Semi-automated quantitation of mitophagy in cells and tissues

•The mito-QC reporter is a powerful model to monitor mitophagy in vitro and in vivo.•The mito-QC Counter is a new semi-automated tool to quantify mitophagy.•Mitophagy is induced in ARPE19 cells and varies in distinct skeletal muscle regions. Mitophagy is a natural phenomenon and entails the lysosoma...

Full description

Saved in:
Bibliographic Details
Published inMechanisms of ageing and development Vol. 185; p. 111196
Main Authors Montava-Garriga, Lambert, Singh, François, Ball, Graeme, Ganley, Ian G.
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.01.2020
Elsevier Science Ireland
Subjects
Online AccessGet full text
ISSN0047-6374
1872-6216
1872-6216
DOI10.1016/j.mad.2019.111196

Cover

Abstract •The mito-QC reporter is a powerful model to monitor mitophagy in vitro and in vivo.•The mito-QC Counter is a new semi-automated tool to quantify mitophagy.•Mitophagy is induced in ARPE19 cells and varies in distinct skeletal muscle regions. Mitophagy is a natural phenomenon and entails the lysosomal degradation of mitochondria by the autophagy pathway. In recent years, the development of fluorescent pH-sensitive mitochondrial reporters has greatly facilitated the monitoring of mitophagy by distinguishing between cytosolic mitochondria or those delivered to acidic lysosomes. We recently published the mito-QC reporter, which consists of a mitochondrial outer membrane-localised tandem mCherry-GFP tag. This allows the quantification of mitophagy via the increase in red-only mCherry signal that arises when the GFP signal is quenched upon mitochondrial delivery to lysosomes. Here we develop a macro for FIJI, the mito-QC Counter, and describe its use to allow reliable and consistent semi-automated quantification of mitophagy. In this methods article we describe step-by-step how to detect and quantify mitophagy and show that mitophagy levels can be reliably calculated in different cell lines and under distinct stimuli. Finally, we show that the mito-QC Counter can be used to quantify mitophagy in tissues of mito-QC transgenic mice. We demonstrate that mitophagy levels in skeletal muscle correlates with glycolytic activity. Our present data show that the mito-QC Counter macro for FIJI enables the robust quantification of mitophagy both in vitro and in vivo.
AbstractList Mitophagy is a natural phenomenon and entails the lysosomal degradation of mitochondria by the autophagy pathway. In recent years, the development of fluorescent pH-sensitive mitochondrial reporters has greatly facilitated the monitoring of mitophagy by distinguishing between cytosolic mitochondria or those delivered to acidic lysosomes. We recently published the mito-QC reporter, which consists of a mitochondrial outer membrane-localised tandem mCherry-GFP tag. This allows the quantification of mitophagy via the increase in red-only mCherry signal that arises when the GFP signal is quenched upon mitochondrial delivery to lysosomes. Here we develop a macro for FIJI, the mito-QC Counter, and describe its use to allow reliable and consistent semi-automated quantification of mitophagy. In this methods article we describe step-by-step how to detect and quantify mitophagy and show that mitophagy levels can be reliably calculated in different cell lines and under distinct stimuli. Finally, we show that the mito-QC Counter can be used to quantify mitophagy in tissues of mito-QC transgenic mice. We demonstrate that mitophagy levels in skeletal muscle correlates with glycolytic activity. Our present data show that the mito-QC Counter macro for FIJI enables the robust quantification of mitophagy both in vitro and in vivo.Mitophagy is a natural phenomenon and entails the lysosomal degradation of mitochondria by the autophagy pathway. In recent years, the development of fluorescent pH-sensitive mitochondrial reporters has greatly facilitated the monitoring of mitophagy by distinguishing between cytosolic mitochondria or those delivered to acidic lysosomes. We recently published the mito-QC reporter, which consists of a mitochondrial outer membrane-localised tandem mCherry-GFP tag. This allows the quantification of mitophagy via the increase in red-only mCherry signal that arises when the GFP signal is quenched upon mitochondrial delivery to lysosomes. Here we develop a macro for FIJI, the mito-QC Counter, and describe its use to allow reliable and consistent semi-automated quantification of mitophagy. In this methods article we describe step-by-step how to detect and quantify mitophagy and show that mitophagy levels can be reliably calculated in different cell lines and under distinct stimuli. Finally, we show that the mito-QC Counter can be used to quantify mitophagy in tissues of mito-QC transgenic mice. We demonstrate that mitophagy levels in skeletal muscle correlates with glycolytic activity. Our present data show that the mito-QC Counter macro for FIJI enables the robust quantification of mitophagy both in vitro and in vivo.
• The mito- QC reporter is a powerful model to monitor mitophagy in vitro and in vivo . • The mito-QC Counter is a new semi-automated tool to quantify mitophagy. • Mitophagy is induced in ARPE19 cells and varies in distinct skeletal muscle regions. Mitophagy is a natural phenomenon and entails the lysosomal degradation of mitochondria by the autophagy pathway. In recent years, the development of fluorescent pH-sensitive mitochondrial reporters has greatly facilitated the monitoring of mitophagy by distinguishing between cytosolic mitochondria or those delivered to acidic lysosomes. We recently published the mito- QC reporter, which consists of a mitochondrial outer membrane-localised tandem mCherry-GFP tag. This allows the quantification of mitophagy via the increase in red-only mCherry signal that arises when the GFP signal is quenched upon mitochondrial delivery to lysosomes. Here we develop a macro for FIJI, the mito-QC Counter , and describe its use to allow reliable and consistent semi-automated quantification of mitophagy. In this methods article we describe step-by-step how to detect and quantify mitophagy and show that mitophagy levels can be reliably calculated in different cell lines and under distinct stimuli. Finally, we show that the mito-QC Counter can be used to quantify mitophagy in tissues of mito -QC transgenic mice. We demonstrate that mitophagy levels in skeletal muscle correlates with glycolytic activity. Our present data show that the mito-QC Counter macro for FIJI enables the robust quantification of mitophagy both in vitro and in vivo .
Mitophagy is a natural phenomenon and entails the lysosomal degradation of mitochondria by the autophagy pathway. In recent years, the development of fluorescent pH-sensitive mitochondrial reporters has greatly facilitated the monitoring of mitophagy by distinguishing between cytosolic mitochondria or those delivered to acidic lysosomes. We recently published the mito-QC reporter, which consists of a mitochondrial outer membrane-localised tandem mCherry-GFP tag. This allows the quantification of mitophagy via the increase in red-only mCherry signal that arises when the GFP signal is quenched upon mitochondrial delivery to lysosomes. Here we develop a macro for FIJI, the mito-QC Counter, and describe its use to allow reliable and consistent semi-automated quantification of mitophagy. In this methods article we describe step-by-step how to detect and quantify mitophagy and show that mitophagy levels can be reliably calculated in different cell lines and under distinct stimuli. Finally, we show that the mito-QC Counter can be used to quantify mitophagy in tissues of mito-QC transgenic mice. We demonstrate that mitophagy levels in skeletal muscle correlates with glycolytic activity. Our present data show that the mito-QC Counter macro for FIJI enables the robust quantification of mitophagy both in vitro and in vivo.
•The mito-QC reporter is a powerful model to monitor mitophagy in vitro and in vivo.•The mito-QC Counter is a new semi-automated tool to quantify mitophagy.•Mitophagy is induced in ARPE19 cells and varies in distinct skeletal muscle regions. Mitophagy is a natural phenomenon and entails the lysosomal degradation of mitochondria by the autophagy pathway. In recent years, the development of fluorescent pH-sensitive mitochondrial reporters has greatly facilitated the monitoring of mitophagy by distinguishing between cytosolic mitochondria or those delivered to acidic lysosomes. We recently published the mito-QC reporter, which consists of a mitochondrial outer membrane-localised tandem mCherry-GFP tag. This allows the quantification of mitophagy via the increase in red-only mCherry signal that arises when the GFP signal is quenched upon mitochondrial delivery to lysosomes. Here we develop a macro for FIJI, the mito-QC Counter, and describe its use to allow reliable and consistent semi-automated quantification of mitophagy. In this methods article we describe step-by-step how to detect and quantify mitophagy and show that mitophagy levels can be reliably calculated in different cell lines and under distinct stimuli. Finally, we show that the mito-QC Counter can be used to quantify mitophagy in tissues of mito-QC transgenic mice. We demonstrate that mitophagy levels in skeletal muscle correlates with glycolytic activity. Our present data show that the mito-QC Counter macro for FIJI enables the robust quantification of mitophagy both in vitro and in vivo.
ArticleNumber 111196
Author Ganley, Ian G.
Ball, Graeme
Montava-Garriga, Lambert
Singh, François
AuthorAffiliation b Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
a MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
AuthorAffiliation_xml – name: b Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
– name: a MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
Author_xml – sequence: 1
  givenname: Lambert
  surname: Montava-Garriga
  fullname: Montava-Garriga, Lambert
  organization: MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
– sequence: 2
  givenname: François
  surname: Singh
  fullname: Singh, François
  organization: MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
– sequence: 3
  givenname: Graeme
  orcidid: 0000-0002-6526-2306
  surname: Ball
  fullname: Ball, Graeme
  organization: Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
– sequence: 4
  givenname: Ian G.
  orcidid: 0000-0003-1481-9407
  surname: Ganley
  fullname: Ganley, Ian G.
  email: i.ganley@dundee.ac.uk
  organization: MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31843465$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1v1DAQtVBRuy39AVxQjlyy9TiOHQuBVFVAkSpxAM6Wa49brxJ7GzuV-u_xarcIOHQuPsz7GL93So5iikjIW6BroCAuNuvJuDWjoNZQR4lXZAWDZK1gII7IilIuW9FJfkJOc95QSoEzcUxOOhh4x0W_Ih9_4BRas5Q0mYKueVhMLKGYElJskm-mUNL23tw9NSE2FscxNya6poScF8xvyGtvxoznh_eM_Pry-efVdXvz_eu3q8ub1vYgS2usVN5Z1XcKBke9VMY4D3aAeiG9dT0H5RmXTAEOVgB6Kr3qPXjOAXrTnZFPe93tcjuhsxjLbEa9ncNk5iedTND_bmK413fpUQslgAFUgfcHgTk91MOLnkLefcdETEvWrGNSdWyAoULf_e31x-Q5swqQe4CdU84zem0PgVXrMGqgeteO3ujajt61o_ftVCb8x3wWf4nzYc_Bmu9jwFlnGzBadGFGW7RL4QX2bxJsp3c
CitedBy_id crossref_primary_10_26508_lsa_202201825
crossref_primary_10_1016_j_phrs_2024_107484
crossref_primary_10_1042_BST20190236
crossref_primary_10_1371_journal_pbio_3001977
crossref_primary_10_15252_embj_2021109390
crossref_primary_10_26508_lsa_202000768
crossref_primary_10_1371_journal_pbio_3002244
crossref_primary_10_1096_fj_202201872RR
crossref_primary_10_1111_tra_12957
crossref_primary_10_15252_embj_2022112799
crossref_primary_10_1038_s41418_023_01251_9
crossref_primary_10_3389_fncel_2024_1409717
crossref_primary_10_1186_s13024_024_00739_3
crossref_primary_10_1111_febs_16979
crossref_primary_10_1016_j_freeradbiomed_2024_09_031
crossref_primary_10_1080_15548627_2024_2396792
crossref_primary_10_26508_lsa_202101287
crossref_primary_10_1242_jcs_263408
crossref_primary_10_1016_j_preteyeres_2023_101205
crossref_primary_10_1042_BCJ20210375
crossref_primary_10_1080_15548627_2021_1907269
crossref_primary_10_1242_jcs_260638
crossref_primary_10_1080_15548627_2023_2172873
crossref_primary_10_3390_cells12081143
crossref_primary_10_1016_j_mad_2020_111291
crossref_primary_10_3389_fcell_2024_1460061
crossref_primary_10_1016_j_freeradbiomed_2023_09_009
crossref_primary_10_15252_embj_2022111115
crossref_primary_10_1080_15548627_2024_2395149
crossref_primary_10_1016_j_molcel_2024_10_025
crossref_primary_10_1113_JP286216
crossref_primary_10_3389_fcell_2022_868465
crossref_primary_10_7554_eLife_67604
crossref_primary_10_1016_j_isci_2021_103703
crossref_primary_10_1016_j_molcel_2024_10_022
crossref_primary_10_1186_s13024_024_00701_3
crossref_primary_10_1007_s00018_022_04585_8
crossref_primary_10_1038_s41598_023_47942_8
crossref_primary_10_15252_emmm_201911659
crossref_primary_10_1021_jacs_2c05499
crossref_primary_10_1080_15548627_2023_2230837
crossref_primary_10_1098_rsob_240291
crossref_primary_10_2139_ssrn_3904961
crossref_primary_10_1016_j_mcn_2023_103834
crossref_primary_10_1038_s41467_024_45044_1
crossref_primary_10_1080_27694127_2024_2326402
Cites_doi 10.1016/j.cell.2010.01.028
10.1038/nature11910
10.1016/j.chembiol.2011.05.013
10.1080/15548627.2015.1034403
10.1016/j.cub.2018.01.004
10.1083/jcb.201801044
10.1007/978-1-4939-8873-0_41
10.1016/j.molcel.2015.10.009
10.1016/j.cell.2010.04.009
10.1126/science.290.5496.1585
10.1152/ajpcell.00056.2010
10.1096/fj.01-0206fje
10.1038/nature14893
10.4161/auto.29394
10.1083/jcb.200809125
10.1038/s41467-017-00520-9
10.4161/auto.7.9.15760
10.1074/jbc.M800102200
10.1006/exer.1996.0020
10.1016/j.cmet.2017.12.008
10.1038/nature25486
10.1083/jcb.201603039
10.1038/embor.2013.168
10.4161/auto.26501
10.1080/15548627.2015.1017178
10.1152/ajpregu.00488.2010
10.4161/auto.1.1.1495
10.1042/NS20180134
ContentType Journal Article
Copyright 2019 The Authors
Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.
2019 The Authors 2019
Copyright_xml – notice: 2019 The Authors
– notice: Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.
– notice: 2019 The Authors 2019
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.mad.2019.111196
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
Zoology
EISSN 1872-6216
ExternalDocumentID PMC6961211
31843465
10_1016_j_mad_2019_111196
S0047637419302015
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_UU_00018/2
GroupedDBID ---
--K
--M
-~X
.55
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29M
3O-
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AACTN
AADPK
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYJJ
ABCQJ
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACNCT
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGWIK
AGYEJ
AHHHB
AHPSJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LX3
M2V
M41
MO0
MOBAO
MS~
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SSN
SSU
SSZ
T5K
WUQ
X7M
YYP
ZGI
ZXP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c517t-ac79fdc953918d0f79aadf1c810040bd5419f247291e8c61ef07f95f1f44115a3
IEDL.DBID AIKHN
ISSN 0047-6374
1872-6216
IngestDate Thu Aug 21 18:41:21 EDT 2025
Fri Sep 05 10:17:57 EDT 2025
Mon Jul 21 06:05:04 EDT 2025
Tue Jul 01 04:17:44 EDT 2025
Thu Apr 24 22:51:55 EDT 2025
Fri Feb 23 02:47:28 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords mito-QC
Mitochondria
FIJI
Mitolysosome
stdDev
Mitophagy
ROI
TEM
Autophagy
DFP
Language English
License This is an open access article under the CC BY license.
Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-ac79fdc953918d0f79aadf1c810040bd5419f247291e8c61ef07f95f1f44115a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally.
ORCID 0000-0003-1481-9407
0000-0002-6526-2306
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0047637419302015
PMID 31843465
PQID 2327932818
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6961211
proquest_miscellaneous_2327932818
pubmed_primary_31843465
crossref_citationtrail_10_1016_j_mad_2019_111196
crossref_primary_10_1016_j_mad_2019_111196
elsevier_sciencedirect_doi_10_1016_j_mad_2019_111196
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Mechanisms of ageing and development
PublicationTitleAlternate Mech Ageing Dev
PublicationYear 2020
Publisher Elsevier B.V
Elsevier Science Ireland
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ireland
References Hernandez, Thornton, Stotland, Lui, Sin, Ramil, Magee, Andres, Quarato, Carreira, Sayen, Wolkowicz, Gottlieb (bib0050) 2013; 9
Singh, Zoll, Duthaler, Charles, Panajatovic, Laverny, McWilliams, Metzger, Geny, Krähenbühl, Bouitbir (bib0130) 2018
Eskelinen, Reggiori, Baba, Kovács, Seglen (bib0030) 2011; 7
McWilliams, Prescott, Montava-Garriga, Ball, Singh, Barini, Muqit, Brooks, Ganley (bib0105) 2018; 27
McMillan, Quadrilatero (bib0085) 2011
Zhang, Bosch-Marce, Shimoda, Yee, Jin, Wesley, Gonzalez, Semenza (bib0155) 2008; 283
Montava-Garriga, Ganley (bib0115) 2019
McWilliams, Ganley (bib0090) 2019
Bampton, Goemans, Niranjan, Mizushima, Tolkovsky (bib0010) 2005; 1
Hamasaki, Furuta, Matsuda, Nezu, Yamamoto, Fujita, Oomori, Noda, Haraguchi, Hiraoka, Amano, Yoshimori (bib0045) 2013; 495
Terskikh, Fradkov, Ermakova, Zaraisky, Tan, Kajava, Zhao, Lukyanov, Matz, Kim, Weissman, Siebert (bib0145) 2000; 290
Lee, Sanchez-Martinez, Zarate, Benincá, Mayor, Clague, Whitworth (bib0075) 2018; 217
Mauro-Lizcano, Esteban-Martínez, Seco, Serrano-Puebla, Garcia-Ledo, Figueiredo-Pereira, Vieira, Boya (bib0080) 2015; 11
Sun, Yun, Liu, Malide, Liu, Rovira, Holmström, Fergusson, Yoo, Combs, Finkel (bib0135) 2015; 60
Katayama, Kogure, Mizushima, Yoshimori, Miyawaki (bib0055) 2011; 18
Wong, Ysselstein, Krainc (bib0150) 2018; 554
Allen, Toth, James, Ganley (bib0005) 2013; 14
McWilliams, Prescott, Allen, Tamjar, Munson, Thomson, Muqit, Ganley (bib0095) 2016; 214
Dunn, Aotaki-keen, Putkey, Hjelmeland (bib0020) 1996; 62
Laker, Drake, Wilson, Lira, Lewellen, Ryall, Fisher, Zhang, Saucerman, Goodyear, Kundu, Yan (bib0065) 2017; 8
Suomi, McWilliams (bib0140) 2019; 3
Mizushima, Yoshimori, Levine (bib0110) 2010; 140
Pickles, Vigié, Youle (bib0125) 2018; 28
Hailey, Rambold, Satpute-Krishnan, Mitra, Sougrat, Kim, Lippincott-Schwartz (bib0040) 2010; 141
Narendra, Tanaka, Suen, Youle (bib0120) 2008; 183
Elmore, Qian, Grissom, Lemasters (bib0025) 2001; 15
McWilliams, Prescott, Villarejo-Zori, Ball, Boya, Ganley (bib0100) 2019; 0
Gump, Thorburn (bib0035) 2014; 10
Biazik, Ylä-Anttila, Vihinen, Jokitalo, Eskelinen (bib0015) 2015; 11
Lazarou, Sliter, Kane, Sarraf, Wang, Burman, Sideris, Fogel, Youle (bib0070) 2015; 524
Kim, Lemasters (bib0060) 2011; 300
Allen (10.1016/j.mad.2019.111196_bib0005) 2013; 14
Dunn (10.1016/j.mad.2019.111196_bib0020) 1996; 62
Mizushima (10.1016/j.mad.2019.111196_bib0110) 2010; 140
McWilliams (10.1016/j.mad.2019.111196_bib0090) 2019
Zhang (10.1016/j.mad.2019.111196_bib0155) 2008; 283
Katayama (10.1016/j.mad.2019.111196_bib0055) 2011; 18
Hailey (10.1016/j.mad.2019.111196_bib0040) 2010; 141
Sun (10.1016/j.mad.2019.111196_bib0135) 2015; 60
Kim (10.1016/j.mad.2019.111196_bib0060) 2011; 300
Elmore (10.1016/j.mad.2019.111196_bib0025) 2001; 15
McWilliams (10.1016/j.mad.2019.111196_bib0100) 2019; 0
Lazarou (10.1016/j.mad.2019.111196_bib0070) 2015; 524
Eskelinen (10.1016/j.mad.2019.111196_bib0030) 2011; 7
Narendra (10.1016/j.mad.2019.111196_bib0120) 2008; 183
Pickles (10.1016/j.mad.2019.111196_bib0125) 2018; 28
Singh (10.1016/j.mad.2019.111196_bib0130) 2018
Mauro-Lizcano (10.1016/j.mad.2019.111196_bib0080) 2015; 11
McMillan (10.1016/j.mad.2019.111196_bib0085) 2011
Hamasaki (10.1016/j.mad.2019.111196_bib0045) 2013; 495
Montava-Garriga (10.1016/j.mad.2019.111196_bib0115) 2019
Wong (10.1016/j.mad.2019.111196_bib0150) 2018; 554
Gump (10.1016/j.mad.2019.111196_bib0035) 2014; 10
Suomi (10.1016/j.mad.2019.111196_bib0140) 2019; 3
Hernandez (10.1016/j.mad.2019.111196_bib0050) 2013; 9
McWilliams (10.1016/j.mad.2019.111196_bib0095) 2016; 214
McWilliams (10.1016/j.mad.2019.111196_bib0105) 2018; 27
Lee (10.1016/j.mad.2019.111196_bib0075) 2018; 217
Terskikh (10.1016/j.mad.2019.111196_bib0145) 2000; 290
Bampton (10.1016/j.mad.2019.111196_bib0010) 2005; 1
Biazik (10.1016/j.mad.2019.111196_bib0015) 2015; 11
Laker (10.1016/j.mad.2019.111196_bib0065) 2017; 8
References_xml – volume: 8
  year: 2017
  ident: bib0065
  article-title: Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy
  publication-title: Nat. Commun.
– volume: 11
  start-page: 833
  year: 2015
  end-page: 843
  ident: bib0080
  article-title: New method to assess mitophagy flux by flow cytometry
  publication-title: Autophagy
– volume: 217
  start-page: 1613
  year: 2018
  end-page: 1622
  ident: bib0075
  article-title: Basal mitophagy is widespread in Drosophila but minimally affected by loss of Pink1 or parkin
  publication-title: J. Cell Biol.
– volume: 1
  start-page: 23
  year: 2005
  end-page: 36
  ident: bib0010
  article-title: The dynamics of autophagy visualised in live cells: from autophagosome formation to fusion with Endo/lysosomes
  publication-title: Autophagy
– volume: 183
  start-page: 795
  year: 2008
  end-page: 803
  ident: bib0120
  article-title: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
  publication-title: J. Cell Biol.
– year: 2018
  ident: bib0130
  article-title: PGC-1β modulates statin-associated myotoxicity in mice
  publication-title: Arch. Toxicol.
– volume: 60
  start-page: 685
  year: 2015
  end-page: 696
  ident: bib0135
  article-title: Measuring in vivo mitophagy
  publication-title: Mol. Cell
– volume: 10
  start-page: 1327
  year: 2014
  end-page: 1334
  ident: bib0035
  article-title: Sorting cells for basal and induced autophagic flux by quantitative ratiometric flow cytometry
  publication-title: Autophagy
– volume: 283
  start-page: 10892
  year: 2008
  end-page: 10903
  ident: bib0155
  article-title: Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia
  publication-title: J. Biol. Chem.
– volume: 15
  start-page: 2286
  year: 2001
  end-page: 2287
  ident: bib0025
  article-title: The mitochondrial permeability transition initiates autophagy in rat hepatocytes
  publication-title: FASEB J.
– start-page: 531
  year: 2011
  end-page: 543
  ident: bib0085
  article-title: Differential apoptosis-related protein expression, mitochondrial properties, proteolytic enzyme activity, and DNA fragmentation between skeletal muscles
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
– volume: 62
  start-page: 155
  year: 1996
  end-page: 170
  ident: bib0020
  article-title: ARPE-19, A human retinal pigment epithelial cell line with differentiated properties
  publication-title: Exp. Eye Res.
– volume: 0
  start-page: 1
  year: 2019
  end-page: 13
  ident: bib0100
  article-title: A comparative map of macroautophagy and mitophagy in the vertebrate eye
  publication-title: Autophagy
– year: 2019
  ident: bib0115
  article-title: Outstanding questions in mitophagy: what we do and do not know
  publication-title: J. Mol. Biol.
– volume: 11
  start-page: 439
  year: 2015
  end-page: 451
  ident: bib0015
  article-title: Ultrastructural relationship of the phagophore with surrounding organelles
  publication-title: Autophagy
– volume: 290
  start-page: 1585
  year: 2000
  end-page: 1588
  ident: bib0145
  article-title: “Fluorescent timer”: protein that changes color with time
  publication-title: Science
– volume: 3
  year: 2019
  ident: bib0140
  article-title: Autophagy in the mammalian nervous system: a primer for neuroscientists
  publication-title: Neuronal Signal.
– start-page: 621
  year: 2019
  end-page: 642
  ident: bib0090
  article-title: Investigating mitophagy and mitochondrial morphology in vivo using mito-QC: a comprehensive guide
  publication-title: Methods Mol. Biol.
– volume: 7
  start-page: 935
  year: 2011
  end-page: 956
  ident: bib0030
  article-title: Seeing is believing: the impact of electron microscopy on autophagy research
  publication-title: Autophagy
– volume: 554
  start-page: 382
  year: 2018
  end-page: 386
  ident: bib0150
  article-title: Mitochondria–lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis
  publication-title: Nature
– volume: 27
  start-page: 439
  year: 2018
  end-page: 449
  ident: bib0105
  article-title: Basal mitophagy occurs independently of PINK1 in mouse tissues of high metabolic demand
  publication-title: Cell Metab.
– volume: 9
  start-page: 1852
  year: 2013
  end-page: 1861
  ident: bib0050
  article-title: MitoTimer
  publication-title: Autophagy
– volume: 14
  start-page: 1127
  year: 2013
  end-page: 1135
  ident: bib0005
  article-title: Loss of iron triggers PINK1/Parkin-independent mitophagy
  publication-title: EMBO Rep.
– volume: 141
  start-page: 656
  year: 2010
  end-page: 667
  ident: bib0040
  article-title: Mitochondria supply membranes for autophagosome biogenesis during starvation
  publication-title: Cell
– volume: 495
  start-page: 389
  year: 2013
  end-page: 393
  ident: bib0045
  article-title: Autophagosomes form at ER–mitochondria contact sites
  publication-title: Nature
– volume: 524
  start-page: 309
  year: 2015
  end-page: 314
  ident: bib0070
  article-title: The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
  publication-title: Nature
– volume: 28
  start-page: R142
  year: 2018
  end-page: R143
  ident: bib0125
  article-title: Mitophagy and quality control mechanisms in mitochondrial maintenance
  publication-title: Curr. Biol.
– volume: 140
  start-page: 313
  year: 2010
  end-page: 326
  ident: bib0110
  article-title: Methods in mammalian autophagy research
  publication-title: Cell
– volume: 214
  start-page: 333
  year: 2016
  end-page: 345
  ident: bib0095
  article-title: Mito -QC illuminates mitophagy and mitochondrial architecture in vivo
  publication-title: J. Cell Biol.
– volume: 300
  start-page: C308
  year: 2011
  end-page: C317
  ident: bib0060
  article-title: Mitochondrial degradation by autophagy (mitophagy) in GFP-LC3 transgenic hepatocytes during nutrient deprivation
  publication-title: Am. J. Physiol. Physiol.
– volume: 18
  start-page: 1042
  year: 2011
  end-page: 1052
  ident: bib0055
  article-title: A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery
  publication-title: Chem. Biol.
– volume: 140
  start-page: 313
  year: 2010
  ident: 10.1016/j.mad.2019.111196_bib0110
  article-title: Methods in mammalian autophagy research
  publication-title: Cell
  doi: 10.1016/j.cell.2010.01.028
– volume: 0
  start-page: 1
  year: 2019
  ident: 10.1016/j.mad.2019.111196_bib0100
  article-title: A comparative map of macroautophagy and mitophagy in the vertebrate eye
  publication-title: Autophagy
– volume: 495
  start-page: 389
  year: 2013
  ident: 10.1016/j.mad.2019.111196_bib0045
  article-title: Autophagosomes form at ER–mitochondria contact sites
  publication-title: Nature
  doi: 10.1038/nature11910
– volume: 18
  start-page: 1042
  year: 2011
  ident: 10.1016/j.mad.2019.111196_bib0055
  article-title: A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2011.05.013
– volume: 11
  start-page: 833
  year: 2015
  ident: 10.1016/j.mad.2019.111196_bib0080
  article-title: New method to assess mitophagy flux by flow cytometry
  publication-title: Autophagy
  doi: 10.1080/15548627.2015.1034403
– volume: 28
  start-page: R142
  year: 2018
  ident: 10.1016/j.mad.2019.111196_bib0125
  article-title: Mitophagy and quality control mechanisms in mitochondrial maintenance
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2018.01.004
– volume: 217
  start-page: 1613
  year: 2018
  ident: 10.1016/j.mad.2019.111196_bib0075
  article-title: Basal mitophagy is widespread in Drosophila but minimally affected by loss of Pink1 or parkin
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201801044
– start-page: 621
  year: 2019
  ident: 10.1016/j.mad.2019.111196_bib0090
  article-title: Investigating mitophagy and mitochondrial morphology in vivo using mito-QC: a comprehensive guide
  doi: 10.1007/978-1-4939-8873-0_41
– volume: 60
  start-page: 685
  year: 2015
  ident: 10.1016/j.mad.2019.111196_bib0135
  article-title: Measuring in vivo mitophagy
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.10.009
– volume: 141
  start-page: 656
  year: 2010
  ident: 10.1016/j.mad.2019.111196_bib0040
  article-title: Mitochondria supply membranes for autophagosome biogenesis during starvation
  publication-title: Cell
  doi: 10.1016/j.cell.2010.04.009
– year: 2019
  ident: 10.1016/j.mad.2019.111196_bib0115
  article-title: Outstanding questions in mitophagy: what we do and do not know
  publication-title: J. Mol. Biol.
– volume: 290
  start-page: 1585
  year: 2000
  ident: 10.1016/j.mad.2019.111196_bib0145
  article-title: “Fluorescent timer”: protein that changes color with time
  publication-title: Science
  doi: 10.1126/science.290.5496.1585
– volume: 300
  start-page: C308
  year: 2011
  ident: 10.1016/j.mad.2019.111196_bib0060
  article-title: Mitochondrial degradation by autophagy (mitophagy) in GFP-LC3 transgenic hepatocytes during nutrient deprivation
  publication-title: Am. J. Physiol. Physiol.
  doi: 10.1152/ajpcell.00056.2010
– volume: 15
  start-page: 2286
  year: 2001
  ident: 10.1016/j.mad.2019.111196_bib0025
  article-title: The mitochondrial permeability transition initiates autophagy in rat hepatocytes
  publication-title: FASEB J.
  doi: 10.1096/fj.01-0206fje
– volume: 524
  start-page: 309
  year: 2015
  ident: 10.1016/j.mad.2019.111196_bib0070
  article-title: The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
  publication-title: Nature
  doi: 10.1038/nature14893
– volume: 10
  start-page: 1327
  year: 2014
  ident: 10.1016/j.mad.2019.111196_bib0035
  article-title: Sorting cells for basal and induced autophagic flux by quantitative ratiometric flow cytometry
  publication-title: Autophagy
  doi: 10.4161/auto.29394
– volume: 183
  start-page: 795
  year: 2008
  ident: 10.1016/j.mad.2019.111196_bib0120
  article-title: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200809125
– volume: 8
  year: 2017
  ident: 10.1016/j.mad.2019.111196_bib0065
  article-title: Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00520-9
– volume: 7
  start-page: 935
  year: 2011
  ident: 10.1016/j.mad.2019.111196_bib0030
  article-title: Seeing is believing: the impact of electron microscopy on autophagy research
  publication-title: Autophagy
  doi: 10.4161/auto.7.9.15760
– volume: 283
  start-page: 10892
  year: 2008
  ident: 10.1016/j.mad.2019.111196_bib0155
  article-title: Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M800102200
– volume: 62
  start-page: 155
  year: 1996
  ident: 10.1016/j.mad.2019.111196_bib0020
  article-title: ARPE-19, A human retinal pigment epithelial cell line with differentiated properties
  publication-title: Exp. Eye Res.
  doi: 10.1006/exer.1996.0020
– volume: 27
  start-page: 439
  year: 2018
  ident: 10.1016/j.mad.2019.111196_bib0105
  article-title: Basal mitophagy occurs independently of PINK1 in mouse tissues of high metabolic demand
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2017.12.008
– volume: 554
  start-page: 382
  year: 2018
  ident: 10.1016/j.mad.2019.111196_bib0150
  article-title: Mitochondria–lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis
  publication-title: Nature
  doi: 10.1038/nature25486
– volume: 214
  start-page: 333
  year: 2016
  ident: 10.1016/j.mad.2019.111196_bib0095
  article-title: Mito -QC illuminates mitophagy and mitochondrial architecture in vivo
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201603039
– volume: 14
  start-page: 1127
  year: 2013
  ident: 10.1016/j.mad.2019.111196_bib0005
  article-title: Loss of iron triggers PINK1/Parkin-independent mitophagy
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2013.168
– volume: 9
  start-page: 1852
  year: 2013
  ident: 10.1016/j.mad.2019.111196_bib0050
  article-title: MitoTimer
  publication-title: Autophagy
  doi: 10.4161/auto.26501
– volume: 11
  start-page: 439
  year: 2015
  ident: 10.1016/j.mad.2019.111196_bib0015
  article-title: Ultrastructural relationship of the phagophore with surrounding organelles
  publication-title: Autophagy
  doi: 10.1080/15548627.2015.1017178
– start-page: 531
  year: 2011
  ident: 10.1016/j.mad.2019.111196_bib0085
  article-title: Differential apoptosis-related protein expression, mitochondrial properties, proteolytic enzyme activity, and DNA fragmentation between skeletal muscles
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.00488.2010
– year: 2018
  ident: 10.1016/j.mad.2019.111196_bib0130
  article-title: PGC-1β modulates statin-associated myotoxicity in mice
  publication-title: Arch. Toxicol.
– volume: 1
  start-page: 23
  year: 2005
  ident: 10.1016/j.mad.2019.111196_bib0010
  article-title: The dynamics of autophagy visualised in live cells: from autophagosome formation to fusion with Endo/lysosomes
  publication-title: Autophagy
  doi: 10.4161/auto.1.1.1495
– volume: 3
  year: 2019
  ident: 10.1016/j.mad.2019.111196_bib0140
  article-title: Autophagy in the mammalian nervous system: a primer for neuroscientists
  publication-title: Neuronal Signal.
  doi: 10.1042/NS20180134
SSID ssj0001426
Score 2.5203872
SecondaryResourceType review_article
Snippet •The mito-QC reporter is a powerful model to monitor mitophagy in vitro and in vivo.•The mito-QC Counter is a new semi-automated tool to quantify...
Mitophagy is a natural phenomenon and entails the lysosomal degradation of mitochondria by the autophagy pathway. In recent years, the development of...
• The mito- QC reporter is a powerful model to monitor mitophagy in vitro and in vivo . • The mito-QC Counter is a new semi-automated tool to quantify...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 111196
SubjectTerms Animals
Autophagy
Autophagy - physiology
Biological Transport - physiology
Cell Line
FIJI
Hydrogen-Ion Concentration
Luminescent Proteins
Lysosomes - metabolism
Lysosomes - ultrastructure
Mice
Mice, Transgenic
Microscopy, Fluorescence - methods
mito-QC
Mitochondria
Mitochondria - metabolism
Mitochondria - ultrastructure
Mitochondrial Membranes - metabolism
Mitochondrial Turnover
Mitolysosome
Mitophagy
Mitophagy - physiology
Title Semi-automated quantitation of mitophagy in cells and tissues
URI https://dx.doi.org/10.1016/j.mad.2019.111196
https://www.ncbi.nlm.nih.gov/pubmed/31843465
https://www.proquest.com/docview/2327932818
https://pubmed.ncbi.nlm.nih.gov/PMC6961211
Volume 185
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwEB2VrUC9oLIFulAqIyEOSKFxYjvxgcOqarWA2gtUqrhEjhOXIDZb2OyhF76dGcdZdQH1wNUZS6MZe_zGGb8BeJVYlTijVCS0Epig1HlUJrmJEDzH0mUuix29Rj47V7ML8eFSXm7B8fAWhsoqQ-zvY7qP1mHkKFjz6Lpp6I2vwM2BJ6JOEfPQQ_PtJNVKjmB7-v7j7HwdkLnwXddIPqIJw89NX-Y1N8QXyrWPHUTd_-_j6W_4-WcV5a1j6XQXHgY8yaa9yo9gq27HsDdtMZee37DXzFd4-qvzMTw4Cz_Sx3D_y8IP7sG7T_W8icwK5RF2VuzHyrRdIO5mC8fmDVEPmKsb1rSMrvmXzLQV67zDlo_h4vTk8_EsCj0VIit51kXGZtpVVstU87yKXaaNqRy3OTHHxWUl0ZwuEQi5eZ1bxWsXZ05Lxx3iJi5N-gRG7aKt94HZytg4NVWGSZZQLikxeFr0vXO1SkSZTSAeTFnYoDf1vfheDJVl3wq0fkHWL3rrT-DNesp1z7Zxl7AY_FNsLJkCT4O7pr0cfFngViLDmbZerJYFgkuMVkSPNYGnvW_XWqTUF0coOYFsw-trAaLp3vzSNl89XbfSxNLGn_2fus9hJ6EU39_6HMCo-7mqXyAO6spDuPf2Fz8Mq_03y54F1w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRTwuqGyBLhQwEuKAFBonfiQHDlVFtUC3F1qp4mI5TkxTdbOFzR564bcz4yQLC6gHrs5YGs3YM5-dmc8ArxKnEm-VikSuBB5QqiwqksxGCJ5j6bXXsadu5OmxmpyKj2fybAMOhl4YKqvsY38X00O07kf2emvuXdU19fgK3ByYEfMUMQ81mt8SMtVU1_f2x686Dy7Cm2skHZH48GszFHnNLLGF8jxEDiLu_3dy-ht8_llD-VtSOtyC-z2aZPudwg9go2pGsL3f4El6ds1es1DfGS7OR3Bn2v9GH8HtL_MwuA3vPlezOrJLlEfQWbJvS9u0PW03m3s2q4l4wH69ZnXD6JJ_wWxTsja4a_EQTg_fnxxMov5FhchJrtvIOp370uUyzXlWxl7n1paeu4x44-KilGhMnwgE3LzKnOKVj7XPpeceUROXNn0Em828qXaAudK6OLWlxiOWUD4pMHQ69Lz3lUpEoccQD6Y0rtebXr24NENd2YVB6xuyvumsP4Y3qylXHdfGTcJi8I9ZWzAGc8FN014OvjS4kchwtqnmy4VBaImxisixxvC48-1Ki5RexRFKjkGveX0lQCTd61-a-jyQdaucONr4k_9T9wXcnZxMj8zRh-NPT-FeQof9cP-zC5vt92X1DBFRWzwPK_4nA2YGog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-automated+quantitation+of+mitophagy+in+cells+and+tissues&rft.jtitle=Mechanisms+of+ageing+and+development&rft.au=Montava-Garriga%2C+Lambert&rft.au=Singh%2C+Fran%C3%A7ois&rft.au=Ball%2C+Graeme&rft.au=Ganley%2C+Ian+G.&rft.date=2020-01-01&rft.pub=Elsevier+Science+Ireland&rft.issn=0047-6374&rft.eissn=1872-6216&rft.volume=185&rft_id=info:doi/10.1016%2Fj.mad.2019.111196&rft_id=info%3Apmid%2F31843465&rft.externalDocID=PMC6961211
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0047-6374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0047-6374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0047-6374&client=summon