Enhancing fibre-optic distributed acoustic sensing capabilities with blind near-field array signal processing

Distributed acoustic sensors (DAS) can monitor mechanical vibrations along thousands independent locations using an optical fibre. The measured acoustic waveform highly varies along the sensing fibre due to the intrinsic uneven DAS longitudinal response and distortions originated during mechanical w...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 4019 - 12
Main Authors Muñoz, Felipe, Soto, Marcelo A.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 11.07.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Distributed acoustic sensors (DAS) can monitor mechanical vibrations along thousands independent locations using an optical fibre. The measured acoustic waveform highly varies along the sensing fibre due to the intrinsic uneven DAS longitudinal response and distortions originated during mechanical wave propagation. Here, we propose a fully blind method based on near-field acoustic array processing that considers the nonuniform response of DAS channels and can be used with any optical fibre positioning geometry having angular diversity. With no source and fibre location information, the method can reduce signal distortions and provide relevant signal-to-noise ratio enhancement through sparse beamforming spatial filtering. The method also allows the localisation of the two-dimensional spatial coordinates of acoustic sources, requiring no specific fibre installation design. The method offers distributed analysis capabilities of the entire acoustic field outside the sensing fibre, enabling DAS systems to characterise vibration sources placed in areas far from the optical fibre. Here, the authors demonstrate a blind and sparse near-field array signal processing approach to enhance the measurement quality of fibre-optic distributed acoustic sensors. It further enables the accurate estimation of the spatial coordinates of acoustic sources.
AbstractList Here, the authors demonstrate a blind and sparse near-field array signal processing approach to enhance the measurement quality of fibre-optic distributed acoustic sensors. It further enables the accurate estimation of the spatial coordinates of acoustic sources.
Distributed acoustic sensors (DAS) can monitor mechanical vibrations along thousands independent locations using an optical fibre. The measured acoustic waveform highly varies along the sensing fibre due to the intrinsic uneven DAS longitudinal response and distortions originated during mechanical wave propagation. Here, we propose a fully blind method based on near-field acoustic array processing that considers the nonuniform response of DAS channels and can be used with any optical fibre positioning geometry having angular diversity. With no source and fibre location information, the method can reduce signal distortions and provide relevant signal-to-noise ratio enhancement through sparse beamforming spatial filtering. The method also allows the localisation of the two-dimensional spatial coordinates of acoustic sources, requiring no specific fibre installation design. The method offers distributed analysis capabilities of the entire acoustic field outside the sensing fibre, enabling DAS systems to characterise vibration sources placed in areas far from the optical fibre.Here, the authors demonstrate a blind and sparse near-field array signal processing approach to enhance the measurement quality of fibre-optic distributed acoustic sensors. It further enables the accurate estimation of the spatial coordinates of acoustic sources.
Distributed acoustic sensors (DAS) can monitor mechanical vibrations along thousands independent locations using an optical fibre. The measured acoustic waveform highly varies along the sensing fibre due to the intrinsic uneven DAS longitudinal response and distortions originated during mechanical wave propagation. Here, we propose a fully blind method based on near-field acoustic array processing that considers the nonuniform response of DAS channels and can be used with any optical fibre positioning geometry having angular diversity. With no source and fibre location information, the method can reduce signal distortions and provide relevant signal-to-noise ratio enhancement through sparse beamforming spatial filtering. The method also allows the localisation of the two-dimensional spatial coordinates of acoustic sources, requiring no specific fibre installation design. The method offers distributed analysis capabilities of the entire acoustic field outside the sensing fibre, enabling DAS systems to characterise vibration sources placed in areas far from the optical fibre. Here, the authors demonstrate a blind and sparse near-field array signal processing approach to enhance the measurement quality of fibre-optic distributed acoustic sensors. It further enables the accurate estimation of the spatial coordinates of acoustic sources.
Distributed acoustic sensors (DAS) can monitor mechanical vibrations along thousands independent locations using an optical fibre. The measured acoustic waveform highly varies along the sensing fibre due to the intrinsic uneven DAS longitudinal response and distortions originated during mechanical wave propagation. Here, we propose a fully blind method based on near-field acoustic array processing that considers the nonuniform response of DAS channels and can be used with any optical fibre positioning geometry having angular diversity. With no source and fibre location information, the method can reduce signal distortions and provide relevant signal-to-noise ratio enhancement through sparse beamforming spatial filtering. The method also allows the localisation of the two-dimensional spatial coordinates of acoustic sources, requiring no specific fibre installation design. The method offers distributed analysis capabilities of the entire acoustic field outside the sensing fibre, enabling DAS systems to characterise vibration sources placed in areas far from the optical fibre.
Distributed acoustic sensors (DAS) can monitor mechanical vibrations along thousands independent locations using an optical fibre. The measured acoustic waveform highly varies along the sensing fibre due to the intrinsic uneven DAS longitudinal response and distortions originated during mechanical wave propagation. Here, we propose a fully blind method based on near-field acoustic array processing that considers the nonuniform response of DAS channels and can be used with any optical fibre positioning geometry having angular diversity. With no source and fibre location information, the method can reduce signal distortions and provide relevant signal-to-noise ratio enhancement through sparse beamforming spatial filtering. The method also allows the localisation of the two-dimensional spatial coordinates of acoustic sources, requiring no specific fibre installation design. The method offers distributed analysis capabilities of the entire acoustic field outside the sensing fibre, enabling DAS systems to characterise vibration sources placed in areas far from the optical fibre.Distributed acoustic sensors (DAS) can monitor mechanical vibrations along thousands independent locations using an optical fibre. The measured acoustic waveform highly varies along the sensing fibre due to the intrinsic uneven DAS longitudinal response and distortions originated during mechanical wave propagation. Here, we propose a fully blind method based on near-field acoustic array processing that considers the nonuniform response of DAS channels and can be used with any optical fibre positioning geometry having angular diversity. With no source and fibre location information, the method can reduce signal distortions and provide relevant signal-to-noise ratio enhancement through sparse beamforming spatial filtering. The method also allows the localisation of the two-dimensional spatial coordinates of acoustic sources, requiring no specific fibre installation design. The method offers distributed analysis capabilities of the entire acoustic field outside the sensing fibre, enabling DAS systems to characterise vibration sources placed in areas far from the optical fibre.
ArticleNumber 4019
Author Muñoz, Felipe
Soto, Marcelo A.
Author_xml – sequence: 1
  givenname: Felipe
  surname: Muñoz
  fullname: Muñoz, Felipe
  organization: Department of Electronics Engineering, Universidad Técnica Federico Santa María
– sequence: 2
  givenname: Marcelo A.
  orcidid: 0000-0002-2140-2012
  surname: Soto
  fullname: Soto, Marcelo A.
  email: marcelo.sotoh@usm.cl
  organization: Department of Electronics Engineering, Universidad Técnica Federico Santa María
BookMark eNp9ks1u1DAUhSNUREvpC7CKxIZNIP63N0ioKlCpEhtYW459nfEoYw92Btq3rzOpgHZRb2xdn-_4-uq8bk5iitA0b1H_AfVEfiwUUS66HuOOIC5Rd_uiOcM9RR0SmJz8dz5tLkrZ9nURhSSlr5pTwiRGhKuzZncVNybaEMfWhyFDl_ZzsK0LZc5hOMzgWmPToSzFArEsQmv2ZghTmAOU9k-YN-0whejaCCZ3PsBUmZzNXVvCGM3U7nOyUBb0TfPSm6nAxcN-3vz8cvXj8lt38_3r9eXnm84yJOZuGLwVjllulQM0CAYUjACPhBecUyYdV9x56uqJEiNBGiuIlbK3HkulyHlzvfq6ZLZ6n8PO5DudTNDHQsqjNrl-aQINjDjKoPcSBKUMKUaIMk7QaugJ7qvXp9Vrfxh24CzEOZvpkenjmxg2eky_tcKCC8aqwfsHg5x-HaDMeheKhWkyEepkNeZS9UwwTKr03RPpNh1yneFRJbHkQuGqwqvK5lRKBv-3GdTrJRx6DYeu4dDHcOjbCsknkA2zmUNamg7T8yhZ0VLfiSPkf109Q90DLSjSEA
CitedBy_id crossref_primary_10_1016_j_infrared_2023_105097
crossref_primary_10_1016_j_yofte_2024_103911
crossref_primary_10_3390_s23146599
crossref_primary_10_1109_JSEN_2024_3405530
crossref_primary_10_1109_JLT_2023_3337664
crossref_primary_10_1190_geo2023_0079_1
crossref_primary_10_1016_j_yofte_2022_103198
crossref_primary_10_3788_AOS231384
crossref_primary_10_1038_s41377_022_01067_1
crossref_primary_10_3390_photonics10121362
crossref_primary_10_1016_j_measurement_2024_115280
crossref_primary_10_1109_JLT_2024_3391275
crossref_primary_10_1109_TIM_2025_3541784
crossref_primary_10_1109_JSEN_2025_3526824
crossref_primary_10_1109_JLT_2024_3366294
crossref_primary_10_35848_1882_0786_aca23b
crossref_primary_10_1109_JLT_2024_3446852
crossref_primary_10_3788_CJL231054
crossref_primary_10_1007_s10346_024_02268_y
crossref_primary_10_1016_j_optcom_2024_131403
crossref_primary_10_1002_advs_202411967
crossref_primary_10_1785_0320230018
crossref_primary_10_1007_s11440_023_01965_7
crossref_primary_10_3788_AOS231473
crossref_primary_10_1109_TIM_2023_3348889
crossref_primary_10_1109_JSEN_2023_3268213
crossref_primary_10_35848_1882_0786_ad06e2
crossref_primary_10_1016_j_eswa_2023_122176
Cites_doi 10.1109/JLT.2008.928957
10.1007/s11554-009-0133-1
10.1016/B978-0-12-397023-7.00011-5
10.1364/AO.29.002997
10.1785/BSSA0890051366
10.5194/se-12-915-2021
10.1049/el:19850402
10.2172/1499141
10.1121/1.4800575
10.1109/JLT.2005.849924
10.3390/s18041072
10.1109/50.32378
10.1201/9781315119014
10.1111/1365-2478.12471
10.1002/2017GL075722
10.1002/0471221104
10.1016/j.optlastec.2015.09.013
10.1007/978-1-84996-056-4
10.1364/OE.26.017690
10.1007/BF01582221
10.1137/0806023
10.1109/29.17564
10.1109/TAP.1986.1143830
10.1111/j.1365-246X.2010.04861.x
10.1111/j.1365-246X.1976.tb01267.x
10.1063/1.4947001
10.1109/JLT.2013.2272718
10.1002/9780470661178
10.1007/s13320-021-0615-8
10.1109/50.923482
10.1016/j.ymssp.2007.01.001
10.1029/2019GL086115
10.1038/s41598-019-40472-2
10.1049/el:19850752
10.1109/JLT.2021.3059771
10.1109/50.400684
10.1126/science.aay5881
10.1111/1365-2478.12634
10.1190/geo2014-0500.1
10.1017/9781139626286
10.1364/OL.44.001690
10.1007/978-981-10-1477-2_7-1
10.1364/OE.403263
10.1007/978-981-10-1477-2_6-1
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-022-31681-x
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Link OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 12
ExternalDocumentID oai_doaj_org_article_e53d45e0f8e7445195339ad7473cf320
PMC9276755
10_1038_s41467_022_31681_x
GrantInformation_xml – fundername: ANID Chilean National Agency for Research and Development (Grant: Projects Fondecyt Regular 1200299); ANID Chilean National Agency for Research and Development (Grant: Basal FB0008); Universidad Técnica Federico Santa María (Grant: PIIC 008/2020)
– fundername: ;
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c517t-bbfc7d5c6c9de1b75e4ea7ef17f766458d696df4d58d43a8e8ac73c880cf28993
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:31:34 EDT 2025
Thu Aug 21 13:53:34 EDT 2025
Thu Jul 10 17:58:07 EDT 2025
Wed Aug 13 05:15:49 EDT 2025
Tue Jul 01 00:58:18 EDT 2025
Thu Apr 24 23:03:38 EDT 2025
Fri Feb 21 02:38:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-bbfc7d5c6c9de1b75e4ea7ef17f766458d696df4d58d43a8e8ac73c880cf28993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2140-2012
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-31681-x
PMID 35821369
PQID 2688286792
PQPubID 546298
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_e53d45e0f8e7445195339ad7473cf320
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9276755
proquest_miscellaneous_2689057523
proquest_journals_2688286792
crossref_primary_10_1038_s41467_022_31681_x
crossref_citationtrail_10_1038_s41467_022_31681_x
springer_journals_10_1038_s41467_022_31681_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-11
PublicationDateYYYYMMDD 2022-07-11
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-11
  day: 11
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References ColemanTFLiYOn the convergence of reflective newton methods for large-scale nonlinear minimization subject to boundsMath. Program.19946718922410.1007/BF01582221
PappBDonnoDMartinJEHartogAHA study of the geophysical response of distributed fibre optic acoustic sensors through laboratory-scale experimentsGeophys. Prospect.201765118612042017GeopP..65.1186P10.1111/1365-2478.12471
Mousa, W. Advanced Digital Signal Processing of Seismic Data (Cambridge University Press, Cambridge, 2020).
Vijaya KumarBVKHassebrookLPerformance measures for correlation filtersAppl. Opt.199029299730061990ApOpt..29.2997V10.1364/AO.29.002997
Feigl, K. L. and the PoroTomo Team. Overview and Preliminary Results from the PoroTomo Project at Brady Hot Springs, Nevada: Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology, in 43rd Workshop on Geothermal Reservoir Engineering (Stanford University, Stanford, USA, 2017), pp. 1715, 2018 .
Soto, M. A. & Di Pasquale, F. Distributed Raman sensing. (ed. Peng, G. D.) in Handbook of Optical Fibers (Springer, Singapore, 2018).
JiajingLDistributed acoustic sensing for 2D and 3D acoustic source localizationOpt. Lett.201944169016932019OptL...44.1690J10.1364/OL.44.001690
Hartog, A. H. Introduction to Distributed Optical Fiber Sensors (CRC Press, 2017).
DakinJPPrattDJBibbyGWRossJNDistributed optical fibre Raman temperature sensor using a semiconductor light source and detectorElectron. Lett.1985215695701985ElL....21..569D1:CAS:528:DyaL2MXksVGmt7c%3D10.1049/el:19850402
Van Trees, H. L. Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, 1st edn. (Wiley-Interscience, 2002).
DingZDistributed optical fiber sensors based on optical frequency domain reflectometry: a reviewSensors20181810722018Senso..18.1072D10.3390/s18041072
Schweitzer, J., Fyen, J., Mykkeltveit, S. & Kvaerna, T. Seismic arrays (ed. Bormann, P.), New Manual of Seismological Observatory Practice 2 (NMSOP-2) 1–80 (Deutsches GeoForschungsZentrum GFZ, Potsdam, 2012).
MotilABergmanATurM[INVITED] State of the art of Brillouin fiber-optic distributed sensingOpt. Laser Technol.201678811032016OptLT..78...81M1:CAS:528:DC%2BC2MXhsFKqt7zN10.1016/j.optlastec.2015.09.013
VentosaSSchimmelMStutzmannLTowards the processing of large data volumes with phase cross-correlationSeismol. Res. Lett.20199016631669
CranchGANashPJLarge-scale multiplexing of interferometric fiber-optic sensors using TDM and DWDMJ. Lightwave Technol.2001196876992001JLwT...19..687C10.1109/50.923482
Feigl, K. L. & Parker, L.M. PoroTomo Final Technical Report: Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology. United States (2019). https://doi.org/10.2172/1499141.
ClaytonRWWigginsRASource shape estimation and deconvolution of teleseismic bodywavesGeophys. J. Int.1976471511771976GeoJI..47..151W10.1111/j.1365-246X.1976.tb01267.x
KuEMDuckworthGLTracking a human walker with a fiber optic distributed acoustic sensorProc. Mtgs. Acoust.20131907005310.1121/1.4800575
StoicaPNehoraiAMUSIC, maximum likelihood, and Cramer-Rao boundIEEE Trans. Acoust. Speech Signal Process.19893772074199929610.1109/29.17564
Mendel, J. M. Optimal Seismic Deconvolution: an Estimation-based Approach (Academic Press, 2013).
SchimmelMStutzmannEGallartJUsing instantaneous phase coherence for signal extraction from ambient noise data at a local to a global scaleGeophys. J. Int.20111844945062011GeoJI.184..494S10.1111/j.1365-246X.2010.04861.x
AkramJEatonDWA review and appraisal of arrival-time picking methods for downhole microseismic dataGeophysics2016811MAZ1710.1190/geo2014-0500.1
Liu, W. & Weiss, S. Wideband Beamforming: Concepts and Techniques (Wiley, 2010).
Benesty, J., Chen, J. & Huang, Y. Microphone Array Signal Processing (Springer, 2008).
FangGLiYEZhaoYMartinERUrban near-surface seismic monitoring using distributed acoustic sensingGeophys. Res. Lett.202047e2019GL0861152020GeoRL..4786115F
ColemanTFLiYAn interior, trust region approach for nonlinear minimization subject to boundsSIAM J. Optim.19966418445138733310.1137/0806023
HoriguchiTTatedaMBOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theoryJ. Lightwave Technol.19897117011761989JLwT....7.1170H1:CAS:528:DyaL1MXlsVejtbg%3D10.1109/50.32378
Soto, M. A. Distributed Brillouin sensing: time-domain techniques. (ed. Peng, G. D.) in Handbook of Optical Fibers (Springer, Singapore, 2018).
LiXDengZDRauchensteinLTCarlsonTJContributed review: source-localization algorithms and applications using time of arrival and time difference of arrival measurementsRev. Sci. Instrum.2016870415022016RScI...87d1502L10.1063/1.4947001
LiCFBG arrays for quasi-distributed sensing: a reviewPhotonic Sens.202111911082021PhSen..11...91L10.1007/s13320-021-0615-8
HartogAHLeachAPDistributed temperature sensing in solid-core fibresElectron. Lett.198521106110621985ElL....21.1061H1:CAS:528:DyaL2MXmt1CitLo%3D10.1049/el:19850752
JuarezJCMaierEWChoiKNTaylorHFDistributed fiber-optic intrusion sensor systemJ. Lightwave Technol.200523208120872005JLwT...23.2081J10.1109/JLT.2005.849924
KimGHReal-time quasi-distributed fiber optic sensor based on resonance frequency mappingSci. Rep.201992019NatSR...9.3921K10.1038/s41598-019-40472-2
Boyd, R. W., Nonlinear Optical, 2nd edn. (Academic Press, San Diego, CA - London, 2003).
Johnson, D. H. & Dudgeon, D. E. Array Signal Processing: Concepts and Techniques (Pearson, 1993).
Lim Chen NingISavaPHigh-resolution multi-component distributed acoustic sensingGeophys. Prospect.201866111111222018GeopP..66.1111L10.1111/1365-2478.12634
Zeng, X., Thurber, C. H., Luo, Y., Matzel, E. & Porotomo Team. High-resolution shallow structure revealed with ambient noise tomography on a dense array. in 42nd Workshop on Geothermal Reservoir Engineering, pp. SGP-TR-212 (Stanford University, Stanford, California, 2017).
Agrawal, G. P., Nonlinear Fiber Optics, 5th edn. (Academic Press, San Diego, CA, 2013).
CigadaARipamontiFVanaliMThe delay & sum algorithm applied to microphone array measurements: Numerical analysis and experimental validationMech. Syst. Signal Process.200721264526642007MSSP...21.2645C10.1016/j.ymssp.2007.01.001
Lindsey, N. J. et al Fiber-optic network observations of earthquake wavefields. Geophys. Res. Lett. 44, 11,792–11,799 (2017).
HoriguchiTShimizuKKurashimaTTatedaMKoyamadaYDevelopment of a distributed sensing technique using Brillouin scatteringJ. Lightwave Technol.199513129613021995JLwT...13.1296H10.1109/50.400684
ShpalenskyNShilohLGabaiHEyalAUse of distributed acoustic sensing for Doppler tracking of moving sourcesOpt. Express20182617690176962018OExpr..2617690S10.1364/OE.26.017690
van den EndeMPAAmpueroJ-PEvaluating seismic beamforming capabilities of distributed acoustic sensing arraysSolid Earth2021129159342021SolE...12..915V10.5194/se-12-915-2021
LindseyNJDaweTCAjo-FranklinJBIlluminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensingScience2019366110311072019Sci...366.1103L1:CAS:528:DC%2BC1MXitlWisr%2FN10.1126/science.aay5881
LuPJOrders-of-magnitude performance increases in GPU-accelerated correlation of images from the International Space StationJ. Real Time Image Proc.2010517919310.1007/s11554-009-0133-1
Naylor, P. A. & Gaubitch, N. D. Speech Dereverberation (Signals and Communication Technology) (Springer, 2010).
HeXOn the phase fading effect in the dual-pulse heterodyne demodulated distributed acoustic sensing systemOpt. Express20202833433334472020OExpr..2833433H10.1364/OE.403263
HeZLiuQOptical fiber distributed acoustic sensors: a reviewJ. Lightwave Technol.202139367136862021JLwT...39.3671H10.1109/JLT.2021.3059771
SchimmelMPhase cross-correlations: design, comparisons, and applicationsBull. Seismol. Soc. Am.1999891366137810.1785/BSSA0890051366
KoyamadaYImahamaMKubotaKHogariKFiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDRJ. Lightwave Technol.200927114211462009JLwT...27.1142K10.1109/JLT.2008.928957
Costain, J. K. & Coruh, C. Basic theory in reflection seismology: with MATHEMATICA notebooks and examples on CD-ROM, in Handbook of Geophysical Exploration: Seismic Exploration, Volume 1 (Elsevier Science, 2005).
SchmidtRMultiple emitter location and signal parameter estimationIEEE Trans. Antennas Propag.1986342762801986ITAP...34..276S10.1109/TAP.1986.1143830
AkkayaOCDigonnetMJFKinoGSSolgaardOTime-division-multiplexed interferometric sensor arraysJ. Lightwave Technol.201331270127082013JLwT...31.2701A10.1109/JLT.2013.2272718
L Jiajing (31681_CR32) 2019; 44
JC Juarez (31681_CR11) 2005; 23
B Papp (31681_CR15) 2017; 65
GA Cranch (31681_CR48) 2001; 19
A Motil (31681_CR9) 2016; 78
Z Ding (31681_CR13) 2018; 18
PJ Lu (31681_CR43) 2010; 5
31681_CR45
31681_CR44
31681_CR42
Y Koyamada (31681_CR12) 2009; 27
OC Akkaya (31681_CR49) 2013; 31
AH Hartog (31681_CR5) 1985; 21
EM Ku (31681_CR25) 2013; 19
X He (31681_CR17) 2020; 28
M Schimmel (31681_CR38) 2011; 184
J Akram (31681_CR40) 2016; 81
MPA van den Ende (31681_CR29) 2021; 12
31681_CR10
X Li (31681_CR36) 2016; 87
I Lim Chen Ning (31681_CR16) 2018; 66
NJ Lindsey (31681_CR27) 2019; 366
GH Kim (31681_CR47) 2019; 9
31681_CR6
RW Clayton (31681_CR51) 1976; 47
31681_CR19
31681_CR18
31681_CR3
31681_CR1
31681_CR2
31681_CR24
31681_CR23
31681_CR22
31681_CR21
N Shpalensky (31681_CR33) 2018; 26
A Cigada (31681_CR41) 2007; 21
JP Dakin (31681_CR4) 1985; 21
31681_CR20
M Schimmel (31681_CR37) 1999; 89
S Ventosa (31681_CR39) 2019; 90
C Li (31681_CR46) 2021; 11
BVK Vijaya Kumar (31681_CR50) 1990; 29
Z He (31681_CR14) 2021; 39
G Fang (31681_CR28) 2020; 47
R Schmidt (31681_CR30) 1986; 34
TF Coleman (31681_CR53) 1994; 67
31681_CR26
31681_CR35
31681_CR34
T Horiguchi (31681_CR7) 1989; 7
TF Coleman (31681_CR52) 1996; 6
P Stoica (31681_CR31) 1989; 37
T Horiguchi (31681_CR8) 1995; 13
References_xml – reference: ShpalenskyNShilohLGabaiHEyalAUse of distributed acoustic sensing for Doppler tracking of moving sourcesOpt. Express20182617690176962018OExpr..2617690S10.1364/OE.26.017690
– reference: JuarezJCMaierEWChoiKNTaylorHFDistributed fiber-optic intrusion sensor systemJ. Lightwave Technol.200523208120872005JLwT...23.2081J10.1109/JLT.2005.849924
– reference: FangGLiYEZhaoYMartinERUrban near-surface seismic monitoring using distributed acoustic sensingGeophys. Res. Lett.202047e2019GL0861152020GeoRL..4786115F
– reference: Hartog, A. H. Introduction to Distributed Optical Fiber Sensors (CRC Press, 2017).
– reference: van den EndeMPAAmpueroJ-PEvaluating seismic beamforming capabilities of distributed acoustic sensing arraysSolid Earth2021129159342021SolE...12..915V10.5194/se-12-915-2021
– reference: KimGHReal-time quasi-distributed fiber optic sensor based on resonance frequency mappingSci. Rep.201992019NatSR...9.3921K10.1038/s41598-019-40472-2
– reference: Lim Chen NingISavaPHigh-resolution multi-component distributed acoustic sensingGeophys. Prospect.201866111111222018GeopP..66.1111L10.1111/1365-2478.12634
– reference: StoicaPNehoraiAMUSIC, maximum likelihood, and Cramer-Rao boundIEEE Trans. Acoust. Speech Signal Process.19893772074199929610.1109/29.17564
– reference: ColemanTFLiYAn interior, trust region approach for nonlinear minimization subject to boundsSIAM J. Optim.19966418445138733310.1137/0806023
– reference: Soto, M. A. Distributed Brillouin sensing: time-domain techniques. (ed. Peng, G. D.) in Handbook of Optical Fibers (Springer, Singapore, 2018).
– reference: Lindsey, N. J. et al Fiber-optic network observations of earthquake wavefields. Geophys. Res. Lett. 44, 11,792–11,799 (2017).
– reference: HeXOn the phase fading effect in the dual-pulse heterodyne demodulated distributed acoustic sensing systemOpt. Express20202833433334472020OExpr..2833433H10.1364/OE.403263
– reference: Van Trees, H. L. Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, 1st edn. (Wiley-Interscience, 2002).
– reference: ColemanTFLiYOn the convergence of reflective newton methods for large-scale nonlinear minimization subject to boundsMath. Program.19946718922410.1007/BF01582221
– reference: Soto, M. A. & Di Pasquale, F. Distributed Raman sensing. (ed. Peng, G. D.) in Handbook of Optical Fibers (Springer, Singapore, 2018).
– reference: LuPJOrders-of-magnitude performance increases in GPU-accelerated correlation of images from the International Space StationJ. Real Time Image Proc.2010517919310.1007/s11554-009-0133-1
– reference: LiCFBG arrays for quasi-distributed sensing: a reviewPhotonic Sens.202111911082021PhSen..11...91L10.1007/s13320-021-0615-8
– reference: CranchGANashPJLarge-scale multiplexing of interferometric fiber-optic sensors using TDM and DWDMJ. Lightwave Technol.2001196876992001JLwT...19..687C10.1109/50.923482
– reference: SchimmelMPhase cross-correlations: design, comparisons, and applicationsBull. Seismol. Soc. Am.1999891366137810.1785/BSSA0890051366
– reference: HeZLiuQOptical fiber distributed acoustic sensors: a reviewJ. Lightwave Technol.202139367136862021JLwT...39.3671H10.1109/JLT.2021.3059771
– reference: Agrawal, G. P., Nonlinear Fiber Optics, 5th edn. (Academic Press, San Diego, CA, 2013).
– reference: KoyamadaYImahamaMKubotaKHogariKFiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDRJ. Lightwave Technol.200927114211462009JLwT...27.1142K10.1109/JLT.2008.928957
– reference: AkramJEatonDWA review and appraisal of arrival-time picking methods for downhole microseismic dataGeophysics2016811MAZ1710.1190/geo2014-0500.1
– reference: HartogAHLeachAPDistributed temperature sensing in solid-core fibresElectron. Lett.198521106110621985ElL....21.1061H1:CAS:528:DyaL2MXmt1CitLo%3D10.1049/el:19850752
– reference: HoriguchiTShimizuKKurashimaTTatedaMKoyamadaYDevelopment of a distributed sensing technique using Brillouin scatteringJ. Lightwave Technol.199513129613021995JLwT...13.1296H10.1109/50.400684
– reference: HoriguchiTTatedaMBOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theoryJ. Lightwave Technol.19897117011761989JLwT....7.1170H1:CAS:528:DyaL1MXlsVejtbg%3D10.1109/50.32378
– reference: Mendel, J. M. Optimal Seismic Deconvolution: an Estimation-based Approach (Academic Press, 2013).
– reference: Costain, J. K. & Coruh, C. Basic theory in reflection seismology: with MATHEMATICA notebooks and examples on CD-ROM, in Handbook of Geophysical Exploration: Seismic Exploration, Volume 1 (Elsevier Science, 2005).
– reference: Mousa, W. Advanced Digital Signal Processing of Seismic Data (Cambridge University Press, Cambridge, 2020).
– reference: VentosaSSchimmelMStutzmannLTowards the processing of large data volumes with phase cross-correlationSeismol. Res. Lett.20199016631669
– reference: Boyd, R. W., Nonlinear Optical, 2nd edn. (Academic Press, San Diego, CA - London, 2003).
– reference: Liu, W. & Weiss, S. Wideband Beamforming: Concepts and Techniques (Wiley, 2010).
– reference: SchmidtRMultiple emitter location and signal parameter estimationIEEE Trans. Antennas Propag.1986342762801986ITAP...34..276S10.1109/TAP.1986.1143830
– reference: Naylor, P. A. & Gaubitch, N. D. Speech Dereverberation (Signals and Communication Technology) (Springer, 2010).
– reference: SchimmelMStutzmannEGallartJUsing instantaneous phase coherence for signal extraction from ambient noise data at a local to a global scaleGeophys. J. Int.20111844945062011GeoJI.184..494S10.1111/j.1365-246X.2010.04861.x
– reference: LiXDengZDRauchensteinLTCarlsonTJContributed review: source-localization algorithms and applications using time of arrival and time difference of arrival measurementsRev. Sci. Instrum.2016870415022016RScI...87d1502L10.1063/1.4947001
– reference: CigadaARipamontiFVanaliMThe delay & sum algorithm applied to microphone array measurements: Numerical analysis and experimental validationMech. Syst. Signal Process.200721264526642007MSSP...21.2645C10.1016/j.ymssp.2007.01.001
– reference: MotilABergmanATurM[INVITED] State of the art of Brillouin fiber-optic distributed sensingOpt. Laser Technol.201678811032016OptLT..78...81M1:CAS:528:DC%2BC2MXhsFKqt7zN10.1016/j.optlastec.2015.09.013
– reference: KuEMDuckworthGLTracking a human walker with a fiber optic distributed acoustic sensorProc. Mtgs. Acoust.20131907005310.1121/1.4800575
– reference: Johnson, D. H. & Dudgeon, D. E. Array Signal Processing: Concepts and Techniques (Pearson, 1993).
– reference: ClaytonRWWigginsRASource shape estimation and deconvolution of teleseismic bodywavesGeophys. J. Int.1976471511771976GeoJI..47..151W10.1111/j.1365-246X.1976.tb01267.x
– reference: Feigl, K. L. & Parker, L.M. PoroTomo Final Technical Report: Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology. United States (2019). https://doi.org/10.2172/1499141.
– reference: Vijaya KumarBVKHassebrookLPerformance measures for correlation filtersAppl. Opt.199029299730061990ApOpt..29.2997V10.1364/AO.29.002997
– reference: Benesty, J., Chen, J. & Huang, Y. Microphone Array Signal Processing (Springer, 2008).
– reference: JiajingLDistributed acoustic sensing for 2D and 3D acoustic source localizationOpt. Lett.201944169016932019OptL...44.1690J10.1364/OL.44.001690
– reference: DakinJPPrattDJBibbyGWRossJNDistributed optical fibre Raman temperature sensor using a semiconductor light source and detectorElectron. Lett.1985215695701985ElL....21..569D1:CAS:528:DyaL2MXksVGmt7c%3D10.1049/el:19850402
– reference: PappBDonnoDMartinJEHartogAHA study of the geophysical response of distributed fibre optic acoustic sensors through laboratory-scale experimentsGeophys. Prospect.201765118612042017GeopP..65.1186P10.1111/1365-2478.12471
– reference: Schweitzer, J., Fyen, J., Mykkeltveit, S. & Kvaerna, T. Seismic arrays (ed. Bormann, P.), New Manual of Seismological Observatory Practice 2 (NMSOP-2) 1–80 (Deutsches GeoForschungsZentrum GFZ, Potsdam, 2012).
– reference: AkkayaOCDigonnetMJFKinoGSSolgaardOTime-division-multiplexed interferometric sensor arraysJ. Lightwave Technol.201331270127082013JLwT...31.2701A10.1109/JLT.2013.2272718
– reference: Zeng, X., Thurber, C. H., Luo, Y., Matzel, E. & Porotomo Team. High-resolution shallow structure revealed with ambient noise tomography on a dense array. in 42nd Workshop on Geothermal Reservoir Engineering, pp. SGP-TR-212 (Stanford University, Stanford, California, 2017).
– reference: DingZDistributed optical fiber sensors based on optical frequency domain reflectometry: a reviewSensors20181810722018Senso..18.1072D10.3390/s18041072
– reference: LindseyNJDaweTCAjo-FranklinJBIlluminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensingScience2019366110311072019Sci...366.1103L1:CAS:528:DC%2BC1MXitlWisr%2FN10.1126/science.aay5881
– reference: Feigl, K. L. and the PoroTomo Team. Overview and Preliminary Results from the PoroTomo Project at Brady Hot Springs, Nevada: Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology, in 43rd Workshop on Geothermal Reservoir Engineering (Stanford University, Stanford, USA, 2017), pp. 1715, 2018 .
– volume: 90
  start-page: 1663
  year: 2019
  ident: 31681_CR39
  publication-title: Seismol. Res. Lett.
– volume: 27
  start-page: 1142
  year: 2009
  ident: 31681_CR12
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2008.928957
– volume: 5
  start-page: 179
  year: 2010
  ident: 31681_CR43
  publication-title: J. Real Time Image Proc.
  doi: 10.1007/s11554-009-0133-1
– ident: 31681_CR2
  doi: 10.1016/B978-0-12-397023-7.00011-5
– ident: 31681_CR22
– volume: 29
  start-page: 2997
  year: 1990
  ident: 31681_CR50
  publication-title: Appl. Opt.
  doi: 10.1364/AO.29.002997
– volume: 89
  start-page: 1366
  year: 1999
  ident: 31681_CR37
  publication-title: Bull. Seismol. Soc. Am.
  doi: 10.1785/BSSA0890051366
– volume: 12
  start-page: 915
  year: 2021
  ident: 31681_CR29
  publication-title: Solid Earth
  doi: 10.5194/se-12-915-2021
– volume: 21
  start-page: 569
  year: 1985
  ident: 31681_CR4
  publication-title: Electron. Lett.
  doi: 10.1049/el:19850402
– ident: 31681_CR45
– ident: 31681_CR34
  doi: 10.2172/1499141
– volume: 19
  start-page: 070053
  year: 2013
  ident: 31681_CR25
  publication-title: Proc. Mtgs. Acoust.
  doi: 10.1121/1.4800575
– volume: 23
  start-page: 2081
  year: 2005
  ident: 31681_CR11
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2005.849924
– volume: 18
  start-page: 1072
  year: 2018
  ident: 31681_CR13
  publication-title: Sensors
  doi: 10.3390/s18041072
– ident: 31681_CR3
– volume: 7
  start-page: 1170
  year: 1989
  ident: 31681_CR7
  publication-title: J. Lightwave Technol.
  doi: 10.1109/50.32378
– ident: 31681_CR1
  doi: 10.1201/9781315119014
– volume: 65
  start-page: 1186
  year: 2017
  ident: 31681_CR15
  publication-title: Geophys. Prospect.
  doi: 10.1111/1365-2478.12471
– ident: 31681_CR26
  doi: 10.1002/2017GL075722
– ident: 31681_CR44
  doi: 10.1002/0471221104
– volume: 78
  start-page: 81
  year: 2016
  ident: 31681_CR9
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2015.09.013
– ident: 31681_CR20
  doi: 10.1007/978-1-84996-056-4
– volume: 26
  start-page: 17690
  year: 2018
  ident: 31681_CR33
  publication-title: Opt. Express
  doi: 10.1364/OE.26.017690
– ident: 31681_CR23
– volume: 67
  start-page: 189
  year: 1994
  ident: 31681_CR53
  publication-title: Math. Program.
  doi: 10.1007/BF01582221
– volume: 6
  start-page: 418
  year: 1996
  ident: 31681_CR52
  publication-title: SIAM J. Optim.
  doi: 10.1137/0806023
– volume: 37
  start-page: 720
  year: 1989
  ident: 31681_CR31
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/29.17564
– volume: 34
  start-page: 276
  year: 1986
  ident: 31681_CR30
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.1986.1143830
– volume: 184
  start-page: 494
  year: 2011
  ident: 31681_CR38
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2010.04861.x
– volume: 47
  start-page: 151
  year: 1976
  ident: 31681_CR51
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.1976.tb01267.x
– volume: 87
  start-page: 041502
  year: 2016
  ident: 31681_CR36
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4947001
– ident: 31681_CR18
– ident: 31681_CR35
  doi: 10.2172/1499141
– volume: 31
  start-page: 2701
  year: 2013
  ident: 31681_CR49
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2013.2272718
– ident: 31681_CR24
  doi: 10.1002/9780470661178
– volume: 11
  start-page: 91
  year: 2021
  ident: 31681_CR46
  publication-title: Photonic Sens.
  doi: 10.1007/s13320-021-0615-8
– volume: 19
  start-page: 687
  year: 2001
  ident: 31681_CR48
  publication-title: J. Lightwave Technol.
  doi: 10.1109/50.923482
– volume: 21
  start-page: 2645
  year: 2007
  ident: 31681_CR41
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2007.01.001
– volume: 47
  start-page: e2019GL086115
  year: 2020
  ident: 31681_CR28
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2019GL086115
– volume: 9
  year: 2019
  ident: 31681_CR47
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-40472-2
– ident: 31681_CR42
– volume: 21
  start-page: 1061
  year: 1985
  ident: 31681_CR5
  publication-title: Electron. Lett.
  doi: 10.1049/el:19850752
– volume: 39
  start-page: 3671
  year: 2021
  ident: 31681_CR14
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2021.3059771
– volume: 13
  start-page: 1296
  year: 1995
  ident: 31681_CR8
  publication-title: J. Lightwave Technol.
  doi: 10.1109/50.400684
– ident: 31681_CR21
– volume: 366
  start-page: 1103
  year: 2019
  ident: 31681_CR27
  publication-title: Science
  doi: 10.1126/science.aay5881
– volume: 66
  start-page: 1111
  year: 2018
  ident: 31681_CR16
  publication-title: Geophys. Prospect.
  doi: 10.1111/1365-2478.12634
– volume: 81
  start-page: 1MA
  year: 2016
  ident: 31681_CR40
  publication-title: Geophysics
  doi: 10.1190/geo2014-0500.1
– ident: 31681_CR19
  doi: 10.1017/9781139626286
– volume: 44
  start-page: 1690
  year: 2019
  ident: 31681_CR32
  publication-title: Opt. Lett.
  doi: 10.1364/OL.44.001690
– ident: 31681_CR10
  doi: 10.1007/978-981-10-1477-2_7-1
– volume: 28
  start-page: 33433
  year: 2020
  ident: 31681_CR17
  publication-title: Opt. Express
  doi: 10.1364/OE.403263
– ident: 31681_CR6
  doi: 10.1007/978-981-10-1477-2_6-1
SSID ssj0000391844
Score 2.5678115
Snippet Distributed acoustic sensors (DAS) can monitor mechanical vibrations along thousands independent locations using an optical fibre. The measured acoustic...
Here, the authors demonstrate a blind and sparse near-field array signal processing approach to enhance the measurement quality of fibre-optic distributed...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4019
SubjectTerms 639/624/1075/1083
639/624/1075/187
639/624/1107/510
Acoustic propagation
Acoustics
Arrays
Beamforming
Fiber optics
Humanities and Social Sciences
multidisciplinary
Near fields
Optical fibers
Optics
Science
Science (multidisciplinary)
Sensors
Signal distortion
Signal processing
Signal to noise ratio
Sound sources
Spatial filtering
Vibrations
Wave propagation
Waveforms
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SELyIn7haJYI3XbqbZPNxVGkpgp4s9BaSSWIF3Zb3XqH9753J7nt2C-rFW9hMyMdMJjObyW8YewMOUGx0aoNOBh0UMFjqhlYUHY3uXIJAD4U_f9HHJ-rT6XB6I9UXxYRN8MDTwh3kQSY15K7YbFTFQpHShYRWsIQiRfXW8cy74UxVHSwdui5qfiXTSXuwVlUn1OD1Xtu-vVqcRBWwf2Fl3o6RvHVRWs-fowfs_mw48vfTgB-yO3l8xO5OqSSvH7Ofh-MZQWeM33hBDzi356gLgCfCxaWUVjlx1H01dRdfU9A6EgIelDU2Fr1lTj9keUSjM_ERpb-toW08rFbhmlOQB_Z9MT0qwKZP2MnR4dePx-2cSqGFoTebNsYCJg2gwaXcRzNklYPJpTfFaK0Gm7TTqaiEJSWDzTYALjBubijkksmnbG88H_MzxrXJCgxI0yWhQESKc4vQSdTgNnYlNqzfLquHGWec0l388PW-W1o_scIjK3xlhb9q2Ntdm4sJZeOv1B-IWztKQsiuH1Bu_Cw3_l9y07D9La_9vG3XXmhLz-qNEw17vavGDUe3KGHMyCaicWTkCtkws5CRxYCWNeP3swrd7QSB5wwNe7eVpt-d_3nCz__HhF-we4Kkn0BB-322t1ld5pdoUG3iq7p3fgFZCx6j
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA9aEXyR1g9cWyWCb7p0d5NNsk9Fpdci6JOFvoVkkrSC3TvvTmj_-85k965swb6F3YT9mI_MJL_8hrGP0AGqjQqlU0FjggIaW1VbNkl5raougKODwj9-qtMz-f28PR8X3FYjrHLjE7OjDnOgNfLDRhk68ay75mjxt6SqUbS7OpbQeMye1DjTEKTLzE62ayzEfm6kHM_KVMIcrmT2DBnCXitTl9eT-SjT9k9izftIyXvbpXkWmu2y52P4yL8M8t5jj2L_gj0dCkrevGRXx_0lEWj0FzxhHhzLOXoE4IHYcamwVQwcPWAu4MVXBF3HjoDTZUbIYs7MaVmWeww9A-_RBsoMcONuuXQ3nKAe-OzFcLQAh75iZ7PjX99Oy7GgQgltrdel9wl0aEFBF2LtdRtldDqmWietlGxNUJ0KSQZsSeFMNA60ADRxSJSYiddsp5_38Q3jSkcJGoSuQiOh8YR281AJ9OPGV8kXrN78Vgsj2zgVvfhj8663MHYQhUVR2CwKe12wT9sxi4Fr48HeX0la257Ek50vzJcXdjQ7G1sRZBurZKKWmUlHiM4FzKEEJNFUBTvYyNqOxruyd6pWsA_b22h2tJfi-ohioj4dhbqNKJie6MjkhaZ3-t-XmcC7a4hCpy3Y54023T38_x_89uF33WfPGtJrIv2sD9jOevkvvsOAae3fZ6u4BdyaFzc
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEA6lRfBFbFVcrRLBN13cTbJJ9vEsLeWgvmihb2EzSVpB98rdCfa_dya7e7JFBd-W3Qn7Y2aSmc033zD2FlpAs9Gh7HQwmKCAwaOqKUXS3uiqDdBRofDFJ31-qZZXzdUeE1MtTAbtZ0rLPE1P6LAPG5VdOmPPa23rEuPGA6JqR9s-WCyWn5e7PyvEeW6VGitkKmn_MHi2CmWy_lmEeR8feW-TNK89Z4_ZozFo5IvhMQ_ZXuyP2IOhjeTdE_b9tL8h2oz-mifMfmO5wnkAeCBOXGpnFQPHeS-37eIbAqyjIOAimXGxmClz-hnLPQacgfdo-WWGtfFuve7uOAE88N63Q0EBDn3KLs9Ov5ycl2MbhRKa2mxL7xOY0ICGNsTamyaq2JmYapOM1qqxQbc6JBXwSMnORtuBkYCODYnSMfmM7ferPj5nXJuowIA0VRAKhCeMm4dK4uxtfZV8werpszoYOcap1cU3l_e6pXWDKhyqwmVVuJ8Fe7cbczswbPxT-iNpaydJ7Nj5xGp97UZrcbGRQTWxSjYalflzpGy7gJmThCRFVbDjSddudNmNE9pSSb1pRcHe7C6js9EOStdHVBPJtBTgClkwM7OR2QPNr_RfbzJtdyuIOKcp2PvJmn7f_O8v_OL_xF-yh4LsnKg_62O2v13_iK8wbNr616Of_AKt-hbA
  priority: 102
  providerName: Springer Nature
Title Enhancing fibre-optic distributed acoustic sensing capabilities with blind near-field array signal processing
URI https://link.springer.com/article/10.1038/s41467-022-31681-x
https://www.proquest.com/docview/2688286792
https://www.proquest.com/docview/2689057523
https://pubmed.ncbi.nlm.nih.gov/PMC9276755
https://doaj.org/article/e53d45e0f8e7445195339ad7473cf320
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF9qi-CL-Imx9VjBN40m2c3u5kHketxZDlpEPbi3kP1qhZprcyf0_ntnNslJShV8ScLuLPmYmd2Z7MxvCHljCgNiI2xcCSvBQTESrpI8zrzQUiSFNRUmCp-eiZMFny_z5R7pyx11H3B9p2uH9aQWzeX7m-vtJ1D4j23KuPqw5kHdQ1x6KlQag015ACuTxIoGp525H2ZmVoBDw7vcmbuHDtanAOM_sD1vR07e2j4Nq9LsEXnYmZN03PL_Mdlz9RNyvy0wuX1Kfk7rCwTUqM-pB7_YxSuYIQy1iJaLha6cpTAjhoJedI2h7EBoYPkMEbPgQ1P8TUs1mKKW1qATcQh4o1XTVFuKoR9w76s21QCGPiOL2fT75CTuCizEJk_lJtbaG2lzI0xhXapl7rirpPOp9FIInisrCmE9t3DFWaWcqoxkBlTeeHTU2HOyX69q94JQIR030jCZ2IybTGP0mzYJg3ld6cTriKT9Zy1Nhz6ORTAuy7ALzlTZsqIEVpSBFeVNRN7uxly12Bv_pD5Gbu0oETc7NKya87JTw9LlzPLcJV45yQOyDmNFZcGnYsazLInIUc_rspfFMhMKk-1lkUXk9a4b1BD3VqraAZuQpkDTN2MRkQMZGTzQsKf-cREAvYsMIXXyiLzrpenPzf_-wi__j_yQPMhQzhEUND0i-5vml3sFBtVGj8g9uZRwVLPPI3IwHs-_zeF8PD378hVaJ2IyCr8qRkGbfgNzTiXI
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFMNFDASnCBqYjt2ckCIR5ctfZxaqTeT2E6L1GaX3UV0_xS_kRkn2SqV6K23KHbixDOehz3zDcAbW1hkG-XiUjmNDorVeJVkMa9VpVVSOFtSovD-gRofye_H2fEa_O1zYSisspeJQVC7iaU98i2ucsp41gX_OP0VU9UoOl3tS2i0bLHrl3_QZZt_2PmK9H3L-Wj78Ms47qoKxDZL9SKuqtpql1llC-fTSmde-lL7OtW1VkpmuVOFcrV0eCVFmfu8tFpY5HNbk3ci8L234LYUqMkpM330bbWnQ2jruZRdbk4i8q25DJIohMynKk_ji4H-C2UCBrbt1cjMK8ezQeuNHsD9zlxln1r-eghrvnkEd9oClsvHcL7dnBJgR3PCavS7fTxBCWSZIzReKqTlHUOJGwqGsTmFymNHi-o5ROSij85oG5hVaOo61uDkxiGgjpWzWblkFFqCY0_bVAZ89Akc3chUP4X1ZtL4DWBKe2m1FTpxXFpeUXRdZROBeiOvkrqKIO2n1dgO3ZyKbJyZcMouctOSwiApTCCFuYjg3eqZaYvtcW3vz0StVU_C5Q43JrMT0y1z4zPhZOaTOvdaBuQeZJPSoc8mbC14EsFmT2vTCYu5uWTtCF6vmnGZ09lN2XgkE_UpyLTmIgI94JHBBw1bmp-nATC84ATZk0Xwvuemy8H__8PPrv_WV3B3fLi_Z_Z2Dnafwz1OPE6Ao-kmrC9mv_0LNNYW1cuwQhj8uOkl-Q9CqFXT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE81UMBIcIKoie3YyQEhSnfVUlhViEq9hcSPFgmyy-4iun-NX8eMk2y1leittyh24sTz8Iw98w3AS1MYZBtl40pZjQ6K0XiVZDH3qtYqKaypKFH481jtH8uPJ9nJBvztc2EorLLXiUFR24mhPfIdrnLKeNYF3_FdWMTR3ujd9FdMFaTopLUvp9GyyKFb_kH3bf72YA9p_Yrz0fDrh_24qzAQmyzVi7iuvdE2M8oU1qW1zpx0lXY-1V4rJbPcqkJZLy1eSVHlLq-MFgZ53njyVAS-9wZsavKKBrC5OxwffVnt8BD2ei5ll6mTiHxnLoNeCgH0qcrT-HxtNQxFA9Ys3ctxmpcOa8MaOLoLdzrjlb1vue0ebLjmPtxsy1kuH8DPYXNG8B3NKfPohbt4gvrIMEvYvFRWy1mG-jeUD2NzCpzHjgYX6xCfix47o01hVqPha1mD0xuH8DpWzWbVklGgCY49bRMb8NGHcHwtk_0IBs2kcVvAlHbSaCN0Yrk0vKZYu9okAleRvE58HUHaT2tpOqxzKrnxowxn7iIvW1KUSIoykKI8j-D16plpi_RxZe9dotaqJ6F0hxuT2WnZCX3pMmFl5hKfOy0Djo8QRWXRgxPGC55EsN3TuuxUx7y8YPQIXqyaUejpJKdqHJKJ-hRkaHMRgV7jkbUPWm9pvp8F-PCCE4BPFsGbnpsuBv__Dz---lufwy0Ux_LTwfjwCdzmxOKEPppuw2Ax--2eouW2qJ91IsLg23VL5T-hBVtl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+fibre-optic+distributed+acoustic+sensing+capabilities+with+blind+near-field+array+signal+processing&rft.jtitle=Nature+communications&rft.au=Mu%C3%B1oz%2C+Felipe&rft.au=Soto%2C+Marcelo+A.&rft.date=2022-07-11&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-022-31681-x&rft.externalDocID=10_1038_s41467_022_31681_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon