Acetone-butanol fermentation of marine macroalgae

► Brown macroalgae contain high concentrations of mannitol and laminarin. ► Clostridium acetobutylicum ferments these seaweed extract substrates to butanol. ► Seaweed fermentation exhibited triauxic growth: glucose–mannitol–laminarin. ► Butanol yields in seaweed and pure glucose fermentations were c...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 108; pp. 305 - 309
Main Authors Huesemann, Michael H., Kuo, Li-Jung, Urquhart, Lindsay, Gill, Gary A., Roesijadi, Guri
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.03.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ► Brown macroalgae contain high concentrations of mannitol and laminarin. ► Clostridium acetobutylicum ferments these seaweed extract substrates to butanol. ► Seaweed fermentation exhibited triauxic growth: glucose–mannitol–laminarin. ► Butanol yields in seaweed and pure glucose fermentations were comparable. The objective of this study was to subject mannitol, either as a sole carbon source or in combination with glucose, and aqueous extracts of the kelp Saccharina spp., containing mannitol and laminarin, to acetone-butanol fermentation by Clostridium acetobutylicum (ATCC 824). Both mannitol and glucose were readily fermented. Mixed substrate fermentations with glucose and mannitol resulted in diauxic growth of C. acetobutylicum with glucose depletion preceding mannitol utilization. Fermentation of kelp extract exhibited triauxic growth, with an order of utilization of free glucose, mannitol, and bound glucose, presumably laminarin. The lag in laminarin utilization reflected the need for enzymatic hydrolysis of this polysaccharide into fermentable sugars. The butanol and total solvent yields were 0.12g/g and 0.16g/g, respectively, indicating that significant improvements are still needed to make industrial-scale acetone-butanol fermentations of seaweed economically feasible.
AbstractList The objective of this study was to subject mannitol, either as a sole carbon source or in combination with glucose, and aqueous extracts of the kelp Saccharina spp., containing mannitol and laminarin, to acetone-butanol fermentation by Clostridium acetobutylicum (ATCC 824). Both mannitol and glucose were readily fermented. Mixed substrate fermentations with glucose and mannitol resulted in diauxic growth of C. acetobutylicum with glucose depletion preceding mannitol utilization. Fermentation of kelp extract exhibited triauxic growth, with an order of utilization of free glucose, mannitol, and bound glucose, presumably laminarin. The lag in laminarin utilization reflected the need for enzymatic hydrolysis of this polysaccharide into fermentable sugars. The butanol and total solvent yields were 0.12 g/g and 0.16 g/g, respectively, indicating that significant improvements are still needed to make industrial-scale acetone-butanol fermentations of seaweed economically feasible.
The objective of this study was to subject mannitol, either as a sole carbon source or in combination with glucose, and aqueous extracts of the kelp Saccharina spp., containing mannitol and laminarin, to acetone-butanol fermentation by Clostridium acetobutylicum (ATCC 824). Both mannitol and glucose were readily fermented. Mixed substrate fermentations with glucose and mannitol resulted in diauxic growth of C. acetobutylicum with glucose depletion preceding mannitol utilization. Fermentation of kelp extract exhibited triauxic growth, with an order of utilization of free glucose, mannitol, and bound glucose, presumably laminarin. The lag in laminarin utilization reflected the need for enzymatic hydrolysis of this polysaccharide into fermentable sugars. The butanol and total solvent yields were 0.12g/g and 0.16g/g, respectively, indicating that significant improvements are still needed to make industrial-scale acetone-butanol fermentations of seaweed economically feasible.
The objective of this study was to subject mannitol, either as a sole carbon source or in combination with glucose, and aqueous extracts of the kelp Saccharina spp., containing mannitol and laminarin, to acetone-butanol fermentation by Clostridium acetobutylicum (ATCC 824). Both mannitol and glucose were readily fermented. Mixed substrate fermentations with glucose and mannitol resulted in diauxic growth of C. acetobutylicum with glucose depletion preceding mannitol utilization. Fermentation of kelp extract exhibited triauxic growth, with an order of utilization of free glucose, mannitol, and bound glucose, presumably laminarin. The lag in laminarin utilization reflected the need for enzymatic hydrolysis of this polysaccharide into fermentable sugars. The butanol and total solvent yields were 0.12 g/g and 0.16 g/g, respectively, indicating that significant improvements are still needed to make industrial-scale acetone-butanol fermentations of seaweed economically feasible.The objective of this study was to subject mannitol, either as a sole carbon source or in combination with glucose, and aqueous extracts of the kelp Saccharina spp., containing mannitol and laminarin, to acetone-butanol fermentation by Clostridium acetobutylicum (ATCC 824). Both mannitol and glucose were readily fermented. Mixed substrate fermentations with glucose and mannitol resulted in diauxic growth of C. acetobutylicum with glucose depletion preceding mannitol utilization. Fermentation of kelp extract exhibited triauxic growth, with an order of utilization of free glucose, mannitol, and bound glucose, presumably laminarin. The lag in laminarin utilization reflected the need for enzymatic hydrolysis of this polysaccharide into fermentable sugars. The butanol and total solvent yields were 0.12 g/g and 0.16 g/g, respectively, indicating that significant improvements are still needed to make industrial-scale acetone-butanol fermentations of seaweed economically feasible.
Mannitol and laminarin, which are present at high concentrations in the brown macroalga Saccharina spp., a type of kelp, are potential biochemical feedstocks for butanol production. To test their bioconversion potential, aqueous extracts of the kelp Saccharina spp., mannitol, and glucose (a product of laminarin hydrolysis) were subjected to acetone-butanol fermentation by Clostridium acetobutylicum (ATCC 824). Both mannitol and glucose were readily fermented. Mixed substrate fermentations with glucose and mannitol resulted in diauxic growth of C. acetobutylicum with glucose depletion preceding mannitol utilization. Fermentation of kelp extract exhibited triauxic growth, with an order of utilization of free glucose, mannitol, and bound glucose, presumably laminarin. The lag in laminarin utilization reflected the need for enzymatic hydrolysis of this polysaccharide into fermentable sugars. The butanol and total solvent yields were 0.12 g/g and 0.16 g/g, respectively, indicating that significant improvements are still needed to make industrial-scale acetone-butanol fermentations of seaweed economically feasible.
► Brown macroalgae contain high concentrations of mannitol and laminarin. ► Clostridium acetobutylicum ferments these seaweed extract substrates to butanol. ► Seaweed fermentation exhibited triauxic growth: glucose–mannitol–laminarin. ► Butanol yields in seaweed and pure glucose fermentations were comparable. The objective of this study was to subject mannitol, either as a sole carbon source or in combination with glucose, and aqueous extracts of the kelp Saccharina spp., containing mannitol and laminarin, to acetone-butanol fermentation by Clostridium acetobutylicum (ATCC 824). Both mannitol and glucose were readily fermented. Mixed substrate fermentations with glucose and mannitol resulted in diauxic growth of C. acetobutylicum with glucose depletion preceding mannitol utilization. Fermentation of kelp extract exhibited triauxic growth, with an order of utilization of free glucose, mannitol, and bound glucose, presumably laminarin. The lag in laminarin utilization reflected the need for enzymatic hydrolysis of this polysaccharide into fermentable sugars. The butanol and total solvent yields were 0.12g/g and 0.16g/g, respectively, indicating that significant improvements are still needed to make industrial-scale acetone-butanol fermentations of seaweed economically feasible.
Author Urquhart, Lindsay
Roesijadi, Guri
Huesemann, Michael H.
Kuo, Li-Jung
Gill, Gary A.
Author_xml – sequence: 1
  givenname: Michael H.
  surname: Huesemann
  fullname: Huesemann, Michael H.
  email: michael.huesemann@pnl.gov
– sequence: 2
  givenname: Li-Jung
  surname: Kuo
  fullname: Kuo, Li-Jung
– sequence: 3
  givenname: Lindsay
  surname: Urquhart
  fullname: Urquhart, Lindsay
– sequence: 4
  givenname: Gary A.
  surname: Gill
  fullname: Gill, Gary A.
– sequence: 5
  givenname: Guri
  surname: Roesijadi
  fullname: Roesijadi, Guri
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22277213$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1038355$$D View this record in Osti.gov
BookMark eNqFkU1v1DAQhi1URLeFv1BWXOCS4BnHcSxxaFWVD6kSB-jZcpxJ8SprFzuLxL_HaVoOHKh88OV5x57nPWFHIQZi7Ax4DRza97u69zHN5H7UyAFqwBqa7hnbQKdEhVq1R2zDdcurTmJzzE5y3nHOBSh8wY4RUSkEsWFw4Wguo6v-MNsQp-1IaU9htrOPYRvH7d4mH6hcLkU73Vp6yZ6Pdsr06uE-ZTcfr75ffq6uv376cnlxXTkJaq6cdoo63bSdGzUoJce25yQIm0YL3dFgwSmJaEdtoUeudDNI3sgee8IWtThlb9a5Mc_eZOeXZV0MgdxsgItOSFmgtyt0l-LPA-XZ7H12NE02UDxko1FI1SjFC_nuvySIVnLU5RT07AE99HsazF3yxcJv82itAO0KFCc5Jxr_IsDNUo_Zmcd6zFKPATSlnhL88E-wrHWvek7WT0_HX6_x0UZjb5PP5uZbARrOodSMy8_OV4JKM788pUUcBUeDT4u3IfqnHvkDuL62Yg
CitedBy_id crossref_primary_10_1016_j_biombioe_2020_105919
crossref_primary_10_1002_btpr_1823
crossref_primary_10_1016_j_biortech_2017_04_035
crossref_primary_10_1016_j_biortech_2021_125290
crossref_primary_10_1007_s12257_014_0709_x
crossref_primary_10_1002_jctb_5003
crossref_primary_10_1016_j_tibtech_2014_02_007
crossref_primary_10_4028_www_scientific_net_AMR_925_219
crossref_primary_10_1016_j_biombioe_2024_107389
crossref_primary_10_1016_j_biortech_2012_10_025
crossref_primary_10_1007_s00449_013_1063_7
crossref_primary_10_1016_j_enconman_2016_06_054
crossref_primary_10_1021_acs_energyfuels_5b00642
crossref_primary_10_1016_j_biortech_2012_10_094
crossref_primary_10_1016_j_algal_2021_102618
crossref_primary_10_1016_j_scitotenv_2021_147024
crossref_primary_10_1016_j_renene_2015_08_042
crossref_primary_10_1016_j_jbiosc_2014_05_023
crossref_primary_10_3390_en7117194
crossref_primary_10_1111_pre_12078
crossref_primary_10_1016_j_biortech_2019_122613
crossref_primary_10_1021_acs_energyfuels_8b02374
crossref_primary_10_1016_j_tibtech_2020_03_015
crossref_primary_10_1021_acs_iecr_0c01279
crossref_primary_10_1016_j_biortech_2023_129063
crossref_primary_10_1016_j_biotechadv_2018_02_006
crossref_primary_10_1016_j_biortech_2014_11_012
crossref_primary_10_1016_j_rser_2015_05_021
crossref_primary_10_1007_s12010_016_2323_1
crossref_primary_10_3390_en15249395
crossref_primary_10_1016_j_biombioe_2012_08_022
crossref_primary_10_1016_j_rser_2017_09_082
crossref_primary_10_1007_s11814_015_0191_y
crossref_primary_10_1007_s13399_020_00620_5
crossref_primary_10_1016_j_rser_2022_113012
crossref_primary_10_1007_s00253_016_7760_9
crossref_primary_10_2139_ssrn_4157305
crossref_primary_10_3390_fermentation9010059
crossref_primary_10_1016_j_renene_2014_01_003
crossref_primary_10_3390_fermentation9090847
crossref_primary_10_1016_j_apenergy_2012_10_035
crossref_primary_10_1016_j_algal_2016_01_001
crossref_primary_10_1007_s12257_022_0301_8
crossref_primary_10_1016_j_algal_2023_103248
crossref_primary_10_3390_fermentation9110934
crossref_primary_10_1002_biot_202300026
crossref_primary_10_1021_acs_jafc_3c06708
crossref_primary_10_3390_su15032682
crossref_primary_10_1007_s11157_019_09496_y
crossref_primary_10_1016_j_algal_2024_103608
crossref_primary_10_1016_j_biortech_2017_05_172
crossref_primary_10_1016_j_fuel_2020_119059
crossref_primary_10_1016_j_scitotenv_2022_158979
crossref_primary_10_1007_s00449_016_1708_4
crossref_primary_10_1039_c3ta10568g
crossref_primary_10_2983_035_037_0117
crossref_primary_10_1016_j_rser_2015_03_086
crossref_primary_10_1039_C5RA23941A
crossref_primary_10_1021_sc400251p
crossref_primary_10_1016_j_rser_2016_09_111
crossref_primary_10_1016_j_algal_2021_102233
crossref_primary_10_1007_s00449_018_02063_9
crossref_primary_10_1016_j_algal_2020_102092
crossref_primary_10_1016_j_scitotenv_2020_137067
crossref_primary_10_1016_j_scitotenv_2023_166861
crossref_primary_10_1016_j_rser_2015_10_022
crossref_primary_10_1016_j_rser_2016_10_046
Cites_doi 10.2307/3105951
10.1007/BF00491907
10.1021/ac60111a017
10.1007/s00253-006-0445-z
10.1007/BF00257597
10.1038/sj.jim.7000065
10.1021/bp050360w
10.1016/j.biombioe.2009.12.024
10.1128/MMBR.50.4.484-524.1986
10.1016/j.biortech.2011.09.034
10.1016/j.copbio.2007.04.002
10.1128/AEM.02454-10
ContentType Journal Article
Copyright 2012 Elsevier Ltd
Copyright © 2012 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: Copyright © 2012 Elsevier Ltd. All rights reserved.
CorporateAuthor Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
CorporateAuthor_xml – name: Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
OTOTI
DOI 10.1016/j.biortech.2011.12.148
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE

AGRICOLA
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
Economics
EISSN 1873-2976
EndPage 309
ExternalDocumentID 1038355
22277213
10_1016_j_biortech_2011_12_148
US201400185223
S0960852412000077
Genre Evaluation Study
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
ABWVN
ACRPL
ADNMO
AEGFY
AEIPS
AFJKZ
AKRWK
ANKPU
BNPGV
FBQ
SSH
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7S9
L.6
7X8
AALMO
AAPBV
ABPIF
ABPTK
OTOTI
ID FETCH-LOGICAL-c517t-c9c7e89468cf91775f6b0e3e2449398eda1c7522af9a1b20794d5045b2be26293
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Fri May 19 01:41:40 EDT 2023
Fri Jul 11 09:53:17 EDT 2025
Fri Jul 11 03:41:14 EDT 2025
Mon Jul 21 06:07:19 EDT 2025
Thu Apr 24 22:57:07 EDT 2025
Tue Jul 01 02:42:56 EDT 2025
Thu Apr 03 09:45:45 EDT 2025
Fri Feb 23 02:26:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Clostridium acetobutylicum
Seaweed
Biofuels
Acetone–butanol fermentation
Macroalgae
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2012 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-c9c7e89468cf91775f6b0e3e2449398eda1c7522af9a1b20794d5045b2be26293
Notes http://dx.doi.org/10.1016/j.biortech.2011.12.148
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
USDOE
AC05-76RL01830
PNNL-SA-83984
PMID 22277213
PQID 1365029292
PQPubID 24069
PageCount 5
ParticipantIDs osti_scitechconnect_1038355
proquest_miscellaneous_923574770
proquest_miscellaneous_1365029292
pubmed_primary_22277213
crossref_primary_10_1016_j_biortech_2011_12_148
crossref_citationtrail_10_1016_j_biortech_2011_12_148
fao_agris_US201400185223
elsevier_sciencedirect_doi_10_1016_j_biortech_2011_12_148
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-03-01
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: United States
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2012
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jones, Woods (b0055) 1986; 50
Chapman (b0005) 1980
Ezeji, Qureshi, Blaschek (b0025) 2007; 18
Qureshi, Li, Hughes, Saha, Cotta (b0095) 2006; 22
ATCC 824. Rice University. Ph.D. Thesis.
Neushul (b0060) 1989; 30
Crabbendam, Neijssel, Tempest (b0010) 1985; 142
Heyndrickx, De Vos, Speybrouck, De Ley (b0035) 1989; 31
Nimcevic, Gapes (b0065) 2000; 2
Survase, Sklavounos, Jurgens, van Heiningen, Granström (b0075) 2011; 102
Ennis, Gutierrez, Maddox (b0020) 1986; 21
Huesemann, M.H.W., 1989. Levels of key enzymes and physiological factors involved in product formation in batch and continuous cultures of
Zverlov, Berezina, Velikodvorskaya, Schwarz (b0105) 2006; 71
DuBois, Gilles, Hamilton, Rebers, Smith (b0015) 1956; 28
Gapes (b0030) 2000; 2
Higashide, Li, Yang, Liao (b0040) 2011; 77
Horn, Aasen, Ostgaard (b0045) 2000; 25
Qureshi, Saha, Dien, Hector, Cotta (b0100) 2010; 34
Percival, McDowell (b0070) 1967
Zverlov (10.1016/j.biortech.2011.12.148_b0105) 2006; 71
Ezeji (10.1016/j.biortech.2011.12.148_b0025) 2007; 18
Gapes (10.1016/j.biortech.2011.12.148_b0030) 2000; 2
Nimcevic (10.1016/j.biortech.2011.12.148_b0065) 2000; 2
Chapman (10.1016/j.biortech.2011.12.148_b0005) 1980
Percival (10.1016/j.biortech.2011.12.148_b0070) 1967
Survase (10.1016/j.biortech.2011.12.148_b0075) 2011; 102
Heyndrickx (10.1016/j.biortech.2011.12.148_b0035) 1989; 31
DuBois (10.1016/j.biortech.2011.12.148_b0015) 1956; 28
Horn (10.1016/j.biortech.2011.12.148_b0045) 2000; 25
Crabbendam (10.1016/j.biortech.2011.12.148_b0010) 1985; 142
Qureshi (10.1016/j.biortech.2011.12.148_b0100) 2010; 34
Jones (10.1016/j.biortech.2011.12.148_b0055) 1986; 50
Ennis (10.1016/j.biortech.2011.12.148_b0020) 1986; 21
Neushul (10.1016/j.biortech.2011.12.148_b0060) 1989; 30
10.1016/j.biortech.2011.12.148_b0050
Higashide (10.1016/j.biortech.2011.12.148_b0040) 2011; 77
Qureshi (10.1016/j.biortech.2011.12.148_b0095) 2006; 22
References_xml – volume: 142
  start-page: 375
  year: 1985
  end-page: 382
  ident: b0010
  article-title: Metabolic and energetic aspects of the growth of
  publication-title: Archives Microbiology
– volume: 2
  start-page: 15
  year: 2000
  end-page: 20
  ident: b0065
  article-title: The acetone-butanol fermentation in pilot plant and pre-industrial scale
  publication-title: Journal of Molecular Microbiology and Biotechnology.
– volume: 30
  start-page: 561
  year: 1989
  end-page: 583
  ident: b0060
  article-title: Seaweed for war: California’s World War I kelp industry
  publication-title: Technology and Culture.
– volume: 2
  start-page: 27
  year: 2000
  end-page: 32
  ident: b0030
  article-title: The economics of acetone-butanol fermentation: theoretical and market considerations
  publication-title: Journal of Molecular Microbiology and Biotechnology.
– reference: Huesemann, M.H.W., 1989. Levels of key enzymes and physiological factors involved in product formation in batch and continuous cultures of
– year: 1980
  ident: b0005
  article-title: Seaweeds and their Uses
– volume: 28
  start-page: 350
  year: 1956
  end-page: 356
  ident: b0015
  article-title: Colorimetric method for determinations of sugars and related substances
  publication-title: Analytical Chemistry.
– volume: 77
  start-page: 2727
  year: 2011
  end-page: 2733
  ident: b0040
  article-title: Metabolic engineering of
  publication-title: Applied and Environmental Microbiology.
– volume: 18
  start-page: 220
  year: 2007
  end-page: 227
  ident: b0025
  article-title: Bioproduction of butanol from biomass: from genes to bioreactors
  publication-title: Current Opinion in Biotechnology.
– volume: 102
  start-page: 10996
  year: 2011
  end-page: 11002
  ident: b0075
  article-title: Continuous acetone-butanol-ethanol fermentation using SO
  publication-title: Bioresource Technology
– volume: 34
  start-page: 559
  year: 2010
  end-page: 565
  ident: b0100
  article-title: Production of butanol (a biofuel) from agricultural residues: Part I – use of barley straw hydrolysate
  publication-title: Biomass and Bioenergy
– reference: ATCC 824. Rice University. Ph.D. Thesis.
– volume: 22
  start-page: 673
  year: 2006
  end-page: 680
  ident: b0095
  article-title: Butanol production from corn fiber xylan using
  publication-title: Biotechnology Progress
– volume: 21
  start-page: 131
  year: 1986
  end-page: 146
  ident: b0020
  article-title: The acetone–butanol–ethanol fermentation: a current assessment
  publication-title: Process Biochemistry.
– volume: 71
  start-page: 587
  year: 2006
  end-page: 597
  ident: b0105
  article-title: Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: Use of hydrolyzed agricultural waste for biorefinery
  publication-title: Applied Microbiology Biotechnology
– year: 1967
  ident: b0070
  article-title: Chemistry and Enzymology of Marine Algal Polysaccharides
– volume: 50
  start-page: 484
  year: 1986
  end-page: 524
  ident: b0055
  article-title: Acetone-butanol fermentation revisited
  publication-title: Microbiological Reviews.
– volume: 25
  start-page: 249
  year: 2000
  end-page: 254
  ident: b0045
  article-title: Ethanol production from seaweed extract
  publication-title: Journal of Industrial Microbiology and Biotechnology
– volume: 31
  start-page: 323
  year: 1989
  end-page: 328
  ident: b0035
  article-title: Fermentation of mannitol by
  publication-title: Applied Microbiology and Biotechnology.
– volume: 30
  start-page: 561
  issue: 3
  year: 1989
  ident: 10.1016/j.biortech.2011.12.148_b0060
  article-title: Seaweed for war: California’s World War I kelp industry
  publication-title: Technology and Culture.
  doi: 10.2307/3105951
– volume: 142
  start-page: 375
  year: 1985
  ident: 10.1016/j.biortech.2011.12.148_b0010
  article-title: Metabolic and energetic aspects of the growth of Clostridium butyricum on glucose in chemostat culture
  publication-title: Archives Microbiology
  doi: 10.1007/BF00491907
– volume: 28
  start-page: 350
  issue: 3
  year: 1956
  ident: 10.1016/j.biortech.2011.12.148_b0015
  article-title: Colorimetric method for determinations of sugars and related substances
  publication-title: Analytical Chemistry.
  doi: 10.1021/ac60111a017
– volume: 71
  start-page: 587
  year: 2006
  ident: 10.1016/j.biortech.2011.12.148_b0105
  article-title: Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: Use of hydrolyzed agricultural waste for biorefinery
  publication-title: Applied Microbiology Biotechnology
  doi: 10.1007/s00253-006-0445-z
– volume: 21
  start-page: 131
  year: 1986
  ident: 10.1016/j.biortech.2011.12.148_b0020
  article-title: The acetone–butanol–ethanol fermentation: a current assessment
  publication-title: Process Biochemistry.
– volume: 31
  start-page: 323
  year: 1989
  ident: 10.1016/j.biortech.2011.12.148_b0035
  article-title: Fermentation of mannitol by Clostridrium butyricum: Role of acetate as an external hydrogen acceptor
  publication-title: Applied Microbiology and Biotechnology.
  doi: 10.1007/BF00257597
– volume: 25
  start-page: 249
  year: 2000
  ident: 10.1016/j.biortech.2011.12.148_b0045
  article-title: Ethanol production from seaweed extract
  publication-title: Journal of Industrial Microbiology and Biotechnology.
  doi: 10.1038/sj.jim.7000065
– volume: 22
  start-page: 673
  year: 2006
  ident: 10.1016/j.biortech.2011.12.148_b0095
  article-title: Butanol production from corn fiber xylan using Clostridium acetobutylicum
  publication-title: Biotechnology Progress
  doi: 10.1021/bp050360w
– ident: 10.1016/j.biortech.2011.12.148_b0050
– volume: 2
  start-page: 27
  issue: 1
  year: 2000
  ident: 10.1016/j.biortech.2011.12.148_b0030
  article-title: The economics of acetone-butanol fermentation: theoretical and market considerations
  publication-title: Journal of Molecular Microbiology and Biotechnology.
– volume: 34
  start-page: 559
  issue: 4
  year: 2010
  ident: 10.1016/j.biortech.2011.12.148_b0100
  article-title: Production of butanol (a biofuel) from agricultural residues: Part I – use of barley straw hydrolysate
  publication-title: Biomass and Bioenergy
  doi: 10.1016/j.biombioe.2009.12.024
– volume: 50
  start-page: 484
  issue: 4
  year: 1986
  ident: 10.1016/j.biortech.2011.12.148_b0055
  article-title: Acetone-butanol fermentation revisited
  publication-title: Microbiological Reviews.
  doi: 10.1128/MMBR.50.4.484-524.1986
– volume: 2
  start-page: 15
  issue: 1
  year: 2000
  ident: 10.1016/j.biortech.2011.12.148_b0065
  article-title: The acetone-butanol fermentation in pilot plant and pre-industrial scale
  publication-title: Journal of Molecular Microbiology and Biotechnology.
– volume: 102
  start-page: 10996
  issue: 23
  year: 2011
  ident: 10.1016/j.biortech.2011.12.148_b0075
  article-title: Continuous acetone-butanol-ethanol fermentation using SO2-ethanol-water spent liquor from spruce
  publication-title: Bioresource Technology
  doi: 10.1016/j.biortech.2011.09.034
– volume: 18
  start-page: 220
  year: 2007
  ident: 10.1016/j.biortech.2011.12.148_b0025
  article-title: Bioproduction of butanol from biomass: from genes to bioreactors
  publication-title: Current Opinion in Biotechnology.
  doi: 10.1016/j.copbio.2007.04.002
– volume: 77
  start-page: 2727
  issue: 8
  year: 2011
  ident: 10.1016/j.biortech.2011.12.148_b0040
  article-title: Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose
  publication-title: Applied and Environmental Microbiology.
  doi: 10.1128/AEM.02454-10
– year: 1980
  ident: 10.1016/j.biortech.2011.12.148_b0005
– year: 1967
  ident: 10.1016/j.biortech.2011.12.148_b0070
SSID ssj0003172
Score 2.3349771
Snippet ► Brown macroalgae contain high concentrations of mannitol and laminarin. ► Clostridium acetobutylicum ferments these seaweed extract substrates to butanol. ►...
The objective of this study was to subject mannitol, either as a sole carbon source or in combination with glucose, and aqueous extracts of the kelp Saccharina...
Mannitol and laminarin, which are present at high concentrations in the brown macroalga Saccharina spp., a type of kelp, are potential biochemical feedstocks...
SourceID osti
proquest
pubmed
crossref
fao
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 305
SubjectTerms 60 APPLIED LIFE SCIENCES
Acetone
Acetone - metabolism
Acetone-butanol fermentation
analysis
BIOCONVERSION
Biofuels
BUTANOLS
Butanols - metabolism
carbon
chemistry
Chromatography, High Pressure Liquid
CLOSTRIDIUM ACETOBUTYLICUM
Clostridium acetobutylicum - growth & development
Clostridium acetobutylicum - metabolism
Complex Mixtures
Complex Mixtures - chemistry
economics
ENZYMATIC HYDROLYSIS
FERMENTATION
Glucans
GLUCOSE
Glucose - analysis
Glucose - metabolism
growth & development
HYDROLYSIS
Industrial Microbiology
Industrial Microbiology - economics
Industrial Microbiology - methods
Macroalgae
mannitol
Mannitol - analysis
Mannitol - metabolism
metabolism
methods
Phaeophyceae - chemistry
Phaeophyta
POLYSACCHARIDES
Polysaccharides - analysis
Polysaccharides - metabolism
PRODUCTION
SACCHARIDES
Seaweed
SEAWEEDS
SOLVENTS
SUBSTRATES
Title Acetone-butanol fermentation of marine macroalgae
URI https://dx.doi.org/10.1016/j.biortech.2011.12.148
https://www.ncbi.nlm.nih.gov/pubmed/22277213
https://www.proquest.com/docview/1365029292
https://www.proquest.com/docview/923574770
https://www.osti.gov/biblio/1038355
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5Remg5VJQ-CLQolXoNmzhxYh9Xq6KllbjQlbhZtuNUi-gGwe6V3843eVAqFXHoKUrisRyPPfNN5mGir9ZrJetSJE2jChgoWMZKOJ_IWuR5JWoFMo62OCvni-L7hbzYotmYC8NhlYPs72V6J62HJ5NhNifXy-XknMG3ktBAovPHcUZ5UVS8yo_v_oR5QD92ngQ0Trj1oyzhy2O35IjWzimRZfxbMONzgP6toF40toXcbrHznkajnVY62aU3A5yMp_2I39JWWO3RzvTXzVBSI-zRq9l4phvePCo_-I6yqQ9ciztxG0DE9ipuIKaHXKRV3Dbxb8u5gbhgqJzzEd7T4uTbz9k8GY5QSLzMqnXita-C0kWpfAPDrJJN6dKQByh1nWsVapv5ChDMNtpmTqTYnbUEynPCBVECCnyg7RUGsk8xLC3AO5FK5y1suhKtRVq7XNcSndRlRHKcN-OH-uJ8zMWVGQPJLs0434bn22QChoeKaPJAd91X2HiWQo9sMX-tFQM18CztPvhoLPhwaxbngg3MlBPIRR7RITOXu2Qqz4FG6JMryAOURfRl5LkB09itYleh3dwaDhRMBWCmiCh-oo3mqkJFVaURfezXy8O3cjIyzPD84D--6pBe4070sXGfaHt9swmfAZbW7qjbDUf0cnr6Y352D7JPDwk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BcqA9oJY-CBSaSr2mmzjrxDmuVkXLo3uBlbhZtuNUi-gGwe7_7zd5rKhUxIFTpMRj2R575pvMw0TfjSuULDMRVZUawUDBNlbCukiWIk1zUSqQcbTFLJvOR-c38maLJn0uDIdVdrK_lemNtO7eDLvVHN4vFsMrBt9KQgOJxh-Xb9MOV6eSA9oZn11MZxuBDBXZOBPQPmKCJ4nCtz_sgoNaG79EkvCfwYSvAvq_jtquTA3RXePwPQ9IG8V0-o72OkQZjttBv6ctv9ynt-PfD11VDb9Pu5P-Wjd8eVKB8AMlY-e5HHdk10CJ9V1YQVJ36UjLsK7CP4bTA_HAUDntw3-k-enP68k06m5RiJxM8lXkCpd7VYwy5SrYZrmsMhv71EOvF2mhfGkSlwOFmaowiRUxDmgpAfSssF5kQAOfaLDEQA4ohLEFhCdiaZ2BWZehtYhLmxalRCdlFpDs1027rsQ433Rxp_tYslvdr7fm9daJgO2hAhpu6O7bIhsvUhQ9W_Q_20VDE7xIewA-agM-POr5lWAbM-YccpEGdMTM5S6ZynGsEfrkIvLAZQF963muwTT2rJilr9ePmmMFYwGkKQIKn2lTcGGhUZ7HAX1u98tmrpyPDEs8PXzFrL7S7vT616W-PJtdHNEbfBFtqNwXGqwe1v4Y2GllT7qz8Rf66xG6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acetone-butanol+fermentation+of+marine+macroalgae&rft.jtitle=Bioresource+technology&rft.au=Huesemann%2C+Michael+H&rft.au=Kuo%2C+Li-Jung&rft.au=Urquhart%2C+Lindsay&rft.au=Gill%2C+Gary+A&rft.date=2012-03-01&rft.issn=0960-8524&rft.volume=108+p.305-309&rft.spage=305&rft.epage=309&rft_id=info:doi/10.1016%2Fj.biortech.2011.12.148&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon