Magnetic NiFe thin films composing MoS2 nanostructures for spintronic application
We demonstrate a nanostructure layer made of Ni 80 Fe 20 (permalloy:Py) thin film conjugated MoS 2 nano-flakes. Layers are made based on a single-step co-deposition of Py and MoS 2 from a single solution where ionic Ni and Fe and MoS 2 flakes co-exist. Synthesized thin films with MoS 2 flakes show i...
Saved in:
Published in | Scientific reports Vol. 12; no. 1; pp. 9809 - 7 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
13.06.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We demonstrate a nanostructure layer made of Ni
80
Fe
20
(permalloy:Py) thin film conjugated MoS
2
nano-flakes. Layers are made based on a single-step co-deposition of Py and MoS
2
from a single solution where ionic Ni and Fe and MoS
2
flakes co-exist. Synthesized thin films with MoS
2
flakes show increasing coercivity and enhancement in magneto-optical Kerr effect. Ferromagnetic resonance linewidth as well as the damping parameter increaseed significantly compared to that of the Py layer due to the presence of MoS
2
. Raman spectroscopy and elemental mapping is used to show the quality of MoS
2
within the Py thin film. Our synthesis method promises new opportunities for electrochemical production of functional spintronic-based devices. |
---|---|
AbstractList | We demonstrate a nanostructure layer made of Ni80Fe20 (permalloy:Py) thin film conjugated MoS2 nano-flakes. Layers are made based on a single-step co-deposition of Py and MoS2 from a single solution where ionic Ni and Fe and MoS2 flakes co-exist. Synthesized thin films with MoS2 flakes show increasing coercivity and enhancement in magneto-optical Kerr effect. Ferromagnetic resonance linewidth as well as the damping parameter increaseed significantly compared to that of the Py layer due to the presence of MoS2. Raman spectroscopy and elemental mapping is used to show the quality of MoS2 within the Py thin film. Our synthesis method promises new opportunities for electrochemical production of functional spintronic-based devices.We demonstrate a nanostructure layer made of Ni80Fe20 (permalloy:Py) thin film conjugated MoS2 nano-flakes. Layers are made based on a single-step co-deposition of Py and MoS2 from a single solution where ionic Ni and Fe and MoS2 flakes co-exist. Synthesized thin films with MoS2 flakes show increasing coercivity and enhancement in magneto-optical Kerr effect. Ferromagnetic resonance linewidth as well as the damping parameter increaseed significantly compared to that of the Py layer due to the presence of MoS2. Raman spectroscopy and elemental mapping is used to show the quality of MoS2 within the Py thin film. Our synthesis method promises new opportunities for electrochemical production of functional spintronic-based devices. Abstract We demonstrate a nanostructure layer made of Ni80Fe20 (permalloy:Py) thin film conjugated MoS2 nano-flakes. Layers are made based on a single-step co-deposition of Py and MoS2 from a single solution where ionic Ni and Fe and MoS2 flakes co-exist. Synthesized thin films with MoS2 flakes show increasing coercivity and enhancement in magneto-optical Kerr effect. Ferromagnetic resonance linewidth as well as the damping parameter increaseed significantly compared to that of the Py layer due to the presence of MoS2. Raman spectroscopy and elemental mapping is used to show the quality of MoS2 within the Py thin film. Our synthesis method promises new opportunities for electrochemical production of functional spintronic-based devices. We demonstrate a nanostructure layer made of Ni 80 Fe 20 (permalloy:Py) thin film conjugated MoS 2 nano-flakes. Layers are made based on a single-step co-deposition of Py and MoS 2 from a single solution where ionic Ni and Fe and MoS 2 flakes co-exist. Synthesized thin films with MoS 2 flakes show increasing coercivity and enhancement in magneto-optical Kerr effect. Ferromagnetic resonance linewidth as well as the damping parameter increaseed significantly compared to that of the Py layer due to the presence of MoS 2 . Raman spectroscopy and elemental mapping is used to show the quality of MoS 2 within the Py thin film. Our synthesis method promises new opportunities for electrochemical production of functional spintronic-based devices. We demonstrate a nanostructure layer made of Ni80Fe20 (permalloy:Py) thin film conjugated MoS2 nano-flakes. Layers are made based on a single-step co-deposition of Py and MoS2 from a single solution where ionic Ni and Fe and MoS2 flakes co-exist. Synthesized thin films with MoS2 flakes show increasing coercivity and enhancement in magneto-optical Kerr effect. Ferromagnetic resonance linewidth as well as the damping parameter increaseed significantly compared to that of the Py layer due to the presence of MoS2. Raman spectroscopy and elemental mapping is used to show the quality of MoS2 within the Py thin film. Our synthesis method promises new opportunities for electrochemical production of functional spintronic-based devices. |
ArticleNumber | 9809 |
Author | Yousef Vand, Mahdi Mohseni, Seyed Majid Zare, Mohammad Jamilpanah, Loghman |
Author_xml | – sequence: 1 givenname: Mahdi surname: Yousef Vand fullname: Yousef Vand, Mahdi organization: Materials Engineering, Faculty of Engineering, University of Tehran, Department of Physics, Shahid Beheshti University – sequence: 2 givenname: Loghman surname: Jamilpanah fullname: Jamilpanah, Loghman organization: Department of Physics, Shahid Beheshti University – sequence: 3 givenname: Mohammad surname: Zare fullname: Zare, Mohammad organization: Department of Physics, Shahid Beheshti University – sequence: 4 givenname: Seyed Majid surname: Mohseni fullname: Mohseni, Seyed Majid email: m-mohseni@sbu.ac.ir organization: Department of Physics, Shahid Beheshti University |
BookMark | eNp9Ustu1TAUjFARLaU_wCoSGzYBvx8bJFRRqNSCELC2HOck9VViBzuh4u9xbyr6WNQbW_bMnDnH87I6CDFAVb3G6B1GVL3PDHOtGkRIgxkSqLl-Vh0RxHhDKCEH986H1UnOO1QWJ5ph_aI6pFxoqYk6qr5f2iHA4l391Z9BvVz5UPd-nHLt4jTH7MNQX8YfpA42xLyk1S1rglz3MdV59mFJMRSynefRO7v4GF5Vz3s7Zji53Y-rX2effp5-aS6-fT4__XjROI7l0rSsB2iLEYkw46QjGGynpKVaOdexXmLhFLVUCsQpBeWE4thxKjFzhDtJj6vzTbeLdmfm5Ceb_ppovdlfxDQYm0pjI5i2dUqC0JQ4zVgpy1QrgPUtohpjCUXrw6Y1r-0EnYPSlx0fiD58Cf7KDPGP0VgTwVgReHsrkOLvFfJiJp8djKMNENdsiJCCl_ErXaBvHkF3cU2hjOoGxRUtH8sLimwol2LOCfr_ZjAyNwEwWwBMCYDZB8BcF5J6RHJ-2X9KMe3Hp6l0o-ZSJwyQ7lw9wfoHqoPGUg |
CitedBy_id | crossref_primary_10_1002_aesr_202400392 crossref_primary_10_1039_D3CP05432B crossref_primary_10_1039_D3SE00641G |
Cites_doi | 10.1016/j.pmatsci.2009.07.001 10.1088/1361-6528/abb109 10.1103/PhysRevLett.121.037205 10.1103/PhysRevLett.88.117601 10.1103/PhysRevB.59.4699 10.1103/PhysRevB.66.224403 10.1002/pssr.201510283 10.1002/pssa.201700512 10.1016/b978-0-08-102832-2.00027-x 10.1038/s41565-019-0525-8 10.3390/nano8040227 10.1038/s41699-020-0152-0 10.1063/1.2197087 10.1103/RevModPhys.91.035004 10.1103/PhysRevB.71.094418 10.1039/C6RA21314F 10.1103/PhysRevB.90.014420 10.1002/aelm.201800819 10.1016/S0304-8853(02)00577-2 10.1088/1361-6463/aa4ea6 10.1038/s41467-020-20119-x 10.1063/5.0025318 10.1088/1361-648X/ab04c7 10.1007/s11249-011-9774-x 10.1021/acsanm.8b02205 10.1021/acsami.7b16919 10.1103/PhysRevB.93.054402 10.1080/00202967.1991.11870914 10.1103/PhysRev.73.155 10.1021/acsomega.9b00965 10.1021/acs.nanolett.6b03300 10.1080/00202967.1991.11870915 10.1016/j.jmmm.2020.167206 10.1016/j.physe.2021.114620 10.1063/1.4967391 10.1103/PhysRevLett.111.106601 10.1063/1.4943076 10.1126/sciadv.aav2782 10.1103/PhysRevLett.112.106602 10.1088/1361-6463/ab27ad 10.1016/j.matlet.2020.127454 10.1016/j.jallcom.2016.08.329 10.1103/RevModPhys.92.021003 10.1038/s41928-019-0273-7 10.1103/PhysRevB.81.212409 10.4028/www.scientific.net/KEM.326-328.381 10.1103/PhysRevB.73.144424 10.1063/1.5041793 10.1117/3.832717.Ch3 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-022-14060-w |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central (New) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 7 |
ExternalDocumentID | oai_doaj_org_article_bbc87e6932c944eeb48b6e4fb039117e PMC9192644 10_1038_s41598_022_14060_w |
GrantInformation_xml | – fundername: Iran National Science Foundation (INSF) – fundername: Iran Science Elite Federation (ISEF) – fundername: ; |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c517t-b4feeb356701452d21ead87a398ccd4f716c83a3760533e8c6851c53714c25c73 |
IEDL.DBID | DOA |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:14:26 EDT 2025 Thu Aug 21 14:09:57 EDT 2025 Fri Jul 11 02:23:38 EDT 2025 Wed Aug 13 05:11:07 EDT 2025 Thu Apr 24 23:02:31 EDT 2025 Tue Jul 01 04:16:38 EDT 2025 Fri Feb 21 02:39:08 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-b4feeb356701452d21ead87a398ccd4f716c83a3760533e8c6851c53714c25c73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/bbc87e6932c944eeb48b6e4fb039117e |
PMID | 35697928 |
PQID | 2675834155 |
PQPubID | 2041939 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bbc87e6932c944eeb48b6e4fb039117e pubmedcentral_primary_oai_pubmedcentral_nih_gov_9192644 proquest_miscellaneous_2676552989 proquest_journals_2675834155 crossref_primary_10_1038_s41598_022_14060_w crossref_citationtrail_10_1038_s41598_022_14060_w springer_journals_10_1038_s41598_022_14060_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-13 |
PublicationDateYYYYMMDD | 2022-06-13 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Avsar (CR4) 2020; 92 Ingvarsson, Xiao, Parkin, Gallagher (CR31) 2002; 251 Miao, Xiao, Gupta (CR30) 2005; 71 Sklenar (CR24) 2016; 120 CR37 Tserkovnyak, Brataas, Bauer (CR49) 2002; 66 Baradaran Ghasemi, Faridi, Ansari, Mohseni (CR39) 2016; 6 Hierro-Rodriguez (CR16) 2020; 11 Arregi, Riego, Berger (CR33) 2017; 50 Piraux, da Câmara Santa Clara Gomes, Araujo, de la Torre Medina, Vázquez (CR20) 2020 Tserkovnyak, Brataas, Bauer (CR44) 2002; 88 Barker, Walsh (CR34) 1991; 69 Jamilpanah, Hajiali, Mohseni (CR13) 2020; 514 Manchon (CR8) 2019; 91 Vega, Ferna, Prida, Salaheldeen, Me (CR1) 2019 Barati, Cinal, Edwards, Umerski (CR45) 2014; 90 Rojas-Sánchez (CR48) 2014; 112 Torabinejad, Aliofkhazraei, Assareh, Allahyarzadeh, Rouhaghdam (CR21) 2017; 691 Ghasemi (CR38) 2020; 265 Lv (CR25) 2018; 10 Zhang (CR11) 2019; 13 Azzawi (CR43) 2016; 93 Polesya, Mankovsky, Ködderitzsch, Bensch, Ebert (CR12) 2016; 10 Salaheldeen (CR15) 2018 Kalarickal (CR42) 2006; 99 Shao (CR51) 2016; 16 MacNeill (CR50) 2016; 1 Bakonyi, Péter (CR17) 2010; 55 da Santa Clara Gomes, Abreu Araujo, Piraux (CR18) 2019; 5 Yusrini, Iskandar (CR35) 2006; 328 Ramaswamy, Lee, Cai, Yang (CR10) 2018; 5 Torres, Zhu, Liu, Lim, Yun (CR23) 2018; 215 CR53 Kittel (CR41) 1948; 73 Haider (CR36) 2017; 7 Abreu Araujo, da Câmara Santa Clara Gomes, Piraux (CR19) 2019; 5 Megra, Suk (CR22) 2019; 52 Walsh (CR32) 1991; 69 Husain (CR9) 2020; 7 Shick, Khmelevskyi, Mryasov, Wunderlich, Jungwirth (CR29) 2010; 81 Jansen (CR28) 1999; 59 Zhang (CR52) 2016; 4 Windom, Sawyer, Hahn (CR26) 2011; 42 Lenz (CR46) 2006; 73 Ahn (CR2) 2020; 4 Shi (CR7) 2019; 14 Scherer, Andersen (CR27) 2018; 121 Lin, Yang, Wang, Zhao (CR3) 2019; 2 Sun (CR47) 2013; 111 Salaheldeen, Martínez-Goyeneche, Álvarez-Alonso, Fernández (CR5) 2020; 31 Premasiri, Gao (CR6) 2019; 31 Mosconi (CR40) 2019; 4 Hoseyni, Rahimi, Barakati, Sadeghi, Mohseni (CR14) 2021; 128 YT Megra (14060_CR22) 2019; 52 S Ingvarsson (14060_CR31) 2002; 251 I Bakonyi (14060_CR17) 2010; 55 J-C Rojas-Sánchez (14060_CR48) 2014; 112 M Yusrini (14060_CR35) 2006; 328 W Zhang (14060_CR52) 2016; 4 J Sklenar (14060_CR24) 2016; 120 AH Baradaran Ghasemi (14060_CR39) 2016; 6 S Husain (14060_CR9) 2020; 7 TC da Santa Clara Gomes (14060_CR18) 2019; 5 BC Windom (14060_CR26) 2011; 42 K Premasiri (14060_CR6) 2019; 31 L Piraux (14060_CR20) 2020 AB Shick (14060_CR29) 2010; 81 14060_CR53 EC Ahn (14060_CR2) 2020; 4 R Ghasemi (14060_CR38) 2020; 265 V Vega (14060_CR1) 2019 G Miao (14060_CR30) 2005; 71 X Lin (14060_CR3) 2019; 2 HJF Jansen (14060_CR28) 1999; 59 Q Shao (14060_CR51) 2016; 16 J Torres (14060_CR23) 2018; 215 SS Kalarickal (14060_CR42) 2006; 99 S Polesya (14060_CR12) 2016; 10 A Hierro-Rodriguez (14060_CR16) 2020; 11 Y Sun (14060_CR47) 2013; 111 D MacNeill (14060_CR50) 2016; 1 V Torabinejad (14060_CR21) 2017; 691 E Barati (14060_CR45) 2014; 90 DD Scherer (14060_CR27) 2018; 121 W Zhang (14060_CR11) 2019; 13 K Lenz (14060_CR46) 2006; 73 D Barker (14060_CR34) 1991; 69 JA Arregi (14060_CR33) 2017; 50 SH Hoseyni (14060_CR14) 2021; 128 S Shi (14060_CR7) 2019; 14 R Ramaswamy (14060_CR10) 2018; 5 FC Walsh (14060_CR32) 1991; 69 M Salaheldeen (14060_CR15) 2018 C Kittel (14060_CR41) 1948; 73 D Mosconi (14060_CR40) 2019; 4 M Salaheldeen (14060_CR5) 2020; 31 14060_CR37 A Avsar (14060_CR4) 2020; 92 W Lv (14060_CR25) 2018; 10 S Azzawi (14060_CR43) 2016; 93 A Manchon (14060_CR8) 2019; 91 F Abreu Araujo (14060_CR19) 2019; 5 L Jamilpanah (14060_CR13) 2020; 514 Y Tserkovnyak (14060_CR44) 2002; 88 T Haider (14060_CR36) 2017; 7 Y Tserkovnyak (14060_CR49) 2002; 66 |
References_xml | – volume: 55 start-page: 107 year: 2010 end-page: 245 ident: CR17 article-title: Electrodeposited multilayer films with giant magnetoresistance (GMR): Progress and problems publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2009.07.001 – volume: 31 start-page: 485708 year: 2020 ident: CR5 article-title: Enhancement the perpendicular magnetic anisotropy of nanopatterned hard/soft bilayer magnetic antidot arrays for spintronic application publication-title: Nanotechnology doi: 10.1088/1361-6528/abb109 – volume: 7 start-page: 17 year: 2017 end-page: 24 ident: CR36 article-title: A review of magneto-optic effects and its application publication-title: Int. J. Electromagn. Appl. – volume: 121 start-page: 037205 year: 2018 ident: CR27 article-title: Spin–orbit coupling and magnetic anisotropy in iron-based superconductors publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.037205 – volume: 88 start-page: 117601 year: 2002 ident: CR44 article-title: Enhanced Gilbert damping in thin ferromagnetic films publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.117601 – volume: 59 start-page: 4699 year: 1999 end-page: 4707 ident: CR28 article-title: Magnetic anisotropy in density-functional theory publication-title: Phys. Rev. B Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.59.4699 – volume: 66 start-page: 224403 year: 2002 ident: CR49 article-title: Spin pumping and magnetization dynamics in metallic multilayers publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.66.224403 – volume: 10 start-page: 218 year: 2016 end-page: 221 ident: CR12 article-title: Dzyaloshinskii–Moriya interactions and magnetic texture in Fe films deposited on transition-metal dichalcogenides publication-title: Phys. Status Solidi Rapid Res. Lett. doi: 10.1002/pssr.201510283 – volume: 215 start-page: 1700512 year: 2018 ident: CR23 article-title: Adhesion energies of 2D graphene and MoS to silicon and metal substrates publication-title: Phys. Status Solidi Appl. Mater. Sci. doi: 10.1002/pssa.201700512 – start-page: 801 year: 2020 end-page: 831 ident: CR20 article-title: 3D magnetic nanowire networks publication-title: Magnetic Nano- and Microwires doi: 10.1016/b978-0-08-102832-2.00027-x – volume: 14 start-page: 945 year: 2019 end-page: 949 ident: CR7 article-title: All-electric magnetization switching and Dzyaloshinskii–Moriya interaction in WTe /ferromagnet heterostructures publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0525-8 – year: 2018 ident: CR15 article-title: Tailoring of perpendicular magnetic anisotropy in Dy Fe thin films with hexagonal antidot lattice nanostructure publication-title: Nanomaterials doi: 10.3390/nano8040227 – volume: 4 start-page: 1 year: 2020 end-page: 14 ident: CR2 article-title: 2D materials for spintronic devices publication-title: NPJ 2D Mater. Appl. doi: 10.1038/s41699-020-0152-0 – volume: 99 start-page: 1 year: 2006 end-page: 7 ident: CR42 article-title: Ferromagnetic resonance linewidth in metallic thin films: Comparison of measurement methods publication-title: J. Appl. Phys. doi: 10.1063/1.2197087 – volume: 91 start-page: 035004 year: 2019 ident: CR8 article-title: Current-induced spin–orbit torques in ferromagnetic and antiferromagnetic systems publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.91.035004 – volume: 71 start-page: 1 year: 2005 end-page: 7 ident: CR30 article-title: Variations in the magnetic anisotropy properties of epitaxial CrO films as a function of thickness publication-title: Phys. Rev. B Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.71.094418 – volume: 6 start-page: 106591 year: 2016 end-page: 106599 ident: CR39 article-title: Extraordinary magneto-optical Kerr effect via MoS monolayer in Au/Py/MoS plasmonic cavity publication-title: RSC Adv. doi: 10.1039/C6RA21314F – volume: 90 start-page: 014420 year: 2014 ident: CR45 article-title: Gilbert damping in magnetic layered systems publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.014420 – volume: 5 start-page: 1800819 year: 2019 ident: CR19 article-title: Magnetic control of flexible thermoelectric devices based on macroscopic 3D interconnected nanowire networks publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201800819 – volume: 251 start-page: 202 year: 2002 end-page: 206 ident: CR31 article-title: Thickness-dependent magnetic properties of Ni Fe , Co Fe and Ni Fe Co thin films publication-title: J. Magn. Magn. Mater. doi: 10.1016/S0304-8853(02)00577-2 – volume: 50 start-page: aa4ea6 year: 2017 ident: CR33 article-title: What is the longitudinal magneto-optical Kerr effect? publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/1361-6463/aa4ea6 – volume: 11 start-page: 6382 year: 2020 ident: CR16 article-title: Revealing 3D magnetization of thin films with soft X-ray tomography: Magnetic singularities and topological charges publication-title: Nat. Commun. doi: 10.1038/s41467-020-20119-x – volume: 7 start-page: 41312 year: 2020 ident: CR9 article-title: Emergence of spin–orbit torques in 2D transition metal dichalcogenides: A status update publication-title: Appl. Phys. Rev. doi: 10.1063/5.0025318 – volume: 31 start-page: 193001 year: 2019 ident: CR6 article-title: Tuning spin–orbit coupling in 2D materials for spintronics: A topical review publication-title: J. Phys. Condens. Matter doi: 10.1088/1361-648X/ab04c7 – volume: 42 start-page: 301 year: 2011 end-page: 310 ident: CR26 article-title: A Raman spectroscopic study of MoS and MoO : Applications to tribological systems publication-title: Tribol. Lett. doi: 10.1007/s11249-011-9774-x – volume: 13 start-page: 2253 year: 2019 end-page: 2261 ident: CR11 article-title: Ferromagnet/two-dimensional semiconducting transition-metal dichalcogenide interface with perpendicular magnetic anisotropy publication-title: ACS Nano – year: 2019 ident: CR1 article-title: Tuning nanohole sizes in Ni hexagonal antidot arrays : Large perpendicular magnetic anisotropy for spintronic applications publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.8b02205 – volume: 10 start-page: 2843 year: 2018 end-page: 2849 ident: CR25 article-title: Electric-field control of spin–orbit torques in WS /permalloy bilayers publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b16919 – volume: 93 start-page: 054402 year: 2016 ident: CR43 article-title: Evolution of damping in ferromagnetic/nonmagnetic thin film bilayers as a function of nonmagnetic layer thickness publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.054402 – ident: CR37 – ident: CR53 – volume: 69 start-page: 155 year: 1991 end-page: 157 ident: CR32 article-title: Overall rates of electrode reactions. Faraday’s laws of electrolysis publication-title: Trans. Inst. Met. Finish. doi: 10.1080/00202967.1991.11870914 – volume: 73 start-page: 155 year: 1948 end-page: 161 ident: CR41 article-title: On the theory of ferromagnetic resonance absorption publication-title: Phys. Rev. doi: 10.1103/PhysRev.73.155 – volume: 4 start-page: 9294 year: 2019 end-page: 9300 ident: CR40 article-title: Site-selective integration of MoS flakes on nanopores by means of electrophoretic deposition publication-title: ACS Omega doi: 10.1021/acsomega.9b00965 – volume: 1 start-page: 300 year: 2016 end-page: 305 ident: CR50 article-title: Control of spin–orbit torques through crystal symmetry in WTe /ferromagnet bilayers publication-title: Nat. Phys. – volume: 16 start-page: 7514 year: 2016 end-page: 7520 ident: CR51 article-title: Strong Rashba–Edelstein effect-induced spin–orbit torques in monolayer transition metal dichalcogenide/ferromagnet bilayers publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03300 – volume: 69 start-page: 158 year: 1991 end-page: 162 ident: CR34 article-title: Applications of Faraday’s laws of electrolysis in metal finishing publication-title: Trans. Inst. Met. Finish. doi: 10.1080/00202967.1991.11870915 – volume: 514 start-page: 167206 year: 2020 ident: CR13 article-title: Interfacial magnetic anisotropy in Py/MoS bilayer publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2020.167206 – volume: 128 start-page: 114620 year: 2021 ident: CR14 article-title: Magnetic anisotropy in Co/phosphorene heterostructure publication-title: Phys. E Low-Dimens. Syst. Nanostruct. doi: 10.1016/j.physe.2021.114620 – volume: 120 start-page: 7514 year: 2016 end-page: 7520 ident: CR24 article-title: Perspective: Interface generation of spin–orbit torques publication-title: J. Appl. Phys. doi: 10.1063/1.4967391 – volume: 111 start-page: 106601 year: 2013 ident: CR47 article-title: Damping in yttrium iron garnet nanoscale films capped by platinum publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.106601 – volume: 4 start-page: 032302 year: 2016 ident: CR52 article-title: Research update: Spin transfer torques in permalloy on monolayer MoS publication-title: APL Mater. doi: 10.1063/1.4943076 – volume: 5 start-page: eaav2782 year: 2019 ident: CR18 article-title: Making flexible spin caloritronic devices with interconnected nanowire networks publication-title: Sci. Adv. doi: 10.1126/sciadv.aav2782 – volume: 112 start-page: 106602 year: 2014 ident: CR48 article-title: Spin pumping and inverse spin Hall effect in platinum: The essential role of spin-memory loss at metallic interfaces publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.106602 – volume: 52 start-page: 364002 year: 2019 ident: CR22 article-title: Adhesion properties of 2D materials publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/1361-6463/ab27ad – volume: 265 start-page: 127454 year: 2020 ident: CR38 article-title: Electrical and magneto-optical characterization of Py/MoS bilayer: A facile growth of magnetic-metal/semiconductor heterostructure publication-title: Mater. Lett. doi: 10.1016/j.matlet.2020.127454 – volume: 691 start-page: 841 year: 2017 end-page: 859 ident: CR21 article-title: Electrodeposition of Ni–Fe alloys, composites, and nano coatings—A review publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.08.329 – volume: 92 start-page: 021003 year: 2020 ident: CR4 article-title: Colloquium: Spintronics in graphene and other two-dimensional materials publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.92.021003 – volume: 2 start-page: 274 year: 2019 end-page: 283 ident: CR3 article-title: Two-dimensional spintronics for low-power electronics publication-title: Nat. Electron. doi: 10.1038/s41928-019-0273-7 – volume: 81 start-page: 212409 year: 2010 ident: CR29 article-title: Spin–orbit coupling induced anisotropy effects in bimetallic antiferromagnets: A route towards antiferromagnetic spintronics publication-title: Phys. Rev. B Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.81.212409 – volume: 328 start-page: 381 year: 2006 end-page: 384 ident: CR35 article-title: Influence of grain size on magnetic properties of electroplated NiFe publication-title: Key Eng. Mater. doi: 10.4028/www.scientific.net/KEM.326-328.381 – volume: 73 start-page: 144424 year: 2006 ident: CR46 article-title: Two-magnon scattering and viscous Gilbert damping in ultrathin ferromagnets publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.144424 – volume: 5 start-page: 031107 year: 2018 ident: CR10 article-title: Recent advances in spin–orbit torques: Moving towards device applications publication-title: Appl. Phys. Rev. doi: 10.1063/1.5041793 – volume: 691 start-page: 841 year: 2017 ident: 14060_CR21 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.08.329 – volume: 55 start-page: 107 year: 2010 ident: 14060_CR17 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2009.07.001 – volume: 4 start-page: 9294 year: 2019 ident: 14060_CR40 publication-title: ACS Omega doi: 10.1021/acsomega.9b00965 – volume: 42 start-page: 301 year: 2011 ident: 14060_CR26 publication-title: Tribol. Lett. doi: 10.1007/s11249-011-9774-x – volume: 59 start-page: 4699 year: 1999 ident: 14060_CR28 publication-title: Phys. Rev. B Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.59.4699 – volume: 7 start-page: 41312 year: 2020 ident: 14060_CR9 publication-title: Appl. Phys. Rev. doi: 10.1063/5.0025318 – volume: 31 start-page: 485708 year: 2020 ident: 14060_CR5 publication-title: Nanotechnology doi: 10.1088/1361-6528/abb109 – year: 2018 ident: 14060_CR15 publication-title: Nanomaterials doi: 10.3390/nano8040227 – volume: 16 start-page: 7514 year: 2016 ident: 14060_CR51 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03300 – volume: 11 start-page: 6382 year: 2020 ident: 14060_CR16 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20119-x – volume: 265 start-page: 127454 year: 2020 ident: 14060_CR38 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2020.127454 – volume: 13 start-page: 2253 year: 2019 ident: 14060_CR11 publication-title: ACS Nano – volume: 73 start-page: 144424 year: 2006 ident: 14060_CR46 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.144424 – volume: 5 start-page: eaav2782 year: 2019 ident: 14060_CR18 publication-title: Sci. Adv. doi: 10.1126/sciadv.aav2782 – volume: 93 start-page: 054402 year: 2016 ident: 14060_CR43 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.054402 – volume: 6 start-page: 106591 year: 2016 ident: 14060_CR39 publication-title: RSC Adv. doi: 10.1039/C6RA21314F – volume: 4 start-page: 032302 year: 2016 ident: 14060_CR52 publication-title: APL Mater. doi: 10.1063/1.4943076 – volume: 91 start-page: 035004 year: 2019 ident: 14060_CR8 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.91.035004 – volume: 111 start-page: 106601 year: 2013 ident: 14060_CR47 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.106601 – start-page: 801 volume-title: Magnetic Nano- and Microwires year: 2020 ident: 14060_CR20 doi: 10.1016/b978-0-08-102832-2.00027-x – volume: 251 start-page: 202 year: 2002 ident: 14060_CR31 publication-title: J. Magn. Magn. Mater. doi: 10.1016/S0304-8853(02)00577-2 – volume: 121 start-page: 037205 year: 2018 ident: 14060_CR27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.037205 – volume: 69 start-page: 155 year: 1991 ident: 14060_CR32 publication-title: Trans. Inst. Met. Finish. doi: 10.1080/00202967.1991.11870914 – volume: 66 start-page: 224403 year: 2002 ident: 14060_CR49 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.66.224403 – volume: 1 start-page: 300 year: 2016 ident: 14060_CR50 publication-title: Nat. Phys. – volume: 31 start-page: 193001 year: 2019 ident: 14060_CR6 publication-title: J. Phys. Condens. Matter doi: 10.1088/1361-648X/ab04c7 – volume: 4 start-page: 1 year: 2020 ident: 14060_CR2 publication-title: NPJ 2D Mater. Appl. doi: 10.1038/s41699-020-0152-0 – volume: 128 start-page: 114620 year: 2021 ident: 14060_CR14 publication-title: Phys. E Low-Dimens. Syst. Nanostruct. doi: 10.1016/j.physe.2021.114620 – volume: 10 start-page: 218 year: 2016 ident: 14060_CR12 publication-title: Phys. Status Solidi Rapid Res. Lett. doi: 10.1002/pssr.201510283 – ident: 14060_CR37 doi: 10.1117/3.832717.Ch3 – year: 2019 ident: 14060_CR1 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.8b02205 – ident: 14060_CR53 – volume: 120 start-page: 7514 year: 2016 ident: 14060_CR24 publication-title: J. Appl. Phys. doi: 10.1063/1.4967391 – volume: 52 start-page: 364002 year: 2019 ident: 14060_CR22 publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/1361-6463/ab27ad – volume: 14 start-page: 945 year: 2019 ident: 14060_CR7 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0525-8 – volume: 514 start-page: 167206 year: 2020 ident: 14060_CR13 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2020.167206 – volume: 99 start-page: 1 year: 2006 ident: 14060_CR42 publication-title: J. Appl. Phys. doi: 10.1063/1.2197087 – volume: 71 start-page: 1 year: 2005 ident: 14060_CR30 publication-title: Phys. Rev. B Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.71.094418 – volume: 90 start-page: 014420 year: 2014 ident: 14060_CR45 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.014420 – volume: 5 start-page: 031107 year: 2018 ident: 14060_CR10 publication-title: Appl. Phys. Rev. doi: 10.1063/1.5041793 – volume: 112 start-page: 106602 year: 2014 ident: 14060_CR48 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.106602 – volume: 215 start-page: 1700512 year: 2018 ident: 14060_CR23 publication-title: Phys. Status Solidi Appl. Mater. Sci. doi: 10.1002/pssa.201700512 – volume: 92 start-page: 021003 year: 2020 ident: 14060_CR4 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.92.021003 – volume: 328 start-page: 381 year: 2006 ident: 14060_CR35 publication-title: Key Eng. Mater. doi: 10.4028/www.scientific.net/KEM.326-328.381 – volume: 69 start-page: 158 year: 1991 ident: 14060_CR34 publication-title: Trans. Inst. Met. Finish. doi: 10.1080/00202967.1991.11870915 – volume: 10 start-page: 2843 year: 2018 ident: 14060_CR25 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b16919 – volume: 50 start-page: aa4ea6 year: 2017 ident: 14060_CR33 publication-title: J. Phys. D. Appl. Phys. doi: 10.1088/1361-6463/aa4ea6 – volume: 5 start-page: 1800819 year: 2019 ident: 14060_CR19 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201800819 – volume: 73 start-page: 155 year: 1948 ident: 14060_CR41 publication-title: Phys. Rev. doi: 10.1103/PhysRev.73.155 – volume: 2 start-page: 274 year: 2019 ident: 14060_CR3 publication-title: Nat. Electron. doi: 10.1038/s41928-019-0273-7 – volume: 81 start-page: 212409 year: 2010 ident: 14060_CR29 publication-title: Phys. Rev. B Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.81.212409 – volume: 7 start-page: 17 year: 2017 ident: 14060_CR36 publication-title: Int. J. Electromagn. Appl. – volume: 88 start-page: 117601 year: 2002 ident: 14060_CR44 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.117601 |
SSID | ssj0000529419 |
Score | 2.3646498 |
Snippet | We demonstrate a nanostructure layer made of Ni
80
Fe
20
(permalloy:Py) thin film conjugated MoS
2
nano-flakes. Layers are made based on a single-step... We demonstrate a nanostructure layer made of Ni80Fe20 (permalloy:Py) thin film conjugated MoS2 nano-flakes. Layers are made based on a single-step... Abstract We demonstrate a nanostructure layer made of Ni80Fe20 (permalloy:Py) thin film conjugated MoS2 nano-flakes. Layers are made based on a single-step... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 9809 |
SubjectTerms | 639/166 639/301 639/766 Anisotropy Electrochemistry Humanities and Social Sciences Magnetic thin films Molybdenum disulfide multidisciplinary Raman spectroscopy Science Science (multidisciplinary) Spectrum analysis Thin films |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9RAEB60IvhSbFVMrWULvmnoJdlfeRIVjyJcQbRwb0uy2bSBdnOaK8X_3pnN3tUULPd22dwlO7M73-zMfAPwThN7tajQLXEtT7nVsxTtOlUs1wotbiOcpOLkxZk8PefflmIZD9yGmFa52RPDRt30ls7IT3JCtgWZv4-rXyl1jaLoamyh8RieEHUZpXSppdqesVAUi2dlrJWZFfpkwB-gmjL0wNCzkLP0dmKPAm3_BGvez5S8Fy4NVmj-HHYjfGSfRnnvwSPn9-Hp2FDyzwv4vqguPJUlsrNu7tj6svOs7a6uB0ap4z2dC7BF_yNnvvL9SB17g_42Q-TKhlXnx4Y47J-o9ks4n3_9-eU0jU0TUisytU5r3jp0kIVUFDDMmzxDXdGqKkptbcNb9I-sLirKhUGk57SVKBsriLjP5sKq4hXs-N6718BK10j8oIx5y_MZ7up140SlG0TlstZ5Atlm6oyNjOLU2OLKhMh2oc043Qan24TpNrcJvN_esxr5NB4c_Zkksh1JXNjhi_73hYlLy9S11cpJBKK25BxfnutaOt7WRH6fKZfA4UaeJi7QwdypUwLH28u4tCheUnnX34QxUgiiqE9ATfRg8kDTK767DCTdJUJnxJoJfNhozN2f__-FDx5-1jfwLCfdpd5JxSHsoJ64twiK1vVR0Py_pPELCA priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB9qRfBF_MRolRV80-hls195EFHxKMIVRA_6tmQ3mzZw3dTeldr_3pl8nKZUn-TeLhtyOx-Z39zs_AbgpSH2alliWhJqkQpvZinGdepYdhojbiWDoubkxYHaX4ovh_JwB8ZxR4MA19emdjRPanm2evPzx-V7dPh3fcu4ebvGIESNYphWYbqgZunFDbiJkUmToy4GuN9zffNCZMXQO3P9rZP41NH4T7Dn1ZOTV8qnXVSa34U7A5xkH3r934OdEO_DrX7A5OUD-LoojyK1KbKDZh7Y5riJrG5WJ2tGR8lb-p-ALdpvnMUytj2V7Dnm3wyRLFufNrEfkMP-qHI_hOX88_dP--kwRCH1MtOb1Ik6YMIslaYCIq94hrZjdJkXxvtK1JgveZOXdDYGkV8wXqGuvCQiP8-l1_kj2I1tDI-BFaFS-EGdi1rwGb7lXRVkaSpE6coZnkA2is76gWGcBl2sbFfpzo3txW1R3LYTt71I4NX2ntOeX-Ofqz-SRrYriRu7-6I9O7KDq1nnvNFBITD1hRC4eWGcCqJ2RIaf6ZDA3qhPO9qb5ZQ45YSuEnixvYyuRvWTMob2vFujpCTK-gT0xA4mP2h6JTbHHWl3gVAasWcCr0eL-f3wv2_4yf_Y8FO4zcnCaeJSvge7aE3hGUKpjXve-ccvobUbsQ priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ha9UwED_mRPDLcFOxc44M_KbF1zRJ04_68DGENxAd7Fto0nQrbOmwT4b_vXdp-7RDBem3NqFNcun9Lnf3O4DXmtirZYVmiW9EKpxepKjXKWPZFqhxa-kVJSevz9Tpufh0IS92gE-5MDFoP1Jaxt_0FB32rkdFQ8lgaDqhSaAW6d0DeEjU7STVS7XcnquQ50pk5Zgfs8j1H7rOdFCk6p_hy_vRkfdcpFHzrJ7A3ggZ2fvhI_dhx4cDeDQUkfzxFD6vq8tAqYjsrF15trlqA2va65ueUbh4R2cBbN194SxUoRvoYnHcPUO0yvrbNgxFcNhvnuxncL76-HV5mo6FElIns2KTWtF4NIqlKshJyGueoXzoospL7VwtGrSJnM4rin9BdOe1U7geThJZn-PSFflz2A1d8C-Alb5WeOG6ikbwBf7Jbe1lpWtE4spqnkA2TZ1xI4s4FbO4NtGbnWszTLfB6TZxus1dAm-2fW4HDo1_tv5AK7JtSfzX8Ub37dKM8mCsdbrwCsGnK4XAwQttlReNJcL7rPAJHE3racZN2RtOxlFOCCqBk-1j3E7kI6mC777HNkpKoqVPoJjJweyD5k9CexWJuUuEy4gvE3g7Scyvl_99wIf_1_wlPOYky1Q_KT-CXZQb_wqB0cYex53wE_MkCUI priority: 102 providerName: Springer Nature |
Title | Magnetic NiFe thin films composing MoS2 nanostructures for spintronic application |
URI | https://link.springer.com/article/10.1038/s41598-022-14060-w https://www.proquest.com/docview/2675834155 https://www.proquest.com/docview/2676552989 https://pubmed.ncbi.nlm.nih.gov/PMC9192644 https://doaj.org/article/bbc87e6932c944eeb48b6e4fb039117e |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED-2jsFeRvfFvHZBg71tprGtLz-moaEEErZ1hbwJS5ZXQysXklL23-_OdrK4sO1lGGywZSyfTr7f-XS_A_ioib1aFOiW-IrH3OlxjHadMpatQotbCi8pOXmxlOeXfL4Sq71SX7QmrKMH7gR3Yq3TykuEGS7n3HvLtZWeV5aozRPl6euLNm_PmepYvdOcJ3mfJTPO9MkaLRVlk6HvhT6FHMf3A0vUEvYPUObDNZIPAqWt_ZkdwvMeOLJJ1-EX8MiHl_C0KyX58xV8XRQ_AiUksmU982xzVQdW1dc3a0aLxhv6I8AWzUXKQhGajjT2Dj1thpiVrW_r0JXCYXvx7NdwOTv7Pj2P-3IJsROJ2sSWVyieTEhFocK0TBPUEq2KLNfOlbxCz8jprKBVMIjxvHYSR8UJouxzqXAqewMHoQn-LbDclxI3HF1e8XSM33NbelHoEvG4tDqNINmKzrieS5xKWlybNqadadOJ26C4TStucx_Bp909tx2Txl9bn9KI7FoSC3Z7AnXD9Lph_qUbERxvx9P0U3NtUnKRMsJREXzYXcZJRZGSIvjmrm0jhSBy-gjUQA8GHRpeCfVVS8-dI2hGlBnB563G_H74n1_43f944SN4lpKGU22l7BgOUJv8ewRNGzuCx2qlRvBkMplfzPF4erb88g3PTuV01M4d3C-4_gWzrxnR |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEE8RWsBIcIKom8R2nANCFLra0u6KRyv1ZhLHaSO1zsJuteqf4jcyk8eWVKK3am-Jk3XGY8_3eTwzAK8VZa8WKdISW3CfGzX00a5TxHIWo8XNhZUUnDyZyvEh_3IkjtbgTxcLQ8cquzWxXqjzytAe-VZIyDYi8_dh9sunqlHkXe1KaDRqsWcvlkjZ5u93P-P4vgnD0c7Bp7HfVhXwjQjihZ_xwiKDFDImj1qYhwEKU8VplChjcl4ggTAqSumwCEIhq4zEzhtBme1MKEwc4XtvwTqPkMoMYH17Z_r1-2pXh_xmPEja6JxhpLbm2GWKYkPOh1xGDv1lzwLWhQJ66Pbq2cwrDtra7o3uw70WsLKPjYY9gDXrHsLtpoTlxSP4NkmPHQVCsmk5smxxUjpWlKdnc0aH1SvaiWCT6kfIXOqqJlntOTJ8hliZzWela0rwsH_86I_h8EYE-gQGrnL2KbDE5hJ_qFW84OEQ7UiWW5GqHHmAzFToQdCJTps2hzmV0jjVtS89UroRt0Zx61rceunB29UzsyaDx7Wtt2lEVi0p-3Z9ofp9rNvJrLPMqNhKhL4m4Rw_nqtMWl5klG4_iK0Hm9146nZJmOtLBfbg1eo2Tmby0KTOVud1GykEJcX3IO7pQa9D_TuuPKnTgicI1hHdevCu05jLP___Bz-7vq8v4c74YLKv93enextwNyQ9pspN0SYMUGfsc4Rki-xFOw8Y_LzpqfcXeCJH9w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9NADLfGEIgXxKcIG3BI8ARRm-S-8oAQMKqN0QoEk_p2Sy6XLdJIOtKp2r_GX4edj45MYm9T35pLe-ezz_bZ_hnglSb0apGgW-Jy7nOrxz7qdapYThVq3Ew4ScXJ05ncPeBf5mK-AX_6WhhKq-zPxOagzipLd-SjkCzbiNTfKO_SIr7tTN4vTn3qIEWR1r6dRssi--58he5b_W5vB_f6dRhOPv_8tOt3HQZ8KwK19FOeO_QmhVQUXQuzMEDCapVEsbY24zk6E1ZHCSWOoFnktJW4ECsI5c6GwqoIf_cG3FSRCEjG1Fyt73cogsaDuKvTGUd6VOPkqZ4NvT_0auTYXw10YdMyYGDnXs7SvBSqbTTg5B7c7UxX9qHltfuw4coHcKttZnn-EL5Pk6OSSiLZrJg4tjwuSpYXJ79qRmnrFd1JsGn1I2RlUlYtbO0Z-voMrWZWL4qybcbD_omoP4KDayHnY9gsq9I9ARa7TOIH-YvnPByjRkkzJxKdoUcgUx16EPSkM7ZDM6emGiemiapH2rTkNkhu05DbrDx4s35n0WJ5XDn6I-3IeiThcDdfVL-PTCfWJk2tVk6iEWxjznHxXKfS8Twl4P1AOQ-2-_003eFQmwtW9uDl-jGKNcVqktJVZ80YKQTB43ugBnwwmNDwSVkcNwDhMZrtaOd68LbnmIs___-Cn1491xdwGwXOfN2b7W_BnZDYmFo4RduwiSzjnqFttkyfN0LA4PC6pe4vIglKxw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+NiFe+thin+films+composing+MoS2+nanostructures+for+spintronic+application&rft.jtitle=Scientific+reports&rft.au=Mahdi+Yousef+Vand&rft.au=Loghman+Jamilpanah&rft.au=Mohammad+Zare&rft.au=Seyed+Majid+Mohseni&rft.date=2022-06-13&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1038%2Fs41598-022-14060-w&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bbc87e6932c944eeb48b6e4fb039117e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |