Magnetic NiFe thin films composing MoS2 nanostructures for spintronic application

We demonstrate a nanostructure layer made of Ni 80 Fe 20 (permalloy:Py) thin film conjugated MoS 2 nano-flakes. Layers are made based on a single-step co-deposition of Py and MoS 2 from a single solution where ionic Ni and Fe and MoS 2 flakes co-exist. Synthesized thin films with MoS 2 flakes show i...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; pp. 9809 - 7
Main Authors Yousef Vand, Mahdi, Jamilpanah, Loghman, Zare, Mohammad, Mohseni, Seyed Majid
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.06.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We demonstrate a nanostructure layer made of Ni 80 Fe 20 (permalloy:Py) thin film conjugated MoS 2 nano-flakes. Layers are made based on a single-step co-deposition of Py and MoS 2 from a single solution where ionic Ni and Fe and MoS 2 flakes co-exist. Synthesized thin films with MoS 2 flakes show increasing coercivity and enhancement in magneto-optical Kerr effect. Ferromagnetic resonance linewidth as well as the damping parameter increaseed significantly compared to that of the Py layer due to the presence of MoS 2 . Raman spectroscopy and elemental mapping is used to show the quality of MoS 2 within the Py thin film. Our synthesis method promises new opportunities for electrochemical production of functional spintronic-based devices.
AbstractList We demonstrate a nanostructure layer made of Ni80Fe20 (permalloy:Py) thin film conjugated MoS2 nano-flakes. Layers are made based on a single-step co-deposition of Py and MoS2 from a single solution where ionic Ni and Fe and MoS2 flakes co-exist. Synthesized thin films with MoS2 flakes show increasing coercivity and enhancement in magneto-optical Kerr effect. Ferromagnetic resonance linewidth as well as the damping parameter increaseed significantly compared to that of the Py layer due to the presence of MoS2. Raman spectroscopy and elemental mapping is used to show the quality of MoS2 within the Py thin film. Our synthesis method promises new opportunities for electrochemical production of functional spintronic-based devices.We demonstrate a nanostructure layer made of Ni80Fe20 (permalloy:Py) thin film conjugated MoS2 nano-flakes. Layers are made based on a single-step co-deposition of Py and MoS2 from a single solution where ionic Ni and Fe and MoS2 flakes co-exist. Synthesized thin films with MoS2 flakes show increasing coercivity and enhancement in magneto-optical Kerr effect. Ferromagnetic resonance linewidth as well as the damping parameter increaseed significantly compared to that of the Py layer due to the presence of MoS2. Raman spectroscopy and elemental mapping is used to show the quality of MoS2 within the Py thin film. Our synthesis method promises new opportunities for electrochemical production of functional spintronic-based devices.
Abstract We demonstrate a nanostructure layer made of Ni80Fe20 (permalloy:Py) thin film conjugated MoS2 nano-flakes. Layers are made based on a single-step co-deposition of Py and MoS2 from a single solution where ionic Ni and Fe and MoS2 flakes co-exist. Synthesized thin films with MoS2 flakes show increasing coercivity and enhancement in magneto-optical Kerr effect. Ferromagnetic resonance linewidth as well as the damping parameter increaseed significantly compared to that of the Py layer due to the presence of MoS2. Raman spectroscopy and elemental mapping is used to show the quality of MoS2 within the Py thin film. Our synthesis method promises new opportunities for electrochemical production of functional spintronic-based devices.
We demonstrate a nanostructure layer made of Ni 80 Fe 20 (permalloy:Py) thin film conjugated MoS 2 nano-flakes. Layers are made based on a single-step co-deposition of Py and MoS 2 from a single solution where ionic Ni and Fe and MoS 2 flakes co-exist. Synthesized thin films with MoS 2 flakes show increasing coercivity and enhancement in magneto-optical Kerr effect. Ferromagnetic resonance linewidth as well as the damping parameter increaseed significantly compared to that of the Py layer due to the presence of MoS 2 . Raman spectroscopy and elemental mapping is used to show the quality of MoS 2 within the Py thin film. Our synthesis method promises new opportunities for electrochemical production of functional spintronic-based devices.
We demonstrate a nanostructure layer made of Ni80Fe20 (permalloy:Py) thin film conjugated MoS2 nano-flakes. Layers are made based on a single-step co-deposition of Py and MoS2 from a single solution where ionic Ni and Fe and MoS2 flakes co-exist. Synthesized thin films with MoS2 flakes show increasing coercivity and enhancement in magneto-optical Kerr effect. Ferromagnetic resonance linewidth as well as the damping parameter increaseed significantly compared to that of the Py layer due to the presence of MoS2. Raman spectroscopy and elemental mapping is used to show the quality of MoS2 within the Py thin film. Our synthesis method promises new opportunities for electrochemical production of functional spintronic-based devices.
ArticleNumber 9809
Author Yousef Vand, Mahdi
Mohseni, Seyed Majid
Zare, Mohammad
Jamilpanah, Loghman
Author_xml – sequence: 1
  givenname: Mahdi
  surname: Yousef Vand
  fullname: Yousef Vand, Mahdi
  organization: Materials Engineering, Faculty of Engineering, University of Tehran, Department of Physics, Shahid Beheshti University
– sequence: 2
  givenname: Loghman
  surname: Jamilpanah
  fullname: Jamilpanah, Loghman
  organization: Department of Physics, Shahid Beheshti University
– sequence: 3
  givenname: Mohammad
  surname: Zare
  fullname: Zare, Mohammad
  organization: Department of Physics, Shahid Beheshti University
– sequence: 4
  givenname: Seyed Majid
  surname: Mohseni
  fullname: Mohseni, Seyed Majid
  email: m-mohseni@sbu.ac.ir
  organization: Department of Physics, Shahid Beheshti University
BookMark eNp9Ustu1TAUjFARLaU_wCoSGzYBvx8bJFRRqNSCELC2HOck9VViBzuh4u9xbyr6WNQbW_bMnDnH87I6CDFAVb3G6B1GVL3PDHOtGkRIgxkSqLl-Vh0RxHhDKCEH986H1UnOO1QWJ5ph_aI6pFxoqYk6qr5f2iHA4l391Z9BvVz5UPd-nHLt4jTH7MNQX8YfpA42xLyk1S1rglz3MdV59mFJMRSynefRO7v4GF5Vz3s7Zji53Y-rX2effp5-aS6-fT4__XjROI7l0rSsB2iLEYkw46QjGGynpKVaOdexXmLhFLVUCsQpBeWE4thxKjFzhDtJj6vzTbeLdmfm5Ceb_ppovdlfxDQYm0pjI5i2dUqC0JQ4zVgpy1QrgPUtohpjCUXrw6Y1r-0EnYPSlx0fiD58Cf7KDPGP0VgTwVgReHsrkOLvFfJiJp8djKMNENdsiJCCl_ErXaBvHkF3cU2hjOoGxRUtH8sLimwol2LOCfr_ZjAyNwEwWwBMCYDZB8BcF5J6RHJ-2X9KMe3Hp6l0o-ZSJwyQ7lw9wfoHqoPGUg
CitedBy_id crossref_primary_10_1002_aesr_202400392
crossref_primary_10_1039_D3CP05432B
crossref_primary_10_1039_D3SE00641G
Cites_doi 10.1016/j.pmatsci.2009.07.001
10.1088/1361-6528/abb109
10.1103/PhysRevLett.121.037205
10.1103/PhysRevLett.88.117601
10.1103/PhysRevB.59.4699
10.1103/PhysRevB.66.224403
10.1002/pssr.201510283
10.1002/pssa.201700512
10.1016/b978-0-08-102832-2.00027-x
10.1038/s41565-019-0525-8
10.3390/nano8040227
10.1038/s41699-020-0152-0
10.1063/1.2197087
10.1103/RevModPhys.91.035004
10.1103/PhysRevB.71.094418
10.1039/C6RA21314F
10.1103/PhysRevB.90.014420
10.1002/aelm.201800819
10.1016/S0304-8853(02)00577-2
10.1088/1361-6463/aa4ea6
10.1038/s41467-020-20119-x
10.1063/5.0025318
10.1088/1361-648X/ab04c7
10.1007/s11249-011-9774-x
10.1021/acsanm.8b02205
10.1021/acsami.7b16919
10.1103/PhysRevB.93.054402
10.1080/00202967.1991.11870914
10.1103/PhysRev.73.155
10.1021/acsomega.9b00965
10.1021/acs.nanolett.6b03300
10.1080/00202967.1991.11870915
10.1016/j.jmmm.2020.167206
10.1016/j.physe.2021.114620
10.1063/1.4967391
10.1103/PhysRevLett.111.106601
10.1063/1.4943076
10.1126/sciadv.aav2782
10.1103/PhysRevLett.112.106602
10.1088/1361-6463/ab27ad
10.1016/j.matlet.2020.127454
10.1016/j.jallcom.2016.08.329
10.1103/RevModPhys.92.021003
10.1038/s41928-019-0273-7
10.1103/PhysRevB.81.212409
10.4028/www.scientific.net/KEM.326-328.381
10.1103/PhysRevB.73.144424
10.1063/1.5041793
10.1117/3.832717.Ch3
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-022-14060-w
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central (New)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 7
ExternalDocumentID oai_doaj_org_article_bbc87e6932c944eeb48b6e4fb039117e
PMC9192644
10_1038_s41598_022_14060_w
GrantInformation_xml – fundername: Iran National Science Foundation (INSF)
– fundername: Iran Science Elite Federation (ISEF)
– fundername: ;
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c517t-b4feeb356701452d21ead87a398ccd4f716c83a3760533e8c6851c53714c25c73
IEDL.DBID DOA
ISSN 2045-2322
IngestDate Wed Aug 27 01:14:26 EDT 2025
Thu Aug 21 14:09:57 EDT 2025
Fri Jul 11 02:23:38 EDT 2025
Wed Aug 13 05:11:07 EDT 2025
Thu Apr 24 23:02:31 EDT 2025
Tue Jul 01 04:16:38 EDT 2025
Fri Feb 21 02:39:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-b4feeb356701452d21ead87a398ccd4f716c83a3760533e8c6851c53714c25c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/bbc87e6932c944eeb48b6e4fb039117e
PMID 35697928
PQID 2675834155
PQPubID 2041939
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_bbc87e6932c944eeb48b6e4fb039117e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9192644
proquest_miscellaneous_2676552989
proquest_journals_2675834155
crossref_primary_10_1038_s41598_022_14060_w
crossref_citationtrail_10_1038_s41598_022_14060_w
springer_journals_10_1038_s41598_022_14060_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-13
PublicationDateYYYYMMDD 2022-06-13
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-13
  day: 13
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Avsar (CR4) 2020; 92
Ingvarsson, Xiao, Parkin, Gallagher (CR31) 2002; 251
Miao, Xiao, Gupta (CR30) 2005; 71
Sklenar (CR24) 2016; 120
CR37
Tserkovnyak, Brataas, Bauer (CR49) 2002; 66
Baradaran Ghasemi, Faridi, Ansari, Mohseni (CR39) 2016; 6
Hierro-Rodriguez (CR16) 2020; 11
Arregi, Riego, Berger (CR33) 2017; 50
Piraux, da Câmara Santa Clara Gomes, Araujo, de la Torre Medina, Vázquez (CR20) 2020
Tserkovnyak, Brataas, Bauer (CR44) 2002; 88
Barker, Walsh (CR34) 1991; 69
Jamilpanah, Hajiali, Mohseni (CR13) 2020; 514
Manchon (CR8) 2019; 91
Vega, Ferna, Prida, Salaheldeen, Me (CR1) 2019
Barati, Cinal, Edwards, Umerski (CR45) 2014; 90
Rojas-Sánchez (CR48) 2014; 112
Torabinejad, Aliofkhazraei, Assareh, Allahyarzadeh, Rouhaghdam (CR21) 2017; 691
Ghasemi (CR38) 2020; 265
Lv (CR25) 2018; 10
Zhang (CR11) 2019; 13
Azzawi (CR43) 2016; 93
Polesya, Mankovsky, Ködderitzsch, Bensch, Ebert (CR12) 2016; 10
Salaheldeen (CR15) 2018
Kalarickal (CR42) 2006; 99
Shao (CR51) 2016; 16
MacNeill (CR50) 2016; 1
Bakonyi, Péter (CR17) 2010; 55
da Santa Clara Gomes, Abreu Araujo, Piraux (CR18) 2019; 5
Yusrini, Iskandar (CR35) 2006; 328
Ramaswamy, Lee, Cai, Yang (CR10) 2018; 5
Torres, Zhu, Liu, Lim, Yun (CR23) 2018; 215
CR53
Kittel (CR41) 1948; 73
Haider (CR36) 2017; 7
Abreu Araujo, da Câmara Santa Clara Gomes, Piraux (CR19) 2019; 5
Megra, Suk (CR22) 2019; 52
Walsh (CR32) 1991; 69
Husain (CR9) 2020; 7
Shick, Khmelevskyi, Mryasov, Wunderlich, Jungwirth (CR29) 2010; 81
Jansen (CR28) 1999; 59
Zhang (CR52) 2016; 4
Windom, Sawyer, Hahn (CR26) 2011; 42
Lenz (CR46) 2006; 73
Ahn (CR2) 2020; 4
Shi (CR7) 2019; 14
Scherer, Andersen (CR27) 2018; 121
Lin, Yang, Wang, Zhao (CR3) 2019; 2
Sun (CR47) 2013; 111
Salaheldeen, Martínez-Goyeneche, Álvarez-Alonso, Fernández (CR5) 2020; 31
Premasiri, Gao (CR6) 2019; 31
Mosconi (CR40) 2019; 4
Hoseyni, Rahimi, Barakati, Sadeghi, Mohseni (CR14) 2021; 128
YT Megra (14060_CR22) 2019; 52
S Ingvarsson (14060_CR31) 2002; 251
I Bakonyi (14060_CR17) 2010; 55
J-C Rojas-Sánchez (14060_CR48) 2014; 112
M Yusrini (14060_CR35) 2006; 328
W Zhang (14060_CR52) 2016; 4
J Sklenar (14060_CR24) 2016; 120
AH Baradaran Ghasemi (14060_CR39) 2016; 6
S Husain (14060_CR9) 2020; 7
TC da Santa Clara Gomes (14060_CR18) 2019; 5
BC Windom (14060_CR26) 2011; 42
K Premasiri (14060_CR6) 2019; 31
L Piraux (14060_CR20) 2020
AB Shick (14060_CR29) 2010; 81
14060_CR53
EC Ahn (14060_CR2) 2020; 4
R Ghasemi (14060_CR38) 2020; 265
V Vega (14060_CR1) 2019
G Miao (14060_CR30) 2005; 71
X Lin (14060_CR3) 2019; 2
HJF Jansen (14060_CR28) 1999; 59
Q Shao (14060_CR51) 2016; 16
J Torres (14060_CR23) 2018; 215
SS Kalarickal (14060_CR42) 2006; 99
S Polesya (14060_CR12) 2016; 10
A Hierro-Rodriguez (14060_CR16) 2020; 11
Y Sun (14060_CR47) 2013; 111
D MacNeill (14060_CR50) 2016; 1
V Torabinejad (14060_CR21) 2017; 691
E Barati (14060_CR45) 2014; 90
DD Scherer (14060_CR27) 2018; 121
W Zhang (14060_CR11) 2019; 13
K Lenz (14060_CR46) 2006; 73
D Barker (14060_CR34) 1991; 69
JA Arregi (14060_CR33) 2017; 50
SH Hoseyni (14060_CR14) 2021; 128
S Shi (14060_CR7) 2019; 14
R Ramaswamy (14060_CR10) 2018; 5
FC Walsh (14060_CR32) 1991; 69
M Salaheldeen (14060_CR15) 2018
C Kittel (14060_CR41) 1948; 73
D Mosconi (14060_CR40) 2019; 4
M Salaheldeen (14060_CR5) 2020; 31
14060_CR37
A Avsar (14060_CR4) 2020; 92
W Lv (14060_CR25) 2018; 10
S Azzawi (14060_CR43) 2016; 93
A Manchon (14060_CR8) 2019; 91
F Abreu Araujo (14060_CR19) 2019; 5
L Jamilpanah (14060_CR13) 2020; 514
Y Tserkovnyak (14060_CR44) 2002; 88
T Haider (14060_CR36) 2017; 7
Y Tserkovnyak (14060_CR49) 2002; 66
References_xml – volume: 55
  start-page: 107
  year: 2010
  end-page: 245
  ident: CR17
  article-title: Electrodeposited multilayer films with giant magnetoresistance (GMR): Progress and problems
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2009.07.001
– volume: 31
  start-page: 485708
  year: 2020
  ident: CR5
  article-title: Enhancement the perpendicular magnetic anisotropy of nanopatterned hard/soft bilayer magnetic antidot arrays for spintronic application
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/abb109
– volume: 7
  start-page: 17
  year: 2017
  end-page: 24
  ident: CR36
  article-title: A review of magneto-optic effects and its application
  publication-title: Int. J. Electromagn. Appl.
– volume: 121
  start-page: 037205
  year: 2018
  ident: CR27
  article-title: Spin–orbit coupling and magnetic anisotropy in iron-based superconductors
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.037205
– volume: 88
  start-page: 117601
  year: 2002
  ident: CR44
  article-title: Enhanced Gilbert damping in thin ferromagnetic films
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.117601
– volume: 59
  start-page: 4699
  year: 1999
  end-page: 4707
  ident: CR28
  article-title: Magnetic anisotropy in density-functional theory
  publication-title: Phys. Rev. B Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.59.4699
– volume: 66
  start-page: 224403
  year: 2002
  ident: CR49
  article-title: Spin pumping and magnetization dynamics in metallic multilayers
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.66.224403
– volume: 10
  start-page: 218
  year: 2016
  end-page: 221
  ident: CR12
  article-title: Dzyaloshinskii–Moriya interactions and magnetic texture in Fe films deposited on transition-metal dichalcogenides
  publication-title: Phys. Status Solidi Rapid Res. Lett.
  doi: 10.1002/pssr.201510283
– volume: 215
  start-page: 1700512
  year: 2018
  ident: CR23
  article-title: Adhesion energies of 2D graphene and MoS to silicon and metal substrates
  publication-title: Phys. Status Solidi Appl. Mater. Sci.
  doi: 10.1002/pssa.201700512
– start-page: 801
  year: 2020
  end-page: 831
  ident: CR20
  article-title: 3D magnetic nanowire networks
  publication-title: Magnetic Nano- and Microwires
  doi: 10.1016/b978-0-08-102832-2.00027-x
– volume: 14
  start-page: 945
  year: 2019
  end-page: 949
  ident: CR7
  article-title: All-electric magnetization switching and Dzyaloshinskii–Moriya interaction in WTe /ferromagnet heterostructures
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0525-8
– year: 2018
  ident: CR15
  article-title: Tailoring of perpendicular magnetic anisotropy in Dy Fe thin films with hexagonal antidot lattice nanostructure
  publication-title: Nanomaterials
  doi: 10.3390/nano8040227
– volume: 4
  start-page: 1
  year: 2020
  end-page: 14
  ident: CR2
  article-title: 2D materials for spintronic devices
  publication-title: NPJ 2D Mater. Appl.
  doi: 10.1038/s41699-020-0152-0
– volume: 99
  start-page: 1
  year: 2006
  end-page: 7
  ident: CR42
  article-title: Ferromagnetic resonance linewidth in metallic thin films: Comparison of measurement methods
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2197087
– volume: 91
  start-page: 035004
  year: 2019
  ident: CR8
  article-title: Current-induced spin–orbit torques in ferromagnetic and antiferromagnetic systems
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.91.035004
– volume: 71
  start-page: 1
  year: 2005
  end-page: 7
  ident: CR30
  article-title: Variations in the magnetic anisotropy properties of epitaxial CrO films as a function of thickness
  publication-title: Phys. Rev. B Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.71.094418
– volume: 6
  start-page: 106591
  year: 2016
  end-page: 106599
  ident: CR39
  article-title: Extraordinary magneto-optical Kerr effect via MoS monolayer in Au/Py/MoS plasmonic cavity
  publication-title: RSC Adv.
  doi: 10.1039/C6RA21314F
– volume: 90
  start-page: 014420
  year: 2014
  ident: CR45
  article-title: Gilbert damping in magnetic layered systems
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.014420
– volume: 5
  start-page: 1800819
  year: 2019
  ident: CR19
  article-title: Magnetic control of flexible thermoelectric devices based on macroscopic 3D interconnected nanowire networks
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201800819
– volume: 251
  start-page: 202
  year: 2002
  end-page: 206
  ident: CR31
  article-title: Thickness-dependent magnetic properties of Ni Fe , Co Fe and Ni Fe Co thin films
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/S0304-8853(02)00577-2
– volume: 50
  start-page: aa4ea6
  year: 2017
  ident: CR33
  article-title: What is the longitudinal magneto-optical Kerr effect?
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/1361-6463/aa4ea6
– volume: 11
  start-page: 6382
  year: 2020
  ident: CR16
  article-title: Revealing 3D magnetization of thin films with soft X-ray tomography: Magnetic singularities and topological charges
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20119-x
– volume: 7
  start-page: 41312
  year: 2020
  ident: CR9
  article-title: Emergence of spin–orbit torques in 2D transition metal dichalcogenides: A status update
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/5.0025318
– volume: 31
  start-page: 193001
  year: 2019
  ident: CR6
  article-title: Tuning spin–orbit coupling in 2D materials for spintronics: A topical review
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/1361-648X/ab04c7
– volume: 42
  start-page: 301
  year: 2011
  end-page: 310
  ident: CR26
  article-title: A Raman spectroscopic study of MoS and MoO : Applications to tribological systems
  publication-title: Tribol. Lett.
  doi: 10.1007/s11249-011-9774-x
– volume: 13
  start-page: 2253
  year: 2019
  end-page: 2261
  ident: CR11
  article-title: Ferromagnet/two-dimensional semiconducting transition-metal dichalcogenide interface with perpendicular magnetic anisotropy
  publication-title: ACS Nano
– year: 2019
  ident: CR1
  article-title: Tuning nanohole sizes in Ni hexagonal antidot arrays : Large perpendicular magnetic anisotropy for spintronic applications
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.8b02205
– volume: 10
  start-page: 2843
  year: 2018
  end-page: 2849
  ident: CR25
  article-title: Electric-field control of spin–orbit torques in WS /permalloy bilayers
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b16919
– volume: 93
  start-page: 054402
  year: 2016
  ident: CR43
  article-title: Evolution of damping in ferromagnetic/nonmagnetic thin film bilayers as a function of nonmagnetic layer thickness
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.054402
– ident: CR37
– ident: CR53
– volume: 69
  start-page: 155
  year: 1991
  end-page: 157
  ident: CR32
  article-title: Overall rates of electrode reactions. Faraday’s laws of electrolysis
  publication-title: Trans. Inst. Met. Finish.
  doi: 10.1080/00202967.1991.11870914
– volume: 73
  start-page: 155
  year: 1948
  end-page: 161
  ident: CR41
  article-title: On the theory of ferromagnetic resonance absorption
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.73.155
– volume: 4
  start-page: 9294
  year: 2019
  end-page: 9300
  ident: CR40
  article-title: Site-selective integration of MoS flakes on nanopores by means of electrophoretic deposition
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b00965
– volume: 1
  start-page: 300
  year: 2016
  end-page: 305
  ident: CR50
  article-title: Control of spin–orbit torques through crystal symmetry in WTe /ferromagnet bilayers
  publication-title: Nat. Phys.
– volume: 16
  start-page: 7514
  year: 2016
  end-page: 7520
  ident: CR51
  article-title: Strong Rashba–Edelstein effect-induced spin–orbit torques in monolayer transition metal dichalcogenide/ferromagnet bilayers
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03300
– volume: 69
  start-page: 158
  year: 1991
  end-page: 162
  ident: CR34
  article-title: Applications of Faraday’s laws of electrolysis in metal finishing
  publication-title: Trans. Inst. Met. Finish.
  doi: 10.1080/00202967.1991.11870915
– volume: 514
  start-page: 167206
  year: 2020
  ident: CR13
  article-title: Interfacial magnetic anisotropy in Py/MoS bilayer
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2020.167206
– volume: 128
  start-page: 114620
  year: 2021
  ident: CR14
  article-title: Magnetic anisotropy in Co/phosphorene heterostructure
  publication-title: Phys. E Low-Dimens. Syst. Nanostruct.
  doi: 10.1016/j.physe.2021.114620
– volume: 120
  start-page: 7514
  year: 2016
  end-page: 7520
  ident: CR24
  article-title: Perspective: Interface generation of spin–orbit torques
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4967391
– volume: 111
  start-page: 106601
  year: 2013
  ident: CR47
  article-title: Damping in yttrium iron garnet nanoscale films capped by platinum
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.106601
– volume: 4
  start-page: 032302
  year: 2016
  ident: CR52
  article-title: Research update: Spin transfer torques in permalloy on monolayer MoS
  publication-title: APL Mater.
  doi: 10.1063/1.4943076
– volume: 5
  start-page: eaav2782
  year: 2019
  ident: CR18
  article-title: Making flexible spin caloritronic devices with interconnected nanowire networks
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav2782
– volume: 112
  start-page: 106602
  year: 2014
  ident: CR48
  article-title: Spin pumping and inverse spin Hall effect in platinum: The essential role of spin-memory loss at metallic interfaces
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.106602
– volume: 52
  start-page: 364002
  year: 2019
  ident: CR22
  article-title: Adhesion properties of 2D materials
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/1361-6463/ab27ad
– volume: 265
  start-page: 127454
  year: 2020
  ident: CR38
  article-title: Electrical and magneto-optical characterization of Py/MoS bilayer: A facile growth of magnetic-metal/semiconductor heterostructure
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2020.127454
– volume: 691
  start-page: 841
  year: 2017
  end-page: 859
  ident: CR21
  article-title: Electrodeposition of Ni–Fe alloys, composites, and nano coatings—A review
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.08.329
– volume: 92
  start-page: 021003
  year: 2020
  ident: CR4
  article-title: Colloquium: Spintronics in graphene and other two-dimensional materials
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.92.021003
– volume: 2
  start-page: 274
  year: 2019
  end-page: 283
  ident: CR3
  article-title: Two-dimensional spintronics for low-power electronics
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0273-7
– volume: 81
  start-page: 212409
  year: 2010
  ident: CR29
  article-title: Spin–orbit coupling induced anisotropy effects in bimetallic antiferromagnets: A route towards antiferromagnetic spintronics
  publication-title: Phys. Rev. B Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.81.212409
– volume: 328
  start-page: 381
  year: 2006
  end-page: 384
  ident: CR35
  article-title: Influence of grain size on magnetic properties of electroplated NiFe
  publication-title: Key Eng. Mater.
  doi: 10.4028/www.scientific.net/KEM.326-328.381
– volume: 73
  start-page: 144424
  year: 2006
  ident: CR46
  article-title: Two-magnon scattering and viscous Gilbert damping in ultrathin ferromagnets
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.73.144424
– volume: 5
  start-page: 031107
  year: 2018
  ident: CR10
  article-title: Recent advances in spin–orbit torques: Moving towards device applications
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.5041793
– volume: 691
  start-page: 841
  year: 2017
  ident: 14060_CR21
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.08.329
– volume: 55
  start-page: 107
  year: 2010
  ident: 14060_CR17
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2009.07.001
– volume: 4
  start-page: 9294
  year: 2019
  ident: 14060_CR40
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b00965
– volume: 42
  start-page: 301
  year: 2011
  ident: 14060_CR26
  publication-title: Tribol. Lett.
  doi: 10.1007/s11249-011-9774-x
– volume: 59
  start-page: 4699
  year: 1999
  ident: 14060_CR28
  publication-title: Phys. Rev. B Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.59.4699
– volume: 7
  start-page: 41312
  year: 2020
  ident: 14060_CR9
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/5.0025318
– volume: 31
  start-page: 485708
  year: 2020
  ident: 14060_CR5
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/abb109
– year: 2018
  ident: 14060_CR15
  publication-title: Nanomaterials
  doi: 10.3390/nano8040227
– volume: 16
  start-page: 7514
  year: 2016
  ident: 14060_CR51
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03300
– volume: 11
  start-page: 6382
  year: 2020
  ident: 14060_CR16
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20119-x
– volume: 265
  start-page: 127454
  year: 2020
  ident: 14060_CR38
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2020.127454
– volume: 13
  start-page: 2253
  year: 2019
  ident: 14060_CR11
  publication-title: ACS Nano
– volume: 73
  start-page: 144424
  year: 2006
  ident: 14060_CR46
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.73.144424
– volume: 5
  start-page: eaav2782
  year: 2019
  ident: 14060_CR18
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav2782
– volume: 93
  start-page: 054402
  year: 2016
  ident: 14060_CR43
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.054402
– volume: 6
  start-page: 106591
  year: 2016
  ident: 14060_CR39
  publication-title: RSC Adv.
  doi: 10.1039/C6RA21314F
– volume: 4
  start-page: 032302
  year: 2016
  ident: 14060_CR52
  publication-title: APL Mater.
  doi: 10.1063/1.4943076
– volume: 91
  start-page: 035004
  year: 2019
  ident: 14060_CR8
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.91.035004
– volume: 111
  start-page: 106601
  year: 2013
  ident: 14060_CR47
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.106601
– start-page: 801
  volume-title: Magnetic Nano- and Microwires
  year: 2020
  ident: 14060_CR20
  doi: 10.1016/b978-0-08-102832-2.00027-x
– volume: 251
  start-page: 202
  year: 2002
  ident: 14060_CR31
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/S0304-8853(02)00577-2
– volume: 121
  start-page: 037205
  year: 2018
  ident: 14060_CR27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.037205
– volume: 69
  start-page: 155
  year: 1991
  ident: 14060_CR32
  publication-title: Trans. Inst. Met. Finish.
  doi: 10.1080/00202967.1991.11870914
– volume: 66
  start-page: 224403
  year: 2002
  ident: 14060_CR49
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.66.224403
– volume: 1
  start-page: 300
  year: 2016
  ident: 14060_CR50
  publication-title: Nat. Phys.
– volume: 31
  start-page: 193001
  year: 2019
  ident: 14060_CR6
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/1361-648X/ab04c7
– volume: 4
  start-page: 1
  year: 2020
  ident: 14060_CR2
  publication-title: NPJ 2D Mater. Appl.
  doi: 10.1038/s41699-020-0152-0
– volume: 128
  start-page: 114620
  year: 2021
  ident: 14060_CR14
  publication-title: Phys. E Low-Dimens. Syst. Nanostruct.
  doi: 10.1016/j.physe.2021.114620
– volume: 10
  start-page: 218
  year: 2016
  ident: 14060_CR12
  publication-title: Phys. Status Solidi Rapid Res. Lett.
  doi: 10.1002/pssr.201510283
– ident: 14060_CR37
  doi: 10.1117/3.832717.Ch3
– year: 2019
  ident: 14060_CR1
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.8b02205
– ident: 14060_CR53
– volume: 120
  start-page: 7514
  year: 2016
  ident: 14060_CR24
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4967391
– volume: 52
  start-page: 364002
  year: 2019
  ident: 14060_CR22
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/1361-6463/ab27ad
– volume: 14
  start-page: 945
  year: 2019
  ident: 14060_CR7
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0525-8
– volume: 514
  start-page: 167206
  year: 2020
  ident: 14060_CR13
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2020.167206
– volume: 99
  start-page: 1
  year: 2006
  ident: 14060_CR42
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2197087
– volume: 71
  start-page: 1
  year: 2005
  ident: 14060_CR30
  publication-title: Phys. Rev. B Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.71.094418
– volume: 90
  start-page: 014420
  year: 2014
  ident: 14060_CR45
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.014420
– volume: 5
  start-page: 031107
  year: 2018
  ident: 14060_CR10
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.5041793
– volume: 112
  start-page: 106602
  year: 2014
  ident: 14060_CR48
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.106602
– volume: 215
  start-page: 1700512
  year: 2018
  ident: 14060_CR23
  publication-title: Phys. Status Solidi Appl. Mater. Sci.
  doi: 10.1002/pssa.201700512
– volume: 92
  start-page: 021003
  year: 2020
  ident: 14060_CR4
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.92.021003
– volume: 328
  start-page: 381
  year: 2006
  ident: 14060_CR35
  publication-title: Key Eng. Mater.
  doi: 10.4028/www.scientific.net/KEM.326-328.381
– volume: 69
  start-page: 158
  year: 1991
  ident: 14060_CR34
  publication-title: Trans. Inst. Met. Finish.
  doi: 10.1080/00202967.1991.11870915
– volume: 10
  start-page: 2843
  year: 2018
  ident: 14060_CR25
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b16919
– volume: 50
  start-page: aa4ea6
  year: 2017
  ident: 14060_CR33
  publication-title: J. Phys. D. Appl. Phys.
  doi: 10.1088/1361-6463/aa4ea6
– volume: 5
  start-page: 1800819
  year: 2019
  ident: 14060_CR19
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201800819
– volume: 73
  start-page: 155
  year: 1948
  ident: 14060_CR41
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.73.155
– volume: 2
  start-page: 274
  year: 2019
  ident: 14060_CR3
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0273-7
– volume: 81
  start-page: 212409
  year: 2010
  ident: 14060_CR29
  publication-title: Phys. Rev. B Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.81.212409
– volume: 7
  start-page: 17
  year: 2017
  ident: 14060_CR36
  publication-title: Int. J. Electromagn. Appl.
– volume: 88
  start-page: 117601
  year: 2002
  ident: 14060_CR44
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.117601
SSID ssj0000529419
Score 2.3646498
Snippet We demonstrate a nanostructure layer made of Ni 80 Fe 20 (permalloy:Py) thin film conjugated MoS 2 nano-flakes. Layers are made based on a single-step...
We demonstrate a nanostructure layer made of Ni80Fe20 (permalloy:Py) thin film conjugated MoS2 nano-flakes. Layers are made based on a single-step...
Abstract We demonstrate a nanostructure layer made of Ni80Fe20 (permalloy:Py) thin film conjugated MoS2 nano-flakes. Layers are made based on a single-step...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9809
SubjectTerms 639/166
639/301
639/766
Anisotropy
Electrochemistry
Humanities and Social Sciences
Magnetic thin films
Molybdenum disulfide
multidisciplinary
Raman spectroscopy
Science
Science (multidisciplinary)
Spectrum analysis
Thin films
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9RAEB60IvhSbFVMrWULvmnoJdlfeRIVjyJcQbRwb0uy2bSBdnOaK8X_3pnN3tUULPd22dwlO7M73-zMfAPwThN7tajQLXEtT7nVsxTtOlUs1wotbiOcpOLkxZk8PefflmIZD9yGmFa52RPDRt30ls7IT3JCtgWZv4-rXyl1jaLoamyh8RieEHUZpXSppdqesVAUi2dlrJWZFfpkwB-gmjL0wNCzkLP0dmKPAm3_BGvez5S8Fy4NVmj-HHYjfGSfRnnvwSPn9-Hp2FDyzwv4vqguPJUlsrNu7tj6svOs7a6uB0ap4z2dC7BF_yNnvvL9SB17g_42Q-TKhlXnx4Y47J-o9ks4n3_9-eU0jU0TUisytU5r3jp0kIVUFDDMmzxDXdGqKkptbcNb9I-sLirKhUGk57SVKBsriLjP5sKq4hXs-N6718BK10j8oIx5y_MZ7up140SlG0TlstZ5Atlm6oyNjOLU2OLKhMh2oc043Qan24TpNrcJvN_esxr5NB4c_Zkksh1JXNjhi_73hYlLy9S11cpJBKK25BxfnutaOt7WRH6fKZfA4UaeJi7QwdypUwLH28u4tCheUnnX34QxUgiiqE9ATfRg8kDTK767DCTdJUJnxJoJfNhozN2f__-FDx5-1jfwLCfdpd5JxSHsoJ64twiK1vVR0Py_pPELCA
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB9qRfBF_MRolRV80-hls195EFHxKMIVRA_6tmQ3mzZw3dTeldr_3pl8nKZUn-TeLhtyOx-Z39zs_AbgpSH2alliWhJqkQpvZinGdepYdhojbiWDoubkxYHaX4ovh_JwB8ZxR4MA19emdjRPanm2evPzx-V7dPh3fcu4ebvGIESNYphWYbqgZunFDbiJkUmToy4GuN9zffNCZMXQO3P9rZP41NH4T7Dn1ZOTV8qnXVSa34U7A5xkH3r934OdEO_DrX7A5OUD-LoojyK1KbKDZh7Y5riJrG5WJ2tGR8lb-p-ALdpvnMUytj2V7Dnm3wyRLFufNrEfkMP-qHI_hOX88_dP--kwRCH1MtOb1Ik6YMIslaYCIq94hrZjdJkXxvtK1JgveZOXdDYGkV8wXqGuvCQiP8-l1_kj2I1tDI-BFaFS-EGdi1rwGb7lXRVkaSpE6coZnkA2is76gWGcBl2sbFfpzo3txW1R3LYTt71I4NX2ntOeX-Ofqz-SRrYriRu7-6I9O7KDq1nnvNFBITD1hRC4eWGcCqJ2RIaf6ZDA3qhPO9qb5ZQ45YSuEnixvYyuRvWTMob2vFujpCTK-gT0xA4mP2h6JTbHHWl3gVAasWcCr0eL-f3wv2_4yf_Y8FO4zcnCaeJSvge7aE3hGUKpjXve-ccvobUbsQ
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ha9UwED_mRPDLcFOxc44M_KbF1zRJ04_68DGENxAd7Fto0nQrbOmwT4b_vXdp-7RDBem3NqFNcun9Lnf3O4DXmtirZYVmiW9EKpxepKjXKWPZFqhxa-kVJSevz9Tpufh0IS92gE-5MDFoP1Jaxt_0FB32rkdFQ8lgaDqhSaAW6d0DeEjU7STVS7XcnquQ50pk5Zgfs8j1H7rOdFCk6p_hy_vRkfdcpFHzrJ7A3ggZ2fvhI_dhx4cDeDQUkfzxFD6vq8tAqYjsrF15trlqA2va65ueUbh4R2cBbN194SxUoRvoYnHcPUO0yvrbNgxFcNhvnuxncL76-HV5mo6FElIns2KTWtF4NIqlKshJyGueoXzoospL7VwtGrSJnM4rin9BdOe1U7geThJZn-PSFflz2A1d8C-Alb5WeOG6ikbwBf7Jbe1lpWtE4spqnkA2TZ1xI4s4FbO4NtGbnWszTLfB6TZxus1dAm-2fW4HDo1_tv5AK7JtSfzX8Ub37dKM8mCsdbrwCsGnK4XAwQttlReNJcL7rPAJHE3racZN2RtOxlFOCCqBk-1j3E7kI6mC777HNkpKoqVPoJjJweyD5k9CexWJuUuEy4gvE3g7Scyvl_99wIf_1_wlPOYky1Q_KT-CXZQb_wqB0cYex53wE_MkCUI
  priority: 102
  providerName: Springer Nature
Title Magnetic NiFe thin films composing MoS2 nanostructures for spintronic application
URI https://link.springer.com/article/10.1038/s41598-022-14060-w
https://www.proquest.com/docview/2675834155
https://www.proquest.com/docview/2676552989
https://pubmed.ncbi.nlm.nih.gov/PMC9192644
https://doaj.org/article/bbc87e6932c944eeb48b6e4fb039117e
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED-2jsFeRvfFvHZBg71tprGtLz-moaEEErZ1hbwJS5ZXQysXklL23-_OdrK4sO1lGGywZSyfTr7f-XS_A_ioib1aFOiW-IrH3OlxjHadMpatQotbCi8pOXmxlOeXfL4Sq71SX7QmrKMH7gR3Yq3TykuEGS7n3HvLtZWeV5aozRPl6euLNm_PmepYvdOcJ3mfJTPO9MkaLRVlk6HvhT6FHMf3A0vUEvYPUObDNZIPAqWt_ZkdwvMeOLJJ1-EX8MiHl_C0KyX58xV8XRQ_AiUksmU982xzVQdW1dc3a0aLxhv6I8AWzUXKQhGajjT2Dj1thpiVrW_r0JXCYXvx7NdwOTv7Pj2P-3IJsROJ2sSWVyieTEhFocK0TBPUEq2KLNfOlbxCz8jprKBVMIjxvHYSR8UJouxzqXAqewMHoQn-LbDclxI3HF1e8XSM33NbelHoEvG4tDqNINmKzrieS5xKWlybNqadadOJ26C4TStucx_Bp909tx2Txl9bn9KI7FoSC3Z7AnXD9Lph_qUbERxvx9P0U3NtUnKRMsJREXzYXcZJRZGSIvjmrm0jhSBy-gjUQA8GHRpeCfVVS8-dI2hGlBnB563G_H74n1_43f944SN4lpKGU22l7BgOUJv8ewRNGzuCx2qlRvBkMplfzPF4erb88g3PTuV01M4d3C-4_gWzrxnR
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEE8RWsBIcIKom8R2nANCFLra0u6KRyv1ZhLHaSO1zsJuteqf4jcyk8eWVKK3am-Jk3XGY8_3eTwzAK8VZa8WKdISW3CfGzX00a5TxHIWo8XNhZUUnDyZyvEh_3IkjtbgTxcLQ8cquzWxXqjzytAe-VZIyDYi8_dh9sunqlHkXe1KaDRqsWcvlkjZ5u93P-P4vgnD0c7Bp7HfVhXwjQjihZ_xwiKDFDImj1qYhwEKU8VplChjcl4ggTAqSumwCEIhq4zEzhtBme1MKEwc4XtvwTqPkMoMYH17Z_r1-2pXh_xmPEja6JxhpLbm2GWKYkPOh1xGDv1lzwLWhQJ66Pbq2cwrDtra7o3uw70WsLKPjYY9gDXrHsLtpoTlxSP4NkmPHQVCsmk5smxxUjpWlKdnc0aH1SvaiWCT6kfIXOqqJlntOTJ8hliZzWela0rwsH_86I_h8EYE-gQGrnL2KbDE5hJ_qFW84OEQ7UiWW5GqHHmAzFToQdCJTps2hzmV0jjVtS89UroRt0Zx61rceunB29UzsyaDx7Wtt2lEVi0p-3Z9ofp9rNvJrLPMqNhKhL4m4Rw_nqtMWl5klG4_iK0Hm9146nZJmOtLBfbg1eo2Tmby0KTOVud1GykEJcX3IO7pQa9D_TuuPKnTgicI1hHdevCu05jLP___Bz-7vq8v4c74YLKv93enextwNyQ9pspN0SYMUGfsc4Rki-xFOw8Y_LzpqfcXeCJH9w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9NADLfGEIgXxKcIG3BI8ARRm-S-8oAQMKqN0QoEk_p2Sy6XLdJIOtKp2r_GX4edj45MYm9T35pLe-ezz_bZ_hnglSb0apGgW-Jy7nOrxz7qdapYThVq3Ew4ScXJ05ncPeBf5mK-AX_6WhhKq-zPxOagzipLd-SjkCzbiNTfKO_SIr7tTN4vTn3qIEWR1r6dRssi--58he5b_W5vB_f6dRhOPv_8tOt3HQZ8KwK19FOeO_QmhVQUXQuzMEDCapVEsbY24zk6E1ZHCSWOoFnktJW4ECsI5c6GwqoIf_cG3FSRCEjG1Fyt73cogsaDuKvTGUd6VOPkqZ4NvT_0auTYXw10YdMyYGDnXs7SvBSqbTTg5B7c7UxX9qHltfuw4coHcKttZnn-EL5Pk6OSSiLZrJg4tjwuSpYXJ79qRmnrFd1JsGn1I2RlUlYtbO0Z-voMrWZWL4qybcbD_omoP4KDayHnY9gsq9I9ARa7TOIH-YvnPByjRkkzJxKdoUcgUx16EPSkM7ZDM6emGiemiapH2rTkNkhu05DbrDx4s35n0WJ5XDn6I-3IeiThcDdfVL-PTCfWJk2tVk6iEWxjznHxXKfS8Twl4P1AOQ-2-_003eFQmwtW9uDl-jGKNcVqktJVZ80YKQTB43ugBnwwmNDwSVkcNwDhMZrtaOd68LbnmIs___-Cn1491xdwGwXOfN2b7W_BnZDYmFo4RduwiSzjnqFttkyfN0LA4PC6pe4vIglKxw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+NiFe+thin+films+composing+MoS2+nanostructures+for+spintronic+application&rft.jtitle=Scientific+reports&rft.au=Mahdi+Yousef+Vand&rft.au=Loghman+Jamilpanah&rft.au=Mohammad+Zare&rft.au=Seyed+Majid+Mohseni&rft.date=2022-06-13&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1038%2Fs41598-022-14060-w&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bbc87e6932c944eeb48b6e4fb039117e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon