Selectivity descriptors for the direct hydrogenation of CO2 to hydrocarbons during zeolite-mediated bifunctional catalysis
Cascade processes are gaining momentum in heterogeneous catalysis. The combination of several catalytic solids within one reactor has shown great promise for the one-step valorization of C1-feedstocks. The combination of metal-based catalysts and zeolites in the gas phase hydrogenation of CO 2 leads...
Saved in:
Published in | Nature communications Vol. 12; no. 1; pp. 5914 - 13 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
08.10.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cascade processes are gaining momentum in heterogeneous catalysis. The combination of several catalytic solids within one reactor has shown great promise for the one-step valorization of C1-feedstocks. The combination of metal-based catalysts and zeolites in the gas phase hydrogenation of CO
2
leads to a large degree of product selectivity control, defined mainly by zeolites. However, a great deal of mechanistic understanding remains unclear: metal-based catalysts usually lead to complex product compositions that may result in unexpected zeolite reactivity. Here we present an in-depth multivariate analysis of the chemistry involved in eight different zeolite topologies when combined with a highly active Fe-based catalyst in the hydrogenation of CO
2
to olefins, aromatics, and paraffins. Solid-state NMR spectroscopy and computational analysis demonstrate that the hybrid nature of the active zeolite catalyst and its preferred CO
2
-derived reaction intermediates (CO/ester/ketone/hydrocarbons, i.e., inorganic-organic supramolecular reactive centers), along with 10 MR-zeolite topology, act as
descriptors
governing the ultimate product selectivity.
The reaction mechanism of carbon dioxide to high-value hydrocarbons over metal-zeolite bifunctional catalysts remains ambiguous. Here, the authors demonstrate that active zeolite catalysts’ topology and hybrid nature are descriptors; regulating the reaction mechanism and ultimate product selectivity. |
---|---|
AbstractList | The reaction mechanism of carbon dioxide to high-value hydrocarbons over metal-zeolite bifunctional catalysts remains ambiguous. Here, the authors demonstrate that active zeolite catalysts’ topology and hybrid nature are descriptors; regulating the reaction mechanism and ultimate product selectivity. Cascade processes are gaining momentum in heterogeneous catalysis. The combination of several catalytic solids within one reactor has shown great promise for the one-step valorization of C1-feedstocks. The combination of metal-based catalysts and zeolites in the gas phase hydrogenation of CO2 leads to a large degree of product selectivity control, defined mainly by zeolites. However, a great deal of mechanistic understanding remains unclear: metal-based catalysts usually lead to complex product compositions that may result in unexpected zeolite reactivity. Here we present an in-depth multivariate analysis of the chemistry involved in eight different zeolite topologies when combined with a highly active Fe-based catalyst in the hydrogenation of CO2 to olefins, aromatics, and paraffins. Solid-state NMR spectroscopy and computational analysis demonstrate that the hybrid nature of the active zeolite catalyst and its preferred CO2-derived reaction intermediates (CO/ester/ketone/hydrocarbons, i.e., inorganic-organic supramolecular reactive centers), along with 10 MR-zeolite topology, act as descriptors governing the ultimate product selectivity.Cascade processes are gaining momentum in heterogeneous catalysis. The combination of several catalytic solids within one reactor has shown great promise for the one-step valorization of C1-feedstocks. The combination of metal-based catalysts and zeolites in the gas phase hydrogenation of CO2 leads to a large degree of product selectivity control, defined mainly by zeolites. However, a great deal of mechanistic understanding remains unclear: metal-based catalysts usually lead to complex product compositions that may result in unexpected zeolite reactivity. Here we present an in-depth multivariate analysis of the chemistry involved in eight different zeolite topologies when combined with a highly active Fe-based catalyst in the hydrogenation of CO2 to olefins, aromatics, and paraffins. Solid-state NMR spectroscopy and computational analysis demonstrate that the hybrid nature of the active zeolite catalyst and its preferred CO2-derived reaction intermediates (CO/ester/ketone/hydrocarbons, i.e., inorganic-organic supramolecular reactive centers), along with 10 MR-zeolite topology, act as descriptors governing the ultimate product selectivity. Cascade processes are gaining momentum in heterogeneous catalysis. The combination of several catalytic solids within one reactor has shown great promise for the one-step valorization of C1-feedstocks. The combination of metal-based catalysts and zeolites in the gas phase hydrogenation of CO2 leads to a large degree of product selectivity control, defined mainly by zeolites. However, a great deal of mechanistic understanding remains unclear: metal-based catalysts usually lead to complex product compositions that may result in unexpected zeolite reactivity. Here we present an in-depth multivariate analysis of the chemistry involved in eight different zeolite topologies when combined with a highly active Fe-based catalyst in the hydrogenation of CO2 to olefins, aromatics, and paraffins. Solid-state NMR spectroscopy and computational analysis demonstrate that the hybrid nature of the active zeolite catalyst and its preferred CO2-derived reaction intermediates (CO/ester/ketone/hydrocarbons, i.e., inorganic-organic supramolecular reactive centers), along with 10 MR-zeolite topology, act as descriptors governing the ultimate product selectivity.The reaction mechanism of carbon dioxide to high-value hydrocarbons over metal-zeolite bifunctional catalysts remains ambiguous. Here, the authors demonstrate that active zeolite catalysts’ topology and hybrid nature are descriptors; regulating the reaction mechanism and ultimate product selectivity. Cascade processes are gaining momentum in heterogeneous catalysis. The combination of several catalytic solids within one reactor has shown great promise for the one-step valorization of C1-feedstocks. The combination of metal-based catalysts and zeolites in the gas phase hydrogenation of CO 2 leads to a large degree of product selectivity control, defined mainly by zeolites. However, a great deal of mechanistic understanding remains unclear: metal-based catalysts usually lead to complex product compositions that may result in unexpected zeolite reactivity. Here we present an in-depth multivariate analysis of the chemistry involved in eight different zeolite topologies when combined with a highly active Fe-based catalyst in the hydrogenation of CO 2 to olefins, aromatics, and paraffins. Solid-state NMR spectroscopy and computational analysis demonstrate that the hybrid nature of the active zeolite catalyst and its preferred CO 2 -derived reaction intermediates (CO/ester/ketone/hydrocarbons, i.e., inorganic-organic supramolecular reactive centers), along with 10 MR-zeolite topology, act as descriptors governing the ultimate product selectivity. Cascade processes are gaining momentum in heterogeneous catalysis. The combination of several catalytic solids within one reactor has shown great promise for the one-step valorization of C1-feedstocks. The combination of metal-based catalysts and zeolites in the gas phase hydrogenation of CO 2 leads to a large degree of product selectivity control, defined mainly by zeolites. However, a great deal of mechanistic understanding remains unclear: metal-based catalysts usually lead to complex product compositions that may result in unexpected zeolite reactivity. Here we present an in-depth multivariate analysis of the chemistry involved in eight different zeolite topologies when combined with a highly active Fe-based catalyst in the hydrogenation of CO 2 to olefins, aromatics, and paraffins. Solid-state NMR spectroscopy and computational analysis demonstrate that the hybrid nature of the active zeolite catalyst and its preferred CO 2 -derived reaction intermediates (CO/ester/ketone/hydrocarbons, i.e., inorganic-organic supramolecular reactive centers), along with 10 MR-zeolite topology, act as descriptors governing the ultimate product selectivity. The reaction mechanism of carbon dioxide to high-value hydrocarbons over metal-zeolite bifunctional catalysts remains ambiguous. Here, the authors demonstrate that active zeolite catalysts’ topology and hybrid nature are descriptors; regulating the reaction mechanism and ultimate product selectivity. |
ArticleNumber | 5914 |
Author | Gong, Xuan Cavallo, Luigi Ramirez, Adrian Gascon, Jorge Abou-Hamad, Edy Caglayan, Mustafa Dutta Chowdhury, Abhishek Nastase, Stefan-Adrian F. Gevers, Lieven |
Author_xml | – sequence: 1 givenname: Adrian orcidid: 0000-0001-5036-1355 surname: Ramirez fullname: Ramirez, Adrian organization: KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) – sequence: 2 givenname: Xuan surname: Gong fullname: Gong, Xuan organization: The Institute for Advanced Studies (IAS), Wuhan University – sequence: 3 givenname: Mustafa orcidid: 0000-0002-9359-0841 surname: Caglayan fullname: Caglayan, Mustafa organization: KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) – sequence: 4 givenname: Stefan-Adrian F. orcidid: 0000-0002-5112-3137 surname: Nastase fullname: Nastase, Stefan-Adrian F. organization: KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) – sequence: 5 givenname: Edy surname: Abou-Hamad fullname: Abou-Hamad, Edy organization: Imaging and Characterization Department, KAUST Core Labs, King Abdullah University of Science and Technology (KAUST) – sequence: 6 givenname: Lieven surname: Gevers fullname: Gevers, Lieven organization: KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) – sequence: 7 givenname: Luigi orcidid: 0000-0002-1398-338X surname: Cavallo fullname: Cavallo, Luigi organization: KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) – sequence: 8 givenname: Abhishek orcidid: 0000-0002-4121-7375 surname: Dutta Chowdhury fullname: Dutta Chowdhury, Abhishek email: abhishek@whu.edu.cn organization: The Institute for Advanced Studies (IAS), Wuhan University – sequence: 9 givenname: Jorge orcidid: 0000-0001-7558-7123 surname: Gascon fullname: Gascon, Jorge email: jorge.gascon@kaust.edu.sa organization: KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) |
BookMark | eNp9Uk1v3CAQtapUTZrmD_SE1EsvbvkwBl8qVat-RIqUQ9szwjDssmLNFnCkza8vu07VJodwGTTz3mOGea-bsylO0DRvCf5AMJMfc0e6XrSYkpb2eMAtf9FcUNyRlgjKzv67nzdXOW9xPWwgsuteNees6ynnvLto7n9AAFP8nS8HZCGb5PclpoxcTKhsAFmfah1tDjbFNUy6-Dih6NDqlqISl7zRaYxTRnZOflqje4jBF2h3YL0uYNHo3TyZI1MHZHTR4ZB9ftO8dDpkuHqIl82vr19-rr63N7ffrlefb1rDiSitxVTqcdAEUxiZZEL3kgyU9kLIgQ2Sg3XCCYoHx0boRS_0SEYqheFGSovZZXO96Nqot2qf_E6ng4raq1MiprXSqXgTQDHLDXayByxYNwxOSs6xHB21NTpMq9anRWs_j3U8A1NJOjwSfVyZ_Eat452SHNe19VXg_YNAir9nyEXtfDYQgp4gzllRLrHAmJChQt89gW7jnOoXLihSf6E_diQXlEkx5wROGV9OW6rv-6AIVke_qMUvqvpFnfyieKXSJ9S_czxLYgsp74_LhvSvq2dYfwB-EtRS |
CitedBy_id | crossref_primary_10_1016_j_xcrp_2024_101826 crossref_primary_10_1002_anie_202414724 crossref_primary_10_1039_D3SC05674K crossref_primary_10_1016_j_apcatb_2023_123193 crossref_primary_10_1002_ange_202408275 crossref_primary_10_1002_adfm_202408922 crossref_primary_10_1016_j_apcatb_2024_123829 crossref_primary_10_1039_D4CS01042F crossref_primary_10_1016_j_cej_2024_158467 crossref_primary_10_1039_D3DT02131A crossref_primary_10_1007_s40242_023_3269_9 crossref_primary_10_1016_j_apcatb_2023_122506 crossref_primary_10_1038_s41467_023_42955_3 crossref_primary_10_1039_D4CY00437J crossref_primary_10_1016_j_cattod_2022_10_007 crossref_primary_10_1002_ange_202303124 crossref_primary_10_1002_ange_202411197 crossref_primary_10_1002_cssc_202401916 crossref_primary_10_1021_jacs_4c00981 crossref_primary_10_1039_D3TA03654E crossref_primary_10_1038_s41929_023_00937_0 crossref_primary_10_1002_anie_202408275 crossref_primary_10_1016_j_checat_2024_101168 crossref_primary_10_3390_catal14050328 crossref_primary_10_1016_j_apcatb_2022_122299 crossref_primary_10_1016_j_checat_2022_07_026 crossref_primary_10_1016_j_checat_2025_101264 crossref_primary_10_1016_j_jcat_2024_115585 crossref_primary_10_1016_j_jcou_2022_102176 crossref_primary_10_3390_inorganics11050214 crossref_primary_10_1021_acs_energyfuels_4c03013 crossref_primary_10_1016_j_esci_2022_02_007 crossref_primary_10_1016_j_mtchem_2023_101745 crossref_primary_10_1002_sstr_202200285 crossref_primary_10_1016_j_cjche_2022_05_029 crossref_primary_10_1002_anie_202303124 crossref_primary_10_1039_D3TA01025B crossref_primary_10_1016_j_apcatb_2022_121640 crossref_primary_10_1038_s41467_024_53484_y crossref_primary_10_3389_fnano_2022_978358 crossref_primary_10_1002_anie_202411197 crossref_primary_10_1021_acscatal_2c04455 crossref_primary_10_1021_acs_chemrev_2c00076 crossref_primary_10_1039_D4CY01168F crossref_primary_10_1016_j_jcou_2022_101969 crossref_primary_10_1021_acs_iecr_4c03735 crossref_primary_10_1007_s11705_024_2467_4 crossref_primary_10_1021_acscatal_1c05132 crossref_primary_10_1002_cssc_202300608 crossref_primary_10_1039_D4CY01508H crossref_primary_10_1016_j_jcat_2023_115183 crossref_primary_10_1093_nsr_nwac047 crossref_primary_10_1038_s41467_022_34708_5 crossref_primary_10_1002_ange_202414724 crossref_primary_10_1016_j_apcata_2023_119100 crossref_primary_10_1016_j_pecs_2024_101159 crossref_primary_10_1039_D3EY00102D crossref_primary_10_1039_D4SC06814A crossref_primary_10_1016_j_ijhydene_2024_12_519 crossref_primary_10_1021_acscatal_2c04600 crossref_primary_10_1039_D4SC00603H crossref_primary_10_1021_jacs_3c01304 crossref_primary_10_1038_s41929_022_00806_2 crossref_primary_10_1080_01614940_2022_2099058 crossref_primary_10_1039_D4DT00793J crossref_primary_10_1039_D3TA03150K crossref_primary_10_1021_jacsau_3c00768 crossref_primary_10_1016_j_apcatb_2024_124211 crossref_primary_10_1021_acscatal_4c00099 crossref_primary_10_1016_j_cej_2024_152614 crossref_primary_10_1016_j_pnmrs_2023_11_001 crossref_primary_10_1021_acs_chemrev_2c00315 |
Cites_doi | 10.1021/jacs.9b07484 10.1002/anie.201805609 10.1016/j.apcatb.2016.09.072 10.1016/0021-9517(79)90248-3 10.1016/j.combustflame.2016.12.026 10.1039/C9EE01673B 10.1021/jp400331m 10.1021/acscatal.9b01466 10.1021/jacs.5b11355 10.1039/C9CY02587A 10.1002/anie.201808480 10.1002/anie.202009139 10.1073/pnas.1821029116 10.1021/jp0041407 10.1021/ja002195g 10.1039/C8CS00502H 10.1002/anie.201510920 10.1002/anie.201608643 10.1038/s41929-018-0182-6 10.1021/ja0530164 10.1039/C6FD00187D 10.1021/j150576a044 10.1039/c3ee00056g 10.1002/anie.201103657 10.1021/acscatal.7b03676 10.1016/j.trechm.2020.07.005 10.1016/j.jcat.2019.11.015 10.1103/PhysRevB.49.14251 10.1021/acscatal.0c01454 10.1002/adma.202002927 10.1021/jp1044749 10.1021/acscatal.7b02193 10.1038/ncomms15174 10.1002/anie.200503898 10.1038/nature06552 10.1039/C9CY02532D 10.1021/acscatal.0c02611 10.1038/nchem.2794 10.1021/acs.chemrev.6b00816 10.1002/cssc.201601591 10.1021/ja01569a001 10.1038/nclimate3231 10.1021/acscatal.8b02892 10.1007/s11244-005-3798-0 10.1021/acscatal.7b03114 10.1039/C5CS00029G 10.1007/s11244-008-9158-0 10.1002/anie.201803279 10.1021/acscatal.0c04273 10.1063/1.1677439 10.1021/ja065810a 10.1021/jp5050095 10.1021/acscatal.7b01273 10.1016/j.cattod.2008.03.005 10.1021/ja00084a041 10.1016/j.joule.2018.10.027 10.1038/s41929-018-0078-5 10.1063/1.3382344 10.1016/j.chempr.2017.05.007 10.1002/anie.202007283 10.1021/ja00497a058 10.1021/acsenergylett.8b01910 10.1002/cctc.201900762 10.1021/acs.accounts.9b00324 10.1002/cite.330421808 10.1021/acscatal.8b01344 10.1126/science.aaf1835 10.1002/anie.201410974 10.1021/acscatal.8b02385 10.1038/s41467-018-05880-4 10.1002/anie.201511678 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021. The Author(s). |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-021-26090-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_3d5c0f86e073499f885508bf2d550f02 PMC8501036 10_1038_s41467_021_26090_5 |
GrantInformation_xml | – fundername: King Abdullah University of Science and Technology (KAUST) grantid: n.a. funderid: https://doi.org/10.13039/501100004052 – fundername: ; grantid: n.a. |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c517t-d028ab9a102eb3837a681922677893985edf7f7209f3be6767ab1b287c5c88d03 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:27:25 EDT 2025 Thu Aug 21 17:56:18 EDT 2025 Fri Jul 11 10:45:27 EDT 2025 Wed Aug 13 08:42:21 EDT 2025 Thu Apr 24 23:10:58 EDT 2025 Tue Jul 01 04:17:36 EDT 2025 Fri Feb 21 02:39:14 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-d028ab9a102eb3837a681922677893985edf7f7209f3be6767ab1b287c5c88d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5036-1355 0000-0002-4121-7375 0000-0001-7558-7123 0000-0002-9359-0841 0000-0002-5112-3137 0000-0002-1398-338X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-021-26090-5 |
PMID | 34625554 |
PQID | 2580181962 |
PQPubID | 546298 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3d5c0f86e073499f885508bf2d550f02 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8501036 proquest_miscellaneous_2580700119 proquest_journals_2580181962 crossref_citationtrail_10_1038_s41467_021_26090_5 crossref_primary_10_1038_s41467_021_26090_5 springer_journals_10_1038_s41467_021_26090_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-08 |
PublicationDateYYYYMMDD | 2021-10-08 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Xu, Haw, Munson (CR70) 1994; 116 Fang, Zheng, Chu, Deng (CR41) 2010; 114 Çağlayan (CR29) 2020; 59 Knott (CR66) 2018; 8 Ni (CR26) 2018; 9 Mac Dowell, Fennell, Shah, Maitland (CR1) 2017; 7 Andronesi (CR39) 2005; 127 Ramirez (CR19) 2020; 10 Wang (CR35) 2016; 55 Wei (CR20) 2017; 8 Rasmussen (CR46) 2015; 54 Zhang, Yu, Corma (CR9) 2020; 32 Blyholder, Emmett (CR56) 1959; 63 Prieto (CR8) 2017; 10 Ramirez (CR17) 2019; 9 Haw, Marcus (CR36) 2005; 34 Rojo-Gama (CR57) 2017; 7 Morris, Freeman (CR37) 1979; 101 Cheung, Bhan, Sunley, Iglesia (CR43) 2006; 45 Song, Nicholas, Haw (CR69) 2001; 105 Jiao (CR16) 2016; 351 Bleken (CR65) 2009; 52 Kar, Goeppert, Prakash (CR51) 2019; 52 Kresse, Hafner (CR74) 1994; 49 Li (CR24) 2019; 3 Hall, Kokes, Emmett (CR52) 1957; 79 Chowdhury (CR28) 2016; 55 Plessow, Studt (CR47) 2017; 7 Pines, Gibby, Waugh (CR38) 1972; 56 Zhou (CR7) 2019; 48 Kresse, Furthmüller (CR73) 1996; 6 Rojo-Gama (CR59) 2017; 197 Di Iorio, Nimlos, Gounder (CR67) 2017; 7 Dokania (CR18) 2020; 381 Cheng (CR23) 2017; 3 Choi (CR15) 2017; 202 Li (CR42) 2013; 117 De, Dokania, Ramirez, Gascon (CR12) 2020; 10 Ramirez, Gevers, Bavykina, Ould-Chikh, Gascon (CR13) 2018; 8 Ramirez, Sarathy, Gascon (CR2) 2020; 2 Davis (CR53) 2009; 141 Pichler, Schulz (CR55) 1970; 42 Dokania, Ramirez, Bavykina, Gascon (CR6) 2019; 4 Centi, Quadrelli, Perathoner (CR4) 2013; 6 Song, Haw, Nicholas, Heneghan (CR34) 2000; 122 Jones, Zones, Iglesia (CR63) 2014; 118 CR50 Handoko, Wei, Jenndy, Yeo, Seh (CR5) 2018; 1 Hemberger, Van Bokhoven, Pérez-Ramírez, Bodi (CR44) 2020; 10 Ramirez (CR14) 2019; 11 Biloen, Helle, Sachtler (CR54) 1979; 58 Wu (CR49) 2018; 8 Smit, Maesen (CR61) 2008; 451 Fu (CR30) 2020; 59 Wang (CR40) 2018; 57 Chowdhury (CR31) 2018; 57 Svelle (CR32) 2006; 128 Grimme, Antony, Ehrlich, Krieg (CR71) 2010; 132 Van Speybroeck (CR62) 2015; 44 Joubert (CR72) 1999; 59 Gao (CR22) 2017; 9 Nastase (CR68) 2020; 10 Wang (CR25) 2019; 9 Olsbye (CR58) 2012; 51 Álvarez (CR10) 2017; 117 CR60 Janda, Vlaisavljevich, Lin, Smit, Bell (CR64) 2016; 138 Christensen, Konnov (CR48) 2017; 178 Kätelhön, Meys, Deutz, Suh, Bardow (CR3) 2019; 166 Khan (CR21) 2020; 10 Chowdhury, Gascon (CR45) 2018; 57 Yarulina, Chowdhury, Meirer, Weckhuysen, Gascon (CR27) 2018; 1 González-Garay (CR11) 2019; 12 Bailleul (CR33) 2019; 141 YH Choi (26090_CR15) 2017; 202 26090_CR50 B Smit (26090_CR61) 2008; 451 P Hemberger (26090_CR44) 2020; 10 AD Chowdhury (26090_CR45) 2018; 57 S De (26090_CR12) 2020; 10 G Blyholder (26090_CR56) 1959; 63 J Wei (26090_CR20) 2017; 8 AJ Jones (26090_CR63) 2014; 118 G Centi (26090_CR4) 2013; 6 Z Li (26090_CR24) 2019; 3 JF Haw (26090_CR36) 2005; 34 GA Morris (26090_CR37) 1979; 101 A González-Garay (26090_CR11) 2019; 12 A Dokania (26090_CR6) 2019; 4 SAF Nastase (26090_CR68) 2020; 10 T Xu (26090_CR70) 1994; 116 OC Andronesi (26090_CR39) 2005; 127 M Christensen (26090_CR48) 2017; 178 G Prieto (26090_CR8) 2017; 10 G Kresse (26090_CR74) 1994; 49 Q Zhang (26090_CR9) 2020; 32 26090_CR60 A Pines (26090_CR38) 1972; 56 AD Handoko (26090_CR5) 2018; 1 MK Khan (26090_CR21) 2020; 10 Y Ni (26090_CR26) 2018; 9 C Wang (26090_CR35) 2016; 55 AD Chowdhury (26090_CR28) 2016; 55 W Song (26090_CR69) 2001; 105 M Çağlayan (26090_CR29) 2020; 59 S Svelle (26090_CR32) 2006; 128 Y Wang (26090_CR25) 2019; 9 W Song (26090_CR34) 2000; 122 N Mac Dowell (26090_CR1) 2017; 7 BC Knott (26090_CR66) 2018; 8 G Kresse (26090_CR73) 1996; 6 K Cheng (26090_CR23) 2017; 3 P Gao (26090_CR22) 2017; 9 V Van Speybroeck (26090_CR62) 2015; 44 S Grimme (26090_CR71) 2010; 132 I Yarulina (26090_CR27) 2018; 1 D Rojo-Gama (26090_CR59) 2017; 197 A Dokania (26090_CR18) 2020; 381 B Li (26090_CR42) 2013; 117 C Wang (26090_CR40) 2018; 57 X Wu (26090_CR49) 2018; 8 P Cheung (26090_CR43) 2006; 45 S Bailleul (26090_CR33) 2019; 141 A Kätelhön (26090_CR3) 2019; 166 S Kar (26090_CR51) 2019; 52 H Fang (26090_CR41) 2010; 114 D Fu (26090_CR30) 2020; 59 A Janda (26090_CR64) 2016; 138 U Olsbye (26090_CR58) 2012; 51 AD Chowdhury (26090_CR31) 2018; 57 JR Di Iorio (26090_CR67) 2017; 7 WK Hall (26090_CR52) 1957; 79 F Jiao (26090_CR16) 2016; 351 PN Plessow (26090_CR47) 2017; 7 D Joubert (26090_CR72) 1999; 59 A Álvarez (26090_CR10) 2017; 117 H Pichler (26090_CR55) 1970; 42 F Bleken (26090_CR65) 2009; 52 A Ramirez (26090_CR19) 2020; 10 A Ramirez (26090_CR2) 2020; 2 DB Rasmussen (26090_CR46) 2015; 54 A Ramirez (26090_CR13) 2018; 8 W Zhou (26090_CR7) 2019; 48 A Ramirez (26090_CR14) 2019; 11 P Biloen (26090_CR54) 1979; 58 A Ramirez (26090_CR17) 2019; 9 D Rojo-Gama (26090_CR57) 2017; 7 BHFischer-Tropsch Davis (26090_CR53) 2009; 141 |
References_xml | – volume: 141 start-page: 14823 year: 2019 end-page: 14842 ident: CR33 article-title: A supramolecular view on the cooperative role of Brønsted and Lewis acid sites in zeolites for methanol conversion publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b07484 – volume: 57 start-page: 10197 year: 2018 end-page: 10201 ident: CR40 article-title: Extra-framework aluminum-assisted initial C−C bond formation in methanol-to-olefins conversion on zeolite H-ZSM-5 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201805609 – volume: 202 start-page: 605 year: 2017 end-page: 610 ident: CR15 article-title: Carbon dioxide Fischer-Tropsch synthesis: a new path to carbon-neutral fuels publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.09.072 – volume: 58 start-page: 95 year: 1979 end-page: 107 ident: CR54 article-title: Incorporation of surface carbon into hydrocarbons during Fischer-Tropsch synthesis: mechanistic implications publication-title: J. Catal. doi: 10.1016/0021-9517(79)90248-3 – volume: 178 start-page: 97 year: 2017 end-page: 110 ident: CR48 article-title: Laminar burning velocity of diacetyl + air flames. Further assessment of combustion chemistry of ketene publication-title: Combust. Flame doi: 10.1016/j.combustflame.2016.12.026 – volume: 12 start-page: 3425 year: 2019 end-page: 3436 ident: CR11 article-title: Plant-to-planet analysis of CO -based methanol processes publication-title: Energy Environ. Sci. doi: 10.1039/C9EE01673B – volume: 117 start-page: 5840 year: 2013 end-page: 5847 ident: CR42 article-title: Insight into dimethyl ether carbonylation reaction over mordenite zeolite from in-situ solid-state NMR spectroscopy publication-title: J. Phys. Chem. C doi: 10.1021/jp400331m – volume: 9 start-page: 6320 year: 2019 end-page: 6334 ident: CR17 article-title: Effect of zeolite topology and reactor configuration on the direct conversion of CO to light olefins and aromatics publication-title: ACS Catal. doi: 10.1021/acscatal.9b01466 – volume: 138 start-page: 4739 year: 2016 end-page: 4756 ident: CR64 article-title: Effects of zeolite structural confinement on adsorption thermodynamics and reaction kinetics for monomolecular cracking and dehydrogenation of n-butane publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11355 – volume: 10 start-page: 1975 year: 2020 end-page: 1990 ident: CR44 article-title: New analytical tools for advanced mechanistic studies in catalysis: photoionization and photoelectron photoion coincidence spectroscopy publication-title: Catal. Sci. Technol. doi: 10.1039/C9CY02587A – volume: 57 start-page: 14982 year: 2018 end-page: 14985 ident: CR45 article-title: The curious case of ketene in zeolite chemistry and catalysis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201808480 – volume: 59 start-page: 20024 year: 2020 end-page: 20030 ident: CR30 article-title: Elucidating zeolite channel geometry–reaction intermediate relationships for the methanol‐to‐hydrocarbon process publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202009139 – volume: 166 start-page: 11187 year: 2019 end-page: 11194 ident: CR3 article-title: Climate change mitigation potential of carbon capture and utilization in the chemical industry publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1821029116 – volume: 105 start-page: 4317 year: 2001 end-page: 4323 ident: CR69 article-title: A persistent carbenium ion on the methanol-to-olefin catalyst HSAPO-34: acetone shows the way publication-title: J. Phys. Chem. B doi: 10.1021/jp0041407 – volume: 122 start-page: 10726 year: 2000 end-page: 10727 ident: CR34 article-title: Methylbenzenes are the organic reaction centers for methanol-to-olefin catalysis on HSAPO-34 [12] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja002195g – volume: 48 start-page: 3193 year: 2019 end-page: 3228 ident: CR7 article-title: New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO into hydrocarbon chemicals and fuels publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00502H – volume: 55 start-page: 2507 year: 2016 end-page: 2511 ident: CR35 article-title: Direct detection of supramolecular reaction centers in the methanol-to-olefins conversion over zeolite H-ZSM-5 by 13C-27Al solid-state NMR spectroscopy publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201510920 – volume: 55 start-page: 15840 year: 2016 end-page: 15845 ident: CR28 article-title: Initial carbon-carbon bond formation during the early stages of the methanol-to-olefin process proven by zeolite-trapped acetate and methyl acetate publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201608643 – volume: 1 start-page: 922 year: 2018 end-page: 934 ident: CR5 article-title: Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques publication-title: Nat. Catal. doi: 10.1038/s41929-018-0182-6 – volume: 127 start-page: 12965 year: 2005 end-page: 12974 ident: CR39 article-title: Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0530164 – volume: 197 start-page: 421 year: 2017 end-page: 446 ident: CR59 article-title: Time- and space-resolved study of the methanol to hydrocarbons (MTH) reaction-influence of zeolite topology on axial deactivation patterns publication-title: Faraday Discuss. doi: 10.1039/C6FD00187D – ident: CR50 – volume: 63 start-page: 962 year: 1959 end-page: 965 ident: CR56 article-title: Fischer-Tropsch synthesis mechanism studies. The addition of radioactive ketene to the synthesis gas publication-title: J. Phys. Chem. doi: 10.1021/j150576a044 – volume: 6 start-page: 1711 year: 2013 end-page: 1731 ident: CR4 article-title: Catalysis for CO conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries publication-title: Energy Environ. Sci. doi: 10.1039/c3ee00056g – volume: 51 start-page: 5810 year: 2012 end-page: 5831 ident: CR58 article-title: Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201103657 – volume: 8 start-page: 770 year: 2018 end-page: 784 ident: CR66 article-title: Consideration of the aluminum distribution in zeolites in theoretical and experimental catalysis research publication-title: ACS Catal. doi: 10.1021/acscatal.7b03676 – volume: 2 start-page: 785 year: 2020 end-page: 795 ident: CR2 article-title: CO derived e-fuels: research trends, misconceptions, and future directions publication-title: Trends Chem. doi: 10.1016/j.trechm.2020.07.005 – volume: 381 start-page: 347 year: 2020 end-page: 354 ident: CR18 article-title: Acidity modification of ZSM-5 for enhanced production of light olefins from CO publication-title: J. Catal. doi: 10.1016/j.jcat.2019.11.015 – volume: 49 start-page: 14251 year: 1994 end-page: 14269 ident: CR74 article-title: Ab initio molecular-dynamics simulation of the liquid-metalamorphous-semiconductor transition in germanium publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.49.14251 – volume: 10 start-page: 8904 year: 2020 end-page: 8915 ident: CR68 article-title: Mechanistic insight into the framework methylation of H-ZSM-5 for varying methanol loadings and Si/Al ratios using first-principles molecular dynamics simulations publication-title: ACS Catal. doi: 10.1021/acscatal.0c01454 – ident: CR60 – volume: 32 start-page: 2002927 year: 2020 ident: CR9 article-title: Applications of zeolites to C1 chemistry: recent advances, challenges, and opportunities publication-title: Adv. Mater. doi: 10.1002/adma.202002927 – volume: 114 start-page: 12711 year: 2010 end-page: 12718 ident: CR41 article-title: 13C Chemical shift of adsorbed acetone for measuring the acid strength of solid acids: A theoretical calculation study publication-title: J. Phys. Chem. C doi: 10.1021/jp1044749 – volume: 7 start-page: 8235 year: 2017 end-page: 8246 ident: CR57 article-title: A straightforward descriptor for the deactivation of zeolite catalyst H-ZSM-5 publication-title: ACS Catal. doi: 10.1021/acscatal.7b02193 – volume: 8 year: 2017 ident: CR20 article-title: Directly converting CO into a gasoline fuel publication-title: Nat. Commun. doi: 10.1038/ncomms15174 – volume: 45 start-page: 1617 year: 2006 end-page: 1620 ident: CR43 article-title: Selective carbonylation of dimethyl ether to methyl acetate catalyzed by acidic zeolites publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200503898 – volume: 451 start-page: 671 year: 2008 end-page: 678 ident: CR61 article-title: Towards a molecular understanding of shape selectivity publication-title: Nature doi: 10.1038/nature06552 – volume: 10 start-page: 1507 year: 2020 end-page: 1517 ident: CR19 article-title: Coated sulfated zirconia/SAPO-34 for the direct conversion of CO to light olefins publication-title: Catal. Sci. Technol. doi: 10.1039/C9CY02532D – volume: 10 start-page: 10325 year: 2020 end-page: 10338 ident: CR21 article-title: Selective conversion of carbon dioxide into liquid hydrocarbons and long-chain α-olefins over Fe-amorphous AlO bifunctional catalyst publication-title: ACS Catal. doi: 10.1021/acscatal.0c02611 – volume: 9 start-page: 1019 year: 2017 end-page: 1024 ident: CR22 article-title: Direct conversion of CO into liquid fuels with high selectivity over a bifunctional catalyst publication-title: Nat. Chem. doi: 10.1038/nchem.2794 – volume: 117 start-page: 9804 year: 2017 end-page: 9838 ident: CR10 article-title: Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO hydrogenation processes publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00816 – volume: 10 start-page: 1056 year: 2017 end-page: 1070 ident: CR8 article-title: Carbon dioxide hydrogenation into higher hydrocarbons and oxygenates: thermodynamic and kinetic bounds and progress with heterogeneous and homogeneous catalysis publication-title: ChemSusChem doi: 10.1002/cssc.201601591 – volume: 79 start-page: 2983 year: 1957 end-page: 2989 ident: CR52 article-title: Mechanism studies of the Fischer-Tropsch synthesis. the addition of radioactive methanol, carbon dioxide and gaseous formaldehyde publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01569a001 – volume: 7 start-page: 243 year: 2017 end-page: 249 ident: CR1 article-title: The role of CO capture and utilization in mitigating climate change publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate3231 – volume: 8 start-page: 9174 year: 2018 end-page: 9182 ident: CR13 article-title: Metal organic framework-derived iron catalysts for the direct hydrogenation of CO to short chain olefins publication-title: ACS Catal. doi: 10.1021/acscatal.8b02892 – volume: 34 start-page: 41 year: 2005 end-page: 48 ident: CR36 article-title: Well-defined (supra)molecular structures in zeolite methanol-to-olefin catalysis publication-title: Top. Catal. doi: 10.1007/s11244-005-3798-0 – volume: 7 start-page: 7987 year: 2017 end-page: 7994 ident: CR47 article-title: Unraveling the mechanism of the initiation reaction of the methanol to olefins process using ab Initio and DFT calculations publication-title: ACS Catal. doi: 10.1021/acscatal.7b03114 – volume: 44 start-page: 7044 year: 2015 end-page: 7111 ident: CR62 article-title: Advances in theory and their application within the field of zeolite chemistry publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00029G – volume: 52 start-page: 218 year: 2009 end-page: 228 ident: CR65 article-title: The effect of acid strength on the conversion of methanol to olefins over acidic microporous catalysts with the CHA topology publication-title: Top. Catal. doi: 10.1007/s11244-008-9158-0 – volume: 57 start-page: 8095 year: 2018 end-page: 8099 ident: CR31 article-title: Bridging the gap between the direct and hydrocarbon pool mechanisms of the methanol‐to‐hydrocarbons process publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201803279 – volume: 10 start-page: 14147 year: 2020 end-page: 14185 ident: CR12 article-title: Advances in the design of heterogeneous catalysts and thermocatalytic processes for CO utilization publication-title: ACS Catal. doi: 10.1021/acscatal.0c04273 – volume: 56 start-page: 1776 year: 1972 end-page: 1777 ident: CR38 article-title: Proton-enhanced nuclear induction spectroscopy. A method for high resolution nmr of dilute spins in solids publication-title: J. Chem. Phys. doi: 10.1063/1.1677439 – volume: 128 start-page: 14770 year: 2006 end-page: 14771 ident: CR32 article-title: Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: ethene formation is mechanistically separated from the formation of higher alkenes publication-title: J. Am. Chem. Soc. doi: 10.1021/ja065810a – volume: 118 start-page: 17787 year: 2014 end-page: 17800 ident: CR63 article-title: Implications of transition state confinement within small voids for acid catalysis publication-title: J. Phys. Chem. C doi: 10.1021/jp5050095 – volume: 7 start-page: 6663 year: 2017 end-page: 6674 ident: CR67 article-title: Introducing catalytic diversity into single-site chabazite zeolites of fixed composition via synthetic control of active site proximity publication-title: ACS Catal. doi: 10.1021/acscatal.7b01273 – volume: 141 start-page: 25 year: 2009 end-page: 33 ident: CR53 article-title: Synthesis: reaction mechanisms for iron catalysts publication-title: Catal. Today doi: 10.1016/j.cattod.2008.03.005 – volume: 116 start-page: 1962 year: 1994 end-page: 1972 ident: CR70 article-title: Toward a systematic chemistry of organic reactions in zeolites: in situ NMR studies of ketones publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00084a041 – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: CR73 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput publication-title: Mater. Sci. – volume: 3 start-page: 570 year: 2019 end-page: 583 ident: CR24 article-title: Highly selective conversion of carbon dioxide to aromatics over tandem catalysts publication-title: Joule doi: 10.1016/j.joule.2018.10.027 – volume: 1 start-page: 398 year: 2018 end-page: 411 ident: CR27 article-title: Recent trends and fundamental insights in the methanol-to-hydrocarbons process publication-title: Nat. Catal. doi: 10.1038/s41929-018-0078-5 – volume: 132 start-page: 154104 year: 2010 ident: CR71 article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 3 start-page: 334 year: 2017 end-page: 347 ident: CR23 article-title: Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability publication-title: Chem doi: 10.1016/j.chempr.2017.05.007 – volume: 59 start-page: 16741 year: 2020 end-page: 16746 ident: CR29 article-title: Initial carbon−carbon bond formation during the early stages of methane dehydroaromatization publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202007283 – volume: 101 start-page: 760 year: 1979 end-page: 762 ident: CR37 article-title: Enhancement of nuclear magnetic resonance signals by polarization transfer publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00497a058 – volume: 59 start-page: 1758 year: 1999 end-page: 1775 ident: CR72 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B – volume: 4 start-page: 167 year: 2019 end-page: 176 ident: CR6 article-title: Heterogeneous catalysis for the valorization of CO2: Role of bifunctional processes in the production of chemicals publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01910 – volume: 11 start-page: 2879 year: 2019 end-page: 2886 ident: CR14 article-title: Tandem conversion of CO to valuable hydrocarbons in highly concentrated potassium iron catalysts publication-title: ChemCatChem doi: 10.1002/cctc.201900762 – volume: 52 start-page: 2892 year: 2019 end-page: 2903 ident: CR51 article-title: Integrated CO capture and conversion to formate and methanol: connecting two threads publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00324 – volume: 42 start-page: 1162 year: 1970 end-page: 1174 ident: CR55 article-title: Neuere Erkenntnisse auf dem Gebiet der Synthese von Kohlenwasserstoffen aus CO und H publication-title: Chem. Ing. Tech. doi: 10.1002/cite.330421808 – volume: 9 start-page: 895 year: 2019 end-page: 901 ident: CR25 article-title: Rationally designing bifunctional catalysts as an efficient strategy to boost CO hydrogenation producing value-added aromatics publication-title: ACS Catal. doi: 10.1021/acscatal.8b01344 – volume: 351 start-page: 1065 year: 2016 end-page: 1068 ident: CR16 article-title: Selective conversion of syngas to light olefins publication-title: Science doi: 10.1126/science.aaf1835 – volume: 54 start-page: 7261 year: 2015 end-page: 7264 ident: CR46 article-title: Ketene as a reaction intermediate in the carbonylation of dimethyl ether to methyl acetate over mordenite. Angew publication-title: Chem. Int. Ed. doi: 10.1002/anie.201410974 – volume: 8 start-page: 7356 year: 2018 end-page: 7361 ident: CR49 article-title: Evolution of C-C bond formation in the methanol-to-olefins process: from direct coupling to autocatalysis publication-title: ACS Catal. doi: 10.1021/acscatal.8b02385 – volume: 9 year: 2018 ident: CR26 article-title: Selective conversion of CO and H into aromatics publication-title: Nat. Commun. doi: 10.1038/s41467-018-05880-4 – volume: 45 start-page: 1617 year: 2006 ident: 26090_CR43 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200503898 – volume: 48 start-page: 3193 year: 2019 ident: 26090_CR7 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00502H – volume: 7 start-page: 6663 year: 2017 ident: 26090_CR67 publication-title: ACS Catal. doi: 10.1021/acscatal.7b01273 – volume: 8 start-page: 7356 year: 2018 ident: 26090_CR49 publication-title: ACS Catal. doi: 10.1021/acscatal.8b02385 – volume: 79 start-page: 2983 year: 1957 ident: 26090_CR52 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01569a001 – volume: 178 start-page: 97 year: 2017 ident: 26090_CR48 publication-title: Combust. Flame doi: 10.1016/j.combustflame.2016.12.026 – volume: 57 start-page: 8095 year: 2018 ident: 26090_CR31 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201803279 – volume: 10 start-page: 1507 year: 2020 ident: 26090_CR19 publication-title: Catal. Sci. Technol. doi: 10.1039/C9CY02532D – volume: 116 start-page: 1962 year: 1994 ident: 26090_CR70 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00084a041 – volume: 6 start-page: 1711 year: 2013 ident: 26090_CR4 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee00056g – volume: 10 start-page: 14147 year: 2020 ident: 26090_CR12 publication-title: ACS Catal. doi: 10.1021/acscatal.0c04273 – volume: 9 year: 2018 ident: 26090_CR26 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05880-4 – volume: 59 start-page: 1758 year: 1999 ident: 26090_CR72 publication-title: Phys. Rev. B – volume: 138 start-page: 4739 year: 2016 ident: 26090_CR64 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11355 – volume: 8 start-page: 770 year: 2018 ident: 26090_CR66 publication-title: ACS Catal. doi: 10.1021/acscatal.7b03676 – volume: 8 start-page: 9174 year: 2018 ident: 26090_CR13 publication-title: ACS Catal. doi: 10.1021/acscatal.8b02892 – volume: 1 start-page: 922 year: 2018 ident: 26090_CR5 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0182-6 – volume: 55 start-page: 2507 year: 2016 ident: 26090_CR35 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201510920 – volume: 11 start-page: 2879 year: 2019 ident: 26090_CR14 publication-title: ChemCatChem doi: 10.1002/cctc.201900762 – volume: 63 start-page: 962 year: 1959 ident: 26090_CR56 publication-title: J. Phys. Chem. doi: 10.1021/j150576a044 – volume: 9 start-page: 895 year: 2019 ident: 26090_CR25 publication-title: ACS Catal. doi: 10.1021/acscatal.8b01344 – volume: 52 start-page: 218 year: 2009 ident: 26090_CR65 publication-title: Top. Catal. doi: 10.1007/s11244-008-9158-0 – volume: 51 start-page: 5810 year: 2012 ident: 26090_CR58 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201103657 – volume: 2 start-page: 785 year: 2020 ident: 26090_CR2 publication-title: Trends Chem. doi: 10.1016/j.trechm.2020.07.005 – volume: 9 start-page: 6320 year: 2019 ident: 26090_CR17 publication-title: ACS Catal. doi: 10.1021/acscatal.9b01466 – volume: 44 start-page: 7044 year: 2015 ident: 26090_CR62 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00029G – volume: 49 start-page: 14251 year: 1994 ident: 26090_CR74 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.49.14251 – volume: 54 start-page: 7261 year: 2015 ident: 26090_CR46 publication-title: Chem. Int. Ed. doi: 10.1002/anie.201410974 – volume: 10 start-page: 10325 year: 2020 ident: 26090_CR21 publication-title: ACS Catal. doi: 10.1021/acscatal.0c02611 – volume: 117 start-page: 9804 year: 2017 ident: 26090_CR10 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00816 – volume: 12 start-page: 3425 year: 2019 ident: 26090_CR11 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE01673B – volume: 3 start-page: 334 year: 2017 ident: 26090_CR23 publication-title: Chem doi: 10.1016/j.chempr.2017.05.007 – volume: 52 start-page: 2892 year: 2019 ident: 26090_CR51 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00324 – volume: 9 start-page: 1019 year: 2017 ident: 26090_CR22 publication-title: Nat. Chem. doi: 10.1038/nchem.2794 – volume: 381 start-page: 347 year: 2020 ident: 26090_CR18 publication-title: J. Catal. doi: 10.1016/j.jcat.2019.11.015 – volume: 10 start-page: 1975 year: 2020 ident: 26090_CR44 publication-title: Catal. Sci. Technol. doi: 10.1039/C9CY02587A – volume: 351 start-page: 1065 year: 2016 ident: 26090_CR16 publication-title: Science doi: 10.1126/science.aaf1835 – volume: 32 start-page: 2002927 year: 2020 ident: 26090_CR9 publication-title: Adv. Mater. doi: 10.1002/adma.202002927 – volume: 10 start-page: 8904 year: 2020 ident: 26090_CR68 publication-title: ACS Catal. doi: 10.1021/acscatal.0c01454 – ident: 26090_CR50 doi: 10.1002/anie.201511678 – volume: 56 start-page: 1776 year: 1972 ident: 26090_CR38 publication-title: J. Chem. Phys. doi: 10.1063/1.1677439 – volume: 55 start-page: 15840 year: 2016 ident: 26090_CR28 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201608643 – volume: 141 start-page: 14823 year: 2019 ident: 26090_CR33 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b07484 – volume: 132 start-page: 154104 year: 2010 ident: 26090_CR71 publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 58 start-page: 95 year: 1979 ident: 26090_CR54 publication-title: J. Catal. doi: 10.1016/0021-9517(79)90248-3 – volume: 42 start-page: 1162 year: 1970 ident: 26090_CR55 publication-title: Chem. Ing. Tech. doi: 10.1002/cite.330421808 – volume: 166 start-page: 11187 year: 2019 ident: 26090_CR3 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1821029116 – volume: 8 year: 2017 ident: 26090_CR20 publication-title: Nat. Commun. doi: 10.1038/ncomms15174 – volume: 34 start-page: 41 year: 2005 ident: 26090_CR36 publication-title: Top. Catal. doi: 10.1007/s11244-005-3798-0 – volume: 101 start-page: 760 year: 1979 ident: 26090_CR37 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00497a058 – volume: 59 start-page: 16741 year: 2020 ident: 26090_CR29 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202007283 – volume: 10 start-page: 1056 year: 2017 ident: 26090_CR8 publication-title: ChemSusChem doi: 10.1002/cssc.201601591 – ident: 26090_CR60 – volume: 57 start-page: 10197 year: 2018 ident: 26090_CR40 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201805609 – volume: 105 start-page: 4317 year: 2001 ident: 26090_CR69 publication-title: J. Phys. Chem. B doi: 10.1021/jp0041407 – volume: 6 start-page: 15 year: 1996 ident: 26090_CR73 publication-title: Mater. Sci. – volume: 114 start-page: 12711 year: 2010 ident: 26090_CR41 publication-title: J. Phys. Chem. C doi: 10.1021/jp1044749 – volume: 7 start-page: 7987 year: 2017 ident: 26090_CR47 publication-title: ACS Catal. doi: 10.1021/acscatal.7b03114 – volume: 202 start-page: 605 year: 2017 ident: 26090_CR15 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.09.072 – volume: 117 start-page: 5840 year: 2013 ident: 26090_CR42 publication-title: J. Phys. Chem. C doi: 10.1021/jp400331m – volume: 57 start-page: 14982 year: 2018 ident: 26090_CR45 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201808480 – volume: 7 start-page: 8235 year: 2017 ident: 26090_CR57 publication-title: ACS Catal. doi: 10.1021/acscatal.7b02193 – volume: 197 start-page: 421 year: 2017 ident: 26090_CR59 publication-title: Faraday Discuss. doi: 10.1039/C6FD00187D – volume: 1 start-page: 398 year: 2018 ident: 26090_CR27 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0078-5 – volume: 141 start-page: 25 year: 2009 ident: 26090_CR53 publication-title: Catal. Today doi: 10.1016/j.cattod.2008.03.005 – volume: 59 start-page: 20024 year: 2020 ident: 26090_CR30 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202009139 – volume: 4 start-page: 167 year: 2019 ident: 26090_CR6 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01910 – volume: 128 start-page: 14770 year: 2006 ident: 26090_CR32 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja065810a – volume: 451 start-page: 671 year: 2008 ident: 26090_CR61 publication-title: Nature doi: 10.1038/nature06552 – volume: 3 start-page: 570 year: 2019 ident: 26090_CR24 publication-title: Joule doi: 10.1016/j.joule.2018.10.027 – volume: 118 start-page: 17787 year: 2014 ident: 26090_CR63 publication-title: J. Phys. Chem. C doi: 10.1021/jp5050095 – volume: 7 start-page: 243 year: 2017 ident: 26090_CR1 publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate3231 – volume: 122 start-page: 10726 year: 2000 ident: 26090_CR34 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja002195g – volume: 127 start-page: 12965 year: 2005 ident: 26090_CR39 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0530164 |
SSID | ssj0000391844 |
Score | 2.6135395 |
Snippet | Cascade processes are gaining momentum in heterogeneous catalysis. The combination of several catalytic solids within one reactor has shown great promise for... The reaction mechanism of carbon dioxide to high-value hydrocarbons over metal-zeolite bifunctional catalysts remains ambiguous. Here, the authors demonstrate... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5914 |
SubjectTerms | 140/131 140/133 639/638/298 639/638/77/887 Alkenes Aromatic compounds Carbon dioxide Catalysis Catalysts Computer applications Humanities and Social Sciences Hydrocarbons Hydrogenation Intermediates Magnetic resonance spectroscopy multidisciplinary Multivariate analysis NMR NMR spectroscopy Nuclear magnetic resonance Paraffins Reaction mechanisms Science Science (multidisciplinary) Selectivity Topology Vapor phases Zeolites |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZlodBLaZuWbpsEBXprxXqth6VjExJCIO2hDeQmrBe7UOyyuzkkv74zkncTB9JeelqwZNbWzGi-sWa-IeSTbGoskeGs8l4wAYJlra4SE6F1VZJKOInFyZff1PmVuLiW1w9afWFOWKEHLgs340H6KmkVQRcBnSeNDFzapTrAbyo0kuDzHgRTeQ_mBkIXMVTJVFzP1iLvCZiRABDeVEyOPFEm7B-hzMc5ko8OSrP_OXtFXg7AkX4tD_yaPIvdG_K8tJK83SN3P3JDm9wKgoZYNoN-taYASimAPFp8F13chlUPSpMFQvtET77XdNOX675dOdBCWmoX6V3E5LjIcnUJIFPqlugGy9dDmj_8IJ_JW3J1dvrz5JwNfRWYl_NmwwJgitaZFrAFhNIQobYKadFq5JIz3GgZQ2pSA8uauIvI6Na6uYPQykuvdaj4OzLp-i6-JzRI7OgnGmHA2EAZTMO9U1Eo70w9V3JK5ts1tn4gHcfeF79sPvzm2ha5WJCLzXKxcM_n3T2_C-XGX2cfo-h2M5EuO18AJbKDEtl_KdGU7G8FbwcbXttaamQzMwqGj3bDYH14pNJ2sb8pc5rMmzclzUhhRg80HumWi8zjrSU22VBT8mWrWvd__vQLf_gfL_yRvKjRFHIy4z6ZbFY38QDQ1cYdZkP6Az6uH5w priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtSqGX0vRB3SZFhd5aEVuWbPkUmtBNKLQ9tIHchPVqAsFOvZtD8uszI2k3ONCcFmyZ9e68Po1mviHkk2w5tsjUrLRWMAGCZb0qAxOuN2WQjTASm5N__GyOT8T3U3maE27LXFa59onRUbvRYo58j0uF3FJdw_cv_zGcGoWnq3mExmPypIJIgyVdanG0ybEg-7kSIvfKlLXaW4roGbAuAYB8VzI5i0eRtn-GNe9XSt47Lo1RaPGCPM_wkX5N8t4mj_zwkjxNAyWvX5Gb33GsTRwIQZ1PLmGclhSgKQWoR1MEo2fXbhpBdaJY6Bjo4S9OV2O6bvvJgC7S1MFIbzyWyHkWe0wAn1JzjsEw5RBpTP8gq8lrcrL49ufwmOXpCszKql0xB8iiN10PCAM21LBP7RskR-PIKNfVnZLehTa0vOxCbTzyuvWmMrDBstIq5cr6DdkaxsG_JdRJnOsnWtGByYFKdG1tTeNFY03Hq0YWpFr_x9pm6nGcgHGh4xF4rXSSiwa56CgXDc983jxzmYg3Hlx9gKLbrETS7HhhnP7qbIO6dtKWQTUe3Bps9IJCMjdlAnfwGUpekJ214HW25KW-07uCfNzcBhvEg5V-8ONVWtNG9ryCtDOFmb3Q_M5wfhbZvJXEURtNQb6sVevuy___g989_K7vyTOOSh6LFXfI1mq68ruAnlbmQzSRW5sAGAg priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxUxEA-1RfAifuLTKhG8aXBfNskmx2exlAfqoRZ6C5svW5Ddsu_10P71ziS7T7ao4GkhH2x2Zyb5JZn5DSHvZMMxRKZmlfeCCRAsa3WVmAitq5JUwkkMTv7yVZ2cifW5PN8jfIqFyU77mdIyT9OTd9jHjcgmjQ4FgMBNxeQ9coBU7aDbB6vV-nS9O1lBznMtxBghU9X6D51nq1Am658hzLv-kXcuSfPac_yIPBxBI12VYT4me7F7Qu6XNJI3T8ntaU5mk9NA0BDLRNAPGwqAlALAo2Xdohc3YehBYbIwaJ_o0TdOt30p9-3gQANpiVuktxEd4yLLkSWASqm7xCWwnBzSfOiDXCbPyNnx5-9HJ2zMqcC8XDZbFgBPtM60gCtgGw2701YhJRpHHjlTGy1jSE1qeGVS7SKyubVu6WBb5aXXOlT1c7Lf9V18QWiQmM1PNMKAoYEimKb2TkWhvDN8qeSCLKd_bP1IOI55L37afPFda1vkYkEuNsvFQp_3uz5XhW7jn60_oeh2LZEqOxf0ww87qo6tg_RV0irCZAbbu6SRwk27xAM8U8UX5HASvB3td2O51MhkZhRUv91Vg-XhdUrbxf66tGkyZ96CNDOFmQ1oXtNdXmQOby0xwYZakA-Tav1--d8_-OX_NX9FHnBU-uyyeEj2t8N1fA0YauvejEbzC4G7FyU priority: 102 providerName: Springer Nature |
Title | Selectivity descriptors for the direct hydrogenation of CO2 to hydrocarbons during zeolite-mediated bifunctional catalysis |
URI | https://link.springer.com/article/10.1038/s41467-021-26090-5 https://www.proquest.com/docview/2580181962 https://www.proquest.com/docview/2580700119 https://pubmed.ncbi.nlm.nih.gov/PMC8501036 https://doaj.org/article/3d5c0f86e073499f885508bf2d550f02 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBf9YLCXsU-WrQsa7G3T5g_Jkh7GSEOzEmg31gXyJixbbgvF3pwUlv71u5PsDJdusBcbJNlOdHfS7yTd7wh5I2SCITIpi4qCMw6CZbmKKsbL3EaVyLgVGJx8cpodL_h8KZY7pE931HXg6k7XDvNJLdqr979-bj6BwX8MIePqw4p7c8fDBoDOdcTELtmHmUliRoOTDu77kTnV4NDgRnMS8ZhBg7SLo7n7NYO5ylP6D3Do7VOUt7ZS_Qw1e0gedNCSToIuPCI7rn5M7oVkk5sn5ObMp7zxySJo6cJw0bQrCrCVAgykYXajF5uybUCtvMhoU9Hpl4Sum1Be5K0FPaUhupHeODw-55iPPwHsSu0lTpRhfZH6pSFkPHlKFrOj79Nj1mVeYIWI5ZqVgDpyq3NAH-Bsgw-bZ0icliDbnE61Eq6sZCWTSFepdcj5ltvYgvNViEKpMkqfkb26qd1zQkuBOf-45BrMEdRFy7SwmeNZYXUSZ2JE4r6PTdHRkmN2jCvjt8dTZYJcDMjFeLkYeObt9pkfgZTjn60PUXTblkio7Qua9tx09mnSUhRRpTIHQx44gZVCojdlq6SEexUlI3LQC970SmoSoZDvTGdQ_XpbDfaJmy557Zrr0EZ6Zr0RkQOFGfygYU19eeGZvpXANBzZiLzrVevPx__-h1_8V_e8JPcT1Hl_rvGA7K3ba_cKgNbajsmuXEq4qtnnMdmfTOZnc7gfHp1-_Qal02w69ksYY29lvwGHnieP |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4ilSChgJTmA169iJc0AICsuWPjjQSr258SO0Ekra7FZo-6P4jczYyVZbid56ipQ4m2xmPA975vsIeSMLji0yGUutFUyAYFml0poJV5m0lrkwEpuTd_fyyYH4figPV8jfoRcGyyoHmxgMtWstrpFvcKkQW6rM-cfTM4asUbi7OlBoRLXY9vM_kLJNP2x9Afm-5Xz8dX9zwnpWAWblqJgxBx61MmUFnhUSScjPqhxBwTgiqZVZqaR3dVEXPC3rzHjEM6vMyEBiYaVVyqUZ_O4tcltk4MmxM338bbGmg2jrSoi-NyfN1MZUBEuEdRCQOJQpk0v-L9AELMW2Vyszr2zPBq83fkDu9-Eq_RT16yFZ8c0jcicSWM4fk4ufgUYnEFBQ56MJarsphVCYQmhJo8ekx3PXtaCqQQ1oW9PNH5zO2njeVp0B3aexY5JeeCzJ8yz0tEA8TM0JOt-4ZknDchOiqDwhBzfy3Z-S1aZt_DNCnUQeQVGIEqY4qGBZZNbkXuTWlHyUy4SMhm-sbQ91jowbv3XYcs-UjnLRIBcd5KLhnneLe04j0Me1oz-j6BYjEaQ7nGi7X7qf8zpz0qa1yj2YUUgsa4XgccrU3MGxTnlC1gfB695yTPWlnifk9eIyzHncyKka357HMUVA60tIsaQwSy-0fKU5OQ7o4UoitUeekPeDal0-_P9_eO36d31F7k72d3f0ztbe9nNyj6PCh0LJdbI66879C4jcZuZlmC6UHN30_PwHVONTcg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBeEJ-iMMBI8ARRU8dOnAeE2Ee1MSgTMGlvJnZsNgk1o-2Euj-Nv447O-nUSextT5ESp0lz5_uw734_gFey4NQikyWptSIRKNikUqlPRF2Z1MtcGEnNyZ_H-e6h-Hgkj9bgb9cLQ2WVnU0MhrpuLK2RD7hUhC1V5nzg27KIg-3R-9PfCTFI0U5rR6cRVWTfLf5g-jZ7t7eNsn7N-Wjn-9Zu0jIMJFYOi3lSo3etTFmhl8WkEnO1KieAME6oamVWKulqX_iCp6XPjCNss8oMDSYZVlql6jTD370B6wVlRT1Y39wZH3xdrvAQ9roSou3USTM1mIlgl6gqAtOIMk3kijcMpAErke7lOs1Lm7XBB47uwp02eGUforbdgzU3uQ83I53l4gGcfwukOoGOgtUuGqRmOmMYGDMMNFn0n-x4UU8bVNygFKzxbOsLZ_MmnrfV1OBMYLF_kp07KtBzSehwweiYmRNyxXEFk4XFJ8JUeQiH1_LlH0Fv0kzcY2C1JFZBUYgSJzwqZFlk1uRO5NaUfJjLPgy7b6xtC3xO_Bu_dNiAz5SOctEoFx3kovGeN8t7TiPsx5WjN0l0y5EE2R1ONNOfurUAOqulTb3KHRpVTDO9Iig5ZTyv8ehT3oeNTvC6tSMzfaH1fXi5vIwWgLZ1qolrzuKYImD39aFYUZiVF1q9Mjk5DljiShLRR96Ht51qXTz8_3_4ydXv-gJu4dzUn_bG-0_hNid9D1WTG9CbT8_cMwzj5uZ5O18Y_LjuKfoP7GFZBA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selectivity+descriptors+for+the+direct+hydrogenation+of+CO2+to+hydrocarbons+during+zeolite-mediated+bifunctional+catalysis&rft.jtitle=Nature+communications&rft.au=Ramirez%2C+Adrian&rft.au=Gong%2C+Xuan&rft.au=Caglayan%2C+Mustafa&rft.au=Nastase%2C+Stefan-Adrian+F.&rft.date=2021-10-08&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-021-26090-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_021_26090_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |