Investigating the thermal profile of a marine vessel engine room through simulation with field measurements
This paper assesses the use of computational fluid dynamics (CFD) to model the ventilation of a working marine vessel, its performance in extreme climates, and potential improvements to the ventilation system which could lead to increased efficiencies of the engine and generator set. Comparisons bet...
Saved in:
Published in | Applied thermal engineering Vol. 73; no. 1; pp. 1360 - 1370 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
05.12.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper assesses the use of computational fluid dynamics (CFD) to model the ventilation of a working marine vessel, its performance in extreme climates, and potential improvements to the ventilation system which could lead to increased efficiencies of the engine and generator set.
Comparisons between data gathered on the marine vessel and the computational model show good agreement, with an average discrepancy in temperature of 0.4%. The model showed that the current ventilation system was inadequate for the use of the marine vessel in Arctic waters. In contrast, the model showed the vessel was suited for tropical waters, and that the boat complied with British Standards for ventilation.
Directing the flow within the engine room was found to improve the overall cooling of the room, and reduce the range of temperatures to improve thermal comfort. Directing the flow has shown reduced intake temperatures of the engine and generator set, improving efficiencies by 0.5% and 0.57% respectively. This paper demonstrates that the use of CFD to model marine vessel engine rooms can be used in retrospective design of ventilation systems, furthermore, it can be a tool utilised in the design stages for optimised engine rooms ventilation systems.
•CFD model of the ventilation of a marine vessel engine room.•Model and experimental results in excellent agreement under baseline conditions.•Simulations used to analyse the thermal profile under varying climatic conditions.•New layout of ventilation system has shown an improved thermal profile.•Improved engine efficiency due to new layout of ventilation system. |
---|---|
AbstractList | This paper assesses the use of computational fluid dynamics (CFD) to model the ventilation of a working marine vessel, its performance in extreme climates, and potential improvements to the ventilation system which could lead to increased efficiencies of the engine and generator set. Comparisons between data gathered on the marine vessel and the computational model show good agreement, with an average discrepancy in temperature of 0.4%. The model showed that the current ventilation system was inadequate for the use of the marine vessel in Arctic waters. In contrast, the model showed the vessel was suited for tropical waters, and that the boat complied with British Standards for ventilation. Directing the flow within the engine room was found to improve the overall cooling of the room, and reduce the range of temperatures to improve thermal comfort. Directing the flow has shown reduced intake temperatures of the engine and generator set, improving efficiencies by 0.5% and 0.57% respectively. This paper demonstrates that the use of CFD to model marine vessel engine rooms can be used in retrospective design of ventilation systems, furthermore, it can be a tool utilised in the design stages for optimised engine rooms ventilation systems. This paper assesses the use of computational fluid dynamics (CFD) to model the ventilation of a working marine vessel, its performance in extreme climates, and potential improvements to the ventilation system which could lead to increased efficiencies of the engine and generator set. Comparisons between data gathered on the marine vessel and the computational model show good agreement, with an average discrepancy in temperature of 0.4%. The model showed that the current ventilation system was inadequate for the use of the marine vessel in Arctic waters. In contrast, the model showed the vessel was suited for tropical waters, and that the boat complied with British Standards for ventilation. Directing the flow within the engine room was found to improve the overall cooling of the room, and reduce the range of temperatures to improve thermal comfort. Directing the flow has shown reduced intake temperatures of the engine and generator set, improving efficiencies by 0.5% and 0.57% respectively. This paper demonstrates that the use of CFD to model marine vessel engine rooms can be used in retrospective design of ventilation systems, furthermore, it can be a tool utilised in the design stages for optimised engine rooms ventilation systems. •CFD model of the ventilation of a marine vessel engine room.•Model and experimental results in excellent agreement under baseline conditions.•Simulations used to analyse the thermal profile under varying climatic conditions.•New layout of ventilation system has shown an improved thermal profile.•Improved engine efficiency due to new layout of ventilation system. |
Author | Lavery, Nicholas P. Sienz, Johann Bould, David Evans, Benjamin Lewis, Mel Newton, Will Carswell, David |
Author_xml | – sequence: 1 givenname: Will surname: Newton fullname: Newton, Will email: w.newton@swansea.ac.uk organization: ASTUTE, Digital Technium, Swansea University, SA2 8PP, UK – sequence: 2 givenname: Mel surname: Lewis fullname: Lewis, Mel organization: Mustang Marine, The Dockyard, Pembroke Dock, Pembrokeshire SA72 6TE, UK – sequence: 3 givenname: David surname: Carswell fullname: Carswell, David organization: ASTUTE, Digital Technium, Swansea University, SA2 8PP, UK – sequence: 4 givenname: Nicholas P. surname: Lavery fullname: Lavery, Nicholas P. organization: ASTUTE, Digital Technium, Swansea University, SA2 8PP, UK – sequence: 5 givenname: Benjamin surname: Evans fullname: Evans, Benjamin organization: ASTUTE, Digital Technium, Swansea University, SA2 8PP, UK – sequence: 6 givenname: David surname: Bould fullname: Bould, David organization: ASTUTE, Digital Technium, Swansea University, SA2 8PP, UK – sequence: 7 givenname: Johann surname: Sienz fullname: Sienz, Johann organization: ASTUTE, Digital Technium, Swansea University, SA2 8PP, UK |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28996110$$DView record in Pascal Francis |
BookMark | eNqNkE1L7DAUhrNQ8PM_ZKHgZmqStmkCbkSuHyC40XVI05OZjGkyJq0X_70ZZhDcuQqHPOc5vO8JOggxAEIXlFSUUH69rvRm46cVpFF7CMuKEdpURFaEygN0TOtWLpqa0iN0kvOaEMpE1xyj96fwCXlySz25sMRlH-8deJOidR5wtFjjUScXABc2g8fFv51SjGPBU5yXK5zdOPtiiQH_d9MKWwd-wCPoPCcYIUz5DB1a7TOc799T9Hb_7_XucfH88vB0d_u8MC3tpoVuLZEDY21jpG2ZgL5uODW1oYZzI0UZjRh4-e7Z0Ila9NJaRnpgfSc6I-pTdLXzlgQfc0mnRpcNeK8DxDkryrkUUhDeFfRmh5oUc05g1Sa5kvVLUaK2vaq1-t2r2vaqiFSl17J-ub-ks9HeJh2Myz8OJqTklJLC3e84KLE_HSSVjYNgYHAJzKSG6P528BuhrJ2R |
CitedBy_id | crossref_primary_10_1016_j_oceaneng_2015_11_018 crossref_primary_10_1177_14750902221118485 crossref_primary_10_3390_pr12020353 crossref_primary_10_1016_j_applthermaleng_2019_113820 crossref_primary_10_48084_etasr_1288 crossref_primary_10_1177_1475090216687148 crossref_primary_10_1016_j_applthermaleng_2016_06_021 crossref_primary_10_1016_j_jallcom_2024_174438 crossref_primary_10_1115_1_4049871 crossref_primary_10_1007_s12206_021_0139_6 crossref_primary_10_1016_j_applthermaleng_2015_09_078 crossref_primary_10_1016_j_applthermaleng_2016_07_176 crossref_primary_10_1016_j_oceaneng_2023_113648 |
Cites_doi | 10.1080/10789669.2007.10391459 10.1007/BF01061452 10.1016/S0376-0421(02)00005-2 10.1016/j.buildenv.2011.04.035 10.1016/0045-7930(94)00032-T 10.1016/j.buildenv.2011.05.019 10.1016/S0378-7788(02)00163-9 10.1016/j.applthermaleng.2011.10.040 10.1016/j.applthermaleng.2012.10.032 10.1016/j.applthermaleng.2011.12.002 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | IQODW AAYXX CITATION 7TB 8FD FR3 KR7 |
DOI | 10.1016/j.applthermaleng.2014.09.019 |
DatabaseName | Pascal-Francis CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EndPage | 1370 |
ExternalDocumentID | 10_1016_j_applthermaleng_2014_09_019 28996110 S1359431114007911 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- AALMO AAPBV AAQXK ABPIF ACNNM ADALY ASPBG AVWKF AZFZN FGOYB HZ~ IPNFZ IQODW R2- SEW AAXKI AAYXX ADMUD AFJKZ AKRWK CITATION 7TB 8FD FR3 KR7 |
ID | FETCH-LOGICAL-c517t-a5f09d2254c9f528eb3461c3c1c66c98b34c8d654cb2d7838b9ff20be2b787c83 |
IEDL.DBID | AIKHN |
ISSN | 1359-4311 |
IngestDate | Fri Oct 25 05:21:24 EDT 2024 Thu Sep 26 16:58:21 EDT 2024 Fri Nov 25 19:04:06 EST 2022 Fri Feb 23 02:33:17 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | CFD Forced ventilation Thermal modelling Engine room Computational fluid dynamics Simulation Ventilation Modeling Engine |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-a5f09d2254c9f528eb3461c3c1c66c98b34c8d654cb2d7838b9ff20be2b787c83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://cronfa.swan.ac.uk/Record/cronfa18507/Download/0018507-30032016090519.pdf |
PQID | 1669898067 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1669898067 crossref_primary_10_1016_j_applthermaleng_2014_09_019 pascalfrancis_primary_28996110 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2014_09_019 |
PublicationCentury | 2000 |
PublicationDate | 2014-12-05 |
PublicationDateYYYYMMDD | 2014-12-05 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Applied thermal engineering |
PublicationYear | 2014 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | (accessed 2012). Awabi (bib17) 2003 Mustakallio, Kosonen (bib2) 2014 (accessed 2013). Caterpillar (bib3) 2008 ANSYS ICEM CFD User Manual, (Online) Zhang, Li, Wang (bib7) 2012; 47 Ramos (bib10) 2013; 51 Aranjo, Hughes, Chaudry (bib8) 2012; 36 Zhai, Zhang, Zhang, Chen (bib14) 2007; 13 Bayraktar (bib9) 2012; 36 Patankar (bib16) 1980 Cummins Fire Power (bib4) 2009 Rohdin, Moshfegh (bib5) 2011; 46 (bib18) 2002 ANSYS FLUENT Theory Guide, (Online) (bib1) 1998 Oberkampf, Trucano (bib19) 2002; 38 Posner, Buchanan, Dunn-Rankin (bib6) 2003; 35 Yakhot, Orszag (bib11) 1986; 1 Shih, Liou, Shabbir, Yang, Zhu (bib13) 1995; 24 Shih (10.1016/j.applthermaleng.2014.09.019_bib13) 1995; 24 Zhang (10.1016/j.applthermaleng.2014.09.019_bib7) 2012; 47 Mustakallio (10.1016/j.applthermaleng.2014.09.019_bib2) 2014 Aranjo (10.1016/j.applthermaleng.2014.09.019_bib8) 2012; 36 Oberkampf (10.1016/j.applthermaleng.2014.09.019_bib19) 2002; 38 Zhai (10.1016/j.applthermaleng.2014.09.019_bib14) 2007; 13 Awabi (10.1016/j.applthermaleng.2014.09.019_bib17) 2003 Caterpillar (10.1016/j.applthermaleng.2014.09.019_bib3) 2008 Rohdin (10.1016/j.applthermaleng.2014.09.019_bib5) 2011; 46 Patankar (10.1016/j.applthermaleng.2014.09.019_bib16) 1980 Cummins Fire Power (10.1016/j.applthermaleng.2014.09.019_bib4) 2009 Bayraktar (10.1016/j.applthermaleng.2014.09.019_bib9) 2012; 36 Posner (10.1016/j.applthermaleng.2014.09.019_bib6) 2003; 35 Yakhot (10.1016/j.applthermaleng.2014.09.019_bib11) 1986; 1 Ramos (10.1016/j.applthermaleng.2014.09.019_bib10) 2013; 51 10.1016/j.applthermaleng.2014.09.019_bib15 (10.1016/j.applthermaleng.2014.09.019_bib1) 1998 (10.1016/j.applthermaleng.2014.09.019_bib18) 2002 10.1016/j.applthermaleng.2014.09.019_bib12 |
References_xml | – year: 2014 ident: bib2 article-title: AIHIA contributor: fullname: Kosonen – year: 2008 ident: bib3 article-title: Engine Room Ventilation contributor: fullname: Caterpillar – volume: 1 start-page: 3 year: 1986 end-page: 51 ident: bib11 article-title: Renormalization group analysis of turbulence publication-title: J. Sci. Comput. contributor: fullname: Orszag – volume: 24 start-page: 227 year: 1995 end-page: 238 ident: bib13 article-title: A new publication-title: Comput. Fluids contributor: fullname: Zhu – volume: 47 start-page: 89 year: 2012 end-page: 99 ident: bib7 article-title: A personal air distribution system with air terminals embedded in chair armrests on commercial airplanes publication-title: Build. Environ. contributor: fullname: Wang – volume: 36 start-page: 325 year: 2012 end-page: 329 ident: bib9 article-title: Computational simulation methods for vehicle thermal management publication-title: Appl. Therm. Eng. contributor: fullname: Bayraktar – volume: 38 start-page: 209 year: 2002 end-page: 272 ident: bib19 article-title: Verification and validation in computational fluid dynamics publication-title: Prog. Aerosp. Sci. contributor: fullname: Trucano – volume: 46 start-page: 2365 year: 2011 end-page: 2374 ident: bib5 article-title: Numerical modelling of industrial indoor environments: a comparison between different turbulence models and supply systems supported by field measurements publication-title: Build. Environ. contributor: fullname: Moshfegh – year: 2003 ident: bib17 article-title: Ventilation of Buildings contributor: fullname: Awabi – volume: 51 start-page: 852 year: 2013 end-page: 863 ident: bib10 article-title: Numerical modelling of the natural ventilation of underground transformer substations publication-title: Appl. Therm. Eng. contributor: fullname: Ramos – year: 2002 ident: bib18 publication-title: Internal Combustion Engines – Determination and Method for the Measurement of Engine Power – General Requirements – year: 2009 ident: bib4 article-title: Engine Room Ventilation Calculations contributor: fullname: Cummins Fire Power – volume: 13 year: 2007 ident: bib14 article-title: Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: part-1: summary of prevalent turbulence models publication-title: HVAC&R Res. contributor: fullname: Chen – volume: 35 start-page: 515 year: 2003 end-page: 526 ident: bib6 article-title: Measurement and prediction of indoor air flow in a model room publication-title: Energy Build. contributor: fullname: Dunn-Rankin – volume: 36 start-page: 87 year: 2012 end-page: 95 ident: bib8 article-title: Performance investigation of ground cooling for the airbus A380 in the United Arab Emirates publication-title: Appl. Therm. Eng. contributor: fullname: Chaudry – year: 1980 ident: bib16 article-title: Numerical Heat Transfer and Fluid Flow contributor: fullname: Patankar – year: 1998 ident: bib1 publication-title: Shipbuilding – Engine-room Ventilation in Diesel-engined Ships – Design Requirements and Basis of Calculations – year: 2002 ident: 10.1016/j.applthermaleng.2014.09.019_bib18 – year: 1980 ident: 10.1016/j.applthermaleng.2014.09.019_bib16 contributor: fullname: Patankar – volume: 13 issue: 6 year: 2007 ident: 10.1016/j.applthermaleng.2014.09.019_bib14 article-title: Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: part-1: summary of prevalent turbulence models publication-title: HVAC&R Res. doi: 10.1080/10789669.2007.10391459 contributor: fullname: Zhai – ident: 10.1016/j.applthermaleng.2014.09.019_bib12 – year: 1998 ident: 10.1016/j.applthermaleng.2014.09.019_bib1 – volume: 1 start-page: 3 issue: 1 year: 1986 ident: 10.1016/j.applthermaleng.2014.09.019_bib11 article-title: Renormalization group analysis of turbulence publication-title: J. Sci. Comput. doi: 10.1007/BF01061452 contributor: fullname: Yakhot – ident: 10.1016/j.applthermaleng.2014.09.019_bib15 – volume: 38 start-page: 209 year: 2002 ident: 10.1016/j.applthermaleng.2014.09.019_bib19 article-title: Verification and validation in computational fluid dynamics publication-title: Prog. Aerosp. Sci. doi: 10.1016/S0376-0421(02)00005-2 contributor: fullname: Oberkampf – year: 2014 ident: 10.1016/j.applthermaleng.2014.09.019_bib2 contributor: fullname: Mustakallio – volume: 47 start-page: 89 year: 2012 ident: 10.1016/j.applthermaleng.2014.09.019_bib7 article-title: A personal air distribution system with air terminals embedded in chair armrests on commercial airplanes publication-title: Build. Environ. doi: 10.1016/j.buildenv.2011.04.035 contributor: fullname: Zhang – volume: 24 start-page: 227 issue: 3 year: 1995 ident: 10.1016/j.applthermaleng.2014.09.019_bib13 article-title: A new k-ε eddy viscosity model for high Reynolds number turbulent flows publication-title: Comput. Fluids doi: 10.1016/0045-7930(94)00032-T contributor: fullname: Shih – year: 2003 ident: 10.1016/j.applthermaleng.2014.09.019_bib17 contributor: fullname: Awabi – year: 2008 ident: 10.1016/j.applthermaleng.2014.09.019_bib3 contributor: fullname: Caterpillar – year: 2009 ident: 10.1016/j.applthermaleng.2014.09.019_bib4 contributor: fullname: Cummins Fire Power – volume: 46 start-page: 2365 year: 2011 ident: 10.1016/j.applthermaleng.2014.09.019_bib5 article-title: Numerical modelling of industrial indoor environments: a comparison between different turbulence models and supply systems supported by field measurements publication-title: Build. Environ. doi: 10.1016/j.buildenv.2011.05.019 contributor: fullname: Rohdin – volume: 35 start-page: 515 year: 2003 ident: 10.1016/j.applthermaleng.2014.09.019_bib6 article-title: Measurement and prediction of indoor air flow in a model room publication-title: Energy Build. doi: 10.1016/S0378-7788(02)00163-9 contributor: fullname: Posner – volume: 36 start-page: 325 year: 2012 ident: 10.1016/j.applthermaleng.2014.09.019_bib9 article-title: Computational simulation methods for vehicle thermal management publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2011.10.040 contributor: fullname: Bayraktar – volume: 51 start-page: 852 year: 2013 ident: 10.1016/j.applthermaleng.2014.09.019_bib10 article-title: Numerical modelling of the natural ventilation of underground transformer substations publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2012.10.032 contributor: fullname: Ramos – volume: 36 start-page: 87 year: 2012 ident: 10.1016/j.applthermaleng.2014.09.019_bib8 article-title: Performance investigation of ground cooling for the airbus A380 in the United Arab Emirates publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2011.12.002 contributor: fullname: Aranjo |
SSID | ssj0012874 |
Score | 2.2517395 |
Snippet | This paper assesses the use of computational fluid dynamics (CFD) to model the ventilation of a working marine vessel, its performance in extreme climates, and... |
SourceID | proquest crossref pascalfrancis elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1360 |
SubjectTerms | Applied sciences CFD Computational fluid dynamics Energy Energy. Thermal use of fuels Engine room Engine rooms Engines and turbines Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Forced ventilation Generators Heat transfer Marine Mathematical models Theoretical studies. Data and constants. Metering Thermal modelling Ventilation Vessels |
Title | Investigating the thermal profile of a marine vessel engine room through simulation with field measurements |
URI | https://dx.doi.org/10.1016/j.applthermaleng.2014.09.019 https://search.proquest.com/docview/1669898067 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90A1FE_MT5MSL4WreuTdY8iQxlKvqigm8hSVOZum646aN_u3dtqg59EHxMQ9P0LrmP3OV3AIeRCXXEnQmkdiKIEx0HRrs04JJ6RBRJQwf6V9eifxdf3PP7OehVd2EordLL_lKmF9LaP2l5arbGg0HrJoy4RPWHBj3qOUn3e-tFkKgG9ZPzy_71ZzCBIN0Lv4vLgF5YgMOvNC-KE5OpNdRUuYRyvUrgU4Le-V1TLY_1BOmXlYUvfsjwQjGdrcKKtyjZSTnpNZhz-TosfcMZ3ICnb2ga-QPDiTA_GeZrdrNRxjQbaroLyN4IT_yZuWIIRqY18-V82GQw9PW-GJ3gsiIBjg2_Dhonm3B3dnrb6we-ykJgedidBppnbZnito6tzHgnQe86FqGNbGiFsDLBpk1Sgd2mk3aTKDEyyzpt4zoGN7tNoi2o5aPcbQOLM8uRqsLGDt1uG-pEyDR0mXGOUGu6DeAVRdW4BNNQVZbZo5rlhCJOqLZUyIkGHFfkVzOLQ6Hc_-MIzRmufX6e_E2BJlADDio2KtxgFDXRuRu9ThT-D9XYRK2-8-9p7MIitYp0GL4HtenLq9tHo2ZqmjB_9B42_dL9AE6l_CU |
link.rule.ids | 315,783,787,4511,24130,27938,27939,45599,45693 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLYQSDyEEE8xnkHiWrauTdacEEKg8bwAErcoSVM0YN3EBkd-O3abbkxwQOLYpkodO_EjcT4DHEYm1BF3JpDaiSBOdBwY7dKAS2oRUSQNbejf3Ir2Q3z5yB-n4LS6C0NplV73lzq90Nb-Td1zs97vdOp3YcQlmj906NHOSbrfOxMTfhZO6qPPUZ5HSIDuRdTFZUCfz8LhOMmLTonJ0epqqltCmV4l7CkB7_xupxb7eoDcy8qyFz80eGGWzpdhyfuT7KQkeQWmXL4KC99QBtfg5RuWRv7EkBDmiWG-YjfrZUyzrqabgOyD0MRfmSu6YORYM1_Mhw06XV_ti9H-LSvS31h3vM04WIeH87P703bgaywEloetYaB51pApLurYyow3E4ytYxHayIZWCCsTfLRJKrDZNNNWEiVGZlmzYVzT4FK3SbQB03kvd5vA4sxy5KqwscOg24Y6ETINXWacI8yaVg14xVHVL6E0VJVj9qwmJaFIEqohFUqiBscV-9XE1FCo9f_Yw96E1Ea_p2hToANUg4NKjAqXF52Z6Nz13gcKx0MVNtGmb_2bjH2Ya9_fXKvri9urbZinliIxhu_A9PDt3e2iezM0e8X0_QK69_0H |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+the+thermal+profile+of+a+marine+vessel+engine+room+through+simulation+with+field+measurements&rft.jtitle=Applied+thermal+engineering&rft.au=NEWTON%2C+Will&rft.au=LEWIS%2C+Mel&rft.au=CARSWELL%2C+David&rft.au=LAVERY%2C+Nicholas+P&rft.date=2014-12-05&rft.pub=Elsevier&rft.issn=1359-4311&rft.volume=73&rft.issue=1&rft.spage=1360&rft.epage=1370&rft_id=info:doi/10.1016%2Fj.applthermaleng.2014.09.019&rft.externalDBID=n%2Fa&rft.externalDocID=28996110 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |