Selectivity descriptors for the direct hydrogenation of CO2 to hydrocarbons during zeolite-mediated bifunctional catalysis

Cascade processes are gaining momentum in heterogeneous catalysis. The combination of several catalytic solids within one reactor has shown great promise for the one-step valorization of C1-feedstocks. The combination of metal-based catalysts and zeolites in the gas phase hydrogenation of CO 2 leads...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; pp. 5914 - 13
Main Authors Ramirez, Adrian, Gong, Xuan, Caglayan, Mustafa, Nastase, Stefan-Adrian F., Abou-Hamad, Edy, Gevers, Lieven, Cavallo, Luigi, Dutta Chowdhury, Abhishek, Gascon, Jorge
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.10.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cascade processes are gaining momentum in heterogeneous catalysis. The combination of several catalytic solids within one reactor has shown great promise for the one-step valorization of C1-feedstocks. The combination of metal-based catalysts and zeolites in the gas phase hydrogenation of CO 2 leads to a large degree of product selectivity control, defined mainly by zeolites. However, a great deal of mechanistic understanding remains unclear: metal-based catalysts usually lead to complex product compositions that may result in unexpected zeolite reactivity. Here we present an in-depth multivariate analysis of the chemistry involved in eight different zeolite topologies when combined with a highly active Fe-based catalyst in the hydrogenation of CO 2 to olefins, aromatics, and paraffins. Solid-state NMR spectroscopy and computational analysis demonstrate that the hybrid nature of the active zeolite catalyst and its preferred CO 2 -derived reaction intermediates (CO/ester/ketone/hydrocarbons, i.e., inorganic-organic supramolecular reactive centers), along with 10 MR-zeolite topology, act as descriptors governing the ultimate product selectivity. The reaction mechanism of carbon dioxide to high-value hydrocarbons over metal-zeolite bifunctional catalysts remains ambiguous. Here, the authors demonstrate that active zeolite catalysts’ topology and hybrid nature are descriptors; regulating the reaction mechanism and ultimate product selectivity.
AbstractList The reaction mechanism of carbon dioxide to high-value hydrocarbons over metal-zeolite bifunctional catalysts remains ambiguous. Here, the authors demonstrate that active zeolite catalysts’ topology and hybrid nature are descriptors; regulating the reaction mechanism and ultimate product selectivity.
Cascade processes are gaining momentum in heterogeneous catalysis. The combination of several catalytic solids within one reactor has shown great promise for the one-step valorization of C1-feedstocks. The combination of metal-based catalysts and zeolites in the gas phase hydrogenation of CO2 leads to a large degree of product selectivity control, defined mainly by zeolites. However, a great deal of mechanistic understanding remains unclear: metal-based catalysts usually lead to complex product compositions that may result in unexpected zeolite reactivity. Here we present an in-depth multivariate analysis of the chemistry involved in eight different zeolite topologies when combined with a highly active Fe-based catalyst in the hydrogenation of CO2 to olefins, aromatics, and paraffins. Solid-state NMR spectroscopy and computational analysis demonstrate that the hybrid nature of the active zeolite catalyst and its preferred CO2-derived reaction intermediates (CO/ester/ketone/hydrocarbons, i.e., inorganic-organic supramolecular reactive centers), along with 10 MR-zeolite topology, act as descriptors governing the ultimate product selectivity.Cascade processes are gaining momentum in heterogeneous catalysis. The combination of several catalytic solids within one reactor has shown great promise for the one-step valorization of C1-feedstocks. The combination of metal-based catalysts and zeolites in the gas phase hydrogenation of CO2 leads to a large degree of product selectivity control, defined mainly by zeolites. However, a great deal of mechanistic understanding remains unclear: metal-based catalysts usually lead to complex product compositions that may result in unexpected zeolite reactivity. Here we present an in-depth multivariate analysis of the chemistry involved in eight different zeolite topologies when combined with a highly active Fe-based catalyst in the hydrogenation of CO2 to olefins, aromatics, and paraffins. Solid-state NMR spectroscopy and computational analysis demonstrate that the hybrid nature of the active zeolite catalyst and its preferred CO2-derived reaction intermediates (CO/ester/ketone/hydrocarbons, i.e., inorganic-organic supramolecular reactive centers), along with 10 MR-zeolite topology, act as descriptors governing the ultimate product selectivity.
Cascade processes are gaining momentum in heterogeneous catalysis. The combination of several catalytic solids within one reactor has shown great promise for the one-step valorization of C1-feedstocks. The combination of metal-based catalysts and zeolites in the gas phase hydrogenation of CO2 leads to a large degree of product selectivity control, defined mainly by zeolites. However, a great deal of mechanistic understanding remains unclear: metal-based catalysts usually lead to complex product compositions that may result in unexpected zeolite reactivity. Here we present an in-depth multivariate analysis of the chemistry involved in eight different zeolite topologies when combined with a highly active Fe-based catalyst in the hydrogenation of CO2 to olefins, aromatics, and paraffins. Solid-state NMR spectroscopy and computational analysis demonstrate that the hybrid nature of the active zeolite catalyst and its preferred CO2-derived reaction intermediates (CO/ester/ketone/hydrocarbons, i.e., inorganic-organic supramolecular reactive centers), along with 10 MR-zeolite topology, act as descriptors governing the ultimate product selectivity.The reaction mechanism of carbon dioxide to high-value hydrocarbons over metal-zeolite bifunctional catalysts remains ambiguous. Here, the authors demonstrate that active zeolite catalysts’ topology and hybrid nature are descriptors; regulating the reaction mechanism and ultimate product selectivity.
Cascade processes are gaining momentum in heterogeneous catalysis. The combination of several catalytic solids within one reactor has shown great promise for the one-step valorization of C1-feedstocks. The combination of metal-based catalysts and zeolites in the gas phase hydrogenation of CO 2 leads to a large degree of product selectivity control, defined mainly by zeolites. However, a great deal of mechanistic understanding remains unclear: metal-based catalysts usually lead to complex product compositions that may result in unexpected zeolite reactivity. Here we present an in-depth multivariate analysis of the chemistry involved in eight different zeolite topologies when combined with a highly active Fe-based catalyst in the hydrogenation of CO 2 to olefins, aromatics, and paraffins. Solid-state NMR spectroscopy and computational analysis demonstrate that the hybrid nature of the active zeolite catalyst and its preferred CO 2 -derived reaction intermediates (CO/ester/ketone/hydrocarbons, i.e., inorganic-organic supramolecular reactive centers), along with 10 MR-zeolite topology, act as descriptors governing the ultimate product selectivity.
Cascade processes are gaining momentum in heterogeneous catalysis. The combination of several catalytic solids within one reactor has shown great promise for the one-step valorization of C1-feedstocks. The combination of metal-based catalysts and zeolites in the gas phase hydrogenation of CO 2 leads to a large degree of product selectivity control, defined mainly by zeolites. However, a great deal of mechanistic understanding remains unclear: metal-based catalysts usually lead to complex product compositions that may result in unexpected zeolite reactivity. Here we present an in-depth multivariate analysis of the chemistry involved in eight different zeolite topologies when combined with a highly active Fe-based catalyst in the hydrogenation of CO 2 to olefins, aromatics, and paraffins. Solid-state NMR spectroscopy and computational analysis demonstrate that the hybrid nature of the active zeolite catalyst and its preferred CO 2 -derived reaction intermediates (CO/ester/ketone/hydrocarbons, i.e., inorganic-organic supramolecular reactive centers), along with 10 MR-zeolite topology, act as descriptors governing the ultimate product selectivity. The reaction mechanism of carbon dioxide to high-value hydrocarbons over metal-zeolite bifunctional catalysts remains ambiguous. Here, the authors demonstrate that active zeolite catalysts’ topology and hybrid nature are descriptors; regulating the reaction mechanism and ultimate product selectivity.
ArticleNumber 5914
Author Gong, Xuan
Cavallo, Luigi
Ramirez, Adrian
Gascon, Jorge
Abou-Hamad, Edy
Caglayan, Mustafa
Dutta Chowdhury, Abhishek
Nastase, Stefan-Adrian F.
Gevers, Lieven
Author_xml – sequence: 1
  givenname: Adrian
  orcidid: 0000-0001-5036-1355
  surname: Ramirez
  fullname: Ramirez, Adrian
  organization: KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST)
– sequence: 2
  givenname: Xuan
  surname: Gong
  fullname: Gong, Xuan
  organization: The Institute for Advanced Studies (IAS), Wuhan University
– sequence: 3
  givenname: Mustafa
  orcidid: 0000-0002-9359-0841
  surname: Caglayan
  fullname: Caglayan, Mustafa
  organization: KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST)
– sequence: 4
  givenname: Stefan-Adrian F.
  orcidid: 0000-0002-5112-3137
  surname: Nastase
  fullname: Nastase, Stefan-Adrian F.
  organization: KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST)
– sequence: 5
  givenname: Edy
  surname: Abou-Hamad
  fullname: Abou-Hamad, Edy
  organization: Imaging and Characterization Department, KAUST Core Labs, King Abdullah University of Science and Technology (KAUST)
– sequence: 6
  givenname: Lieven
  surname: Gevers
  fullname: Gevers, Lieven
  organization: KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST)
– sequence: 7
  givenname: Luigi
  orcidid: 0000-0002-1398-338X
  surname: Cavallo
  fullname: Cavallo, Luigi
  organization: KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST)
– sequence: 8
  givenname: Abhishek
  orcidid: 0000-0002-4121-7375
  surname: Dutta Chowdhury
  fullname: Dutta Chowdhury, Abhishek
  email: abhishek@whu.edu.cn
  organization: The Institute for Advanced Studies (IAS), Wuhan University
– sequence: 9
  givenname: Jorge
  orcidid: 0000-0001-7558-7123
  surname: Gascon
  fullname: Gascon, Jorge
  email: jorge.gascon@kaust.edu.sa
  organization: KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST)
BookMark eNp9Uk1v3CAQtapUTZrmD_SE1EsvbvkwBl8qVat-RIqUQ9szwjDssmLNFnCkza8vu07VJodwGTTz3mOGea-bsylO0DRvCf5AMJMfc0e6XrSYkpb2eMAtf9FcUNyRlgjKzv67nzdXOW9xPWwgsuteNees6ynnvLto7n9AAFP8nS8HZCGb5PclpoxcTKhsAFmfah1tDjbFNUy6-Dih6NDqlqISl7zRaYxTRnZOflqje4jBF2h3YL0uYNHo3TyZI1MHZHTR4ZB9ftO8dDpkuHqIl82vr19-rr63N7ffrlefb1rDiSitxVTqcdAEUxiZZEL3kgyU9kLIgQ2Sg3XCCYoHx0boRS_0SEYqheFGSovZZXO96Nqot2qf_E6ng4raq1MiprXSqXgTQDHLDXayByxYNwxOSs6xHB21NTpMq9anRWs_j3U8A1NJOjwSfVyZ_Eat452SHNe19VXg_YNAir9nyEXtfDYQgp4gzllRLrHAmJChQt89gW7jnOoXLihSf6E_diQXlEkx5wROGV9OW6rv-6AIVke_qMUvqvpFnfyieKXSJ9S_czxLYgsp74_LhvSvq2dYfwB-EtRS
CitedBy_id crossref_primary_10_1016_j_xcrp_2024_101826
crossref_primary_10_1002_anie_202414724
crossref_primary_10_1039_D3SC05674K
crossref_primary_10_1016_j_apcatb_2023_123193
crossref_primary_10_1002_ange_202408275
crossref_primary_10_1002_adfm_202408922
crossref_primary_10_1016_j_apcatb_2024_123829
crossref_primary_10_1039_D4CS01042F
crossref_primary_10_1016_j_cej_2024_158467
crossref_primary_10_1039_D3DT02131A
crossref_primary_10_1007_s40242_023_3269_9
crossref_primary_10_1016_j_apcatb_2023_122506
crossref_primary_10_1038_s41467_023_42955_3
crossref_primary_10_1039_D4CY00437J
crossref_primary_10_1016_j_cattod_2022_10_007
crossref_primary_10_1002_ange_202303124
crossref_primary_10_1002_ange_202411197
crossref_primary_10_1002_cssc_202401916
crossref_primary_10_1021_jacs_4c00981
crossref_primary_10_1039_D3TA03654E
crossref_primary_10_1038_s41929_023_00937_0
crossref_primary_10_1002_anie_202408275
crossref_primary_10_1016_j_checat_2024_101168
crossref_primary_10_3390_catal14050328
crossref_primary_10_1016_j_apcatb_2022_122299
crossref_primary_10_1016_j_checat_2022_07_026
crossref_primary_10_1016_j_checat_2025_101264
crossref_primary_10_1016_j_jcat_2024_115585
crossref_primary_10_1016_j_jcou_2022_102176
crossref_primary_10_3390_inorganics11050214
crossref_primary_10_1021_acs_energyfuels_4c03013
crossref_primary_10_1016_j_esci_2022_02_007
crossref_primary_10_1016_j_mtchem_2023_101745
crossref_primary_10_1002_sstr_202200285
crossref_primary_10_1016_j_cjche_2022_05_029
crossref_primary_10_1002_anie_202303124
crossref_primary_10_1039_D3TA01025B
crossref_primary_10_1016_j_apcatb_2022_121640
crossref_primary_10_1038_s41467_024_53484_y
crossref_primary_10_3389_fnano_2022_978358
crossref_primary_10_1002_anie_202411197
crossref_primary_10_1021_acscatal_2c04455
crossref_primary_10_1021_acs_chemrev_2c00076
crossref_primary_10_1039_D4CY01168F
crossref_primary_10_1016_j_jcou_2022_101969
crossref_primary_10_1021_acs_iecr_4c03735
crossref_primary_10_1007_s11705_024_2467_4
crossref_primary_10_1021_acscatal_1c05132
crossref_primary_10_1002_cssc_202300608
crossref_primary_10_1039_D4CY01508H
crossref_primary_10_1016_j_jcat_2023_115183
crossref_primary_10_1093_nsr_nwac047
crossref_primary_10_1038_s41467_022_34708_5
crossref_primary_10_1002_ange_202414724
crossref_primary_10_1016_j_apcata_2023_119100
crossref_primary_10_1016_j_pecs_2024_101159
crossref_primary_10_1039_D3EY00102D
crossref_primary_10_1039_D4SC06814A
crossref_primary_10_1016_j_ijhydene_2024_12_519
crossref_primary_10_1021_acscatal_2c04600
crossref_primary_10_1039_D4SC00603H
crossref_primary_10_1021_jacs_3c01304
crossref_primary_10_1038_s41929_022_00806_2
crossref_primary_10_1080_01614940_2022_2099058
crossref_primary_10_1039_D4DT00793J
crossref_primary_10_1039_D3TA03150K
crossref_primary_10_1021_jacsau_3c00768
crossref_primary_10_1016_j_apcatb_2024_124211
crossref_primary_10_1021_acscatal_4c00099
crossref_primary_10_1016_j_cej_2024_152614
crossref_primary_10_1016_j_pnmrs_2023_11_001
crossref_primary_10_1021_acs_chemrev_2c00315
Cites_doi 10.1021/jacs.9b07484
10.1002/anie.201805609
10.1016/j.apcatb.2016.09.072
10.1016/0021-9517(79)90248-3
10.1016/j.combustflame.2016.12.026
10.1039/C9EE01673B
10.1021/jp400331m
10.1021/acscatal.9b01466
10.1021/jacs.5b11355
10.1039/C9CY02587A
10.1002/anie.201808480
10.1002/anie.202009139
10.1073/pnas.1821029116
10.1021/jp0041407
10.1021/ja002195g
10.1039/C8CS00502H
10.1002/anie.201510920
10.1002/anie.201608643
10.1038/s41929-018-0182-6
10.1021/ja0530164
10.1039/C6FD00187D
10.1021/j150576a044
10.1039/c3ee00056g
10.1002/anie.201103657
10.1021/acscatal.7b03676
10.1016/j.trechm.2020.07.005
10.1016/j.jcat.2019.11.015
10.1103/PhysRevB.49.14251
10.1021/acscatal.0c01454
10.1002/adma.202002927
10.1021/jp1044749
10.1021/acscatal.7b02193
10.1038/ncomms15174
10.1002/anie.200503898
10.1038/nature06552
10.1039/C9CY02532D
10.1021/acscatal.0c02611
10.1038/nchem.2794
10.1021/acs.chemrev.6b00816
10.1002/cssc.201601591
10.1021/ja01569a001
10.1038/nclimate3231
10.1021/acscatal.8b02892
10.1007/s11244-005-3798-0
10.1021/acscatal.7b03114
10.1039/C5CS00029G
10.1007/s11244-008-9158-0
10.1002/anie.201803279
10.1021/acscatal.0c04273
10.1063/1.1677439
10.1021/ja065810a
10.1021/jp5050095
10.1021/acscatal.7b01273
10.1016/j.cattod.2008.03.005
10.1021/ja00084a041
10.1016/j.joule.2018.10.027
10.1038/s41929-018-0078-5
10.1063/1.3382344
10.1016/j.chempr.2017.05.007
10.1002/anie.202007283
10.1021/ja00497a058
10.1021/acsenergylett.8b01910
10.1002/cctc.201900762
10.1021/acs.accounts.9b00324
10.1002/cite.330421808
10.1021/acscatal.8b01344
10.1126/science.aaf1835
10.1002/anie.201410974
10.1021/acscatal.8b02385
10.1038/s41467-018-05880-4
10.1002/anie.201511678
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021. The Author(s).
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-021-26090-5
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 13
ExternalDocumentID oai_doaj_org_article_3d5c0f86e073499f885508bf2d550f02
PMC8501036
10_1038_s41467_021_26090_5
GrantInformation_xml – fundername: King Abdullah University of Science and Technology (KAUST)
  grantid: n.a.
  funderid: https://doi.org/10.13039/501100004052
– fundername: ;
  grantid: n.a.
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c517t-d028ab9a102eb3837a681922677893985edf7f7209f3be6767ab1b287c5c88d03
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:27:25 EDT 2025
Thu Aug 21 17:56:18 EDT 2025
Fri Jul 11 10:45:27 EDT 2025
Wed Aug 13 08:42:21 EDT 2025
Thu Apr 24 23:10:58 EDT 2025
Tue Jul 01 04:17:36 EDT 2025
Fri Feb 21 02:39:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-d028ab9a102eb3837a681922677893985edf7f7209f3be6767ab1b287c5c88d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5036-1355
0000-0002-4121-7375
0000-0001-7558-7123
0000-0002-9359-0841
0000-0002-5112-3137
0000-0002-1398-338X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-021-26090-5
PMID 34625554
PQID 2580181962
PQPubID 546298
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_3d5c0f86e073499f885508bf2d550f02
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8501036
proquest_miscellaneous_2580700119
proquest_journals_2580181962
crossref_citationtrail_10_1038_s41467_021_26090_5
crossref_primary_10_1038_s41467_021_26090_5
springer_journals_10_1038_s41467_021_26090_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-08
PublicationDateYYYYMMDD 2021-10-08
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-08
  day: 08
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Xu, Haw, Munson (CR70) 1994; 116
Fang, Zheng, Chu, Deng (CR41) 2010; 114
Çağlayan (CR29) 2020; 59
Knott (CR66) 2018; 8
Ni (CR26) 2018; 9
Mac Dowell, Fennell, Shah, Maitland (CR1) 2017; 7
Andronesi (CR39) 2005; 127
Ramirez (CR19) 2020; 10
Wang (CR35) 2016; 55
Wei (CR20) 2017; 8
Rasmussen (CR46) 2015; 54
Zhang, Yu, Corma (CR9) 2020; 32
Blyholder, Emmett (CR56) 1959; 63
Prieto (CR8) 2017; 10
Ramirez (CR17) 2019; 9
Haw, Marcus (CR36) 2005; 34
Rojo-Gama (CR57) 2017; 7
Morris, Freeman (CR37) 1979; 101
Cheung, Bhan, Sunley, Iglesia (CR43) 2006; 45
Song, Nicholas, Haw (CR69) 2001; 105
Jiao (CR16) 2016; 351
Bleken (CR65) 2009; 52
Kar, Goeppert, Prakash (CR51) 2019; 52
Kresse, Hafner (CR74) 1994; 49
Li (CR24) 2019; 3
Hall, Kokes, Emmett (CR52) 1957; 79
Chowdhury (CR28) 2016; 55
Plessow, Studt (CR47) 2017; 7
Pines, Gibby, Waugh (CR38) 1972; 56
Zhou (CR7) 2019; 48
Kresse, Furthmüller (CR73) 1996; 6
Rojo-Gama (CR59) 2017; 197
Di Iorio, Nimlos, Gounder (CR67) 2017; 7
Dokania (CR18) 2020; 381
Cheng (CR23) 2017; 3
Choi (CR15) 2017; 202
Li (CR42) 2013; 117
De, Dokania, Ramirez, Gascon (CR12) 2020; 10
Ramirez, Gevers, Bavykina, Ould-Chikh, Gascon (CR13) 2018; 8
Ramirez, Sarathy, Gascon (CR2) 2020; 2
Davis (CR53) 2009; 141
Pichler, Schulz (CR55) 1970; 42
Dokania, Ramirez, Bavykina, Gascon (CR6) 2019; 4
Centi, Quadrelli, Perathoner (CR4) 2013; 6
Song, Haw, Nicholas, Heneghan (CR34) 2000; 122
Jones, Zones, Iglesia (CR63) 2014; 118
CR50
Handoko, Wei, Jenndy, Yeo, Seh (CR5) 2018; 1
Hemberger, Van Bokhoven, Pérez-Ramírez, Bodi (CR44) 2020; 10
Ramirez (CR14) 2019; 11
Biloen, Helle, Sachtler (CR54) 1979; 58
Wu (CR49) 2018; 8
Smit, Maesen (CR61) 2008; 451
Fu (CR30) 2020; 59
Wang (CR40) 2018; 57
Chowdhury (CR31) 2018; 57
Svelle (CR32) 2006; 128
Grimme, Antony, Ehrlich, Krieg (CR71) 2010; 132
Van Speybroeck (CR62) 2015; 44
Joubert (CR72) 1999; 59
Gao (CR22) 2017; 9
Nastase (CR68) 2020; 10
Wang (CR25) 2019; 9
Olsbye (CR58) 2012; 51
Álvarez (CR10) 2017; 117
CR60
Janda, Vlaisavljevich, Lin, Smit, Bell (CR64) 2016; 138
Christensen, Konnov (CR48) 2017; 178
Kätelhön, Meys, Deutz, Suh, Bardow (CR3) 2019; 166
Khan (CR21) 2020; 10
Chowdhury, Gascon (CR45) 2018; 57
Yarulina, Chowdhury, Meirer, Weckhuysen, Gascon (CR27) 2018; 1
González-Garay (CR11) 2019; 12
Bailleul (CR33) 2019; 141
YH Choi (26090_CR15) 2017; 202
26090_CR50
B Smit (26090_CR61) 2008; 451
P Hemberger (26090_CR44) 2020; 10
AD Chowdhury (26090_CR45) 2018; 57
S De (26090_CR12) 2020; 10
G Blyholder (26090_CR56) 1959; 63
J Wei (26090_CR20) 2017; 8
AJ Jones (26090_CR63) 2014; 118
G Centi (26090_CR4) 2013; 6
Z Li (26090_CR24) 2019; 3
JF Haw (26090_CR36) 2005; 34
GA Morris (26090_CR37) 1979; 101
A González-Garay (26090_CR11) 2019; 12
A Dokania (26090_CR6) 2019; 4
SAF Nastase (26090_CR68) 2020; 10
T Xu (26090_CR70) 1994; 116
OC Andronesi (26090_CR39) 2005; 127
M Christensen (26090_CR48) 2017; 178
G Prieto (26090_CR8) 2017; 10
G Kresse (26090_CR74) 1994; 49
Q Zhang (26090_CR9) 2020; 32
26090_CR60
A Pines (26090_CR38) 1972; 56
AD Handoko (26090_CR5) 2018; 1
MK Khan (26090_CR21) 2020; 10
Y Ni (26090_CR26) 2018; 9
C Wang (26090_CR35) 2016; 55
AD Chowdhury (26090_CR28) 2016; 55
W Song (26090_CR69) 2001; 105
M Çağlayan (26090_CR29) 2020; 59
S Svelle (26090_CR32) 2006; 128
Y Wang (26090_CR25) 2019; 9
W Song (26090_CR34) 2000; 122
N Mac Dowell (26090_CR1) 2017; 7
BC Knott (26090_CR66) 2018; 8
G Kresse (26090_CR73) 1996; 6
K Cheng (26090_CR23) 2017; 3
P Gao (26090_CR22) 2017; 9
V Van Speybroeck (26090_CR62) 2015; 44
S Grimme (26090_CR71) 2010; 132
I Yarulina (26090_CR27) 2018; 1
D Rojo-Gama (26090_CR59) 2017; 197
A Dokania (26090_CR18) 2020; 381
B Li (26090_CR42) 2013; 117
C Wang (26090_CR40) 2018; 57
X Wu (26090_CR49) 2018; 8
P Cheung (26090_CR43) 2006; 45
S Bailleul (26090_CR33) 2019; 141
A Kätelhön (26090_CR3) 2019; 166
S Kar (26090_CR51) 2019; 52
H Fang (26090_CR41) 2010; 114
D Fu (26090_CR30) 2020; 59
A Janda (26090_CR64) 2016; 138
U Olsbye (26090_CR58) 2012; 51
AD Chowdhury (26090_CR31) 2018; 57
JR Di Iorio (26090_CR67) 2017; 7
WK Hall (26090_CR52) 1957; 79
F Jiao (26090_CR16) 2016; 351
PN Plessow (26090_CR47) 2017; 7
D Joubert (26090_CR72) 1999; 59
A Álvarez (26090_CR10) 2017; 117
H Pichler (26090_CR55) 1970; 42
F Bleken (26090_CR65) 2009; 52
A Ramirez (26090_CR19) 2020; 10
A Ramirez (26090_CR2) 2020; 2
DB Rasmussen (26090_CR46) 2015; 54
A Ramirez (26090_CR13) 2018; 8
W Zhou (26090_CR7) 2019; 48
A Ramirez (26090_CR14) 2019; 11
P Biloen (26090_CR54) 1979; 58
A Ramirez (26090_CR17) 2019; 9
D Rojo-Gama (26090_CR57) 2017; 7
BHFischer-Tropsch Davis (26090_CR53) 2009; 141
References_xml – volume: 141
  start-page: 14823
  year: 2019
  end-page: 14842
  ident: CR33
  article-title: A supramolecular view on the cooperative role of Brønsted and Lewis acid sites in zeolites for methanol conversion
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b07484
– volume: 57
  start-page: 10197
  year: 2018
  end-page: 10201
  ident: CR40
  article-title: Extra-framework aluminum-assisted initial C−C bond formation in methanol-to-olefins conversion on zeolite H-ZSM-5
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201805609
– volume: 202
  start-page: 605
  year: 2017
  end-page: 610
  ident: CR15
  article-title: Carbon dioxide Fischer-Tropsch synthesis: a new path to carbon-neutral fuels
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.09.072
– volume: 58
  start-page: 95
  year: 1979
  end-page: 107
  ident: CR54
  article-title: Incorporation of surface carbon into hydrocarbons during Fischer-Tropsch synthesis: mechanistic implications
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(79)90248-3
– volume: 178
  start-page: 97
  year: 2017
  end-page: 110
  ident: CR48
  article-title: Laminar burning velocity of diacetyl + air flames. Further assessment of combustion chemistry of ketene
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2016.12.026
– volume: 12
  start-page: 3425
  year: 2019
  end-page: 3436
  ident: CR11
  article-title: Plant-to-planet analysis of CO -based methanol processes
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE01673B
– volume: 117
  start-page: 5840
  year: 2013
  end-page: 5847
  ident: CR42
  article-title: Insight into dimethyl ether carbonylation reaction over mordenite zeolite from in-situ solid-state NMR spectroscopy
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp400331m
– volume: 9
  start-page: 6320
  year: 2019
  end-page: 6334
  ident: CR17
  article-title: Effect of zeolite topology and reactor configuration on the direct conversion of CO to light olefins and aromatics
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b01466
– volume: 138
  start-page: 4739
  year: 2016
  end-page: 4756
  ident: CR64
  article-title: Effects of zeolite structural confinement on adsorption thermodynamics and reaction kinetics for monomolecular cracking and dehydrogenation of n-butane
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11355
– volume: 10
  start-page: 1975
  year: 2020
  end-page: 1990
  ident: CR44
  article-title: New analytical tools for advanced mechanistic studies in catalysis: photoionization and photoelectron photoion coincidence spectroscopy
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C9CY02587A
– volume: 57
  start-page: 14982
  year: 2018
  end-page: 14985
  ident: CR45
  article-title: The curious case of ketene in zeolite chemistry and catalysis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201808480
– volume: 59
  start-page: 20024
  year: 2020
  end-page: 20030
  ident: CR30
  article-title: Elucidating zeolite channel geometry–reaction intermediate relationships for the methanol‐to‐hydrocarbon process
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202009139
– volume: 166
  start-page: 11187
  year: 2019
  end-page: 11194
  ident: CR3
  article-title: Climate change mitigation potential of carbon capture and utilization in the chemical industry
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1821029116
– volume: 105
  start-page: 4317
  year: 2001
  end-page: 4323
  ident: CR69
  article-title: A persistent carbenium ion on the methanol-to-olefin catalyst HSAPO-34: acetone shows the way
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0041407
– volume: 122
  start-page: 10726
  year: 2000
  end-page: 10727
  ident: CR34
  article-title: Methylbenzenes are the organic reaction centers for methanol-to-olefin catalysis on HSAPO-34 [12]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja002195g
– volume: 48
  start-page: 3193
  year: 2019
  end-page: 3228
  ident: CR7
  article-title: New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO into hydrocarbon chemicals and fuels
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00502H
– volume: 55
  start-page: 2507
  year: 2016
  end-page: 2511
  ident: CR35
  article-title: Direct detection of supramolecular reaction centers in the methanol-to-olefins conversion over zeolite H-ZSM-5 by 13C-27Al solid-state NMR spectroscopy
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201510920
– volume: 55
  start-page: 15840
  year: 2016
  end-page: 15845
  ident: CR28
  article-title: Initial carbon-carbon bond formation during the early stages of the methanol-to-olefin process proven by zeolite-trapped acetate and methyl acetate
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201608643
– volume: 1
  start-page: 922
  year: 2018
  end-page: 934
  ident: CR5
  article-title: Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0182-6
– volume: 127
  start-page: 12965
  year: 2005
  end-page: 12974
  ident: CR39
  article-title: Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0530164
– volume: 197
  start-page: 421
  year: 2017
  end-page: 446
  ident: CR59
  article-title: Time- and space-resolved study of the methanol to hydrocarbons (MTH) reaction-influence of zeolite topology on axial deactivation patterns
  publication-title: Faraday Discuss.
  doi: 10.1039/C6FD00187D
– ident: CR50
– volume: 63
  start-page: 962
  year: 1959
  end-page: 965
  ident: CR56
  article-title: Fischer-Tropsch synthesis mechanism studies. The addition of radioactive ketene to the synthesis gas
  publication-title: J. Phys. Chem.
  doi: 10.1021/j150576a044
– volume: 6
  start-page: 1711
  year: 2013
  end-page: 1731
  ident: CR4
  article-title: Catalysis for CO conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee00056g
– volume: 51
  start-page: 5810
  year: 2012
  end-page: 5831
  ident: CR58
  article-title: Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201103657
– volume: 8
  start-page: 770
  year: 2018
  end-page: 784
  ident: CR66
  article-title: Consideration of the aluminum distribution in zeolites in theoretical and experimental catalysis research
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b03676
– volume: 2
  start-page: 785
  year: 2020
  end-page: 795
  ident: CR2
  article-title: CO derived e-fuels: research trends, misconceptions, and future directions
  publication-title: Trends Chem.
  doi: 10.1016/j.trechm.2020.07.005
– volume: 381
  start-page: 347
  year: 2020
  end-page: 354
  ident: CR18
  article-title: Acidity modification of ZSM-5 for enhanced production of light olefins from CO
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2019.11.015
– volume: 49
  start-page: 14251
  year: 1994
  end-page: 14269
  ident: CR74
  article-title: Ab initio molecular-dynamics simulation of the liquid-metalamorphous-semiconductor transition in germanium
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.49.14251
– volume: 10
  start-page: 8904
  year: 2020
  end-page: 8915
  ident: CR68
  article-title: Mechanistic insight into the framework methylation of H-ZSM-5 for varying methanol loadings and Si/Al ratios using first-principles molecular dynamics simulations
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c01454
– ident: CR60
– volume: 32
  start-page: 2002927
  year: 2020
  ident: CR9
  article-title: Applications of zeolites to C1 chemistry: recent advances, challenges, and opportunities
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002927
– volume: 114
  start-page: 12711
  year: 2010
  end-page: 12718
  ident: CR41
  article-title: 13C Chemical shift of adsorbed acetone for measuring the acid strength of solid acids: A theoretical calculation study
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp1044749
– volume: 7
  start-page: 8235
  year: 2017
  end-page: 8246
  ident: CR57
  article-title: A straightforward descriptor for the deactivation of zeolite catalyst H-ZSM-5
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b02193
– volume: 8
  year: 2017
  ident: CR20
  article-title: Directly converting CO into a gasoline fuel
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15174
– volume: 45
  start-page: 1617
  year: 2006
  end-page: 1620
  ident: CR43
  article-title: Selective carbonylation of dimethyl ether to methyl acetate catalyzed by acidic zeolites
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200503898
– volume: 451
  start-page: 671
  year: 2008
  end-page: 678
  ident: CR61
  article-title: Towards a molecular understanding of shape selectivity
  publication-title: Nature
  doi: 10.1038/nature06552
– volume: 10
  start-page: 1507
  year: 2020
  end-page: 1517
  ident: CR19
  article-title: Coated sulfated zirconia/SAPO-34 for the direct conversion of CO to light olefins
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C9CY02532D
– volume: 10
  start-page: 10325
  year: 2020
  end-page: 10338
  ident: CR21
  article-title: Selective conversion of carbon dioxide into liquid hydrocarbons and long-chain α-olefins over Fe-amorphous AlO bifunctional catalyst
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c02611
– volume: 9
  start-page: 1019
  year: 2017
  end-page: 1024
  ident: CR22
  article-title: Direct conversion of CO into liquid fuels with high selectivity over a bifunctional catalyst
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2794
– volume: 117
  start-page: 9804
  year: 2017
  end-page: 9838
  ident: CR10
  article-title: Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO hydrogenation processes
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00816
– volume: 10
  start-page: 1056
  year: 2017
  end-page: 1070
  ident: CR8
  article-title: Carbon dioxide hydrogenation into higher hydrocarbons and oxygenates: thermodynamic and kinetic bounds and progress with heterogeneous and homogeneous catalysis
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201601591
– volume: 79
  start-page: 2983
  year: 1957
  end-page: 2989
  ident: CR52
  article-title: Mechanism studies of the Fischer-Tropsch synthesis. the addition of radioactive methanol, carbon dioxide and gaseous formaldehyde
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01569a001
– volume: 7
  start-page: 243
  year: 2017
  end-page: 249
  ident: CR1
  article-title: The role of CO capture and utilization in mitigating climate change
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate3231
– volume: 8
  start-page: 9174
  year: 2018
  end-page: 9182
  ident: CR13
  article-title: Metal organic framework-derived iron catalysts for the direct hydrogenation of CO to short chain olefins
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b02892
– volume: 34
  start-page: 41
  year: 2005
  end-page: 48
  ident: CR36
  article-title: Well-defined (supra)molecular structures in zeolite methanol-to-olefin catalysis
  publication-title: Top. Catal.
  doi: 10.1007/s11244-005-3798-0
– volume: 7
  start-page: 7987
  year: 2017
  end-page: 7994
  ident: CR47
  article-title: Unraveling the mechanism of the initiation reaction of the methanol to olefins process using ab Initio and DFT calculations
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b03114
– volume: 44
  start-page: 7044
  year: 2015
  end-page: 7111
  ident: CR62
  article-title: Advances in theory and their application within the field of zeolite chemistry
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00029G
– volume: 52
  start-page: 218
  year: 2009
  end-page: 228
  ident: CR65
  article-title: The effect of acid strength on the conversion of methanol to olefins over acidic microporous catalysts with the CHA topology
  publication-title: Top. Catal.
  doi: 10.1007/s11244-008-9158-0
– volume: 57
  start-page: 8095
  year: 2018
  end-page: 8099
  ident: CR31
  article-title: Bridging the gap between the direct and hydrocarbon pool mechanisms of the methanol‐to‐hydrocarbons process
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201803279
– volume: 10
  start-page: 14147
  year: 2020
  end-page: 14185
  ident: CR12
  article-title: Advances in the design of heterogeneous catalysts and thermocatalytic processes for CO utilization
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c04273
– volume: 56
  start-page: 1776
  year: 1972
  end-page: 1777
  ident: CR38
  article-title: Proton-enhanced nuclear induction spectroscopy. A method for high resolution nmr of dilute spins in solids
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1677439
– volume: 128
  start-page: 14770
  year: 2006
  end-page: 14771
  ident: CR32
  article-title: Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: ethene formation is mechanistically separated from the formation of higher alkenes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja065810a
– volume: 118
  start-page: 17787
  year: 2014
  end-page: 17800
  ident: CR63
  article-title: Implications of transition state confinement within small voids for acid catalysis
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp5050095
– volume: 7
  start-page: 6663
  year: 2017
  end-page: 6674
  ident: CR67
  article-title: Introducing catalytic diversity into single-site chabazite zeolites of fixed composition via synthetic control of active site proximity
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b01273
– volume: 141
  start-page: 25
  year: 2009
  end-page: 33
  ident: CR53
  article-title: Synthesis: reaction mechanisms for iron catalysts
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2008.03.005
– volume: 116
  start-page: 1962
  year: 1994
  end-page: 1972
  ident: CR70
  article-title: Toward a systematic chemistry of organic reactions in zeolites: in situ NMR studies of ketones
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00084a041
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: CR73
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput
  publication-title: Mater. Sci.
– volume: 3
  start-page: 570
  year: 2019
  end-page: 583
  ident: CR24
  article-title: Highly selective conversion of carbon dioxide to aromatics over tandem catalysts
  publication-title: Joule
  doi: 10.1016/j.joule.2018.10.027
– volume: 1
  start-page: 398
  year: 2018
  end-page: 411
  ident: CR27
  article-title: Recent trends and fundamental insights in the methanol-to-hydrocarbons process
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0078-5
– volume: 132
  start-page: 154104
  year: 2010
  ident: CR71
  article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 3
  start-page: 334
  year: 2017
  end-page: 347
  ident: CR23
  article-title: Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.05.007
– volume: 59
  start-page: 16741
  year: 2020
  end-page: 16746
  ident: CR29
  article-title: Initial carbon−carbon bond formation during the early stages of methane dehydroaromatization
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202007283
– volume: 101
  start-page: 760
  year: 1979
  end-page: 762
  ident: CR37
  article-title: Enhancement of nuclear magnetic resonance signals by polarization transfer
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00497a058
– volume: 59
  start-page: 1758
  year: 1999
  end-page: 1775
  ident: CR72
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
– volume: 4
  start-page: 167
  year: 2019
  end-page: 176
  ident: CR6
  article-title: Heterogeneous catalysis for the valorization of CO2: Role of bifunctional processes in the production of chemicals
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01910
– volume: 11
  start-page: 2879
  year: 2019
  end-page: 2886
  ident: CR14
  article-title: Tandem conversion of CO to valuable hydrocarbons in highly concentrated potassium iron catalysts
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201900762
– volume: 52
  start-page: 2892
  year: 2019
  end-page: 2903
  ident: CR51
  article-title: Integrated CO capture and conversion to formate and methanol: connecting two threads
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00324
– volume: 42
  start-page: 1162
  year: 1970
  end-page: 1174
  ident: CR55
  article-title: Neuere Erkenntnisse auf dem Gebiet der Synthese von Kohlenwasserstoffen aus CO und H
  publication-title: Chem. Ing. Tech.
  doi: 10.1002/cite.330421808
– volume: 9
  start-page: 895
  year: 2019
  end-page: 901
  ident: CR25
  article-title: Rationally designing bifunctional catalysts as an efficient strategy to boost CO hydrogenation producing value-added aromatics
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b01344
– volume: 351
  start-page: 1065
  year: 2016
  end-page: 1068
  ident: CR16
  article-title: Selective conversion of syngas to light olefins
  publication-title: Science
  doi: 10.1126/science.aaf1835
– volume: 54
  start-page: 7261
  year: 2015
  end-page: 7264
  ident: CR46
  article-title: Ketene as a reaction intermediate in the carbonylation of dimethyl ether to methyl acetate over mordenite. Angew
  publication-title: Chem. Int. Ed.
  doi: 10.1002/anie.201410974
– volume: 8
  start-page: 7356
  year: 2018
  end-page: 7361
  ident: CR49
  article-title: Evolution of C-C bond formation in the methanol-to-olefins process: from direct coupling to autocatalysis
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b02385
– volume: 9
  year: 2018
  ident: CR26
  article-title: Selective conversion of CO and H into aromatics
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05880-4
– volume: 45
  start-page: 1617
  year: 2006
  ident: 26090_CR43
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200503898
– volume: 48
  start-page: 3193
  year: 2019
  ident: 26090_CR7
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00502H
– volume: 7
  start-page: 6663
  year: 2017
  ident: 26090_CR67
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b01273
– volume: 8
  start-page: 7356
  year: 2018
  ident: 26090_CR49
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b02385
– volume: 79
  start-page: 2983
  year: 1957
  ident: 26090_CR52
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01569a001
– volume: 178
  start-page: 97
  year: 2017
  ident: 26090_CR48
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2016.12.026
– volume: 57
  start-page: 8095
  year: 2018
  ident: 26090_CR31
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201803279
– volume: 10
  start-page: 1507
  year: 2020
  ident: 26090_CR19
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C9CY02532D
– volume: 116
  start-page: 1962
  year: 1994
  ident: 26090_CR70
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00084a041
– volume: 6
  start-page: 1711
  year: 2013
  ident: 26090_CR4
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee00056g
– volume: 10
  start-page: 14147
  year: 2020
  ident: 26090_CR12
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c04273
– volume: 9
  year: 2018
  ident: 26090_CR26
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05880-4
– volume: 59
  start-page: 1758
  year: 1999
  ident: 26090_CR72
  publication-title: Phys. Rev. B
– volume: 138
  start-page: 4739
  year: 2016
  ident: 26090_CR64
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11355
– volume: 8
  start-page: 770
  year: 2018
  ident: 26090_CR66
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b03676
– volume: 8
  start-page: 9174
  year: 2018
  ident: 26090_CR13
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b02892
– volume: 1
  start-page: 922
  year: 2018
  ident: 26090_CR5
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0182-6
– volume: 55
  start-page: 2507
  year: 2016
  ident: 26090_CR35
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201510920
– volume: 11
  start-page: 2879
  year: 2019
  ident: 26090_CR14
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201900762
– volume: 63
  start-page: 962
  year: 1959
  ident: 26090_CR56
  publication-title: J. Phys. Chem.
  doi: 10.1021/j150576a044
– volume: 9
  start-page: 895
  year: 2019
  ident: 26090_CR25
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b01344
– volume: 52
  start-page: 218
  year: 2009
  ident: 26090_CR65
  publication-title: Top. Catal.
  doi: 10.1007/s11244-008-9158-0
– volume: 51
  start-page: 5810
  year: 2012
  ident: 26090_CR58
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201103657
– volume: 2
  start-page: 785
  year: 2020
  ident: 26090_CR2
  publication-title: Trends Chem.
  doi: 10.1016/j.trechm.2020.07.005
– volume: 9
  start-page: 6320
  year: 2019
  ident: 26090_CR17
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b01466
– volume: 44
  start-page: 7044
  year: 2015
  ident: 26090_CR62
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00029G
– volume: 49
  start-page: 14251
  year: 1994
  ident: 26090_CR74
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.49.14251
– volume: 54
  start-page: 7261
  year: 2015
  ident: 26090_CR46
  publication-title: Chem. Int. Ed.
  doi: 10.1002/anie.201410974
– volume: 10
  start-page: 10325
  year: 2020
  ident: 26090_CR21
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c02611
– volume: 117
  start-page: 9804
  year: 2017
  ident: 26090_CR10
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00816
– volume: 12
  start-page: 3425
  year: 2019
  ident: 26090_CR11
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE01673B
– volume: 3
  start-page: 334
  year: 2017
  ident: 26090_CR23
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.05.007
– volume: 52
  start-page: 2892
  year: 2019
  ident: 26090_CR51
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00324
– volume: 9
  start-page: 1019
  year: 2017
  ident: 26090_CR22
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2794
– volume: 381
  start-page: 347
  year: 2020
  ident: 26090_CR18
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2019.11.015
– volume: 10
  start-page: 1975
  year: 2020
  ident: 26090_CR44
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C9CY02587A
– volume: 351
  start-page: 1065
  year: 2016
  ident: 26090_CR16
  publication-title: Science
  doi: 10.1126/science.aaf1835
– volume: 32
  start-page: 2002927
  year: 2020
  ident: 26090_CR9
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002927
– volume: 10
  start-page: 8904
  year: 2020
  ident: 26090_CR68
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c01454
– ident: 26090_CR50
  doi: 10.1002/anie.201511678
– volume: 56
  start-page: 1776
  year: 1972
  ident: 26090_CR38
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1677439
– volume: 55
  start-page: 15840
  year: 2016
  ident: 26090_CR28
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201608643
– volume: 141
  start-page: 14823
  year: 2019
  ident: 26090_CR33
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b07484
– volume: 132
  start-page: 154104
  year: 2010
  ident: 26090_CR71
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 58
  start-page: 95
  year: 1979
  ident: 26090_CR54
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(79)90248-3
– volume: 42
  start-page: 1162
  year: 1970
  ident: 26090_CR55
  publication-title: Chem. Ing. Tech.
  doi: 10.1002/cite.330421808
– volume: 166
  start-page: 11187
  year: 2019
  ident: 26090_CR3
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1821029116
– volume: 8
  year: 2017
  ident: 26090_CR20
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15174
– volume: 34
  start-page: 41
  year: 2005
  ident: 26090_CR36
  publication-title: Top. Catal.
  doi: 10.1007/s11244-005-3798-0
– volume: 101
  start-page: 760
  year: 1979
  ident: 26090_CR37
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00497a058
– volume: 59
  start-page: 16741
  year: 2020
  ident: 26090_CR29
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202007283
– volume: 10
  start-page: 1056
  year: 2017
  ident: 26090_CR8
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201601591
– ident: 26090_CR60
– volume: 57
  start-page: 10197
  year: 2018
  ident: 26090_CR40
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201805609
– volume: 105
  start-page: 4317
  year: 2001
  ident: 26090_CR69
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0041407
– volume: 6
  start-page: 15
  year: 1996
  ident: 26090_CR73
  publication-title: Mater. Sci.
– volume: 114
  start-page: 12711
  year: 2010
  ident: 26090_CR41
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp1044749
– volume: 7
  start-page: 7987
  year: 2017
  ident: 26090_CR47
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b03114
– volume: 202
  start-page: 605
  year: 2017
  ident: 26090_CR15
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.09.072
– volume: 117
  start-page: 5840
  year: 2013
  ident: 26090_CR42
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp400331m
– volume: 57
  start-page: 14982
  year: 2018
  ident: 26090_CR45
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201808480
– volume: 7
  start-page: 8235
  year: 2017
  ident: 26090_CR57
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b02193
– volume: 197
  start-page: 421
  year: 2017
  ident: 26090_CR59
  publication-title: Faraday Discuss.
  doi: 10.1039/C6FD00187D
– volume: 1
  start-page: 398
  year: 2018
  ident: 26090_CR27
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0078-5
– volume: 141
  start-page: 25
  year: 2009
  ident: 26090_CR53
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2008.03.005
– volume: 59
  start-page: 20024
  year: 2020
  ident: 26090_CR30
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202009139
– volume: 4
  start-page: 167
  year: 2019
  ident: 26090_CR6
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01910
– volume: 128
  start-page: 14770
  year: 2006
  ident: 26090_CR32
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja065810a
– volume: 451
  start-page: 671
  year: 2008
  ident: 26090_CR61
  publication-title: Nature
  doi: 10.1038/nature06552
– volume: 3
  start-page: 570
  year: 2019
  ident: 26090_CR24
  publication-title: Joule
  doi: 10.1016/j.joule.2018.10.027
– volume: 118
  start-page: 17787
  year: 2014
  ident: 26090_CR63
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp5050095
– volume: 7
  start-page: 243
  year: 2017
  ident: 26090_CR1
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate3231
– volume: 122
  start-page: 10726
  year: 2000
  ident: 26090_CR34
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja002195g
– volume: 127
  start-page: 12965
  year: 2005
  ident: 26090_CR39
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0530164
SSID ssj0000391844
Score 2.6135395
Snippet Cascade processes are gaining momentum in heterogeneous catalysis. The combination of several catalytic solids within one reactor has shown great promise for...
The reaction mechanism of carbon dioxide to high-value hydrocarbons over metal-zeolite bifunctional catalysts remains ambiguous. Here, the authors demonstrate...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5914
SubjectTerms 140/131
140/133
639/638/298
639/638/77/887
Alkenes
Aromatic compounds
Carbon dioxide
Catalysis
Catalysts
Computer applications
Humanities and Social Sciences
Hydrocarbons
Hydrogenation
Intermediates
Magnetic resonance spectroscopy
multidisciplinary
Multivariate analysis
NMR
NMR spectroscopy
Nuclear magnetic resonance
Paraffins
Reaction mechanisms
Science
Science (multidisciplinary)
Selectivity
Topology
Vapor phases
Zeolites
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZlodBLaZuWbpsEBXprxXqth6VjExJCIO2hDeQmrBe7UOyyuzkkv74zkncTB9JeelqwZNbWzGi-sWa-IeSTbGoskeGs8l4wAYJlra4SE6F1VZJKOInFyZff1PmVuLiW1w9afWFOWKEHLgs340H6KmkVQRcBnSeNDFzapTrAbyo0kuDzHgRTeQ_mBkIXMVTJVFzP1iLvCZiRABDeVEyOPFEm7B-hzMc5ko8OSrP_OXtFXg7AkX4tD_yaPIvdG_K8tJK83SN3P3JDm9wKgoZYNoN-taYASimAPFp8F13chlUPSpMFQvtET77XdNOX675dOdBCWmoX6V3E5LjIcnUJIFPqlugGy9dDmj_8IJ_JW3J1dvrz5JwNfRWYl_NmwwJgitaZFrAFhNIQobYKadFq5JIz3GgZQ2pSA8uauIvI6Na6uYPQykuvdaj4OzLp-i6-JzRI7OgnGmHA2EAZTMO9U1Eo70w9V3JK5ts1tn4gHcfeF79sPvzm2ha5WJCLzXKxcM_n3T2_C-XGX2cfo-h2M5EuO18AJbKDEtl_KdGU7G8FbwcbXttaamQzMwqGj3bDYH14pNJ2sb8pc5rMmzclzUhhRg80HumWi8zjrSU22VBT8mWrWvd__vQLf_gfL_yRvKjRFHIy4z6ZbFY38QDQ1cYdZkP6Az6uH5w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtSqGX0vRB3SZFhd5aEVuWbPkUmtBNKLQ9tIHchPVqAsFOvZtD8uszI2k3ONCcFmyZ9e68Po1mviHkk2w5tsjUrLRWMAGCZb0qAxOuN2WQjTASm5N__GyOT8T3U3maE27LXFa59onRUbvRYo58j0uF3FJdw_cv_zGcGoWnq3mExmPypIJIgyVdanG0ybEg-7kSIvfKlLXaW4roGbAuAYB8VzI5i0eRtn-GNe9XSt47Lo1RaPGCPM_wkX5N8t4mj_zwkjxNAyWvX5Gb33GsTRwIQZ1PLmGclhSgKQWoR1MEo2fXbhpBdaJY6Bjo4S9OV2O6bvvJgC7S1MFIbzyWyHkWe0wAn1JzjsEw5RBpTP8gq8lrcrL49ufwmOXpCszKql0xB8iiN10PCAM21LBP7RskR-PIKNfVnZLehTa0vOxCbTzyuvWmMrDBstIq5cr6DdkaxsG_JdRJnOsnWtGByYFKdG1tTeNFY03Hq0YWpFr_x9pm6nGcgHGh4xF4rXSSiwa56CgXDc983jxzmYg3Hlx9gKLbrETS7HhhnP7qbIO6dtKWQTUe3Bps9IJCMjdlAnfwGUpekJ214HW25KW-07uCfNzcBhvEg5V-8ONVWtNG9ryCtDOFmb3Q_M5wfhbZvJXEURtNQb6sVevuy___g989_K7vyTOOSh6LFXfI1mq68ruAnlbmQzSRW5sAGAg
  priority: 102
  providerName: ProQuest
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxUxEA-1RfAifuLTKhG8aXBfNskmx2exlAfqoRZ6C5svW5Ddsu_10P71ziS7T7ao4GkhH2x2Zyb5JZn5DSHvZMMxRKZmlfeCCRAsa3WVmAitq5JUwkkMTv7yVZ2cifW5PN8jfIqFyU77mdIyT9OTd9jHjcgmjQ4FgMBNxeQ9coBU7aDbB6vV-nS9O1lBznMtxBghU9X6D51nq1Am658hzLv-kXcuSfPac_yIPBxBI12VYT4me7F7Qu6XNJI3T8ntaU5mk9NA0BDLRNAPGwqAlALAo2Xdohc3YehBYbIwaJ_o0TdOt30p9-3gQANpiVuktxEd4yLLkSWASqm7xCWwnBzSfOiDXCbPyNnx5-9HJ2zMqcC8XDZbFgBPtM60gCtgGw2701YhJRpHHjlTGy1jSE1qeGVS7SKyubVu6WBb5aXXOlT1c7Lf9V18QWiQmM1PNMKAoYEimKb2TkWhvDN8qeSCLKd_bP1IOI55L37afPFda1vkYkEuNsvFQp_3uz5XhW7jn60_oeh2LZEqOxf0ww87qo6tg_RV0irCZAbbu6SRwk27xAM8U8UX5HASvB3td2O51MhkZhRUv91Vg-XhdUrbxf66tGkyZ96CNDOFmQ1oXtNdXmQOby0xwYZakA-Tav1--d8_-OX_NX9FHnBU-uyyeEj2t8N1fA0YauvejEbzC4G7FyU
  priority: 102
  providerName: Springer Nature
Title Selectivity descriptors for the direct hydrogenation of CO2 to hydrocarbons during zeolite-mediated bifunctional catalysis
URI https://link.springer.com/article/10.1038/s41467-021-26090-5
https://www.proquest.com/docview/2580181962
https://www.proquest.com/docview/2580700119
https://pubmed.ncbi.nlm.nih.gov/PMC8501036
https://doaj.org/article/3d5c0f86e073499f885508bf2d550f02
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBf9YLCXsU-WrQsa7G3T5g_Jkh7GSEOzEmg31gXyJixbbgvF3pwUlv71u5PsDJdusBcbJNlOdHfS7yTd7wh5I2SCITIpi4qCMw6CZbmKKsbL3EaVyLgVGJx8cpodL_h8KZY7pE931HXg6k7XDvNJLdqr979-bj6BwX8MIePqw4p7c8fDBoDOdcTELtmHmUliRoOTDu77kTnV4NDgRnMS8ZhBg7SLo7n7NYO5ylP6D3Do7VOUt7ZS_Qw1e0gedNCSToIuPCI7rn5M7oVkk5sn5ObMp7zxySJo6cJw0bQrCrCVAgykYXajF5uybUCtvMhoU9Hpl4Sum1Be5K0FPaUhupHeODw-55iPPwHsSu0lTpRhfZH6pSFkPHlKFrOj79Nj1mVeYIWI5ZqVgDpyq3NAH-Bsgw-bZ0icliDbnE61Eq6sZCWTSFepdcj5ltvYgvNViEKpMkqfkb26qd1zQkuBOf-45BrMEdRFy7SwmeNZYXUSZ2JE4r6PTdHRkmN2jCvjt8dTZYJcDMjFeLkYeObt9pkfgZTjn60PUXTblkio7Qua9tx09mnSUhRRpTIHQx44gZVCojdlq6SEexUlI3LQC970SmoSoZDvTGdQ_XpbDfaJmy557Zrr0EZ6Zr0RkQOFGfygYU19eeGZvpXANBzZiLzrVevPx__-h1_8V_e8JPcT1Hl_rvGA7K3ba_cKgNbajsmuXEq4qtnnMdmfTOZnc7gfHp1-_Qal02w69ksYY29lvwGHnieP
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4ilSChgJTmA169iJc0AICsuWPjjQSr258SO0Ekra7FZo-6P4jczYyVZbid56ipQ4m2xmPA975vsIeSMLji0yGUutFUyAYFml0poJV5m0lrkwEpuTd_fyyYH4figPV8jfoRcGyyoHmxgMtWstrpFvcKkQW6rM-cfTM4asUbi7OlBoRLXY9vM_kLJNP2x9Afm-5Xz8dX9zwnpWAWblqJgxBx61MmUFnhUSScjPqhxBwTgiqZVZqaR3dVEXPC3rzHjEM6vMyEBiYaVVyqUZ_O4tcltk4MmxM338bbGmg2jrSoi-NyfN1MZUBEuEdRCQOJQpk0v-L9AELMW2Vyszr2zPBq83fkDu9-Eq_RT16yFZ8c0jcicSWM4fk4ufgUYnEFBQ56MJarsphVCYQmhJo8ekx3PXtaCqQQ1oW9PNH5zO2njeVp0B3aexY5JeeCzJ8yz0tEA8TM0JOt-4ZknDchOiqDwhBzfy3Z-S1aZt_DNCnUQeQVGIEqY4qGBZZNbkXuTWlHyUy4SMhm-sbQ91jowbv3XYcs-UjnLRIBcd5KLhnneLe04j0Me1oz-j6BYjEaQ7nGi7X7qf8zpz0qa1yj2YUUgsa4XgccrU3MGxTnlC1gfB695yTPWlnifk9eIyzHncyKka357HMUVA60tIsaQwSy-0fKU5OQ7o4UoitUeekPeDal0-_P9_eO36d31F7k72d3f0ztbe9nNyj6PCh0LJdbI66879C4jcZuZlmC6UHN30_PwHVONTcg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBeEJ-iMMBI8ARRU8dOnAeE2Ee1MSgTMGlvJnZsNgk1o-2Euj-Nv447O-nUSextT5ESp0lz5_uw734_gFey4NQikyWptSIRKNikUqlPRF2Z1MtcGEnNyZ_H-e6h-Hgkj9bgb9cLQ2WVnU0MhrpuLK2RD7hUhC1V5nzg27KIg-3R-9PfCTFI0U5rR6cRVWTfLf5g-jZ7t7eNsn7N-Wjn-9Zu0jIMJFYOi3lSo3etTFmhl8WkEnO1KieAME6oamVWKulqX_iCp6XPjCNss8oMDSYZVlql6jTD370B6wVlRT1Y39wZH3xdrvAQ9roSou3USTM1mIlgl6gqAtOIMk3kijcMpAErke7lOs1Lm7XBB47uwp02eGUforbdgzU3uQ83I53l4gGcfwukOoGOgtUuGqRmOmMYGDMMNFn0n-x4UU8bVNygFKzxbOsLZ_MmnrfV1OBMYLF_kp07KtBzSehwweiYmRNyxXEFk4XFJ8JUeQiH1_LlH0Fv0kzcY2C1JFZBUYgSJzwqZFlk1uRO5NaUfJjLPgy7b6xtC3xO_Bu_dNiAz5SOctEoFx3kovGeN8t7TiPsx5WjN0l0y5EE2R1ONNOfurUAOqulTb3KHRpVTDO9Iig5ZTyv8ehT3oeNTvC6tSMzfaH1fXi5vIwWgLZ1qolrzuKYImD39aFYUZiVF1q9Mjk5DljiShLRR96Ht51qXTz8_3_4ydXv-gJu4dzUn_bG-0_hNid9D1WTG9CbT8_cMwzj5uZ5O18Y_LjuKfoP7GFZBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selectivity+descriptors+for+the+direct+hydrogenation+of+CO2+to+hydrocarbons+during+zeolite-mediated+bifunctional+catalysis&rft.jtitle=Nature+communications&rft.au=Ramirez%2C+Adrian&rft.au=Gong%2C+Xuan&rft.au=Caglayan%2C+Mustafa&rft.au=Nastase%2C+Stefan-Adrian+F.&rft.date=2021-10-08&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-021-26090-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_021_26090_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon