Noise and Epigenetic Inheritance of Single-Cell Division Times Influence Population Fitness
The fitness effect of biological noise remains unclear. For example, even within clonal microbial populations, individual cells grow at different speeds. Although it is known that the individuals’ mean growth speed can affect population-level fitness, it is unclear how or whether growth speed hetero...
Saved in:
Published in | Current biology Vol. 26; no. 9; pp. 1138 - 1147 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
09.05.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The fitness effect of biological noise remains unclear. For example, even within clonal microbial populations, individual cells grow at different speeds. Although it is known that the individuals’ mean growth speed can affect population-level fitness, it is unclear how or whether growth speed heterogeneity itself is subject to natural selection. Here, we show that noisy single-cell division times can significantly affect population-level growth rate. Using time-lapse microscopy to measure the division times of thousands of individual S. cerevisiae cells across different genetic and environmental backgrounds, we find that the length of individual cells’ division times can vary substantially between clonal individuals and that sublineages often show epigenetic inheritance of division times. By combining these experimental measurements with mathematical modeling, we find that, for a given mean division time, increasing heterogeneity and epigenetic inheritance of division times increases the population growth rate. Furthermore, we demonstrate that the heterogeneity and epigenetic inheritance of single-cell division times can be linked with variation in the expression of catabolic genes. Taken together, our results reveal how a change in noisy single-cell behaviors can directly influence fitness through dynamics that operate independently of effects caused by changes to the mean. These results not only allow a better understanding of microbial fitness but also help to more accurately predict fitness in other clonal populations, such as tumors.
[Display omitted]
•Single-cell division times of yeast strains were measured in different conditions•Individual cells show noise and epigenetic inheritance of division times•For a given mean division time, noise and epigenetic phenomena increase fitness•Catabolic gene expression can contribute to division time noise and epigenetics
The fitness effect of growth noise is poorly understood. Cerulus et al. show that certain yeast populations can show high variability and epigenetic inheritance of division times. Mathematical modeling shows that, for a given mean, increasing these traits increases the population growth rate. These traits are linked to catabolic gene expression. |
---|---|
AbstractList | The fitness effect of biological noise remains unclear. For example, even within clonal microbial populations, individual cells grow at different speeds. Although it is known that the individuals’ mean growth speed can affect population-level fitness, it is unclear how or whether growth speed heterogeneity itself is subject to natural selection. Here, we show that noisy single-cell division times can significantly affect population-level growth rate. Using time-lapse microscopy to measure the division times of thousands of individual S. cerevisiae cells across different genetic and environmental backgrounds, we find that the length of individual cells’ division times can vary substantially between clonal individuals and that sublineages often show epigenetic inheritance of division times. By combining these experimental measurements with mathematical modeling, we find that, for a given mean division time, increasing heterogeneity and epigenetic inheritance of division times increases the population growth rate. Furthermore, we demonstrate that the heterogeneity and epigenetic inheritance of single-cell division times can be linked with variation in the expression of catabolic genes. Taken together, our results reveal how a change in noisy single-cell behaviors can directly influence fitness through dynamics that operate independently of effects caused by changes to the mean. These results not only allow a better understanding of microbial fitness but also help to more accurately predict fitness in other clonal populations, such as tumors.
[Display omitted]
•Single-cell division times of yeast strains were measured in different conditions•Individual cells show noise and epigenetic inheritance of division times•For a given mean division time, noise and epigenetic phenomena increase fitness•Catabolic gene expression can contribute to division time noise and epigenetics
The fitness effect of growth noise is poorly understood. Cerulus et al. show that certain yeast populations can show high variability and epigenetic inheritance of division times. Mathematical modeling shows that, for a given mean, increasing these traits increases the population growth rate. These traits are linked to catabolic gene expression. The fitness effect of biological noise remains unclear. For example, even within clonal microbial populations, individual cells grow at different speeds. Although it is known that the individuals’ mean growth speed can affect population-level fitness, it is unclear how or whether growth speed heterogeneity itself is subject to natural selection. Here, we show that noisy single-cell division times can significantly affect population-level growth rate. Using time-lapse microscopy to measure the division times of thousands of individual S. cerevisiae cells across different genetic and environmental backgrounds, we find that the length of individual cells’ division times can vary substantially between clonal individuals and that sublineages often show epigenetic inheritance of division times. By combining these experimental measurements with mathematical modeling, we find that, for a given mean division time, increasing heterogeneity and epigenetic inheritance of division times increases the population growth rate. Furthermore, we demonstrate that the heterogeneity and epigenetic inheritance of single-cell division times can be linked with variation in the expression of catabolic genes. Taken together, our results reveal how a change in noisy single-cell behaviors can directly influence fitness through dynamics that operate independently of effects caused by changes to the mean. These results not only allow a better understanding of microbial fitness but also help to more accurately predict fitness in other clonal populations, such as tumors. The fitness effect of biological noise remains unclear. For example, even within clonal microbial populations, individual cells grow at different speeds. Although it is known that the individuals' mean growth speed can affect population-level fitness, it is unclear how or whether growth speed heterogeneity itself is subject to natural selection. Here, we show that noisy single-cell division times can significantly affect population-level growth rate. Using time-lapse microscopy to measure the division times of thousands of individual S. cerevisiae cells across different genetic and environmental backgrounds, we find that the length of individual cells' division times can vary substantially between clonal individuals and that sublineages often show epigenetic inheritance of division times. By combining these experimental measurements with mathematical modeling, we find that, for a given mean division time, increasing heterogeneity and epigenetic inheritance of division times increases the population growth rate. Furthermore, we demonstrate that the heterogeneity and epigenetic inheritance of single-cell division times can be linked with variation in the expression of catabolic genes. Taken together, our results reveal how a change in noisy single-cell behaviors can directly influence fitness through dynamics that operate independently of effects caused by changes to the mean. These results not only allow a better understanding of microbial fitness but also help to more accurately predict fitness in other clonal populations, such as tumors.The fitness effect of biological noise remains unclear. For example, even within clonal microbial populations, individual cells grow at different speeds. Although it is known that the individuals' mean growth speed can affect population-level fitness, it is unclear how or whether growth speed heterogeneity itself is subject to natural selection. Here, we show that noisy single-cell division times can significantly affect population-level growth rate. Using time-lapse microscopy to measure the division times of thousands of individual S. cerevisiae cells across different genetic and environmental backgrounds, we find that the length of individual cells' division times can vary substantially between clonal individuals and that sublineages often show epigenetic inheritance of division times. By combining these experimental measurements with mathematical modeling, we find that, for a given mean division time, increasing heterogeneity and epigenetic inheritance of division times increases the population growth rate. Furthermore, we demonstrate that the heterogeneity and epigenetic inheritance of single-cell division times can be linked with variation in the expression of catabolic genes. Taken together, our results reveal how a change in noisy single-cell behaviors can directly influence fitness through dynamics that operate independently of effects caused by changes to the mean. These results not only allow a better understanding of microbial fitness but also help to more accurately predict fitness in other clonal populations, such as tumors. The fitness effect of biological noise remains unclear. For example, even within clonal microbial populations, individual cells grow at different speeds. Although it is known that the individuals' mean growth speed can affect population-level fitness, it is unclear how or whether growth speed heterogeneity itself is subject to natural selection. Here, we show that noisy single-cell division times can significantly affect population-level growth rate. Using time-lapse microscopy to measure the division times of thousands of individual S. cerevisiae cells across different genetic and environmental backgrounds, we find that the length of individual cells' division times can vary substantially between clonal individuals and that sublineages often show epigenetic inheritance of division times. By combining these experimental measurements with mathematical modeling, we find that, for a given mean division time, increasing heterogeneity and epigenetic inheritance of division times increases the population growth rate. Furthermore, we demonstrate that the heterogeneity and epigenetic inheritance of single-cell division times can be linked with variation in the expression of catabolic genes. Taken together, our results reveal how a change in noisy single-cell behaviors can directly influence fitness through dynamics that operate independently of effects caused by changes to the mean. These results not only allow a better understanding of microbial fitness but also help to more accurately predict fitness in other clonal populations, such as tumors. |
Author | Verstrepen, Kevin J. Cerulus, Bram New, Aaron M. Pougach, Ksenia |
AuthorAffiliation | 2 VIB Laboratory of Systems Biology, Gaston Geenslaan 1, 3001 Leuven, Belgium 3 Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain 1 KU Leuven Department Microbiële en Moleculaire Systemen, CMPG Laboratory of Genetics and Genomics, Gaston Geenslaan 1, 3001 Leuven, Belgium 4 Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain |
AuthorAffiliation_xml | – name: 1 KU Leuven Department Microbiële en Moleculaire Systemen, CMPG Laboratory of Genetics and Genomics, Gaston Geenslaan 1, 3001 Leuven, Belgium – name: 3 Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain – name: 2 VIB Laboratory of Systems Biology, Gaston Geenslaan 1, 3001 Leuven, Belgium – name: 4 Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain |
Author_xml | – sequence: 1 givenname: Bram surname: Cerulus fullname: Cerulus, Bram organization: KU Leuven Department Microbiële en Moleculaire Systemen, CMPG Laboratory of Genetics and Genomics, Gaston Geenslaan 1, 3001 Leuven, Belgium – sequence: 2 givenname: Aaron M. surname: New fullname: New, Aaron M. organization: KU Leuven Department Microbiële en Moleculaire Systemen, CMPG Laboratory of Genetics and Genomics, Gaston Geenslaan 1, 3001 Leuven, Belgium – sequence: 3 givenname: Ksenia surname: Pougach fullname: Pougach, Ksenia organization: KU Leuven Department Microbiële en Moleculaire Systemen, CMPG Laboratory of Genetics and Genomics, Gaston Geenslaan 1, 3001 Leuven, Belgium – sequence: 4 givenname: Kevin J. surname: Verstrepen fullname: Verstrepen, Kevin J. email: kevin.verstrepen@biw.vib-kuleuven.be organization: KU Leuven Department Microbiële en Moleculaire Systemen, CMPG Laboratory of Genetics and Genomics, Gaston Geenslaan 1, 3001 Leuven, Belgium |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27068419$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1rFDEYDlKx2-oP8CJz9DLTZCaTZBAEWVtbKCpYTx5CJvNm-y6zyZrMLPjvzbCtqIeeEni-kuc5Iyc-eCDkNaMVo0xcbCs791WdrxVtKsroM7JiSnYl5bw9ISvaCVp2qq5PyVlKW0pZrTrxgpzWkgrFWbciPz4HTFAYPxSXe9yAhwltcePvIeJkvIUiuOIb-s0I5RrGsfiIB0wYfHGHO0iZ6cYZFt7XsJ9HMy3QFU4eUnpJnjszJnj1cJ6T71eXd-vr8vbLp5v1h9vStkxO5UB762SjeO361gjbC-4G6hgTSjrWd6ITYLkZBpZRZ9rOcSFUzyUDLgfJmnPy_ui7n_sdDBb8FM2o9xF3Jv7SwaD-F_F4rzfhoFteK8lFNnj7YBDDzxnSpHeYbP6t8RDmpJlUHW3yQ1Smvvk760_IY6OZII8EG0NKEZy2ucillhyNo2ZUL9vprc7b6WU7TRudt8tK9p_y0fwpzbujBnK_B4Sok8VljgEj2EkPAZ9Q_wY5V7MX |
CitedBy_id | crossref_primary_10_1016_j_copbio_2019_11_018 crossref_primary_10_1038_s41598_018_35927_x crossref_primary_10_1126_sciadv_1701775 crossref_primary_10_1002_yea_3562 crossref_primary_10_1088_1742_5468_ab6b16 crossref_primary_10_1016_j_cels_2018_09_004 crossref_primary_10_7554_eLife_72299 crossref_primary_10_1371_journal_pcbi_1004972 crossref_primary_10_1016_j_isci_2023_106118 crossref_primary_10_1016_j_mad_2016_07_011 crossref_primary_10_1103_PhysRevE_100_052402 crossref_primary_10_1242_dev_204212 crossref_primary_10_1016_j_isci_2020_101531 crossref_primary_10_1371_journal_pcbi_1011265 crossref_primary_10_1093_eep_dvac020 crossref_primary_10_1242_dev_201546 crossref_primary_10_1038_s42003_022_03348_2 crossref_primary_10_1103_PRXLife_2_013001 crossref_primary_10_1002_wsbm_1512 crossref_primary_10_3389_fcell_2024_1358971 crossref_primary_10_1103_PhysRevLett_122_118101 crossref_primary_10_1371_journal_pbio_3000792 crossref_primary_10_3390_cells9122534 crossref_primary_10_1093_femsyr_foy100 crossref_primary_10_1016_j_fbr_2016_09_002 crossref_primary_10_1371_journal_pcbi_1007364 crossref_primary_10_3389_fcell_2021_607628 crossref_primary_10_1371_journal_pgen_1006653 crossref_primary_10_1007_s00249_023_01679_4 crossref_primary_10_1038_s41467_018_05417_9 crossref_primary_10_7554_eLife_39234 crossref_primary_10_1016_j_mib_2018_02_004 crossref_primary_10_1007_s00294_018_0878_9 crossref_primary_10_1007_s00249_017_1258_y crossref_primary_10_1016_j_coisb_2018_02_006 crossref_primary_10_1038_s41579_020_0372_5 crossref_primary_10_1128_microbiolspec_TBTB2_0021_2016 crossref_primary_10_1007_s00449_018_1922_3 crossref_primary_10_1103_PhysRevE_101_012401 crossref_primary_10_1016_j_bpc_2024_107173 crossref_primary_10_1016_j_gde_2017_08_008 crossref_primary_10_3389_fcimb_2022_943545 crossref_primary_10_1002_jez_b_23134 crossref_primary_10_1111_mec_13955 crossref_primary_10_1038_s41467_019_11591_1 crossref_primary_10_1534_genetics_118_301507 crossref_primary_10_3389_fmicb_2022_1004488 crossref_primary_10_1007_s00294_019_00938_2 crossref_primary_10_1038_s41467_023_37957_0 crossref_primary_10_3389_fgene_2021_630506 crossref_primary_10_1016_j_semcdb_2018_05_017 crossref_primary_10_1371_journal_pcbi_1009080 crossref_primary_10_7554_eLife_55320 crossref_primary_10_3389_fgene_2019_00133 crossref_primary_10_1088_1478_3975_aab0e6 crossref_primary_10_1103_PhysRevE_101_032403 crossref_primary_10_1016_j_cub_2016_03_034 crossref_primary_10_1016_j_scib_2018_07_010 crossref_primary_10_1038_s41567_022_01641_9 crossref_primary_10_7554_eLife_37272 crossref_primary_10_1103_PhysRevLett_134_038401 crossref_primary_10_1146_annurev_chembioeng_100722_121610 crossref_primary_10_1016_j_cell_2017_03_021 crossref_primary_10_1038_s41594_022_00801_y crossref_primary_10_1098_rsif_2017_0467 |
Cites_doi | 10.1371/journal.pcbi.1000125 10.1038/nature14318 10.1038/nature08781 10.1038/nature13582 10.1088/1478-3975/5/4/046001 10.1126/science.1098641 10.1126/science.1099390 10.1038/nature14244 10.1126/science.1216166 10.1039/b409860a 10.1128/JB.142.3.808-818.1980 10.1038/ng869 10.1128/AEM.72.3.2163-2169.2006 10.1529/biophysj.108.128785 10.1016/S0168-9525(98)01659-X 10.1126/science.1105891 10.1126/science.1213491 10.1371/journal.pbio.1001764 10.1016/j.cell.2008.09.050 10.1083/jcb.75.2.422 10.1016/j.mib.2012.12.004 10.1002/jcb.20964 10.1371/journal.pbio.1001528 10.1093/molbev/mst138 10.1038/msb.2009.58 10.1016/j.cell.2010.04.020 10.1146/annurev.biophys.36.040306.132705 10.1038/nature13469 10.1128/JB.23.2.147-153.1932 10.1038/nature07743 10.1371/journal.pgen.1005046 10.1038/nature10665 10.1111/j.1365-2184.1992.tb01396.x 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2 10.1016/j.cell.2011.07.026 10.1073/pnas.1100059108 10.1038/nature06072 10.1086/409052 10.1038/nature08504 10.1038/msb.2013.13 10.1117/1.3483903 10.1371/journal.pbio.0020137 10.1002/bies.201000153 10.1016/j.cub.2010.04.027 10.1016/j.mib.2010.12.004 10.1371/journal.pone.0081671 10.1074/jbc.M110.145946 10.1371/journal.pbio.1001446 10.1126/science.1216379 10.3233/BD-2007-26104 10.1126/science.1070919 10.1101/gr.191635.115 10.1371/journal.pbio.1001325 10.1038/ng.110 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd Copyright © 2016 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Copyright © 2016 Elsevier Ltd. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.cub.2016.03.010 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1879-0445 |
EndPage | 1147 |
ExternalDocumentID | PMC5428746 27068419 10_1016_j_cub_2016_03_010 S0960982216301865 |
Genre | Journal Article |
GrantInformation_xml | – fundername: European Research Council grantid: 682009 |
GroupedDBID | --- --K -DZ -~X 0R~ 1RT 1~5 2WC 4.4 457 4G. 53G 5GY 62- 6I. 6J9 7-5 AACTN AAEDW AAFTH AAFWJ AAIAV AAKRW AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHSJ AGKMS AGUBO AHHHB AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID IHE IXB J1W JIG LX5 M3Z M41 NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SCP SDG SES SSZ TR2 WQ6 ZA5 29F 5VS AAEDT AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP ASPBG AVWKF CAG CITATION COF FEDTE FGOYB G-2 HVGLF HZ~ OZT R2- SEW UHS XIH XPP Y6R ZGI CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c517t-d0bcf73842fb5a6cb64fd0f11687f1b9696ec4add15a6fa59f4668b471e47d713 |
IEDL.DBID | IXB |
ISSN | 0960-9822 1879-0445 |
IngestDate | Thu Aug 21 17:50:41 EDT 2025 Thu Jul 10 22:28:53 EDT 2025 Mon Jul 21 05:51:16 EDT 2025 Tue Jul 01 04:08:08 EDT 2025 Thu Apr 24 22:57:58 EDT 2025 Fri Feb 23 02:28:33 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2016 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-d0bcf73842fb5a6cb64fd0f11687f1b9696ec4add15a6fa59f4668b471e47d713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Co-first author |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0960982216301865 |
PMID | 27068419 |
PQID | 1789039698 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5428746 proquest_miscellaneous_1789039698 pubmed_primary_27068419 crossref_citationtrail_10_1016_j_cub_2016_03_010 crossref_primary_10_1016_j_cub_2016_03_010 elsevier_sciencedirect_doi_10_1016_j_cub_2016_03_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-05-09 |
PublicationDateYYYYMMDD | 2016-05-09 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Current biology |
PublicationTitleAlternate | Curr Biol |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | McAdams, Arkin (bib2) 1999; 15 Ziv, Siegal, Gresham (bib24) 2013; 30 Reshes, Vanounou, Fishov, Feingold (bib18) 2008; 5 Moore, Stolovicki, Braun (bib45) 2013; 8 Fridman, Goldberg, Ronin, Shoresh, Balaban (bib37) 2014; 513 Levy, Ziv, Siegal (bib7) 2012; 10 Huang, Ingber (bib51) 2006-2007; 26 Satory, Gordon, Halliday, Herman (bib5) 2011; 14 Balaban, Merrin, Chait, Kowalik, Leibler (bib3) 2004; 305 Roesch, Fukunaga-Kalabis, Schmidt, Zabierowski, Brafford, Vultur, Basu, Gimotty, Vogt, Herlyn (bib50) 2010; 141 Raj, Rifkin, Andersen, van Oudenaarden (bib31) 2010; 463 Beaumont, Gallie, Kost, Ferguson, Rainey (bib35) 2009; 462 Brown, Murray, Verstrepen (bib46) 2010; 20 Hartwell, Unger (bib43) 1977; 75 Aldridge, Fernandez-Suarez, Heller, Ambravaneswaran, Irimia, Toner, Fortune (bib19) 2012; 335 Voordeckers, Brown, Vanneste, van der Zande, Voet, Maere, Verstrepen (bib48) 2012; 10 Wakamoto, Ramsden, Yasuda (bib15) 2005; 130 Helaine, Holden (bib49) 2013; 16 Siegal-Gaskins, Crosson (bib41) 2008; 95 Metzger, Yuan, Gruber, Duveau, Wittkopp (bib40) 2015; 521 Celli, Rizvi, Evans, Abu-Yousif, Hasan (bib22) 2010; 15 Ozbudak, Thattai, Kurtser, Grossman, van Oudenaarden (bib28) 2002; 31 Pin, Baranyi (bib16) 2006; 72 Liti, Carter, Moses, Warringer, Parts, James, Davey, Roberts, Burt, Koufopanou (bib55) 2009; 458 Raser, O’Shea (bib23) 2005; 309 Kelly, Rahn (bib13) 1932; 23 Acar, Mettetal, van Oudenaarden (bib34) 2008; 40 Gupta, Fillmore, Jiang, Shapira, Tao, Kuperwasser, Lander (bib53) 2011; 146 Brachmann, Davies, Cost, Caputo, Li, Hieter, Boeke (bib54) 1998; 14 Avraham, Soifer, Carmi, Barkai (bib8) 2013; 9 Kiviet, Nghe, Walker, Boulineau, Sunderlikova, Tans (bib10) 2014; 514 Keren, van Dijk, Weingarten-Gabbay, Davidi, Jona, Weinberger, Milo, Segal (bib12) 2015; 25 Kaneko (bib52) 2011; 33 Raser, O’Shea (bib29) 2004; 304 Carey, van Dijk, Sloot, Kaandorp, Segal (bib26) 2013; 11 Heng, Bremer, Stevens, Ye, Miller, Liu, Ye (bib21) 2006; 98 Raj, van Oudenaarden (bib32) 2008; 135 Casanueva, Burga, Lehner (bib36) 2012; 335 Marusyk, Polyak (bib20) 2010; 1805 Stearns (bib1) 1976; 51 Elowitz, Levine, Siggia, Swain (bib27) 2002; 297 New, Cerulus, Govers, Perez-Samper, Zhu, Boogmans, Xavier, Verstrepen (bib9) 2014; 12 Munsky, Neuert, van Oudenaarden (bib6) 2012; 336 Wang, Zhang (bib39) 2011; 108 Tănase-Nicola, ten Wolde (bib25) 2008; 4 Lord, Wheals (bib44) 1980; 142 Wheals, Lord (bib14) 1992; 25 Teste, François, Parrou (bib47) 2010; 285 Maheshri, O’Shea (bib4) 2007; 36 Di Talia, Skotheim, Bean, Siggia, Cross (bib17) 2007; 448 Sandler, Mizrahi, Weiss, Agam, Simon, Balaban (bib42) 2015; 519 Mars, Nicolas, Ciccolini, Reilman, Reder, Schaffer, Mäder, Völker, van Dijl, Denham (bib11) 2015; 11 Fraser, Hirsh, Giaever, Kumm, Eisen (bib33) 2004; 2 Zhang, Qian, Zhang (bib38) 2009; 5 Burga, Casanueva, Lehner (bib30) 2011; 480 Pin (10.1016/j.cub.2016.03.010_bib16) 2006; 72 Raser (10.1016/j.cub.2016.03.010_bib23) 2005; 309 Siegal-Gaskins (10.1016/j.cub.2016.03.010_bib41) 2008; 95 Munsky (10.1016/j.cub.2016.03.010_bib6) 2012; 336 Zhang (10.1016/j.cub.2016.03.010_bib38) 2009; 5 Brown (10.1016/j.cub.2016.03.010_bib46) 2010; 20 Di Talia (10.1016/j.cub.2016.03.010_bib17) 2007; 448 Wang (10.1016/j.cub.2016.03.010_bib39) 2011; 108 Kaneko (10.1016/j.cub.2016.03.010_bib52) 2011; 33 Levy (10.1016/j.cub.2016.03.010_bib7) 2012; 10 Heng (10.1016/j.cub.2016.03.010_bib21) 2006; 98 Aldridge (10.1016/j.cub.2016.03.010_bib19) 2012; 335 Balaban (10.1016/j.cub.2016.03.010_bib3) 2004; 305 Tănase-Nicola (10.1016/j.cub.2016.03.010_bib25) 2008; 4 Fridman (10.1016/j.cub.2016.03.010_bib37) 2014; 513 Avraham (10.1016/j.cub.2016.03.010_bib8) 2013; 9 Mars (10.1016/j.cub.2016.03.010_bib11) 2015; 11 Casanueva (10.1016/j.cub.2016.03.010_bib36) 2012; 335 Ozbudak (10.1016/j.cub.2016.03.010_bib28) 2002; 31 Acar (10.1016/j.cub.2016.03.010_bib34) 2008; 40 Burga (10.1016/j.cub.2016.03.010_bib30) 2011; 480 Voordeckers (10.1016/j.cub.2016.03.010_bib48) 2012; 10 Elowitz (10.1016/j.cub.2016.03.010_bib27) 2002; 297 Wakamoto (10.1016/j.cub.2016.03.010_bib15) 2005; 130 Hartwell (10.1016/j.cub.2016.03.010_bib43) 1977; 75 Maheshri (10.1016/j.cub.2016.03.010_bib4) 2007; 36 Marusyk (10.1016/j.cub.2016.03.010_bib20) 2010; 1805 Raj (10.1016/j.cub.2016.03.010_bib31) 2010; 463 Lord (10.1016/j.cub.2016.03.010_bib44) 1980; 142 Moore (10.1016/j.cub.2016.03.010_bib45) 2013; 8 Helaine (10.1016/j.cub.2016.03.010_bib49) 2013; 16 Celli (10.1016/j.cub.2016.03.010_bib22) 2010; 15 Kelly (10.1016/j.cub.2016.03.010_bib13) 1932; 23 Reshes (10.1016/j.cub.2016.03.010_bib18) 2008; 5 Stearns (10.1016/j.cub.2016.03.010_bib1) 1976; 51 Gupta (10.1016/j.cub.2016.03.010_bib53) 2011; 146 Raj (10.1016/j.cub.2016.03.010_bib32) 2008; 135 Huang (10.1016/j.cub.2016.03.010_bib51) 2006; 26 Kiviet (10.1016/j.cub.2016.03.010_bib10) 2014; 514 Carey (10.1016/j.cub.2016.03.010_bib26) 2013; 11 Fraser (10.1016/j.cub.2016.03.010_bib33) 2004; 2 Raser (10.1016/j.cub.2016.03.010_bib29) 2004; 304 Beaumont (10.1016/j.cub.2016.03.010_bib35) 2009; 462 Teste (10.1016/j.cub.2016.03.010_bib47) 2010; 285 McAdams (10.1016/j.cub.2016.03.010_bib2) 1999; 15 Sandler (10.1016/j.cub.2016.03.010_bib42) 2015; 519 Ziv (10.1016/j.cub.2016.03.010_bib24) 2013; 30 Liti (10.1016/j.cub.2016.03.010_bib55) 2009; 458 Wheals (10.1016/j.cub.2016.03.010_bib14) 1992; 25 Brachmann (10.1016/j.cub.2016.03.010_bib54) 1998; 14 Satory (10.1016/j.cub.2016.03.010_bib5) 2011; 14 New (10.1016/j.cub.2016.03.010_bib9) 2014; 12 Keren (10.1016/j.cub.2016.03.010_bib12) 2015; 25 Metzger (10.1016/j.cub.2016.03.010_bib40) 2015; 521 Roesch (10.1016/j.cub.2016.03.010_bib50) 2010; 141 27166691 - Curr Biol. 2016 May 9;26(9):R355-7. doi: 10.1016/j.cub.2016.03.034. |
References_xml | – volume: 462 start-page: 90 year: 2009 end-page: 93 ident: bib35 article-title: Experimental evolution of bet hedging publication-title: Nature – volume: 480 start-page: 250 year: 2011 end-page: 253 ident: bib30 article-title: Predicting mutation outcome from early stochastic variation in genetic interaction partners publication-title: Nature – volume: 5 start-page: 046001 year: 2008 ident: bib18 article-title: Timing the start of division in publication-title: Phys. Biol. – volume: 72 start-page: 2163 year: 2006 end-page: 2169 ident: bib16 article-title: Kinetics of single cells: observation and modeling of a stochastic process publication-title: Appl. Environ. Microbiol. – volume: 285 start-page: 26815 year: 2010 end-page: 26824 ident: bib47 article-title: Characterization of a new multigene family encoding isomaltases in the yeast publication-title: J. Biol. Chem. – volume: 14 start-page: 212 year: 2011 end-page: 217 ident: bib5 article-title: Epigenetic switches: can infidelity govern fate in microbes? publication-title: Curr. Opin. Microbiol. – volume: 33 start-page: 403 year: 2011 end-page: 413 ident: bib52 article-title: Characterization of stem cells and cancer cells on the basis of gene expression profile stability, plasticity, and robustness: dynamical systems theory of gene expressions under cell-cell interaction explains mutational robustness of differentiated cells and suggests how cancer cells emerge publication-title: BioEssays – volume: 335 start-page: 100 year: 2012 end-page: 104 ident: bib19 article-title: Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility publication-title: Science – volume: 11 start-page: e1001528 year: 2013 ident: bib26 article-title: Promoter sequence determines the relationship between expression level and noise publication-title: PLoS Biol. – volume: 23 start-page: 147 year: 1932 end-page: 153 ident: bib13 article-title: The growth rate of individual bacterial cells publication-title: J. Bacteriol. – volume: 2 start-page: e137 year: 2004 ident: bib33 article-title: Noise minimization in eukaryotic gene expression publication-title: PLoS Biol. – volume: 519 start-page: 468 year: 2015 end-page: 471 ident: bib42 article-title: Lineage correlations of single cell division time as a probe of cell-cycle dynamics publication-title: Nature – volume: 1805 start-page: 105 year: 2010 end-page: 117 ident: bib20 article-title: Tumor heterogeneity: causes and consequences publication-title: Biochim. Biophys. Acta – volume: 8 start-page: e81671 year: 2013 ident: bib45 article-title: Population dynamics of metastable growth-rate phenotypes publication-title: PLoS ONE – volume: 15 start-page: 051603 year: 2010 ident: bib22 article-title: Quantitative imaging reveals heterogeneous growth dynamics and treatment-dependent residual tumor distributions in a three-dimensional ovarian cancer model publication-title: J. Biomed. Opt. – volume: 9 start-page: 656 year: 2013 ident: bib8 article-title: Increasing population growth by asymmetric segregation of a limiting resource during cell division publication-title: Mol. Syst. Biol. – volume: 98 start-page: 1424 year: 2006 end-page: 1435 ident: bib21 article-title: Cancer progression by non-clonal chromosome aberrations publication-title: J. Cell. Biochem. – volume: 25 start-page: 217 year: 1992 end-page: 223 ident: bib14 article-title: Clonal heterogeneity in specific growth rate of publication-title: Cell Prolif. – volume: 31 start-page: 69 year: 2002 end-page: 73 ident: bib28 article-title: Regulation of noise in the expression of a single gene publication-title: Nat. Genet. – volume: 513 start-page: 418 year: 2014 end-page: 421 ident: bib37 article-title: Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations publication-title: Nature – volume: 26 start-page: 27 year: 2006-2007 end-page: 54 ident: bib51 article-title: A non-genetic basis for cancer progression and metastasis: self-organizing attractors in cell regulatory networks publication-title: Breast Dis. – volume: 10 start-page: e1001446 year: 2012 ident: bib48 article-title: Reconstruction of ancestral metabolic enzymes reveals molecular mechanisms underlying evolutionary innovation through gene duplication publication-title: PLoS Biol. – volume: 514 start-page: 376 year: 2014 end-page: 379 ident: bib10 article-title: Stochasticity of metabolism and growth at the single-cell level publication-title: Nature – volume: 130 start-page: 311 year: 2005 end-page: 317 ident: bib15 article-title: Single-cell growth and division dynamics showing epigenetic correlations publication-title: Analyst (Lond.) – volume: 95 start-page: 2063 year: 2008 end-page: 2072 ident: bib41 article-title: Tightly regulated and heritable division control in single bacterial cells publication-title: Biophys. J. – volume: 142 start-page: 808 year: 1980 end-page: 818 ident: bib44 article-title: Asymmetrical division of publication-title: J. Bacteriol. – volume: 146 start-page: 633 year: 2011 end-page: 644 ident: bib53 article-title: Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells publication-title: Cell – volume: 75 start-page: 422 year: 1977 end-page: 435 ident: bib43 article-title: Unequal division in publication-title: J. Cell Biol. – volume: 297 start-page: 1183 year: 2002 end-page: 1186 ident: bib27 article-title: Stochastic gene expression in a single cell publication-title: Science – volume: 12 start-page: e1001764 year: 2014 ident: bib9 article-title: Different levels of catabolite repression optimize growth in stable and variable environments publication-title: PLoS Biol. – volume: 521 start-page: 344 year: 2015 end-page: 347 ident: bib40 article-title: Selection on noise constrains variation in a eukaryotic promoter publication-title: Nature – volume: 4 start-page: e1000125 year: 2008 ident: bib25 article-title: Regulatory control and the costs and benefits of biochemical noise publication-title: PLoS Comput. Biol. – volume: 14 start-page: 115 year: 1998 end-page: 132 ident: bib54 article-title: Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications publication-title: Yeast – volume: 40 start-page: 471 year: 2008 end-page: 475 ident: bib34 article-title: Stochastic switching as a survival strategy in fluctuating environments publication-title: Nat. Genet. – volume: 309 start-page: 2010 year: 2005 end-page: 2013 ident: bib23 article-title: Noise in gene expression: origins, consequences, and control publication-title: Science – volume: 304 start-page: 1811 year: 2004 end-page: 1814 ident: bib29 article-title: Control of stochasticity in eukaryotic gene expression publication-title: Science – volume: 335 start-page: 82 year: 2012 end-page: 85 ident: bib36 article-title: Fitness trade-offs and environmentally induced mutation buffering in isogenic publication-title: Science – volume: 30 start-page: 2568 year: 2013 end-page: 2578 ident: bib24 article-title: Genetic and nongenetic determinants of cell growth variation assessed by high-throughput microscopy publication-title: Mol. Biol. Evol. – volume: 10 start-page: e1001325 year: 2012 ident: bib7 article-title: Bet hedging in yeast by heterogeneous, age-correlated expression of a stress protectant publication-title: PLoS Biol. – volume: 16 start-page: 184 year: 2013 end-page: 191 ident: bib49 article-title: Heterogeneity of intracellular replication of bacterial pathogens publication-title: Curr. Opin. Microbiol. – volume: 25 start-page: 1893 year: 2015 end-page: 1902 ident: bib12 article-title: Noise in gene expression is coupled to growth rate publication-title: Genome Res. – volume: 305 start-page: 1622 year: 2004 end-page: 1625 ident: bib3 article-title: Bacterial persistence as a phenotypic switch publication-title: Science – volume: 135 start-page: 216 year: 2008 end-page: 226 ident: bib32 article-title: Nature, nurture, or chance: stochastic gene expression and its consequences publication-title: Cell – volume: 15 start-page: 65 year: 1999 end-page: 69 ident: bib2 article-title: It’s a noisy business! Genetic regulation at the nanomolar scale publication-title: Trends Genet. – volume: 108 start-page: E67 year: 2011 end-page: E76 ident: bib39 article-title: Impact of gene expression noise on organismal fitness and the efficacy of natural selection publication-title: Proc. Natl. Acad. Sci. USA – volume: 458 start-page: 337 year: 2009 end-page: 341 ident: bib55 article-title: Population genomics of domestic and wild yeasts publication-title: Nature – volume: 463 start-page: 913 year: 2010 end-page: 918 ident: bib31 article-title: Variability in gene expression underlies incomplete penetrance publication-title: Nature – volume: 51 start-page: 3 year: 1976 end-page: 47 ident: bib1 article-title: Life-history tactics: a review of the ideas publication-title: Q. Rev. Biol. – volume: 11 start-page: e1005046 year: 2015 ident: bib11 article-title: Small regulatory RNA-induced growth rate heterogeneity of publication-title: PLoS Genet. – volume: 20 start-page: 895 year: 2010 end-page: 903 ident: bib46 article-title: Rapid expansion and functional divergence of subtelomeric gene families in yeasts publication-title: Curr. Biol. – volume: 36 start-page: 413 year: 2007 end-page: 434 ident: bib4 article-title: Living with noisy genes: how cells function reliably with inherent variability in gene expression publication-title: Annu. Rev. Biophys. Biomol. Struct. – volume: 448 start-page: 947 year: 2007 end-page: 951 ident: bib17 article-title: The effects of molecular noise and size control on variability in the budding yeast cell cycle publication-title: Nature – volume: 141 start-page: 583 year: 2010 end-page: 594 ident: bib50 article-title: A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth publication-title: Cell – volume: 5 start-page: 299 year: 2009 ident: bib38 article-title: Positive selection for elevated gene expression noise in yeast publication-title: Mol. Syst. Biol. – volume: 336 start-page: 183 year: 2012 end-page: 187 ident: bib6 article-title: Using gene expression noise to understand gene regulation publication-title: Science – volume: 4 start-page: e1000125 year: 2008 ident: 10.1016/j.cub.2016.03.010_bib25 article-title: Regulatory control and the costs and benefits of biochemical noise publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000125 – volume: 519 start-page: 468 year: 2015 ident: 10.1016/j.cub.2016.03.010_bib42 article-title: Lineage correlations of single cell division time as a probe of cell-cycle dynamics publication-title: Nature doi: 10.1038/nature14318 – volume: 463 start-page: 913 year: 2010 ident: 10.1016/j.cub.2016.03.010_bib31 article-title: Variability in gene expression underlies incomplete penetrance publication-title: Nature doi: 10.1038/nature08781 – volume: 514 start-page: 376 year: 2014 ident: 10.1016/j.cub.2016.03.010_bib10 article-title: Stochasticity of metabolism and growth at the single-cell level publication-title: Nature doi: 10.1038/nature13582 – volume: 5 start-page: 046001 year: 2008 ident: 10.1016/j.cub.2016.03.010_bib18 article-title: Timing the start of division in E. coli: a single-cell study publication-title: Phys. Biol. doi: 10.1088/1478-3975/5/4/046001 – volume: 304 start-page: 1811 year: 2004 ident: 10.1016/j.cub.2016.03.010_bib29 article-title: Control of stochasticity in eukaryotic gene expression publication-title: Science doi: 10.1126/science.1098641 – volume: 305 start-page: 1622 year: 2004 ident: 10.1016/j.cub.2016.03.010_bib3 article-title: Bacterial persistence as a phenotypic switch publication-title: Science doi: 10.1126/science.1099390 – volume: 521 start-page: 344 year: 2015 ident: 10.1016/j.cub.2016.03.010_bib40 article-title: Selection on noise constrains variation in a eukaryotic promoter publication-title: Nature doi: 10.1038/nature14244 – volume: 335 start-page: 100 year: 2012 ident: 10.1016/j.cub.2016.03.010_bib19 article-title: Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility publication-title: Science doi: 10.1126/science.1216166 – volume: 130 start-page: 311 year: 2005 ident: 10.1016/j.cub.2016.03.010_bib15 article-title: Single-cell growth and division dynamics showing epigenetic correlations publication-title: Analyst (Lond.) doi: 10.1039/b409860a – volume: 142 start-page: 808 year: 1980 ident: 10.1016/j.cub.2016.03.010_bib44 article-title: Asymmetrical division of Saccharomyces cerevisiae publication-title: J. Bacteriol. doi: 10.1128/JB.142.3.808-818.1980 – volume: 31 start-page: 69 year: 2002 ident: 10.1016/j.cub.2016.03.010_bib28 article-title: Regulation of noise in the expression of a single gene publication-title: Nat. Genet. doi: 10.1038/ng869 – volume: 72 start-page: 2163 year: 2006 ident: 10.1016/j.cub.2016.03.010_bib16 article-title: Kinetics of single cells: observation and modeling of a stochastic process publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.72.3.2163-2169.2006 – volume: 95 start-page: 2063 year: 2008 ident: 10.1016/j.cub.2016.03.010_bib41 article-title: Tightly regulated and heritable division control in single bacterial cells publication-title: Biophys. J. doi: 10.1529/biophysj.108.128785 – volume: 15 start-page: 65 year: 1999 ident: 10.1016/j.cub.2016.03.010_bib2 article-title: It’s a noisy business! Genetic regulation at the nanomolar scale publication-title: Trends Genet. doi: 10.1016/S0168-9525(98)01659-X – volume: 309 start-page: 2010 year: 2005 ident: 10.1016/j.cub.2016.03.010_bib23 article-title: Noise in gene expression: origins, consequences, and control publication-title: Science doi: 10.1126/science.1105891 – volume: 335 start-page: 82 year: 2012 ident: 10.1016/j.cub.2016.03.010_bib36 article-title: Fitness trade-offs and environmentally induced mutation buffering in isogenic C. elegans publication-title: Science doi: 10.1126/science.1213491 – volume: 12 start-page: e1001764 year: 2014 ident: 10.1016/j.cub.2016.03.010_bib9 article-title: Different levels of catabolite repression optimize growth in stable and variable environments publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1001764 – volume: 135 start-page: 216 year: 2008 ident: 10.1016/j.cub.2016.03.010_bib32 article-title: Nature, nurture, or chance: stochastic gene expression and its consequences publication-title: Cell doi: 10.1016/j.cell.2008.09.050 – volume: 75 start-page: 422 year: 1977 ident: 10.1016/j.cub.2016.03.010_bib43 article-title: Unequal division in Saccharomyces cerevisiae and its implications for the control of cell division publication-title: J. Cell Biol. doi: 10.1083/jcb.75.2.422 – volume: 16 start-page: 184 year: 2013 ident: 10.1016/j.cub.2016.03.010_bib49 article-title: Heterogeneity of intracellular replication of bacterial pathogens publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2012.12.004 – volume: 98 start-page: 1424 year: 2006 ident: 10.1016/j.cub.2016.03.010_bib21 article-title: Cancer progression by non-clonal chromosome aberrations publication-title: J. Cell. Biochem. doi: 10.1002/jcb.20964 – volume: 11 start-page: e1001528 year: 2013 ident: 10.1016/j.cub.2016.03.010_bib26 article-title: Promoter sequence determines the relationship between expression level and noise publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1001528 – volume: 30 start-page: 2568 year: 2013 ident: 10.1016/j.cub.2016.03.010_bib24 article-title: Genetic and nongenetic determinants of cell growth variation assessed by high-throughput microscopy publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/mst138 – volume: 5 start-page: 299 year: 2009 ident: 10.1016/j.cub.2016.03.010_bib38 article-title: Positive selection for elevated gene expression noise in yeast publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2009.58 – volume: 141 start-page: 583 year: 2010 ident: 10.1016/j.cub.2016.03.010_bib50 article-title: A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth publication-title: Cell doi: 10.1016/j.cell.2010.04.020 – volume: 36 start-page: 413 year: 2007 ident: 10.1016/j.cub.2016.03.010_bib4 article-title: Living with noisy genes: how cells function reliably with inherent variability in gene expression publication-title: Annu. Rev. Biophys. Biomol. Struct. doi: 10.1146/annurev.biophys.36.040306.132705 – volume: 513 start-page: 418 year: 2014 ident: 10.1016/j.cub.2016.03.010_bib37 article-title: Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations publication-title: Nature doi: 10.1038/nature13469 – volume: 23 start-page: 147 year: 1932 ident: 10.1016/j.cub.2016.03.010_bib13 article-title: The growth rate of individual bacterial cells publication-title: J. Bacteriol. doi: 10.1128/JB.23.2.147-153.1932 – volume: 458 start-page: 337 year: 2009 ident: 10.1016/j.cub.2016.03.010_bib55 article-title: Population genomics of domestic and wild yeasts publication-title: Nature doi: 10.1038/nature07743 – volume: 11 start-page: e1005046 year: 2015 ident: 10.1016/j.cub.2016.03.010_bib11 article-title: Small regulatory RNA-induced growth rate heterogeneity of Bacillus subtilis publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1005046 – volume: 480 start-page: 250 year: 2011 ident: 10.1016/j.cub.2016.03.010_bib30 article-title: Predicting mutation outcome from early stochastic variation in genetic interaction partners publication-title: Nature doi: 10.1038/nature10665 – volume: 25 start-page: 217 year: 1992 ident: 10.1016/j.cub.2016.03.010_bib14 article-title: Clonal heterogeneity in specific growth rate of Saccharomyces cerevisiae cells publication-title: Cell Prolif. doi: 10.1111/j.1365-2184.1992.tb01396.x – volume: 14 start-page: 115 year: 1998 ident: 10.1016/j.cub.2016.03.010_bib54 article-title: Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications publication-title: Yeast doi: 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2 – volume: 146 start-page: 633 year: 2011 ident: 10.1016/j.cub.2016.03.010_bib53 article-title: Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells publication-title: Cell doi: 10.1016/j.cell.2011.07.026 – volume: 108 start-page: E67 year: 2011 ident: 10.1016/j.cub.2016.03.010_bib39 article-title: Impact of gene expression noise on organismal fitness and the efficacy of natural selection publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1100059108 – volume: 448 start-page: 947 year: 2007 ident: 10.1016/j.cub.2016.03.010_bib17 article-title: The effects of molecular noise and size control on variability in the budding yeast cell cycle publication-title: Nature doi: 10.1038/nature06072 – volume: 51 start-page: 3 year: 1976 ident: 10.1016/j.cub.2016.03.010_bib1 article-title: Life-history tactics: a review of the ideas publication-title: Q. Rev. Biol. doi: 10.1086/409052 – volume: 462 start-page: 90 year: 2009 ident: 10.1016/j.cub.2016.03.010_bib35 article-title: Experimental evolution of bet hedging publication-title: Nature doi: 10.1038/nature08504 – volume: 9 start-page: 656 year: 2013 ident: 10.1016/j.cub.2016.03.010_bib8 article-title: Increasing population growth by asymmetric segregation of a limiting resource during cell division publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2013.13 – volume: 15 start-page: 051603 year: 2010 ident: 10.1016/j.cub.2016.03.010_bib22 article-title: Quantitative imaging reveals heterogeneous growth dynamics and treatment-dependent residual tumor distributions in a three-dimensional ovarian cancer model publication-title: J. Biomed. Opt. doi: 10.1117/1.3483903 – volume: 2 start-page: e137 year: 2004 ident: 10.1016/j.cub.2016.03.010_bib33 article-title: Noise minimization in eukaryotic gene expression publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0020137 – volume: 33 start-page: 403 year: 2011 ident: 10.1016/j.cub.2016.03.010_bib52 publication-title: BioEssays doi: 10.1002/bies.201000153 – volume: 20 start-page: 895 year: 2010 ident: 10.1016/j.cub.2016.03.010_bib46 article-title: Rapid expansion and functional divergence of subtelomeric gene families in yeasts publication-title: Curr. Biol. doi: 10.1016/j.cub.2010.04.027 – volume: 1805 start-page: 105 year: 2010 ident: 10.1016/j.cub.2016.03.010_bib20 article-title: Tumor heterogeneity: causes and consequences publication-title: Biochim. Biophys. Acta – volume: 14 start-page: 212 year: 2011 ident: 10.1016/j.cub.2016.03.010_bib5 article-title: Epigenetic switches: can infidelity govern fate in microbes? publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2010.12.004 – volume: 8 start-page: e81671 year: 2013 ident: 10.1016/j.cub.2016.03.010_bib45 article-title: Population dynamics of metastable growth-rate phenotypes publication-title: PLoS ONE doi: 10.1371/journal.pone.0081671 – volume: 285 start-page: 26815 year: 2010 ident: 10.1016/j.cub.2016.03.010_bib47 article-title: Characterization of a new multigene family encoding isomaltases in the yeast Saccharomyces cerevisiae, the IMA family publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.145946 – volume: 10 start-page: e1001446 year: 2012 ident: 10.1016/j.cub.2016.03.010_bib48 article-title: Reconstruction of ancestral metabolic enzymes reveals molecular mechanisms underlying evolutionary innovation through gene duplication publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1001446 – volume: 336 start-page: 183 year: 2012 ident: 10.1016/j.cub.2016.03.010_bib6 article-title: Using gene expression noise to understand gene regulation publication-title: Science doi: 10.1126/science.1216379 – volume: 26 start-page: 27 year: 2006 ident: 10.1016/j.cub.2016.03.010_bib51 article-title: A non-genetic basis for cancer progression and metastasis: self-organizing attractors in cell regulatory networks publication-title: Breast Dis. doi: 10.3233/BD-2007-26104 – volume: 297 start-page: 1183 year: 2002 ident: 10.1016/j.cub.2016.03.010_bib27 article-title: Stochastic gene expression in a single cell publication-title: Science doi: 10.1126/science.1070919 – volume: 25 start-page: 1893 year: 2015 ident: 10.1016/j.cub.2016.03.010_bib12 article-title: Noise in gene expression is coupled to growth rate publication-title: Genome Res. doi: 10.1101/gr.191635.115 – volume: 10 start-page: e1001325 year: 2012 ident: 10.1016/j.cub.2016.03.010_bib7 article-title: Bet hedging in yeast by heterogeneous, age-correlated expression of a stress protectant publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1001325 – volume: 40 start-page: 471 year: 2008 ident: 10.1016/j.cub.2016.03.010_bib34 article-title: Stochastic switching as a survival strategy in fluctuating environments publication-title: Nat. Genet. doi: 10.1038/ng.110 – reference: 27166691 - Curr Biol. 2016 May 9;26(9):R355-7. doi: 10.1016/j.cub.2016.03.034. |
SSID | ssj0012896 |
Score | 2.471186 |
Snippet | The fitness effect of biological noise remains unclear. For example, even within clonal microbial populations, individual cells grow at different speeds.... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1138 |
SubjectTerms | Cell Division - physiology Epigenesis, Genetic - physiology Gene Expression Regulation, Fungal - physiology Genetic Fitness Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - physiology Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Time Factors |
Title | Noise and Epigenetic Inheritance of Single-Cell Division Times Influence Population Fitness |
URI | https://dx.doi.org/10.1016/j.cub.2016.03.010 https://www.ncbi.nlm.nih.gov/pubmed/27068419 https://www.proquest.com/docview/1789039698 https://pubmed.ncbi.nlm.nih.gov/PMC5428746 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5CoNBLSB9p3KZhCz0FFmut2dXqmLo2SUtDIQkYelj02CUKRjaNfMi_z8zqQZ0WH3qUNIJlRpr5hplvhrHPaaEmyhSRgBRKgYjYiSxVXsQxlMaoiVeeKro_rvTFLXxbqMUem_ZcGGqr7Hx_69ODt-7ujDttjtdVNb4Ow9IwviGiiKTRRDSPwQQS3-LLUEnAhCLUK1FYkHRf2Qw9XsUmp-4uHeacEon237Hpb-z5vIXyj5g0P2QHHZjk5-15X7E9V79mL9r1ko9v2K-rVfXgeFaXfLamqZtEWOSXNVH-GrI2X3l-jbFr6cTULZf8a9VSzXkghqBkt8CE_xzWfPF51ZB3fMtu57Ob6YXolimIQsmkEWWUFz6JDUx8rjJd5Bp8GXkptUm8zGlIjisAvZ3Epz5TqQetTY6xy0FSYip7xPbrVe2OGQcdgYQEgV6SQ4n5ipegYkwUFWiHCGbEol6NtugmjdPCi6XtW8ruLWrekuZtFFvU_IidDa-s2zEbu4Sht43d-lYshoFdr33q7WjxH6LCSFa71ebBSmIDx6gCM2LvWrsOp5gkkTYg0xFLtiw-CNB87u0ndXUX5nQrSkdBv_-_435gL-kqNFemJ2y_-b1xHxEANfkpQv_L76fhO38CfSYDkA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxNBEB9qRfSl1O_Uqiv4JCy5ze3u7T1qbEi0DUJbCPiw3McunoRLsJcH_3tn9j4wKn3w9XYOlpm7md8wM78BeJsWaqJMEXGZypIjInY8S5XncSxLY9TEK08V3Yulnl_LTyu1OoBpPwtDbZWd7299evDW3ZNxp83xtqrGl4EsDeMbIopIGK3uwF1EAwntb1isPgylBMwoQsESpTmJ96XN0ORV7HJq79KB6JSmaP8dnP4Gn3_2UP4WlGbHcNShSfa-vfBDOHD1I7jX7pf8-Ri-LjfVjWNZXbKzLdFu0sQiW9Q089eQudnGs0sMXmvHp269Zh-rdtachckQlOw2mLAvw54vNqsaco9P4Hp2djWd826bAi-USBpeRnnhk9jIic9VpotcS19GXghtEi9yYslxhUR3J_DUZyr1UmuTY_ByMikxl30Kh_Wmds-BSR1JIRNEekkuS0xYvJAqxkxRSe0Qwowg6tVoi45qnDZerG3fU_bdouYtad5GsUXNj-Dd8Mq25dm4TVj2trF7H4vFOHDba296O1r8iagyktVus7uxgsaBY1SBGcGz1q7DLSZJpI0U6QiSPYsPAkTQvX9SV98CUbeifFTqk_-77mu4P7-6OLfni-XnF_CATkKnZXoKh82PnXuJaKjJX4Wv_RdrHgW2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noise+and+Epigenetic+Inheritance+of+Single-Cell+Division+Times+Influence+Population+Fitness&rft.jtitle=Current+biology&rft.au=Cerulus%2C+Bram&rft.au=New%2C+Aaron+M.&rft.au=Pougach%2C+Ksenia&rft.au=Verstrepen%2C+Kevin+J.&rft.date=2016-05-09&rft.issn=0960-9822&rft.eissn=1879-0445&rft.volume=26&rft.issue=9&rft.spage=1138&rft.epage=1147&rft_id=info:doi/10.1016%2Fj.cub.2016.03.010&rft_id=info%3Apmid%2F27068419&rft.externalDocID=PMC5428746 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-9822&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-9822&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-9822&client=summon |