Nanoflower-like P-doped Nickel Oxide as a Catalytic Counter Electrode for Dye-Sensitized Solar Cells

Flower-like phosphorus-doped nickel oxide (P-NiO) is proposed as a counter electrode (CE) for dye-sensitized solar cells (DSSCs). The flower-like nickel oxide essentially serves as the matrix for the CE, which is expected to promote a two-dimensional electron transport pathway. The phosphorus is int...

Full description

Saved in:
Bibliographic Details
Published inNanomaterials (Basel, Switzerland) Vol. 12; no. 22; p. 4036
Main Authors Chen, Yi-Lin, Huang, Yi-June, Yeh, Min-Hsin, Fan, Miao-Syuan, Lin, Cheng-Tai, Chang, Ching-Cheng, Ramamurthy, Vittal, Ho, Kuo-Chuan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 17.11.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Flower-like phosphorus-doped nickel oxide (P-NiO) is proposed as a counter electrode (CE) for dye-sensitized solar cells (DSSCs). The flower-like nickel oxide essentially serves as the matrix for the CE, which is expected to promote a two-dimensional electron transport pathway. The phosphorus is intended to improve the catalytic ability by creating more active sites in the NiO for the catalysis of triiodide ions (I3−) to iodide ions (I−) on the surface of the CE. The P-NiO is controlled by a sequencing of precursor concentration, which allows the P-NiO to possess different features. The debris aggregation occurs in the P-NiO-1, while the P-NiO-0.75 leads to the incomplete flower-like nanosheets. The complete flower-like morphology can be observed in the P-NiO-0.5, P-NiO-0.25 and P-NiO-0.1 catalytic electrodes. The DSSC with the P-NiO-0.5 CE achieves a power conversion efficiency (η) of 9.05%, which is better than that of the DSSC using a Pt CE (η = 8.51%); it also performs better than that with the Pt CE, even under rear illumination and dim light conditions. The results indicate the promising potential of the P-NiO CE to replace the expensive Pt CE.
AbstractList Flower-like phosphorus-doped nickel oxide (P-NiO) is proposed as a counter electrode (CE) for dye-sensitized solar cells (DSSCs). The flower-like nickel oxide essentially serves as the matrix for the CE, which is expected to promote a two-dimensional electron transport pathway. The phosphorus is intended to improve the catalytic ability by creating more active sites in the NiO for the catalysis of triiodide ions (I3−) to iodide ions (I−) on the surface of the CE. The P-NiO is controlled by a sequencing of precursor concentration, which allows the P-NiO to possess different features. The debris aggregation occurs in the P-NiO-1, while the P-NiO-0.75 leads to the incomplete flower-like nanosheets. The complete flower-like morphology can be observed in the P-NiO-0.5, P-NiO-0.25 and P-NiO-0.1 catalytic electrodes. The DSSC with the P-NiO-0.5 CE achieves a power conversion efficiency (η) of 9.05%, which is better than that of the DSSC using a Pt CE (η = 8.51%); it also performs better than that with the Pt CE, even under rear illumination and dim light conditions. The results indicate the promising potential of the P-NiO CE to replace the expensive Pt CE.
Flower-like phosphorus-doped nickel oxide (P-NiO) is proposed as a counter electrode (CE) for dye-sensitized solar cells (DSSCs). The flower-like nickel oxide essentially serves as the matrix for the CE, which is expected to promote a two-dimensional electron transport pathway. The phosphorus is intended to improve the catalytic ability by creating more active sites in the NiO for the catalysis of triiodide ions (I ) to iodide ions (I ) on the surface of the CE. The P-NiO is controlled by a sequencing of precursor concentration, which allows the P-NiO to possess different features. The debris aggregation occurs in the P-NiO-1, while the P-NiO-0.75 leads to the incomplete flower-like nanosheets. The complete flower-like morphology can be observed in the P-NiO-0.5, P-NiO-0.25 and P-NiO-0.1 catalytic electrodes. The DSSC with the P-NiO-0.5 CE achieves a power conversion efficiency (η) of 9.05%, which is better than that of the DSSC using a Pt CE (η = 8.51%); it also performs better than that with the Pt CE, even under rear illumination and dim light conditions. The results indicate the promising potential of the P-NiO CE to replace the expensive Pt CE.
Flower-like phosphorus-doped nickel oxide (P-NiO) is proposed as a counter electrode (CE) for dye-sensitized solar cells (DSSCs). The flower-like nickel oxide essentially serves as the matrix for the CE, which is expected to promote a two-dimensional electron transport pathway. The phosphorus is intended to improve the catalytic ability by creating more active sites in the NiO for the catalysis of triiodide ions (I[sub.3] [sup.−]) to iodide ions (I[sup.−]) on the surface of the CE. The P-NiO is controlled by a sequencing of precursor concentration, which allows the P-NiO to possess different features. The debris aggregation occurs in the P-NiO-1, while the P-NiO-0.75 leads to the incomplete flower-like nanosheets. The complete flower-like morphology can be observed in the P-NiO-0.5, P-NiO-0.25 and P-NiO-0.1 catalytic electrodes. The DSSC with the P-NiO-0.5 CE achieves a power conversion efficiency (η) of 9.05%, which is better than that of the DSSC using a Pt CE (η = 8.51%); it also performs better than that with the Pt CE, even under rear illumination and dim light conditions. The results indicate the promising potential of the P-NiO CE to replace the expensive Pt CE.
Flower-like phosphorus-doped nickel oxide (P-NiO) is proposed as a counter electrode (CE) for dye-sensitized solar cells (DSSCs). The flower-like nickel oxide essentially serves as the matrix for the CE, which is expected to promote a two-dimensional electron transport pathway. The phosphorus is intended to improve the catalytic ability by creating more active sites in the NiO for the catalysis of triiodide ions (I 3 − ) to iodide ions (I − ) on the surface of the CE. The P-NiO is controlled by a sequencing of precursor concentration, which allows the P-NiO to possess different features. The debris aggregation occurs in the P-NiO-1, while the P-NiO-0.75 leads to the incomplete flower-like nanosheets. The complete flower-like morphology can be observed in the P-NiO-0.5, P-NiO-0.25 and P-NiO-0.1 catalytic electrodes. The DSSC with the P-NiO-0.5 CE achieves a power conversion efficiency (η) of 9.05%, which is better than that of the DSSC using a Pt CE (η = 8.51%); it also performs better than that with the Pt CE, even under rear illumination and dim light conditions. The results indicate the promising potential of the P-NiO CE to replace the expensive Pt CE.
Flower-like phosphorus-doped nickel oxide (P-NiO) is proposed as a counter electrode (CE) for dye-sensitized solar cells (DSSCs). The flower-like nickel oxide essentially serves as the matrix for the CE, which is expected to promote a two-dimensional electron transport pathway. The phosphorus is intended to improve the catalytic ability by creating more active sites in the NiO for the catalysis of triiodide ions (I3-) to iodide ions (I-) on the surface of the CE. The P-NiO is controlled by a sequencing of precursor concentration, which allows the P-NiO to possess different features. The debris aggregation occurs in the P-NiO-1, while the P-NiO-0.75 leads to the incomplete flower-like nanosheets. The complete flower-like morphology can be observed in the P-NiO-0.5, P-NiO-0.25 and P-NiO-0.1 catalytic electrodes. The DSSC with the P-NiO-0.5 CE achieves a power conversion efficiency (η) of 9.05%, which is better than that of the DSSC using a Pt CE (η = 8.51%); it also performs better than that with the Pt CE, even under rear illumination and dim light conditions. The results indicate the promising potential of the P-NiO CE to replace the expensive Pt CE.Flower-like phosphorus-doped nickel oxide (P-NiO) is proposed as a counter electrode (CE) for dye-sensitized solar cells (DSSCs). The flower-like nickel oxide essentially serves as the matrix for the CE, which is expected to promote a two-dimensional electron transport pathway. The phosphorus is intended to improve the catalytic ability by creating more active sites in the NiO for the catalysis of triiodide ions (I3-) to iodide ions (I-) on the surface of the CE. The P-NiO is controlled by a sequencing of precursor concentration, which allows the P-NiO to possess different features. The debris aggregation occurs in the P-NiO-1, while the P-NiO-0.75 leads to the incomplete flower-like nanosheets. The complete flower-like morphology can be observed in the P-NiO-0.5, P-NiO-0.25 and P-NiO-0.1 catalytic electrodes. The DSSC with the P-NiO-0.5 CE achieves a power conversion efficiency (η) of 9.05%, which is better than that of the DSSC using a Pt CE (η = 8.51%); it also performs better than that with the Pt CE, even under rear illumination and dim light conditions. The results indicate the promising potential of the P-NiO CE to replace the expensive Pt CE.
Audience Academic
Author Chang, Ching-Cheng
Lin, Cheng-Tai
Fan, Miao-Syuan
Yeh, Min-Hsin
Ho, Kuo-Chuan
Chen, Yi-Lin
Ramamurthy, Vittal
Huang, Yi-June
AuthorAffiliation 2 Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
3 Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
1 Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
AuthorAffiliation_xml – name: 2 Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
– name: 3 Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
– name: 1 Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
Author_xml – sequence: 1
  givenname: Yi-Lin
  surname: Chen
  fullname: Chen, Yi-Lin
– sequence: 2
  givenname: Yi-June
  orcidid: 0000-0003-4221-6910
  surname: Huang
  fullname: Huang, Yi-June
– sequence: 3
  givenname: Min-Hsin
  orcidid: 0000-0002-6150-4750
  surname: Yeh
  fullname: Yeh, Min-Hsin
– sequence: 4
  givenname: Miao-Syuan
  surname: Fan
  fullname: Fan, Miao-Syuan
– sequence: 5
  givenname: Cheng-Tai
  surname: Lin
  fullname: Lin, Cheng-Tai
– sequence: 6
  givenname: Ching-Cheng
  surname: Chang
  fullname: Chang, Ching-Cheng
– sequence: 7
  givenname: Vittal
  surname: Ramamurthy
  fullname: Ramamurthy, Vittal
– sequence: 8
  givenname: Kuo-Chuan
  surname: Ho
  fullname: Ho, Kuo-Chuan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36432327$$D View this record in MEDLINE/PubMed
BookMark eNptkk1vEzEQhleoiJbSG2e0EhcObPHXfviCVIUClaoWqXC2Zu1xcOrYrb0Bwq_HIaVKK-yDLfvx65l35nm1F2LAqnpJyTHnkrwLECJljAnCuyfVASO9bISUdG9nv18d5bwgZUjKh5Y_q_Z5JzjjrD-ozEVRsD7-xNR4d431l8bEGzT1hdPX6OvLX85gDbmGegYT-PXkdD2LqzBhqk896inFAtiY6g9rbK4wZDe530XgKnpI9Qy9zy-qpxZ8xqO79bD69vH06-xzc3756Wx2ct7olvZTowkyQVEK0WsBrey5ZhxGrikMvNVW98OoLe90B7xjZBw070EaQYihTA6SH1ZnW10TYaFukltCWqsITv09iGmuIJUEPCqJ0g6i42IkrWBWA-lGAWIU1rQG-43W-63WzWpcotEYpgT-gejDm-C-q3n8oWQnSzmGIvDmTiDF2xXmSS1d1sUOCBhXWbFekJaWwEVBXz9CF3GVQrGqUHzjB5OkUMdbag4lARdsLP_qMg0unS59YV05P-lF8YbQri0PXu2mcB_7v-oX4O0W0CnmnNDeI5SoTX-p3f4qOHuEazfB5OLGAOf__-gP33rSEQ
CitedBy_id crossref_primary_10_1002_pssa_202400387
crossref_primary_10_3390_molecules29225233
crossref_primary_10_1007_s11581_024_05462_z
crossref_primary_10_1016_j_jallcom_2023_172155
crossref_primary_10_1002_smll_202306756
crossref_primary_10_1016_j_joei_2024_101709
Cites_doi 10.1016/j.electacta.2016.06.057
10.1039/c1jm12428e
10.1039/c2ee22572g
10.1016/j.nanoen.2021.106575
10.1038/srep10450
10.1039/C2CP23775J
10.1039/C3CC49175G
10.1038/srep01836
10.1021/acs.jpcc.1c06646
10.1038/353737a0
10.1016/j.carbon.2012.05.001
10.1039/D0TA10925H
10.1016/j.jpowsour.2014.07.018
10.1016/j.rser.2015.07.076
10.1021/jp412542d
10.1002/aenm.201100582
10.1002/anie.201303497
10.1021/acsami.5b07724
10.1021/acsami.0c08220
10.1039/c2jm30832k
10.1016/j.jpowsour.2014.03.118
10.1021/acsami.9b03328
10.1039/C6NR00839A
10.1039/c0ee00791a
10.1002/anie.201409422
10.1002/elan.201300321
10.1039/C4TC01589D
10.1039/c1cp22819f
10.1016/j.jpowsour.2015.03.045
10.1039/c2cc38621f
10.1016/j.jpowsour.2017.11.041
10.1016/j.est.2020.101248
10.1016/j.jpowsour.2015.02.060
10.1016/j.electacta.2011.04.028
10.1016/j.materresbull.2006.11.022
10.1021/cm300739y
10.1039/C8TA00968F
10.1016/j.bios.2007.02.002
10.1016/j.jelechem.2004.05.003
10.1039/C3TA13374E
10.1039/C4CC03882G
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
KB.
KR7
L7M
LK8
L~C
L~D
M7P
P64
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/nano12224036
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Materials Science Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
ANTE: Abstracts in New Technology & Engineering
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
Ceramic Abstracts
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
Biotechnology Research Abstracts
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Materials Science & Engineering Collection
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
PubMed

Publicly Available Content Database

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-4991
ExternalDocumentID oai_doaj_org_article_9e9f84634b0542fca06b4a4b4fd5de79
PMC9692408
A746200165
36432327
10_3390_nano12224036
Genre Journal Article
GeographicLocations United States
Japan
United States--US
Switzerland
GeographicLocations_xml – name: Japan
– name: United States
– name: Switzerland
– name: United States--US
GrantInformation_xml – fundername: Ministry of Science and Technology
  grantid: 108-2221-E-002-112-MY3
– fundername: Ministry of Education
  grantid: 110L9006
– fundername: Ministry of Science and Technology
  grantid: 111-2221-E-011-011
– fundername: Ministry of Science and Technology
  grantid: 111-2634-F-002-016
– fundername: National Taiwan University of Science and Technology & Bandung Institute of Technology Joint Research Program
  grantid: ITB-NTUST-111-04
GroupedDBID 53G
5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
HYE
I-F
IAO
ITC
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c517t-c0e241e9447c4a5973c23ab3c1a835cfc78bcf36c6a3620b8c37a9d400d129893
IEDL.DBID DOA
ISSN 2079-4991
IngestDate Wed Aug 27 01:20:23 EDT 2025
Thu Aug 21 18:39:16 EDT 2025
Fri Jul 11 06:25:56 EDT 2025
Fri Jul 25 11:55:03 EDT 2025
Tue Jul 01 05:43:06 EDT 2025
Thu Apr 03 07:06:35 EDT 2025
Thu Apr 24 22:53:55 EDT 2025
Tue Jul 01 00:51:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords counter electrode
flower-like morphology
phosphorus-doped nickel oxide
dye-sensitized solar cell
rear illumination
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-c0e241e9447c4a5973c23ab3c1a835cfc78bcf36c6a3620b8c37a9d400d129893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4221-6910
0000-0002-6150-4750
OpenAccessLink https://doaj.org/article/9e9f84634b0542fca06b4a4b4fd5de79
PMID 36432327
PQID 2739447290
PQPubID 2032354
ParticipantIDs doaj_primary_oai_doaj_org_article_9e9f84634b0542fca06b4a4b4fd5de79
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9692408
proquest_miscellaneous_2740511294
proquest_journals_2739447290
gale_infotracacademiconefile_A746200165
pubmed_primary_36432327
crossref_primary_10_3390_nano12224036
crossref_citationtrail_10_3390_nano12224036
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221117
PublicationDateYYYYMMDD 2022-11-17
PublicationDate_xml – month: 11
  year: 2022
  text: 20221117
  day: 17
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Nanomaterials (Basel, Switzerland)
PublicationTitleAlternate Nanomaterials (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Gong (ref_8) 2013; 49
Kuo (ref_17) 2019; 11
Nakaoka (ref_31) 2004; 571
Yeh (ref_15) 2011; 21
Xing (ref_34) 2020; 28
Salimi (ref_29) 2007; 22
Lin (ref_11) 2021; 125
Yeh (ref_14) 2011; 56
Dou (ref_25) 2012; 14
Guai (ref_30) 2012; 2
Wu (ref_20) 2011; 13
Wang (ref_40) 2013; 52
Zheng (ref_39) 2007; 42
Cheng (ref_4) 2021; 90
Wang (ref_37) 2014; 269
Jian (ref_18) 2018; 6
Peck (ref_36) 2012; 24
Wang (ref_41) 2014; 50
Paranthaman (ref_24) 2016; 211
Yeh (ref_9) 2012; 50
Park (ref_22) 2015; 5
Yeh (ref_10) 2014; 26
Dai (ref_35) 2021; 9
Zhang (ref_42) 2013; 3
Thomas (ref_7) 2014; 2
Yeh (ref_12) 2014; 118
Peng (ref_16) 2020; 12
Yang (ref_2) 2015; 282
Sugathan (ref_3) 2015; 52
Zhang (ref_38) 2012; 5
Zheng (ref_1) 2014; 2
Wang (ref_32) 2014; 263
Duan (ref_28) 2014; 53
Yu (ref_33) 2016; 8
Wu (ref_26) 2012; 22
(ref_5) 1991; 353
Yeh (ref_13) 2018; 375
Sun (ref_19) 2011; 4
Chen (ref_21) 2014; 50
Li (ref_23) 2015; 7
Duan (ref_27) 2015; 284
ref_6
References_xml – volume: 211
  start-page: 375
  year: 2016
  ident: ref_24
  article-title: Influence of zirconium dioxide and titanium dioxide binders on the photovoltaic performance of dye sensitized solar cell tungsten carbide nanorods based counter electrode
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.06.057
– volume: 21
  start-page: 19021
  year: 2011
  ident: ref_15
  article-title: A composite catalytic film of PEDOT:PSS/TiN–NPs on a flexible counter-electrode substrate for a dye-sensitized solar cell
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm12428e
– volume: 5
  start-page: 9453
  year: 2012
  ident: ref_38
  article-title: Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22572g
– volume: 90
  start-page: 106575
  year: 2021
  ident: ref_4
  article-title: Designing a hybrid type photoelectrochromic device with dual coloring modes for realizing ultrafast response/high optical contrast self-powered smart windows
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106575
– volume: 5
  start-page: 10450
  year: 2015
  ident: ref_22
  article-title: Reactively sputtered nickel nitride as electrocatalytic counter electrode for dye-and quantum dot-sensitized solar cells
  publication-title: Sci. Rep.
  doi: 10.1038/srep10450
– volume: 14
  start-page: 1339
  year: 2012
  ident: ref_25
  article-title: Nickel phosphide-embedded graphene as counter electrode for dye-sensitized solar cells
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C2CP23775J
– volume: 50
  start-page: 2618
  year: 2014
  ident: ref_41
  article-title: FeSe2 films with controllable morphologies as efficient counter electrodes for dye-sensitized solar cells
  publication-title: Chem. Commun.
  doi: 10.1039/C3CC49175G
– volume: 3
  start-page: 1836
  year: 2013
  ident: ref_42
  article-title: Facet-dependent catalytic activity of platinum nanocrystals for triiodide reduction in dye-sensitized solar cells
  publication-title: Sci. Rep.
  doi: 10.1038/srep01836
– volume: 125
  start-page: 24894
  year: 2021
  ident: ref_11
  article-title: Boron and nitrogen co doped multilayer graphene as a counter electrode: A combined theoretical and experimental study on dye-sensitized solar cells under ambient light conditions
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c06646
– volume: 353
  start-page: 737
  year: 1991
  ident: ref_5
  article-title: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films
  publication-title: Nature
  doi: 10.1038/353737a0
– volume: 50
  start-page: 4192
  year: 2012
  ident: ref_9
  article-title: A low-cost counter electrode of ITO glass coated with a graphene/Nafion® composite film for use in dye-sensitized solar cells
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.05.001
– volume: 9
  start-page: 6432
  year: 2021
  ident: ref_35
  article-title: Surface reconstruction induced in situ phosphorus doping in nickel oxides for an enhanced oxygen evolution reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA10925H
– volume: 269
  start-page: 473
  year: 2014
  ident: ref_37
  article-title: The production of cobalt sulfide/graphene composite for use as a low-cost counter-electrode material in dye-sensitized solar cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.07.018
– volume: 52
  start-page: 54
  year: 2015
  ident: ref_3
  article-title: Recent improvements in dye sensitized solar cells: A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.07.076
– volume: 118
  start-page: 16626
  year: 2014
  ident: ref_12
  article-title: Multiwalled carbon nanotube@reduced graphene oxide nanoribbon as the counter electrode for dye-sensitized solar cells
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp412542d
– volume: 2
  start-page: 334
  year: 2012
  ident: ref_30
  article-title: Sulfur-doped nickel oxide thin film as an alternative to Pt for dye-sensitized solar cell counter electrodes
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201100582
– volume: 52
  start-page: 9210
  year: 2013
  ident: ref_40
  article-title: 3D honeycomb-like structured graphene and its high efficiency as a counter-electrode catalyst for dye-sensitized solar cells
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201303497
– volume: 7
  start-page: 28254
  year: 2015
  ident: ref_23
  article-title: Electrocatalytic zinc composites as the efficient counter electrodes of dye-sensitized solar cells: Study on the electrochemical performances and density functional theory calculations
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b07724
– volume: 12
  start-page: 44597
  year: 2020
  ident: ref_16
  article-title: Transparent cobalt selenide/graphene counter electrode for efficient dye-sensitized solar cells with Co(2+)/(3+)-based redox couple
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c08220
– volume: 22
  start-page: 11121
  year: 2012
  ident: ref_26
  article-title: High-performance phosphide/carbon counter electrode for both iodide and organic redox couples in dye-sensitized solar cells
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm30832k
– volume: 263
  start-page: 246
  year: 2014
  ident: ref_32
  article-title: Phosphorus-doped reduced graphene oxide as an electrocatalyst counter electrode in dye-sensitized solar cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.03.118
– volume: 11
  start-page: 25090
  year: 2019
  ident: ref_17
  article-title: Synthesis of surfactant-free and morphology-controllable vanadium diselenide for efficient counter electrodes in dye-sensitized solar cells
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b03328
– volume: 8
  start-page: 17458
  year: 2016
  ident: ref_33
  article-title: Nitrogen and phosphorus dual-doped graphene as a metal-free high-efficiency electrocatalyst for triiodide reduction
  publication-title: Nanoscale
  doi: 10.1039/C6NR00839A
– volume: 4
  start-page: 2630
  year: 2011
  ident: ref_19
  article-title: Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00791a
– volume: 53
  start-page: 14569
  year: 2014
  ident: ref_28
  article-title: Transparent metal selenide alloy counter electrodes for high-efficiency bifacial dye-sensitized solar cells
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201409422
– ident: ref_6
– volume: 26
  start-page: 147
  year: 2014
  ident: ref_10
  article-title: Study on Oxidation State Dependent Electrocatalytic Ability for I−/I3−Redox Reaction of Reduced Graphene Oxides
  publication-title: Electroanalysis
  doi: 10.1002/elan.201300321
– volume: 2
  start-page: 8497
  year: 2014
  ident: ref_1
  article-title: Efficient sinter-free nanostructure Pt counter electrode for dye-sensitized solar cells
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC01589D
– volume: 13
  start-page: 19298
  year: 2011
  ident: ref_20
  article-title: Economical and effective sulfide catalysts for dye-sensitized solar cells as counter electrodes
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp22819f
– volume: 284
  start-page: 349
  year: 2015
  ident: ref_27
  article-title: Bifacial dye-sensitized solar cells with transparent cobalt selenide alloy counter electrodes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.03.045
– volume: 49
  start-page: 1437
  year: 2013
  ident: ref_8
  article-title: NiSe2 as an efficient electrocatalyst for a Pt-free counter electrode of dye-sensitized solar cells
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc38621f
– volume: 375
  start-page: 29
  year: 2018
  ident: ref_13
  article-title: Boron-doped carbon nanotubes as metal-free electrocatalyst for dye-sensitized solar cells: Heteroatom doping level effect on tri-iodide reduction reaction
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.11.041
– volume: 28
  start-page: 101248
  year: 2020
  ident: ref_34
  article-title: P-doped ternary transition metal oxide as electrode material of asymmetric supercapacitor
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2020.101248
– volume: 282
  start-page: 228
  year: 2015
  ident: ref_2
  article-title: Sulfur-doped porous carbon as metal-free counter electrode for high-efficiency dye-sensitized solar cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.02.060
– volume: 56
  start-page: 6157
  year: 2011
  ident: ref_14
  article-title: A composite poly(3,3-diethyl-3,4-dihydro-2H-thieno-[3,4-b][1,4]-dioxepine) and Pt film as a counter electrode catalyst in dye-sensitized solar cells
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.04.028
– volume: 42
  start-page: 1740
  year: 2007
  ident: ref_39
  article-title: Preparation and electrochemical properties of multiwalled carbon nanotubes–nickel oxide porous composite for supercapacitors
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2006.11.022
– volume: 24
  start-page: 4483
  year: 2012
  ident: ref_36
  article-title: Comparison of nanoscaled and bulk NiO structural and environmental characteristics by XRD, XAFS, and XPS
  publication-title: Chem. Mater.
  doi: 10.1021/cm300739y
– volume: 6
  start-page: 5107
  year: 2018
  ident: ref_18
  article-title: A zeolitic imidazolate framework-derived ZnSe/N-doped carbon cube hybrid electrocatalyst as the counter electrode for dye-sensitized solar cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA00968F
– volume: 22
  start-page: 3146
  year: 2007
  ident: ref_29
  article-title: Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles: Direct electron transfer and electrocatalytic activity
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2007.02.002
– volume: 571
  start-page: 93
  year: 2004
  ident: ref_31
  article-title: Semiconductor and electrochromic properties of electrochemically deposited nickel oxide films
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2004.05.003
– volume: 2
  start-page: 4474
  year: 2014
  ident: ref_7
  article-title: A review on counter electrode materials in dye-sensitized solar cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA13374E
– volume: 50
  start-page: 14321
  year: 2014
  ident: ref_21
  article-title: Porous, single crystalline titanium nitride nanoplates grown on carbon fibers: Excellent counter electrodes for low-cost, high performance, fiber-shaped dye-sensitized solar cells
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC03882G
SSID ssj0000913853
Score 2.267899
Snippet Flower-like phosphorus-doped nickel oxide (P-NiO) is proposed as a counter electrode (CE) for dye-sensitized solar cells (DSSCs). The flower-like nickel oxide...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 4036
SubjectTerms Alcohol
Catalysis
counter electrode
dye-sensitized solar cell
Dye-sensitized solar cells
Dyes
Efficiency
Electrodes
Electrolytes
Electron transport
Energy conversion efficiency
flower-like morphology
Graphene
Iodides
Ions
Morphology
Nanoparticles
Nickel
Nickel oxides
Phosphorus
phosphorus-doped nickel oxide
Platinum
Polyesters
rear illumination
Solar batteries
Solar cells
Spectrum analysis
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3B9gIHxDeBgowE4oCsJrHjxCfULltVSJSKUqm3yLEdWDVKlu5Wovx6ZhJvuisE18SKHI9n3rM9fgPwxuaIuqJSXCHWcWliz40XivtUeOe0dkVfh-zzsTo6k5_Os_Ow4bYMaZXrmNgHatdZ2iPfQ5jVUiIVjD8sfnKqGkWnq6GExm3YwRBcFBPYOZgdn3wdd1lI9RIBach4F7i-32tN2yUpAVmvynyDRb1k_9-BeQOZtrMmN2Do8D7cC_yR7Q8GfwC3fPsQ7m6oCj4ChxGzqxsqf8ab-YVnJ9x1C-8YWv3CN-zLr7nzzCyZYVPavLnGTzG6m45DzGZDWRxsgGyWfbz2_JRS3Ffz3_iBU1oHs6lvmuVjODucfZse8VBMgdssyVfcxh7B2tMYWmlwGSFsKkwlbGKQhNkajVbZWiirDGJaXBVW5EY7dHGXkEq7eAKTtmv9M2C1EVIl1khVO5llpnBpkSRKxbn1dG81gvfrYS1tUBqnghdNiSsOMkK5aYQI3o6tF4PCxj_aHZCFxjaki90_6C6_l8HNSu11jYxKyAqpaFpbE6tKGlnJ2mXO5zqCd2TfkrwXu2RNuISAP0Y6WOV-LhVlmaksgt31FCiDWy_Lm0kYwevxNToknbKY1ndX1AY5MLFYGcHTYcaMfRbI_5DC4gjlW3Np66e237TzH73ot1aa1Oie_79bL-BOSvczKE8x34XJ6vLKv0TWtKpeBdf4Awk4GAA
  priority: 102
  providerName: ProQuest
Title Nanoflower-like P-doped Nickel Oxide as a Catalytic Counter Electrode for Dye-Sensitized Solar Cells
URI https://www.ncbi.nlm.nih.gov/pubmed/36432327
https://www.proquest.com/docview/2739447290
https://www.proquest.com/docview/2740511294
https://pubmed.ncbi.nlm.nih.gov/PMC9692408
https://doaj.org/article/9e9f84634b0542fca06b4a4b4fd5de79
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB-0vuiD-G20HisoPsjSJLvZ3D62551FsBZroW9hszuhR0NSvCtY_3pnkvTMIeKLr8kSNvOxv5lk5jcAb3xOqKtKIw1hndQuRulQGYmpwhCsDdNuDtnnI3N4qj-dZWejUV9cE9bTA_eC27NoK8JIpUsKLtLKu9iU2ulSVyELmHete4R5o2SqO4NtogiI-kp3RXn9XuOaNkkZwDo25t8Y1FH1_3kgjxBpu1pyBD-LB3B_iBvFfr_fh3ALm0dwb8Qm-BgCnZRtVfPYM1kvL1Acy9BeYhCk7QusxZcfy4DCrYQTM_5oc02PEtyTTqIV834cDi2gKFZ8uEZ5wqXt6-VPesAJ579ihnW9egKni_m32aEchihInyX5WvoYCaTRap177Sh9UD5VrlQ-cRR8-YqUVfpKGW8cYVlcTr3KnQ3k2iFhdnb1FHaatsHnICqntEm806YKOsvcNKTTJDEmzj1yv2oE72_EWviBYZwHXdQFZRqshGKshAjeblZf9swaf1l3wBrarGE-7O4CWUkxWEnxLyuJ4B3rt2CvpS15NzQf0Isx_1Wxn2vD1WUmi2D3xgSKwZ1XBcV4LMDUxhG83twmR-S_K67B9orXUOzL0auO4FlvMZs9K4r7KHQlCeVbtrT1Utt3muV5R_ZtjWUWuhf_Qwov4W7K3RtcxZjvws76-xW-ophqXU7g9nTxcQJ3DuZHx18nnTP9Aku3Ihw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAkai4oCsJrHjbA4IlW2XLX2A1FbqLTi2064aJUt3K1h-FL-RmSSb7grBrdfYshzPeL7P9jwA3pgYUVdkiivEOi6177h2QnEXCmdtktheXYds_0ANj-Xnk-hkBX7PY2HIrXJuE2tDbStDd-QbCLOJlEgF_Q_j75yqRtHr6ryERqMWu272A49sk_c7Wyjf9TAcbB_1h7ytKsBNFMRTbnyHqOVoMCM18mlhQqEzYQKNbMTkOPvM5EIZpdG4-1nPiFgnFnXdBpSuXOC4N-CmFIjkFJk--NTd6VCOTYS_xr8e2_2NUpdVEBJs1jmgr5CvLhDwNwws4OCyj-YC6A3uwd2WrbLNRr3uw4orH8CdhRyGD8Gifa7ygoqt8WJ07thXbquxswx17NwV7MvPkXVMT5hmfboqmuFQjCLhUaBsuynCgx2QO7OtmeOH5FA_Hf3CAQ7p1M36rigmj-D4Whb5MayWVemeAsu1kCowWqrcyijSPRv2gkApPzaOomQ9eDdf1tS0ec2pvEaR4vmGhJAuCsGD9a73uMnn8Y9-H0lCXR_Kwl1_qC5O03ZTp4lLcuRvQmZIfMPcaF9lUstM5jayLk48eEvyTclW4JSMbkMe8Mco61a6GUtFPm0q8mBtrgJpa0Qm6ZXKe_C6a8btT286unTVJfVBxk2cWXrwpNGYbs4C2SYSZlyheEmXln5quaUcndUpxhOVUO67Z_-f1iu4NTza30v3dg52n8PtkCJDyEMyXoPV6cWle4F8bZq9rDcJg2_XvSv_ABPTUtg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anYTgAXEnMMBITDwga0nsOM0DQlsv2hiUiTFpb8GxHagWJWXtBOWn8es4J0m7Vgje9pocWbbP7bN9LgAvTYxeV2SKK_R1XGrfce2E4i4Uztoksd26D9mHkdo_ke9Oo9MN-L3IhaGwyoVNrA21rQzdke-gm02kRCjo7-RtWMRRf_h28p1TByl6aV2002hE5NDNf-DxbfrmoI-83g7D4eBzb5-3HQa4iYJ4xo3v0IM5GthIjdhamFDoTJhAIzIxOa4kM7lQRmk09H7WNSLWiUW5twGVLhc47jXYjOlU1IHNvcHo6NPyhocqbqIzbKLthcCJl7qsgpCcaF0R-tIP1u0C_nYKK15xPWJzxQUOb8OtFruy3UbY7sCGK-_CzZWKhvfAorWu8oJar_FifObYEbfVxFmGEnfmCvbx59g6pqdMsx5dHM1xKEZ58cheNmha8iABImnWnzt-TOH1s_EvHOCYzuCs54pieh9OrmSbH0CnrEr3CFiuhVSB0VLlVkaR7tqwGwRK-bFxlDPrwevFtqamrXJOzTaKFE87xIR0lQkebC-pJ011j3_Q7RGHljRUk7v-UJ1_TVsVTxOX5IjmhMwQBoe50b7KpJaZzG1kXZx48Ir4m5LlwCkZ3SZA4MKoBle6G0tFEW4q8mBrIQJpa1Km6aUCePBi-RuNAb3w6NJVF0SD-JsQtPTgYSMxyzkLxJ4In3GH4jVZWlvU-p9y_K0uOJ6ohCrhPf7_tJ7DddTI9P3B6PAJ3AgpTYTCJeMt6MzOL9xTBG-z7FmrJQy-XLVi_gF5qVhq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoflower-like+P-doped+Nickel+Oxide+as+a+Catalytic+Counter+Electrode+for+Dye-Sensitized+Solar+Cells&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Chen%2C+Yi-Lin&rft.au=Huang%2C+Yi-June&rft.au=Yeh%2C+Min-Hsin&rft.au=Fan%2C+Miao-Syuan&rft.date=2022-11-17&rft.issn=2079-4991&rft.eissn=2079-4991&rft.volume=12&rft.issue=22&rft_id=info:doi/10.3390%2Fnano12224036&rft_id=info%3Apmid%2F36432327&rft.externalDocID=36432327
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon