Minimising multi-centre radiomics variability through image normalisation: a pilot study

Radiomics is an emerging technique for the quantification of imaging data that has recently shown great promise for deeper phenotyping of cardiovascular disease. Thus far, the technique has been mostly applied in single-centre studies. However, one of the main difficulties in multi-centre imaging st...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; pp. 12532 - 10
Main Authors Campello, Víctor M., Martín-Isla, Carlos, Izquierdo, Cristian, Guala, Andrea, Palomares, José F. Rodríguez, Viladés, David, Descalzo, Martín L., Karakas, Mahir, Çavuş, Ersin, Raisi-Estabragh, Zahra, Petersen, Steffen E., Escalera, Sergio, Seguí, Santi, Lekadir, Karim
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 22.07.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Radiomics is an emerging technique for the quantification of imaging data that has recently shown great promise for deeper phenotyping of cardiovascular disease. Thus far, the technique has been mostly applied in single-centre studies. However, one of the main difficulties in multi-centre imaging studies is the inherent variability of image characteristics due to centre differences. In this paper, a comprehensive analysis of radiomics variability under several image- and feature-based normalisation techniques was conducted using a multi-centre cardiovascular magnetic resonance dataset. 218 subjects divided into healthy (n = 112) and hypertrophic cardiomyopathy (n = 106, HCM) groups from five different centres were considered. First and second order texture radiomic features were extracted from three regions of interest, namely the left and right ventricular cavities and the left ventricular myocardium. Two methods were used to assess features’ variability. First, feature distributions were compared across centres to obtain a distribution similarity index. Second, two classification tasks were proposed to assess: (1) the amount of centre-related information encoded in normalised features (centre identification) and (2) the generalisation ability for a classification model when trained on these features (healthy versus HCM classification). The results showed that the feature-based harmonisation technique ComBat is able to remove the variability introduced by centre information from radiomic features, at the expense of slightly degrading classification performance. Piecewise linear histogram matching normalisation gave features with greater generalisation ability for classification ( balanced accuracy in between 0.78 ± 0.08 and 0.79 ± 0.09). Models trained with features from images without normalisation showed the worst performance overall ( balanced accuracy in between 0.45 ± 0.28 and 0.60 ± 0.22). In conclusion, centre-related information removal did not imply good generalisation ability for classification.
AbstractList Radiomics is an emerging technique for the quantification of imaging data that has recently shown great promise for deeper phenotyping of cardiovascular disease. Thus far, the technique has been mostly applied in single-centre studies. However, one of the main difficulties in multi-centre imaging studies is the inherent variability of image characteristics due to centre differences. In this paper, a comprehensive analysis of radiomics variability under several image- and feature-based normalisation techniques was conducted using a multi-centre cardiovascular magnetic resonance dataset. 218 subjects divided into healthy (n = 112) and hypertrophic cardiomyopathy (n = 106, HCM) groups from five different centres were considered. First and second order texture radiomic features were extracted from three regions of interest, namely the left and right ventricular cavities and the left ventricular myocardium. Two methods were used to assess features’ variability. First, feature distributions were compared across centres to obtain a distribution similarity index. Second, two classification tasks were proposed to assess: (1) the amount of centre-related information encoded in normalised features (centre identification) and (2) the generalisation ability for a classification model when trained on these features (healthy versus HCM classification). The results showed that the feature-based harmonisation technique ComBat is able to remove the variability introduced by centre information from radiomic features, at the expense of slightly degrading classification performance. Piecewise linear histogram matching normalisation gave features with greater generalisation ability for classification ( balanced accuracy in between 0.78 ± 0.08 and 0.79 ± 0.09). Models trained with features from images without normalisation showed the worst performance overall ( balanced accuracy in between 0.45 ± 0.28 and 0.60 ± 0.22). In conclusion, centre-related information removal did not imply good generalisation ability for classification.
Abstract Radiomics is an emerging technique for the quantification of imaging data that has recently shown great promise for deeper phenotyping of cardiovascular disease. Thus far, the technique has been mostly applied in single-centre studies. However, one of the main difficulties in multi-centre imaging studies is the inherent variability of image characteristics due to centre differences. In this paper, a comprehensive analysis of radiomics variability under several image- and feature-based normalisation techniques was conducted using a multi-centre cardiovascular magnetic resonance dataset. 218 subjects divided into healthy (n = 112) and hypertrophic cardiomyopathy (n = 106, HCM) groups from five different centres were considered. First and second order texture radiomic features were extracted from three regions of interest, namely the left and right ventricular cavities and the left ventricular myocardium. Two methods were used to assess features’ variability. First, feature distributions were compared across centres to obtain a distribution similarity index. Second, two classification tasks were proposed to assess: (1) the amount of centre-related information encoded in normalised features (centre identification) and (2) the generalisation ability for a classification model when trained on these features (healthy versus HCM classification). The results showed that the feature-based harmonisation technique ComBat is able to remove the variability introduced by centre information from radiomic features, at the expense of slightly degrading classification performance. Piecewise linear histogram matching normalisation gave features with greater generalisation ability for classification ( balanced accuracy in between 0.78 ± 0.08 and 0.79 ± 0.09). Models trained with features from images without normalisation showed the worst performance overall ( balanced accuracy in between 0.45 ± 0.28 and 0.60 ± 0.22). In conclusion, centre-related information removal did not imply good generalisation ability for classification.
Radiomics is an emerging technique for the quantification of imaging data that has recently shown great promise for deeper phenotyping of cardiovascular disease. Thus far, the technique has been mostly applied in single-centre studies. However, one of the main difficulties in multi-centre imaging studies is the inherent variability of image characteristics due to centre differences. In this paper, a comprehensive analysis of radiomics variability under several image- and feature-based normalisation techniques was conducted using a multi-centre cardiovascular magnetic resonance dataset. 218 subjects divided into healthy (n = 112) and hypertrophic cardiomyopathy (n = 106, HCM) groups from five different centres were considered. First and second order texture radiomic features were extracted from three regions of interest, namely the left and right ventricular cavities and the left ventricular myocardium. Two methods were used to assess features' variability. First, feature distributions were compared across centres to obtain a distribution similarity index. Second, two classification tasks were proposed to assess: (1) the amount of centre-related information encoded in normalised features (centre identification) and (2) the generalisation ability for a classification model when trained on these features (healthy versus HCM classification). The results showed that the feature-based harmonisation technique ComBat is able to remove the variability introduced by centre information from radiomic features, at the expense of slightly degrading classification performance. Piecewise linear histogram matching normalisation gave features with greater generalisation ability for classification ( balanced accuracy in between 0.78 ± 0.08 and 0.79 ± 0.09). Models trained with features from images without normalisation showed the worst performance overall ( balanced accuracy in between 0.45 ± 0.28 and 0.60 ± 0.22). In conclusion, centre-related information removal did not imply good generalisation ability for classification.Radiomics is an emerging technique for the quantification of imaging data that has recently shown great promise for deeper phenotyping of cardiovascular disease. Thus far, the technique has been mostly applied in single-centre studies. However, one of the main difficulties in multi-centre imaging studies is the inherent variability of image characteristics due to centre differences. In this paper, a comprehensive analysis of radiomics variability under several image- and feature-based normalisation techniques was conducted using a multi-centre cardiovascular magnetic resonance dataset. 218 subjects divided into healthy (n = 112) and hypertrophic cardiomyopathy (n = 106, HCM) groups from five different centres were considered. First and second order texture radiomic features were extracted from three regions of interest, namely the left and right ventricular cavities and the left ventricular myocardium. Two methods were used to assess features' variability. First, feature distributions were compared across centres to obtain a distribution similarity index. Second, two classification tasks were proposed to assess: (1) the amount of centre-related information encoded in normalised features (centre identification) and (2) the generalisation ability for a classification model when trained on these features (healthy versus HCM classification). The results showed that the feature-based harmonisation technique ComBat is able to remove the variability introduced by centre information from radiomic features, at the expense of slightly degrading classification performance. Piecewise linear histogram matching normalisation gave features with greater generalisation ability for classification ( balanced accuracy in between 0.78 ± 0.08 and 0.79 ± 0.09). Models trained with features from images without normalisation showed the worst performance overall ( balanced accuracy in between 0.45 ± 0.28 and 0.60 ± 0.22). In conclusion, centre-related information removal did not imply good generalisation ability for classification.
Radiomics is an emerging technique for the quantification of imaging data that has recently shown great promise for deeper phenotyping of cardiovascular disease. Thus far, the technique has been mostly applied in single-centre studies. However, one of the main difficulties in multi-centre imaging studies is the inherent variability of image characteristics due to centre differences. In this paper, a comprehensive analysis of radiomics variability under several image- and feature-based normalisation techniques was conducted using a multi-centre cardiovascular magnetic resonance dataset. 218 subjects divided into healthy (n = 112) and hypertrophic cardiomyopathy (n = 106, HCM) groups from five different centres were considered. First and second order texture radiomic features were extracted from three regions of interest, namely the left and right ventricular cavities and the left ventricular myocardium. Two methods were used to assess features’ variability. First, feature distributions were compared across centres to obtain a distribution similarity index. Second, two classification tasks were proposed to assess: (1) the amount of centre-related information encoded in normalised features (centre identification) and (2) the generalisation ability for a classification model when trained on these features (healthy versus HCM classification). The results showed that the feature-based harmonisation technique ComBat is able to remove the variability introduced by centre information from radiomic features, at the expense of slightly degrading classification performance. Piecewise linear histogram matching normalisation gave features with greater generalisation ability for classification ( balanced accuracy in between 0.78 ± 0.08 and 0.79 ± 0.09). Models trained with features from images without normalisation showed the worst performance overall ( balanced accuracy in between 0.45 ± 0.28 and 0.60 ± 0.22). In conclusion, centre-related information removal did not imply good generalisation ability for classification.
ArticleNumber 12532
Author Martín-Isla, Carlos
Palomares, José F. Rodríguez
Viladés, David
Descalzo, Martín L.
Escalera, Sergio
Raisi-Estabragh, Zahra
Guala, Andrea
Petersen, Steffen E.
Karakas, Mahir
Campello, Víctor M.
Izquierdo, Cristian
Çavuş, Ersin
Lekadir, Karim
Seguí, Santi
Author_xml – sequence: 1
  givenname: Víctor M.
  surname: Campello
  fullname: Campello, Víctor M.
  email: victor.campello@ub.edu
  organization: Artificial Intelligence in Medicine Lab (BCN-AIM)
– sequence: 2
  givenname: Carlos
  surname: Martín-Isla
  fullname: Martín-Isla, Carlos
  organization: Artificial Intelligence in Medicine Lab (BCN-AIM)
– sequence: 3
  givenname: Cristian
  surname: Izquierdo
  fullname: Izquierdo, Cristian
  organization: Artificial Intelligence in Medicine Lab (BCN-AIM)
– sequence: 4
  givenname: Andrea
  surname: Guala
  fullname: Guala, Andrea
  organization: Vall d’Hebron Institut de Recerca (VHIR), CIBER-CV, Instituto de Salud Carlos III
– sequence: 5
  givenname: José F. Rodríguez
  surname: Palomares
  fullname: Palomares, José F. Rodríguez
  organization: Vall d’Hebron Institut de Recerca (VHIR), CIBER-CV, Instituto de Salud Carlos III, Department of Cardiology, Hospital Universitari Vall d’Hebron, Department of Medicine, Universitat Autònoma de Barcelona
– sequence: 6
  givenname: David
  surname: Viladés
  fullname: Viladés, David
  organization: CIBER-CV, Instituto de Salud Carlos III, Cardiac Imaging Unit, Cardiology Service, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona
– sequence: 7
  givenname: Martín L.
  surname: Descalzo
  fullname: Descalzo, Martín L.
  organization: Cardiac Imaging Unit, Cardiology Service, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona
– sequence: 8
  givenname: Mahir
  surname: Karakas
  fullname: Karakas, Mahir
  organization: Department of Intensive Care Medicine, University Medical Center, Hamburg Eppendorf
– sequence: 9
  givenname: Ersin
  surname: Çavuş
  fullname: Çavuş, Ersin
  organization: Department of Cardiology, University Heart and Vascular Center Hamburg, DZHK (German Center for Cardiovascular Research)
– sequence: 10
  givenname: Zahra
  surname: Raisi-Estabragh
  fullname: Raisi-Estabragh, Zahra
  organization: William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University London, Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust
– sequence: 11
  givenname: Steffen E.
  surname: Petersen
  fullname: Petersen, Steffen E.
  organization: William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University London, Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, Health Data Research UK, Alan Turing Institute
– sequence: 12
  givenname: Sergio
  surname: Escalera
  fullname: Escalera, Sergio
  organization: Artificial Intelligence in Medicine Lab (BCN-AIM), Computer Vision Center, Universitat Autonoma de Barcelona
– sequence: 13
  givenname: Santi
  surname: Seguí
  fullname: Seguí, Santi
  organization: Artificial Intelligence in Medicine Lab (BCN-AIM)
– sequence: 14
  givenname: Karim
  surname: Lekadir
  fullname: Lekadir, Karim
  organization: Artificial Intelligence in Medicine Lab (BCN-AIM)
BookMark eNp9Uk1v1DAUjFARLaV_gFMkLlxS_BE7MQckVEGpVMQFJG7Wi2NnvXLsxXYq7b-vd1ME7aG-2HpvZvzeaF5XJz54XVVvMbrEiPYfUouZ6BtESIM57ViDXlRnBLWsIZSQk__ep9VFSltUDiOixeJVdUpZzwUm7Kz6_d16O9tk_VTPi8u2UdrnqOsIow2zVam-g2hhsM7mfZ03MSzTprYzTLr2Ic7gbIJsg_9YQ72zLuQ65WXcv6leGnBJXzzc59Wvr19-Xn1rbn9c31x9vm0Uw11uBmQIVtxQIggBgwZq6MB1qyloRIAbPXIYkRZ6ZIgzhkDxVo24lExZkNDz6mbVHQNs5S6WyeJeBrDyWAhxkhCzVU5LzAcGA-kF61ErKO9HNOhRGY0MCNUetD6tWrtlmEvn4AS4R6KPO95u5BTupKCoY5wVgfcPAjH8WXTKslirtHPgdViSJFzQrsM9xgX67gl0G5boi1UHFBGYItEWVL-iVAwpRW2ksvlod_nfOomRPKRBrmmQJQ3ymAaJCpU8of7d41kSXUmpgP2k47-pnmHdA7sryck
CitedBy_id crossref_primary_10_1097_RLI_0000000000000970
crossref_primary_10_3390_diagnostics14222473
crossref_primary_10_1161_CIRCIMAGING_123_015490
crossref_primary_10_1016_j_neuroimage_2023_120125
crossref_primary_10_1088_2057_1976_ace4ce
crossref_primary_10_1136_bmj_2024_081554
crossref_primary_10_3390_cancers15153839
crossref_primary_10_1007_s00330_023_10311_0
crossref_primary_10_3389_fmed_2024_1407235
crossref_primary_10_1016_j_rcro_2023_100004
crossref_primary_10_3390_diagnostics13233541
crossref_primary_10_1038_s42256_024_00807_9
crossref_primary_10_3389_fcvm_2022_1016032
Cites_doi 10.1038/ncomms5006
10.1038/s41598-021-83593-3
10.1088/1361-6560/ab2f44
10.1016/j.ijrobp.2018.05.053
10.7717/peerj.453
10.1002/(sici)1522-2594(199912)42:6<1072::aid-mrm11>3.0.co;2-m
10.1093/biostatistics/kxj037
10.1158/0008-5472.can-17-0339
10.1038/s41598-018-28895-9
10.1088/1361-6560/aba798
10.1016/j.neuroimage.2016.02.036
10.1016/j.ejmp.2020.02.007
10.1007/s00330-020-07284-9
10.1109/TMI.2021.3090082
10.1023/A:1010933404324
10.1088/0031-9155/61/13/r150
10.1148/radiol.2020191145
10.1109/trpms.2019.2893860
10.1148/radiol.2017170226
10.1117/12.2513089
10.1038/s41598-020-69298-z
10.1007/978-3-319-75541-0_9
10.3389/fcvm.2020.586236
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-022-16375-0
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 10
ExternalDocumentID oai_doaj_org_article_16b5ab28958049368d0bedcfe0fa9c42
PMC9307565
10_1038_s41598_022_16375_0
GrantInformation_xml – fundername: National Institute for Health Research
  funderid: http://dx.doi.org/10.13039/501100000272
– fundername: European Regional Development Fund
  funderid: http://dx.doi.org/10.13039/501100008530
– fundername: Ministerio de Ciencia e Innovación
  grantid: IJC2018-037349-I; RTI2018-099898-B-I00
  funderid: http://dx.doi.org/10.13039/501100004837
– fundername: Ministerio de Economía y Competitividad
  grantid: PID2019-105093GB-I00
  funderid: http://dx.doi.org/10.13039/501100003329
– fundername: British Heart Foundation
  grantid: FS/17/81/33318
  funderid: http://dx.doi.org/10.13039/501100000274
– fundername: Engineering and Physical Sciences Research Council
  grantid: EP/P001009/1
  funderid: http://dx.doi.org/10.13039/501100000266
– fundername: Institució Catalana de Recerca i Estudis Avançats
  funderid: http://dx.doi.org/10.13039/501100003741
– fundername: Horizon 2020
  grantid: 825903
  funderid: http://dx.doi.org/10.13039/501100007601
– fundername: ;
– fundername: ;
  grantid: PID2019-105093GB-I00
– fundername: ;
  grantid: 825903
– fundername: ;
  grantid: IJC2018-037349-I; RTI2018-099898-B-I00
– fundername: ;
  grantid: EP/P001009/1
– fundername: ;
  grantid: FS/17/81/33318
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c517t-b0f21c6f32922af0b3f3b6e4e3ae02a6fed6ad0e9ed506550ac64cd1d0ef04523
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:23:25 EDT 2025
Thu Aug 21 13:42:31 EDT 2025
Fri Jul 11 12:37:33 EDT 2025
Wed Aug 13 02:51:44 EDT 2025
Tue Jul 01 04:16:56 EDT 2025
Thu Apr 24 23:07:02 EDT 2025
Fri Feb 21 02:36:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-b0f21c6f32922af0b3f3b6e4e3ae02a6fed6ad0e9ed506550ac64cd1d0ef04523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-022-16375-0
PMID 35869125
PQID 2692913094
PQPubID 2041939
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_16b5ab28958049368d0bedcfe0fa9c42
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9307565
proquest_miscellaneous_2693771811
proquest_journals_2692913094
crossref_citationtrail_10_1038_s41598_022_16375_0
crossref_primary_10_1038_s41598_022_16375_0
springer_journals_10_1038_s41598_022_16375_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-22
PublicationDateYYYYMMDD 2022-07-22
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-22
  day: 22
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References van der WaltSScikit-image: Image processing in pythonPeerJ2014210.7717/peerj.453250249214081273
NyúlLGUdupaJKOn standardizing the MR image intensity scaleMagn. Reson. Med.1999421072108110.1002/(sici)1522-2594(199912)42:6<1072::aid-mrm11>3.0.co;2-m10571928
van GriethuysenJJComputational radiomics system to decode the radiographic phenotypeCancer Res.201777e104e10710.1158/0008-5472.can-17-0339290929515672828
JohnsonWELiCRabinovicAAdjusting batch effects in microarray expression data using empirical Bayes methodsBiostatistics2006811812710.1093/biostatistics/kxj037166325151170.62389
ZwanenburgAThe image biomarker standardization initiative: Standardized quantitative radiomics for high-throughput image-based phenotypingRadiology202029532833810.1148/radiol.202019114532154773
Traverso, A., Wee, L., Dekker, A. & Gillies, R. Repeatability and reproducibility of radiomic features: A systematic review. Int. J. Radiat. Oncol. Biol. Phys.102, 1143–1158. https://doi.org/10.1016/j.ijrobp.2018.05.053 (2018). Imaging in Radiation Oncology.
Lee, J. et al. Radiomics feature robustness as measured using an MRI phantom. Sci. Rep.11. https://doi.org/10.1038/s41598-021-83593-3 (2021).
Carré, A. et al. Standardization of brain MR images across machines and protocols: bridging the gap for MRI-based radiomics. Sci. Rep.10. https://doi.org/10.1038/s41598-020-69298-z (2020).
ChatterjeeACreating robust predictive radiomic models for data from independent institutions using normalizationIEEE Trans. Radiat. Plasma Med. Sci.2019321021510.1109/trpms.2019.2893860
UmHImpact of image preprocessing on the scanner dependence of multi-parametric MRI radiomic features and covariate shift in multi-institutional glioblastoma datasetsPhys. Med. Biol.20196410.1088/1361-6560/ab2f4431272093
SunHPsychoradiologic utility of MR imaging for diagnosis of attention deficit hyperactivity disorder: A radiomics analysisRadiology201828762063010.1148/radiol.201717022629165048
OrlhacFHow can we combat multicenter variability in MR radiomics? Validation of a correction procedureEur. Radiol.202010.1007/s00330-020-07284-932975661
BreimanLRandom forestsMach. Learn.20014553210.1023/A:10109334043241007.68152
Aerts, H. J. W. L. et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun.5. https://doi.org/10.1038/ncomms5006 (2014).
ul Hassan, M. S. et al. Voxel size and gray level normalization of CT radiomic features in lung cancer. Sci. Rep.8. https://doi.org/10.1038/s41598-018-28895-9 (2018).
Cetin, I. et al. A radiomics approach to computer-aided diagnosis with cardiac cine-mri. In Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges 82–90. https://doi.org/10.1007/978-3-319-75541-0_9 (Springer International Publishing, 2018).
Raisi-Estabragh, Z. et al. Repeatability of cardiac magnetic resonance radiomics: A multi-centre multi-vendor test-retest study. Front. Cardiovasc. Med.7. https://doi.org/10.3389/fcvm.2020.586236 (2020).
Da-Ano, R., Visvikis, D. & Hatt, M. Harmonization strategies for multicenter radiomics investigations. Phys. Med. Biol.65, 24TR02. https://doi.org/10.1088/1361-6560/aba798 (2020).
PedregosaFScikit-learn: Machine learning in PythonJ. Mach. Learn. Res.2011122825283028543481280.68189
CampelloVMMulti-centre, multi-vendor and multi-disease cardiac segmentation: The M &Ms challengeIEEE Trans. Med. Imaging202110.1109/TMI.2021.309008234138702
FortinJ-PSweeneyEMMuschelliJCrainiceanuCMShinoharaRTRemoving inter-subject technical variability in magnetic resonance imaging studiesNeuroImage201613219821210.1016/j.neuroimage.2016.02.03626923370
YipSSFAertsHJWLApplications and limitations of radiomicsPhys. Med. Biol.201661R150R1662016PMB....61R.150Y1:CAS:528:DC%2BC2sXhsVSks73P10.1088/0031-9155/61/13/r150272696454927328
IsakssonLJEffects of MRI image normalization techniques in prostate cancer radiomicsPhys. Med.20207171310.1016/j.ejmp.2020.02.00732086149
ReinholdJCDeweyBECarassAPrinceJLAngeliniEDLandmanBAEvaluating the impact of intensity normalization on MR image synthesisMedical Imaging 2019: Image Processing2019SPIE10.1117/12.2513089
JC Reinhold (16375_CR22) 2019
S van der Walt (16375_CR20) 2014; 2
WE Johnson (16375_CR13) 2006; 8
16375_CR1
F Pedregosa (16375_CR24) 2011; 12
L Breiman (16375_CR15) 2001; 45
J-P Fortin (16375_CR23) 2016; 132
JJ van Griethuysen (16375_CR19) 2017; 77
VM Campello (16375_CR18) 2021
F Orlhac (16375_CR14) 2020
A Zwanenburg (16375_CR17) 2020; 295
LJ Isaksson (16375_CR10) 2020; 71
SSF Yip (16375_CR6) 2016; 61
A Chatterjee (16375_CR12) 2019; 3
16375_CR3
16375_CR11
LG Nyúl (16375_CR21) 1999; 42
16375_CR4
H Sun (16375_CR2) 2018; 287
H Um (16375_CR5) 2019; 64
16375_CR16
16375_CR7
16375_CR8
16375_CR9
References_xml – reference: IsakssonLJEffects of MRI image normalization techniques in prostate cancer radiomicsPhys. Med.20207171310.1016/j.ejmp.2020.02.00732086149
– reference: ChatterjeeACreating robust predictive radiomic models for data from independent institutions using normalizationIEEE Trans. Radiat. Plasma Med. Sci.2019321021510.1109/trpms.2019.2893860
– reference: SunHPsychoradiologic utility of MR imaging for diagnosis of attention deficit hyperactivity disorder: A radiomics analysisRadiology201828762063010.1148/radiol.201717022629165048
– reference: UmHImpact of image preprocessing on the scanner dependence of multi-parametric MRI radiomic features and covariate shift in multi-institutional glioblastoma datasetsPhys. Med. Biol.20196410.1088/1361-6560/ab2f4431272093
– reference: FortinJ-PSweeneyEMMuschelliJCrainiceanuCMShinoharaRTRemoving inter-subject technical variability in magnetic resonance imaging studiesNeuroImage201613219821210.1016/j.neuroimage.2016.02.03626923370
– reference: Traverso, A., Wee, L., Dekker, A. & Gillies, R. Repeatability and reproducibility of radiomic features: A systematic review. Int. J. Radiat. Oncol. Biol. Phys.102, 1143–1158. https://doi.org/10.1016/j.ijrobp.2018.05.053 (2018). Imaging in Radiation Oncology.
– reference: JohnsonWELiCRabinovicAAdjusting batch effects in microarray expression data using empirical Bayes methodsBiostatistics2006811812710.1093/biostatistics/kxj037166325151170.62389
– reference: Carré, A. et al. Standardization of brain MR images across machines and protocols: bridging the gap for MRI-based radiomics. Sci. Rep.10. https://doi.org/10.1038/s41598-020-69298-z (2020).
– reference: OrlhacFHow can we combat multicenter variability in MR radiomics? Validation of a correction procedureEur. Radiol.202010.1007/s00330-020-07284-932975661
– reference: BreimanLRandom forestsMach. Learn.20014553210.1023/A:10109334043241007.68152
– reference: van GriethuysenJJComputational radiomics system to decode the radiographic phenotypeCancer Res.201777e104e10710.1158/0008-5472.can-17-0339290929515672828
– reference: Cetin, I. et al. A radiomics approach to computer-aided diagnosis with cardiac cine-mri. In Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges 82–90. https://doi.org/10.1007/978-3-319-75541-0_9 (Springer International Publishing, 2018).
– reference: Da-Ano, R., Visvikis, D. & Hatt, M. Harmonization strategies for multicenter radiomics investigations. Phys. Med. Biol.65, 24TR02. https://doi.org/10.1088/1361-6560/aba798 (2020).
– reference: ZwanenburgAThe image biomarker standardization initiative: Standardized quantitative radiomics for high-throughput image-based phenotypingRadiology202029532833810.1148/radiol.202019114532154773
– reference: CampelloVMMulti-centre, multi-vendor and multi-disease cardiac segmentation: The M &Ms challengeIEEE Trans. Med. Imaging202110.1109/TMI.2021.309008234138702
– reference: van der WaltSScikit-image: Image processing in pythonPeerJ2014210.7717/peerj.453250249214081273
– reference: YipSSFAertsHJWLApplications and limitations of radiomicsPhys. Med. Biol.201661R150R1662016PMB....61R.150Y1:CAS:528:DC%2BC2sXhsVSks73P10.1088/0031-9155/61/13/r150272696454927328
– reference: Aerts, H. J. W. L. et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun.5. https://doi.org/10.1038/ncomms5006 (2014).
– reference: NyúlLGUdupaJKOn standardizing the MR image intensity scaleMagn. Reson. Med.1999421072108110.1002/(sici)1522-2594(199912)42:6<1072::aid-mrm11>3.0.co;2-m10571928
– reference: Raisi-Estabragh, Z. et al. Repeatability of cardiac magnetic resonance radiomics: A multi-centre multi-vendor test-retest study. Front. Cardiovasc. Med.7. https://doi.org/10.3389/fcvm.2020.586236 (2020).
– reference: PedregosaFScikit-learn: Machine learning in PythonJ. Mach. Learn. Res.2011122825283028543481280.68189
– reference: ul Hassan, M. S. et al. Voxel size and gray level normalization of CT radiomic features in lung cancer. Sci. Rep.8. https://doi.org/10.1038/s41598-018-28895-9 (2018).
– reference: ReinholdJCDeweyBECarassAPrinceJLAngeliniEDLandmanBAEvaluating the impact of intensity normalization on MR image synthesisMedical Imaging 2019: Image Processing2019SPIE10.1117/12.2513089
– reference: Lee, J. et al. Radiomics feature robustness as measured using an MRI phantom. Sci. Rep.11. https://doi.org/10.1038/s41598-021-83593-3 (2021).
– ident: 16375_CR1
  doi: 10.1038/ncomms5006
– ident: 16375_CR4
  doi: 10.1038/s41598-021-83593-3
– volume: 12
  start-page: 2825
  year: 2011
  ident: 16375_CR24
  publication-title: J. Mach. Learn. Res.
– volume: 64
  year: 2019
  ident: 16375_CR5
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab2f44
– ident: 16375_CR7
  doi: 10.1016/j.ijrobp.2018.05.053
– volume: 2
  year: 2014
  ident: 16375_CR20
  publication-title: PeerJ
  doi: 10.7717/peerj.453
– volume: 42
  start-page: 1072
  year: 1999
  ident: 16375_CR21
  publication-title: Magn. Reson. Med.
  doi: 10.1002/(sici)1522-2594(199912)42:6<1072::aid-mrm11>3.0.co;2-m
– volume: 8
  start-page: 118
  year: 2006
  ident: 16375_CR13
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxj037
– volume: 77
  start-page: e104
  year: 2017
  ident: 16375_CR19
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.can-17-0339
– ident: 16375_CR16
  doi: 10.1038/s41598-018-28895-9
– ident: 16375_CR9
  doi: 10.1088/1361-6560/aba798
– volume: 132
  start-page: 198
  year: 2016
  ident: 16375_CR23
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.02.036
– volume: 71
  start-page: 7
  year: 2020
  ident: 16375_CR10
  publication-title: Phys. Med.
  doi: 10.1016/j.ejmp.2020.02.007
– year: 2020
  ident: 16375_CR14
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-020-07284-9
– year: 2021
  ident: 16375_CR18
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3090082
– volume: 45
  start-page: 5
  year: 2001
  ident: 16375_CR15
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 61
  start-page: R150
  year: 2016
  ident: 16375_CR6
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/61/13/r150
– volume: 295
  start-page: 328
  year: 2020
  ident: 16375_CR17
  publication-title: Radiology
  doi: 10.1148/radiol.2020191145
– volume: 3
  start-page: 210
  year: 2019
  ident: 16375_CR12
  publication-title: IEEE Trans. Radiat. Plasma Med. Sci.
  doi: 10.1109/trpms.2019.2893860
– volume: 287
  start-page: 620
  year: 2018
  ident: 16375_CR2
  publication-title: Radiology
  doi: 10.1148/radiol.2017170226
– volume-title: Medical Imaging 2019: Image Processing
  year: 2019
  ident: 16375_CR22
  doi: 10.1117/12.2513089
– ident: 16375_CR11
  doi: 10.1038/s41598-020-69298-z
– ident: 16375_CR3
  doi: 10.1007/978-3-319-75541-0_9
– ident: 16375_CR8
  doi: 10.3389/fcvm.2020.586236
SSID ssj0000529419
Score 2.4413388
Snippet Radiomics is an emerging technique for the quantification of imaging data that has recently shown great promise for deeper phenotyping of cardiovascular...
Abstract Radiomics is an emerging technique for the quantification of imaging data that has recently shown great promise for deeper phenotyping of...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12532
SubjectTerms 639/705/117
692/4019/592/75
692/53/2421
Cardiomyopathy
Cardiovascular diseases
Classification
Heart
Humanities and Social Sciences
multidisciplinary
Myocardium
Phenotyping
Radiomics
Science
Science (multidisciplinary)
Ventricle
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SEHwRP3G1lQi-6dJ8bLJJ31QsRahPFu4t5GOCC-de6V2F_vdOsntnr6C--JqP3WQyyfyGTH5DyNsUoIcsc9tHn9tOGWh9tAjkgBsAZYKv6YDOv-qzi-7LQi1upfoqMWETPfAkuGOug_IB3QJlEMxKbRILkGIGlr2NXT190ebdcqYmVm9hO27nVzJMmuM1Wqrymgx9L4QgvWrZniWqhP17KPNujOSdi9Jqf04fkYczcKQfpgE_JvdgfELuT6kkb56SxfkwDrhm2JfWIMG2fhLolU9DeXm8pj_RLZ5YuW_onJ6HDj_wPKFjAa7LObDnhHp6OSxXG1qpZ5-Ri9PP3z6dtXPWhDYq3m_awLLgUWcprBA-syCzDBo6kB6Y8DpD0j4xsJAU4g_FfNRdTByLcuFXl8_Jwbga4QWhnQ4MVEIrjsDOQjQ6JdzAngvWJWtMQ_hWgi7OlOIls8XS1attadwkdYdSd1XqjjXk3a7P5USo8dfWH8vC7FoWMuxagCriZhVx_1KRhhxul9XNO3TthEZgiAbcdg15s6vGdSoXJn6E1XVtI3s03pw3pN9Th70B7deMw_fK0m3x9ES03JD3W8X5_fM_T_jl_5jwK_JAFEVnfSvEITnYXF3DEWKnTXhdt8kvEHEXyw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4ikCBRmJG1h17MRxuFQFUVVI5USlvUV-jCHSNll2t0j994wd71apRK-xnTgee-azZ_wNIR-8hQaCDKxxJrCq1sCMaxHIQakBam1NSgd0_kOdXVTfF_UiH7htcljlTicmRe1HF8_Ij4RCQ44Kt62OV39YzBoVvas5hcZ98iBSl8WQrmbR7M9YoherKtt8V4ZLfbRBexXvlOEODIFIUzM-s0eJtn-GNW9HSt5ylyYrdPqEPM7wkZ5M8n5K7sHwjDycEkpePyeL837oUXLYlqZQQZZeCXRtfB_vH2_oX9wcT9zc1zQn6aH9JWoVOkT4uszhPZ-poat-OW5pIqB9QS5Ov_38esZy7gTm6rLZMsuDKJ0KUrRCmMCtDNIqqEAa4MKoAF4Zz6EFXyMKqblxqnK-xEchsqzLl-RgGAd4RWilLIfaoy1HeNeC08p7XMamFLzyrdYFKXcj2LlMLB7zWyy75OCWuptGvcNR79Kod7wgH_dtVhOtxp21v0TB7GtGSuz0YFz_6vIKw7q2Nhb3j7XGXY9U2nOLggvAg2ldJQpyuBNrl9fppruZVQV5vy9GOUW3iRlgvEp1ZIMmvCwL0symw6xD85Kh_524ulvUoYiZC_JpN3FuPv7_H359d1_fkEciTmHeMCEOycF2fQVvERtt7bu0AP4B2SoO1g
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA-lIvgi1g_c2pYIvmkwm2yyWd_0sBShPlm4t5BsJrpw7pW7q9D_3kl292RLFXzdTPYjM8n8ZjP5DSFvgocaooysbl1klTLAXNsgkIPSACjjXS4HdPlVX1xVX5ZqeUDEdBYmJ-1nSsu8TE_ZYe-36GjSYTAMnRBB1IphmP4gUbcnq17oxf6_Stq5qspmPB_Dpbmn68wHZar-Gb68mx15Z4s0e57zJ-TxCBnpx-Elj8gB9E_Jw6GI5O0zsrzs-g61hX1pTg9k-ZZANy506czxlv7CgHjg476lY2Ee2v3ElYT2CbKuxpSeD9TR62613tFMOvucXJ1__ra4YGO9BNaqst4xz6MoWx2laIRwkXsZpddQgXTAhdMRgnaBQwNBIfJQ3LW6akOJl2JiVpcvyGG_7uEloZX2HFRA_42QroHW6BBw6rpS8Co0xhSknEbQtiOZeKppsbJ5U1saO4y6xVG3edQtL8jbfZ_rgUrjn9KfkmL2kokGO19Yb77b0SxQ1ivnMWZUBiMdqU3gHhUXgUfXtJUoyMmkVjvOza0VGiEhuu6mKsjrfTPqKW2VuB7WN1lG1ui2y7Ig9cwcZi80b-m7H5mfu8F1E3FyQd5NhvPn4X__4OP_E39FHolk0rxmQpyQw93mBk4RH-38WZ4QvwFmBAya
  priority: 102
  providerName: Springer Nature
Title Minimising multi-centre radiomics variability through image normalisation: a pilot study
URI https://link.springer.com/article/10.1038/s41598-022-16375-0
https://www.proquest.com/docview/2692913094
https://www.proquest.com/docview/2693771811
https://pubmed.ncbi.nlm.nih.gov/PMC9307565
https://doaj.org/article/16b5ab28958049368d0bedcfe0fa9c42
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bi9QwFA7rLoIv4hWr6xDBN42maXOpIDI77LIMzCLqwLyVpEm0MHbWmVlx_r0naTvSZRWfCmnapufS850m-Q5CL61x0vnME1lpT3KuHNFVAUDOpco5royO5YBmF-J8nk8XfHGA-nJHnQA3N6Z2oZ7UfL188-vH7gM4_Pt2y7h6u4EgFDaKQVoF6EJyAin8EUQmGRx11sH9luubFXms9RFI2AmACdbto7n5NoNYFSn9Bzj0-irKa1OpMUKd3UN3O2iJx60t3EcHrnmAbrfFJncP0WJWNzVoFa7FcRkhibd0eK1tHfYmb_BPSJxb3u4d7gr44Po7fHFwE6Dtslv68w5rfFkvV1scyWkfofnZ6ZfJOenqKpCKp3JLDPUsrYTPWMGY9tRkPjPC5S7TjjItvLNCW-oKZzkgFE51JfLKptDkAwN79hgdNqvGPUE4F4Y6biHOA_QrXKWEteDiOgUB20KpBKW9BMuqIx0PtS-WZZz8zlTZSr0EqZdR6iVN0Kv9NZct5cY_e58Exex7Brrs2LBafy0774O-hmsDuSVXkBFlQllqQHHeUa-LKmcJOu7VWvYmWDIB0BFCfJEn6MX-NOgpTKnoxq2uYp9MQnhP0wTJgTkMBjQ809TfIo93Ad9XwNMJet0bzp-H__2Fn_7HYJ6hOyzYMZWEsWN0uF1fuecAnrZmhG7JhRyho_F4-nkKx5PTi4-foHUiJqP4Q2IUfeY3jJcbuA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgheEJ8iMMBI8ATRHDufSAgx2NSxtUJok_qWOfEZIpWktB2o_xR_I2cn6dRJ7G2viZ2Pu_Pd73znO4BXusAEjTR-Uirjh1GKviozAnIYpIhRWijXDmg0joen4ZdJNNmCv_1ZGJtW2etEp6h1U9o98l0RkyEnhZuFH2a_fNs1ykZX-xYarVgc4eoPuWyL94efib-vhTjYP_k09LuuAn4ZBcnSL7gRQRkbKTIhlOGFNLKIMUSpkAsVG9Sx0hwz1BHZ54irMg5LHdAlY-uPS3ruDdgOJbkyA9je2x9__bbe1bFxszDIutM5XKa7C7KQ9hQb-XwEfZLI5xsW0DUK2EC3l3MzLwVond07uAt3OsDKPrYSdg-2sL4PN9sWlqsHMBlVdUWyQnOZS0703SORzZWu7InnBftN7nhbDXzFurZArPpJeozVFjBPu4Sid0yxWTVtlsyVvH0Ip9dC10cwqJsaHwML44JjpAk9EKDMsExjrUlxqEDwUGdp6kHQUzAvu1LmtqPGNHchdZnmLdVzonruqJ5zD96s58zaQh5Xjt6zjFmPtEW43YVm_j3v1jSNLSJVkMcapeRnyTjVvCDGGeRGZWUoPNjp2Zp3mmGRX8ixBy_Xt4lPNlCjamzO3RiZEGgIAg-SDXHY-KDNO3X1w1UHz0hrE0r34G0vOBcv__8PP7n6W1_AreHJ6Dg_PhwfPYXbwoozT3whdmCwnJ_jM0Jmy-J5txwYnF33CvwH5e9OcQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxFOkFDASnCBax47zQEIIKKuW0ooDlfYWnHgMkbbZZXcL2r_Gr2PsJFulEr31mjiveX6TGc8AvDAlpmilDdNK2zBWGYa6ygnIYZQhqqzUfhzQ0XGyfxJ_nqjJFvzt98K4ssreJnpDbWaV-0c-Egk5cjK4eTyyXVnE173xu_mv0E2QcpnWfpxGKyKHuP5D4dvy7cEe8fqlEONP3z7uh92EgbBSUboKS25FVCVWilwIbXkprSwTjFFq5EInFk2iDcccjSJfrbiukrgyER2yrhe5pPteg-upVJHTsXSSbv7vuAxaHOXdPh0us9GSfKXbz0bRH4GgVIV84Av9yIABzr1YpXkhVes94PgO3O6gK3vfytpd2MLmHtxoh1mu78PkqG5qkhq6lvkyxdDfEtlCm9rtfV6y3xSYt33B16wbEMTqU7JorHHQedqVFr1hms3r6WzFfPPbB3ByJVR9CNvNrMFHwOKk5KgM4QiCljlWWWIMmRAdCR6bPMsCiHoKFlXX1NzN1pgWPrkus6KlekFULzzVCx7Aq80187alx6WrPzjGbFa6dtz-wGzxo-i0m9aWSpcUu6qMIi6ZZIaXxDiL3Oq8ikUAuz1bi85GLItziQ7g-eY08cmlbHSDszO_RqYEH6IogHQgDoMXGp5p6p--T3hO9pvwegCve8E5f_j_P3jn8nd9BjdJ74ovB8eHj-GWcNLM01CIXdheLc7wCUG0VfnU6wKD71etfP8AqOZRQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimising+multi-centre+radiomics+variability+through+image+normalisation%3A+a+pilot+study&rft.jtitle=Scientific+reports&rft.au=Campello%2C+V%C3%ADctor+M&rft.au=Mart%C3%ADn-Isla%2C+Carlos&rft.au=Izquierdo%2C+Cristian&rft.au=Guala%2C+Andrea&rft.date=2022-07-22&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=12532&rft_id=info:doi/10.1038%2Fs41598-022-16375-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon