Semi-automated quantitation of mitophagy in cells and tissues
•The mito-QC reporter is a powerful model to monitor mitophagy in vitro and in vivo.•The mito-QC Counter is a new semi-automated tool to quantify mitophagy.•Mitophagy is induced in ARPE19 cells and varies in distinct skeletal muscle regions. Mitophagy is a natural phenomenon and entails the lysosoma...
Saved in:
Published in | Mechanisms of ageing and development Vol. 185; p. 111196 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
01.01.2020
Elsevier Science Ireland |
Subjects | |
Online Access | Get full text |
ISSN | 0047-6374 1872-6216 1872-6216 |
DOI | 10.1016/j.mad.2019.111196 |
Cover
Abstract | •The mito-QC reporter is a powerful model to monitor mitophagy in vitro and in vivo.•The mito-QC Counter is a new semi-automated tool to quantify mitophagy.•Mitophagy is induced in ARPE19 cells and varies in distinct skeletal muscle regions.
Mitophagy is a natural phenomenon and entails the lysosomal degradation of mitochondria by the autophagy pathway. In recent years, the development of fluorescent pH-sensitive mitochondrial reporters has greatly facilitated the monitoring of mitophagy by distinguishing between cytosolic mitochondria or those delivered to acidic lysosomes. We recently published the mito-QC reporter, which consists of a mitochondrial outer membrane-localised tandem mCherry-GFP tag. This allows the quantification of mitophagy via the increase in red-only mCherry signal that arises when the GFP signal is quenched upon mitochondrial delivery to lysosomes. Here we develop a macro for FIJI, the mito-QC Counter, and describe its use to allow reliable and consistent semi-automated quantification of mitophagy. In this methods article we describe step-by-step how to detect and quantify mitophagy and show that mitophagy levels can be reliably calculated in different cell lines and under distinct stimuli. Finally, we show that the mito-QC Counter can be used to quantify mitophagy in tissues of mito-QC transgenic mice. We demonstrate that mitophagy levels in skeletal muscle correlates with glycolytic activity. Our present data show that the mito-QC Counter macro for FIJI enables the robust quantification of mitophagy both in vitro and in vivo. |
---|---|
AbstractList | Mitophagy is a natural phenomenon and entails the lysosomal degradation of mitochondria by the autophagy pathway. In recent years, the development of fluorescent pH-sensitive mitochondrial reporters has greatly facilitated the monitoring of mitophagy by distinguishing between cytosolic mitochondria or those delivered to acidic lysosomes. We recently published the mito-QC reporter, which consists of a mitochondrial outer membrane-localised tandem mCherry-GFP tag. This allows the quantification of mitophagy via the increase in red-only mCherry signal that arises when the GFP signal is quenched upon mitochondrial delivery to lysosomes. Here we develop a macro for FIJI, the mito-QC Counter, and describe its use to allow reliable and consistent semi-automated quantification of mitophagy. In this methods article we describe step-by-step how to detect and quantify mitophagy and show that mitophagy levels can be reliably calculated in different cell lines and under distinct stimuli. Finally, we show that the mito-QC Counter can be used to quantify mitophagy in tissues of mito-QC transgenic mice. We demonstrate that mitophagy levels in skeletal muscle correlates with glycolytic activity. Our present data show that the mito-QC Counter macro for FIJI enables the robust quantification of mitophagy both in vitro and in vivo.Mitophagy is a natural phenomenon and entails the lysosomal degradation of mitochondria by the autophagy pathway. In recent years, the development of fluorescent pH-sensitive mitochondrial reporters has greatly facilitated the monitoring of mitophagy by distinguishing between cytosolic mitochondria or those delivered to acidic lysosomes. We recently published the mito-QC reporter, which consists of a mitochondrial outer membrane-localised tandem mCherry-GFP tag. This allows the quantification of mitophagy via the increase in red-only mCherry signal that arises when the GFP signal is quenched upon mitochondrial delivery to lysosomes. Here we develop a macro for FIJI, the mito-QC Counter, and describe its use to allow reliable and consistent semi-automated quantification of mitophagy. In this methods article we describe step-by-step how to detect and quantify mitophagy and show that mitophagy levels can be reliably calculated in different cell lines and under distinct stimuli. Finally, we show that the mito-QC Counter can be used to quantify mitophagy in tissues of mito-QC transgenic mice. We demonstrate that mitophagy levels in skeletal muscle correlates with glycolytic activity. Our present data show that the mito-QC Counter macro for FIJI enables the robust quantification of mitophagy both in vitro and in vivo. • The mito- QC reporter is a powerful model to monitor mitophagy in vitro and in vivo . • The mito-QC Counter is a new semi-automated tool to quantify mitophagy. • Mitophagy is induced in ARPE19 cells and varies in distinct skeletal muscle regions. Mitophagy is a natural phenomenon and entails the lysosomal degradation of mitochondria by the autophagy pathway. In recent years, the development of fluorescent pH-sensitive mitochondrial reporters has greatly facilitated the monitoring of mitophagy by distinguishing between cytosolic mitochondria or those delivered to acidic lysosomes. We recently published the mito- QC reporter, which consists of a mitochondrial outer membrane-localised tandem mCherry-GFP tag. This allows the quantification of mitophagy via the increase in red-only mCherry signal that arises when the GFP signal is quenched upon mitochondrial delivery to lysosomes. Here we develop a macro for FIJI, the mito-QC Counter , and describe its use to allow reliable and consistent semi-automated quantification of mitophagy. In this methods article we describe step-by-step how to detect and quantify mitophagy and show that mitophagy levels can be reliably calculated in different cell lines and under distinct stimuli. Finally, we show that the mito-QC Counter can be used to quantify mitophagy in tissues of mito -QC transgenic mice. We demonstrate that mitophagy levels in skeletal muscle correlates with glycolytic activity. Our present data show that the mito-QC Counter macro for FIJI enables the robust quantification of mitophagy both in vitro and in vivo . Mitophagy is a natural phenomenon and entails the lysosomal degradation of mitochondria by the autophagy pathway. In recent years, the development of fluorescent pH-sensitive mitochondrial reporters has greatly facilitated the monitoring of mitophagy by distinguishing between cytosolic mitochondria or those delivered to acidic lysosomes. We recently published the mito-QC reporter, which consists of a mitochondrial outer membrane-localised tandem mCherry-GFP tag. This allows the quantification of mitophagy via the increase in red-only mCherry signal that arises when the GFP signal is quenched upon mitochondrial delivery to lysosomes. Here we develop a macro for FIJI, the mito-QC Counter, and describe its use to allow reliable and consistent semi-automated quantification of mitophagy. In this methods article we describe step-by-step how to detect and quantify mitophagy and show that mitophagy levels can be reliably calculated in different cell lines and under distinct stimuli. Finally, we show that the mito-QC Counter can be used to quantify mitophagy in tissues of mito-QC transgenic mice. We demonstrate that mitophagy levels in skeletal muscle correlates with glycolytic activity. Our present data show that the mito-QC Counter macro for FIJI enables the robust quantification of mitophagy both in vitro and in vivo. •The mito-QC reporter is a powerful model to monitor mitophagy in vitro and in vivo.•The mito-QC Counter is a new semi-automated tool to quantify mitophagy.•Mitophagy is induced in ARPE19 cells and varies in distinct skeletal muscle regions. Mitophagy is a natural phenomenon and entails the lysosomal degradation of mitochondria by the autophagy pathway. In recent years, the development of fluorescent pH-sensitive mitochondrial reporters has greatly facilitated the monitoring of mitophagy by distinguishing between cytosolic mitochondria or those delivered to acidic lysosomes. We recently published the mito-QC reporter, which consists of a mitochondrial outer membrane-localised tandem mCherry-GFP tag. This allows the quantification of mitophagy via the increase in red-only mCherry signal that arises when the GFP signal is quenched upon mitochondrial delivery to lysosomes. Here we develop a macro for FIJI, the mito-QC Counter, and describe its use to allow reliable and consistent semi-automated quantification of mitophagy. In this methods article we describe step-by-step how to detect and quantify mitophagy and show that mitophagy levels can be reliably calculated in different cell lines and under distinct stimuli. Finally, we show that the mito-QC Counter can be used to quantify mitophagy in tissues of mito-QC transgenic mice. We demonstrate that mitophagy levels in skeletal muscle correlates with glycolytic activity. Our present data show that the mito-QC Counter macro for FIJI enables the robust quantification of mitophagy both in vitro and in vivo. |
ArticleNumber | 111196 |
Author | Ganley, Ian G. Ball, Graeme Montava-Garriga, Lambert Singh, François |
AuthorAffiliation | b Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK a MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK |
AuthorAffiliation_xml | – name: b Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK – name: a MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK |
Author_xml | – sequence: 1 givenname: Lambert surname: Montava-Garriga fullname: Montava-Garriga, Lambert organization: MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK – sequence: 2 givenname: François surname: Singh fullname: Singh, François organization: MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK – sequence: 3 givenname: Graeme orcidid: 0000-0002-6526-2306 surname: Ball fullname: Ball, Graeme organization: Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK – sequence: 4 givenname: Ian G. orcidid: 0000-0003-1481-9407 surname: Ganley fullname: Ganley, Ian G. email: i.ganley@dundee.ac.uk organization: MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31843465$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1v1DAQtVBRuy39AVxQjlyy9TiOHQuBVFVAkSpxAM6Wa49brxJ7GzuV-u_xarcIOHQuPsz7GL93So5iikjIW6BroCAuNuvJuDWjoNZQR4lXZAWDZK1gII7IilIuW9FJfkJOc95QSoEzcUxOOhh4x0W_Ih9_4BRas5Q0mYKueVhMLKGYElJskm-mUNL23tw9NSE2FscxNya6poScF8xvyGtvxoznh_eM_Pry-efVdXvz_eu3q8ub1vYgS2usVN5Z1XcKBke9VMY4D3aAeiG9dT0H5RmXTAEOVgB6Kr3qPXjOAXrTnZFPe93tcjuhsxjLbEa9ncNk5iedTND_bmK413fpUQslgAFUgfcHgTk91MOLnkLefcdETEvWrGNSdWyAoULf_e31x-Q5swqQe4CdU84zem0PgVXrMGqgeteO3ujajt61o_ftVCb8x3wWf4nzYc_Bmu9jwFlnGzBadGFGW7RL4QX2bxJsp3c |
CitedBy_id | crossref_primary_10_26508_lsa_202201825 crossref_primary_10_1016_j_phrs_2024_107484 crossref_primary_10_1042_BST20190236 crossref_primary_10_1371_journal_pbio_3001977 crossref_primary_10_15252_embj_2021109390 crossref_primary_10_26508_lsa_202000768 crossref_primary_10_1371_journal_pbio_3002244 crossref_primary_10_1096_fj_202201872RR crossref_primary_10_1111_tra_12957 crossref_primary_10_15252_embj_2022112799 crossref_primary_10_1038_s41418_023_01251_9 crossref_primary_10_3389_fncel_2024_1409717 crossref_primary_10_1186_s13024_024_00739_3 crossref_primary_10_1111_febs_16979 crossref_primary_10_1016_j_freeradbiomed_2024_09_031 crossref_primary_10_1080_15548627_2024_2396792 crossref_primary_10_26508_lsa_202101287 crossref_primary_10_1242_jcs_263408 crossref_primary_10_1016_j_preteyeres_2023_101205 crossref_primary_10_1042_BCJ20210375 crossref_primary_10_1080_15548627_2021_1907269 crossref_primary_10_1242_jcs_260638 crossref_primary_10_1080_15548627_2023_2172873 crossref_primary_10_3390_cells12081143 crossref_primary_10_1016_j_mad_2020_111291 crossref_primary_10_3389_fcell_2024_1460061 crossref_primary_10_1016_j_freeradbiomed_2023_09_009 crossref_primary_10_15252_embj_2022111115 crossref_primary_10_1080_15548627_2024_2395149 crossref_primary_10_1016_j_molcel_2024_10_025 crossref_primary_10_1113_JP286216 crossref_primary_10_3389_fcell_2022_868465 crossref_primary_10_7554_eLife_67604 crossref_primary_10_1016_j_isci_2021_103703 crossref_primary_10_1016_j_molcel_2024_10_022 crossref_primary_10_1186_s13024_024_00701_3 crossref_primary_10_1007_s00018_022_04585_8 crossref_primary_10_1038_s41598_023_47942_8 crossref_primary_10_15252_emmm_201911659 crossref_primary_10_1021_jacs_2c05499 crossref_primary_10_1080_15548627_2023_2230837 crossref_primary_10_1098_rsob_240291 crossref_primary_10_2139_ssrn_3904961 crossref_primary_10_1016_j_mcn_2023_103834 crossref_primary_10_1038_s41467_024_45044_1 crossref_primary_10_1080_27694127_2024_2326402 |
Cites_doi | 10.1016/j.cell.2010.01.028 10.1038/nature11910 10.1016/j.chembiol.2011.05.013 10.1080/15548627.2015.1034403 10.1016/j.cub.2018.01.004 10.1083/jcb.201801044 10.1007/978-1-4939-8873-0_41 10.1016/j.molcel.2015.10.009 10.1016/j.cell.2010.04.009 10.1126/science.290.5496.1585 10.1152/ajpcell.00056.2010 10.1096/fj.01-0206fje 10.1038/nature14893 10.4161/auto.29394 10.1083/jcb.200809125 10.1038/s41467-017-00520-9 10.4161/auto.7.9.15760 10.1074/jbc.M800102200 10.1006/exer.1996.0020 10.1016/j.cmet.2017.12.008 10.1038/nature25486 10.1083/jcb.201603039 10.1038/embor.2013.168 10.4161/auto.26501 10.1080/15548627.2015.1017178 10.1152/ajpregu.00488.2010 10.4161/auto.1.1.1495 10.1042/NS20180134 |
ContentType | Journal Article |
Copyright | 2019 The Authors Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved. 2019 The Authors 2019 |
Copyright_xml | – notice: 2019 The Authors – notice: Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved. – notice: 2019 The Authors 2019 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.mad.2019.111196 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology Zoology |
EISSN | 1872-6216 |
ExternalDocumentID | PMC6961211 31843465 10_1016_j_mad_2019_111196 S0047637419302015 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: MC_UU_00018/2 |
GroupedDBID | --- --K --M -~X .55 .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29M 3O- 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AACTN AADPK AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYJJ ABCQJ ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACNCT ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGWIK AGYEJ AHHHB AHPSJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HMQ HVGLF HZ~ IHE J1W KOM LX3 M2V M41 MO0 MOBAO MS~ MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBG SCC SDF SDG SDP SES SEW SNS SPCBC SSN SSU SSZ T5K WUQ X7M YYP ZGI ZXP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c517t-ac79fdc953918d0f79aadf1c810040bd5419f247291e8c61ef07f95f1f44115a3 |
IEDL.DBID | AIKHN |
ISSN | 0047-6374 1872-6216 |
IngestDate | Thu Aug 21 18:41:21 EDT 2025 Fri Sep 05 10:17:57 EDT 2025 Mon Jul 21 06:05:04 EDT 2025 Tue Jul 01 04:17:44 EDT 2025 Thu Apr 24 22:51:55 EDT 2025 Fri Feb 23 02:47:28 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | mito-QC Mitochondria FIJI Mitolysosome stdDev Mitophagy ROI TEM Autophagy DFP |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-ac79fdc953918d0f79aadf1c810040bd5419f247291e8c61ef07f95f1f44115a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally. |
ORCID | 0000-0003-1481-9407 0000-0002-6526-2306 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0047637419302015 |
PMID | 31843465 |
PQID | 2327932818 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6961211 proquest_miscellaneous_2327932818 pubmed_primary_31843465 crossref_citationtrail_10_1016_j_mad_2019_111196 crossref_primary_10_1016_j_mad_2019_111196 elsevier_sciencedirect_doi_10_1016_j_mad_2019_111196 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2020 2020-01-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
PublicationDecade | 2020 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | Mechanisms of ageing and development |
PublicationTitleAlternate | Mech Ageing Dev |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier Science Ireland |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ireland |
References | Hernandez, Thornton, Stotland, Lui, Sin, Ramil, Magee, Andres, Quarato, Carreira, Sayen, Wolkowicz, Gottlieb (bib0050) 2013; 9 Singh, Zoll, Duthaler, Charles, Panajatovic, Laverny, McWilliams, Metzger, Geny, Krähenbühl, Bouitbir (bib0130) 2018 Eskelinen, Reggiori, Baba, Kovács, Seglen (bib0030) 2011; 7 McWilliams, Prescott, Montava-Garriga, Ball, Singh, Barini, Muqit, Brooks, Ganley (bib0105) 2018; 27 McMillan, Quadrilatero (bib0085) 2011 Zhang, Bosch-Marce, Shimoda, Yee, Jin, Wesley, Gonzalez, Semenza (bib0155) 2008; 283 Montava-Garriga, Ganley (bib0115) 2019 McWilliams, Ganley (bib0090) 2019 Bampton, Goemans, Niranjan, Mizushima, Tolkovsky (bib0010) 2005; 1 Hamasaki, Furuta, Matsuda, Nezu, Yamamoto, Fujita, Oomori, Noda, Haraguchi, Hiraoka, Amano, Yoshimori (bib0045) 2013; 495 Terskikh, Fradkov, Ermakova, Zaraisky, Tan, Kajava, Zhao, Lukyanov, Matz, Kim, Weissman, Siebert (bib0145) 2000; 290 Lee, Sanchez-Martinez, Zarate, Benincá, Mayor, Clague, Whitworth (bib0075) 2018; 217 Mauro-Lizcano, Esteban-Martínez, Seco, Serrano-Puebla, Garcia-Ledo, Figueiredo-Pereira, Vieira, Boya (bib0080) 2015; 11 Sun, Yun, Liu, Malide, Liu, Rovira, Holmström, Fergusson, Yoo, Combs, Finkel (bib0135) 2015; 60 Katayama, Kogure, Mizushima, Yoshimori, Miyawaki (bib0055) 2011; 18 Wong, Ysselstein, Krainc (bib0150) 2018; 554 Allen, Toth, James, Ganley (bib0005) 2013; 14 McWilliams, Prescott, Allen, Tamjar, Munson, Thomson, Muqit, Ganley (bib0095) 2016; 214 Dunn, Aotaki-keen, Putkey, Hjelmeland (bib0020) 1996; 62 Laker, Drake, Wilson, Lira, Lewellen, Ryall, Fisher, Zhang, Saucerman, Goodyear, Kundu, Yan (bib0065) 2017; 8 Suomi, McWilliams (bib0140) 2019; 3 Mizushima, Yoshimori, Levine (bib0110) 2010; 140 Pickles, Vigié, Youle (bib0125) 2018; 28 Hailey, Rambold, Satpute-Krishnan, Mitra, Sougrat, Kim, Lippincott-Schwartz (bib0040) 2010; 141 Narendra, Tanaka, Suen, Youle (bib0120) 2008; 183 Elmore, Qian, Grissom, Lemasters (bib0025) 2001; 15 McWilliams, Prescott, Villarejo-Zori, Ball, Boya, Ganley (bib0100) 2019; 0 Gump, Thorburn (bib0035) 2014; 10 Biazik, Ylä-Anttila, Vihinen, Jokitalo, Eskelinen (bib0015) 2015; 11 Lazarou, Sliter, Kane, Sarraf, Wang, Burman, Sideris, Fogel, Youle (bib0070) 2015; 524 Kim, Lemasters (bib0060) 2011; 300 Allen (10.1016/j.mad.2019.111196_bib0005) 2013; 14 Dunn (10.1016/j.mad.2019.111196_bib0020) 1996; 62 Mizushima (10.1016/j.mad.2019.111196_bib0110) 2010; 140 McWilliams (10.1016/j.mad.2019.111196_bib0090) 2019 Zhang (10.1016/j.mad.2019.111196_bib0155) 2008; 283 Katayama (10.1016/j.mad.2019.111196_bib0055) 2011; 18 Hailey (10.1016/j.mad.2019.111196_bib0040) 2010; 141 Sun (10.1016/j.mad.2019.111196_bib0135) 2015; 60 Kim (10.1016/j.mad.2019.111196_bib0060) 2011; 300 Elmore (10.1016/j.mad.2019.111196_bib0025) 2001; 15 McWilliams (10.1016/j.mad.2019.111196_bib0100) 2019; 0 Lazarou (10.1016/j.mad.2019.111196_bib0070) 2015; 524 Eskelinen (10.1016/j.mad.2019.111196_bib0030) 2011; 7 Narendra (10.1016/j.mad.2019.111196_bib0120) 2008; 183 Pickles (10.1016/j.mad.2019.111196_bib0125) 2018; 28 Singh (10.1016/j.mad.2019.111196_bib0130) 2018 Mauro-Lizcano (10.1016/j.mad.2019.111196_bib0080) 2015; 11 McMillan (10.1016/j.mad.2019.111196_bib0085) 2011 Hamasaki (10.1016/j.mad.2019.111196_bib0045) 2013; 495 Montava-Garriga (10.1016/j.mad.2019.111196_bib0115) 2019 Wong (10.1016/j.mad.2019.111196_bib0150) 2018; 554 Gump (10.1016/j.mad.2019.111196_bib0035) 2014; 10 Suomi (10.1016/j.mad.2019.111196_bib0140) 2019; 3 Hernandez (10.1016/j.mad.2019.111196_bib0050) 2013; 9 McWilliams (10.1016/j.mad.2019.111196_bib0095) 2016; 214 McWilliams (10.1016/j.mad.2019.111196_bib0105) 2018; 27 Lee (10.1016/j.mad.2019.111196_bib0075) 2018; 217 Terskikh (10.1016/j.mad.2019.111196_bib0145) 2000; 290 Bampton (10.1016/j.mad.2019.111196_bib0010) 2005; 1 Biazik (10.1016/j.mad.2019.111196_bib0015) 2015; 11 Laker (10.1016/j.mad.2019.111196_bib0065) 2017; 8 |
References_xml | – volume: 8 year: 2017 ident: bib0065 article-title: Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy publication-title: Nat. Commun. – volume: 11 start-page: 833 year: 2015 end-page: 843 ident: bib0080 article-title: New method to assess mitophagy flux by flow cytometry publication-title: Autophagy – volume: 217 start-page: 1613 year: 2018 end-page: 1622 ident: bib0075 article-title: Basal mitophagy is widespread in Drosophila but minimally affected by loss of Pink1 or parkin publication-title: J. Cell Biol. – volume: 1 start-page: 23 year: 2005 end-page: 36 ident: bib0010 article-title: The dynamics of autophagy visualised in live cells: from autophagosome formation to fusion with Endo/lysosomes publication-title: Autophagy – volume: 183 start-page: 795 year: 2008 end-page: 803 ident: bib0120 article-title: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy publication-title: J. Cell Biol. – year: 2018 ident: bib0130 article-title: PGC-1β modulates statin-associated myotoxicity in mice publication-title: Arch. Toxicol. – volume: 60 start-page: 685 year: 2015 end-page: 696 ident: bib0135 article-title: Measuring in vivo mitophagy publication-title: Mol. Cell – volume: 10 start-page: 1327 year: 2014 end-page: 1334 ident: bib0035 article-title: Sorting cells for basal and induced autophagic flux by quantitative ratiometric flow cytometry publication-title: Autophagy – volume: 283 start-page: 10892 year: 2008 end-page: 10903 ident: bib0155 article-title: Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia publication-title: J. Biol. Chem. – volume: 15 start-page: 2286 year: 2001 end-page: 2287 ident: bib0025 article-title: The mitochondrial permeability transition initiates autophagy in rat hepatocytes publication-title: FASEB J. – start-page: 531 year: 2011 end-page: 543 ident: bib0085 article-title: Differential apoptosis-related protein expression, mitochondrial properties, proteolytic enzyme activity, and DNA fragmentation between skeletal muscles publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. – volume: 62 start-page: 155 year: 1996 end-page: 170 ident: bib0020 article-title: ARPE-19, A human retinal pigment epithelial cell line with differentiated properties publication-title: Exp. Eye Res. – volume: 0 start-page: 1 year: 2019 end-page: 13 ident: bib0100 article-title: A comparative map of macroautophagy and mitophagy in the vertebrate eye publication-title: Autophagy – year: 2019 ident: bib0115 article-title: Outstanding questions in mitophagy: what we do and do not know publication-title: J. Mol. Biol. – volume: 11 start-page: 439 year: 2015 end-page: 451 ident: bib0015 article-title: Ultrastructural relationship of the phagophore with surrounding organelles publication-title: Autophagy – volume: 290 start-page: 1585 year: 2000 end-page: 1588 ident: bib0145 article-title: “Fluorescent timer”: protein that changes color with time publication-title: Science – volume: 3 year: 2019 ident: bib0140 article-title: Autophagy in the mammalian nervous system: a primer for neuroscientists publication-title: Neuronal Signal. – start-page: 621 year: 2019 end-page: 642 ident: bib0090 article-title: Investigating mitophagy and mitochondrial morphology in vivo using mito-QC: a comprehensive guide publication-title: Methods Mol. Biol. – volume: 7 start-page: 935 year: 2011 end-page: 956 ident: bib0030 article-title: Seeing is believing: the impact of electron microscopy on autophagy research publication-title: Autophagy – volume: 554 start-page: 382 year: 2018 end-page: 386 ident: bib0150 article-title: Mitochondria–lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis publication-title: Nature – volume: 27 start-page: 439 year: 2018 end-page: 449 ident: bib0105 article-title: Basal mitophagy occurs independently of PINK1 in mouse tissues of high metabolic demand publication-title: Cell Metab. – volume: 9 start-page: 1852 year: 2013 end-page: 1861 ident: bib0050 article-title: MitoTimer publication-title: Autophagy – volume: 14 start-page: 1127 year: 2013 end-page: 1135 ident: bib0005 article-title: Loss of iron triggers PINK1/Parkin-independent mitophagy publication-title: EMBO Rep. – volume: 141 start-page: 656 year: 2010 end-page: 667 ident: bib0040 article-title: Mitochondria supply membranes for autophagosome biogenesis during starvation publication-title: Cell – volume: 495 start-page: 389 year: 2013 end-page: 393 ident: bib0045 article-title: Autophagosomes form at ER–mitochondria contact sites publication-title: Nature – volume: 524 start-page: 309 year: 2015 end-page: 314 ident: bib0070 article-title: The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy publication-title: Nature – volume: 28 start-page: R142 year: 2018 end-page: R143 ident: bib0125 article-title: Mitophagy and quality control mechanisms in mitochondrial maintenance publication-title: Curr. Biol. – volume: 140 start-page: 313 year: 2010 end-page: 326 ident: bib0110 article-title: Methods in mammalian autophagy research publication-title: Cell – volume: 214 start-page: 333 year: 2016 end-page: 345 ident: bib0095 article-title: Mito -QC illuminates mitophagy and mitochondrial architecture in vivo publication-title: J. Cell Biol. – volume: 300 start-page: C308 year: 2011 end-page: C317 ident: bib0060 article-title: Mitochondrial degradation by autophagy (mitophagy) in GFP-LC3 transgenic hepatocytes during nutrient deprivation publication-title: Am. J. Physiol. Physiol. – volume: 18 start-page: 1042 year: 2011 end-page: 1052 ident: bib0055 article-title: A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery publication-title: Chem. Biol. – volume: 140 start-page: 313 year: 2010 ident: 10.1016/j.mad.2019.111196_bib0110 article-title: Methods in mammalian autophagy research publication-title: Cell doi: 10.1016/j.cell.2010.01.028 – volume: 0 start-page: 1 year: 2019 ident: 10.1016/j.mad.2019.111196_bib0100 article-title: A comparative map of macroautophagy and mitophagy in the vertebrate eye publication-title: Autophagy – volume: 495 start-page: 389 year: 2013 ident: 10.1016/j.mad.2019.111196_bib0045 article-title: Autophagosomes form at ER–mitochondria contact sites publication-title: Nature doi: 10.1038/nature11910 – volume: 18 start-page: 1042 year: 2011 ident: 10.1016/j.mad.2019.111196_bib0055 article-title: A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2011.05.013 – volume: 11 start-page: 833 year: 2015 ident: 10.1016/j.mad.2019.111196_bib0080 article-title: New method to assess mitophagy flux by flow cytometry publication-title: Autophagy doi: 10.1080/15548627.2015.1034403 – volume: 28 start-page: R142 year: 2018 ident: 10.1016/j.mad.2019.111196_bib0125 article-title: Mitophagy and quality control mechanisms in mitochondrial maintenance publication-title: Curr. Biol. doi: 10.1016/j.cub.2018.01.004 – volume: 217 start-page: 1613 year: 2018 ident: 10.1016/j.mad.2019.111196_bib0075 article-title: Basal mitophagy is widespread in Drosophila but minimally affected by loss of Pink1 or parkin publication-title: J. Cell Biol. doi: 10.1083/jcb.201801044 – start-page: 621 year: 2019 ident: 10.1016/j.mad.2019.111196_bib0090 article-title: Investigating mitophagy and mitochondrial morphology in vivo using mito-QC: a comprehensive guide doi: 10.1007/978-1-4939-8873-0_41 – volume: 60 start-page: 685 year: 2015 ident: 10.1016/j.mad.2019.111196_bib0135 article-title: Measuring in vivo mitophagy publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.10.009 – volume: 141 start-page: 656 year: 2010 ident: 10.1016/j.mad.2019.111196_bib0040 article-title: Mitochondria supply membranes for autophagosome biogenesis during starvation publication-title: Cell doi: 10.1016/j.cell.2010.04.009 – year: 2019 ident: 10.1016/j.mad.2019.111196_bib0115 article-title: Outstanding questions in mitophagy: what we do and do not know publication-title: J. Mol. Biol. – volume: 290 start-page: 1585 year: 2000 ident: 10.1016/j.mad.2019.111196_bib0145 article-title: “Fluorescent timer”: protein that changes color with time publication-title: Science doi: 10.1126/science.290.5496.1585 – volume: 300 start-page: C308 year: 2011 ident: 10.1016/j.mad.2019.111196_bib0060 article-title: Mitochondrial degradation by autophagy (mitophagy) in GFP-LC3 transgenic hepatocytes during nutrient deprivation publication-title: Am. J. Physiol. Physiol. doi: 10.1152/ajpcell.00056.2010 – volume: 15 start-page: 2286 year: 2001 ident: 10.1016/j.mad.2019.111196_bib0025 article-title: The mitochondrial permeability transition initiates autophagy in rat hepatocytes publication-title: FASEB J. doi: 10.1096/fj.01-0206fje – volume: 524 start-page: 309 year: 2015 ident: 10.1016/j.mad.2019.111196_bib0070 article-title: The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy publication-title: Nature doi: 10.1038/nature14893 – volume: 10 start-page: 1327 year: 2014 ident: 10.1016/j.mad.2019.111196_bib0035 article-title: Sorting cells for basal and induced autophagic flux by quantitative ratiometric flow cytometry publication-title: Autophagy doi: 10.4161/auto.29394 – volume: 183 start-page: 795 year: 2008 ident: 10.1016/j.mad.2019.111196_bib0120 article-title: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy publication-title: J. Cell Biol. doi: 10.1083/jcb.200809125 – volume: 8 year: 2017 ident: 10.1016/j.mad.2019.111196_bib0065 article-title: Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy publication-title: Nat. Commun. doi: 10.1038/s41467-017-00520-9 – volume: 7 start-page: 935 year: 2011 ident: 10.1016/j.mad.2019.111196_bib0030 article-title: Seeing is believing: the impact of electron microscopy on autophagy research publication-title: Autophagy doi: 10.4161/auto.7.9.15760 – volume: 283 start-page: 10892 year: 2008 ident: 10.1016/j.mad.2019.111196_bib0155 article-title: Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia publication-title: J. Biol. Chem. doi: 10.1074/jbc.M800102200 – volume: 62 start-page: 155 year: 1996 ident: 10.1016/j.mad.2019.111196_bib0020 article-title: ARPE-19, A human retinal pigment epithelial cell line with differentiated properties publication-title: Exp. Eye Res. doi: 10.1006/exer.1996.0020 – volume: 27 start-page: 439 year: 2018 ident: 10.1016/j.mad.2019.111196_bib0105 article-title: Basal mitophagy occurs independently of PINK1 in mouse tissues of high metabolic demand publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.12.008 – volume: 554 start-page: 382 year: 2018 ident: 10.1016/j.mad.2019.111196_bib0150 article-title: Mitochondria–lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis publication-title: Nature doi: 10.1038/nature25486 – volume: 214 start-page: 333 year: 2016 ident: 10.1016/j.mad.2019.111196_bib0095 article-title: Mito -QC illuminates mitophagy and mitochondrial architecture in vivo publication-title: J. Cell Biol. doi: 10.1083/jcb.201603039 – volume: 14 start-page: 1127 year: 2013 ident: 10.1016/j.mad.2019.111196_bib0005 article-title: Loss of iron triggers PINK1/Parkin-independent mitophagy publication-title: EMBO Rep. doi: 10.1038/embor.2013.168 – volume: 9 start-page: 1852 year: 2013 ident: 10.1016/j.mad.2019.111196_bib0050 article-title: MitoTimer publication-title: Autophagy doi: 10.4161/auto.26501 – volume: 11 start-page: 439 year: 2015 ident: 10.1016/j.mad.2019.111196_bib0015 article-title: Ultrastructural relationship of the phagophore with surrounding organelles publication-title: Autophagy doi: 10.1080/15548627.2015.1017178 – start-page: 531 year: 2011 ident: 10.1016/j.mad.2019.111196_bib0085 article-title: Differential apoptosis-related protein expression, mitochondrial properties, proteolytic enzyme activity, and DNA fragmentation between skeletal muscles publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00488.2010 – year: 2018 ident: 10.1016/j.mad.2019.111196_bib0130 article-title: PGC-1β modulates statin-associated myotoxicity in mice publication-title: Arch. Toxicol. – volume: 1 start-page: 23 year: 2005 ident: 10.1016/j.mad.2019.111196_bib0010 article-title: The dynamics of autophagy visualised in live cells: from autophagosome formation to fusion with Endo/lysosomes publication-title: Autophagy doi: 10.4161/auto.1.1.1495 – volume: 3 year: 2019 ident: 10.1016/j.mad.2019.111196_bib0140 article-title: Autophagy in the mammalian nervous system: a primer for neuroscientists publication-title: Neuronal Signal. doi: 10.1042/NS20180134 |
SSID | ssj0001426 |
Score | 2.5203872 |
SecondaryResourceType | review_article |
Snippet | •The mito-QC reporter is a powerful model to monitor mitophagy in vitro and in vivo.•The mito-QC Counter is a new semi-automated tool to quantify... Mitophagy is a natural phenomenon and entails the lysosomal degradation of mitochondria by the autophagy pathway. In recent years, the development of... • The mito- QC reporter is a powerful model to monitor mitophagy in vitro and in vivo . • The mito-QC Counter is a new semi-automated tool to quantify... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 111196 |
SubjectTerms | Animals Autophagy Autophagy - physiology Biological Transport - physiology Cell Line FIJI Hydrogen-Ion Concentration Luminescent Proteins Lysosomes - metabolism Lysosomes - ultrastructure Mice Mice, Transgenic Microscopy, Fluorescence - methods mito-QC Mitochondria Mitochondria - metabolism Mitochondria - ultrastructure Mitochondrial Membranes - metabolism Mitochondrial Turnover Mitolysosome Mitophagy Mitophagy - physiology |
Title | Semi-automated quantitation of mitophagy in cells and tissues |
URI | https://dx.doi.org/10.1016/j.mad.2019.111196 https://www.ncbi.nlm.nih.gov/pubmed/31843465 https://www.proquest.com/docview/2327932818 https://pubmed.ncbi.nlm.nih.gov/PMC6961211 |
Volume | 185 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwEB2VrUC9oLIFulAqIyEOSKFxYjvxgcOqarWA2gtUqrhEjhOXIDZb2OyhF76dGcdZdQH1wNUZS6MZe_zGGb8BeJVYlTijVCS0Epig1HlUJrmJEDzH0mUuix29Rj47V7ML8eFSXm7B8fAWhsoqQ-zvY7qP1mHkKFjz6Lpp6I2vwM2BJ6JOEfPQQ_PtJNVKjmB7-v7j7HwdkLnwXddIPqIJw89NX-Y1N8QXyrWPHUTd_-_j6W_4-WcV5a1j6XQXHgY8yaa9yo9gq27HsDdtMZee37DXzFd4-qvzMTw4Cz_Sx3D_y8IP7sG7T_W8icwK5RF2VuzHyrRdIO5mC8fmDVEPmKsb1rSMrvmXzLQV67zDlo_h4vTk8_EsCj0VIit51kXGZtpVVstU87yKXaaNqRy3OTHHxWUl0ZwuEQi5eZ1bxWsXZ05Lxx3iJi5N-gRG7aKt94HZytg4NVWGSZZQLikxeFr0vXO1SkSZTSAeTFnYoDf1vfheDJVl3wq0fkHWL3rrT-DNesp1z7Zxl7AY_FNsLJkCT4O7pr0cfFngViLDmbZerJYFgkuMVkSPNYGnvW_XWqTUF0coOYFsw-trAaLp3vzSNl89XbfSxNLGn_2fus9hJ6EU39_6HMCo-7mqXyAO6spDuPf2Fz8Mq_03y54F1w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRTwuqGyBLhQwEuKAFBonfiQHDlVFtUC3F1qp4mI5TkxTdbOFzR564bcz4yQLC6gHrs5YGs3YM5-dmc8ArxKnEm-VikSuBB5QqiwqksxGCJ5j6bXXsadu5OmxmpyKj2fybAMOhl4YKqvsY38X00O07kf2emvuXdU19fgK3ByYEfMUMQ81mt8SMtVU1_f2x686Dy7Cm2skHZH48GszFHnNLLGF8jxEDiLu_3dy-ht8_llD-VtSOtyC-z2aZPudwg9go2pGsL3f4El6ds1es1DfGS7OR3Bn2v9GH8HtL_MwuA3vPlezOrJLlEfQWbJvS9u0PW03m3s2q4l4wH69ZnXD6JJ_wWxTsja4a_EQTg_fnxxMov5FhchJrtvIOp370uUyzXlWxl7n1paeu4x44-KilGhMnwgE3LzKnOKVj7XPpeceUROXNn0Em828qXaAudK6OLWlxiOWUD4pMHQ69Lz3lUpEoccQD6Y0rtebXr24NENd2YVB6xuyvumsP4Y3qylXHdfGTcJi8I9ZWzAGc8FN014OvjS4kchwtqnmy4VBaImxisixxvC48-1Ki5RexRFKjkGveX0lQCTd61-a-jyQdaucONr4k_9T9wXcnZxMj8zRh-NPT-FeQof9cP-zC5vt92X1DBFRWzwPK_4nA2YGog |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-automated+quantitation+of+mitophagy+in+cells+and+tissues&rft.jtitle=Mechanisms+of+ageing+and+development&rft.au=Montava-Garriga%2C+Lambert&rft.au=Singh%2C+Fran%C3%A7ois&rft.au=Ball%2C+Graeme&rft.au=Ganley%2C+Ian+G.&rft.date=2020-01-01&rft.pub=Elsevier+Science+Ireland&rft.issn=0047-6374&rft.eissn=1872-6216&rft.volume=185&rft_id=info:doi/10.1016%2Fj.mad.2019.111196&rft_id=info%3Apmid%2F31843465&rft.externalDocID=PMC6961211 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0047-6374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0047-6374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0047-6374&client=summon |