Investigating the thermal profile of a marine vessel engine room through simulation with field measurements

This paper assesses the use of computational fluid dynamics (CFD) to model the ventilation of a working marine vessel, its performance in extreme climates, and potential improvements to the ventilation system which could lead to increased efficiencies of the engine and generator set. Comparisons bet...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 73; no. 1; pp. 1360 - 1370
Main Authors Newton, Will, Lewis, Mel, Carswell, David, Lavery, Nicholas P., Evans, Benjamin, Bould, David, Sienz, Johann
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 05.12.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper assesses the use of computational fluid dynamics (CFD) to model the ventilation of a working marine vessel, its performance in extreme climates, and potential improvements to the ventilation system which could lead to increased efficiencies of the engine and generator set. Comparisons between data gathered on the marine vessel and the computational model show good agreement, with an average discrepancy in temperature of 0.4%. The model showed that the current ventilation system was inadequate for the use of the marine vessel in Arctic waters. In contrast, the model showed the vessel was suited for tropical waters, and that the boat complied with British Standards for ventilation. Directing the flow within the engine room was found to improve the overall cooling of the room, and reduce the range of temperatures to improve thermal comfort. Directing the flow has shown reduced intake temperatures of the engine and generator set, improving efficiencies by 0.5% and 0.57% respectively. This paper demonstrates that the use of CFD to model marine vessel engine rooms can be used in retrospective design of ventilation systems, furthermore, it can be a tool utilised in the design stages for optimised engine rooms ventilation systems. •CFD model of the ventilation of a marine vessel engine room.•Model and experimental results in excellent agreement under baseline conditions.•Simulations used to analyse the thermal profile under varying climatic conditions.•New layout of ventilation system has shown an improved thermal profile.•Improved engine efficiency due to new layout of ventilation system.
AbstractList This paper assesses the use of computational fluid dynamics (CFD) to model the ventilation of a working marine vessel, its performance in extreme climates, and potential improvements to the ventilation system which could lead to increased efficiencies of the engine and generator set. Comparisons between data gathered on the marine vessel and the computational model show good agreement, with an average discrepancy in temperature of 0.4%. The model showed that the current ventilation system was inadequate for the use of the marine vessel in Arctic waters. In contrast, the model showed the vessel was suited for tropical waters, and that the boat complied with British Standards for ventilation. Directing the flow within the engine room was found to improve the overall cooling of the room, and reduce the range of temperatures to improve thermal comfort. Directing the flow has shown reduced intake temperatures of the engine and generator set, improving efficiencies by 0.5% and 0.57% respectively. This paper demonstrates that the use of CFD to model marine vessel engine rooms can be used in retrospective design of ventilation systems, furthermore, it can be a tool utilised in the design stages for optimised engine rooms ventilation systems.
This paper assesses the use of computational fluid dynamics (CFD) to model the ventilation of a working marine vessel, its performance in extreme climates, and potential improvements to the ventilation system which could lead to increased efficiencies of the engine and generator set. Comparisons between data gathered on the marine vessel and the computational model show good agreement, with an average discrepancy in temperature of 0.4%. The model showed that the current ventilation system was inadequate for the use of the marine vessel in Arctic waters. In contrast, the model showed the vessel was suited for tropical waters, and that the boat complied with British Standards for ventilation. Directing the flow within the engine room was found to improve the overall cooling of the room, and reduce the range of temperatures to improve thermal comfort. Directing the flow has shown reduced intake temperatures of the engine and generator set, improving efficiencies by 0.5% and 0.57% respectively. This paper demonstrates that the use of CFD to model marine vessel engine rooms can be used in retrospective design of ventilation systems, furthermore, it can be a tool utilised in the design stages for optimised engine rooms ventilation systems. •CFD model of the ventilation of a marine vessel engine room.•Model and experimental results in excellent agreement under baseline conditions.•Simulations used to analyse the thermal profile under varying climatic conditions.•New layout of ventilation system has shown an improved thermal profile.•Improved engine efficiency due to new layout of ventilation system.
Author Lavery, Nicholas P.
Sienz, Johann
Bould, David
Evans, Benjamin
Lewis, Mel
Newton, Will
Carswell, David
Author_xml – sequence: 1
  givenname: Will
  surname: Newton
  fullname: Newton, Will
  email: w.newton@swansea.ac.uk
  organization: ASTUTE, Digital Technium, Swansea University, SA2 8PP, UK
– sequence: 2
  givenname: Mel
  surname: Lewis
  fullname: Lewis, Mel
  organization: Mustang Marine, The Dockyard, Pembroke Dock, Pembrokeshire SA72 6TE, UK
– sequence: 3
  givenname: David
  surname: Carswell
  fullname: Carswell, David
  organization: ASTUTE, Digital Technium, Swansea University, SA2 8PP, UK
– sequence: 4
  givenname: Nicholas P.
  surname: Lavery
  fullname: Lavery, Nicholas P.
  organization: ASTUTE, Digital Technium, Swansea University, SA2 8PP, UK
– sequence: 5
  givenname: Benjamin
  surname: Evans
  fullname: Evans, Benjamin
  organization: ASTUTE, Digital Technium, Swansea University, SA2 8PP, UK
– sequence: 6
  givenname: David
  surname: Bould
  fullname: Bould, David
  organization: ASTUTE, Digital Technium, Swansea University, SA2 8PP, UK
– sequence: 7
  givenname: Johann
  surname: Sienz
  fullname: Sienz, Johann
  organization: ASTUTE, Digital Technium, Swansea University, SA2 8PP, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28996110$$DView record in Pascal Francis
BookMark eNqNkE1L7DAUhrNQ8PM_ZKHgZmqStmkCbkSuHyC40XVI05OZjGkyJq0X_70ZZhDcuQqHPOc5vO8JOggxAEIXlFSUUH69rvRm46cVpFF7CMuKEdpURFaEygN0TOtWLpqa0iN0kvOaEMpE1xyj96fwCXlySz25sMRlH-8deJOidR5wtFjjUScXABc2g8fFv51SjGPBU5yXK5zdOPtiiQH_d9MKWwd-wCPoPCcYIUz5DB1a7TOc799T9Hb_7_XucfH88vB0d_u8MC3tpoVuLZEDY21jpG2ZgL5uODW1oYZzI0UZjRh4-e7Z0Ila9NJaRnpgfSc6I-pTdLXzlgQfc0mnRpcNeK8DxDkryrkUUhDeFfRmh5oUc05g1Sa5kvVLUaK2vaq1-t2r2vaqiFSl17J-ub-ks9HeJh2Myz8OJqTklJLC3e84KLE_HSSVjYNgYHAJzKSG6P528BuhrJ2R
CitedBy_id crossref_primary_10_1016_j_oceaneng_2015_11_018
crossref_primary_10_1177_14750902221118485
crossref_primary_10_3390_pr12020353
crossref_primary_10_1016_j_applthermaleng_2019_113820
crossref_primary_10_48084_etasr_1288
crossref_primary_10_1177_1475090216687148
crossref_primary_10_1016_j_applthermaleng_2016_06_021
crossref_primary_10_1016_j_jallcom_2024_174438
crossref_primary_10_1115_1_4049871
crossref_primary_10_1007_s12206_021_0139_6
crossref_primary_10_1016_j_applthermaleng_2015_09_078
crossref_primary_10_1016_j_applthermaleng_2016_07_176
crossref_primary_10_1016_j_oceaneng_2023_113648
Cites_doi 10.1080/10789669.2007.10391459
10.1007/BF01061452
10.1016/S0376-0421(02)00005-2
10.1016/j.buildenv.2011.04.035
10.1016/0045-7930(94)00032-T
10.1016/j.buildenv.2011.05.019
10.1016/S0378-7788(02)00163-9
10.1016/j.applthermaleng.2011.10.040
10.1016/j.applthermaleng.2012.10.032
10.1016/j.applthermaleng.2011.12.002
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID IQODW
AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.applthermaleng.2014.09.019
DatabaseName Pascal-Francis
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EndPage 1370
ExternalDocumentID 10_1016_j_applthermaleng_2014_09_019
28996110
S1359431114007911
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AALMO
AAPBV
AAQXK
ABPIF
ACNNM
ADALY
ASPBG
AVWKF
AZFZN
FGOYB
HZ~
IPNFZ
IQODW
R2-
SEW
AAXKI
AAYXX
ADMUD
AFJKZ
AKRWK
CITATION
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c517t-a5f09d2254c9f528eb3461c3c1c66c98b34c8d654cb2d7838b9ff20be2b787c83
IEDL.DBID AIKHN
ISSN 1359-4311
IngestDate Fri Oct 25 05:21:24 EDT 2024
Thu Sep 26 16:58:21 EDT 2024
Fri Nov 25 19:04:06 EST 2022
Fri Feb 23 02:33:17 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords CFD
Forced ventilation
Thermal modelling
Engine room
Computational fluid dynamics
Simulation
Ventilation
Modeling
Engine
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-a5f09d2254c9f528eb3461c3c1c66c98b34c8d654cb2d7838b9ff20be2b787c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://cronfa.swan.ac.uk/Record/cronfa18507/Download/0018507-30032016090519.pdf
PQID 1669898067
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1669898067
crossref_primary_10_1016_j_applthermaleng_2014_09_019
pascalfrancis_primary_28996110
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2014_09_019
PublicationCentury 2000
PublicationDate 2014-12-05
PublicationDateYYYYMMDD 2014-12-05
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-05
  day: 05
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Applied thermal engineering
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References (accessed 2012).
Awabi (bib17) 2003
Mustakallio, Kosonen (bib2) 2014
(accessed 2013).
Caterpillar (bib3) 2008
ANSYS ICEM CFD User Manual, (Online)
Zhang, Li, Wang (bib7) 2012; 47
Ramos (bib10) 2013; 51
Aranjo, Hughes, Chaudry (bib8) 2012; 36
Zhai, Zhang, Zhang, Chen (bib14) 2007; 13
Bayraktar (bib9) 2012; 36
Patankar (bib16) 1980
Cummins Fire Power (bib4) 2009
Rohdin, Moshfegh (bib5) 2011; 46
(bib18) 2002
ANSYS FLUENT Theory Guide, (Online)
(bib1) 1998
Oberkampf, Trucano (bib19) 2002; 38
Posner, Buchanan, Dunn-Rankin (bib6) 2003; 35
Yakhot, Orszag (bib11) 1986; 1
Shih, Liou, Shabbir, Yang, Zhu (bib13) 1995; 24
Shih (10.1016/j.applthermaleng.2014.09.019_bib13) 1995; 24
Zhang (10.1016/j.applthermaleng.2014.09.019_bib7) 2012; 47
Mustakallio (10.1016/j.applthermaleng.2014.09.019_bib2) 2014
Aranjo (10.1016/j.applthermaleng.2014.09.019_bib8) 2012; 36
Oberkampf (10.1016/j.applthermaleng.2014.09.019_bib19) 2002; 38
Zhai (10.1016/j.applthermaleng.2014.09.019_bib14) 2007; 13
Awabi (10.1016/j.applthermaleng.2014.09.019_bib17) 2003
Caterpillar (10.1016/j.applthermaleng.2014.09.019_bib3) 2008
Rohdin (10.1016/j.applthermaleng.2014.09.019_bib5) 2011; 46
Patankar (10.1016/j.applthermaleng.2014.09.019_bib16) 1980
Cummins Fire Power (10.1016/j.applthermaleng.2014.09.019_bib4) 2009
Bayraktar (10.1016/j.applthermaleng.2014.09.019_bib9) 2012; 36
Posner (10.1016/j.applthermaleng.2014.09.019_bib6) 2003; 35
Yakhot (10.1016/j.applthermaleng.2014.09.019_bib11) 1986; 1
Ramos (10.1016/j.applthermaleng.2014.09.019_bib10) 2013; 51
10.1016/j.applthermaleng.2014.09.019_bib15
(10.1016/j.applthermaleng.2014.09.019_bib1) 1998
(10.1016/j.applthermaleng.2014.09.019_bib18) 2002
10.1016/j.applthermaleng.2014.09.019_bib12
References_xml – year: 2014
  ident: bib2
  article-title: AIHIA
  contributor:
    fullname: Kosonen
– year: 2008
  ident: bib3
  article-title: Engine Room Ventilation
  contributor:
    fullname: Caterpillar
– volume: 1
  start-page: 3
  year: 1986
  end-page: 51
  ident: bib11
  article-title: Renormalization group analysis of turbulence
  publication-title: J. Sci. Comput.
  contributor:
    fullname: Orszag
– volume: 24
  start-page: 227
  year: 1995
  end-page: 238
  ident: bib13
  article-title: A new
  publication-title: Comput. Fluids
  contributor:
    fullname: Zhu
– volume: 47
  start-page: 89
  year: 2012
  end-page: 99
  ident: bib7
  article-title: A personal air distribution system with air terminals embedded in chair armrests on commercial airplanes
  publication-title: Build. Environ.
  contributor:
    fullname: Wang
– volume: 36
  start-page: 325
  year: 2012
  end-page: 329
  ident: bib9
  article-title: Computational simulation methods for vehicle thermal management
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Bayraktar
– volume: 38
  start-page: 209
  year: 2002
  end-page: 272
  ident: bib19
  article-title: Verification and validation in computational fluid dynamics
  publication-title: Prog. Aerosp. Sci.
  contributor:
    fullname: Trucano
– volume: 46
  start-page: 2365
  year: 2011
  end-page: 2374
  ident: bib5
  article-title: Numerical modelling of industrial indoor environments: a comparison between different turbulence models and supply systems supported by field measurements
  publication-title: Build. Environ.
  contributor:
    fullname: Moshfegh
– year: 2003
  ident: bib17
  article-title: Ventilation of Buildings
  contributor:
    fullname: Awabi
– volume: 51
  start-page: 852
  year: 2013
  end-page: 863
  ident: bib10
  article-title: Numerical modelling of the natural ventilation of underground transformer substations
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Ramos
– year: 2002
  ident: bib18
  publication-title: Internal Combustion Engines – Determination and Method for the Measurement of Engine Power – General Requirements
– year: 2009
  ident: bib4
  article-title: Engine Room Ventilation Calculations
  contributor:
    fullname: Cummins Fire Power
– volume: 13
  year: 2007
  ident: bib14
  article-title: Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: part-1: summary of prevalent turbulence models
  publication-title: HVAC&R Res.
  contributor:
    fullname: Chen
– volume: 35
  start-page: 515
  year: 2003
  end-page: 526
  ident: bib6
  article-title: Measurement and prediction of indoor air flow in a model room
  publication-title: Energy Build.
  contributor:
    fullname: Dunn-Rankin
– volume: 36
  start-page: 87
  year: 2012
  end-page: 95
  ident: bib8
  article-title: Performance investigation of ground cooling for the airbus A380 in the United Arab Emirates
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Chaudry
– year: 1980
  ident: bib16
  article-title: Numerical Heat Transfer and Fluid Flow
  contributor:
    fullname: Patankar
– year: 1998
  ident: bib1
  publication-title: Shipbuilding – Engine-room Ventilation in Diesel-engined Ships – Design Requirements and Basis of Calculations
– year: 2002
  ident: 10.1016/j.applthermaleng.2014.09.019_bib18
– year: 1980
  ident: 10.1016/j.applthermaleng.2014.09.019_bib16
  contributor:
    fullname: Patankar
– volume: 13
  issue: 6
  year: 2007
  ident: 10.1016/j.applthermaleng.2014.09.019_bib14
  article-title: Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: part-1: summary of prevalent turbulence models
  publication-title: HVAC&R Res.
  doi: 10.1080/10789669.2007.10391459
  contributor:
    fullname: Zhai
– ident: 10.1016/j.applthermaleng.2014.09.019_bib12
– year: 1998
  ident: 10.1016/j.applthermaleng.2014.09.019_bib1
– volume: 1
  start-page: 3
  issue: 1
  year: 1986
  ident: 10.1016/j.applthermaleng.2014.09.019_bib11
  article-title: Renormalization group analysis of turbulence
  publication-title: J. Sci. Comput.
  doi: 10.1007/BF01061452
  contributor:
    fullname: Yakhot
– ident: 10.1016/j.applthermaleng.2014.09.019_bib15
– volume: 38
  start-page: 209
  year: 2002
  ident: 10.1016/j.applthermaleng.2014.09.019_bib19
  article-title: Verification and validation in computational fluid dynamics
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/S0376-0421(02)00005-2
  contributor:
    fullname: Oberkampf
– year: 2014
  ident: 10.1016/j.applthermaleng.2014.09.019_bib2
  contributor:
    fullname: Mustakallio
– volume: 47
  start-page: 89
  year: 2012
  ident: 10.1016/j.applthermaleng.2014.09.019_bib7
  article-title: A personal air distribution system with air terminals embedded in chair armrests on commercial airplanes
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2011.04.035
  contributor:
    fullname: Zhang
– volume: 24
  start-page: 227
  issue: 3
  year: 1995
  ident: 10.1016/j.applthermaleng.2014.09.019_bib13
  article-title: A new k-ε eddy viscosity model for high Reynolds number turbulent flows
  publication-title: Comput. Fluids
  doi: 10.1016/0045-7930(94)00032-T
  contributor:
    fullname: Shih
– year: 2003
  ident: 10.1016/j.applthermaleng.2014.09.019_bib17
  contributor:
    fullname: Awabi
– year: 2008
  ident: 10.1016/j.applthermaleng.2014.09.019_bib3
  contributor:
    fullname: Caterpillar
– year: 2009
  ident: 10.1016/j.applthermaleng.2014.09.019_bib4
  contributor:
    fullname: Cummins Fire Power
– volume: 46
  start-page: 2365
  year: 2011
  ident: 10.1016/j.applthermaleng.2014.09.019_bib5
  article-title: Numerical modelling of industrial indoor environments: a comparison between different turbulence models and supply systems supported by field measurements
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2011.05.019
  contributor:
    fullname: Rohdin
– volume: 35
  start-page: 515
  year: 2003
  ident: 10.1016/j.applthermaleng.2014.09.019_bib6
  article-title: Measurement and prediction of indoor air flow in a model room
  publication-title: Energy Build.
  doi: 10.1016/S0378-7788(02)00163-9
  contributor:
    fullname: Posner
– volume: 36
  start-page: 325
  year: 2012
  ident: 10.1016/j.applthermaleng.2014.09.019_bib9
  article-title: Computational simulation methods for vehicle thermal management
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2011.10.040
  contributor:
    fullname: Bayraktar
– volume: 51
  start-page: 852
  year: 2013
  ident: 10.1016/j.applthermaleng.2014.09.019_bib10
  article-title: Numerical modelling of the natural ventilation of underground transformer substations
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2012.10.032
  contributor:
    fullname: Ramos
– volume: 36
  start-page: 87
  year: 2012
  ident: 10.1016/j.applthermaleng.2014.09.019_bib8
  article-title: Performance investigation of ground cooling for the airbus A380 in the United Arab Emirates
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2011.12.002
  contributor:
    fullname: Aranjo
SSID ssj0012874
Score 2.2517395
Snippet This paper assesses the use of computational fluid dynamics (CFD) to model the ventilation of a working marine vessel, its performance in extreme climates, and...
SourceID proquest
crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 1360
SubjectTerms Applied sciences
CFD
Computational fluid dynamics
Energy
Energy. Thermal use of fuels
Engine room
Engine rooms
Engines and turbines
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Forced ventilation
Generators
Heat transfer
Marine
Mathematical models
Theoretical studies. Data and constants. Metering
Thermal modelling
Ventilation
Vessels
Title Investigating the thermal profile of a marine vessel engine room through simulation with field measurements
URI https://dx.doi.org/10.1016/j.applthermaleng.2014.09.019
https://search.proquest.com/docview/1669898067
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90A1FE_MT5MSL4WreuTdY8iQxlKvqigm8hSVOZum646aN_u3dtqg59EHxMQ9P0LrmP3OV3AIeRCXXEnQmkdiKIEx0HRrs04JJ6RBRJQwf6V9eifxdf3PP7OehVd2EordLL_lKmF9LaP2l5arbGg0HrJoy4RPWHBj3qOUn3e-tFkKgG9ZPzy_71ZzCBIN0Lv4vLgF5YgMOvNC-KE5OpNdRUuYRyvUrgU4Le-V1TLY_1BOmXlYUvfsjwQjGdrcKKtyjZSTnpNZhz-TosfcMZ3ICnb2ga-QPDiTA_GeZrdrNRxjQbaroLyN4IT_yZuWIIRqY18-V82GQw9PW-GJ3gsiIBjg2_Dhonm3B3dnrb6we-ykJgedidBppnbZnito6tzHgnQe86FqGNbGiFsDLBpk1Sgd2mk3aTKDEyyzpt4zoGN7tNoi2o5aPcbQOLM8uRqsLGDt1uG-pEyDR0mXGOUGu6DeAVRdW4BNNQVZbZo5rlhCJOqLZUyIkGHFfkVzOLQ6Hc_-MIzRmufX6e_E2BJlADDio2KtxgFDXRuRu9ThT-D9XYRK2-8-9p7MIitYp0GL4HtenLq9tHo2ZqmjB_9B42_dL9AE6l_CU
link.rule.ids 315,783,787,4511,24130,27938,27939,45599,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLYQSDyEEE8xnkHiWrauTdacEEKg8bwAErcoSVM0YN3EBkd-O3abbkxwQOLYpkodO_EjcT4DHEYm1BF3JpDaiSBOdBwY7dKAS2oRUSQNbejf3Ir2Q3z5yB-n4LS6C0NplV73lzq90Nb-Td1zs97vdOp3YcQlmj906NHOSbrfOxMTfhZO6qPPUZ5HSIDuRdTFZUCfz8LhOMmLTonJ0epqqltCmV4l7CkB7_xupxb7eoDcy8qyFz80eGGWzpdhyfuT7KQkeQWmXL4KC99QBtfg5RuWRv7EkBDmiWG-YjfrZUyzrqabgOyD0MRfmSu6YORYM1_Mhw06XV_ti9H-LSvS31h3vM04WIeH87P703bgaywEloetYaB51pApLurYyow3E4ytYxHayIZWCCsTfLRJKrDZNNNWEiVGZlmzYVzT4FK3SbQB03kvd5vA4sxy5KqwscOg24Y6ETINXWacI8yaVg14xVHVL6E0VJVj9qwmJaFIEqohFUqiBscV-9XE1FCo9f_Yw96E1Ea_p2hToANUg4NKjAqXF52Z6Nz13gcKx0MVNtGmb_2bjH2Ya9_fXKvri9urbZinliIxhu_A9PDt3e2iezM0e8X0_QK69_0H
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+the+thermal+profile+of+a+marine+vessel+engine+room+through+simulation+with+field+measurements&rft.jtitle=Applied+thermal+engineering&rft.au=NEWTON%2C+Will&rft.au=LEWIS%2C+Mel&rft.au=CARSWELL%2C+David&rft.au=LAVERY%2C+Nicholas+P&rft.date=2014-12-05&rft.pub=Elsevier&rft.issn=1359-4311&rft.volume=73&rft.issue=1&rft.spage=1360&rft.epage=1370&rft_id=info:doi/10.1016%2Fj.applthermaleng.2014.09.019&rft.externalDBID=n%2Fa&rft.externalDocID=28996110
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon