Enhancing fibre-optic distributed acoustic sensing capabilities with blind near-field array signal processing
Distributed acoustic sensors (DAS) can monitor mechanical vibrations along thousands independent locations using an optical fibre. The measured acoustic waveform highly varies along the sensing fibre due to the intrinsic uneven DAS longitudinal response and distortions originated during mechanical w...
Saved in:
Published in | Nature communications Vol. 13; no. 1; pp. 4019 - 12 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
11.07.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Distributed acoustic sensors (DAS) can monitor mechanical vibrations along thousands independent locations using an optical fibre. The measured acoustic waveform highly varies along the sensing fibre due to the intrinsic uneven DAS longitudinal response and distortions originated during mechanical wave propagation. Here, we propose a fully blind method based on near-field acoustic array processing that considers the nonuniform response of DAS channels and can be used with any optical fibre positioning geometry having angular diversity. With no source and fibre location information, the method can reduce signal distortions and provide relevant signal-to-noise ratio enhancement through sparse beamforming spatial filtering. The method also allows the localisation of the two-dimensional spatial coordinates of acoustic sources, requiring no specific fibre installation design. The method offers distributed analysis capabilities of the entire acoustic field outside the sensing fibre, enabling DAS systems to characterise vibration sources placed in areas far from the optical fibre.
Here, the authors demonstrate a blind and sparse near-field array signal processing approach to enhance the measurement quality of fibre-optic distributed acoustic sensors. It further enables the accurate estimation of the spatial coordinates of acoustic sources. |
---|---|
AbstractList | Here, the authors demonstrate a blind and sparse near-field array signal processing approach to enhance the measurement quality of fibre-optic distributed acoustic sensors. It further enables the accurate estimation of the spatial coordinates of acoustic sources. Distributed acoustic sensors (DAS) can monitor mechanical vibrations along thousands independent locations using an optical fibre. The measured acoustic waveform highly varies along the sensing fibre due to the intrinsic uneven DAS longitudinal response and distortions originated during mechanical wave propagation. Here, we propose a fully blind method based on near-field acoustic array processing that considers the nonuniform response of DAS channels and can be used with any optical fibre positioning geometry having angular diversity. With no source and fibre location information, the method can reduce signal distortions and provide relevant signal-to-noise ratio enhancement through sparse beamforming spatial filtering. The method also allows the localisation of the two-dimensional spatial coordinates of acoustic sources, requiring no specific fibre installation design. The method offers distributed analysis capabilities of the entire acoustic field outside the sensing fibre, enabling DAS systems to characterise vibration sources placed in areas far from the optical fibre.Here, the authors demonstrate a blind and sparse near-field array signal processing approach to enhance the measurement quality of fibre-optic distributed acoustic sensors. It further enables the accurate estimation of the spatial coordinates of acoustic sources. Distributed acoustic sensors (DAS) can monitor mechanical vibrations along thousands independent locations using an optical fibre. The measured acoustic waveform highly varies along the sensing fibre due to the intrinsic uneven DAS longitudinal response and distortions originated during mechanical wave propagation. Here, we propose a fully blind method based on near-field acoustic array processing that considers the nonuniform response of DAS channels and can be used with any optical fibre positioning geometry having angular diversity. With no source and fibre location information, the method can reduce signal distortions and provide relevant signal-to-noise ratio enhancement through sparse beamforming spatial filtering. The method also allows the localisation of the two-dimensional spatial coordinates of acoustic sources, requiring no specific fibre installation design. The method offers distributed analysis capabilities of the entire acoustic field outside the sensing fibre, enabling DAS systems to characterise vibration sources placed in areas far from the optical fibre. Here, the authors demonstrate a blind and sparse near-field array signal processing approach to enhance the measurement quality of fibre-optic distributed acoustic sensors. It further enables the accurate estimation of the spatial coordinates of acoustic sources. Distributed acoustic sensors (DAS) can monitor mechanical vibrations along thousands independent locations using an optical fibre. The measured acoustic waveform highly varies along the sensing fibre due to the intrinsic uneven DAS longitudinal response and distortions originated during mechanical wave propagation. Here, we propose a fully blind method based on near-field acoustic array processing that considers the nonuniform response of DAS channels and can be used with any optical fibre positioning geometry having angular diversity. With no source and fibre location information, the method can reduce signal distortions and provide relevant signal-to-noise ratio enhancement through sparse beamforming spatial filtering. The method also allows the localisation of the two-dimensional spatial coordinates of acoustic sources, requiring no specific fibre installation design. The method offers distributed analysis capabilities of the entire acoustic field outside the sensing fibre, enabling DAS systems to characterise vibration sources placed in areas far from the optical fibre. Distributed acoustic sensors (DAS) can monitor mechanical vibrations along thousands independent locations using an optical fibre. The measured acoustic waveform highly varies along the sensing fibre due to the intrinsic uneven DAS longitudinal response and distortions originated during mechanical wave propagation. Here, we propose a fully blind method based on near-field acoustic array processing that considers the nonuniform response of DAS channels and can be used with any optical fibre positioning geometry having angular diversity. With no source and fibre location information, the method can reduce signal distortions and provide relevant signal-to-noise ratio enhancement through sparse beamforming spatial filtering. The method also allows the localisation of the two-dimensional spatial coordinates of acoustic sources, requiring no specific fibre installation design. The method offers distributed analysis capabilities of the entire acoustic field outside the sensing fibre, enabling DAS systems to characterise vibration sources placed in areas far from the optical fibre.Distributed acoustic sensors (DAS) can monitor mechanical vibrations along thousands independent locations using an optical fibre. The measured acoustic waveform highly varies along the sensing fibre due to the intrinsic uneven DAS longitudinal response and distortions originated during mechanical wave propagation. Here, we propose a fully blind method based on near-field acoustic array processing that considers the nonuniform response of DAS channels and can be used with any optical fibre positioning geometry having angular diversity. With no source and fibre location information, the method can reduce signal distortions and provide relevant signal-to-noise ratio enhancement through sparse beamforming spatial filtering. The method also allows the localisation of the two-dimensional spatial coordinates of acoustic sources, requiring no specific fibre installation design. The method offers distributed analysis capabilities of the entire acoustic field outside the sensing fibre, enabling DAS systems to characterise vibration sources placed in areas far from the optical fibre. |
ArticleNumber | 4019 |
Author | Muñoz, Felipe Soto, Marcelo A. |
Author_xml | – sequence: 1 givenname: Felipe surname: Muñoz fullname: Muñoz, Felipe organization: Department of Electronics Engineering, Universidad Técnica Federico Santa María – sequence: 2 givenname: Marcelo A. orcidid: 0000-0002-2140-2012 surname: Soto fullname: Soto, Marcelo A. email: marcelo.sotoh@usm.cl organization: Department of Electronics Engineering, Universidad Técnica Federico Santa María |
BookMark | eNp9ks1u1DAUhSNUREvpC7CKxIZNIP63N0ioKlCpEhtYW459nfEoYw92Btq3rzOpgHZRb2xdn-_4-uq8bk5iitA0b1H_AfVEfiwUUS66HuOOIC5Rd_uiOcM9RR0SmJz8dz5tLkrZ9nURhSSlr5pTwiRGhKuzZncVNybaEMfWhyFDl_ZzsK0LZc5hOMzgWmPToSzFArEsQmv2ZghTmAOU9k-YN-0whejaCCZ3PsBUmZzNXVvCGM3U7nOyUBb0TfPSm6nAxcN-3vz8cvXj8lt38_3r9eXnm84yJOZuGLwVjllulQM0CAYUjACPhBecUyYdV9x56uqJEiNBGiuIlbK3HkulyHlzvfq6ZLZ6n8PO5DudTNDHQsqjNrl-aQINjDjKoPcSBKUMKUaIMk7QaugJ7qvXp9Vrfxh24CzEOZvpkenjmxg2eky_tcKCC8aqwfsHg5x-HaDMeheKhWkyEepkNeZS9UwwTKr03RPpNh1yneFRJbHkQuGqwqvK5lRKBv-3GdTrJRx6DYeu4dDHcOjbCsknkA2zmUNamg7T8yhZ0VLfiSPkf109Q90DLSjSEA |
CitedBy_id | crossref_primary_10_1016_j_infrared_2023_105097 crossref_primary_10_1016_j_yofte_2024_103911 crossref_primary_10_3390_s23146599 crossref_primary_10_1109_JSEN_2024_3405530 crossref_primary_10_1109_JLT_2023_3337664 crossref_primary_10_1190_geo2023_0079_1 crossref_primary_10_1016_j_yofte_2022_103198 crossref_primary_10_3788_AOS231384 crossref_primary_10_1038_s41377_022_01067_1 crossref_primary_10_3390_photonics10121362 crossref_primary_10_1016_j_measurement_2024_115280 crossref_primary_10_1109_JLT_2024_3391275 crossref_primary_10_1109_TIM_2025_3541784 crossref_primary_10_1109_JSEN_2025_3526824 crossref_primary_10_1109_JLT_2024_3366294 crossref_primary_10_35848_1882_0786_aca23b crossref_primary_10_1109_JLT_2024_3446852 crossref_primary_10_3788_CJL231054 crossref_primary_10_1007_s10346_024_02268_y crossref_primary_10_1016_j_optcom_2024_131403 crossref_primary_10_1002_advs_202411967 crossref_primary_10_1785_0320230018 crossref_primary_10_1007_s11440_023_01965_7 crossref_primary_10_3788_AOS231473 crossref_primary_10_1109_TIM_2023_3348889 crossref_primary_10_1109_JSEN_2023_3268213 crossref_primary_10_35848_1882_0786_ad06e2 crossref_primary_10_1016_j_eswa_2023_122176 |
Cites_doi | 10.1109/JLT.2008.928957 10.1007/s11554-009-0133-1 10.1016/B978-0-12-397023-7.00011-5 10.1364/AO.29.002997 10.1785/BSSA0890051366 10.5194/se-12-915-2021 10.1049/el:19850402 10.2172/1499141 10.1121/1.4800575 10.1109/JLT.2005.849924 10.3390/s18041072 10.1109/50.32378 10.1201/9781315119014 10.1111/1365-2478.12471 10.1002/2017GL075722 10.1002/0471221104 10.1016/j.optlastec.2015.09.013 10.1007/978-1-84996-056-4 10.1364/OE.26.017690 10.1007/BF01582221 10.1137/0806023 10.1109/29.17564 10.1109/TAP.1986.1143830 10.1111/j.1365-246X.2010.04861.x 10.1111/j.1365-246X.1976.tb01267.x 10.1063/1.4947001 10.1109/JLT.2013.2272718 10.1002/9780470661178 10.1007/s13320-021-0615-8 10.1109/50.923482 10.1016/j.ymssp.2007.01.001 10.1029/2019GL086115 10.1038/s41598-019-40472-2 10.1049/el:19850752 10.1109/JLT.2021.3059771 10.1109/50.400684 10.1126/science.aay5881 10.1111/1365-2478.12634 10.1190/geo2014-0500.1 10.1017/9781139626286 10.1364/OL.44.001690 10.1007/978-981-10-1477-2_7-1 10.1364/OE.403263 10.1007/978-981-10-1477-2_6-1 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-022-31681-x |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Link OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_e53d45e0f8e7445195339ad7473cf320 PMC9276755 10_1038_s41467_022_31681_x |
GrantInformation_xml | – fundername: ANID Chilean National Agency for Research and Development (Grant: Projects Fondecyt Regular 1200299); ANID Chilean National Agency for Research and Development (Grant: Basal FB0008); Universidad Técnica Federico Santa María (Grant: PIIC 008/2020) – fundername: ; |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c517t-bbfc7d5c6c9de1b75e4ea7ef17f766458d696df4d58d43a8e8ac73c880cf28993 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:31:34 EDT 2025 Thu Aug 21 13:53:34 EDT 2025 Thu Jul 10 17:58:07 EDT 2025 Wed Aug 13 05:15:49 EDT 2025 Tue Jul 01 00:58:18 EDT 2025 Thu Apr 24 23:03:38 EDT 2025 Fri Feb 21 02:38:16 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-bbfc7d5c6c9de1b75e4ea7ef17f766458d696df4d58d43a8e8ac73c880cf28993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2140-2012 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-31681-x |
PMID | 35821369 |
PQID | 2688286792 |
PQPubID | 546298 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e53d45e0f8e7445195339ad7473cf320 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9276755 proquest_miscellaneous_2689057523 proquest_journals_2688286792 crossref_primary_10_1038_s41467_022_31681_x crossref_citationtrail_10_1038_s41467_022_31681_x springer_journals_10_1038_s41467_022_31681_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-11 |
PublicationDateYYYYMMDD | 2022-07-11 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | ColemanTFLiYOn the convergence of reflective newton methods for large-scale nonlinear minimization subject to boundsMath. Program.19946718922410.1007/BF01582221 PappBDonnoDMartinJEHartogAHA study of the geophysical response of distributed fibre optic acoustic sensors through laboratory-scale experimentsGeophys. Prospect.201765118612042017GeopP..65.1186P10.1111/1365-2478.12471 Mousa, W. Advanced Digital Signal Processing of Seismic Data (Cambridge University Press, Cambridge, 2020). Vijaya KumarBVKHassebrookLPerformance measures for correlation filtersAppl. Opt.199029299730061990ApOpt..29.2997V10.1364/AO.29.002997 Feigl, K. L. and the PoroTomo Team. Overview and Preliminary Results from the PoroTomo Project at Brady Hot Springs, Nevada: Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology, in 43rd Workshop on Geothermal Reservoir Engineering (Stanford University, Stanford, USA, 2017), pp. 1715, 2018 . Soto, M. A. & Di Pasquale, F. Distributed Raman sensing. (ed. Peng, G. D.) in Handbook of Optical Fibers (Springer, Singapore, 2018). JiajingLDistributed acoustic sensing for 2D and 3D acoustic source localizationOpt. Lett.201944169016932019OptL...44.1690J10.1364/OL.44.001690 Hartog, A. H. Introduction to Distributed Optical Fiber Sensors (CRC Press, 2017). DakinJPPrattDJBibbyGWRossJNDistributed optical fibre Raman temperature sensor using a semiconductor light source and detectorElectron. Lett.1985215695701985ElL....21..569D1:CAS:528:DyaL2MXksVGmt7c%3D10.1049/el:19850402 Van Trees, H. L. Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, 1st edn. (Wiley-Interscience, 2002). DingZDistributed optical fiber sensors based on optical frequency domain reflectometry: a reviewSensors20181810722018Senso..18.1072D10.3390/s18041072 Schweitzer, J., Fyen, J., Mykkeltveit, S. & Kvaerna, T. Seismic arrays (ed. Bormann, P.), New Manual of Seismological Observatory Practice 2 (NMSOP-2) 1–80 (Deutsches GeoForschungsZentrum GFZ, Potsdam, 2012). MotilABergmanATurM[INVITED] State of the art of Brillouin fiber-optic distributed sensingOpt. Laser Technol.201678811032016OptLT..78...81M1:CAS:528:DC%2BC2MXhsFKqt7zN10.1016/j.optlastec.2015.09.013 VentosaSSchimmelMStutzmannLTowards the processing of large data volumes with phase cross-correlationSeismol. Res. Lett.20199016631669 CranchGANashPJLarge-scale multiplexing of interferometric fiber-optic sensors using TDM and DWDMJ. Lightwave Technol.2001196876992001JLwT...19..687C10.1109/50.923482 Feigl, K. L. & Parker, L.M. PoroTomo Final Technical Report: Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology. United States (2019). https://doi.org/10.2172/1499141. ClaytonRWWigginsRASource shape estimation and deconvolution of teleseismic bodywavesGeophys. J. Int.1976471511771976GeoJI..47..151W10.1111/j.1365-246X.1976.tb01267.x KuEMDuckworthGLTracking a human walker with a fiber optic distributed acoustic sensorProc. Mtgs. Acoust.20131907005310.1121/1.4800575 StoicaPNehoraiAMUSIC, maximum likelihood, and Cramer-Rao boundIEEE Trans. Acoust. Speech Signal Process.19893772074199929610.1109/29.17564 Mendel, J. M. Optimal Seismic Deconvolution: an Estimation-based Approach (Academic Press, 2013). SchimmelMStutzmannEGallartJUsing instantaneous phase coherence for signal extraction from ambient noise data at a local to a global scaleGeophys. J. Int.20111844945062011GeoJI.184..494S10.1111/j.1365-246X.2010.04861.x AkramJEatonDWA review and appraisal of arrival-time picking methods for downhole microseismic dataGeophysics2016811MAZ1710.1190/geo2014-0500.1 Liu, W. & Weiss, S. Wideband Beamforming: Concepts and Techniques (Wiley, 2010). Benesty, J., Chen, J. & Huang, Y. Microphone Array Signal Processing (Springer, 2008). FangGLiYEZhaoYMartinERUrban near-surface seismic monitoring using distributed acoustic sensingGeophys. Res. Lett.202047e2019GL0861152020GeoRL..4786115F ColemanTFLiYAn interior, trust region approach for nonlinear minimization subject to boundsSIAM J. Optim.19966418445138733310.1137/0806023 HoriguchiTTatedaMBOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theoryJ. Lightwave Technol.19897117011761989JLwT....7.1170H1:CAS:528:DyaL1MXlsVejtbg%3D10.1109/50.32378 Soto, M. A. Distributed Brillouin sensing: time-domain techniques. (ed. Peng, G. D.) in Handbook of Optical Fibers (Springer, Singapore, 2018). LiXDengZDRauchensteinLTCarlsonTJContributed review: source-localization algorithms and applications using time of arrival and time difference of arrival measurementsRev. Sci. Instrum.2016870415022016RScI...87d1502L10.1063/1.4947001 LiCFBG arrays for quasi-distributed sensing: a reviewPhotonic Sens.202111911082021PhSen..11...91L10.1007/s13320-021-0615-8 HartogAHLeachAPDistributed temperature sensing in solid-core fibresElectron. Lett.198521106110621985ElL....21.1061H1:CAS:528:DyaL2MXmt1CitLo%3D10.1049/el:19850752 JuarezJCMaierEWChoiKNTaylorHFDistributed fiber-optic intrusion sensor systemJ. Lightwave Technol.200523208120872005JLwT...23.2081J10.1109/JLT.2005.849924 KimGHReal-time quasi-distributed fiber optic sensor based on resonance frequency mappingSci. Rep.201992019NatSR...9.3921K10.1038/s41598-019-40472-2 Boyd, R. W., Nonlinear Optical, 2nd edn. (Academic Press, San Diego, CA - London, 2003). Johnson, D. H. & Dudgeon, D. E. Array Signal Processing: Concepts and Techniques (Pearson, 1993). Lim Chen NingISavaPHigh-resolution multi-component distributed acoustic sensingGeophys. Prospect.201866111111222018GeopP..66.1111L10.1111/1365-2478.12634 Zeng, X., Thurber, C. H., Luo, Y., Matzel, E. & Porotomo Team. High-resolution shallow structure revealed with ambient noise tomography on a dense array. in 42nd Workshop on Geothermal Reservoir Engineering, pp. SGP-TR-212 (Stanford University, Stanford, California, 2017). Agrawal, G. P., Nonlinear Fiber Optics, 5th edn. (Academic Press, San Diego, CA, 2013). CigadaARipamontiFVanaliMThe delay & sum algorithm applied to microphone array measurements: Numerical analysis and experimental validationMech. Syst. Signal Process.200721264526642007MSSP...21.2645C10.1016/j.ymssp.2007.01.001 Lindsey, N. J. et al Fiber-optic network observations of earthquake wavefields. Geophys. Res. Lett. 44, 11,792–11,799 (2017). HoriguchiTShimizuKKurashimaTTatedaMKoyamadaYDevelopment of a distributed sensing technique using Brillouin scatteringJ. Lightwave Technol.199513129613021995JLwT...13.1296H10.1109/50.400684 ShpalenskyNShilohLGabaiHEyalAUse of distributed acoustic sensing for Doppler tracking of moving sourcesOpt. Express20182617690176962018OExpr..2617690S10.1364/OE.26.017690 van den EndeMPAAmpueroJ-PEvaluating seismic beamforming capabilities of distributed acoustic sensing arraysSolid Earth2021129159342021SolE...12..915V10.5194/se-12-915-2021 LindseyNJDaweTCAjo-FranklinJBIlluminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensingScience2019366110311072019Sci...366.1103L1:CAS:528:DC%2BC1MXitlWisr%2FN10.1126/science.aay5881 LuPJOrders-of-magnitude performance increases in GPU-accelerated correlation of images from the International Space StationJ. Real Time Image Proc.2010517919310.1007/s11554-009-0133-1 Naylor, P. A. & Gaubitch, N. D. Speech Dereverberation (Signals and Communication Technology) (Springer, 2010). HeXOn the phase fading effect in the dual-pulse heterodyne demodulated distributed acoustic sensing systemOpt. Express20202833433334472020OExpr..2833433H10.1364/OE.403263 HeZLiuQOptical fiber distributed acoustic sensors: a reviewJ. Lightwave Technol.202139367136862021JLwT...39.3671H10.1109/JLT.2021.3059771 SchimmelMPhase cross-correlations: design, comparisons, and applicationsBull. Seismol. Soc. Am.1999891366137810.1785/BSSA0890051366 KoyamadaYImahamaMKubotaKHogariKFiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDRJ. Lightwave Technol.200927114211462009JLwT...27.1142K10.1109/JLT.2008.928957 Costain, J. K. & Coruh, C. Basic theory in reflection seismology: with MATHEMATICA notebooks and examples on CD-ROM, in Handbook of Geophysical Exploration: Seismic Exploration, Volume 1 (Elsevier Science, 2005). SchmidtRMultiple emitter location and signal parameter estimationIEEE Trans. Antennas Propag.1986342762801986ITAP...34..276S10.1109/TAP.1986.1143830 AkkayaOCDigonnetMJFKinoGSSolgaardOTime-division-multiplexed interferometric sensor arraysJ. Lightwave Technol.201331270127082013JLwT...31.2701A10.1109/JLT.2013.2272718 L Jiajing (31681_CR32) 2019; 44 JC Juarez (31681_CR11) 2005; 23 B Papp (31681_CR15) 2017; 65 GA Cranch (31681_CR48) 2001; 19 A Motil (31681_CR9) 2016; 78 Z Ding (31681_CR13) 2018; 18 PJ Lu (31681_CR43) 2010; 5 31681_CR45 31681_CR44 31681_CR42 Y Koyamada (31681_CR12) 2009; 27 OC Akkaya (31681_CR49) 2013; 31 AH Hartog (31681_CR5) 1985; 21 EM Ku (31681_CR25) 2013; 19 X He (31681_CR17) 2020; 28 M Schimmel (31681_CR38) 2011; 184 J Akram (31681_CR40) 2016; 81 MPA van den Ende (31681_CR29) 2021; 12 31681_CR10 X Li (31681_CR36) 2016; 87 I Lim Chen Ning (31681_CR16) 2018; 66 NJ Lindsey (31681_CR27) 2019; 366 GH Kim (31681_CR47) 2019; 9 31681_CR6 RW Clayton (31681_CR51) 1976; 47 31681_CR19 31681_CR18 31681_CR3 31681_CR1 31681_CR2 31681_CR24 31681_CR23 31681_CR22 31681_CR21 N Shpalensky (31681_CR33) 2018; 26 A Cigada (31681_CR41) 2007; 21 JP Dakin (31681_CR4) 1985; 21 31681_CR20 M Schimmel (31681_CR37) 1999; 89 S Ventosa (31681_CR39) 2019; 90 C Li (31681_CR46) 2021; 11 BVK Vijaya Kumar (31681_CR50) 1990; 29 Z He (31681_CR14) 2021; 39 G Fang (31681_CR28) 2020; 47 R Schmidt (31681_CR30) 1986; 34 TF Coleman (31681_CR53) 1994; 67 31681_CR26 31681_CR35 31681_CR34 T Horiguchi (31681_CR7) 1989; 7 TF Coleman (31681_CR52) 1996; 6 P Stoica (31681_CR31) 1989; 37 T Horiguchi (31681_CR8) 1995; 13 |
References_xml | – reference: ShpalenskyNShilohLGabaiHEyalAUse of distributed acoustic sensing for Doppler tracking of moving sourcesOpt. Express20182617690176962018OExpr..2617690S10.1364/OE.26.017690 – reference: JuarezJCMaierEWChoiKNTaylorHFDistributed fiber-optic intrusion sensor systemJ. Lightwave Technol.200523208120872005JLwT...23.2081J10.1109/JLT.2005.849924 – reference: FangGLiYEZhaoYMartinERUrban near-surface seismic monitoring using distributed acoustic sensingGeophys. Res. Lett.202047e2019GL0861152020GeoRL..4786115F – reference: Hartog, A. H. Introduction to Distributed Optical Fiber Sensors (CRC Press, 2017). – reference: van den EndeMPAAmpueroJ-PEvaluating seismic beamforming capabilities of distributed acoustic sensing arraysSolid Earth2021129159342021SolE...12..915V10.5194/se-12-915-2021 – reference: KimGHReal-time quasi-distributed fiber optic sensor based on resonance frequency mappingSci. Rep.201992019NatSR...9.3921K10.1038/s41598-019-40472-2 – reference: Lim Chen NingISavaPHigh-resolution multi-component distributed acoustic sensingGeophys. Prospect.201866111111222018GeopP..66.1111L10.1111/1365-2478.12634 – reference: StoicaPNehoraiAMUSIC, maximum likelihood, and Cramer-Rao boundIEEE Trans. Acoust. Speech Signal Process.19893772074199929610.1109/29.17564 – reference: ColemanTFLiYAn interior, trust region approach for nonlinear minimization subject to boundsSIAM J. Optim.19966418445138733310.1137/0806023 – reference: Soto, M. A. Distributed Brillouin sensing: time-domain techniques. (ed. Peng, G. D.) in Handbook of Optical Fibers (Springer, Singapore, 2018). – reference: Lindsey, N. J. et al Fiber-optic network observations of earthquake wavefields. Geophys. Res. Lett. 44, 11,792–11,799 (2017). – reference: HeXOn the phase fading effect in the dual-pulse heterodyne demodulated distributed acoustic sensing systemOpt. Express20202833433334472020OExpr..2833433H10.1364/OE.403263 – reference: Van Trees, H. L. Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, 1st edn. (Wiley-Interscience, 2002). – reference: ColemanTFLiYOn the convergence of reflective newton methods for large-scale nonlinear minimization subject to boundsMath. Program.19946718922410.1007/BF01582221 – reference: Soto, M. A. & Di Pasquale, F. Distributed Raman sensing. (ed. Peng, G. D.) in Handbook of Optical Fibers (Springer, Singapore, 2018). – reference: LuPJOrders-of-magnitude performance increases in GPU-accelerated correlation of images from the International Space StationJ. Real Time Image Proc.2010517919310.1007/s11554-009-0133-1 – reference: LiCFBG arrays for quasi-distributed sensing: a reviewPhotonic Sens.202111911082021PhSen..11...91L10.1007/s13320-021-0615-8 – reference: CranchGANashPJLarge-scale multiplexing of interferometric fiber-optic sensors using TDM and DWDMJ. Lightwave Technol.2001196876992001JLwT...19..687C10.1109/50.923482 – reference: SchimmelMPhase cross-correlations: design, comparisons, and applicationsBull. Seismol. Soc. Am.1999891366137810.1785/BSSA0890051366 – reference: HeZLiuQOptical fiber distributed acoustic sensors: a reviewJ. Lightwave Technol.202139367136862021JLwT...39.3671H10.1109/JLT.2021.3059771 – reference: Agrawal, G. P., Nonlinear Fiber Optics, 5th edn. (Academic Press, San Diego, CA, 2013). – reference: KoyamadaYImahamaMKubotaKHogariKFiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDRJ. Lightwave Technol.200927114211462009JLwT...27.1142K10.1109/JLT.2008.928957 – reference: AkramJEatonDWA review and appraisal of arrival-time picking methods for downhole microseismic dataGeophysics2016811MAZ1710.1190/geo2014-0500.1 – reference: HartogAHLeachAPDistributed temperature sensing in solid-core fibresElectron. Lett.198521106110621985ElL....21.1061H1:CAS:528:DyaL2MXmt1CitLo%3D10.1049/el:19850752 – reference: HoriguchiTShimizuKKurashimaTTatedaMKoyamadaYDevelopment of a distributed sensing technique using Brillouin scatteringJ. Lightwave Technol.199513129613021995JLwT...13.1296H10.1109/50.400684 – reference: HoriguchiTTatedaMBOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theoryJ. Lightwave Technol.19897117011761989JLwT....7.1170H1:CAS:528:DyaL1MXlsVejtbg%3D10.1109/50.32378 – reference: Mendel, J. M. Optimal Seismic Deconvolution: an Estimation-based Approach (Academic Press, 2013). – reference: Costain, J. K. & Coruh, C. Basic theory in reflection seismology: with MATHEMATICA notebooks and examples on CD-ROM, in Handbook of Geophysical Exploration: Seismic Exploration, Volume 1 (Elsevier Science, 2005). – reference: Mousa, W. Advanced Digital Signal Processing of Seismic Data (Cambridge University Press, Cambridge, 2020). – reference: VentosaSSchimmelMStutzmannLTowards the processing of large data volumes with phase cross-correlationSeismol. Res. Lett.20199016631669 – reference: Boyd, R. W., Nonlinear Optical, 2nd edn. (Academic Press, San Diego, CA - London, 2003). – reference: Liu, W. & Weiss, S. Wideband Beamforming: Concepts and Techniques (Wiley, 2010). – reference: SchmidtRMultiple emitter location and signal parameter estimationIEEE Trans. Antennas Propag.1986342762801986ITAP...34..276S10.1109/TAP.1986.1143830 – reference: Naylor, P. A. & Gaubitch, N. D. Speech Dereverberation (Signals and Communication Technology) (Springer, 2010). – reference: SchimmelMStutzmannEGallartJUsing instantaneous phase coherence for signal extraction from ambient noise data at a local to a global scaleGeophys. J. Int.20111844945062011GeoJI.184..494S10.1111/j.1365-246X.2010.04861.x – reference: LiXDengZDRauchensteinLTCarlsonTJContributed review: source-localization algorithms and applications using time of arrival and time difference of arrival measurementsRev. Sci. Instrum.2016870415022016RScI...87d1502L10.1063/1.4947001 – reference: CigadaARipamontiFVanaliMThe delay & sum algorithm applied to microphone array measurements: Numerical analysis and experimental validationMech. Syst. Signal Process.200721264526642007MSSP...21.2645C10.1016/j.ymssp.2007.01.001 – reference: MotilABergmanATurM[INVITED] State of the art of Brillouin fiber-optic distributed sensingOpt. Laser Technol.201678811032016OptLT..78...81M1:CAS:528:DC%2BC2MXhsFKqt7zN10.1016/j.optlastec.2015.09.013 – reference: KuEMDuckworthGLTracking a human walker with a fiber optic distributed acoustic sensorProc. Mtgs. Acoust.20131907005310.1121/1.4800575 – reference: Johnson, D. H. & Dudgeon, D. E. Array Signal Processing: Concepts and Techniques (Pearson, 1993). – reference: ClaytonRWWigginsRASource shape estimation and deconvolution of teleseismic bodywavesGeophys. J. Int.1976471511771976GeoJI..47..151W10.1111/j.1365-246X.1976.tb01267.x – reference: Feigl, K. L. & Parker, L.M. PoroTomo Final Technical Report: Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology. United States (2019). https://doi.org/10.2172/1499141. – reference: Vijaya KumarBVKHassebrookLPerformance measures for correlation filtersAppl. Opt.199029299730061990ApOpt..29.2997V10.1364/AO.29.002997 – reference: Benesty, J., Chen, J. & Huang, Y. Microphone Array Signal Processing (Springer, 2008). – reference: JiajingLDistributed acoustic sensing for 2D and 3D acoustic source localizationOpt. Lett.201944169016932019OptL...44.1690J10.1364/OL.44.001690 – reference: DakinJPPrattDJBibbyGWRossJNDistributed optical fibre Raman temperature sensor using a semiconductor light source and detectorElectron. Lett.1985215695701985ElL....21..569D1:CAS:528:DyaL2MXksVGmt7c%3D10.1049/el:19850402 – reference: PappBDonnoDMartinJEHartogAHA study of the geophysical response of distributed fibre optic acoustic sensors through laboratory-scale experimentsGeophys. Prospect.201765118612042017GeopP..65.1186P10.1111/1365-2478.12471 – reference: Schweitzer, J., Fyen, J., Mykkeltveit, S. & Kvaerna, T. Seismic arrays (ed. Bormann, P.), New Manual of Seismological Observatory Practice 2 (NMSOP-2) 1–80 (Deutsches GeoForschungsZentrum GFZ, Potsdam, 2012). – reference: AkkayaOCDigonnetMJFKinoGSSolgaardOTime-division-multiplexed interferometric sensor arraysJ. Lightwave Technol.201331270127082013JLwT...31.2701A10.1109/JLT.2013.2272718 – reference: Zeng, X., Thurber, C. H., Luo, Y., Matzel, E. & Porotomo Team. High-resolution shallow structure revealed with ambient noise tomography on a dense array. in 42nd Workshop on Geothermal Reservoir Engineering, pp. SGP-TR-212 (Stanford University, Stanford, California, 2017). – reference: DingZDistributed optical fiber sensors based on optical frequency domain reflectometry: a reviewSensors20181810722018Senso..18.1072D10.3390/s18041072 – reference: LindseyNJDaweTCAjo-FranklinJBIlluminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensingScience2019366110311072019Sci...366.1103L1:CAS:528:DC%2BC1MXitlWisr%2FN10.1126/science.aay5881 – reference: Feigl, K. L. and the PoroTomo Team. Overview and Preliminary Results from the PoroTomo Project at Brady Hot Springs, Nevada: Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology, in 43rd Workshop on Geothermal Reservoir Engineering (Stanford University, Stanford, USA, 2017), pp. 1715, 2018 . – volume: 90 start-page: 1663 year: 2019 ident: 31681_CR39 publication-title: Seismol. Res. Lett. – volume: 27 start-page: 1142 year: 2009 ident: 31681_CR12 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2008.928957 – volume: 5 start-page: 179 year: 2010 ident: 31681_CR43 publication-title: J. Real Time Image Proc. doi: 10.1007/s11554-009-0133-1 – ident: 31681_CR2 doi: 10.1016/B978-0-12-397023-7.00011-5 – ident: 31681_CR22 – volume: 29 start-page: 2997 year: 1990 ident: 31681_CR50 publication-title: Appl. Opt. doi: 10.1364/AO.29.002997 – volume: 89 start-page: 1366 year: 1999 ident: 31681_CR37 publication-title: Bull. Seismol. Soc. Am. doi: 10.1785/BSSA0890051366 – volume: 12 start-page: 915 year: 2021 ident: 31681_CR29 publication-title: Solid Earth doi: 10.5194/se-12-915-2021 – volume: 21 start-page: 569 year: 1985 ident: 31681_CR4 publication-title: Electron. Lett. doi: 10.1049/el:19850402 – ident: 31681_CR45 – ident: 31681_CR34 doi: 10.2172/1499141 – volume: 19 start-page: 070053 year: 2013 ident: 31681_CR25 publication-title: Proc. Mtgs. Acoust. doi: 10.1121/1.4800575 – volume: 23 start-page: 2081 year: 2005 ident: 31681_CR11 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2005.849924 – volume: 18 start-page: 1072 year: 2018 ident: 31681_CR13 publication-title: Sensors doi: 10.3390/s18041072 – ident: 31681_CR3 – volume: 7 start-page: 1170 year: 1989 ident: 31681_CR7 publication-title: J. Lightwave Technol. doi: 10.1109/50.32378 – ident: 31681_CR1 doi: 10.1201/9781315119014 – volume: 65 start-page: 1186 year: 2017 ident: 31681_CR15 publication-title: Geophys. Prospect. doi: 10.1111/1365-2478.12471 – ident: 31681_CR26 doi: 10.1002/2017GL075722 – ident: 31681_CR44 doi: 10.1002/0471221104 – volume: 78 start-page: 81 year: 2016 ident: 31681_CR9 publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2015.09.013 – ident: 31681_CR20 doi: 10.1007/978-1-84996-056-4 – volume: 26 start-page: 17690 year: 2018 ident: 31681_CR33 publication-title: Opt. Express doi: 10.1364/OE.26.017690 – ident: 31681_CR23 – volume: 67 start-page: 189 year: 1994 ident: 31681_CR53 publication-title: Math. Program. doi: 10.1007/BF01582221 – volume: 6 start-page: 418 year: 1996 ident: 31681_CR52 publication-title: SIAM J. Optim. doi: 10.1137/0806023 – volume: 37 start-page: 720 year: 1989 ident: 31681_CR31 publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/29.17564 – volume: 34 start-page: 276 year: 1986 ident: 31681_CR30 publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.1986.1143830 – volume: 184 start-page: 494 year: 2011 ident: 31681_CR38 publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2010.04861.x – volume: 47 start-page: 151 year: 1976 ident: 31681_CR51 publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.1976.tb01267.x – volume: 87 start-page: 041502 year: 2016 ident: 31681_CR36 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4947001 – ident: 31681_CR18 – ident: 31681_CR35 doi: 10.2172/1499141 – volume: 31 start-page: 2701 year: 2013 ident: 31681_CR49 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2013.2272718 – ident: 31681_CR24 doi: 10.1002/9780470661178 – volume: 11 start-page: 91 year: 2021 ident: 31681_CR46 publication-title: Photonic Sens. doi: 10.1007/s13320-021-0615-8 – volume: 19 start-page: 687 year: 2001 ident: 31681_CR48 publication-title: J. Lightwave Technol. doi: 10.1109/50.923482 – volume: 21 start-page: 2645 year: 2007 ident: 31681_CR41 publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2007.01.001 – volume: 47 start-page: e2019GL086115 year: 2020 ident: 31681_CR28 publication-title: Geophys. Res. Lett. doi: 10.1029/2019GL086115 – volume: 9 year: 2019 ident: 31681_CR47 publication-title: Sci. Rep. doi: 10.1038/s41598-019-40472-2 – ident: 31681_CR42 – volume: 21 start-page: 1061 year: 1985 ident: 31681_CR5 publication-title: Electron. Lett. doi: 10.1049/el:19850752 – volume: 39 start-page: 3671 year: 2021 ident: 31681_CR14 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2021.3059771 – volume: 13 start-page: 1296 year: 1995 ident: 31681_CR8 publication-title: J. Lightwave Technol. doi: 10.1109/50.400684 – ident: 31681_CR21 – volume: 366 start-page: 1103 year: 2019 ident: 31681_CR27 publication-title: Science doi: 10.1126/science.aay5881 – volume: 66 start-page: 1111 year: 2018 ident: 31681_CR16 publication-title: Geophys. Prospect. doi: 10.1111/1365-2478.12634 – volume: 81 start-page: 1MA year: 2016 ident: 31681_CR40 publication-title: Geophysics doi: 10.1190/geo2014-0500.1 – ident: 31681_CR19 doi: 10.1017/9781139626286 – volume: 44 start-page: 1690 year: 2019 ident: 31681_CR32 publication-title: Opt. Lett. doi: 10.1364/OL.44.001690 – ident: 31681_CR10 doi: 10.1007/978-981-10-1477-2_7-1 – volume: 28 start-page: 33433 year: 2020 ident: 31681_CR17 publication-title: Opt. Express doi: 10.1364/OE.403263 – ident: 31681_CR6 doi: 10.1007/978-981-10-1477-2_6-1 |
SSID | ssj0000391844 |
Score | 2.5678115 |
Snippet | Distributed acoustic sensors (DAS) can monitor mechanical vibrations along thousands independent locations using an optical fibre. The measured acoustic... Here, the authors demonstrate a blind and sparse near-field array signal processing approach to enhance the measurement quality of fibre-optic distributed... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4019 |
SubjectTerms | 639/624/1075/1083 639/624/1075/187 639/624/1107/510 Acoustic propagation Acoustics Arrays Beamforming Fiber optics Humanities and Social Sciences multidisciplinary Near fields Optical fibers Optics Science Science (multidisciplinary) Sensors Signal distortion Signal processing Signal to noise ratio Sound sources Spatial filtering Vibrations Wave propagation Waveforms |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SELyIn7haJYI3XbqbZPNxVGkpgp4s9BaSSWIF3Zb3XqH9753J7nt2C-rFW9hMyMdMJjObyW8YewMOUGx0aoNOBh0UMFjqhlYUHY3uXIJAD4U_f9HHJ-rT6XB6I9UXxYRN8MDTwh3kQSY15K7YbFTFQpHShYRWsIQiRfXW8cy74UxVHSwdui5qfiXTSXuwVlUn1OD1Xtu-vVqcRBWwf2Fl3o6RvHVRWs-fowfs_mw48vfTgB-yO3l8xO5OqSSvH7Ofh-MZQWeM33hBDzi356gLgCfCxaWUVjlx1H01dRdfU9A6EgIelDU2Fr1lTj9keUSjM_ERpb-toW08rFbhmlOQB_Z9MT0qwKZP2MnR4dePx-2cSqGFoTebNsYCJg2gwaXcRzNklYPJpTfFaK0Gm7TTqaiEJSWDzTYALjBubijkksmnbG88H_MzxrXJCgxI0yWhQESKc4vQSdTgNnYlNqzfLquHGWec0l388PW-W1o_scIjK3xlhb9q2Ntdm4sJZeOv1B-IWztKQsiuH1Bu_Cw3_l9y07D9La_9vG3XXmhLz-qNEw17vavGDUe3KGHMyCaicWTkCtkws5CRxYCWNeP3swrd7QSB5wwNe7eVpt-d_3nCz__HhF-we4Kkn0BB-322t1ld5pdoUG3iq7p3fgFZCx6j priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA9aEXyR1g9cWyWCb7p0d5NNsk9Fpdci6JOFvoVkkrSC3TvvTmj_-85k965swb6F3YT9mI_MJL_8hrGP0AGqjQqlU0FjggIaW1VbNkl5raougKODwj9-qtMz-f28PR8X3FYjrHLjE7OjDnOgNfLDRhk68ay75mjxt6SqUbS7OpbQeMye1DjTEKTLzE62ayzEfm6kHM_KVMIcrmT2DBnCXitTl9eT-SjT9k9izftIyXvbpXkWmu2y52P4yL8M8t5jj2L_gj0dCkrevGRXx_0lEWj0FzxhHhzLOXoE4IHYcamwVQwcPWAu4MVXBF3HjoDTZUbIYs7MaVmWeww9A-_RBsoMcONuuXQ3nKAe-OzFcLQAh75iZ7PjX99Oy7GgQgltrdel9wl0aEFBF2LtdRtldDqmWietlGxNUJ0KSQZsSeFMNA60ADRxSJSYiddsp5_38Q3jSkcJGoSuQiOh8YR281AJ9OPGV8kXrN78Vgsj2zgVvfhj8663MHYQhUVR2CwKe12wT9sxi4Fr48HeX0la257Ek50vzJcXdjQ7G1sRZBurZKKWmUlHiM4FzKEEJNFUBTvYyNqOxruyd6pWsA_b22h2tJfi-ohioj4dhbqNKJie6MjkhaZ3-t-XmcC7a4hCpy3Y54023T38_x_89uF33WfPGtJrIv2sD9jOevkvvsOAae3fZ6u4BdyaFzc priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEA6lRfBFbFVcrRLBN13cTbJJ9vEsLeWgvmihb2EzSVpB98rdCfa_dya7e7JFBd-W3Qn7Y2aSmc033zD2FlpAs9Gh7HQwmKCAwaOqKUXS3uiqDdBRofDFJ31-qZZXzdUeE1MtTAbtZ0rLPE1P6LAPG5VdOmPPa23rEuPGA6JqR9s-WCyWn5e7PyvEeW6VGitkKmn_MHi2CmWy_lmEeR8feW-TNK89Z4_ZozFo5IvhMQ_ZXuyP2IOhjeTdE_b9tL8h2oz-mifMfmO5wnkAeCBOXGpnFQPHeS-37eIbAqyjIOAimXGxmClz-hnLPQacgfdo-WWGtfFuve7uOAE88N63Q0EBDn3KLs9Ov5ycl2MbhRKa2mxL7xOY0ICGNsTamyaq2JmYapOM1qqxQbc6JBXwSMnORtuBkYCODYnSMfmM7ferPj5nXJuowIA0VRAKhCeMm4dK4uxtfZV8werpszoYOcap1cU3l_e6pXWDKhyqwmVVuJ8Fe7cbczswbPxT-iNpaydJ7Nj5xGp97UZrcbGRQTWxSjYalflzpGy7gJmThCRFVbDjSddudNmNE9pSSb1pRcHe7C6js9EOStdHVBPJtBTgClkwM7OR2QPNr_RfbzJtdyuIOKcp2PvJmn7f_O8v_OL_xF-yh4LsnKg_62O2v13_iK8wbNr616Of_AKt-hbA priority: 102 providerName: Springer Nature |
Title | Enhancing fibre-optic distributed acoustic sensing capabilities with blind near-field array signal processing |
URI | https://link.springer.com/article/10.1038/s41467-022-31681-x https://www.proquest.com/docview/2688286792 https://www.proquest.com/docview/2689057523 https://pubmed.ncbi.nlm.nih.gov/PMC9276755 https://doaj.org/article/e53d45e0f8e7445195339ad7473cf320 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF9qi-CL-Imx9VjBN40m2c3u5kHketxZDlpEPbi3kP1qhZprcyf0_ntnNslJShV8ScLuLPmYmd2Z7MxvCHljCgNiI2xcCSvBQTESrpI8zrzQUiSFNRUmCp-eiZMFny_z5R7pyx11H3B9p2uH9aQWzeX7m-vtJ1D4j23KuPqw5kHdQ1x6KlQag015ACuTxIoGp525H2ZmVoBDw7vcmbuHDtanAOM_sD1vR07e2j4Nq9LsEXnYmZN03PL_Mdlz9RNyvy0wuX1Kfk7rCwTUqM-pB7_YxSuYIQy1iJaLha6cpTAjhoJedI2h7EBoYPkMEbPgQ1P8TUs1mKKW1qATcQh4o1XTVFuKoR9w76s21QCGPiOL2fT75CTuCizEJk_lJtbaG2lzI0xhXapl7rirpPOp9FIInisrCmE9t3DFWaWcqoxkBlTeeHTU2HOyX69q94JQIR030jCZ2IybTGP0mzYJg3ld6cTriKT9Zy1Nhz6ORTAuy7ALzlTZsqIEVpSBFeVNRN7uxly12Bv_pD5Gbu0oETc7NKya87JTw9LlzPLcJV45yQOyDmNFZcGnYsazLInIUc_rspfFMhMKk-1lkUXk9a4b1BD3VqraAZuQpkDTN2MRkQMZGTzQsKf-cREAvYsMIXXyiLzrpenPzf_-wi__j_yQPMhQzhEUND0i-5vml3sFBtVGj8g9uZRwVLPPI3IwHs-_zeF8PD378hVaJ2IyCr8qRkGbfgNzTiXI |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFMNFDASnCBqYjt2ckCIR5ctfZxaqTeT2E6L1GaX3UV0_xS_kRkn2SqV6K23KHbixDOehz3zDcAbW1hkG-XiUjmNDorVeJVkMa9VpVVSOFtSovD-gRofye_H2fEa_O1zYSisspeJQVC7iaU98i2ucsp41gX_OP0VU9UoOl3tS2i0bLHrl3_QZZt_2PmK9H3L-Wj78Ms47qoKxDZL9SKuqtpql1llC-fTSmde-lL7OtW1VkpmuVOFcrV0eCVFmfu8tFpY5HNbk3ci8L234LYUqMkpM330bbWnQ2jruZRdbk4i8q25DJIohMynKk_ji4H-C2UCBrbt1cjMK8ezQeuNHsD9zlxln1r-eghrvnkEd9oClsvHcL7dnBJgR3PCavS7fTxBCWSZIzReKqTlHUOJGwqGsTmFymNHi-o5ROSij85oG5hVaOo61uDkxiGgjpWzWblkFFqCY0_bVAZ89Akc3chUP4X1ZtL4DWBKe2m1FTpxXFpeUXRdZROBeiOvkrqKIO2n1dgO3ZyKbJyZcMouctOSwiApTCCFuYjg3eqZaYvtcW3vz0StVU_C5Q43JrMT0y1z4zPhZOaTOvdaBuQeZJPSoc8mbC14EsFmT2vTCYu5uWTtCF6vmnGZ09lN2XgkE_UpyLTmIgI94JHBBw1bmp-nATC84ATZk0Xwvuemy8H__8PPrv_WV3B3fLi_Z_Z2Dnafwz1OPE6Ao-kmrC9mv_0LNNYW1cuwQhj8uOkl-Q9CqFXT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE81UMBIcIKoie3YyQEhSnfVUlhViEq9hcSPFgmyy-4iun-NX8eMk2y1leittyh24sTz8Iw98w3AS1MYZBtl40pZjQ6K0XiVZDH3qtYqKaypKFH481jtH8uPJ9nJBvztc2EorLLXiUFR24mhPfIdrnLKeNYF3_FdWMTR3ujd9FdMFaTopLUvp9GyyKFb_kH3bf72YA9p_Yrz0fDrh_24qzAQmyzVi7iuvdE2M8oU1qW1zpx0lXY-1V4rJbPcqkJZLy1eSVHlLq-MFgZ53njyVAS-9wZsavKKBrC5OxwffVnt8BD2ei5ll6mTiHxnLoNeCgH0qcrT-HxtNQxFA9Ys3ctxmpcOa8MaOLoLdzrjlb1vue0ebLjmPtxsy1kuH8DPYXNG8B3NKfPohbt4gvrIMEvYvFRWy1mG-jeUD2NzCpzHjgYX6xCfix47o01hVqPha1mD0xuH8DpWzWbVklGgCY49bRMb8NGHcHwtk_0IBs2kcVvAlHbSaCN0Yrk0vKZYu9okAleRvE58HUHaT2tpOqxzKrnxowxn7iIvW1KUSIoykKI8j-D16plpi_RxZe9dotaqJ6F0hxuT2WnZCX3pMmFl5hKfOy0Djo8QRWXRgxPGC55EsN3TuuxUx7y8YPQIXqyaUejpJKdqHJKJ-hRkaHMRgV7jkbUPWm9pvp8F-PCCE4BPFsGbnpsuBv__Dz---lufwy0Ux_LTwfjwCdzmxOKEPppuw2Ax--2eouW2qJ91IsLg23VL5T-hBVtl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+fibre-optic+distributed+acoustic+sensing+capabilities+with+blind+near-field+array+signal+processing&rft.jtitle=Nature+communications&rft.au=Mu%C3%B1oz%2C+Felipe&rft.au=Soto%2C+Marcelo+A.&rft.date=2022-07-11&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-022-31681-x&rft.externalDocID=10_1038_s41467_022_31681_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |