Farasan Island of Saudi Arabia confronts the measurable impacts of global warming in 45 years

Coastal vulnerability assessment is the key to coastal management and sustainable development. Sea level rise (SLR) and anthropogenic activities have triggered more extreme climatic events and made the coastal region vulnerable in recent decades. Many parts of the world also noticed increased sedime...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; pp. 14322 - 20
Main Authors Khedher, Khaled Mohamed, Abu-Taweel, Gasem Mohammad, Al-Fifi, Zarraq, Qoradi, Mofareh D., Al-khafaji, Zainab, Halder, Bijay, Bandyopadhyay, Jatisankar, Shahid, Shamsuddin, Essaied, LAATAR, Yaseen, Zaher Mundher
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 22.08.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Coastal vulnerability assessment is the key to coastal management and sustainable development. Sea level rise (SLR) and anthropogenic activities have triggered more extreme climatic events and made the coastal region vulnerable in recent decades. Many parts of the world also noticed increased sediment deposition, tidal effects, and changes in the shoreline. Farasan Island, located in the south-eastern part of Saudi Arabia, experienced changes in sediment deposition from the Red Sea in recent years. This study used Digital Shoreline Analysis System (DSAS) to delineate the shoreline changes of Farasan Island during 1975–2020. Multi-temporal Landsat data and DSAS were used for shoreline calculation based on endpoint rate (EPR) and linear regression. Results revealed an increase in vegetation area on the island by 17.18 km 2 during 1975–1989 and then a decrease by 69.85 km 2 during 1990–2020. The built-up land increased by 5.69 km 2 over the study period to accommodate the population growth. The annual temperature showed an increase at a rate of 0.196 °C/year. The sea-level rise caused a shift in the island's shoreline and caused a reduction of land by 80.86 km 2 during 1975–2020. The highly influenced areas by the environmental changes were the north, central, northwest, southwest, and northeast parts of the island. Urban expansion and sea-level rise gradually influence the island ecosystem, which needs proper attention, management, policies, and awareness planning to protect the environment of Farasan Island. Also, the study’s findings could help develop new strategies and plan climate change adaptation.
AbstractList Coastal vulnerability assessment is the key to coastal management and sustainable development. Sea level rise (SLR) and anthropogenic activities have triggered more extreme climatic events and made the coastal region vulnerable in recent decades. Many parts of the world also noticed increased sediment deposition, tidal effects, and changes in the shoreline. Farasan Island, located in the south-eastern part of Saudi Arabia, experienced changes in sediment deposition from the Red Sea in recent years. This study used Digital Shoreline Analysis System (DSAS) to delineate the shoreline changes of Farasan Island during 1975–2020. Multi-temporal Landsat data and DSAS were used for shoreline calculation based on endpoint rate (EPR) and linear regression. Results revealed an increase in vegetation area on the island by 17.18 km2 during 1975–1989 and then a decrease by 69.85 km2 during 1990–2020. The built-up land increased by 5.69 km2 over the study period to accommodate the population growth. The annual temperature showed an increase at a rate of 0.196 °C/year. The sea-level rise caused a shift in the island's shoreline and caused a reduction of land by 80.86 km2 during 1975–2020. The highly influenced areas by the environmental changes were the north, central, northwest, southwest, and northeast parts of the island. Urban expansion and sea-level rise gradually influence the island ecosystem, which needs proper attention, management, policies, and awareness planning to protect the environment of Farasan Island. Also, the study’s findings could help develop new strategies and plan climate change adaptation.
Coastal vulnerability assessment is the key to coastal management and sustainable development. Sea level rise (SLR) and anthropogenic activities have triggered more extreme climatic events and made the coastal region vulnerable in recent decades. Many parts of the world also noticed increased sediment deposition, tidal effects, and changes in the shoreline. Farasan Island, located in the south-eastern part of Saudi Arabia, experienced changes in sediment deposition from the Red Sea in recent years. This study used Digital Shoreline Analysis System (DSAS) to delineate the shoreline changes of Farasan Island during 1975–2020. Multi-temporal Landsat data and DSAS were used for shoreline calculation based on endpoint rate (EPR) and linear regression. Results revealed an increase in vegetation area on the island by 17.18 km 2 during 1975–1989 and then a decrease by 69.85 km 2 during 1990–2020. The built-up land increased by 5.69 km 2 over the study period to accommodate the population growth. The annual temperature showed an increase at a rate of 0.196 °C/year. The sea-level rise caused a shift in the island's shoreline and caused a reduction of land by 80.86 km 2 during 1975–2020. The highly influenced areas by the environmental changes were the north, central, northwest, southwest, and northeast parts of the island. Urban expansion and sea-level rise gradually influence the island ecosystem, which needs proper attention, management, policies, and awareness planning to protect the environment of Farasan Island. Also, the study’s findings could help develop new strategies and plan climate change adaptation.
Abstract Coastal vulnerability assessment is the key to coastal management and sustainable development. Sea level rise (SLR) and anthropogenic activities have triggered more extreme climatic events and made the coastal region vulnerable in recent decades. Many parts of the world also noticed increased sediment deposition, tidal effects, and changes in the shoreline. Farasan Island, located in the south-eastern part of Saudi Arabia, experienced changes in sediment deposition from the Red Sea in recent years. This study used Digital Shoreline Analysis System (DSAS) to delineate the shoreline changes of Farasan Island during 1975–2020. Multi-temporal Landsat data and DSAS were used for shoreline calculation based on endpoint rate (EPR) and linear regression. Results revealed an increase in vegetation area on the island by 17.18 km2 during 1975–1989 and then a decrease by 69.85 km2 during 1990–2020. The built-up land increased by 5.69 km2 over the study period to accommodate the population growth. The annual temperature showed an increase at a rate of 0.196 °C/year. The sea-level rise caused a shift in the island's shoreline and caused a reduction of land by 80.86 km2 during 1975–2020. The highly influenced areas by the environmental changes were the north, central, northwest, southwest, and northeast parts of the island. Urban expansion and sea-level rise gradually influence the island ecosystem, which needs proper attention, management, policies, and awareness planning to protect the environment of Farasan Island. Also, the study’s findings could help develop new strategies and plan climate change adaptation.
Coastal vulnerability assessment is the key to coastal management and sustainable development. Sea level rise (SLR) and anthropogenic activities have triggered more extreme climatic events and made the coastal region vulnerable in recent decades. Many parts of the world also noticed increased sediment deposition, tidal effects, and changes in the shoreline. Farasan Island, located in the south-eastern part of Saudi Arabia, experienced changes in sediment deposition from the Red Sea in recent years. This study used Digital Shoreline Analysis System (DSAS) to delineate the shoreline changes of Farasan Island during 1975-2020. Multi-temporal Landsat data and DSAS were used for shoreline calculation based on endpoint rate (EPR) and linear regression. Results revealed an increase in vegetation area on the island by 17.18 km2 during 1975-1989 and then a decrease by 69.85 km2 during 1990-2020. The built-up land increased by 5.69 km2 over the study period to accommodate the population growth. The annual temperature showed an increase at a rate of 0.196 °C/year. The sea-level rise caused a shift in the island's shoreline and caused a reduction of land by 80.86 km2 during 1975-2020. The highly influenced areas by the environmental changes were the north, central, northwest, southwest, and northeast parts of the island. Urban expansion and sea-level rise gradually influence the island ecosystem, which needs proper attention, management, policies, and awareness planning to protect the environment of Farasan Island. Also, the study's findings could help develop new strategies and plan climate change adaptation.Coastal vulnerability assessment is the key to coastal management and sustainable development. Sea level rise (SLR) and anthropogenic activities have triggered more extreme climatic events and made the coastal region vulnerable in recent decades. Many parts of the world also noticed increased sediment deposition, tidal effects, and changes in the shoreline. Farasan Island, located in the south-eastern part of Saudi Arabia, experienced changes in sediment deposition from the Red Sea in recent years. This study used Digital Shoreline Analysis System (DSAS) to delineate the shoreline changes of Farasan Island during 1975-2020. Multi-temporal Landsat data and DSAS were used for shoreline calculation based on endpoint rate (EPR) and linear regression. Results revealed an increase in vegetation area on the island by 17.18 km2 during 1975-1989 and then a decrease by 69.85 km2 during 1990-2020. The built-up land increased by 5.69 km2 over the study period to accommodate the population growth. The annual temperature showed an increase at a rate of 0.196 °C/year. The sea-level rise caused a shift in the island's shoreline and caused a reduction of land by 80.86 km2 during 1975-2020. The highly influenced areas by the environmental changes were the north, central, northwest, southwest, and northeast parts of the island. Urban expansion and sea-level rise gradually influence the island ecosystem, which needs proper attention, management, policies, and awareness planning to protect the environment of Farasan Island. Also, the study's findings could help develop new strategies and plan climate change adaptation.
ArticleNumber 14322
Author Yaseen, Zaher Mundher
Abu-Taweel, Gasem Mohammad
Halder, Bijay
Al-Fifi, Zarraq
Al-khafaji, Zainab
Khedher, Khaled Mohamed
Essaied, LAATAR
Bandyopadhyay, Jatisankar
Shahid, Shamsuddin
Qoradi, Mofareh D.
Author_xml – sequence: 1
  givenname: Khaled Mohamed
  surname: Khedher
  fullname: Khedher, Khaled Mohamed
  organization: Department of Civil Engineering, College of Engineering, King Khalid University, Department of Civil Engineering, High Institute of Technological Studies, Mrezgua University Campus
– sequence: 2
  givenname: Gasem Mohammad
  surname: Abu-Taweel
  fullname: Abu-Taweel, Gasem Mohammad
  organization: Department of Biology, College of Sciences, Jazan University
– sequence: 3
  givenname: Zarraq
  surname: Al-Fifi
  fullname: Al-Fifi, Zarraq
  organization: Department of Biology, College of Sciences, Jazan University
– sequence: 4
  givenname: Mofareh D.
  surname: Qoradi
  fullname: Qoradi, Mofareh D.
  organization: Department of Geography, College of Arts, King Saud University
– sequence: 5
  givenname: Zainab
  surname: Al-khafaji
  fullname: Al-khafaji, Zainab
  organization: Building and Construction Engineering Technology Department, AL-Mustaqbal University College
– sequence: 6
  givenname: Bijay
  surname: Halder
  fullname: Halder, Bijay
  organization: Department of Remote Sensing and GIS, Vidyasagar University
– sequence: 7
  givenname: Jatisankar
  surname: Bandyopadhyay
  fullname: Bandyopadhyay, Jatisankar
  organization: Department of Remote Sensing and GIS, Vidyasagar University
– sequence: 8
  givenname: Shamsuddin
  surname: Shahid
  fullname: Shahid, Shamsuddin
  organization: School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM)
– sequence: 9
  givenname: LAATAR
  surname: Essaied
  fullname: Essaied, LAATAR
  organization: Company of Phosphate of Gafsa and Chemical Group of Tunisia
– sequence: 10
  givenname: Zaher Mundher
  surname: Yaseen
  fullname: Yaseen, Zaher Mundher
  email: yaseen@alayen.edu.iq
  organization: New Era and Development in Civil Engineering Research Group, Scientific Research Center, Al-Ayen University
BookMark eNp9Us1uFSEUJqbG1toXcEXixs0oHGAubEyaxupNmrhQtxKYgSk3M3CFGU3fxmfxyaR3arRdlA3kfD-cc_I9R0cxRYfQS0reUMLk28KpULIhAA2VAKIRT9AJEC4aYABH_72P0VkpO1KPAMWpeoaOmVBKSFAn6NulyaaYiLdlNLHHyePPZukDPs_GBoO7FH1OcS54vnZ4cqYsFRgdDtPedLVcBcOYrBnxT5OnEAccIubi968bZ3J5gZ56MxZ3dnefoq-X779cfGyuPn3YXpxfNZ2gm7lRtvbFFPOkp577VkDreQu1Tce46ltB5IZJ5ljvLK84gBW0l9RbQjylwE7RdvXtk9npfQ6TyTc6maAPhZQHbfIcutFpSntmCAUuqeAbyWXnWrBScM5Z31lbvd6tXvvFTq7vXJyzGe-Z3kdiuNZD-qHrBIJJWg1e3xnk9H1xZdZTKJ0b64JdWoqGDREbwYhilfrqAXWXlhzrqg4sAE4Yryy5srqcSsnO6y7MZg7p9v8wakr0bSb0mgldM6EPmdCiSuGB9O8cj4rYKiqVHAeX_3X1iOoPfbjIJg
CitedBy_id crossref_primary_10_1016_j_heliyon_2023_e19413
crossref_primary_10_1016_j_rineng_2023_101665
crossref_primary_10_3390_rs16030551
crossref_primary_10_1002_gj_5179
crossref_primary_10_1016_j_envc_2024_100926
crossref_primary_10_1007_s44288_024_00009_1
crossref_primary_10_1007_s00704_024_05041_2
crossref_primary_10_1007_s13762_024_05788_1
crossref_primary_10_1029_2023JF007339
crossref_primary_10_1007_s00704_024_04874_1
crossref_primary_10_1016_j_heliyon_2023_e14846
crossref_primary_10_1007_s11852_024_01075_w
crossref_primary_10_1016_j_scs_2024_105456
crossref_primary_10_1016_j_chemosphere_2023_139434
crossref_primary_10_1007_s11852_023_01020_3
crossref_primary_10_1016_j_heliyon_2024_e39567
Cites_doi 10.2112/04-0421.1
10.1007/s13146-015-0247-4
10.1080/01431161.2010.486414
10.1007/s40808-020-00852-4
10.2112/05-0580.1
10.1016/j.rse.2009.07.021
10.1016/j.scs.2021.103186
10.1016/j.geomorph.2006.06.003
10.1007/s10661-007-9929-2
10.1007/s11852-015-0418-4
10.1155/2016/1480307
10.1016/j.pce.2022.103135
10.51526/kbes.2021.2.3.34-53
10.1016/j.geomorph.2010.02.023
10.1016/S0378-3839(03)00064-4
10.1016/S0034-4257(00)00169-3
10.3390/rs11192224
10.3390/rs6109829
10.1007/s10668-019-00578-z
10.1007/s10712-020-09623-3
10.1029/2011GL050582
10.1002/9780470666517
10.1016/j.rse.2014.02.001
10.2112/03-0071.1
10.1016/j.sjbs.2019.12.012
10.1109/indicon.2014.7030408
10.1007/s12517-011-0394-4
10.1002/esp.1165
10.3133/ofr20181179
10.1007/s10661-009-0906-9
10.1007/s10661-012-2928-y
10.1007/s42797-021-00032-2
10.1016/j.ecss.2011.10.009
10.1016/j.rse.2003.11.005
10.3133/ofr20081278
10.18393/ejss.84540
10.1056/NEJM199607113350203
10.1007/s12517-011-0424-2
10.1080/17445647.2017.1401492
10.2112/04-0398.1
10.1007/s11069-022-05224-y
10.1016/j.geomorph.2010.12.001
10.5923/j.ms.20110101.01
10.1002/gj.4145/v3/response1
10.2112/04-0230.1
10.1007/s40808-016-0130-x
10.1016/S0034-4257(02)00185-2
10.4401/ag-3155
10.1016/j.apgeog.2006.09.004
10.4172/2469-4134.1000175
10.3390/f11121287
10.1016/j.jaridenv.2021.104488
10.1016/j.oceaneng.2020.107395
10.1029/2018GL081816
10.1007/s12524-018-0818-7
10.1007/978-3-319-28528-3_5
10.1016/j.aqpro.2015.02.043
10.1016/j.quaint.2018.06.004
10.2495/dshf160091
10.1007/s12665-011-0928-9
10.1017/S0030605310001298
10.1080/15564894.2016.1216478
10.1007/s40808-018-0510-5
10.1016/j.tecto.2014.01.030
10.1016/S0967-0653(98)80642-X
10.1016/j.oceano.2019.12.001
10.1016/S0034-4257(02)00059-7
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-022-18225-5
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 20
ExternalDocumentID oai_doaj_org_article_11d3a012481547848ce62b854443dcbb
PMC9395381
10_1038_s41598_022_18225_5
GeographicLocations Saudi Arabia
Farasan Island
GeographicLocations_xml – name: Saudi Arabia
– name: Farasan Island
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c517t-9b419393f0d1f4f6526f462359e349d65087383e3deb44f622b51d81fb00f1123
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:30:27 EDT 2025
Thu Aug 21 14:03:12 EDT 2025
Tue Aug 05 09:37:01 EDT 2025
Wed Aug 13 04:54:01 EDT 2025
Thu Apr 24 23:08:07 EDT 2025
Tue Jul 01 04:17:08 EDT 2025
Fri Feb 21 02:36:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-9b419393f0d1f4f6526f462359e349d65087383e3deb44f622b51d81fb00f1123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/11d3a012481547848ce62b854443dcbb
PMID 35995829
PQID 2705224034
PQPubID 2041939
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_11d3a012481547848ce62b854443dcbb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9395381
proquest_miscellaneous_2705753093
proquest_journals_2705224034
crossref_citationtrail_10_1038_s41598_022_18225_5
crossref_primary_10_1038_s41598_022_18225_5
springer_journals_10_1038_s41598_022_18225_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-22
PublicationDateYYYYMMDD 2022-08-22
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-22
  day: 22
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References HereherMEMapping coastal erosion at the Nile Delta western promontory using Landsat imageryEnviron. Earth Sci.2011641117112510.1007/s12665-011-0928-9
WhiteSAWangYUtilizing DEMs derived from LIDAR data to analyze morphologic change in the North Carolina coastlineRemote Sens. Environ.20038539472003RSEnv..85...39W10.1016/S0034-4257(02)00185-2
Avdan, U. & Jovanovska, G. Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. J. Sensors. 2016, (2016).
AppeaningAddoKJayson-QuashigahPNKufogbeKSQuantitative analysis of shoreline change using medium resolution satellite imagery in Keta, GhanaMar. Sci.201211910.5923/j.ms.20110101.01
BaralRPradhanSSamalRNMishraSKShoreline change analysis at Chilika Lagoon Coast, India using digital shoreline analysis systemJ. Indian Soc. Remote Sensing2018461637164410.1007/s12524-018-0818-7
BoakEHTurnerILShoreline definition and detection: A reviewJ. Coastal Res.200521468870310.2112/03-0071.1
MillsJPBuckleySJMitchellHLClarkePJEdwardsSJA geomatics data integration technique for coastal change monitoringEarth Surf. Proc. Land.2005306516642005ESPL...30..651M10.1002/esp.1165
LhissouiRHartiAEChokmaniKMapping soil salinity in irrigated land using optical remote sensing dataEurasian J. Soil Sci. (EJSS).201438210.18393/ejss.84540
Guariglia, A. et al. A multisource approach for coastline mapping and identification of shoreline changes. Ann. Geophys. 49, (2009).
MarfaiMAAlmohammadHDeySSusantoBKingLCoastal dynamic and shoreline mapping: Multi-sources spatial data analysis in Semarang IndonesiaEnviron. Monit. Assess.20071422973081787431210.1007/s10661-007-9929-2
CrowellMDouglasBCLeathermanSPOn forecasting future US Shoreline positions: A test of algorithmsJ. Coastal Res.199710.1016/S0967-0653(98)80642-X
SalghunaNNBharathvajSAShoreline change analysis for northern part of the coromandel coastAquatic Procedia2015431732410.1016/j.aqpro.2015.02.043
MuslimAFoodyGMAtkinsonPMShoreline mapping from coarse-spatial resolution remote sensing imagery of Seberang Takir, MalaysiaJ. Coast. Res.20072361399140810.2112/04-0421.1
MortonRAMillerTMooreLHistorical shoreline changes along the US Gulf of Mexico: A summary of recent shoreline comparisons and analysesJ. Coastal Res.200521470470910.2112/04-0230.1
EkercinSCoastline change assessment at the Aegean Sea Coasts in Turkey Using Multitemporal Landsat ImageryJ. Coastal Res.200723369169810.2112/04-0398.1
AlmalkiKABantanRALithologic units and stratigraphy of the Farasan Islands, Southern Red SeaCarbonates Evaporites.201610.1007/s13146-015-0247-4
AlawadKAAl-SubhiAMAlsaafaniMAAlraddadiTMIonitaMLohmannGAlsaafaniKSLarge-scale mode impacts on the sea level over the Red Sea and Gulf of AdenRemote Sens.2019111922242019RemS...11.2224A10.3390/rs11192224
HashimBMAl MalikiASultanMAShahidSYaseenZMEffect of land use land cover changes on land surface temperature during 1984–2020: A case study of Baghdad city using landsat imageNat. Hazards.202210.1007/s11069-022-05224-y
AlFuguraABillaLPradhanBSemi-automated procedures for shoreline extraction using single RADARSAT-1 SAR imageEstuarine Coast. Shelf Sci.2011953954002011ECSS...95..395A10.1016/j.ecss.2011.10.009
HalderBBanikPBandyopadhyayJMapping and monitoring land dynamic due to urban expansion using geospatial techniques on South KolkataSafety Extreme Environ.20213274210.1007/s42797-021-00032-2
AwadhSMAl-MimarHYaseenZMGroundwater availability and water demand sustainability over the upper mega aquifers of Arabian Peninsula and west region of IraqEnviron. Development Sustain.202010.1007/s10668-019-00578-z
Al-QthaninRAl-YasiHProgress towards an updated checklist of the Farasan Archipelago floraJ. Arid Environ.20211892021JArEn.189j4488A10.1016/j.jaridenv.2021.104488
KumarANarayanaACJayappaKSShoreline changes and morphology of spits along southern Karnataka, west coast of India: A remote sensing and statistics-based approachGeomorphology20101203–41331522010Geomo.120..133K10.1016/j.geomorph.2010.02.023
Ghosh, A. & Mukhopadhyay, S. Quantitative study on shoreline changes and Erosion Hazard assessment: Case study in Muriganga–Saptamukhi interfluve, Sundarban, India. Modeling Earth Syst. Environ. 2, (2016).
YuXGuoXWuZLand surface temperature retrieval from Landsat 8 TIRS—Comparison between radiative transfer equation-based method, split window algorithm and single channel methodRemote Sensing20146982998522014RemS....6.9829Y10.3390/rs6109829
Fletcher, C., Rooney, J., Barbee, M., Lim, S.-C. & Richmond, B. Mapping shoreline change using digital orthophotogrammetry on Maui, Hawaii. J. Coastal Res. 106–124 (2003).
NandiSGhoshMKunduADuttaDBaksiMShoreline shifting and its prediction using remote sensing and GIS techniques: A case study of Sagar Island, West Bengal (India)J. Coast. Conserv.201520618010.1007/s11852-015-0418-4
Himmelstoss, E. A., Henderson, R. E., Kratzmann, M. G. & Farris, A. S. Digital Shoreline Analysis System (DSAS) Version 5.0 User Guide. (2018).
Al-MimarHSAwadhSMAl-YaseriAAYaseenZMSedimentary units-layering system and depositional model of the carbonate Mishrif reservoir in Rumaila oilfield, Southern IraqModeling Earth Syst. Environ.201841449146510.1007/s40808-018-0510-5
YamanoHEvaluation of various satellite sensors for waterline extraction in a coral reef environment: Majuro Atoll, Marshall IslandsGeomorphology2006823984112006Geomo..82..398Y10.1016/j.geomorph.2006.06.003
Dolan, R., Fenster, M. S., & Holme, S. J. Temporal analysis of shoreline recession and accretion. J. Coast. Res. 723–744 (1991).
Khobragade, A. N. & Raghuwanshi, M. M. Data fusion algorithms for horticulture classification using multi-sensory satellite images. in 2014 Annual IEEE India Conference (INDICON) (2014). https://doi.org/10.1109/indicon.2014.7030408.
YunusAPDouJAvtarRNarayanaACShoreline and coastal morphological changes induced by the 2004 Indian Ocean Tsunami in the Katchal Island, Andaman and Nicobar—A study using archived satellite imagesTsunamis Earthq. Coast. Environ.201610.1007/978-3-319-28528-3_5
CunninghamPLWronskiTTwenty years of monitoring of the Vulnerable Farasan gazelle Gazella gazella farasani on the Farasan Islands, Saudi Arabia: An overviewOryx201145505510.1017/S0030605310001298
ShamjiVRAboobackerVMVineeshTCExtreme value analysis of wave climate around Farasan Islands, southern Red SeaOcean Eng.202020710.1016/j.oceaneng.2020.107395
Khalil, H. M., Fathy, M. S. & Sawy, S. M. Al. Author response for ‘Quaternary corals (Scleractinia: Merulinidae) from the Egyptian and Saudi Arabian Red Sea Coast’. (2021). https://doi.org/10.1002/gj.4145/v3/response1.
El-SerehyHAShafikHAbdallahHSAl-MisnedFAAl-FarrajSAComplex interactions and different possible pathways among functional components of the aquatic microbial world in Farasan Archipelago, Southern Red Sea, Saudi ArabiaSaudi J. Biol. Sci.202027141214171:CAS:528:DC%2BB3cXjtlKlsg%3D%3D3234635410.1016/j.sjbs.2019.12.012
WengQLuDSchubringJEstimation of land surface temperature–vegetation abundance relationship for urban heat island studiesRemote Sens. Environ.2004894674832004RSEnv..89..467W10.1016/j.rse.2003.11.005
RyuJWonJMinKWaterline extraction from Landsat TM data in a tidal flatA case study in Gomso Bay, KoreaRemote Sensing Environ.2002834424562002RSEnv..83..442R10.1016/S0034-4257(02)00059-7
DurduranSSCoastline change assessment on water reservoirs located in the Konya Basin Area, Turkey, using multitemporal landsat imageryEnviron. Monit. Assess.20091644534611939963510.1007/s10661-009-0906-91:CAS:528:DC%2BC3cXks1WisLo%3D
AliAAl-BannaEStudy of the archaeological building materials on Farasan Islands, Kingdom of Saudi Arabia, and their relationship with the islands’ local and climatic environmentDefence Sites III Heritage Future.201610.2495/dshf160091
AmiriRWengQAlimohammadiAAlavipanahSKSpatial–temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, IranRemote Sens. Environ.2009113260626172009RSEnv.113.2606A10.1016/j.rse.2009.07.021
LiuHWangLShermanDJWuQSuHAlgorithmic foundation and software tools for extracting shoreline features from remote sensing imagery and LiDAR dataJ. Geogr. Inf. Syst.20110399119
Cheruto, M. C., Kauti, M. K., Kisangau, D. P. & Kariuki, P. C. Assessment of land use and land cover change using GIS and remote sensing techniques: A case study of Makueni County, Kenya. (2016).
AlmalkiKABettsPGAilleresLEpisodic sea-floor spreading in the Southern Red SeaTectonophysics20146171401492014Tectp.617..140A10.1016/j.tecto.2014.01.030
ThakurSDharanirajanKGhoshPBDasPDeTKInfluence of anthropogenic activities on the landuse pattern of South Andaman IslandsRes. J. Mar. Sci.20175110
RoyDPLandsat-8: Science and product vision for terrestrial global change researchRemote Sens. Environ.20141451541722014RSEnv.145..154R10.1016/j.rse.2014.02.001
Thao, P. T. P., Duan, H. D. & To, D. V. Integrated remote sensing and GIS for calculating shoreline change in Phan Thiet coastal area. in International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences, Hanoi, Vietnam 1–6 (2008).
YaoRWangLHuangXGongWXiaXGreening in rural areas increases the surface urban heat island intensityGeophys. Res. Lett.201946220422122019GeoRL..46.2204Y10.1029/2018GL081816
ZhangYOdehIOAHanCBi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysisInt. J. Appl. Earth Obs. Geoinf.2009112562642009IJAEO..11..256Z
PankratzHGUse of geophysical and radar interferometric techniques to monitor land deformation associated with the Jazan Salt Diapir, Jazan city, Saudi ArabiaSurveys Geophys.2021421772002021SGeo...42..177P10.1007/s10712-020-09623-3
EidEMEvaluation of carbon stock in the sediment of two mangrove species, Avicennia marina and Rhizophora mucronata, growing in the Farasan Islands, Saudi ArabiaOceanologia20206220021310.1016/j.oceano.2019.12.001
Al-QthaninRNAlharbiSASpatial structure and genetic variation of a Mangrove species (Avicennia marina
BM Hashim (18225_CR25) 2022
VR Shamji (18225_CR78) 2020; 207
18225_CR39
KA Almalki (18225_CR73) 2017; 13
S Thakur (18225_CR18) 2017; 5
18225_CR35
18225_CR36
A Ali (18225_CR72) 2016
EH Boak (18225_CR56) 2005; 214
B-L Cui (18225_CR22) 2011; 127
PL Cunningham (18225_CR76) 2011; 45
PS Mujabar (18225_CR4) 2011; 6
18225_CR41
R Yao (18225_CR26) 2019; 46
A Kumar (18225_CR57) 2010; 120
JC Semenza (18225_CR44) 1996; 335
B Halder (18225_CR48) 2021; 74
H Liu (18225_CR13) 2011; 03
DP Roy (18225_CR46) 2014; 145
A AlFugura (18225_CR16) 2011; 95
SA White (18225_CR14) 2003; 85
ER Thieler (18225_CR61) 2009
18225_CR47
Q Weng (18225_CR28) 2004; 89
R Lhissoui (18225_CR37) 2014; 3
SS Durduran (18225_CR23) 2009; 164
RA Morton (18225_CR15) 2005; 214
H Liu (18225_CR10) 2007; 236
S Nandi (18225_CR29) 2015; 20
MA Marfai (18225_CR3) 2007; 142
B Halder (18225_CR40) 2021; 3
18225_CR53
C Song (18225_CR34) 2001; 75
HS Al-Mimar (18225_CR8) 2018; 4
N Hausmann (18225_CR30) 2016; 12
JP Mills (18225_CR2) 2005; 30
AP Yunus (18225_CR59) 2016
KA Alawad (18225_CR77) 2019; 11
18225_CR12
M Crowell (18225_CR42) 1997
ME Hereher (18225_CR52) 2011; 64
X Yu (18225_CR45) 2014; 6
SGJ Aarninkhof (18225_CR17) 2003; 49
H Tao (18225_CR7) 2021; 15
K Pavlopoulos (18225_CR74) 2018; 493
K AppeaningAddo (18225_CR58) 2012; 1
18225_CR62
18225_CR63
KA Almalki (18225_CR65) 2014; 617
18225_CR20
18225_CR64
B Halder (18225_CR24) 2021; 2
Y Zhang (18225_CR49) 2009; 11
U Natesan (18225_CR11) 2012; 185
JA Sobrino (18225_CR43) 2011; 32
EM Eid (18225_CR75) 2020; 62
R Amiri (18225_CR27) 2009; 113
HG Pankratz (18225_CR67) 2021; 42
KA Almalki (18225_CR66) 2016
18225_CR68
18225_CR5
18225_CR6
SM Awadh (18225_CR9) 2020
18225_CR1
RN Al-Qthanin (18225_CR70) 2020; 11
A Muslim (18225_CR51) 2007; 236
R Al-Qthanin (18225_CR71) 2021; 189
A Shalaby (18225_CR38) 2007; 27
SM Al-Hatrushi (18225_CR21) 2012; 6
J Ryu (18225_CR55) 2002; 83
R Baral (18225_CR19) 2018; 46
B Halder (18225_CR33) 2020; 6
18225_CR31
18225_CR32
H Yamano (18225_CR54) 2006; 82
S Ekercin (18225_CR50) 2007; 233
NN Salghuna (18225_CR60) 2015; 4
HA El-Serehy (18225_CR69) 2020; 27
References_xml – reference: AarninkhofSGJTurnerILDronkersTDTCaljouwMNipiusLA video-based technique for mapping intertidal beach bathymetryCoast. Eng.20034927528910.1016/S0378-3839(03)00064-4
– reference: Avdan, U. & Jovanovska, G. Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. J. Sensors. 2016, (2016).
– reference: Khobragade, A. N. & Raghuwanshi, M. M. Data fusion algorithms for horticulture classification using multi-sensory satellite images. in 2014 Annual IEEE India Conference (INDICON) (2014). https://doi.org/10.1109/indicon.2014.7030408.
– reference: HereherMEMapping coastal erosion at the Nile Delta western promontory using Landsat imageryEnviron. Earth Sci.2011641117112510.1007/s12665-011-0928-9
– reference: Al-MimarHSAwadhSMAl-YaseriAAYaseenZMSedimentary units-layering system and depositional model of the carbonate Mishrif reservoir in Rumaila oilfield, Southern IraqModeling Earth Syst. Environ.201841449146510.1007/s40808-018-0510-5
– reference: Halder, B., Ameen, A. M. S., Bandyopadhyay, J., Khedher, K. M. & Yaseen, Z. M. The impact of climate change on land degradation along with shoreline migration in Ghoramara Island, India. Phys. Chem. Earth Parts A/B/C. 103135 (2022).
– reference: NatesanUThulasiramanNDeepthiKKathiravanKShoreline change analysis of Vedaranyam coast, Tamil Nadu, IndiaEnviron. Monit. Assess.2012185509951092305429010.1007/s10661-012-2928-y1:CAS:528:DC%2BC3sXnsVWhtbs%3D
– reference: AlmalkiKABantanRAHashemHILoniOAAliMAImproving geological mapping of the Farasan Islands using remote sensing and ground-truth dataJ. Maps20171390090810.1080/17445647.2017.1401492
– reference: MarfaiMAAlmohammadHDeySSusantoBKingLCoastal dynamic and shoreline mapping: Multi-sources spatial data analysis in Semarang IndonesiaEnviron. Monit. Assess.20071422973081787431210.1007/s10661-007-9929-2
– reference: MillsJPBuckleySJMitchellHLClarkePJEdwardsSJA geomatics data integration technique for coastal change monitoringEarth Surf. Proc. Land.2005306516642005ESPL...30..651M10.1002/esp.1165
– reference: Khalil, H. M., Fathy, M. S. & Sawy, S. M. Al. Author response for ‘Quaternary corals (Scleractinia: Merulinidae) from the Egyptian and Saudi Arabian Red Sea Coast’. (2021). https://doi.org/10.1002/gj.4145/v3/response1.
– reference: BoakEHTurnerILShoreline definition and detection: A reviewJ. Coastal Res.200521468870310.2112/03-0071.1
– reference: YaoRWangLHuangXGongWXiaXGreening in rural areas increases the surface urban heat island intensityGeophys. Res. Lett.201946220422122019GeoRL..46.2204Y10.1029/2018GL081816
– reference: RoyDPLandsat-8: Science and product vision for terrestrial global change researchRemote Sens. Environ.20141451541722014RSEnv.145..154R10.1016/j.rse.2014.02.001
– reference: ShamjiVRAboobackerVMVineeshTCExtreme value analysis of wave climate around Farasan Islands, southern Red SeaOcean Eng.202020710.1016/j.oceaneng.2020.107395
– reference: MuslimAFoodyGMAtkinsonPMShoreline mapping from coarse-spatial resolution remote sensing imagery of Seberang Takir, MalaysiaJ. Coast. Res.20072361399140810.2112/04-0421.1
– reference: WengQLuDSchubringJEstimation of land surface temperature–vegetation abundance relationship for urban heat island studiesRemote Sens. Environ.2004894674832004RSEnv..89..467W10.1016/j.rse.2003.11.005
– reference: HalderBBandyopadhyayJBanikPMonitoring the effect of urban development on urban heat island based on remote sensing and geo-spatial approach in Kolkata and adjacent areas, IndiaSustain. Cities Soc.20217410.1016/j.scs.2021.103186
– reference: SobrinoJAJulienYGlobal trends in NDVI-derived parameters obtained from GIMMS dataInt. J. Remote Sens.2011324267427910.1080/01431161.2010.486414
– reference: NandiSGhoshMKunduADuttaDBaksiMShoreline shifting and its prediction using remote sensing and GIS techniques: A case study of Sagar Island, West Bengal (India)J. Coast. Conserv.201520618010.1007/s11852-015-0418-4
– reference: Pajak, M. J. & Leatherman, S. The high water line as shoreline indicator. J. Coastal Res. 329–337 (2002).
– reference: LiuHWangLShermanDJWuQSuHAlgorithmic foundation and software tools for extracting shoreline features from remote sensing imagery and LiDAR dataJ. Geogr. Inf. Syst.20110399119
– reference: CunninghamPLWronskiTTwenty years of monitoring of the Vulnerable Farasan gazelle Gazella gazella farasani on the Farasan Islands, Saudi Arabia: An overviewOryx201145505510.1017/S0030605310001298
– reference: USGS Earth Explorer. https://earthexplorer.usgs.gov/. Accessed 3 Mar 2022.
– reference: CuiB-LLiX-YCoastline change of the Yellow River estuary and its response to the sediment and runoff (1976–2005)Geomorphology201112732402011Geomo.127...32C10.1016/j.geomorph.2010.12.001
– reference: ThielerERHimmelstossEAZichichiJLErgulAThe Digital Shoreline Analysis System (DSAS) Version 4.0—An ArcGIS extension for calculating shoreline changeOpen-File Rep.200910.3133/ofr20081278
– reference: Ghosh, A. & Mukhopadhyay, S. Quantitative study on shoreline changes and Erosion Hazard assessment: Case study in Muriganga–Saptamukhi interfluve, Sundarban, India. Modeling Earth Syst. Environ. 2, (2016).
– reference: DIVA-GIS. https://www.diva-gis.org/. Accessed 15 Mar 2022.
– reference: SongCWoodcockCESetoKCLenneyMPMacomberSAClassification and change detection using Landsat TM data: When and how to correct atmospheric effects?Remote Sens. Environ.2001752302442001RSEnv..75..230S10.1016/S0034-4257(00)00169-3
– reference: Dolan, R., Fenster, M. S., & Holme, S. J. Temporal analysis of shoreline recession and accretion. J. Coast. Res. 723–744 (1991).
– reference: EkercinSCoastline change assessment at the Aegean Sea Coasts in Turkey Using Multitemporal Landsat ImageryJ. Coastal Res.200723369169810.2112/04-0398.1
– reference: Himmelstoss, E. A., Henderson, R. E., Kratzmann, M. G. & Farris, A. S. Digital Shoreline Analysis System (DSAS) Version 5.0 User Guide. (2018).
– reference: LiuHShermanDGuSAutomated extraction of shorelines from airborne light detection and ranging data and accuracy assessment based on monte carlo simulationJ. Coastal Res.20072361359136910.2112/05-0580.1
– reference: PankratzHGUse of geophysical and radar interferometric techniques to monitor land deformation associated with the Jazan Salt Diapir, Jazan city, Saudi ArabiaSurveys Geophys.2021421772002021SGeo...42..177P10.1007/s10712-020-09623-3
– reference: ShalabyATateishiRRemote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of EgyptAppl. Geogr.200727284110.1016/j.apgeog.2006.09.004
– reference: YuXGuoXWuZLand surface temperature retrieval from Landsat 8 TIRS—Comparison between radiative transfer equation-based method, split window algorithm and single channel methodRemote Sensing20146982998522014RemS....6.9829Y10.3390/rs6109829
– reference: ZhangYOdehIOAHanCBi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysisInt. J. Appl. Earth Obs. Geoinf.2009112562642009IJAEO..11..256Z
– reference: AlmalkiKABettsPGAilleresLEpisodic sea-floor spreading in the Southern Red SeaTectonophysics20146171401492014Tectp.617..140A10.1016/j.tecto.2014.01.030
– reference: HalderBBandyopadhyayJBanikPAssessment of hospital sites’ suitability by spatial information technologies using AHP and GIS-based multi-criteria approach of Rajpur-Sonarpur MunicipalityModel. Earth Syst. Environ.202062581259610.1007/s40808-020-00852-4
– reference: AmiriRWengQAlimohammadiAAlavipanahSKSpatial–temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, IranRemote Sens. Environ.2009113260626172009RSEnv.113.2606A10.1016/j.rse.2009.07.021
– reference: SalghunaNNBharathvajSAShoreline change analysis for northern part of the coromandel coastAquatic Procedia2015431732410.1016/j.aqpro.2015.02.043
– reference: WhiteSAWangYUtilizing DEMs derived from LIDAR data to analyze morphologic change in the North Carolina coastlineRemote Sens. Environ.20038539472003RSEnv..85...39W10.1016/S0034-4257(02)00185-2
– reference: LhissouiRHartiAEChokmaniKMapping soil salinity in irrigated land using optical remote sensing dataEurasian J. Soil Sci. (EJSS).201438210.18393/ejss.84540
– reference: AppeaningAddoKJayson-QuashigahPNKufogbeKSQuantitative analysis of shoreline change using medium resolution satellite imagery in Keta, GhanaMar. Sci.201211910.5923/j.ms.20110101.01
– reference: AliAAl-BannaEStudy of the archaeological building materials on Farasan Islands, Kingdom of Saudi Arabia, and their relationship with the islands’ local and climatic environmentDefence Sites III Heritage Future.201610.2495/dshf160091
– reference: PavlopoulosKGeomorphological changes in the coastal area of Farasan Al-Kabir Island (Saudi Arabia) since mid Holocene based on a multi-proxy approachQuatern. Int.201849319821110.1016/j.quaint.2018.06.004
– reference: YunusAPDouJAvtarRNarayanaACShoreline and coastal morphological changes induced by the 2004 Indian Ocean Tsunami in the Katchal Island, Andaman and Nicobar—A study using archived satellite imagesTsunamis Earthq. Coast. Environ.201610.1007/978-3-319-28528-3_5
– reference: MujabarPSChandrasekarNShoreline change analysis along the coast between Kanyakumari and Tuticorin of India using remote sensing and GISArab. J. Geosci.2011664766410.1007/s12517-011-0394-4
– reference: Mather, P. M. & Koch, M. Comput. Process. Remotely-Sensed Images. (2011). https://doi.org/10.1002/9780470666517.
– reference: AlawadKAAl-SubhiAMAlsaafaniMAAlraddadiTMIonitaMLohmannGAlsaafaniKSLarge-scale mode impacts on the sea level over the Red Sea and Gulf of AdenRemote Sens.2019111922242019RemS...11.2224A10.3390/rs11192224
– reference: Cohen, J. L., Furtado, J. C., Barlow, M., Alexeev, V. A. & Cherry, J. E. Asymmetric seasonal temperature trends. Geophys. Res. Lett. 39 (2012).
– reference: HalderBHaghbinMFarooqueAAAn assessment of urban expansion impacts on land transformation of Rajpur-Sonarpur MunicipalityKnowl.-Based Eng. Sci.20212345310.51526/kbes.2021.2.3.34-53
– reference: KumarANarayanaACJayappaKSShoreline changes and morphology of spits along southern Karnataka, west coast of India: A remote sensing and statistics-based approachGeomorphology20101203–41331522010Geomo.120..133K10.1016/j.geomorph.2010.02.023
– reference: El-SerehyHAShafikHAbdallahHSAl-MisnedFAAl-FarrajSAComplex interactions and different possible pathways among functional components of the aquatic microbial world in Farasan Archipelago, Southern Red Sea, Saudi ArabiaSaudi J. Biol. Sci.202027141214171:CAS:528:DC%2BB3cXjtlKlsg%3D%3D3234635410.1016/j.sjbs.2019.12.012
– reference: ThakurSDharanirajanKGhoshPBDasPDeTKInfluence of anthropogenic activities on the landuse pattern of South Andaman IslandsRes. J. Mar. Sci.20175110
– reference: HashimBMAl MalikiASultanMAShahidSYaseenZMEffect of land use land cover changes on land surface temperature during 1984–2020: A case study of Baghdad city using landsat imageNat. Hazards.202210.1007/s11069-022-05224-y
– reference: AlFuguraABillaLPradhanBSemi-automated procedures for shoreline extraction using single RADARSAT-1 SAR imageEstuarine Coast. Shelf Sci.2011953954002011ECSS...95..395A10.1016/j.ecss.2011.10.009
– reference: Guariglia, A. et al. A multisource approach for coastline mapping and identification of shoreline changes. Ann. Geophys. 49, (2009).
– reference: Al-HatrushiSMMonitoring of the shoreline change using remote sensing and GIS: A case study of Al Hawasnah tidal inlet, Al Batinah coast, Sultanate of OmanArab. J. Geosci.201261479148410.1007/s12517-011-0424-2
– reference: HausmannNMeredith-WilliamsMSeasonal patterns of coastal exploitation on the Farasan Islands, Saudi ArabiaJ. Island Coast. Archaeol.20161236037910.1080/15564894.2016.1216478
– reference: RyuJWonJMinKWaterline extraction from Landsat TM data in a tidal flatA case study in Gomso Bay, KoreaRemote Sensing Environ.2002834424562002RSEnv..83..442R10.1016/S0034-4257(02)00059-7
– reference: EidEMEvaluation of carbon stock in the sediment of two mangrove species, Avicennia marina and Rhizophora mucronata, growing in the Farasan Islands, Saudi ArabiaOceanologia20206220021310.1016/j.oceano.2019.12.001
– reference: CrowellMDouglasBCLeathermanSPOn forecasting future US Shoreline positions: A test of algorithmsJ. Coastal Res.199710.1016/S0967-0653(98)80642-X
– reference: Cheruto, M. C., Kauti, M. K., Kisangau, D. P. & Kariuki, P. C. Assessment of land use and land cover change using GIS and remote sensing techniques: A case study of Makueni County, Kenya. (2016).
– reference: SemenzaJCHeat-related deaths during the July 1995 heat wave in ChicagoN. Engl. J. Med.199633584901:STN:280:DyaK283ms1emug%3D%3D864949410.1056/NEJM199607113350203
– reference: Al-QthaninRAl-YasiHProgress towards an updated checklist of the Farasan Archipelago floraJ. Arid Environ.20211892021JArEn.189j4488A10.1016/j.jaridenv.2021.104488
– reference: MortonRAMillerTMooreLHistorical shoreline changes along the US Gulf of Mexico: A summary of recent shoreline comparisons and analysesJ. Coastal Res.200521470470910.2112/04-0230.1
– reference: AlmalkiKABantanRALithologic units and stratigraphy of the Farasan Islands, Southern Red SeaCarbonates Evaporites.201610.1007/s13146-015-0247-4
– reference: YamanoHEvaluation of various satellite sensors for waterline extraction in a coral reef environment: Majuro Atoll, Marshall IslandsGeomorphology2006823984112006Geomo..82..398Y10.1016/j.geomorph.2006.06.003
– reference: ESRI ArcGIS. Software V10.6. https://www.arcgis.com/index.html. Accessed 17 Mar 2022.
– reference: BaralRPradhanSSamalRNMishraSKShoreline change analysis at Chilika Lagoon Coast, India using digital shoreline analysis systemJ. Indian Soc. Remote Sensing2018461637164410.1007/s12524-018-0818-7
– reference: Thao, P. T. P., Duan, H. D. & To, D. V. Integrated remote sensing and GIS for calculating shoreline change in Phan Thiet coastal area. in International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences, Hanoi, Vietnam 1–6 (2008).
– reference: Fletcher, C., Rooney, J., Barbee, M., Lim, S.-C. & Richmond, B. Mapping shoreline change using digital orthophotogrammetry on Maui, Hawaii. J. Coastal Res. 106–124 (2003).
– reference: Al-QthaninRNAlharbiSASpatial structure and genetic variation of a Mangrove species (Avicennia marina (Forssk.) Vierh) in the Farasan ArchipelagoForests202011128710.3390/f11121287
– reference: AwadhSMAl-MimarHYaseenZMGroundwater availability and water demand sustainability over the upper mega aquifers of Arabian Peninsula and west region of IraqEnviron. Development Sustain.202010.1007/s10668-019-00578-z
– reference: DurduranSSCoastline change assessment on water reservoirs located in the Konya Basin Area, Turkey, using multitemporal landsat imageryEnviron. Monit. Assess.20091644534611939963510.1007/s10661-009-0906-91:CAS:528:DC%2BC3cXks1WisLo%3D
– reference: TaoHArtificial intelligence models for suspended river sediment prediction: State-of-the art, modeling framework appraisal, and proposed future research directionsEng. Appl. Comput. Fluid Mech.20211515851612
– reference: HalderBBanikPBandyopadhyayJMapping and monitoring land dynamic due to urban expansion using geospatial techniques on South KolkataSafety Extreme Environ.20213274210.1007/s42797-021-00032-2
– volume: 236
  start-page: 1399
  year: 2007
  ident: 18225_CR51
  publication-title: J. Coast. Res.
  doi: 10.2112/04-0421.1
– year: 2016
  ident: 18225_CR66
  publication-title: Carbonates Evaporites.
  doi: 10.1007/s13146-015-0247-4
– volume: 32
  start-page: 4267
  year: 2011
  ident: 18225_CR43
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2010.486414
– volume: 6
  start-page: 2581
  year: 2020
  ident: 18225_CR33
  publication-title: Model. Earth Syst. Environ.
  doi: 10.1007/s40808-020-00852-4
– volume: 236
  start-page: 1359
  year: 2007
  ident: 18225_CR10
  publication-title: J. Coastal Res.
  doi: 10.2112/05-0580.1
– volume: 113
  start-page: 2606
  year: 2009
  ident: 18225_CR27
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.07.021
– volume: 74
  year: 2021
  ident: 18225_CR48
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2021.103186
– volume: 82
  start-page: 398
  year: 2006
  ident: 18225_CR54
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2006.06.003
– volume: 142
  start-page: 297
  year: 2007
  ident: 18225_CR3
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-007-9929-2
– volume: 20
  start-page: 61
  year: 2015
  ident: 18225_CR29
  publication-title: J. Coast. Conserv.
  doi: 10.1007/s11852-015-0418-4
– ident: 18225_CR47
  doi: 10.1155/2016/1480307
– ident: 18225_CR6
  doi: 10.1016/j.pce.2022.103135
– volume: 2
  start-page: 34
  year: 2021
  ident: 18225_CR24
  publication-title: Knowl.-Based Eng. Sci.
  doi: 10.51526/kbes.2021.2.3.34-53
– volume: 120
  start-page: 133
  issue: 3–4
  year: 2010
  ident: 18225_CR57
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2010.02.023
– volume: 49
  start-page: 275
  year: 2003
  ident: 18225_CR17
  publication-title: Coast. Eng.
  doi: 10.1016/S0378-3839(03)00064-4
– volume: 75
  start-page: 230
  year: 2001
  ident: 18225_CR34
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(00)00169-3
– volume: 11
  start-page: 2224
  issue: 19
  year: 2019
  ident: 18225_CR77
  publication-title: Remote Sens.
  doi: 10.3390/rs11192224
– volume: 6
  start-page: 9829
  year: 2014
  ident: 18225_CR45
  publication-title: Remote Sensing
  doi: 10.3390/rs6109829
– ident: 18225_CR53
– year: 2020
  ident: 18225_CR9
  publication-title: Environ. Development Sustain.
  doi: 10.1007/s10668-019-00578-z
– volume: 42
  start-page: 177
  year: 2021
  ident: 18225_CR67
  publication-title: Surveys Geophys.
  doi: 10.1007/s10712-020-09623-3
– ident: 18225_CR39
  doi: 10.1029/2011GL050582
– ident: 18225_CR62
– ident: 18225_CR35
  doi: 10.1002/9780470666517
– volume: 145
  start-page: 154
  year: 2014
  ident: 18225_CR46
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.02.001
– volume: 214
  start-page: 688
  year: 2005
  ident: 18225_CR56
  publication-title: J. Coastal Res.
  doi: 10.2112/03-0071.1
– volume: 27
  start-page: 1412
  year: 2020
  ident: 18225_CR69
  publication-title: Saudi J. Biol. Sci.
  doi: 10.1016/j.sjbs.2019.12.012
– ident: 18225_CR36
  doi: 10.1109/indicon.2014.7030408
– volume: 6
  start-page: 647
  year: 2011
  ident: 18225_CR4
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-011-0394-4
– volume: 30
  start-page: 651
  year: 2005
  ident: 18225_CR2
  publication-title: Earth Surf. Proc. Land.
  doi: 10.1002/esp.1165
– ident: 18225_CR63
  doi: 10.3133/ofr20181179
– volume: 164
  start-page: 453
  year: 2009
  ident: 18225_CR23
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-009-0906-9
– volume: 11
  start-page: 256
  year: 2009
  ident: 18225_CR49
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 185
  start-page: 5099
  year: 2012
  ident: 18225_CR11
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-012-2928-y
– volume: 3
  start-page: 27
  year: 2021
  ident: 18225_CR40
  publication-title: Safety Extreme Environ.
  doi: 10.1007/s42797-021-00032-2
– volume: 95
  start-page: 395
  year: 2011
  ident: 18225_CR16
  publication-title: Estuarine Coast. Shelf Sci.
  doi: 10.1016/j.ecss.2011.10.009
– ident: 18225_CR1
– volume: 15
  start-page: 1585
  year: 2021
  ident: 18225_CR7
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 89
  start-page: 467
  year: 2004
  ident: 18225_CR28
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2003.11.005
– year: 2009
  ident: 18225_CR61
  publication-title: Open-File Rep.
  doi: 10.3133/ofr20081278
– volume: 3
  start-page: 82
  year: 2014
  ident: 18225_CR37
  publication-title: Eurasian J. Soil Sci. (EJSS).
  doi: 10.18393/ejss.84540
– volume: 335
  start-page: 84
  year: 1996
  ident: 18225_CR44
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM199607113350203
– volume: 6
  start-page: 1479
  year: 2012
  ident: 18225_CR21
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-011-0424-2
– ident: 18225_CR64
– volume: 13
  start-page: 900
  year: 2017
  ident: 18225_CR73
  publication-title: J. Maps
  doi: 10.1080/17445647.2017.1401492
– ident: 18225_CR12
– volume: 5
  start-page: 1
  year: 2017
  ident: 18225_CR18
  publication-title: Res. J. Mar. Sci.
– volume: 233
  start-page: 691
  year: 2007
  ident: 18225_CR50
  publication-title: J. Coastal Res.
  doi: 10.2112/04-0398.1
– year: 2022
  ident: 18225_CR25
  publication-title: Nat. Hazards.
  doi: 10.1007/s11069-022-05224-y
– ident: 18225_CR31
– volume: 127
  start-page: 32
  year: 2011
  ident: 18225_CR22
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2010.12.001
– volume: 1
  start-page: 1
  year: 2012
  ident: 18225_CR58
  publication-title: Mar. Sci.
  doi: 10.5923/j.ms.20110101.01
– ident: 18225_CR68
  doi: 10.1002/gj.4145/v3/response1
– volume: 214
  start-page: 704
  year: 2005
  ident: 18225_CR15
  publication-title: J. Coastal Res.
  doi: 10.2112/04-0230.1
– ident: 18225_CR5
  doi: 10.1007/s40808-016-0130-x
– volume: 85
  start-page: 39
  year: 2003
  ident: 18225_CR14
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00185-2
– ident: 18225_CR20
  doi: 10.4401/ag-3155
– volume: 27
  start-page: 28
  year: 2007
  ident: 18225_CR38
  publication-title: Appl. Geogr.
  doi: 10.1016/j.apgeog.2006.09.004
– ident: 18225_CR41
  doi: 10.4172/2469-4134.1000175
– volume: 11
  start-page: 1287
  year: 2020
  ident: 18225_CR70
  publication-title: Forests
  doi: 10.3390/f11121287
– volume: 189
  year: 2021
  ident: 18225_CR71
  publication-title: J. Arid Environ.
  doi: 10.1016/j.jaridenv.2021.104488
– volume: 207
  year: 2020
  ident: 18225_CR78
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.107395
– volume: 46
  start-page: 2204
  year: 2019
  ident: 18225_CR26
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2018GL081816
– volume: 46
  start-page: 1637
  year: 2018
  ident: 18225_CR19
  publication-title: J. Indian Soc. Remote Sensing
  doi: 10.1007/s12524-018-0818-7
– year: 2016
  ident: 18225_CR59
  publication-title: Tsunamis Earthq. Coast. Environ.
  doi: 10.1007/978-3-319-28528-3_5
– volume: 4
  start-page: 317
  year: 2015
  ident: 18225_CR60
  publication-title: Aquatic Procedia
  doi: 10.1016/j.aqpro.2015.02.043
– volume: 493
  start-page: 198
  year: 2018
  ident: 18225_CR74
  publication-title: Quatern. Int.
  doi: 10.1016/j.quaint.2018.06.004
– volume: 03
  start-page: 99
  year: 2011
  ident: 18225_CR13
  publication-title: J. Geogr. Inf. Syst.
– year: 2016
  ident: 18225_CR72
  publication-title: Defence Sites III Heritage Future.
  doi: 10.2495/dshf160091
– ident: 18225_CR32
– volume: 64
  start-page: 1117
  year: 2011
  ident: 18225_CR52
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-011-0928-9
– volume: 45
  start-page: 50
  year: 2011
  ident: 18225_CR76
  publication-title: Oryx
  doi: 10.1017/S0030605310001298
– volume: 12
  start-page: 360
  year: 2016
  ident: 18225_CR30
  publication-title: J. Island Coast. Archaeol.
  doi: 10.1080/15564894.2016.1216478
– volume: 4
  start-page: 1449
  year: 2018
  ident: 18225_CR8
  publication-title: Modeling Earth Syst. Environ.
  doi: 10.1007/s40808-018-0510-5
– volume: 617
  start-page: 140
  year: 2014
  ident: 18225_CR65
  publication-title: Tectonophysics
  doi: 10.1016/j.tecto.2014.01.030
– year: 1997
  ident: 18225_CR42
  publication-title: J. Coastal Res.
  doi: 10.1016/S0967-0653(98)80642-X
– volume: 62
  start-page: 200
  year: 2020
  ident: 18225_CR75
  publication-title: Oceanologia
  doi: 10.1016/j.oceano.2019.12.001
– volume: 83
  start-page: 442
  year: 2002
  ident: 18225_CR55
  publication-title: Remote Sensing Environ.
  doi: 10.1016/S0034-4257(02)00059-7
SSID ssj0000529419
Score 2.4605362
Snippet Coastal vulnerability assessment is the key to coastal management and sustainable development. Sea level rise (SLR) and anthropogenic activities have triggered...
Abstract Coastal vulnerability assessment is the key to coastal management and sustainable development. Sea level rise (SLR) and anthropogenic activities have...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 14322
SubjectTerms 704/106/694/1108
704/106/694/2739
704/106/829/2737
704/242
Anthropogenic factors
Climate adaptation
Climate change
Coastal zone
Coastal zone management
Environmental changes
Global warming
Humanities and Social Sciences
Landsat
multidisciplinary
Population growth
Remote sensing
Science
Science (multidisciplinary)
Sea level rise
Sedimentation & deposition
Shorelines
Sustainable development
Tidal effects
Urban sprawl
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6hSpW4IFpABAoyEjeIGv8l9hFQVxUHLlCpJyw7tmElyKJmV6hvw7P0yRjb2W1TCbhwi_yT2OMZzzex_RngpaZWtCr42vVa1Pjoamu9rLmPXLTBYkLeIPuhPT0T78_l-Y2rvtKesEIPXAR3TKnnFmfRRCoiOiVUH1rmlBRCcN87l2Zf9Hk3gqnC6s20oHo6JdNwdTyip0qnyTD2QkjNZC1nnigT9s9Q5u09krcWSrP_WdyHexNwJG9Kgw_gThgOYb9cJXn5AD4v7IUd7UDSGA-erCL5aDd-iRWsW1qCYW9MXAUjQcRHvuc_g-nUFCnHJMdUoZCDkJ827Y_5QpYDEfLq1yXawvgQzhYnn96d1tPdCXUvabeutcPuc81j42kUsZWsjQKhjtSBC-0TLuswOA3cBycwnzEnqVc0ohlGxGD8EewNqyE8BoL1G-k9BkZeoffCkNCrtvGIVPDVbdQV0K0cTT8Ri6f7Lb6ZvMDNlSmyNyh7k2VvZAWvdnV-FFqNv5Z-m4ZnVzJRYucEVBQzKYr5l6JUcLQdXDPZ6WhYh5qSKAlFBS922WhhadnEDmG1KWUwqGs0r6CbKcWsQfOcYfk1c3XjGKBLoRW83qrP9cf_3OEn_6PDT-EuS-re4FTIjmBvfbEJzxBBrd3zbCy_AedaE_4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dj9QgECd6xsSXi-dH7HleMPFNybUFWngyatxcfPBFL9kXQ6DAuYm253Y35v57Zyi7l17ivTUFWmAYZoYZfkPIG11Z0ajgmeu0YPDomLVeMu4jF02w8CIFyH5tzi_El6Vc5gO3MYdV7vbEtFH7ocMz8rO6LSWKHy7eX_1hmDUKvas5hcZ98gChyzCkq122-zMW9GKJSue7MiVXZyPIK7xTBhYYKNa1ZHImjxJs_0zXvB0pectdmqTQ4jE5zOoj_TDR-4jcC_0T8nBKKHn9lPxY2LUdbU-R0r2nQ6Tf7NavoIF1K0vB-I2IWDBS0Pvo73Q-iHen6HRZcsQGE0QI_WsxSuaSrnoqJL0GhhifkYvF5--fzllOoMA6WbUbph2MnmseS19FERtZN1GAviN14EJ7VM5asFAD98EJKK9rJyuvqgi8GEER48_JQT_04QWh0L6U3oN15BWIMLALvWpKD-oKfLqJuiDVbhpNl9HFMcnFL5O83FyZaeoNTL1JU29kQd7u21xN2Bp31v6I1NnXRFzs9GJYX5rMZmDPeG5B5iIEjWiVUF1oaqekEIL7zrmCnOxoazKzjuZmaRXk9b4Y2Ax9J7YPw3aqA5ZdqXlB2tmamHVoXtKvfibAbqAByJWqIO92q-fm5_8f8PHdfX1JHtW4jkvY6eoTcrBZb8MrUJA27jRxwT-iEwtC
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuFeUhUgoyEjeISPyKfYQVq4oDF6jUE5Yd22UlyKLNrlD_Db-FX8bYSRalAqTeotiThz2T-Sae-QzwQteWSxV86VrNSzx0pbVelMxHxmWweCInyH6QZ-f8_YW4OAA61cLkpP1MaZk_01N22OseHU0qBsPQCRExFaW4BbcTdXvS6oVc7P-rpJUrXuuxPqZi6i-iMx-Uqfpn-PJ6duS1JdLseZb34GiEjOTN8JDHcBC6-3Bn2ETy6gF8XtqN7W1H0ux2nqwj-Wh3foUC1q0swYA3JpaCniDWI9_yP8FUL0WGAsk-CQy0IOSHTZkxl2TVES5-_bxCK-gfwvny3afFWTnumlC2om62pXb4-kyzWPk68igFlZEjyBE6MK59QmQNhqWB-eA4tlPqRO1VHdEAI6Iv9ggOu3UXHgNB-Up4jyGRV-i3MBj0SlYeMQpeWkZdQD2No2lHSvG0s8VXk5e2mTLD2Bsce5PH3ogCXu5lvg-EGv_t_TZNz75nIsPOJ9abSzMqBwYxnll0tIl3hjeKqzZI6pTgnDPfOlfA6TS5ZrTQ3tAGNSWREfICnu-b0bbSgontwno39MFwrtKsgGamFLMHmrd0qy-ZpRvnAJ1JXcCrSX3-3PzfL3xys-5P4C5Nil3h546ewuF2swtPESVt3bNsFr8BNwIKaw
  priority: 102
  providerName: Springer Nature
Title Farasan Island of Saudi Arabia confronts the measurable impacts of global warming in 45 years
URI https://link.springer.com/article/10.1038/s41598-022-18225-5
https://www.proquest.com/docview/2705224034
https://www.proquest.com/docview/2705753093
https://pubmed.ncbi.nlm.nih.gov/PMC9395381
https://doaj.org/article/11d3a012481547848ce62b854443dcbb
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Za9tAEB5yUOhL6UnVpGYLfWvVSnvoeAjBMTHB0FCaGvxSxK52NzGkcmPZJP73nV1JLgpp6ZPNHpI8O-P5RrvzDcD7PJY8yYwOVZnzEL-qUEotQqYt44mR2OAPyJ4nZ1M-mYnZDnTljloB1g-Gdq6e1HR5_enuZnOMBn_UpIxnn2t0Qi5RDMMqRMtUhGIX9tEzpc5Qv7Rwv-H6pjn3tT4cCXuIYIK2eTQPX6bnqzylfw-H3j9FeW8r1Xuo8VN40kJLMmx04RnsmOo5PGqKTW5ewI-xXMpaVsRpQaXJwpILudZznCDVXBIMjK1jM6gJYkLy0787dHlVpEmkrN2Ehj6E3Ep3guaSzCvCBdmgsdQvYTo-_T46C9viCmEp4nQV5golwXJmIx1bbhNBE8sRC4ncMJ5rB9xSjF4N00Zx7KdUiVhnsUU7tQjS2CvYqxaVeQ0E50dCa4ycdIbuDWNGnSWRRiiDl05sHkDcibEoW-ZxVwDjuvA74CwrGtEXKPrCi74QAXzYzvnV8G78c_SJW53tSMeZ7RsWy8uiNUGMdTST6I8dPQ1PM56VJqEqE5xzpkulAjjs1rbo9LCgKSqN4yzkAbzbdqMJun0VWZnFuhmDUV-UswDSnk70HqjfU82vPJk3rgH6nDiAj532_Ln533_wm_94mAN4TJ0yR_hXSA9hb7Vcm7eIoFZqALvpLB3A_nA4uZjg58np-ddv2DpKRgP_VmLgDec3DmQYQQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEE8RKGAkOEHUxI88DghR6GpLywpBK_WCXDu2y0qQlM2uqv1T_EbGeWyVSvTWWxQ_4ozHnm88nhmAV3mseJJZE-oi5yE-6lApI0JmHOOJVfiiuSA7TSZH_POxON6Av70vjL9W2e-JzUZtqsKfkW_TNBJe_DD-_uxP6LNGeetqn0KjZYt9uzpHla1-t_cJ5_c1pePdw4-TsMsqEBYiThdhrjmClpy5yMSOu0TQxHEEASK3jOfGI5YU1TbLjNUcyynVIjZZ7JBBHaIThv3egE3OUJUZwebO7vTrt_WpjrebYfedd07Esu0aJaT3YkOdD6E8FaEYSMAmUcAA3V6-m3nJQNvIvfFduNMBVvKh5bB7sGHL-3CzTWG5egA_xmqualUSz1ulIZUj39XSzLCB0jNFUN12PkZCTRBpkt_NiaT31iKte2btG7RBSci58vdyTsmsJFyQFdK6fghH10LcRzAqq9I-BoLtI2EM6mMmQ6GJmqjJksggQMKuE5cHEPdklEUXz9yn1fglG7s6y2RLeomklw3ppQjgzbrNWRvN48raO3521jV9JO7mRTU_ld3CRg3KMIVS3ge94WnGs8ImVGeCc85MoXUAW_3cym57qOUFMwfwcl2MC9tba1Rpq2VbB3XJKGcBpAOeGAxoWFLOfjYhwnEOUJLFAbztuefi4___4SdXj_UF3JocfjmQB3vT_adwm3qejnCfpVswWsyX9hnCs4V-3q0JAifXvQz_ATYVRxc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxFMNFDASnCDaxI88DggBZdVSVCFBpb0gY8d2WQmSstlVtX-NX8fYSbZKJXrrbRU_NhnPeL7xeGYAXpSp4llhTayrksf4U8dKGREz4xjPrMIH4YLsUbZ_zD_NxGwL_g6xMP5a5bAnho3aNJU_I5_QPBFe_TA-cf21iC9707enf2JfQcp7WodyGh2LHNr1GZpv7ZuDPVzrl5ROP377sB_3FQbiSqT5Mi41RwBTMpeY1HGXCZo5joBAlJbx0nj0kqMJZ5mxmmM7pVqkpkgdMqtDpMJw3mtwPWci9TKWz_LN-Y73oOHkfZxOwopJi7rSx7Oh9YegnopYjHRhKBkwwrkXb2lecNUGDTi9A7d76Eredbx2F7ZsfQ9udMUs1_fh-1QtVKtq4rmsNqRx5KtamTkOUHquCBrezmdLaAliTvI7nE36uC3SBWq2fkCXnoScKX9D54TMa8IFWSOl2wdwfCWkfQjbdVPbHSA4PhHGoGVmClSfaJOaIksMQiWcOnNlBOlARln1mc19gY1fMnjYWSE70kskvQyklyKCV5sxp11ej0t7v_ers-npc3KHB83iRPYijraUYQr1vU9_w_OCF5XNqC4E55yZSusIdoe1lf1G0cpzto7g-aYZRdz7bVRtm1XXB63KpGQR5COeGL3QuKWe_wzJwnENUKelEbweuOf8z___wY8uf9dncBOFT34-ODp8DLeoZ-kEN1y6C9vLxco-QZy21E-DQBD4cdUS-A8aA0nn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Farasan+Island+of+Saudi+Arabia+confronts+the+measurable+impacts+of+global+warming+in+45+years&rft.jtitle=Scientific+reports&rft.au=Khedher%2C+Khaled+Mohamed&rft.au=Abu-Taweel%2C+Gasem+Mohammad&rft.au=Al-Fifi%2C+Zarraq&rft.au=Qoradi%2C+Mofareh+D&rft.date=2022-08-22&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=14322&rft_id=info:doi/10.1038%2Fs41598-022-18225-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon