Enhanced photoelectrochemical activities for water oxidation and phenol degradation on WO3 nanoplates by transferring electrons and trapping holes
It is highly desired to improve the photoelectrochemical (PEC) performance of nanosized WO 3 by artificially modulating the photogenerated electrons and holes simultaneously. Herein, WO 3 nanoplates have been successfully prepared by a simple one-pot two-phase separated hydrolysis-solvothermal metho...
Saved in:
Published in | Scientific reports Vol. 7; no. 1; pp. 1 - 9 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
02.05.2017
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It is highly desired to improve the photoelectrochemical (PEC) performance of nanosized WO
3
by artificially modulating the photogenerated electrons and holes simultaneously. Herein, WO
3
nanoplates have been successfully prepared by a simple one-pot two-phase separated hydrolysis-solvothermal method, and then co-modified with RGO and phosphate acid successively by wet chemical processes. Subsequently, the as-prepared WO
3
-based nanoplates were immobilized on the conductive glasses to explore the PEC activities for both water oxidation to evolve O
2
and phenol degradation. It is clearly demonstrated that the co-modified WO
3
nanoplates exhibit significantly improved PEC activities compared with pristine WO
3
, especially for that with the amount-optimized modifiers by ca. 6-time enhancement. Mainly based on the evaluated hydroxyl radical amounts produced and the electrochemical impedance spectra, it is suggested that the improved PEC activities are attributed to the greatly enhanced photogenerated charge separation after chemically modification with RGO and phosphate groups to WO
3
, respectively by transferring electrons as the collectors and trapping holes via the formed negative field after phosphate disassociation. This work provides a feasible synthetic strategy to improve the photoactivities of nanosized WO
3
for energy production and environmental remediation. |
---|---|
AbstractList | It is highly desired to improve the photoelectrochemical (PEC) performance of nanosized WO3 by artificially modulating the photogenerated electrons and holes simultaneously. Herein, WO3 nanoplates have been successfully prepared by a simple one-pot two-phase separated hydrolysis-solvothermal method, and then co-modified with RGO and phosphate acid successively by wet chemical processes. Subsequently, the as-prepared WO3-based nanoplates were immobilized on the conductive glasses to explore the PEC activities for both water oxidation to evolve O2 and phenol degradation. It is clearly demonstrated that the co-modified WO3 nanoplates exhibit significantly improved PEC activities compared with pristine WO3, especially for that with the amount-optimized modifiers by ca. 6-time enhancement. Mainly based on the evaluated hydroxyl radical amounts produced and the electrochemical impedance spectra, it is suggested that the improved PEC activities are attributed to the greatly enhanced photogenerated charge separation after chemically modification with RGO and phosphate groups to WO3, respectively by transferring electrons as the collectors and trapping holes via the formed negative field after phosphate disassociation. This work provides a feasible synthetic strategy to improve the photoactivities of nanosized WO3 for energy production and environmental remediation.It is highly desired to improve the photoelectrochemical (PEC) performance of nanosized WO3 by artificially modulating the photogenerated electrons and holes simultaneously. Herein, WO3 nanoplates have been successfully prepared by a simple one-pot two-phase separated hydrolysis-solvothermal method, and then co-modified with RGO and phosphate acid successively by wet chemical processes. Subsequently, the as-prepared WO3-based nanoplates were immobilized on the conductive glasses to explore the PEC activities for both water oxidation to evolve O2 and phenol degradation. It is clearly demonstrated that the co-modified WO3 nanoplates exhibit significantly improved PEC activities compared with pristine WO3, especially for that with the amount-optimized modifiers by ca. 6-time enhancement. Mainly based on the evaluated hydroxyl radical amounts produced and the electrochemical impedance spectra, it is suggested that the improved PEC activities are attributed to the greatly enhanced photogenerated charge separation after chemically modification with RGO and phosphate groups to WO3, respectively by transferring electrons as the collectors and trapping holes via the formed negative field after phosphate disassociation. This work provides a feasible synthetic strategy to improve the photoactivities of nanosized WO3 for energy production and environmental remediation. It is highly desired to improve the photoelectrochemical (PEC) performance of nanosized WO 3 by artificially modulating the photogenerated electrons and holes simultaneously. Herein, WO 3 nanoplates have been successfully prepared by a simple one-pot two-phase separated hydrolysis-solvothermal method, and then co-modified with RGO and phosphate acid successively by wet chemical processes. Subsequently, the as-prepared WO 3 -based nanoplates were immobilized on the conductive glasses to explore the PEC activities for both water oxidation to evolve O 2 and phenol degradation. It is clearly demonstrated that the co-modified WO 3 nanoplates exhibit significantly improved PEC activities compared with pristine WO 3 , especially for that with the amount-optimized modifiers by ca. 6-time enhancement. Mainly based on the evaluated hydroxyl radical amounts produced and the electrochemical impedance spectra, it is suggested that the improved PEC activities are attributed to the greatly enhanced photogenerated charge separation after chemically modification with RGO and phosphate groups to WO 3 , respectively by transferring electrons as the collectors and trapping holes via the formed negative field after phosphate disassociation. This work provides a feasible synthetic strategy to improve the photoactivities of nanosized WO 3 for energy production and environmental remediation. Abstract It is highly desired to improve the photoelectrochemical (PEC) performance of nanosized WO3 by artificially modulating the photogenerated electrons and holes simultaneously. Herein, WO3 nanoplates have been successfully prepared by a simple one-pot two-phase separated hydrolysis-solvothermal method, and then co-modified with RGO and phosphate acid successively by wet chemical processes. Subsequently, the as-prepared WO3-based nanoplates were immobilized on the conductive glasses to explore the PEC activities for both water oxidation to evolve O2 and phenol degradation. It is clearly demonstrated that the co-modified WO3 nanoplates exhibit significantly improved PEC activities compared with pristine WO3, especially for that with the amount-optimized modifiers by ca. 6-time enhancement. Mainly based on the evaluated hydroxyl radical amounts produced and the electrochemical impedance spectra, it is suggested that the improved PEC activities are attributed to the greatly enhanced photogenerated charge separation after chemically modification with RGO and phosphate groups to WO3, respectively by transferring electrons as the collectors and trapping holes via the formed negative field after phosphate disassociation. This work provides a feasible synthetic strategy to improve the photoactivities of nanosized WO3 for energy production and environmental remediation. It is highly desired to improve the photoelectrochemical (PEC) performance of nanosized WO3 by artificially modulating the photogenerated electrons and holes simultaneously. Herein, WO3 nanoplates have been successfully prepared by a simple one-pot two-phase separated hydrolysis-solvothermal method, and then co-modified with RGO and phosphate acid successively by wet chemical processes. Subsequently, the as-prepared WO3-based nanoplates were immobilized on the conductive glasses to explore the PEC activities for both water oxidation to evolve O2 and phenol degradation. It is clearly demonstrated that the co-modified WO3 nanoplates exhibit significantly improved PEC activities compared with pristine WO3, especially for that with the amount-optimized modifiers by ca. 6-time enhancement. Mainly based on the evaluated hydroxyl radical amounts produced and the electrochemical impedance spectra, it is suggested that the improved PEC activities are attributed to the greatly enhanced photogenerated charge separation after chemically modification with RGO and phosphate groups to WO3, respectively by transferring electrons as the collectors and trapping holes via the formed negative field after phosphate disassociation. This work provides a feasible synthetic strategy to improve the photoactivities of nanosized WO3 for energy production and environmental remediation. |
ArticleNumber | 1303 |
Author | Sun, Liqun Raziq, Fazal Bai, Linlu Qu, Yang Wang, Yuying Jing, Liqiang |
Author_xml | – sequence: 1 givenname: Liqun surname: Sun fullname: Sun, Liqun organization: Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, International Joint Research Center for Catalytic Technology, School of Chemistry and Materials Science, College of Chemical Engineering, Daqing Normal University, Key Laboratory of Oilfield Applied chemistry, College of Heilongjiang Province – sequence: 2 givenname: Yuying surname: Wang fullname: Wang, Yuying organization: Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, International Joint Research Center for Catalytic Technology, School of Chemistry and Materials Science – sequence: 3 givenname: Fazal surname: Raziq fullname: Raziq, Fazal organization: Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, International Joint Research Center for Catalytic Technology, School of Chemistry and Materials Science – sequence: 4 givenname: Yang surname: Qu fullname: Qu, Yang organization: Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, International Joint Research Center for Catalytic Technology, School of Chemistry and Materials Science – sequence: 5 givenname: Linlu surname: Bai fullname: Bai, Linlu email: lbai2@e.ntu.edu.sg organization: Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, International Joint Research Center for Catalytic Technology, School of Chemistry and Materials Science, College of Chemical and Environmental Engineering, Harbin University of Science and Technology – sequence: 6 givenname: Liqiang orcidid: 0000-0002-3189-492X surname: Jing fullname: Jing, Liqiang email: jinglq@hlju.edu.cn organization: Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, International Joint Research Center for Catalytic Technology, School of Chemistry and Materials Science |
BookMark | eNp9ks1u1DAQxyNUREvpC3CKxIVLwJ-xfUFCVYFKlXoBcbQmzmTXq6wd7Gyhr8ET492sUFsJLFu2xvP_zdgzL6uTEANW1WtK3lHC9fssqDS6IVSVxQlp1LPqjBEhG8YZO3lwPq0uct6QMiQzgpoX1SnTopVS6rPq91VYQ3DY19M6zhFHdHOKbo1b72Cswc3-zs8ecz3EVP-EGVMdf_keZh9DDWGvwxDHusdVgqO5zO-3vA4Q4jQWSa67-3pOEPKAKfmwqo9xQj4gytU07c3rOGJ-VT0fYMx4cdzPq2-frr5efmlubj9fX368aZykam6gN13X9tKA0G7AtgPoKOOGM9cSKbREoE4qCgOnalACZWtAg9ad0r0TLT-vrhduH2Fjp-S3kO5tBG8PhphWFtLs3YiWkK4nqLhCRQTR0vBBIAgpUdMSnBbWh4U17bot9g5DedP4CPr4Jvi1XcU7KwUnRrECeHsEpPhjh3m2W58djiMEjLtsqTbC0FI0UVzfPHHdxF0K5assNS1jWooDkC1eLsWcEw5_k6HE7jvILh1kSwfZQwdZVUT6icj5-VDTkrQf_y_lizRP-wpjepDVv1V_ADPJ3qI |
CitedBy_id | crossref_primary_10_1039_D1SE00232E crossref_primary_10_1016_j_eng_2024_12_009 crossref_primary_10_1016_j_solener_2020_02_015 crossref_primary_10_1021_acsami_1c18886 crossref_primary_10_1016_j_apcatb_2020_119227 crossref_primary_10_1016_j_jallcom_2018_03_396 crossref_primary_10_1016_j_apsusc_2018_08_178 crossref_primary_10_1021_acsaem_9b01450 crossref_primary_10_1080_00958972_2024_2336221 crossref_primary_10_1016_j_molstruc_2025_141617 crossref_primary_10_1016_j_chemosphere_2019_03_149 crossref_primary_10_15625_0868_3166_30_4_14425 crossref_primary_10_1039_D0RA10176A crossref_primary_10_1016_j_nanoso_2018_01_002 crossref_primary_10_1016_j_ceramint_2019_12_108 crossref_primary_10_1016_j_ijhydene_2020_05_043 crossref_primary_10_1016_j_electacta_2022_140269 crossref_primary_10_1016_j_eurpolymj_2019_01_062 crossref_primary_10_1016_j_ultsonch_2020_105339 crossref_primary_10_1016_j_diamond_2021_108514 crossref_primary_10_1002_adsu_202400483 crossref_primary_10_1002_advs_201801505 crossref_primary_10_1016_j_apsusc_2020_146762 crossref_primary_10_1021_acs_analchem_7b03451 crossref_primary_10_1016_j_cocom_2023_e00784 crossref_primary_10_1016_j_tsf_2024_140350 crossref_primary_10_1002_cctc_201901581 crossref_primary_10_3390_membranes11100785 |
Cites_doi | 10.1038/nature07719 10.1039/C4EE01299B 10.1088/0957-4484/21/10/105704 10.1021/es5011994 10.1038/srep09910 10.1088/0957-4484/22/26/265603 10.1002/anie.201409116 10.1021/acsami.5b04820 10.1016/j.apcatb.2016.08.057 10.1007/s12274-009-9074-z 10.1021/ma102932c 10.1038/238037a0 10.1126/science.1246913 10.1021/nn1006368 10.1021/acsami.6b09645 10.1103/PhysRevLett.97.187401 10.1039/c2ee03383f 10.1021/nn5053684 10.1039/C6NR00858E 10.1002/anie.200802207 10.1021/ja8034637 10.1002/adma.201401032 10.1039/c3cp53051e 10.1021/cm101568z 10.1002/adfm.201600232 10.1021/jacs.5b01519 10.1021/la4048566 10.1002/chem.201002229 10.1021/ja800835q 10.1039/C4CC08835B 10.1021/acs.est.6b04958 10.1039/c2jm16709c 10.1039/C6EE01845A 10.1038/srep02409 10.1021/acsami.6b00429 10.1002/cctc.v4.4 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 Copyright Nature Publishing Group May 2017 |
Copyright_xml | – notice: The Author(s) 2017 – notice: Copyright Nature Publishing Group May 2017 |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-017-01300-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_00bd0e737e70408593f4ea455e818cf1 PMC5430972 10_1038_s41598_017_01300_7 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c517t-ad9bb6d59a48cfe6baab123932c605485ea1c571af317f74e569a8a88b78dc463 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:30:26 EDT 2025 Thu Aug 21 13:52:12 EDT 2025 Tue Aug 05 11:26:12 EDT 2025 Wed Aug 13 05:16:13 EDT 2025 Thu Apr 24 23:06:23 EDT 2025 Tue Jul 01 01:32:51 EDT 2025 Fri Feb 21 02:40:06 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-ad9bb6d59a48cfe6baab123932c605485ea1c571af317f74e569a8a88b78dc463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3189-492X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-017-01300-7 |
PMID | 28465558 |
PQID | 1962285472 |
PQPubID | 2041939 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_00bd0e737e70408593f4ea455e818cf1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5430972 proquest_miscellaneous_1894916554 proquest_journals_1962285472 crossref_primary_10_1038_s41598_017_01300_7 crossref_citationtrail_10_1038_s41598_017_01300_7 springer_journals_10_1038_s41598_017_01300_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-02 |
PublicationDateYYYYMMDD | 2017-05-02 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Zhao (CR15) 2008; 47 Kim (CR5) 2014; 343 Ronconi (CR10) 2015; 137 Wang (CR18) 2012; 4 Li (CR9) 2014; 8 Ferrari (CR33) 2006; 97 Fujishima (CR1) 1972; 238 Tang (CR29) 2008; 130 Du (CR6) 2014; 48 Reddy (CR26) 2015; 7 Wang (CR20) 2016; 8 Qian (CR25) 2009; 2 An (CR16) 2012; 22 Humayun (CR3) 2016; 50 Ali (CR22) 2016; 8 Kim (CR24) 2009; 457 Jing (CR34) 2012; 5 Kim (CR31) 2014; 4 Nah (CR21) 2010; 21 Marques (CR8) 2015; 5 Hou (CR35) 2014; 26 Weng (CR17) 2014; 30 Xi (CR12) 2011; 17 Xu (CR28) 2016; 26 Zhang (CR32) 2016; 8 Kim (CR4) 2015; 54 Salavagione (CR27) 2011; 44 Wang (CR2) 2014; 7 Wu (CR11) 2013; 15 Xie (CR30) 2015; 51 Raziq (CR37) 2017; 201 Li (CR13) 2013; 3 Zhang (CR23) 2011; 23 Abe (CR14) 2008; 130 Chang (CR19) 2011; 22 Shen (CR7) 2016; 9 Marcano (CR36) 2010; 4 S Shen (1300_CR7) 2016; 9 R Abe (1300_CR14) 2008; 130 M Humayun (1300_CR3) 2016; 50 F Ronconi (1300_CR10) 2015; 137 TN Reddy (1300_CR26) 2015; 7 J Tang (1300_CR29) 2008; 130 XQ An (1300_CR16) 2012; 22 L Jing (1300_CR34) 2012; 5 F Raziq (1300_CR37) 2017; 201 FG Wang (1300_CR18) 2012; 4 C Marcano (1300_CR36) 2010; 4 ZG Zhao (1300_CR15) 2008; 47 HJ Salavagione (1300_CR27) 2011; 44 KS Kim (1300_CR24) 2009; 457 AC Ferrari (1300_CR33) 2006; 97 YY Du (1300_CR6) 2014; 48 W Li (1300_CR9) 2014; 8 J Zhang (1300_CR32) 2016; 8 B Weng (1300_CR17) 2014; 30 W Qian (1300_CR25) 2009; 2 JY Kim (1300_CR31) 2014; 4 Y Hou (1300_CR35) 2014; 26 YC Nah (1300_CR21) 2010; 21 Y Xu (1300_CR28) 2016; 26 TW Kim (1300_CR5) 2014; 343 H Wu (1300_CR11) 2013; 15 H Ali (1300_CR22) 2016; 8 D Kim (1300_CR4) 2015; 54 Z Wang (1300_CR20) 2016; 8 AC Marques (1300_CR8) 2015; 5 GC Xi (1300_CR12) 2011; 17 A Fujishima (1300_CR1) 1972; 238 M Xie (1300_CR30) 2015; 51 J Li (1300_CR13) 2013; 3 CC Wang (1300_CR2) 2014; 7 XT Chang (1300_CR19) 2011; 22 S Zhang (1300_CR23) 2011; 23 |
References_xml | – volume: 457 start-page: 706 year: 2009 end-page: 710 ident: CR24 article-title: Large-scale pattern growth of graphene films for stretchable transparent electrodes publication-title: Nature doi: 10.1038/nature07719 – volume: 7 start-page: 2831 year: 2014 end-page: 2867 ident: CR2 article-title: Photocatalytic organic pollutants degradation in metal-organic frameworks publication-title: Energy Environ. Sci. doi: 10.1039/C4EE01299B – volume: 21 start-page: 105704 year: 2010 ident: CR21 article-title: Nitrogen doping of nanoporous WO layers by NH treatment for increased visible light photoresponse publication-title: Nanotech. doi: 10.1088/0957-4484/21/10/105704 – volume: 48 start-page: 7634 year: 2014 end-page: 7641 ident: CR6 article-title: Electricity generation and pollutant degradation using a novel biocathode coupled photoelectrochemical cell publication-title: Environ. Sci. Technol. doi: 10.1021/es5011994 – volume: 5 start-page: 9910 year: 2015 ident: CR8 article-title: Office Paper Platform for Bioelectrochromic Detection of Electrochemically Active Bacteria using Tungsten Trioxide Nanoprobes publication-title: Scientific Reports doi: 10.1038/srep09910 – volume: 4 start-page: 476 year: 2012 end-page: 478 ident: CR18 article-title: Rational Band Gap Engineering of WO Photocatalyst for Visible light Water Splitting publication-title: Chem Cat Chem – volume: 4 start-page: 9201 year: 2014 end-page: 9210 ident: CR31 article-title: A Stable and Efficient Hematite Photoanode in a Neutral Electrolyte for Solar Water Splitting: Towards Stability Engineering publication-title: Adv. Energy Mater – volume: 22 start-page: 265603 year: 2011 ident: CR19 article-title: Solvothermal synthesis of Ce-doped tungsten oxide nanostructures as visible-light-driven photocatalysts publication-title: Nanotech. doi: 10.1088/0957-4484/22/26/265603 – volume: 54 start-page: 3259 year: 2015 end-page: 3266 ident: CR4 article-title: Artificial photosynthesis for sustainable fuel and chemical production publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201409116 – volume: 7 start-page: 19684 year: 2015 end-page: 19690 ident: CR26 article-title: Polyamine-Mediated Interfacial Assembly of rGO-ZnO Nanostructures: A Bio-inspired Approach and Enhanced Photocatalytic Properties publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.5b04820 – volume: 201 start-page: 486 year: 2017 end-page: 494 ident: CR37 article-title: Synthesis of SnO /B-P codoped g-C N nanocomposites as efficient cocatalyst-free visible-light photocatalysts for CO conversion and pollutant degradation publication-title: App. Cata. B: Environ. doi: 10.1016/j.apcatb.2016.08.057 – volume: 2 start-page: 706 year: 2009 end-page: 712 ident: CR25 article-title: Solvothermal-assisted Exfoliation Process to Produce Graphene with High Yield and High Quality publication-title: Nano Res. doi: 10.1007/s12274-009-9074-z – volume: 44 start-page: 2685 year: 2011 end-page: 2692 ident: CR27 article-title: Importance of Covalent Linkages in the Preparation of Effective Reduced Graphene Oxide-Poly(vinyl chloride) Nanocomposites publication-title: Macromolecules doi: 10.1021/ma102932c – volume: 238 start-page: 37 year: 1972 end-page: 38 ident: CR1 article-title: Electrochemical photocatalysis of water at semiconductor electrode publication-title: Nature doi: 10.1038/238037a0 – volume: 343 start-page: 990 year: 2014 end-page: 994 ident: CR5 article-title: Nanoporous BiVO photoanodes with dual-layer oxygen evolution catalysts for solar water splitting publication-title: Science doi: 10.1126/science.1246913 – volume: 4 start-page: 4806 year: 2010 end-page: 4814 ident: CR36 article-title: Improved synthesis of graphene oxide publication-title: Acs Nano. doi: 10.1021/nn1006368 – volume: 8 start-page: 32581 year: 2016 end-page: 32591 ident: CR22 article-title: La O Promoted Pd/rGO electro-catalysts for formic acid oxidation publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.6b09645 – volume: 97 start-page: 187401 year: 2006 ident: CR33 article-title: Raman spectrum of graphene and graphene layers publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.187401 – volume: 5 start-page: 6552 year: 2012 end-page: 6558 ident: CR34 article-title: Dynamics of photogenerated charges in the phosphate modified TiO and the enhanced activity for photoelectrochemical water splitting publication-title: Energy Environ Sci. doi: 10.1039/c2ee03383f – volume: 8 start-page: 11770 year: 2014 end-page: 11777 ident: CR9 article-title: WO Nanoflakes for enhanced photoelectrochemical conversion publication-title: ACS Nano. doi: 10.1021/nn5053684 – volume: 8 start-page: 10622 year: 2016 end-page: 10631 ident: CR20 article-title: Structural and electronic engineering of 3DOM WO by alkali metal doping for improved NO sensing performance publication-title: Nanoscale doi: 10.1039/C6NR00858E – volume: 47 start-page: 7051 year: 2008 end-page: 7055 ident: CR15 article-title: Nanoporous-walled tungsten oxide nanotubes as highly active visible-light-driven photocatalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200802207 – volume: 130 start-page: 13885 year: 2008 end-page: 13891 ident: CR29 article-title: Mechanism of Photocatalytic Water Splitting in TiO . Reaction of Water with Photoholes, Importance of Charge Carrier Dynamics, and Evidence for Four-Hole Chemistry publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8034637 – volume: 26 start-page: 5043 year: 2014 end-page: 5049 ident: CR35 article-title: Branched WO Nanosheet Array with Layered C N Heterojunctions and CoO Nanoparticles as a Flexible Photoanode for Efficient Photoelectrochemical Water Oxidation publication-title: Adv. Mater. doi: 10.1002/adma.201401032 – volume: 15 start-page: 16138 year: 2013 end-page: 16142 ident: CR11 article-title: WO -reduced graphene oxide composites with enhanced charge transfer for photoelectrochemical conversion publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp53051e – volume: 23 start-page: 1079 year: 2011 end-page: 1081 ident: CR23 article-title: Graphene Decorated with Pt/Au Alloy Nanoparticles: Facile Synthesis and Promising Application for Formic Acid Oxidation publication-title: Chem. Mater. doi: 10.1021/cm101568z – volume: 26 start-page: 4414 year: 2016 end-page: 4421 ident: CR28 article-title: Toward High Performance Photoelectrochemical Water Oxidation: Combined Effects of Ultrafine Cobalt Iron Oxide Nanoparticle publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600232 – volume: 137 start-page: 4630 year: 2015 end-page: 4633 ident: CR10 article-title: Modification of nanocrystalline WO with a dicationic perylene bisimide: applications to molecular level solar water splitting publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b01519 – volume: 30 start-page: 5574 year: 2014 end-page: 5584 ident: CR17 article-title: Observing the Role of Graphene in Boosting the Two-Electron Reduction of Oxygen in Graphene-WO Nanorod Photocatalysts publication-title: Langmuir doi: 10.1021/la4048566 – volume: 17 start-page: 5145 year: 2011 end-page: 5154 ident: CR12 article-title: Fe O /WO Hierarchical Core-Shell Structure: High-Performance and Recyclable Visible-Light Photocatalysis publication-title: Chem. Eur. J. doi: 10.1002/chem.201002229 – volume: 130 start-page: 7780 year: 2008 end-page: 7781 ident: CR14 article-title: Ti(IV) nanoclusters as a promoter on semiconductor photocatalysts for the oxidation of organic compounds publication-title: J. Am. Chem. Soc. doi: 10.1021/ja800835q – volume: 51 start-page: 2821 year: 2015 end-page: 2823 ident: CR30 article-title: The promotion effect of surface negative electrostatic field on the photogenerated charge separation of BiVO and its contribution to the enhanced PEC water oxidation publication-title: Chem. Commun. doi: 10.1039/C4CC08835B – volume: 50 start-page: 13600 year: 2016 end-page: 13610 ident: CR3 article-title: Enhanced visible-light activities of porous BiFeO by coupling with nanocrystalline TiO and mechanism publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b04958 – volume: 22 start-page: 8525 year: 2012 end-page: 8531 ident: CR16 article-title: WO nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO gas sensing publication-title: J. Mater. Chem. doi: 10.1039/c2jm16709c – volume: 9 start-page: 2744 year: 2016 end-page: 2775 ident: CR7 article-title: Hematite heterostructures for photoelectrochemical water splitting: rational materials design and charge carrier dynamics publication-title: Energy Environ. Sci. doi: 10.1039/C6EE01845A – volume: 3 start-page: 2409 year: 2013 ident: CR13 article-title: A full-sunlight-driven photocatalyst with super long-persistent energy storage ability publication-title: Scientific Reports. doi: 10.1038/srep02409 – volume: 8 start-page: 9684 year: 2016 end-page: 9691 ident: CR32 article-title: Novel WO /Sb S Heterojunction Photocatalyst Based on WO of Different Morphologies for Enhanced Efficiency in Photoelectrochemical Water Splitting publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.6b00429 – volume: 8 start-page: 11770 year: 2014 ident: 1300_CR9 publication-title: ACS Nano. doi: 10.1021/nn5053684 – volume: 17 start-page: 5145 year: 2011 ident: 1300_CR12 publication-title: Chem. Eur. J. doi: 10.1002/chem.201002229 – volume: 130 start-page: 13885 year: 2008 ident: 1300_CR29 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8034637 – volume: 26 start-page: 5043 year: 2014 ident: 1300_CR35 publication-title: Adv. Mater. doi: 10.1002/adma.201401032 – volume: 21 start-page: 105704 year: 2010 ident: 1300_CR21 publication-title: Nanotech. doi: 10.1088/0957-4484/21/10/105704 – volume: 7 start-page: 19684 year: 2015 ident: 1300_CR26 publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.5b04820 – volume: 8 start-page: 10622 year: 2016 ident: 1300_CR20 publication-title: Nanoscale doi: 10.1039/C6NR00858E – volume: 23 start-page: 1079 year: 2011 ident: 1300_CR23 publication-title: Chem. Mater. doi: 10.1021/cm101568z – volume: 44 start-page: 2685 year: 2011 ident: 1300_CR27 publication-title: Macromolecules doi: 10.1021/ma102932c – volume: 30 start-page: 5574 year: 2014 ident: 1300_CR17 publication-title: Langmuir doi: 10.1021/la4048566 – volume: 7 start-page: 2831 year: 2014 ident: 1300_CR2 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE01299B – volume: 4 start-page: 9201 year: 2014 ident: 1300_CR31 publication-title: Adv. Energy Mater doi: 10.1021/acsami.6b00429 – volume: 8 start-page: 9684 year: 2016 ident: 1300_CR32 publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.6b00429 – volume: 4 start-page: 4806 year: 2010 ident: 1300_CR36 publication-title: Acs Nano. doi: 10.1021/nn1006368 – volume: 238 start-page: 37 year: 1972 ident: 1300_CR1 publication-title: Nature doi: 10.1038/238037a0 – volume: 5 start-page: 9910 year: 2015 ident: 1300_CR8 publication-title: Scientific Reports doi: 10.1038/srep09910 – volume: 97 start-page: 187401 year: 2006 ident: 1300_CR33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.187401 – volume: 22 start-page: 8525 year: 2012 ident: 1300_CR16 publication-title: J. Mater. Chem. doi: 10.1039/c2jm16709c – volume: 8 start-page: 32581 year: 2016 ident: 1300_CR22 publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.6b09645 – volume: 4 start-page: 476 year: 2012 ident: 1300_CR18 publication-title: Chem Cat Chem doi: 10.1002/cctc.v4.4 – volume: 457 start-page: 706 year: 2009 ident: 1300_CR24 publication-title: Nature doi: 10.1038/nature07719 – volume: 201 start-page: 486 year: 2017 ident: 1300_CR37 publication-title: App. Cata. B: Environ. doi: 10.1016/j.apcatb.2016.08.057 – volume: 3 start-page: 2409 year: 2013 ident: 1300_CR13 publication-title: Scientific Reports. doi: 10.1038/srep02409 – volume: 22 start-page: 265603 year: 2011 ident: 1300_CR19 publication-title: Nanotech. doi: 10.1088/0957-4484/22/26/265603 – volume: 137 start-page: 4630 year: 2015 ident: 1300_CR10 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b01519 – volume: 48 start-page: 7634 year: 2014 ident: 1300_CR6 publication-title: Environ. Sci. Technol. doi: 10.1021/es5011994 – volume: 15 start-page: 16138 year: 2013 ident: 1300_CR11 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp53051e – volume: 54 start-page: 3259 year: 2015 ident: 1300_CR4 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201409116 – volume: 50 start-page: 13600 year: 2016 ident: 1300_CR3 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b04958 – volume: 130 start-page: 7780 year: 2008 ident: 1300_CR14 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja800835q – volume: 2 start-page: 706 year: 2009 ident: 1300_CR25 publication-title: Nano Res. doi: 10.1007/s12274-009-9074-z – volume: 9 start-page: 2744 year: 2016 ident: 1300_CR7 publication-title: Energy Environ. Sci. doi: 10.1039/C6EE01845A – volume: 343 start-page: 990 year: 2014 ident: 1300_CR5 publication-title: Science doi: 10.1126/science.1246913 – volume: 51 start-page: 2821 year: 2015 ident: 1300_CR30 publication-title: Chem. Commun. doi: 10.1039/C4CC08835B – volume: 5 start-page: 6552 year: 2012 ident: 1300_CR34 publication-title: Energy Environ Sci. doi: 10.1039/c2ee03383f – volume: 26 start-page: 4414 year: 2016 ident: 1300_CR28 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600232 – volume: 47 start-page: 7051 year: 2008 ident: 1300_CR15 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200802207 |
SSID | ssj0000529419 |
Score | 2.3217237 |
Snippet | It is highly desired to improve the photoelectrochemical (PEC) performance of nanosized WO
3
by artificially modulating the photogenerated electrons and holes... It is highly desired to improve the photoelectrochemical (PEC) performance of nanosized WO3 by artificially modulating the photogenerated electrons and holes... Abstract It is highly desired to improve the photoelectrochemical (PEC) performance of nanosized WO3 by artificially modulating the photogenerated electrons... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | 140/133 140/146 639/638/77/890 704/172/169 Electrochemistry Environmental cleanup Humanities and Social Sciences Hydroxyl radicals multidisciplinary Oxidation Phenols Science Science (multidisciplinary) Trapping |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9UwFA4yEHwR5w-smxLBNy3Lz6Z9VNkYgvricG8hSdPdwSW97Ha6_Rv-xZ6T9l5uB-qL0KcmTdPknJ4vJOf7CHlTCfAgFgSqBnSlEsqVNZe-FF52jDkIIVm94fOX6vRMfTrX5ztSX3gmbKQHHgfuiDHfsmikiYaN7Fydik5pHSHUhC4vfCDm7SymRlZv0SjeTFkyTNZHa4hUmE3G8aSlZKw0s0iUCftnKPPuGck7G6U5_pw8Ig8n4Ejfjx3eJ_diekzuj1KSt0_Ir-O0yJv5dLXoh35StwkTHQDF9IUfmTyVAkqlPwFhXtH-5nJUVKIu4XMx9UvaInvEdBuu718lTS71qyWCUupv6ZChLhI6pgu6UdFZ5yagCOkeLiiK7q6fkrOT428fT8tJb6EMmpuhdG3jfdXqxikY2Vh55zxHijQRYNGjah0dD9pw1wHo6IyKumpc7eram7oNqpLPyF7qU3xOqIEGBJcOVkONapVuohAcmguyCcGHUBC-GXsbJjJy1MRY2rwpLms7zpeF-bJ5vqwpyNvtM6uRiuOvtT_glG5rIo12vgHGZSfjsv8yroIcbgzCTr69tvDPEph3akRBXm-LwStxq8Wl2F9DnbpRALwBqxXEzAxp1qF5SbpcZH5vrSSSKhXk3cbkdl7-xw9-8T8--IA8ENlFMG3_kOwNV9fxJaCuwb_KDvYbEAEqSA priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1di9QwFA26IvgifmJ1lQi-adl8tUmfRGWXRVBfXJy3kKTpzMKQjtOuun_DX2xumo7Oggt9atK0M_fe5jQ39xyEXtUsRhBxDFQDulIwYUpFuS2Z5R0hJk4hSb3h0-f69Ex8XFSLvOA25G2V8zsxvajb3sEa-VH0FAbVfpK93XwvQTUKsqtZQuMmugXUZeDVciF3ayyQxRK0ybUyhKujIc5XUFNGYb8lJ6SUe_NRou3fw5pXd0peSZemWejkHrqb4SN-N9n7PrrhwwN0exKUvHyIfh-HVUrp482qH_usceMyKQCGIoYfiUIVR6yKf0acucX9r_NJVwmbANf50K9xCxwS-XQ8vn3hOJjQb9YATbG9xGMCvEDrGJZ41tIZ0hCxCUgflhikd4dH6Ozk-OuH0zKrLpSuonIsTdtYW7dVY4Ryna-tMZYCURpz8dNHqMob6ipJTRehRyeFr-rGKKOUlap1ouaP0UHog3-CsIwDMMpN_CZqRCuqxjNG43CON85Z5wpE5_9eu0xJDsoYa51S41zpyV462ksne2lZoNe7azYTIce1vd-DSXc9gUw7nei3S51jUxNiW-Ill16SiQCuE96IqvIRzbiOFuhwdgidI3zQf_2xQC93zTE2IeFigu8vYh_ViAi_I2IrkNxzpL0H2m8J56vE8l0JDtRKBXozu9w_N__vD356_bM-Q3dYcn4oyz9EB-P2wj-PqGq0L1Lo_AH0hiJ6 priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwFA7rLoIv4hWrq0TwTYu5Nu3jKLssA-qDLu5bSNJ0ZmFIh5muun_DX-xJmg7OooLQp-bSS85pvvTkfB9CryoGHkQci6oBXSmYMGVNuS2Z5R0hBqaQpN7w4WN1di7mF_LiALEpFyZt2k-UlukzPe0Oe7uFiSYmg9G4UZITUqpb6ChStYNtH81m88_z3Z-VGLsStMkZMoTXf2i8Nwslsv49hHlzf-SNIGmae07vobsZNOLZeJv30YEPD9DtUUby-iH6eRKWKZCP18t-6LOyjctUADimLnxLxKkYECr-Duhyg_sfl6OaEjYhtvOhX-E2Mkfk03B8_cRxMKFfryIgxfYaDwnmRjLHsMCTgs42dQFFkephgaPg7vYROj89-fL-rMxaC6WTVA2laRtrq1Y2RtSu85U1xtJIj8YcLHhELb2hTipqOgAcnRJeVo2pTV1bVbdOVPwxOgx98E8QVtABo9zASqgRrZCNZ4xCd443zlnnCkSnd69dJiKPehgrnQLivNbjeGkYL53GS6sCvd61WY80HP-s_S4O6a5mpNBOJ_rNQmeT0oTYlnjFlVdkpH3rhDdCSg8YxnW0QMeTQejs11sN3ysWc04VK9DLXTF4ZAyzmOD7K6hTNwJAN-C0Aqk9Q9q7of2ScLlM3N5S8EioVKA3k8n9dvG_PvDT_6v-DN1hyRlicv4xOhw2V_45YKvBvsjO9Av5VyGJ priority: 102 providerName: Springer Nature |
Title | Enhanced photoelectrochemical activities for water oxidation and phenol degradation on WO3 nanoplates by transferring electrons and trapping holes |
URI | https://link.springer.com/article/10.1038/s41598-017-01300-7 https://www.proquest.com/docview/1962285472 https://www.proquest.com/docview/1894916554 https://pubmed.ncbi.nlm.nih.gov/PMC5430972 https://doaj.org/article/00bd0e737e70408593f4ea455e818cf1 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bitswEBV7odCX0it1uw0q9K11a8uyZT-Ukg1ZlsBuS9vQvBlJlpOFIKeJ95Lf6Bd3RrZDvWwLhUBAkmVHmskcWZpzCHmTMPCgQDNUDSh9zrj00zBSPlNRGQQSQohTbzg7T06nfDKLZ3ukkztqB3Bz59IO9aSm6-X7m5_bT-DwH5uU8fTDBoIQJoqFeIgyCgJf7JNDiEwCFQ3OWrjfcH2zjDutDyRh9wFMsDaP5u5uerHKUfr3cOjtU5S3tlJdhDp5SB600JIOG1t4RPaMfUzuNWKT2yfk19gu3HY_XS2qumr1b3RLGEAxweHK0atSwLH0GjDomlY3F43mEpUWrzO2WtIC-SXaYvj8-BxRK221WiJspWpLaweGkfLRzmmns7NxXUAVEkLMKcrybp6S6cn4--jUbxUZfB2HovZlkSmVFHEmeapLkygpVYgkakzDsoinsZGhjkUoS4AlpeAmTjKZyjRVIi00T6Jn5MBW1jwnVEAHLIwkrJcyXvA4M4yF0J2OMq2V1h4Ju7HPdUtXjqoZy9xtm0dp3sxXDvOVu_nKhUfe7q5ZNWQd_2x9jFO6a4lE266gWs_z1m_zIFBFYEQkjAgacriSG8nj2ADS0WXokaPOIPLOeHP4V2OYmSqYR17vqsFvcTNGWlNdQps04wDNAc15RPQMqfdA_Rp7sXAM4DGPkHbJI-86k_vj5n_9wS_-a3hekvvM-QJm8B-Rg3p9aV4BAKvVgOyLmRiQw-Fw8m0C38fj8y9foXSUjAbupcbA-d1vPrYxDQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIIXxFUEBhgJniBaYjtx8oAQl00du_Cyib4Z23HaSZVT2o7Rv8EP4TdyjpMUOom9TepT7Lhpz7HP5xyf7yPkZc5gBiWWoWpAHQsmdFyk3MTM8DpJNISQoN5weJQPTsTnYTbcIL_7Whg8VtmviWGhrhqL78i3wVMYVvtJ9m76PUbVKMyu9hIarVvsu-U5bNnmb_c-gX1fMba7c_xxEHeqArHNUrmIdVUak1dZqUVha5cbrU2KRGDMArQXReZ0ajOZ6hpCay2Fy_JSF7oojCwqK3IO414j1yHwJrjZk0O5eqeDWTORll1tTsKL7TnER6xhS_F8J0-SWK7FvyATsIZtL57MvJCeDVFv9w653cFV-r71r7tkw_l75EYrYLm8T37t-HE4QkCn42bRdJo6tiMhoFg08SNQtlLAxvQccO2MNj9PWx0nqj3e53wzoRVyVnSX4fP1C6de-2Y6QShMzZIuAsBGGkk_or12zzwMAU1IMjGiKPU7f0BOrsQeD8mmb7x7RKiEAVjKNezBSlGJrHSMpTCc5aW1xtqIpP1_r2xHgY5KHBMVUvG8UK29FNhLBXspGZHXq3umLQHIpb0_oElXPZG8O1xoZiPVrQUqSUyVOMmlk0lLOFcLp0WWOUBPtk4jstU7hOpWlLn66_8RebFqhrUAEzzau-YM-hSlALgPCDEics2R1h5ovcWfjgOreCY4UjlF5E3vcv98-X9_8OPLn_U5uTk4PjxQB3tH-0_ILRYmAlICbJHNxezMPQVEtzDPwjSi5NtVz9s_Cz1f9w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLVGJxAviE8RGGAkeIJoiePEyQNCjLXaGJQJMbE3z3acdlLllLZj9G_wc_h13OskhU5ib5P6FDtu2vvh4_j6HEJeZAwiKDIMVQOqkDOuwjxOdMh0UkWRginEqzd8GmZ7R_zDcXq8QX53Z2GwrLLLiT5Rl7XBd-Tb4CkMT_sJtl21ZRGHu4O30-8hKkjhTmsnp9G4yIFdnsPybf5mfxds_ZKxQf_r-72wVRgITRqLRajKQuusTAvFc1PZTCulYyQFYwZgPs9Tq2KTilhVMM1Wgts0K1Su8lyLvDQ8S2Dca2RT4KqoRzZ3-sPDL6s3PLiHxuOiPakTJfn2HGZLPNEWY7VnEkWhWJsNvWjAGtK9WKd5YbPWz4GD2-RWC17pu8bb7pAN6-6S642c5fIe-dV3Y19QQKfjelG3CjumpSSgeITihydwpYCU6Tmg3Bmtf542qk5UObzPunpCS2SwaC_D59vnhDrl6ukEgTHVS7rwcBtJJd2Idko-cz8ENCHlxIii8O_8Pjm6Eos8ID1XO_uQUAEDsDhRsCIreMnTwjIWw3AmKYzRxgQk7v57aVpCdNTlmEi_MZ_ksrGXBHtJby8pAvJqdc-0oQO5tPcOmnTVE6m8_YV6NpJtZpBRpMvIikRYETX0cxW3iqepBSxlqjggW51DyDa_zOXfaAjI81UzZAbc7lHO1mfQJy84gH_AiwERa4609kDrLe507DnGU54gsVNAXncu98-X__cHP7r8WZ-RGxCz8uP-8OAxucl8HCA_wBbpLWZn9gnAu4V-2sYRJSdXHbp_AEb0ZZI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+photoelectrochemical+activities+for+water+oxidation+and+phenol+degradation+on+WO3+nanoplates+by+transferring+electrons+and+trapping+holes&rft.jtitle=Scientific+reports&rft.au=Sun%2C+Liqun&rft.au=Wang%2C+Yuying&rft.au=Raziq%2C+Fazal&rft.au=Qu%2C+Yang&rft.date=2017-05-02&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=7&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-017-01300-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_017_01300_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |