Farasan Island of Saudi Arabia confronts the measurable impacts of global warming in 45 years
Coastal vulnerability assessment is the key to coastal management and sustainable development. Sea level rise (SLR) and anthropogenic activities have triggered more extreme climatic events and made the coastal region vulnerable in recent decades. Many parts of the world also noticed increased sedime...
Saved in:
Published in | Scientific reports Vol. 12; no. 1; pp. 14322 - 20 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
22.08.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Coastal vulnerability assessment is the key to coastal management and sustainable development. Sea level rise (SLR) and anthropogenic activities have triggered more extreme climatic events and made the coastal region vulnerable in recent decades. Many parts of the world also noticed increased sediment deposition, tidal effects, and changes in the shoreline. Farasan Island, located in the south-eastern part of Saudi Arabia, experienced changes in sediment deposition from the Red Sea in recent years. This study used Digital Shoreline Analysis System (DSAS) to delineate the shoreline changes of Farasan Island during 1975–2020. Multi-temporal Landsat data and DSAS were used for shoreline calculation based on endpoint rate (EPR) and linear regression. Results revealed an increase in vegetation area on the island by 17.18 km
2
during 1975–1989 and then a decrease by 69.85 km
2
during 1990–2020. The built-up land increased by 5.69 km
2
over the study period to accommodate the population growth. The annual temperature showed an increase at a rate of 0.196 °C/year. The sea-level rise caused a shift in the island's shoreline and caused a reduction of land by 80.86 km
2
during 1975–2020. The highly influenced areas by the environmental changes were the north, central, northwest, southwest, and northeast parts of the island. Urban expansion and sea-level rise gradually influence the island ecosystem, which needs proper attention, management, policies, and awareness planning to protect the environment of Farasan Island. Also, the study’s findings could help develop new strategies and plan climate change adaptation. |
---|---|
AbstractList | Coastal vulnerability assessment is the key to coastal management and sustainable development. Sea level rise (SLR) and anthropogenic activities have triggered more extreme climatic events and made the coastal region vulnerable in recent decades. Many parts of the world also noticed increased sediment deposition, tidal effects, and changes in the shoreline. Farasan Island, located in the south-eastern part of Saudi Arabia, experienced changes in sediment deposition from the Red Sea in recent years. This study used Digital Shoreline Analysis System (DSAS) to delineate the shoreline changes of Farasan Island during 1975–2020. Multi-temporal Landsat data and DSAS were used for shoreline calculation based on endpoint rate (EPR) and linear regression. Results revealed an increase in vegetation area on the island by 17.18 km2 during 1975–1989 and then a decrease by 69.85 km2 during 1990–2020. The built-up land increased by 5.69 km2 over the study period to accommodate the population growth. The annual temperature showed an increase at a rate of 0.196 °C/year. The sea-level rise caused a shift in the island's shoreline and caused a reduction of land by 80.86 km2 during 1975–2020. The highly influenced areas by the environmental changes were the north, central, northwest, southwest, and northeast parts of the island. Urban expansion and sea-level rise gradually influence the island ecosystem, which needs proper attention, management, policies, and awareness planning to protect the environment of Farasan Island. Also, the study’s findings could help develop new strategies and plan climate change adaptation. Coastal vulnerability assessment is the key to coastal management and sustainable development. Sea level rise (SLR) and anthropogenic activities have triggered more extreme climatic events and made the coastal region vulnerable in recent decades. Many parts of the world also noticed increased sediment deposition, tidal effects, and changes in the shoreline. Farasan Island, located in the south-eastern part of Saudi Arabia, experienced changes in sediment deposition from the Red Sea in recent years. This study used Digital Shoreline Analysis System (DSAS) to delineate the shoreline changes of Farasan Island during 1975–2020. Multi-temporal Landsat data and DSAS were used for shoreline calculation based on endpoint rate (EPR) and linear regression. Results revealed an increase in vegetation area on the island by 17.18 km 2 during 1975–1989 and then a decrease by 69.85 km 2 during 1990–2020. The built-up land increased by 5.69 km 2 over the study period to accommodate the population growth. The annual temperature showed an increase at a rate of 0.196 °C/year. The sea-level rise caused a shift in the island's shoreline and caused a reduction of land by 80.86 km 2 during 1975–2020. The highly influenced areas by the environmental changes were the north, central, northwest, southwest, and northeast parts of the island. Urban expansion and sea-level rise gradually influence the island ecosystem, which needs proper attention, management, policies, and awareness planning to protect the environment of Farasan Island. Also, the study’s findings could help develop new strategies and plan climate change adaptation. Abstract Coastal vulnerability assessment is the key to coastal management and sustainable development. Sea level rise (SLR) and anthropogenic activities have triggered more extreme climatic events and made the coastal region vulnerable in recent decades. Many parts of the world also noticed increased sediment deposition, tidal effects, and changes in the shoreline. Farasan Island, located in the south-eastern part of Saudi Arabia, experienced changes in sediment deposition from the Red Sea in recent years. This study used Digital Shoreline Analysis System (DSAS) to delineate the shoreline changes of Farasan Island during 1975–2020. Multi-temporal Landsat data and DSAS were used for shoreline calculation based on endpoint rate (EPR) and linear regression. Results revealed an increase in vegetation area on the island by 17.18 km2 during 1975–1989 and then a decrease by 69.85 km2 during 1990–2020. The built-up land increased by 5.69 km2 over the study period to accommodate the population growth. The annual temperature showed an increase at a rate of 0.196 °C/year. The sea-level rise caused a shift in the island's shoreline and caused a reduction of land by 80.86 km2 during 1975–2020. The highly influenced areas by the environmental changes were the north, central, northwest, southwest, and northeast parts of the island. Urban expansion and sea-level rise gradually influence the island ecosystem, which needs proper attention, management, policies, and awareness planning to protect the environment of Farasan Island. Also, the study’s findings could help develop new strategies and plan climate change adaptation. Coastal vulnerability assessment is the key to coastal management and sustainable development. Sea level rise (SLR) and anthropogenic activities have triggered more extreme climatic events and made the coastal region vulnerable in recent decades. Many parts of the world also noticed increased sediment deposition, tidal effects, and changes in the shoreline. Farasan Island, located in the south-eastern part of Saudi Arabia, experienced changes in sediment deposition from the Red Sea in recent years. This study used Digital Shoreline Analysis System (DSAS) to delineate the shoreline changes of Farasan Island during 1975-2020. Multi-temporal Landsat data and DSAS were used for shoreline calculation based on endpoint rate (EPR) and linear regression. Results revealed an increase in vegetation area on the island by 17.18 km2 during 1975-1989 and then a decrease by 69.85 km2 during 1990-2020. The built-up land increased by 5.69 km2 over the study period to accommodate the population growth. The annual temperature showed an increase at a rate of 0.196 °C/year. The sea-level rise caused a shift in the island's shoreline and caused a reduction of land by 80.86 km2 during 1975-2020. The highly influenced areas by the environmental changes were the north, central, northwest, southwest, and northeast parts of the island. Urban expansion and sea-level rise gradually influence the island ecosystem, which needs proper attention, management, policies, and awareness planning to protect the environment of Farasan Island. Also, the study's findings could help develop new strategies and plan climate change adaptation.Coastal vulnerability assessment is the key to coastal management and sustainable development. Sea level rise (SLR) and anthropogenic activities have triggered more extreme climatic events and made the coastal region vulnerable in recent decades. Many parts of the world also noticed increased sediment deposition, tidal effects, and changes in the shoreline. Farasan Island, located in the south-eastern part of Saudi Arabia, experienced changes in sediment deposition from the Red Sea in recent years. This study used Digital Shoreline Analysis System (DSAS) to delineate the shoreline changes of Farasan Island during 1975-2020. Multi-temporal Landsat data and DSAS were used for shoreline calculation based on endpoint rate (EPR) and linear regression. Results revealed an increase in vegetation area on the island by 17.18 km2 during 1975-1989 and then a decrease by 69.85 km2 during 1990-2020. The built-up land increased by 5.69 km2 over the study period to accommodate the population growth. The annual temperature showed an increase at a rate of 0.196 °C/year. The sea-level rise caused a shift in the island's shoreline and caused a reduction of land by 80.86 km2 during 1975-2020. The highly influenced areas by the environmental changes were the north, central, northwest, southwest, and northeast parts of the island. Urban expansion and sea-level rise gradually influence the island ecosystem, which needs proper attention, management, policies, and awareness planning to protect the environment of Farasan Island. Also, the study's findings could help develop new strategies and plan climate change adaptation. |
ArticleNumber | 14322 |
Author | Yaseen, Zaher Mundher Abu-Taweel, Gasem Mohammad Halder, Bijay Al-Fifi, Zarraq Al-khafaji, Zainab Khedher, Khaled Mohamed Essaied, LAATAR Bandyopadhyay, Jatisankar Shahid, Shamsuddin Qoradi, Mofareh D. |
Author_xml | – sequence: 1 givenname: Khaled Mohamed surname: Khedher fullname: Khedher, Khaled Mohamed organization: Department of Civil Engineering, College of Engineering, King Khalid University, Department of Civil Engineering, High Institute of Technological Studies, Mrezgua University Campus – sequence: 2 givenname: Gasem Mohammad surname: Abu-Taweel fullname: Abu-Taweel, Gasem Mohammad organization: Department of Biology, College of Sciences, Jazan University – sequence: 3 givenname: Zarraq surname: Al-Fifi fullname: Al-Fifi, Zarraq organization: Department of Biology, College of Sciences, Jazan University – sequence: 4 givenname: Mofareh D. surname: Qoradi fullname: Qoradi, Mofareh D. organization: Department of Geography, College of Arts, King Saud University – sequence: 5 givenname: Zainab surname: Al-khafaji fullname: Al-khafaji, Zainab organization: Building and Construction Engineering Technology Department, AL-Mustaqbal University College – sequence: 6 givenname: Bijay surname: Halder fullname: Halder, Bijay organization: Department of Remote Sensing and GIS, Vidyasagar University – sequence: 7 givenname: Jatisankar surname: Bandyopadhyay fullname: Bandyopadhyay, Jatisankar organization: Department of Remote Sensing and GIS, Vidyasagar University – sequence: 8 givenname: Shamsuddin surname: Shahid fullname: Shahid, Shamsuddin organization: School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM) – sequence: 9 givenname: LAATAR surname: Essaied fullname: Essaied, LAATAR organization: Company of Phosphate of Gafsa and Chemical Group of Tunisia – sequence: 10 givenname: Zaher Mundher surname: Yaseen fullname: Yaseen, Zaher Mundher email: yaseen@alayen.edu.iq organization: New Era and Development in Civil Engineering Research Group, Scientific Research Center, Al-Ayen University |
BookMark | eNp9Us1uFSEUJqbG1toXcEXixs0oHGAubEyaxupNmrhQtxKYgSk3M3CFGU3fxmfxyaR3arRdlA3kfD-cc_I9R0cxRYfQS0reUMLk28KpULIhAA2VAKIRT9AJEC4aYABH_72P0VkpO1KPAMWpeoaOmVBKSFAn6NulyaaYiLdlNLHHyePPZukDPs_GBoO7FH1OcS54vnZ4cqYsFRgdDtPedLVcBcOYrBnxT5OnEAccIubi968bZ3J5gZ56MxZ3dnefoq-X779cfGyuPn3YXpxfNZ2gm7lRtvbFFPOkp577VkDreQu1Tce46ltB5IZJ5ljvLK84gBW0l9RbQjylwE7RdvXtk9npfQ6TyTc6maAPhZQHbfIcutFpSntmCAUuqeAbyWXnWrBScM5Z31lbvd6tXvvFTq7vXJyzGe-Z3kdiuNZD-qHrBIJJWg1e3xnk9H1xZdZTKJ0b64JdWoqGDREbwYhilfrqAXWXlhzrqg4sAE4Yryy5srqcSsnO6y7MZg7p9v8wakr0bSb0mgldM6EPmdCiSuGB9O8cj4rYKiqVHAeX_3X1iOoPfbjIJg |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2023_e19413 crossref_primary_10_1016_j_rineng_2023_101665 crossref_primary_10_3390_rs16030551 crossref_primary_10_1002_gj_5179 crossref_primary_10_1016_j_envc_2024_100926 crossref_primary_10_1007_s44288_024_00009_1 crossref_primary_10_1007_s00704_024_05041_2 crossref_primary_10_1007_s13762_024_05788_1 crossref_primary_10_1029_2023JF007339 crossref_primary_10_1007_s00704_024_04874_1 crossref_primary_10_1016_j_heliyon_2023_e14846 crossref_primary_10_1007_s11852_024_01075_w crossref_primary_10_1016_j_scs_2024_105456 crossref_primary_10_1016_j_chemosphere_2023_139434 crossref_primary_10_1007_s11852_023_01020_3 crossref_primary_10_1016_j_heliyon_2024_e39567 |
Cites_doi | 10.2112/04-0421.1 10.1007/s13146-015-0247-4 10.1080/01431161.2010.486414 10.1007/s40808-020-00852-4 10.2112/05-0580.1 10.1016/j.rse.2009.07.021 10.1016/j.scs.2021.103186 10.1016/j.geomorph.2006.06.003 10.1007/s10661-007-9929-2 10.1007/s11852-015-0418-4 10.1155/2016/1480307 10.1016/j.pce.2022.103135 10.51526/kbes.2021.2.3.34-53 10.1016/j.geomorph.2010.02.023 10.1016/S0378-3839(03)00064-4 10.1016/S0034-4257(00)00169-3 10.3390/rs11192224 10.3390/rs6109829 10.1007/s10668-019-00578-z 10.1007/s10712-020-09623-3 10.1029/2011GL050582 10.1002/9780470666517 10.1016/j.rse.2014.02.001 10.2112/03-0071.1 10.1016/j.sjbs.2019.12.012 10.1109/indicon.2014.7030408 10.1007/s12517-011-0394-4 10.1002/esp.1165 10.3133/ofr20181179 10.1007/s10661-009-0906-9 10.1007/s10661-012-2928-y 10.1007/s42797-021-00032-2 10.1016/j.ecss.2011.10.009 10.1016/j.rse.2003.11.005 10.3133/ofr20081278 10.18393/ejss.84540 10.1056/NEJM199607113350203 10.1007/s12517-011-0424-2 10.1080/17445647.2017.1401492 10.2112/04-0398.1 10.1007/s11069-022-05224-y 10.1016/j.geomorph.2010.12.001 10.5923/j.ms.20110101.01 10.1002/gj.4145/v3/response1 10.2112/04-0230.1 10.1007/s40808-016-0130-x 10.1016/S0034-4257(02)00185-2 10.4401/ag-3155 10.1016/j.apgeog.2006.09.004 10.4172/2469-4134.1000175 10.3390/f11121287 10.1016/j.jaridenv.2021.104488 10.1016/j.oceaneng.2020.107395 10.1029/2018GL081816 10.1007/s12524-018-0818-7 10.1007/978-3-319-28528-3_5 10.1016/j.aqpro.2015.02.043 10.1016/j.quaint.2018.06.004 10.2495/dshf160091 10.1007/s12665-011-0928-9 10.1017/S0030605310001298 10.1080/15564894.2016.1216478 10.1007/s40808-018-0510-5 10.1016/j.tecto.2014.01.030 10.1016/S0967-0653(98)80642-X 10.1016/j.oceano.2019.12.001 10.1016/S0034-4257(02)00059-7 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-022-18225-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 20 |
ExternalDocumentID | oai_doaj_org_article_11d3a012481547848ce62b854443dcbb PMC9395381 10_1038_s41598_022_18225_5 |
GeographicLocations | Saudi Arabia Farasan Island |
GeographicLocations_xml | – name: Saudi Arabia – name: Farasan Island |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c517t-9b419393f0d1f4f6526f462359e349d65087383e3deb44f622b51d81fb00f1123 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:30:27 EDT 2025 Thu Aug 21 14:03:12 EDT 2025 Tue Aug 05 09:37:01 EDT 2025 Wed Aug 13 04:54:01 EDT 2025 Thu Apr 24 23:08:07 EDT 2025 Tue Jul 01 04:17:08 EDT 2025 Fri Feb 21 02:36:54 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-9b419393f0d1f4f6526f462359e349d65087383e3deb44f622b51d81fb00f1123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/11d3a012481547848ce62b854443dcbb |
PMID | 35995829 |
PQID | 2705224034 |
PQPubID | 2041939 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_11d3a012481547848ce62b854443dcbb pubmedcentral_primary_oai_pubmedcentral_nih_gov_9395381 proquest_miscellaneous_2705753093 proquest_journals_2705224034 crossref_citationtrail_10_1038_s41598_022_18225_5 crossref_primary_10_1038_s41598_022_18225_5 springer_journals_10_1038_s41598_022_18225_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-22 |
PublicationDateYYYYMMDD | 2022-08-22 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | HereherMEMapping coastal erosion at the Nile Delta western promontory using Landsat imageryEnviron. Earth Sci.2011641117112510.1007/s12665-011-0928-9 WhiteSAWangYUtilizing DEMs derived from LIDAR data to analyze morphologic change in the North Carolina coastlineRemote Sens. Environ.20038539472003RSEnv..85...39W10.1016/S0034-4257(02)00185-2 Avdan, U. & Jovanovska, G. Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. J. Sensors. 2016, (2016). AppeaningAddoKJayson-QuashigahPNKufogbeKSQuantitative analysis of shoreline change using medium resolution satellite imagery in Keta, GhanaMar. Sci.201211910.5923/j.ms.20110101.01 BaralRPradhanSSamalRNMishraSKShoreline change analysis at Chilika Lagoon Coast, India using digital shoreline analysis systemJ. Indian Soc. Remote Sensing2018461637164410.1007/s12524-018-0818-7 BoakEHTurnerILShoreline definition and detection: A reviewJ. Coastal Res.200521468870310.2112/03-0071.1 MillsJPBuckleySJMitchellHLClarkePJEdwardsSJA geomatics data integration technique for coastal change monitoringEarth Surf. Proc. Land.2005306516642005ESPL...30..651M10.1002/esp.1165 LhissouiRHartiAEChokmaniKMapping soil salinity in irrigated land using optical remote sensing dataEurasian J. Soil Sci. (EJSS).201438210.18393/ejss.84540 Guariglia, A. et al. A multisource approach for coastline mapping and identification of shoreline changes. Ann. Geophys. 49, (2009). MarfaiMAAlmohammadHDeySSusantoBKingLCoastal dynamic and shoreline mapping: Multi-sources spatial data analysis in Semarang IndonesiaEnviron. Monit. Assess.20071422973081787431210.1007/s10661-007-9929-2 CrowellMDouglasBCLeathermanSPOn forecasting future US Shoreline positions: A test of algorithmsJ. Coastal Res.199710.1016/S0967-0653(98)80642-X SalghunaNNBharathvajSAShoreline change analysis for northern part of the coromandel coastAquatic Procedia2015431732410.1016/j.aqpro.2015.02.043 MuslimAFoodyGMAtkinsonPMShoreline mapping from coarse-spatial resolution remote sensing imagery of Seberang Takir, MalaysiaJ. Coast. Res.20072361399140810.2112/04-0421.1 MortonRAMillerTMooreLHistorical shoreline changes along the US Gulf of Mexico: A summary of recent shoreline comparisons and analysesJ. Coastal Res.200521470470910.2112/04-0230.1 EkercinSCoastline change assessment at the Aegean Sea Coasts in Turkey Using Multitemporal Landsat ImageryJ. Coastal Res.200723369169810.2112/04-0398.1 AlmalkiKABantanRALithologic units and stratigraphy of the Farasan Islands, Southern Red SeaCarbonates Evaporites.201610.1007/s13146-015-0247-4 AlawadKAAl-SubhiAMAlsaafaniMAAlraddadiTMIonitaMLohmannGAlsaafaniKSLarge-scale mode impacts on the sea level over the Red Sea and Gulf of AdenRemote Sens.2019111922242019RemS...11.2224A10.3390/rs11192224 HashimBMAl MalikiASultanMAShahidSYaseenZMEffect of land use land cover changes on land surface temperature during 1984–2020: A case study of Baghdad city using landsat imageNat. Hazards.202210.1007/s11069-022-05224-y AlFuguraABillaLPradhanBSemi-automated procedures for shoreline extraction using single RADARSAT-1 SAR imageEstuarine Coast. Shelf Sci.2011953954002011ECSS...95..395A10.1016/j.ecss.2011.10.009 HalderBBanikPBandyopadhyayJMapping and monitoring land dynamic due to urban expansion using geospatial techniques on South KolkataSafety Extreme Environ.20213274210.1007/s42797-021-00032-2 AwadhSMAl-MimarHYaseenZMGroundwater availability and water demand sustainability over the upper mega aquifers of Arabian Peninsula and west region of IraqEnviron. Development Sustain.202010.1007/s10668-019-00578-z Al-QthaninRAl-YasiHProgress towards an updated checklist of the Farasan Archipelago floraJ. Arid Environ.20211892021JArEn.189j4488A10.1016/j.jaridenv.2021.104488 KumarANarayanaACJayappaKSShoreline changes and morphology of spits along southern Karnataka, west coast of India: A remote sensing and statistics-based approachGeomorphology20101203–41331522010Geomo.120..133K10.1016/j.geomorph.2010.02.023 Ghosh, A. & Mukhopadhyay, S. Quantitative study on shoreline changes and Erosion Hazard assessment: Case study in Muriganga–Saptamukhi interfluve, Sundarban, India. Modeling Earth Syst. Environ. 2, (2016). YuXGuoXWuZLand surface temperature retrieval from Landsat 8 TIRS—Comparison between radiative transfer equation-based method, split window algorithm and single channel methodRemote Sensing20146982998522014RemS....6.9829Y10.3390/rs6109829 Fletcher, C., Rooney, J., Barbee, M., Lim, S.-C. & Richmond, B. Mapping shoreline change using digital orthophotogrammetry on Maui, Hawaii. J. Coastal Res. 106–124 (2003). NandiSGhoshMKunduADuttaDBaksiMShoreline shifting and its prediction using remote sensing and GIS techniques: A case study of Sagar Island, West Bengal (India)J. Coast. Conserv.201520618010.1007/s11852-015-0418-4 Himmelstoss, E. A., Henderson, R. E., Kratzmann, M. G. & Farris, A. S. Digital Shoreline Analysis System (DSAS) Version 5.0 User Guide. (2018). Al-MimarHSAwadhSMAl-YaseriAAYaseenZMSedimentary units-layering system and depositional model of the carbonate Mishrif reservoir in Rumaila oilfield, Southern IraqModeling Earth Syst. Environ.201841449146510.1007/s40808-018-0510-5 YamanoHEvaluation of various satellite sensors for waterline extraction in a coral reef environment: Majuro Atoll, Marshall IslandsGeomorphology2006823984112006Geomo..82..398Y10.1016/j.geomorph.2006.06.003 Dolan, R., Fenster, M. S., & Holme, S. J. Temporal analysis of shoreline recession and accretion. J. Coast. Res. 723–744 (1991). Khobragade, A. N. & Raghuwanshi, M. M. Data fusion algorithms for horticulture classification using multi-sensory satellite images. in 2014 Annual IEEE India Conference (INDICON) (2014). https://doi.org/10.1109/indicon.2014.7030408. YunusAPDouJAvtarRNarayanaACShoreline and coastal morphological changes induced by the 2004 Indian Ocean Tsunami in the Katchal Island, Andaman and Nicobar—A study using archived satellite imagesTsunamis Earthq. Coast. Environ.201610.1007/978-3-319-28528-3_5 CunninghamPLWronskiTTwenty years of monitoring of the Vulnerable Farasan gazelle Gazella gazella farasani on the Farasan Islands, Saudi Arabia: An overviewOryx201145505510.1017/S0030605310001298 ShamjiVRAboobackerVMVineeshTCExtreme value analysis of wave climate around Farasan Islands, southern Red SeaOcean Eng.202020710.1016/j.oceaneng.2020.107395 Khalil, H. M., Fathy, M. S. & Sawy, S. M. Al. Author response for ‘Quaternary corals (Scleractinia: Merulinidae) from the Egyptian and Saudi Arabian Red Sea Coast’. (2021). https://doi.org/10.1002/gj.4145/v3/response1. El-SerehyHAShafikHAbdallahHSAl-MisnedFAAl-FarrajSAComplex interactions and different possible pathways among functional components of the aquatic microbial world in Farasan Archipelago, Southern Red Sea, Saudi ArabiaSaudi J. Biol. Sci.202027141214171:CAS:528:DC%2BB3cXjtlKlsg%3D%3D3234635410.1016/j.sjbs.2019.12.012 WengQLuDSchubringJEstimation of land surface temperature–vegetation abundance relationship for urban heat island studiesRemote Sens. Environ.2004894674832004RSEnv..89..467W10.1016/j.rse.2003.11.005 RyuJWonJMinKWaterline extraction from Landsat TM data in a tidal flatA case study in Gomso Bay, KoreaRemote Sensing Environ.2002834424562002RSEnv..83..442R10.1016/S0034-4257(02)00059-7 DurduranSSCoastline change assessment on water reservoirs located in the Konya Basin Area, Turkey, using multitemporal landsat imageryEnviron. Monit. Assess.20091644534611939963510.1007/s10661-009-0906-91:CAS:528:DC%2BC3cXks1WisLo%3D AliAAl-BannaEStudy of the archaeological building materials on Farasan Islands, Kingdom of Saudi Arabia, and their relationship with the islands’ local and climatic environmentDefence Sites III Heritage Future.201610.2495/dshf160091 AmiriRWengQAlimohammadiAAlavipanahSKSpatial–temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, IranRemote Sens. Environ.2009113260626172009RSEnv.113.2606A10.1016/j.rse.2009.07.021 LiuHWangLShermanDJWuQSuHAlgorithmic foundation and software tools for extracting shoreline features from remote sensing imagery and LiDAR dataJ. Geogr. Inf. Syst.20110399119 Cheruto, M. C., Kauti, M. K., Kisangau, D. P. & Kariuki, P. C. Assessment of land use and land cover change using GIS and remote sensing techniques: A case study of Makueni County, Kenya. (2016). AlmalkiKABettsPGAilleresLEpisodic sea-floor spreading in the Southern Red SeaTectonophysics20146171401492014Tectp.617..140A10.1016/j.tecto.2014.01.030 ThakurSDharanirajanKGhoshPBDasPDeTKInfluence of anthropogenic activities on the landuse pattern of South Andaman IslandsRes. J. Mar. Sci.20175110 RoyDPLandsat-8: Science and product vision for terrestrial global change researchRemote Sens. Environ.20141451541722014RSEnv.145..154R10.1016/j.rse.2014.02.001 Thao, P. T. P., Duan, H. D. & To, D. V. Integrated remote sensing and GIS for calculating shoreline change in Phan Thiet coastal area. in International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences, Hanoi, Vietnam 1–6 (2008). YaoRWangLHuangXGongWXiaXGreening in rural areas increases the surface urban heat island intensityGeophys. Res. Lett.201946220422122019GeoRL..46.2204Y10.1029/2018GL081816 ZhangYOdehIOAHanCBi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysisInt. J. Appl. Earth Obs. Geoinf.2009112562642009IJAEO..11..256Z PankratzHGUse of geophysical and radar interferometric techniques to monitor land deformation associated with the Jazan Salt Diapir, Jazan city, Saudi ArabiaSurveys Geophys.2021421772002021SGeo...42..177P10.1007/s10712-020-09623-3 EidEMEvaluation of carbon stock in the sediment of two mangrove species, Avicennia marina and Rhizophora mucronata, growing in the Farasan Islands, Saudi ArabiaOceanologia20206220021310.1016/j.oceano.2019.12.001 Al-QthaninRNAlharbiSASpatial structure and genetic variation of a Mangrove species (Avicennia marina BM Hashim (18225_CR25) 2022 VR Shamji (18225_CR78) 2020; 207 18225_CR39 KA Almalki (18225_CR73) 2017; 13 S Thakur (18225_CR18) 2017; 5 18225_CR35 18225_CR36 A Ali (18225_CR72) 2016 EH Boak (18225_CR56) 2005; 214 B-L Cui (18225_CR22) 2011; 127 PL Cunningham (18225_CR76) 2011; 45 PS Mujabar (18225_CR4) 2011; 6 18225_CR41 R Yao (18225_CR26) 2019; 46 A Kumar (18225_CR57) 2010; 120 JC Semenza (18225_CR44) 1996; 335 B Halder (18225_CR48) 2021; 74 H Liu (18225_CR13) 2011; 03 DP Roy (18225_CR46) 2014; 145 A AlFugura (18225_CR16) 2011; 95 SA White (18225_CR14) 2003; 85 ER Thieler (18225_CR61) 2009 18225_CR47 Q Weng (18225_CR28) 2004; 89 R Lhissoui (18225_CR37) 2014; 3 SS Durduran (18225_CR23) 2009; 164 RA Morton (18225_CR15) 2005; 214 H Liu (18225_CR10) 2007; 236 S Nandi (18225_CR29) 2015; 20 MA Marfai (18225_CR3) 2007; 142 B Halder (18225_CR40) 2021; 3 18225_CR53 C Song (18225_CR34) 2001; 75 HS Al-Mimar (18225_CR8) 2018; 4 N Hausmann (18225_CR30) 2016; 12 JP Mills (18225_CR2) 2005; 30 AP Yunus (18225_CR59) 2016 KA Alawad (18225_CR77) 2019; 11 18225_CR12 M Crowell (18225_CR42) 1997 ME Hereher (18225_CR52) 2011; 64 X Yu (18225_CR45) 2014; 6 SGJ Aarninkhof (18225_CR17) 2003; 49 H Tao (18225_CR7) 2021; 15 K Pavlopoulos (18225_CR74) 2018; 493 K AppeaningAddo (18225_CR58) 2012; 1 18225_CR62 18225_CR63 KA Almalki (18225_CR65) 2014; 617 18225_CR20 18225_CR64 B Halder (18225_CR24) 2021; 2 Y Zhang (18225_CR49) 2009; 11 U Natesan (18225_CR11) 2012; 185 JA Sobrino (18225_CR43) 2011; 32 EM Eid (18225_CR75) 2020; 62 R Amiri (18225_CR27) 2009; 113 HG Pankratz (18225_CR67) 2021; 42 KA Almalki (18225_CR66) 2016 18225_CR68 18225_CR5 18225_CR6 SM Awadh (18225_CR9) 2020 18225_CR1 RN Al-Qthanin (18225_CR70) 2020; 11 A Muslim (18225_CR51) 2007; 236 R Al-Qthanin (18225_CR71) 2021; 189 A Shalaby (18225_CR38) 2007; 27 SM Al-Hatrushi (18225_CR21) 2012; 6 J Ryu (18225_CR55) 2002; 83 R Baral (18225_CR19) 2018; 46 B Halder (18225_CR33) 2020; 6 18225_CR31 18225_CR32 H Yamano (18225_CR54) 2006; 82 S Ekercin (18225_CR50) 2007; 233 NN Salghuna (18225_CR60) 2015; 4 HA El-Serehy (18225_CR69) 2020; 27 |
References_xml | – reference: AarninkhofSGJTurnerILDronkersTDTCaljouwMNipiusLA video-based technique for mapping intertidal beach bathymetryCoast. Eng.20034927528910.1016/S0378-3839(03)00064-4 – reference: Avdan, U. & Jovanovska, G. Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. J. Sensors. 2016, (2016). – reference: Khobragade, A. N. & Raghuwanshi, M. M. Data fusion algorithms for horticulture classification using multi-sensory satellite images. in 2014 Annual IEEE India Conference (INDICON) (2014). https://doi.org/10.1109/indicon.2014.7030408. – reference: HereherMEMapping coastal erosion at the Nile Delta western promontory using Landsat imageryEnviron. Earth Sci.2011641117112510.1007/s12665-011-0928-9 – reference: Al-MimarHSAwadhSMAl-YaseriAAYaseenZMSedimentary units-layering system and depositional model of the carbonate Mishrif reservoir in Rumaila oilfield, Southern IraqModeling Earth Syst. Environ.201841449146510.1007/s40808-018-0510-5 – reference: Halder, B., Ameen, A. M. S., Bandyopadhyay, J., Khedher, K. M. & Yaseen, Z. M. The impact of climate change on land degradation along with shoreline migration in Ghoramara Island, India. Phys. Chem. Earth Parts A/B/C. 103135 (2022). – reference: NatesanUThulasiramanNDeepthiKKathiravanKShoreline change analysis of Vedaranyam coast, Tamil Nadu, IndiaEnviron. Monit. Assess.2012185509951092305429010.1007/s10661-012-2928-y1:CAS:528:DC%2BC3sXnsVWhtbs%3D – reference: AlmalkiKABantanRAHashemHILoniOAAliMAImproving geological mapping of the Farasan Islands using remote sensing and ground-truth dataJ. Maps20171390090810.1080/17445647.2017.1401492 – reference: MarfaiMAAlmohammadHDeySSusantoBKingLCoastal dynamic and shoreline mapping: Multi-sources spatial data analysis in Semarang IndonesiaEnviron. Monit. Assess.20071422973081787431210.1007/s10661-007-9929-2 – reference: MillsJPBuckleySJMitchellHLClarkePJEdwardsSJA geomatics data integration technique for coastal change monitoringEarth Surf. Proc. Land.2005306516642005ESPL...30..651M10.1002/esp.1165 – reference: Khalil, H. M., Fathy, M. S. & Sawy, S. M. Al. Author response for ‘Quaternary corals (Scleractinia: Merulinidae) from the Egyptian and Saudi Arabian Red Sea Coast’. (2021). https://doi.org/10.1002/gj.4145/v3/response1. – reference: BoakEHTurnerILShoreline definition and detection: A reviewJ. Coastal Res.200521468870310.2112/03-0071.1 – reference: YaoRWangLHuangXGongWXiaXGreening in rural areas increases the surface urban heat island intensityGeophys. Res. Lett.201946220422122019GeoRL..46.2204Y10.1029/2018GL081816 – reference: RoyDPLandsat-8: Science and product vision for terrestrial global change researchRemote Sens. Environ.20141451541722014RSEnv.145..154R10.1016/j.rse.2014.02.001 – reference: ShamjiVRAboobackerVMVineeshTCExtreme value analysis of wave climate around Farasan Islands, southern Red SeaOcean Eng.202020710.1016/j.oceaneng.2020.107395 – reference: MuslimAFoodyGMAtkinsonPMShoreline mapping from coarse-spatial resolution remote sensing imagery of Seberang Takir, MalaysiaJ. Coast. Res.20072361399140810.2112/04-0421.1 – reference: WengQLuDSchubringJEstimation of land surface temperature–vegetation abundance relationship for urban heat island studiesRemote Sens. Environ.2004894674832004RSEnv..89..467W10.1016/j.rse.2003.11.005 – reference: HalderBBandyopadhyayJBanikPMonitoring the effect of urban development on urban heat island based on remote sensing and geo-spatial approach in Kolkata and adjacent areas, IndiaSustain. Cities Soc.20217410.1016/j.scs.2021.103186 – reference: SobrinoJAJulienYGlobal trends in NDVI-derived parameters obtained from GIMMS dataInt. J. Remote Sens.2011324267427910.1080/01431161.2010.486414 – reference: NandiSGhoshMKunduADuttaDBaksiMShoreline shifting and its prediction using remote sensing and GIS techniques: A case study of Sagar Island, West Bengal (India)J. Coast. Conserv.201520618010.1007/s11852-015-0418-4 – reference: Pajak, M. J. & Leatherman, S. The high water line as shoreline indicator. J. Coastal Res. 329–337 (2002). – reference: LiuHWangLShermanDJWuQSuHAlgorithmic foundation and software tools for extracting shoreline features from remote sensing imagery and LiDAR dataJ. Geogr. Inf. Syst.20110399119 – reference: CunninghamPLWronskiTTwenty years of monitoring of the Vulnerable Farasan gazelle Gazella gazella farasani on the Farasan Islands, Saudi Arabia: An overviewOryx201145505510.1017/S0030605310001298 – reference: USGS Earth Explorer. https://earthexplorer.usgs.gov/. Accessed 3 Mar 2022. – reference: CuiB-LLiX-YCoastline change of the Yellow River estuary and its response to the sediment and runoff (1976–2005)Geomorphology201112732402011Geomo.127...32C10.1016/j.geomorph.2010.12.001 – reference: ThielerERHimmelstossEAZichichiJLErgulAThe Digital Shoreline Analysis System (DSAS) Version 4.0—An ArcGIS extension for calculating shoreline changeOpen-File Rep.200910.3133/ofr20081278 – reference: Ghosh, A. & Mukhopadhyay, S. Quantitative study on shoreline changes and Erosion Hazard assessment: Case study in Muriganga–Saptamukhi interfluve, Sundarban, India. Modeling Earth Syst. Environ. 2, (2016). – reference: DIVA-GIS. https://www.diva-gis.org/. Accessed 15 Mar 2022. – reference: SongCWoodcockCESetoKCLenneyMPMacomberSAClassification and change detection using Landsat TM data: When and how to correct atmospheric effects?Remote Sens. Environ.2001752302442001RSEnv..75..230S10.1016/S0034-4257(00)00169-3 – reference: Dolan, R., Fenster, M. S., & Holme, S. J. Temporal analysis of shoreline recession and accretion. J. Coast. Res. 723–744 (1991). – reference: EkercinSCoastline change assessment at the Aegean Sea Coasts in Turkey Using Multitemporal Landsat ImageryJ. Coastal Res.200723369169810.2112/04-0398.1 – reference: Himmelstoss, E. A., Henderson, R. E., Kratzmann, M. G. & Farris, A. S. Digital Shoreline Analysis System (DSAS) Version 5.0 User Guide. (2018). – reference: LiuHShermanDGuSAutomated extraction of shorelines from airborne light detection and ranging data and accuracy assessment based on monte carlo simulationJ. Coastal Res.20072361359136910.2112/05-0580.1 – reference: PankratzHGUse of geophysical and radar interferometric techniques to monitor land deformation associated with the Jazan Salt Diapir, Jazan city, Saudi ArabiaSurveys Geophys.2021421772002021SGeo...42..177P10.1007/s10712-020-09623-3 – reference: ShalabyATateishiRRemote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of EgyptAppl. Geogr.200727284110.1016/j.apgeog.2006.09.004 – reference: YuXGuoXWuZLand surface temperature retrieval from Landsat 8 TIRS—Comparison between radiative transfer equation-based method, split window algorithm and single channel methodRemote Sensing20146982998522014RemS....6.9829Y10.3390/rs6109829 – reference: ZhangYOdehIOAHanCBi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysisInt. J. Appl. Earth Obs. Geoinf.2009112562642009IJAEO..11..256Z – reference: AlmalkiKABettsPGAilleresLEpisodic sea-floor spreading in the Southern Red SeaTectonophysics20146171401492014Tectp.617..140A10.1016/j.tecto.2014.01.030 – reference: HalderBBandyopadhyayJBanikPAssessment of hospital sites’ suitability by spatial information technologies using AHP and GIS-based multi-criteria approach of Rajpur-Sonarpur MunicipalityModel. Earth Syst. Environ.202062581259610.1007/s40808-020-00852-4 – reference: AmiriRWengQAlimohammadiAAlavipanahSKSpatial–temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, IranRemote Sens. Environ.2009113260626172009RSEnv.113.2606A10.1016/j.rse.2009.07.021 – reference: SalghunaNNBharathvajSAShoreline change analysis for northern part of the coromandel coastAquatic Procedia2015431732410.1016/j.aqpro.2015.02.043 – reference: WhiteSAWangYUtilizing DEMs derived from LIDAR data to analyze morphologic change in the North Carolina coastlineRemote Sens. Environ.20038539472003RSEnv..85...39W10.1016/S0034-4257(02)00185-2 – reference: LhissouiRHartiAEChokmaniKMapping soil salinity in irrigated land using optical remote sensing dataEurasian J. Soil Sci. (EJSS).201438210.18393/ejss.84540 – reference: AppeaningAddoKJayson-QuashigahPNKufogbeKSQuantitative analysis of shoreline change using medium resolution satellite imagery in Keta, GhanaMar. Sci.201211910.5923/j.ms.20110101.01 – reference: AliAAl-BannaEStudy of the archaeological building materials on Farasan Islands, Kingdom of Saudi Arabia, and their relationship with the islands’ local and climatic environmentDefence Sites III Heritage Future.201610.2495/dshf160091 – reference: PavlopoulosKGeomorphological changes in the coastal area of Farasan Al-Kabir Island (Saudi Arabia) since mid Holocene based on a multi-proxy approachQuatern. Int.201849319821110.1016/j.quaint.2018.06.004 – reference: YunusAPDouJAvtarRNarayanaACShoreline and coastal morphological changes induced by the 2004 Indian Ocean Tsunami in the Katchal Island, Andaman and Nicobar—A study using archived satellite imagesTsunamis Earthq. Coast. Environ.201610.1007/978-3-319-28528-3_5 – reference: MujabarPSChandrasekarNShoreline change analysis along the coast between Kanyakumari and Tuticorin of India using remote sensing and GISArab. J. Geosci.2011664766410.1007/s12517-011-0394-4 – reference: Mather, P. M. & Koch, M. Comput. Process. Remotely-Sensed Images. (2011). https://doi.org/10.1002/9780470666517. – reference: AlawadKAAl-SubhiAMAlsaafaniMAAlraddadiTMIonitaMLohmannGAlsaafaniKSLarge-scale mode impacts on the sea level over the Red Sea and Gulf of AdenRemote Sens.2019111922242019RemS...11.2224A10.3390/rs11192224 – reference: Cohen, J. L., Furtado, J. C., Barlow, M., Alexeev, V. A. & Cherry, J. E. Asymmetric seasonal temperature trends. Geophys. Res. Lett. 39 (2012). – reference: HalderBHaghbinMFarooqueAAAn assessment of urban expansion impacts on land transformation of Rajpur-Sonarpur MunicipalityKnowl.-Based Eng. Sci.20212345310.51526/kbes.2021.2.3.34-53 – reference: KumarANarayanaACJayappaKSShoreline changes and morphology of spits along southern Karnataka, west coast of India: A remote sensing and statistics-based approachGeomorphology20101203–41331522010Geomo.120..133K10.1016/j.geomorph.2010.02.023 – reference: El-SerehyHAShafikHAbdallahHSAl-MisnedFAAl-FarrajSAComplex interactions and different possible pathways among functional components of the aquatic microbial world in Farasan Archipelago, Southern Red Sea, Saudi ArabiaSaudi J. Biol. Sci.202027141214171:CAS:528:DC%2BB3cXjtlKlsg%3D%3D3234635410.1016/j.sjbs.2019.12.012 – reference: ThakurSDharanirajanKGhoshPBDasPDeTKInfluence of anthropogenic activities on the landuse pattern of South Andaman IslandsRes. J. Mar. Sci.20175110 – reference: HashimBMAl MalikiASultanMAShahidSYaseenZMEffect of land use land cover changes on land surface temperature during 1984–2020: A case study of Baghdad city using landsat imageNat. Hazards.202210.1007/s11069-022-05224-y – reference: AlFuguraABillaLPradhanBSemi-automated procedures for shoreline extraction using single RADARSAT-1 SAR imageEstuarine Coast. Shelf Sci.2011953954002011ECSS...95..395A10.1016/j.ecss.2011.10.009 – reference: Guariglia, A. et al. A multisource approach for coastline mapping and identification of shoreline changes. Ann. Geophys. 49, (2009). – reference: Al-HatrushiSMMonitoring of the shoreline change using remote sensing and GIS: A case study of Al Hawasnah tidal inlet, Al Batinah coast, Sultanate of OmanArab. J. Geosci.201261479148410.1007/s12517-011-0424-2 – reference: HausmannNMeredith-WilliamsMSeasonal patterns of coastal exploitation on the Farasan Islands, Saudi ArabiaJ. Island Coast. Archaeol.20161236037910.1080/15564894.2016.1216478 – reference: RyuJWonJMinKWaterline extraction from Landsat TM data in a tidal flatA case study in Gomso Bay, KoreaRemote Sensing Environ.2002834424562002RSEnv..83..442R10.1016/S0034-4257(02)00059-7 – reference: EidEMEvaluation of carbon stock in the sediment of two mangrove species, Avicennia marina and Rhizophora mucronata, growing in the Farasan Islands, Saudi ArabiaOceanologia20206220021310.1016/j.oceano.2019.12.001 – reference: CrowellMDouglasBCLeathermanSPOn forecasting future US Shoreline positions: A test of algorithmsJ. Coastal Res.199710.1016/S0967-0653(98)80642-X – reference: Cheruto, M. C., Kauti, M. K., Kisangau, D. P. & Kariuki, P. C. Assessment of land use and land cover change using GIS and remote sensing techniques: A case study of Makueni County, Kenya. (2016). – reference: SemenzaJCHeat-related deaths during the July 1995 heat wave in ChicagoN. Engl. J. Med.199633584901:STN:280:DyaK283ms1emug%3D%3D864949410.1056/NEJM199607113350203 – reference: Al-QthaninRAl-YasiHProgress towards an updated checklist of the Farasan Archipelago floraJ. Arid Environ.20211892021JArEn.189j4488A10.1016/j.jaridenv.2021.104488 – reference: MortonRAMillerTMooreLHistorical shoreline changes along the US Gulf of Mexico: A summary of recent shoreline comparisons and analysesJ. Coastal Res.200521470470910.2112/04-0230.1 – reference: AlmalkiKABantanRALithologic units and stratigraphy of the Farasan Islands, Southern Red SeaCarbonates Evaporites.201610.1007/s13146-015-0247-4 – reference: YamanoHEvaluation of various satellite sensors for waterline extraction in a coral reef environment: Majuro Atoll, Marshall IslandsGeomorphology2006823984112006Geomo..82..398Y10.1016/j.geomorph.2006.06.003 – reference: ESRI ArcGIS. Software V10.6. https://www.arcgis.com/index.html. Accessed 17 Mar 2022. – reference: BaralRPradhanSSamalRNMishraSKShoreline change analysis at Chilika Lagoon Coast, India using digital shoreline analysis systemJ. Indian Soc. Remote Sensing2018461637164410.1007/s12524-018-0818-7 – reference: Thao, P. T. P., Duan, H. D. & To, D. V. Integrated remote sensing and GIS for calculating shoreline change in Phan Thiet coastal area. in International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences, Hanoi, Vietnam 1–6 (2008). – reference: Fletcher, C., Rooney, J., Barbee, M., Lim, S.-C. & Richmond, B. Mapping shoreline change using digital orthophotogrammetry on Maui, Hawaii. J. Coastal Res. 106–124 (2003). – reference: Al-QthaninRNAlharbiSASpatial structure and genetic variation of a Mangrove species (Avicennia marina (Forssk.) Vierh) in the Farasan ArchipelagoForests202011128710.3390/f11121287 – reference: AwadhSMAl-MimarHYaseenZMGroundwater availability and water demand sustainability over the upper mega aquifers of Arabian Peninsula and west region of IraqEnviron. Development Sustain.202010.1007/s10668-019-00578-z – reference: DurduranSSCoastline change assessment on water reservoirs located in the Konya Basin Area, Turkey, using multitemporal landsat imageryEnviron. Monit. Assess.20091644534611939963510.1007/s10661-009-0906-91:CAS:528:DC%2BC3cXks1WisLo%3D – reference: TaoHArtificial intelligence models for suspended river sediment prediction: State-of-the art, modeling framework appraisal, and proposed future research directionsEng. Appl. Comput. Fluid Mech.20211515851612 – reference: HalderBBanikPBandyopadhyayJMapping and monitoring land dynamic due to urban expansion using geospatial techniques on South KolkataSafety Extreme Environ.20213274210.1007/s42797-021-00032-2 – volume: 236 start-page: 1399 year: 2007 ident: 18225_CR51 publication-title: J. Coast. Res. doi: 10.2112/04-0421.1 – year: 2016 ident: 18225_CR66 publication-title: Carbonates Evaporites. doi: 10.1007/s13146-015-0247-4 – volume: 32 start-page: 4267 year: 2011 ident: 18225_CR43 publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2010.486414 – volume: 6 start-page: 2581 year: 2020 ident: 18225_CR33 publication-title: Model. Earth Syst. Environ. doi: 10.1007/s40808-020-00852-4 – volume: 236 start-page: 1359 year: 2007 ident: 18225_CR10 publication-title: J. Coastal Res. doi: 10.2112/05-0580.1 – volume: 113 start-page: 2606 year: 2009 ident: 18225_CR27 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.07.021 – volume: 74 year: 2021 ident: 18225_CR48 publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2021.103186 – volume: 82 start-page: 398 year: 2006 ident: 18225_CR54 publication-title: Geomorphology doi: 10.1016/j.geomorph.2006.06.003 – volume: 142 start-page: 297 year: 2007 ident: 18225_CR3 publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-007-9929-2 – volume: 20 start-page: 61 year: 2015 ident: 18225_CR29 publication-title: J. Coast. Conserv. doi: 10.1007/s11852-015-0418-4 – ident: 18225_CR47 doi: 10.1155/2016/1480307 – ident: 18225_CR6 doi: 10.1016/j.pce.2022.103135 – volume: 2 start-page: 34 year: 2021 ident: 18225_CR24 publication-title: Knowl.-Based Eng. Sci. doi: 10.51526/kbes.2021.2.3.34-53 – volume: 120 start-page: 133 issue: 3–4 year: 2010 ident: 18225_CR57 publication-title: Geomorphology doi: 10.1016/j.geomorph.2010.02.023 – volume: 49 start-page: 275 year: 2003 ident: 18225_CR17 publication-title: Coast. Eng. doi: 10.1016/S0378-3839(03)00064-4 – volume: 75 start-page: 230 year: 2001 ident: 18225_CR34 publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(00)00169-3 – volume: 11 start-page: 2224 issue: 19 year: 2019 ident: 18225_CR77 publication-title: Remote Sens. doi: 10.3390/rs11192224 – volume: 6 start-page: 9829 year: 2014 ident: 18225_CR45 publication-title: Remote Sensing doi: 10.3390/rs6109829 – ident: 18225_CR53 – year: 2020 ident: 18225_CR9 publication-title: Environ. Development Sustain. doi: 10.1007/s10668-019-00578-z – volume: 42 start-page: 177 year: 2021 ident: 18225_CR67 publication-title: Surveys Geophys. doi: 10.1007/s10712-020-09623-3 – ident: 18225_CR39 doi: 10.1029/2011GL050582 – ident: 18225_CR62 – ident: 18225_CR35 doi: 10.1002/9780470666517 – volume: 145 start-page: 154 year: 2014 ident: 18225_CR46 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.02.001 – volume: 214 start-page: 688 year: 2005 ident: 18225_CR56 publication-title: J. Coastal Res. doi: 10.2112/03-0071.1 – volume: 27 start-page: 1412 year: 2020 ident: 18225_CR69 publication-title: Saudi J. Biol. Sci. doi: 10.1016/j.sjbs.2019.12.012 – ident: 18225_CR36 doi: 10.1109/indicon.2014.7030408 – volume: 6 start-page: 647 year: 2011 ident: 18225_CR4 publication-title: Arab. J. Geosci. doi: 10.1007/s12517-011-0394-4 – volume: 30 start-page: 651 year: 2005 ident: 18225_CR2 publication-title: Earth Surf. Proc. Land. doi: 10.1002/esp.1165 – ident: 18225_CR63 doi: 10.3133/ofr20181179 – volume: 164 start-page: 453 year: 2009 ident: 18225_CR23 publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-009-0906-9 – volume: 11 start-page: 256 year: 2009 ident: 18225_CR49 publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 185 start-page: 5099 year: 2012 ident: 18225_CR11 publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-012-2928-y – volume: 3 start-page: 27 year: 2021 ident: 18225_CR40 publication-title: Safety Extreme Environ. doi: 10.1007/s42797-021-00032-2 – volume: 95 start-page: 395 year: 2011 ident: 18225_CR16 publication-title: Estuarine Coast. Shelf Sci. doi: 10.1016/j.ecss.2011.10.009 – ident: 18225_CR1 – volume: 15 start-page: 1585 year: 2021 ident: 18225_CR7 publication-title: Eng. Appl. Comput. Fluid Mech. – volume: 89 start-page: 467 year: 2004 ident: 18225_CR28 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2003.11.005 – year: 2009 ident: 18225_CR61 publication-title: Open-File Rep. doi: 10.3133/ofr20081278 – volume: 3 start-page: 82 year: 2014 ident: 18225_CR37 publication-title: Eurasian J. Soil Sci. (EJSS). doi: 10.18393/ejss.84540 – volume: 335 start-page: 84 year: 1996 ident: 18225_CR44 publication-title: N. Engl. J. Med. doi: 10.1056/NEJM199607113350203 – volume: 6 start-page: 1479 year: 2012 ident: 18225_CR21 publication-title: Arab. J. Geosci. doi: 10.1007/s12517-011-0424-2 – ident: 18225_CR64 – volume: 13 start-page: 900 year: 2017 ident: 18225_CR73 publication-title: J. Maps doi: 10.1080/17445647.2017.1401492 – ident: 18225_CR12 – volume: 5 start-page: 1 year: 2017 ident: 18225_CR18 publication-title: Res. J. Mar. Sci. – volume: 233 start-page: 691 year: 2007 ident: 18225_CR50 publication-title: J. Coastal Res. doi: 10.2112/04-0398.1 – year: 2022 ident: 18225_CR25 publication-title: Nat. Hazards. doi: 10.1007/s11069-022-05224-y – ident: 18225_CR31 – volume: 127 start-page: 32 year: 2011 ident: 18225_CR22 publication-title: Geomorphology doi: 10.1016/j.geomorph.2010.12.001 – volume: 1 start-page: 1 year: 2012 ident: 18225_CR58 publication-title: Mar. Sci. doi: 10.5923/j.ms.20110101.01 – ident: 18225_CR68 doi: 10.1002/gj.4145/v3/response1 – volume: 214 start-page: 704 year: 2005 ident: 18225_CR15 publication-title: J. Coastal Res. doi: 10.2112/04-0230.1 – ident: 18225_CR5 doi: 10.1007/s40808-016-0130-x – volume: 85 start-page: 39 year: 2003 ident: 18225_CR14 publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00185-2 – ident: 18225_CR20 doi: 10.4401/ag-3155 – volume: 27 start-page: 28 year: 2007 ident: 18225_CR38 publication-title: Appl. Geogr. doi: 10.1016/j.apgeog.2006.09.004 – ident: 18225_CR41 doi: 10.4172/2469-4134.1000175 – volume: 11 start-page: 1287 year: 2020 ident: 18225_CR70 publication-title: Forests doi: 10.3390/f11121287 – volume: 189 year: 2021 ident: 18225_CR71 publication-title: J. Arid Environ. doi: 10.1016/j.jaridenv.2021.104488 – volume: 207 year: 2020 ident: 18225_CR78 publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107395 – volume: 46 start-page: 2204 year: 2019 ident: 18225_CR26 publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL081816 – volume: 46 start-page: 1637 year: 2018 ident: 18225_CR19 publication-title: J. Indian Soc. Remote Sensing doi: 10.1007/s12524-018-0818-7 – year: 2016 ident: 18225_CR59 publication-title: Tsunamis Earthq. Coast. Environ. doi: 10.1007/978-3-319-28528-3_5 – volume: 4 start-page: 317 year: 2015 ident: 18225_CR60 publication-title: Aquatic Procedia doi: 10.1016/j.aqpro.2015.02.043 – volume: 493 start-page: 198 year: 2018 ident: 18225_CR74 publication-title: Quatern. Int. doi: 10.1016/j.quaint.2018.06.004 – volume: 03 start-page: 99 year: 2011 ident: 18225_CR13 publication-title: J. Geogr. Inf. Syst. – year: 2016 ident: 18225_CR72 publication-title: Defence Sites III Heritage Future. doi: 10.2495/dshf160091 – ident: 18225_CR32 – volume: 64 start-page: 1117 year: 2011 ident: 18225_CR52 publication-title: Environ. Earth Sci. doi: 10.1007/s12665-011-0928-9 – volume: 45 start-page: 50 year: 2011 ident: 18225_CR76 publication-title: Oryx doi: 10.1017/S0030605310001298 – volume: 12 start-page: 360 year: 2016 ident: 18225_CR30 publication-title: J. Island Coast. Archaeol. doi: 10.1080/15564894.2016.1216478 – volume: 4 start-page: 1449 year: 2018 ident: 18225_CR8 publication-title: Modeling Earth Syst. Environ. doi: 10.1007/s40808-018-0510-5 – volume: 617 start-page: 140 year: 2014 ident: 18225_CR65 publication-title: Tectonophysics doi: 10.1016/j.tecto.2014.01.030 – year: 1997 ident: 18225_CR42 publication-title: J. Coastal Res. doi: 10.1016/S0967-0653(98)80642-X – volume: 62 start-page: 200 year: 2020 ident: 18225_CR75 publication-title: Oceanologia doi: 10.1016/j.oceano.2019.12.001 – volume: 83 start-page: 442 year: 2002 ident: 18225_CR55 publication-title: Remote Sensing Environ. doi: 10.1016/S0034-4257(02)00059-7 |
SSID | ssj0000529419 |
Score | 2.4605362 |
Snippet | Coastal vulnerability assessment is the key to coastal management and sustainable development. Sea level rise (SLR) and anthropogenic activities have triggered... Abstract Coastal vulnerability assessment is the key to coastal management and sustainable development. Sea level rise (SLR) and anthropogenic activities have... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 14322 |
SubjectTerms | 704/106/694/1108 704/106/694/2739 704/106/829/2737 704/242 Anthropogenic factors Climate adaptation Climate change Coastal zone Coastal zone management Environmental changes Global warming Humanities and Social Sciences Landsat multidisciplinary Population growth Remote sensing Science Science (multidisciplinary) Sea level rise Sedimentation & deposition Shorelines Sustainable development Tidal effects Urban sprawl |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6hSpW4IFpABAoyEjeIGv8l9hFQVxUHLlCpJyw7tmElyKJmV6hvw7P0yRjb2W1TCbhwi_yT2OMZzzex_RngpaZWtCr42vVa1Pjoamu9rLmPXLTBYkLeIPuhPT0T78_l-Y2rvtKesEIPXAR3TKnnFmfRRCoiOiVUH1rmlBRCcN87l2Zf9Hk3gqnC6s20oHo6JdNwdTyip0qnyTD2QkjNZC1nnigT9s9Q5u09krcWSrP_WdyHexNwJG9Kgw_gThgOYb9cJXn5AD4v7IUd7UDSGA-erCL5aDd-iRWsW1qCYW9MXAUjQcRHvuc_g-nUFCnHJMdUoZCDkJ827Y_5QpYDEfLq1yXawvgQzhYnn96d1tPdCXUvabeutcPuc81j42kUsZWsjQKhjtSBC-0TLuswOA3cBycwnzEnqVc0ohlGxGD8EewNqyE8BoL1G-k9BkZeoffCkNCrtvGIVPDVbdQV0K0cTT8Ri6f7Lb6ZvMDNlSmyNyh7k2VvZAWvdnV-FFqNv5Z-m4ZnVzJRYucEVBQzKYr5l6JUcLQdXDPZ6WhYh5qSKAlFBS922WhhadnEDmG1KWUwqGs0r6CbKcWsQfOcYfk1c3XjGKBLoRW83qrP9cf_3OEn_6PDT-EuS-re4FTIjmBvfbEJzxBBrd3zbCy_AedaE_4 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dj9QgECd6xsSXi-dH7HleMPFNybUFWngyatxcfPBFL9kXQ6DAuYm253Y35v57Zyi7l17ivTUFWmAYZoYZfkPIG11Z0ajgmeu0YPDomLVeMu4jF02w8CIFyH5tzi_El6Vc5gO3MYdV7vbEtFH7ocMz8rO6LSWKHy7eX_1hmDUKvas5hcZ98gChyzCkq122-zMW9GKJSue7MiVXZyPIK7xTBhYYKNa1ZHImjxJs_0zXvB0pectdmqTQ4jE5zOoj_TDR-4jcC_0T8nBKKHn9lPxY2LUdbU-R0r2nQ6Tf7NavoIF1K0vB-I2IWDBS0Pvo73Q-iHen6HRZcsQGE0QI_WsxSuaSrnoqJL0GhhifkYvF5--fzllOoMA6WbUbph2MnmseS19FERtZN1GAviN14EJ7VM5asFAD98EJKK9rJyuvqgi8GEER48_JQT_04QWh0L6U3oN15BWIMLALvWpKD-oKfLqJuiDVbhpNl9HFMcnFL5O83FyZaeoNTL1JU29kQd7u21xN2Bp31v6I1NnXRFzs9GJYX5rMZmDPeG5B5iIEjWiVUF1oaqekEIL7zrmCnOxoazKzjuZmaRXk9b4Y2Ax9J7YPw3aqA5ZdqXlB2tmamHVoXtKvfibAbqAByJWqIO92q-fm5_8f8PHdfX1JHtW4jkvY6eoTcrBZb8MrUJA27jRxwT-iEwtC priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuFeUhUgoyEjeISPyKfYQVq4oDF6jUE5Yd22UlyKLNrlD_Db-FX8bYSRalAqTeotiThz2T-Sae-QzwQteWSxV86VrNSzx0pbVelMxHxmWweCInyH6QZ-f8_YW4OAA61cLkpP1MaZk_01N22OseHU0qBsPQCRExFaW4BbcTdXvS6oVc7P-rpJUrXuuxPqZi6i-iMx-Uqfpn-PJ6duS1JdLseZb34GiEjOTN8JDHcBC6-3Bn2ETy6gF8XtqN7W1H0ux2nqwj-Wh3foUC1q0swYA3JpaCniDWI9_yP8FUL0WGAsk-CQy0IOSHTZkxl2TVES5-_bxCK-gfwvny3afFWTnumlC2om62pXb4-kyzWPk68igFlZEjyBE6MK59QmQNhqWB-eA4tlPqRO1VHdEAI6Iv9ggOu3UXHgNB-Up4jyGRV-i3MBj0SlYeMQpeWkZdQD2No2lHSvG0s8VXk5e2mTLD2Bsce5PH3ogCXu5lvg-EGv_t_TZNz75nIsPOJ9abSzMqBwYxnll0tIl3hjeKqzZI6pTgnDPfOlfA6TS5ZrTQ3tAGNSWREfICnu-b0bbSgontwno39MFwrtKsgGamFLMHmrd0qy-ZpRvnAJ1JXcCrSX3-3PzfL3xys-5P4C5Nil3h546ewuF2swtPESVt3bNsFr8BNwIKaw priority: 102 providerName: Springer Nature |
Title | Farasan Island of Saudi Arabia confronts the measurable impacts of global warming in 45 years |
URI | https://link.springer.com/article/10.1038/s41598-022-18225-5 https://www.proquest.com/docview/2705224034 https://www.proquest.com/docview/2705753093 https://pubmed.ncbi.nlm.nih.gov/PMC9395381 https://doaj.org/article/11d3a012481547848ce62b854443dcbb |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Za9tAEB5yUOhL6UnVpGYLfWvVSnvoeAjBMTHB0FCaGvxSxK52NzGkcmPZJP73nV1JLgpp6ZPNHpI8O-P5RrvzDcD7PJY8yYwOVZnzEL-qUEotQqYt44mR2OAPyJ4nZ1M-mYnZDnTljloB1g-Gdq6e1HR5_enuZnOMBn_UpIxnn2t0Qi5RDMMqRMtUhGIX9tEzpc5Qv7Rwv-H6pjn3tT4cCXuIYIK2eTQPX6bnqzylfw-H3j9FeW8r1Xuo8VN40kJLMmx04RnsmOo5PGqKTW5ewI-xXMpaVsRpQaXJwpILudZznCDVXBIMjK1jM6gJYkLy0787dHlVpEmkrN2Ehj6E3Ep3guaSzCvCBdmgsdQvYTo-_T46C9viCmEp4nQV5golwXJmIx1bbhNBE8sRC4ncMJ5rB9xSjF4N00Zx7KdUiVhnsUU7tQjS2CvYqxaVeQ0E50dCa4ycdIbuDWNGnSWRRiiDl05sHkDcibEoW-ZxVwDjuvA74CwrGtEXKPrCi74QAXzYzvnV8G78c_SJW53tSMeZ7RsWy8uiNUGMdTST6I8dPQ1PM56VJqEqE5xzpkulAjjs1rbo9LCgKSqN4yzkAbzbdqMJun0VWZnFuhmDUV-UswDSnk70HqjfU82vPJk3rgH6nDiAj532_Ln533_wm_94mAN4TJ0yR_hXSA9hb7Vcm7eIoFZqALvpLB3A_nA4uZjg58np-ddv2DpKRgP_VmLgDec3DmQYQQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEE8RKGAkOEHUxI88DghR6GpLywpBK_WCXDu2y0qQlM2uqv1T_EbGeWyVSvTWWxQ_4ozHnm88nhmAV3mseJJZE-oi5yE-6lApI0JmHOOJVfiiuSA7TSZH_POxON6Av70vjL9W2e-JzUZtqsKfkW_TNBJe_DD-_uxP6LNGeetqn0KjZYt9uzpHla1-t_cJ5_c1pePdw4-TsMsqEBYiThdhrjmClpy5yMSOu0TQxHEEASK3jOfGI5YU1TbLjNUcyynVIjZZ7JBBHaIThv3egE3OUJUZwebO7vTrt_WpjrebYfedd07Esu0aJaT3YkOdD6E8FaEYSMAmUcAA3V6-m3nJQNvIvfFduNMBVvKh5bB7sGHL-3CzTWG5egA_xmqualUSz1ulIZUj39XSzLCB0jNFUN12PkZCTRBpkt_NiaT31iKte2btG7RBSci58vdyTsmsJFyQFdK6fghH10LcRzAqq9I-BoLtI2EM6mMmQ6GJmqjJksggQMKuE5cHEPdklEUXz9yn1fglG7s6y2RLeomklw3ppQjgzbrNWRvN48raO3521jV9JO7mRTU_ld3CRg3KMIVS3ge94WnGs8ImVGeCc85MoXUAW_3cym57qOUFMwfwcl2MC9tba1Rpq2VbB3XJKGcBpAOeGAxoWFLOfjYhwnEOUJLFAbztuefi4___4SdXj_UF3JocfjmQB3vT_adwm3qejnCfpVswWsyX9hnCs4V-3q0JAifXvQz_ATYVRxc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxFMNFDASnCDaxI88DggBZdVSVCFBpb0gY8d2WQmSstlVtX-NX8fYSbZKJXrrbRU_NhnPeL7xeGYAXpSp4llhTayrksf4U8dKGREz4xjPrMIH4YLsUbZ_zD_NxGwL_g6xMP5a5bAnho3aNJU_I5_QPBFe_TA-cf21iC9707enf2JfQcp7WodyGh2LHNr1GZpv7ZuDPVzrl5ROP377sB_3FQbiSqT5Mi41RwBTMpeY1HGXCZo5joBAlJbx0nj0kqMJZ5mxmmM7pVqkpkgdMqtDpMJw3mtwPWci9TKWz_LN-Y73oOHkfZxOwopJi7rSx7Oh9YegnopYjHRhKBkwwrkXb2lecNUGDTi9A7d76Eredbx2F7ZsfQ9udMUs1_fh-1QtVKtq4rmsNqRx5KtamTkOUHquCBrezmdLaAliTvI7nE36uC3SBWq2fkCXnoScKX9D54TMa8IFWSOl2wdwfCWkfQjbdVPbHSA4PhHGoGVmClSfaJOaIksMQiWcOnNlBOlARln1mc19gY1fMnjYWSE70kskvQyklyKCV5sxp11ej0t7v_ers-npc3KHB83iRPYijraUYQr1vU9_w_OCF5XNqC4E55yZSusIdoe1lf1G0cpzto7g-aYZRdz7bVRtm1XXB63KpGQR5COeGL3QuKWe_wzJwnENUKelEbweuOf8z___wY8uf9dncBOFT34-ODp8DLeoZ-kEN1y6C9vLxco-QZy21E-DQBD4cdUS-A8aA0nn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Farasan+Island+of+Saudi+Arabia+confronts+the+measurable+impacts+of+global+warming+in+45+years&rft.jtitle=Scientific+reports&rft.au=Khedher%2C+Khaled+Mohamed&rft.au=Abu-Taweel%2C+Gasem+Mohammad&rft.au=Al-Fifi%2C+Zarraq&rft.au=Qoradi%2C+Mofareh+D&rft.date=2022-08-22&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=14322&rft_id=info:doi/10.1038%2Fs41598-022-18225-5&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |