. The variables were optimized using surface response methodology. The best conditions for tannase production were: temperature (29–34 °C); tannic acid (8.5–14%); % residue (coffee husk:wheat bran 50:50) and incubation time of 5 days. The supplementation of external nitrogen and carbon sources at 0.4%, 0.8% and 1.2% concentration on tannase production were studied in the optimized medium. Three different nitrogen sources included yeast extract, ammonia nitrate and sodium nitrate along with carbon source (starch) were studied. Only ammonia nitrate showed a significant effect on tannase production. After the optimization process, the tannase activity increased 8.6-fold.
AbstractList Surface response methodology was applied to the optimization of the laboratory scale production of tannase using a lineage of Paecilomyces variotii. A preliminary study was conducted to evaluate the effects of variables, including temperature ( not equal to ), residue (%) (coffee husk:wheat bran), tannic acid (%) and salt solutions (%) on the production of tannase during 3, 5 and 7 days of fermentation. Among these variables, temperature, residues and tannic acid had significant effects on tannase production. The variables were optimized using surface response methodology. The best conditions for tannase production were: temperature (29-34 not equal to ); tannic acid (8.5-14%); % residue (coffee husk:wheat bran 50:50) and incubation time of 5 days. The supplementation of external nitrogen and carbon sources at 0.4%, 0.8% and 1.2% concentration on tannase production were studied in the optimized medium. Three different nitrogen sources included yeast extract, ammonia nitrate and sodium nitrate along with carbon source (starch) were studied. Only ammonia nitrate showed a significant effect on tannase production. After the optimization process, the tannase activity increased 8.6-fold.
Surface response methodology was applied to the optimization of the laboratory scale production of tannase using a lineage of Paecilomyces variotii. A preliminary study was conducted to evaluate the effects of variables, including temperature (°C), residue (%) (coffee husk:wheat bran), tannic acid (%) and salt solutions (%) on the production of tannase during 3, 5 and 7 days of fermentation. Among these variables, temperature, residues and tannic acid had significant effects on tannase production. The variables were optimized using surface response methodology. The best conditions for tannase production were: temperature (29–34 °C); tannic acid (8.5–14%); % residue (coffee husk:wheat bran 50:50) and incubation time of 5 days. The supplementation of external nitrogen and carbon sources at 0.4%, 0.8% and 1.2% concentration on tannase production were studied in the optimized medium. Three different nitrogen sources included yeast extract, ammonia nitrate and sodium nitrate along with carbon source (starch) were studied. Only ammonia nitrate showed a significant effect on tannase production. After the optimization process, the tannase activity increased 8.6-fold.
Surface response methodology was applied to the optimization of the laboratory scale production of tannase using a lineage of Paecilomyces variotii. A preliminary study was conducted to evaluate the effects of variables, including temperature (°C), residue (%) (coffee husk:wheat bran), tannic acid (%) and salt solutions (%) on the production of tannase during 3, 5 and 7 days of fermentation. Among these variables, temperature, residues and tannic acid had significant effects on tannase production. The variables were optimized using surface response methodology. The best conditions for tannase production were: temperature (29-34 °C); tannic acid (8.5-14%); % residue (coffee husk:wheat bran 50:50) and incubation time of 5 days. The supplementation of external nitrogen and carbon sources at 0.4%, 0.8% and 1.2% concentration on tannase production were studied in the optimized medium. Three different nitrogen sources included yeast extract, ammonia nitrate and sodium nitrate along with carbon source (starch) were studied. Only ammonia nitrate showed a significant effect on tannase production. After the optimization process, the tannase activity increased 8.6-fold.
Surface response methodology was applied to the optimization of the laboratory scale production of tannase using a lineage of Paecilomyces variotii. A preliminary study was conducted to evaluate the effects of variables, including temperature ( degrees C), residue (%) (coffee husk:wheat bran), tannic acid (%) and salt solutions (%) on the production of tannase during 3, 5 and 7 days of fermentation. Among these variables, temperature, residues and tannic acid had significant effects on tannase production. The variables were optimized using surface response methodology. The best conditions for tannase production were: temperature (29-34 degrees C); tannic acid (8.5-14%); % residue (coffee husk:wheat bran 50:50) and incubation time of 5 days. The supplementation of external nitrogen and carbon sources at 0.4%, 0.8% and 1.2% concentration on tannase production were studied in the optimized medium. Three different nitrogen sources included yeast extract, ammonia nitrate and sodium nitrate along with carbon source (starch) were studied. Only ammonia nitrate showed a significant effect on tannase production. After the optimization process, the tannase activity increased 8.6-fold.
Author Macedo, Gabriela Alves
Battestin, Vania
Author_xml – sequence: 1
  givenname: Vania
  surname: Battestin
  fullname: Battestin, Vania
  email: vania@fea.unicamp.br
– sequence: 2
  givenname: Gabriela Alves
  surname: Macedo
  fullname: Macedo, Gabriela Alves
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18539041$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17045475$$D View this record in MEDLINE/PubMed
BookMark eNqF0MuKFDEUBuAgI07P6CuMvdGNVHuSVG47ZfAGAwq265DLiaaproxJ9UC_vVV0yywHDmTznZOf_4pcjGVEQm4obChQ-X638bnUCcOfDQOQm2U4fUZWVCveMaPkBVmBkdBpwfpLctXaDmAmir0gl1RBL3olVuTd1o2ja7i-ryUewpTLuPbH9Q-HIQ9lfwzY1g-u5jLl_JI8T25o-Or8XpPt50_b26_d3fcv324_3nVBUDV10XEQjoL0LpjIvUoiCaojOo99jN4w6noaGYKLwUclkvaJCc81muQlvyZvT2fnSH8P2Ca7zy3gMLgRy6FZqY3hjIonITVaKgpmhvIEQy2tVUz2vua9q0dLwS512p39X6dd6rTLcDov3px_OPg9xse1c38zeHMGrgU3pOrGkNuj04Ib6JdDr08uuWLd7zqbXz8ZUA6gZc_pkvHDSeDc7EPGalvIOAaMuWKYbCz5qbT_AF3ooh8
CitedBy_id crossref_primary_10_1016_j_fbio_2024_104664
crossref_primary_10_1016_j_biteb_2022_101103
crossref_primary_10_1080_10826068_2018_1487853
crossref_primary_10_1134_S0003683813060045
crossref_primary_10_1111_jam_12934
crossref_primary_10_3109_07388551_2012_659172
crossref_primary_10_1080_08905436_2020_1869564
crossref_primary_10_3109_07388551_2013_803020
crossref_primary_10_1007_s12649_020_01208_w
crossref_primary_10_1016_j_foodres_2018_05_004
crossref_primary_10_1039_C7FO01645J
crossref_primary_10_1016_j_foodres_2013_01_018
crossref_primary_10_1080_10826068_2023_2256011
crossref_primary_10_5897_AJMR2014_7234
crossref_primary_10_1016_j_foodchem_2012_01_041
crossref_primary_10_3390_fermentation9090781
crossref_primary_10_1007_s00449_012_0771_8
crossref_primary_10_1590_S0104_66322012000100006
crossref_primary_10_1016_j_foodchem_2007_10_068
crossref_primary_10_1590_S0104_66322011000300004
crossref_primary_10_1016_j_biortech_2007_04_026
crossref_primary_10_1080_14786419_2017_1380010
crossref_primary_10_1111_jfbc_13149
crossref_primary_10_1111_jfbc_12850
crossref_primary_10_1007_s00253_007_1000_2
crossref_primary_10_1002_btpr_2126
crossref_primary_10_1016_j_ibiod_2011_08_006
crossref_primary_10_1016_j_jbiosc_2011_02_008
crossref_primary_10_1016_j_molcatb_2012_09_001
crossref_primary_10_1007_s12649_022_01981_w
crossref_primary_10_1016_j_fbio_2020_100787
crossref_primary_10_1016_j_foodcont_2020_107525
crossref_primary_10_1039_D0FO01963A
crossref_primary_10_1007_s00253_018_9408_4
crossref_primary_10_1186_s13068_018_1093_0
crossref_primary_10_1007_s13213_012_0541_5
crossref_primary_10_1016_j_fbio_2022_101957
crossref_primary_10_1128_AEM_01761_07
crossref_primary_10_1016_j_biortech_2012_11_057
crossref_primary_10_1007_s12247_008_9042_2
crossref_primary_10_1016_j_bej_2017_05_018
crossref_primary_10_1016_j_foodchem_2010_11_026
crossref_primary_10_1016_j_molcatb_2011_03_005
crossref_primary_10_1039_C6FO00373G
crossref_primary_10_1016_j_cherd_2014_07_014
crossref_primary_10_1080_00986445_2020_1780212
crossref_primary_10_1007_s13197_015_1858_4
crossref_primary_10_3109_02652048_2011_552988
crossref_primary_10_3390_foods12203754
crossref_primary_10_4061_2011_823619
crossref_primary_10_1016_j_bcab_2019_01_052
crossref_primary_10_1007_s12257_010_0058_3
crossref_primary_10_1016_j_resconrec_2012_06_005
crossref_primary_10_1016_j_envres_2021_111625
crossref_primary_10_1016_j_indcrop_2021_113791
crossref_primary_10_1016_j_biortech_2011_04_099
crossref_primary_10_1016_j_biortech_2007_07_047
crossref_primary_10_3389_fmicb_2018_03058
crossref_primary_10_3390_su132011432
crossref_primary_10_1016_j_resconrec_2017_10_001
crossref_primary_10_1007_s00449_011_0587_y
crossref_primary_10_1007_s12010_009_8542_y
crossref_primary_10_1016_j_bcab_2014_11_005
crossref_primary_10_1007_s13213_012_0508_6
crossref_primary_10_1007_s11274_010_0311_0
crossref_primary_10_1016_j_bcab_2019_101481
crossref_primary_10_1016_j_sjbs_2017_11_025
crossref_primary_10_1016_j_bcab_2018_07_005
crossref_primary_10_1111_j_1365_2621_2011_02620_x
crossref_primary_10_1007_s12257_009_3029_9
crossref_primary_10_1016_j_molcatb_2013_11_018
crossref_primary_10_1080_00986445_2018_1452201
crossref_primary_10_1186_s40694_021_00111_w
crossref_primary_10_1016_j_jff_2018_06_026
crossref_primary_10_1007_s10086_008_1005_1
crossref_primary_10_1007_s10086_013_1366_y
crossref_primary_10_1007_s10068_016_0130_7
crossref_primary_10_1016_j_fbio_2020_100607
crossref_primary_10_2323_jgam_55_255
ContentType Journal Article
Copyright 2006 Elsevier Ltd
2007 INIST-CNRS
Copyright_xml – notice: 2006 Elsevier Ltd
– notice: 2007 INIST-CNRS
DBID FBQ
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7T7
8FD
C1K
FR3
M7N
P64
7X8
DOI 10.1016/j.biortech.2006.06.031
DatabaseName AGRIS
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Biotechnology Research Abstracts


MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 1837
ExternalDocumentID 10_1016_j_biortech_2006_06_031
17045475
18539041
US201300864319
S0960852406003774
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
ABPIF
ABPTK
FBQ
AAPBV
IQODW
AAHBH
AAXKI
AFJKZ
AKRWK
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7T7
8FD
C1K
FR3
M7N
P64
7X8
ID FETCH-LOGICAL-c517t-da305a106bac9d3b7f5f518deabe4ddb921a41d2e0adcbd75f8bf25b38e9fb63
IEDL.DBID AIKHN
ISSN 0960-8524
IngestDate Fri Oct 25 08:50:00 EDT 2024
Fri Oct 25 13:20:00 EDT 2024
Thu Sep 26 19:08:52 EDT 2024
Sat Sep 28 07:50:00 EDT 2024
Sun Oct 22 16:07:14 EDT 2023
Wed Dec 27 18:46:57 EST 2023
Fri Feb 23 02:29:26 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Residues
Tannase
Response surface
Fungi
Paecilomyces variotii
Enzyme
Residue
Hydrolases
Esterases
Fungi Imperfecti
Carboxylic ester hydrolases
Thallophyta
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-da305a106bac9d3b7f5f518deabe4ddb921a41d2e0adcbd75f8bf25b38e9fb63
Notes http://dx.doi.org/10.1016/j.biortech.2006.06.031
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 17045475
PQID 19867109
PQPubID 23462
PageCount 6
ParticipantIDs proquest_miscellaneous_68993215
proquest_miscellaneous_19867109
crossref_primary_10_1016_j_biortech_2006_06_031
pubmed_primary_17045475
pascalfrancis_primary_18539041
fao_agris_US201300864319
elsevier_sciencedirect_doi_10_1016_j_biortech_2006_06_031
PublicationCentury 2000
PublicationDate 2007-07-01
PublicationDateYYYYMMDD 2007-07-01
PublicationDate_xml – month: 07
  year: 2007
  text: 2007-07-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2007
Publisher Elsevier Ltd
Elsevier Science
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science
References Lekha, Lonsane (bib12) 1997; 44
Mondal, Banerjee, Jana, Pati (bib14) 2001; 295
Batra, Saxena (bib4) 2005; 40
Lagemaat, Pyle (bib10) 2001; 84
Aguilar, Gutiérrez-Sanchez (bib1) 2001; 7
Banerjee, Mukherjee, Patra (bib3) 2005; 96
Belmares, Contreras-Esquival, Rodriguez-Herrera, Coronel, Aguilar (bib5) 2004; 37
Djekrif-Dakhmouche, Gheribi-Aoulmi, Meraihi, Bennamoun (bib8) 2006; 73
Kar, Banerjee, Bhattacharyya (bib9) 2002; 37
Banerjee, Mondal, Pati (bib2) 2001; 41
Macedo, Pastore, Rodrigues (bib13) 2003; 1
Bradoo, Gupta, Saxena (bib6) 1997; 32
Yu, Li, Wu (bib17) 2004; 30
Patel, Dodia, Singh (bib15) 2005; 40
Couri, Terzi, Silva, Freitas, Pinto (bib7) 1998; 7
Lekha, Lonsane (bib11) 1994; 29
Pinto, G.A.S., 2003. Produção de Tannase por
Ph.D. Thesis, Rio de Janeiro, 213p.
References_xml – volume: 96
  start-page: 949
  year: 2005
  end-page: 953
  ident: bib3
  article-title: Microbial transformation of tannin-rich to gallic acid through co-culture method
  publication-title: Bioresour. Technol.
  contributor:
    fullname: Patra
– volume: 37
  start-page: 857
  year: 2004
  end-page: 864
  ident: bib5
  article-title: Microbial production of tannase: an enzyme with potential use in food industry
  publication-title: Lebensm. –Wiss. Technol.
  contributor:
    fullname: Aguilar
– volume: 37
  start-page: 1395
  year: 2002
  end-page: 1401
  ident: bib9
  article-title: Optimization of physicochemical parameters for gallic acid production by evolutionary operation-factorial design technique
  publication-title: Process Biochem.
  contributor:
    fullname: Bhattacharyya
– volume: 29
  start-page: 497
  year: 1994
  end-page: 503
  ident: bib11
  article-title: Comparative titres, location and properties of tannin acyl hydrolase produced by
  publication-title: Process Biochem.
  contributor:
    fullname: Lonsane
– volume: 41
  start-page: 313
  year: 2001
  end-page: 318
  ident: bib2
  article-title: Production and characterization of extracellular and intracellular tannase from newly isolated
  publication-title: J. Basic Microbiol.
  contributor:
    fullname: Pati
– volume: 73
  start-page: 190
  year: 2006
  end-page: 197
  ident: bib8
  article-title: Application of a statistical design to the optimization of culture medium for α-amylase production by
  publication-title: J. Food Eng.
  contributor:
    fullname: Bennamoun
– volume: 40
  start-page: 1553-1557
  year: 2005
  ident: bib4
  article-title: Potential tannase producers from the genera
  publication-title: Process Biochem.
  contributor:
    fullname: Saxena
– volume: 44
  start-page: 215
  year: 1997
  end-page: 260
  ident: bib12
  article-title: Production and application of tannin acyl hydrolase: state of the art
  publication-title: Adv. Appl. Biochem. Microbiol.
  contributor:
    fullname: Lonsane
– volume: 1
  start-page: 59
  year: 2003
  end-page: 63
  ident: bib13
  article-title: Lipase-catalyzed synthesis of isoamyl acetate in free-solvent media-optimization using a central composite design
  publication-title: Food Agric. Environ.
  contributor:
    fullname: Rodrigues
– volume: 295
  start-page: 168
  year: 2001
  end-page: 171
  ident: bib14
  article-title: Colorimetric assay method for determination of the tannin acyl hydrolase activity
  publication-title: Anal. Biochem.
  contributor:
    fullname: Pati
– volume: 84
  start-page: 15
  year: 2001
  end-page: 123
  ident: bib10
  article-title: Solid-state fermentation and bioremediation: development of a continuous process for the production of fungal tannase
  publication-title: Chem. Eng. J.
  contributor:
    fullname: Pyle
– volume: 40
  start-page: 3569
  year: 2005
  end-page: 3575
  ident: bib15
  article-title: Extracellular alkaline protease from a newly isolated haloalkaliphilic
  publication-title: Process Biochem.
  contributor:
    fullname: Singh
– volume: 32
  start-page: 135
  year: 1997
  end-page: 139
  ident: bib6
  article-title: Parametric optimization and biochemical regulation of extracellular tannase from
  publication-title: Process Biochem.
  contributor:
    fullname: Saxena
– volume: 7
  start-page: 373
  year: 2001
  end-page: 382
  ident: bib1
  article-title: Review: sources, properties, applications and potential uses of tannin acyl hydrolase
  publication-title: Food Sci. Technol. Int.
  contributor:
    fullname: Gutiérrez-Sanchez
– volume: 7
  start-page: 29
  year: 1998
  end-page: 31
  ident: bib7
  article-title: Seleção de linhagens mutantes de
  publication-title: Ciência e Engenharia
  contributor:
    fullname: Pinto
– volume: 30
  start-page: 69
  year: 2004
  end-page: 73
  ident: bib17
  article-title: Enzymatic synthesis of gallic acid esters using microencapsulated tannase: effect of organic solvents and enzyme specificity
  publication-title: J. Mol. Catal. B: Enzyme
  contributor:
    fullname: Wu
SSID ssj0003172
Score 2.2844007
Snippet Surface response methodology was applied to the optimization of the laboratory scale production of tannase using a lineage of Paecilomyces variotii. A...
Surface response methodology was applied to the optimization of the laboratory scale production of tannase using a lineage of Paecilomyces variotii. A...
SourceID proquest
crossref
pubmed
pascalfrancis
fao
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 1832
SubjectTerms Biological and medical sciences
biosynthesis
Carbon - chemistry
Carboxylic Ester Hydrolases - biosynthesis
Coffee - chemistry
Dietary Fiber - analysis
Fermentation
Fundamental and applied biological sciences. Psychology
Kinetics
Nitrogen - chemistry
Paecilomyces
Paecilomyces - enzymology
Paecilomyces - metabolism
Paecilomyces variotii
Residues
Response surface
Salts - chemistry
Salts - pharmacology
Tannase
Tannins - chemistry
Temperature
Title Tannase production by Paecilomyces variotii
URI https://dx.doi.org/10.1016/j.biortech.2006.06.031
https://www.ncbi.nlm.nih.gov/pubmed/17045475
https://search.proquest.com/docview/19867109
https://search.proquest.com/docview/68993215
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swED7EztBkKFo3D7epo6FbodiURIscDSOG2wJBgNiAN-IokoGCRDJiJ0CW_PYeLSmPwehQgJNECtR94t13uuMR4EdCLFdEaEPnV1NimAt1xLJQCpSxFZaLbJPlezGczpPfC77YgXGzF8anVda6v9LpG21dX-nX0uwv87x_5cm34N4i-SIqadKCXTJHkWjD7ujXn-nFi0ImE7kJJlD_0A94s1H45kznPqn1JS5BLWbbbFTLYemTJ3FF8nPVwRfbmenGQk0-wceaWgajavafYccWHdgfXd_X5TVsBz6Mm_Pd6M6bUoRf4OcMi4IsWrCsSsASXIF-Ci7RZvltefdE6iR4JL-6XOf5Acwm57PxNKwPUggzztJ1aJBWNZLzpzGTJtap444zYSxqmxijZcQwYSayAzSZNil3QruI61hY6fQwPoR2URb2GAKTJQYzwteRIyYijaQRYkTCW6AmV7ML_UZyalmVy1BNHtmNamTtz74cKt9i1gXZCFi9A16RTv_n2GNCRCEJcqXmV5GPwpKLRpyIJtJ7B9PrbIifyEFCY08b3BQJ3odJsLDlw0ox6Wv-DeT2HkNyUmPiSl04qgB_fXrqSxqm_Ot_vNU32Gt-IA_YCbTX9w_2OzGfte5B6-yZ9erv-y_c0AE0
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xONAeKkpb2JZCDtxQ2HVib-wjWoGWQlElFombNY5tFESTFbtU4tLf3nEeLBxWHCrllNiRM589801mPAY44MRyZYIu9mE1cct8bBKWx0qiSp10QuZ1lu_lcHzNf9yImxUYdXthQlplq_sbnV5r6_ZOv5Vmf1oU_atAvqUIFikUUcn4KqzzwI9pUh_9XeR5kIGsQwnUOg7NX2wTvjsyRUhpfY5K0JWyZRZq1WMVUidxRtLzzbEXy3lpbZ9ON-FDSyyj42bsH2HFlVvw_vj2oS2u4bZgY9Sd7kZPXhQi_ASHEyxLsmfRtCkAS2BF5in6hS4v7qvfT6RMoj_kVVfzovgMk9OTyWgct8coxLlg2Ty2SGsayfUzmCubmswLL5i0Do3j1hqVMOTMJm6ANjc2E14anwiTSqe8GaZfYK2sSrcDkc25xZzQ9eSGycQg6YMUkdCWaMjR7EG_k5yeNsUydJdFdqc7WYeTL4c6XCnrgeoErF_Brkmjv9l3hxDRSIKc6eurJMRgyUEjRkQD2XsF02I0xE7UgFPf_Q43TYIPQRIsXfU400yFin8DtbzFkFzUlJhSD7YbwBdvz0JBw0x8_Y-v2oeN8eTnhb44uzz_Bu-6X8kDtgtr84dH95040Nzs1XP8HzH5Ag0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tannase+production+by+Paecilomyces+variotii&rft.jtitle=Bioresource+technology&rft.au=Battestin%2C+Vania&rft.au=Macedo%2C+Gabriela+Alves&rft.date=2007-07-01&rft.pub=Elsevier+Ltd&rft.issn=0960-8524&rft.eissn=1873-2976&rft.volume=98&rft.issue=9&rft.spage=1832&rft.epage=1837&rft_id=info:doi/10.1016%2Fj.biortech.2006.06.031&rft.externalDocID=S0960852406003774
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon