Stabilizing indium sulfide for CO2 electroreduction to formate at high rate by zinc incorporation
Recently developed solid-state catalysts can mediate carbon dioxide (CO 2 ) electroreduction to valuable products at high rates and selectivities. However, under commercially relevant current densities of > 200 milliamperes per square centimeter (mA cm −2 ), catalysts often undergo particle agglo...
Saved in:
Published in | Nature communications Vol. 12; no. 1; pp. 5835 - 9 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
05.10.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently developed solid-state catalysts can mediate carbon dioxide (CO
2
) electroreduction to valuable products at high rates and selectivities. However, under commercially relevant current densities of > 200 milliamperes per square centimeter (mA cm
−2
), catalysts often undergo particle agglomeration, active-phase change, and/or element dissolution, making the long-term operational stability a considerable challenge. Here we report an indium sulfide catalyst that is stabilized by adding zinc in the structure and shows dramatically improved stability. The obtained ZnIn
2
S
4
catalyst can reduce CO
2
to formate with 99.3% Faradaic efficiency at 300 mA cm
−2
over 60 h of continuous operation without decay. By contrast, similarly synthesized indium sulfide without zinc participation deteriorates quickly under the same conditions. Combining experimental and theoretical studies, we unveil that the introduction of zinc largely enhances the covalency of In-S bonds, which “locks” sulfur—a catalytic site that can activate H
2
O to react with CO
2
, yielding HCOO* intermediates—from being dissolved during high-rate electrolysis.
Developing durable catalysts for carbon dioxide reduction to formate at commercial-scale current densities is challenging. This work reports that indium sulfide stabilized through zinc incorporation can produce formate efficiently and quickly at high current densities over long timescales. |
---|---|
AbstractList | Developing durable catalysts for carbon dioxide reduction to formate at commercial-scale current densities is challenging. This work reports that indium sulfide stabilized through zinc incorporation can produce formate efficiently and quickly at high current densities over long timescales. Recently developed solid-state catalysts can mediate carbon dioxide (CO 2 ) electroreduction to valuable products at high rates and selectivities. However, under commercially relevant current densities of > 200 milliamperes per square centimeter (mA cm −2 ), catalysts often undergo particle agglomeration, active-phase change, and/or element dissolution, making the long-term operational stability a considerable challenge. Here we report an indium sulfide catalyst that is stabilized by adding zinc in the structure and shows dramatically improved stability. The obtained ZnIn 2 S 4 catalyst can reduce CO 2 to formate with 99.3% Faradaic efficiency at 300 mA cm −2 over 60 h of continuous operation without decay. By contrast, similarly synthesized indium sulfide without zinc participation deteriorates quickly under the same conditions. Combining experimental and theoretical studies, we unveil that the introduction of zinc largely enhances the covalency of In-S bonds, which “locks” sulfur—a catalytic site that can activate H 2 O to react with CO 2 , yielding HCOO* intermediates—from being dissolved during high-rate electrolysis. Developing durable catalysts for carbon dioxide reduction to formate at commercial-scale current densities is challenging. This work reports that indium sulfide stabilized through zinc incorporation can produce formate efficiently and quickly at high current densities over long timescales. Recently developed solid-state catalysts can mediate carbon dioxide (CO2) electroreduction to valuable products at high rates and selectivities. However, under commercially relevant current densities of > 200 milliamperes per square centimeter (mA cm-2), catalysts often undergo particle agglomeration, active-phase change, and/or element dissolution, making the long-term operational stability a considerable challenge. Here we report an indium sulfide catalyst that is stabilized by adding zinc in the structure and shows dramatically improved stability. The obtained ZnIn2S4 catalyst can reduce CO2 to formate with 99.3% Faradaic efficiency at 300 mA cm-2 over 60 h of continuous operation without decay. By contrast, similarly synthesized indium sulfide without zinc participation deteriorates quickly under the same conditions. Combining experimental and theoretical studies, we unveil that the introduction of zinc largely enhances the covalency of In-S bonds, which "locks" sulfur-a catalytic site that can activate H2O to react with CO2, yielding HCOO* intermediates-from being dissolved during high-rate electrolysis.Recently developed solid-state catalysts can mediate carbon dioxide (CO2) electroreduction to valuable products at high rates and selectivities. However, under commercially relevant current densities of > 200 milliamperes per square centimeter (mA cm-2), catalysts often undergo particle agglomeration, active-phase change, and/or element dissolution, making the long-term operational stability a considerable challenge. Here we report an indium sulfide catalyst that is stabilized by adding zinc in the structure and shows dramatically improved stability. The obtained ZnIn2S4 catalyst can reduce CO2 to formate with 99.3% Faradaic efficiency at 300 mA cm-2 over 60 h of continuous operation without decay. By contrast, similarly synthesized indium sulfide without zinc participation deteriorates quickly under the same conditions. Combining experimental and theoretical studies, we unveil that the introduction of zinc largely enhances the covalency of In-S bonds, which "locks" sulfur-a catalytic site that can activate H2O to react with CO2, yielding HCOO* intermediates-from being dissolved during high-rate electrolysis. Recently developed solid-state catalysts can mediate carbon dioxide (CO2) electroreduction to valuable products at high rates and selectivities. However, under commercially relevant current densities of > 200 milliamperes per square centimeter (mA cm−2), catalysts often undergo particle agglomeration, active-phase change, and/or element dissolution, making the long-term operational stability a considerable challenge. Here we report an indium sulfide catalyst that is stabilized by adding zinc in the structure and shows dramatically improved stability. The obtained ZnIn2S4 catalyst can reduce CO2 to formate with 99.3% Faradaic efficiency at 300 mA cm−2 over 60 h of continuous operation without decay. By contrast, similarly synthesized indium sulfide without zinc participation deteriorates quickly under the same conditions. Combining experimental and theoretical studies, we unveil that the introduction of zinc largely enhances the covalency of In-S bonds, which “locks” sulfur—a catalytic site that can activate H2O to react with CO2, yielding HCOO* intermediates—from being dissolved during high-rate electrolysis.Developing durable catalysts for carbon dioxide reduction to formate at commercial-scale current densities is challenging. This work reports that indium sulfide stabilized through zinc incorporation can produce formate efficiently and quickly at high current densities over long timescales. Recently developed solid-state catalysts can mediate carbon dioxide (CO 2 ) electroreduction to valuable products at high rates and selectivities. However, under commercially relevant current densities of > 200 milliamperes per square centimeter (mA cm −2 ), catalysts often undergo particle agglomeration, active-phase change, and/or element dissolution, making the long-term operational stability a considerable challenge. Here we report an indium sulfide catalyst that is stabilized by adding zinc in the structure and shows dramatically improved stability. The obtained ZnIn 2 S 4 catalyst can reduce CO 2 to formate with 99.3% Faradaic efficiency at 300 mA cm −2 over 60 h of continuous operation without decay. By contrast, similarly synthesized indium sulfide without zinc participation deteriorates quickly under the same conditions. Combining experimental and theoretical studies, we unveil that the introduction of zinc largely enhances the covalency of In-S bonds, which “locks” sulfur—a catalytic site that can activate H 2 O to react with CO 2 , yielding HCOO* intermediates—from being dissolved during high-rate electrolysis. |
ArticleNumber | 5835 |
Author | Niu, Zhuang-Zhuang Zhang, Xiao-Long Gao, Fei-Yue Yang, Peng-Peng Wu, Zhi-Zheng Liao, Jie Tang, Kai-Bin Chi, Li-Ping Gao, Min-Rui |
Author_xml | – sequence: 1 givenname: Li-Ping orcidid: 0000-0001-5020-0340 surname: Chi fullname: Chi, Li-Ping organization: Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China – sequence: 2 givenname: Zhuang-Zhuang orcidid: 0000-0002-8412-4953 surname: Niu fullname: Niu, Zhuang-Zhuang organization: Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China – sequence: 3 givenname: Xiao-Long orcidid: 0000-0002-5596-0776 surname: Zhang fullname: Zhang, Xiao-Long organization: Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China – sequence: 4 givenname: Peng-Peng orcidid: 0000-0002-5923-1722 surname: Yang fullname: Yang, Peng-Peng organization: Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China – sequence: 5 givenname: Jie orcidid: 0000-0002-4014-7838 surname: Liao fullname: Liao, Jie organization: Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China – sequence: 6 givenname: Fei-Yue orcidid: 0000-0002-3811-7509 surname: Gao fullname: Gao, Fei-Yue organization: Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China – sequence: 7 givenname: Zhi-Zheng orcidid: 0000-0003-2022-9147 surname: Wu fullname: Wu, Zhi-Zheng organization: Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China – sequence: 8 givenname: Kai-Bin orcidid: 0000-0002-0398-1196 surname: Tang fullname: Tang, Kai-Bin email: kbtang@ustc.edu.cn organization: Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China – sequence: 9 givenname: Min-Rui orcidid: 0000-0002-7805-803X surname: Gao fullname: Gao, Min-Rui email: mgao@ustc.edu.cn organization: Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China |
BookMark | eNp9kstu3CAUhlGVqrk0L9CVpW66ccoBbPCmUjXqJVKkLNquEebiYWSbKeBK06cvM07VJouw4HLO_38H0LlEZ3OYLUJvAN8ApuJ9YsBaXmMCNWmBsPrwAl0QzKAGTujZf_tzdJ3SDpdBOxCMvULnlLUAwLoLpL5l1fvR__bzUPnZ-GWq0jI6b2zlQqw296Syo9U5hmjNorMPc5XDMTepbCuVq60ftlU8HvpDVTi6cHSI-1BiRf0avXRqTPb6Yb1CPz5_-r75Wt_df7ndfLyrdQM8153Q1LBWgXFYKyDgSFOmhjtBKDYauOFEUS4EFlZhobngDjcNEeAEJpheoduVa4LayX30k4oHGZSXp0CIg1Qxez1aCZQ1PVGGNV3LeN_2mDqnHeEN5s5xWlgfVtZ-6SdrtJ1zVOMj6OPM7LdyCL-kYB3hIArg3QMghp-LTVlOPmk7jmq2YUmSNLxrSduKY623T6S7sMS5fNVJRTDnwIpKrCodQ0rROql9Pv1vqe9HCVge20KubSFLW8hTW8hDsZIn1r_veNZEV1Mq4nmw8d-tnnH9AYh4yxw |
CitedBy_id | crossref_primary_10_1002_anie_202412144 crossref_primary_10_1016_j_cej_2024_149987 crossref_primary_10_1002_smll_202303172 crossref_primary_10_1002_smm2_1109 crossref_primary_10_1002_sstr_202400548 crossref_primary_10_1016_j_susmat_2025_e01260 crossref_primary_10_1021_acscatal_2c06135 crossref_primary_10_1002_sus2_185 crossref_primary_10_1002_aenm_202404178 crossref_primary_10_1016_j_ccr_2022_214970 crossref_primary_10_1016_j_jece_2023_111645 crossref_primary_10_1016_j_cej_2024_150051 crossref_primary_10_1021_acsami_3c11342 crossref_primary_10_1016_j_mtphys_2023_101250 crossref_primary_10_1039_D1CY01378E crossref_primary_10_1021_acsnano_3c01059 crossref_primary_10_1021_jacs_2c13384 crossref_primary_10_1039_D4SC06172A crossref_primary_10_1021_acscatal_2c05957 crossref_primary_10_1016_j_nanoen_2022_107865 crossref_primary_10_1016_j_cej_2025_161232 crossref_primary_10_1039_D3NR05344J crossref_primary_10_1016_j_joule_2024_03_008 crossref_primary_10_1016_j_ijhydene_2024_02_291 crossref_primary_10_1016_j_apsusc_2022_155696 crossref_primary_10_1016_j_jcat_2023_115125 crossref_primary_10_1002_anie_202425195 crossref_primary_10_1002_anie_202200552 crossref_primary_10_1039_D4TA05122J crossref_primary_10_1002_smm2_1086 crossref_primary_10_1039_D3TA05144G crossref_primary_10_1002_cey2_362 crossref_primary_10_1021_acssuschemeng_3c00230 crossref_primary_10_1016_j_jechem_2024_11_032 crossref_primary_10_1002_smll_202400191 crossref_primary_10_1021_acssuschemeng_3c08233 crossref_primary_10_1002_smll_202306795 crossref_primary_10_1016_j_jechem_2025_01_041 crossref_primary_10_1021_acsenergylett_3c00489 crossref_primary_10_1002_aenm_202301597 crossref_primary_10_1002_ange_202412452 crossref_primary_10_1016_j_mtchem_2024_102457 crossref_primary_10_1016_j_esci_2023_100172 crossref_primary_10_1016_j_jcis_2024_03_137 crossref_primary_10_1021_acs_nanolett_4c03067 crossref_primary_10_1039_D2CP05761A crossref_primary_10_1002_ange_202200552 crossref_primary_10_1016_j_apcata_2024_119828 crossref_primary_10_1002_adma_202412299 crossref_primary_10_1002_anie_202304050 crossref_primary_10_1002_adfm_202425606 crossref_primary_10_1021_acscatal_4c02619 crossref_primary_10_1021_jacs_2c12952 crossref_primary_10_1039_D3SE00103B crossref_primary_10_1002_ange_202425195 crossref_primary_10_1016_j_ces_2022_118354 crossref_primary_10_1016_j_surfin_2024_105163 crossref_primary_10_1016_j_ces_2023_118838 crossref_primary_10_1021_acscatal_2c02549 crossref_primary_10_1021_acsestengg_4c00720 crossref_primary_10_1016_j_apcatb_2023_122880 crossref_primary_10_1002_ange_202412144 crossref_primary_10_1016_j_jechem_2024_09_057 crossref_primary_10_1002_ange_202304050 crossref_primary_10_1002_anie_202305530 crossref_primary_10_1126_sciadv_adi6119 crossref_primary_10_1007_s12598_022_02212_w crossref_primary_10_1002_smll_202201311 crossref_primary_10_1002_smll_202305562 crossref_primary_10_3390_app13053023 crossref_primary_10_1016_j_mtsust_2025_101089 crossref_primary_10_1021_acscatal_2c06228 crossref_primary_10_1007_s12274_022_4664_0 crossref_primary_10_1002_adfm_202408977 crossref_primary_10_1039_D3QI02499G crossref_primary_10_1002_smll_202301128 crossref_primary_10_1016_j_mtcata_2023_100009 crossref_primary_10_1039_D3EE00635B crossref_primary_10_1039_D3QM00835E crossref_primary_10_1002_ange_202305530 crossref_primary_10_1038_s41467_022_34278_6 crossref_primary_10_1021_acsami_1c23430 crossref_primary_10_1002_smtd_202401157 crossref_primary_10_1039_D4SU00069B crossref_primary_10_3390_catal15030203 crossref_primary_10_1021_acsami_3c05892 crossref_primary_10_1007_s12274_022_4844_y crossref_primary_10_1021_jacs_2c10351 crossref_primary_10_1039_D3QM00364G crossref_primary_10_1007_s12598_024_02722_9 crossref_primary_10_1002_ange_202310740 crossref_primary_10_1021_acsenergylett_5c00079 crossref_primary_10_1002_inf2_12375 crossref_primary_10_1021_acsami_4c21829 crossref_primary_10_1021_acs_analchem_4c03215 crossref_primary_10_1039_D4TA04145C crossref_primary_10_1021_acs_jpcc_2c05399 crossref_primary_10_1021_acssuschemeng_2c02919 crossref_primary_10_1016_j_cej_2022_138260 crossref_primary_10_1016_j_apsusc_2023_157210 crossref_primary_10_1038_s41467_024_51475_7 crossref_primary_10_3389_fchem_2022_983778 crossref_primary_10_1039_D4CS00229F crossref_primary_10_1002_ange_202307612 crossref_primary_10_1016_j_jcou_2022_102331 crossref_primary_10_1039_D2NR06638F crossref_primary_10_1021_acsami_4c04437 crossref_primary_10_1039_D3CY00236E crossref_primary_10_1002_smtd_202300957 crossref_primary_10_1016_j_jechem_2022_12_022 crossref_primary_10_1016_j_jes_2024_03_017 crossref_primary_10_1039_D3TA00628J crossref_primary_10_1007_s40843_024_2835_3 crossref_primary_10_1007_s10562_024_04663_5 crossref_primary_10_1002_adma_202402979 crossref_primary_10_1016_j_jallcom_2023_172772 crossref_primary_10_1007_s41061_024_00487_4 crossref_primary_10_1002_sstr_202300323 crossref_primary_10_1002_adma_202306288 crossref_primary_10_1021_acsnano_4c10943 crossref_primary_10_1021_acscatal_2c02627 crossref_primary_10_1002_anie_202412452 crossref_primary_10_1021_jacs_4c05813 crossref_primary_10_1002_anie_202307612 crossref_primary_10_1073_pnas_2312876120 crossref_primary_10_1039_D2CS00849A crossref_primary_10_1016_j_greenca_2024_02_003 crossref_primary_10_1016_j_jallcom_2023_170514 crossref_primary_10_1039_D3SE00651D crossref_primary_10_1016_j_jechem_2023_08_031 crossref_primary_10_1002_anie_202408412 crossref_primary_10_1002_anie_202310740 crossref_primary_10_1016_j_cclet_2022_107775 crossref_primary_10_1016_j_jece_2022_109171 crossref_primary_10_1021_acscatal_2c04088 crossref_primary_10_1016_j_cej_2024_156455 crossref_primary_10_1002_aenm_202202054 crossref_primary_10_1002_ange_202408412 crossref_primary_10_1039_D3CS00887H crossref_primary_10_1021_acsenergylett_3c00022 crossref_primary_10_1021_acscatal_2c02617 crossref_primary_10_1039_D3CC00451A |
Cites_doi | 10.1021/jacs.5b11986 10.1021/jacs.1c01190 10.1021/ja0580845 10.1039/C8TA11645H 10.1016/j.jpowsour.2011.08.103 10.1002/anie.202005577 10.1088/0268-1242/10/5/013 10.1021/jp202489s 10.1039/D0SC03047C 10.1039/C9TA11140A 10.1038/s41929-018-0084-7 10.1002/advs.201902989 10.1002/anie.201908735 10.1038/nmat4778 10.1038/s41467-018-03712-z 10.1016/0038-1098(79)91045-7 10.1002/adma.201802858 10.1016/0378-4363(80)90252-1 10.1038/s41467-021-24059-y 10.1038/s41467-019-10819-4 10.1021/jp1112729 10.1039/C9TA06285H 10.1002/cssc.201501197 10.4028/www.scientific.net/KEM.181-182.59 10.1038/s41929-019-0241-7 10.1039/C9CC10078D 10.1021/jacs.7b12506 10.1002/jcc.24300 10.1038/s41467-020-17120-9 10.1002/anie.202010903 10.1021/jacs.9b03215 10.1021/acsomega.0c01713 10.1103/PhysRevB.50.17953 10.1021/acs.nanolett.9b02782 10.1002/aenm.202001709 10.1002/adfm.202006704 10.1039/C8TA01367E 10.1002/anie.201806043 10.1103/PhysRevLett.77.3865 10.1002/cssc.202002785 10.1002/anie.201916538 10.1038/s41467-020-17403-1 10.1038/s41467-019-08805-x 10.1103/PhysRevB.47.558 10.1016/j.apcatb.2020.119383 10.1016/j.chempr.2017.05.011 10.1038/natrevmats.2016.9 10.1016/j.joule.2017.09.014 10.1021/acs.nanolett.0c02144 10.1021/acsenergylett.0c02165 10.1021/jacs.0c00971 10.1016/j.apcatb.2010.01.018 10.1021/acs.jpcc.9b11830 10.1021/jp8092513 10.1016/0013-4686(94)85172-7 10.1021/j100135a014 10.1016/j.joule.2017.09.003 10.1016/j.nanoen.2016.06.028 10.1016/j.ssc.2005.12.032 10.1039/c2ee21234j 10.1002/anie.201912348 10.1038/s41929-017-0009-x 10.1126/science.aba9778 10.1021/acs.iecr.7b03514 |
ContentType | Journal Article |
Copyright | The Author(s) 2021. corrected publication 2021 The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021. The Author(s). The Author(s) 2021, corrected publication 2021 |
Copyright_xml | – notice: The Author(s) 2021. corrected publication 2021 – notice: The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021. The Author(s). – notice: The Author(s) 2021, corrected publication 2021 |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-021-26124-y |
DatabaseName | Springer Nature OA Free Journals (WRLC) CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central (New) Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_1345b2ad459647b6b03ffcf27507ff73 PMC8492718 10_1038_s41467_021_26124_y |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c517t-98c3d46a1df0ca121f2521f57f8230dc17d72a378808ea08c787f055281f80203 |
IEDL.DBID | 7X7 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 00:52:15 EDT 2025 Thu Aug 21 13:43:09 EDT 2025 Thu Jul 10 19:28:18 EDT 2025 Wed Aug 13 11:25:18 EDT 2025 Tue Jul 01 04:17:36 EDT 2025 Thu Apr 24 22:52:19 EDT 2025 Fri Feb 21 02:39:13 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-98c3d46a1df0ca121f2521f57f8230dc17d72a378808ea08c787f055281f80203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2022-9147 0000-0002-8412-4953 0000-0002-3811-7509 0000-0002-4014-7838 0000-0002-7805-803X 0000-0002-0398-1196 0000-0002-5596-0776 0000-0002-5923-1722 0000-0001-5020-0340 |
OpenAccessLink | https://www.proquest.com/docview/2579207714?pq-origsite=%requestingapplication% |
PMID | 34611149 |
PQID | 2579207714 |
PQPubID | 546298 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1345b2ad459647b6b03ffcf27507ff73 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8492718 proquest_miscellaneous_2579626683 proquest_journals_2579207714 crossref_citationtrail_10_1038_s41467_021_26124_y crossref_primary_10_1038_s41467_021_26124_y springer_journals_10_1038_s41467_021_26124_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-05 |
PublicationDateYYYYMMDD | 2021-10-05 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Hao (CR55) 2019; 2 Shang (CR36) 2020; 59 Zhang (CR40) 2019; 19 Gou (CR28) 2006; 128 Niu (CR7) 2021; 143 Blöchl (CR59) 1994; 50 Maintz, Deringer, Tchougréeff, Dronskowski (CR63) 2016; 37 Aymerich, Meloni, Mula (CR52) 1980; 99 Mistry, Varela, Kühl, Strasser, Cuenya (CR2) 2016; 1 Grigioni (CR17) 2020; 6 Huang (CR25) 2016; 138 Xing (CR34) 2020; 7 Liu, Liu, Li (CR51) 2020; 124 Kwon (CR37) 2019; 7 Kresse, Hafner (CR58) 1993; 47 Luo, Xie, Li, Zhang, Züttel (CR39) 2019; 7 Deringer, Tchougréeff, Dronskowski (CR65) 2011; 115 Wang (CR14) 2020; 14 Tao (CR53) 2020; 5 Shen, Chen, Wang, Zhao, Guo (CR44) 2011; 196 Fan, Xia, Zhu, Lu, Wang (CR4) 2020; 11 Ma (CR32) 2021; 31 CR47 Gong (CR20) 2019; 10 Dronskowski, Bloechl (CR64) 1993; 97 García de Arquer (CR33) 2018; 30 Ye (CR12) 2020; 59 Wu, Sun, Zhou (CR22) 2016; 27 Yoo, Christensen, Vegge, Nørskov, Studt (CR61) 2016; 9 Jouny, Luc, Jiao (CR9) 2018; 57 Zhou (CR15) 2019; 58 Wu (CR48) 2021; 12 Han (CR13) 2018; 9 Shi (CR23) 2020; 11 Yuan (CR43) 2020; 56 Hori, Wakebe, Tsukamoto, Koga (CR11) 1994; 39 Aymerich, Meloni, Mula (CR30) 1979; 29 Tao, Mao, Dong, Xiao, Zhao (CR46) 2006; 137 Luc (CR50) 2019; 141 Zhang (CR42) 2018; 57 Wang (CR41) 2019; 7 Fu (CR31) 2010; 95 Perdew, Burke, Ernzerhof (CR60) 1996; 77 Jiang (CR8) 2018; 1 Yang (CR19) 2020; 10 Chen (CR5) 2020; 142 Ma (CR16) 2019; 10 Hu (CR49) 2017; 3 Liang (CR35) 2018; 6 Cao (CR21) 2020; 59 Montoya (CR1) 2017; 16 Ma, Kim, Chorkendorff, Seger (CR56) 2020; 11 Gao (CR3) 2020; 59 Bushuyev (CR10) 2018; 2 Jiang, Zhang, Jiang, Wu, Cai (CR62) 2018; 140 Lopez-Rivera, Martinez, Fontal, Giriat, Medina (CR45) 1995; 10 Zhuang (CR6) 2018; 1 Cheng (CR24) 2020; 20 Chen (CR27) 2009; 113 Wei (CR54) 2020; 369 Chai, Peng, Zeng, Zhang, Liu (CR26) 2011; 115 Kuhl, Cave, Abram, Jaramillo (CR57) 2012; 5 Otsuka, Seo, Koumoto (CR29) 2000; 181−182 Zheng (CR18) 2017; 1 Zhang (CR38) 2020; 279 Z Chen (26124_CR5) 2020; 142 I Grigioni (26124_CR17) 2020; 6 JP Perdew (26124_CR60) 1996; 77 M Ma (26124_CR56) 2020; 11 J Yang (26124_CR19) 2020; 10 Q Gong (26124_CR20) 2019; 10 W Luo (26124_CR39) 2019; 7 Y Shi (26124_CR23) 2020; 11 R Otsuka (26124_CR29) 2000; 181−182 F-Y Gao (26124_CR3) 2020; 59 OS Bushuyev (26124_CR10) 2018; 2 X Gou (26124_CR28) 2006; 128 X Fu (26124_CR31) 2010; 95 W Ma (26124_CR32) 2021; 31 F Aymerich (26124_CR52) 1980; 99 Y Hori (26124_CR11) 1994; 39 K Ye (26124_CR12) 2020; 59 KP Kuhl (26124_CR57) 2012; 5 C Cao (26124_CR21) 2020; 59 W Ma (26124_CR16) 2019; 10 Z-Z Niu (26124_CR7) 2021; 143 PE Blöchl (26124_CR59) 1994; 50 B Chai (26124_CR26) 2011; 115 JH Montoya (26124_CR1) 2017; 16 F Aymerich (26124_CR30) 1979; 29 A Zhang (26124_CR42) 2018; 57 J Wu (26124_CR22) 2016; 27 X Yuan (26124_CR43) 2020; 56 Y Wu (26124_CR48) 2021; 12 C Hu (26124_CR49) 2017; 3 M Jouny (26124_CR9) 2018; 57 S Shen (26124_CR44) 2011; 196 FP García de Arquer (26124_CR33) 2018; 30 C Liang (26124_CR35) 2018; 6 W Luc (26124_CR50) 2019; 141 H Tao (26124_CR46) 2006; 137 T-T Zhuang (26124_CR6) 2018; 1 L Fan (26124_CR4) 2020; 11 VL Deringer (26124_CR65) 2011; 115 H Shang (26124_CR36) 2020; 59 D Liu (26124_CR51) 2020; 124 H Cheng (26124_CR24) 2020; 20 Y-C Hao (26124_CR55) 2019; 2 Z-F Huang (26124_CR25) 2016; 138 J Wang (26124_CR41) 2019; 7 R Dronskowski (26124_CR64) 1993; 97 X Zhang (26124_CR38) 2020; 279 X Zheng (26124_CR18) 2017; 1 G Kresse (26124_CR58) 1993; 47 S Maintz (26124_CR63) 2016; 37 N Han (26124_CR13) 2018; 9 IS Kwon (26124_CR37) 2019; 7 A Zhang (26124_CR40) 2019; 19 JS Yoo (26124_CR61) 2016; 9 K Jiang (26124_CR8) 2018; 1 26124_CR47 B Jiang (26124_CR62) 2018; 140 SA Lopez-Rivera (26124_CR45) 1995; 10 Y Xing (26124_CR34) 2020; 7 Z Wang (26124_CR14) 2020; 14 T-R Wei (26124_CR54) 2020; 369 Z Chen (26124_CR27) 2009; 113 W Tao (26124_CR53) 2020; 5 H Mistry (26124_CR2) 2016; 1 J-H Zhou (26124_CR15) 2019; 58 |
References_xml | – volume: 138 start-page: 1359 year: 2016 end-page: 1365 ident: CR25 article-title: Hollow cobalt-based bimetallic sulfide polyhedra for efficient all-pH-value electrochemical and photocatalytic hydrogen evolution publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11986 – volume: 143 start-page: 8011 year: 2021 end-page: 8021 ident: CR7 article-title: Hierarchical copper with inherent hydrophobicity mitigates electrode flooding for high-rate CO electroreduction to multicarbon products publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c01190 – volume: 128 start-page: 7222 year: 2006 end-page: 7229 ident: CR28 article-title: Shape-controlled synthesis of ternary chalcogenide ZnIn S and CuIn(S,Se) nano-/microstructures via facile solution route publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0580845 – volume: 7 start-page: 4505 year: 2019 end-page: 4515 ident: CR39 article-title: 3D hierarchical porous indium catalyst for highly efficient electroreduction of CO publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11645H – volume: 196 start-page: 10112 year: 2011 end-page: 10119 ident: CR44 article-title: Microwave-assisted hydrothermal synthesis of transition-metal doped ZnIn2S4 and its photocatalytic activity for hydrogen evolution under visible light publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.08.103 – volume: 59 start-page: 15014 year: 2020 end-page: 15020 ident: CR21 article-title: Metal-organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202005577 – volume: 10 start-page: 645 year: 1995 end-page: 652 ident: CR45 article-title: Raman study of a ZnIn2S4 layered compound publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/10/5/013 – volume: 115 start-page: 5461 year: 2011 end-page: 5466 ident: CR65 article-title: Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets publication-title: J. Phys. Chem. A doi: 10.1021/jp202489s – volume: 11 start-page: 8854 year: 2020 end-page: 8861 ident: CR56 article-title: Role of ion-selective membranes in the carbon balance for CO electroreduction via gas diffusion electrode reactor designs publication-title: Chem. Sci. doi: 10.1039/D0SC03047C – volume: 7 start-page: 27514 year: 2019 end-page: 27521 ident: CR41 article-title: Heterostructured intermetallic CuSn catalysts: high performance towards the electrochemical reduction of CO to formate publication-title: J. Mater. Chem. A doi: 10.1039/C9TA11140A – volume: 1 start-page: 421 year: 2018 end-page: 428 ident: CR6 article-title: Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols publication-title: Nat. Catal. doi: 10.1038/s41929-018-0084-7 – volume: 7 start-page: 1902989 year: 2020 ident: CR34 article-title: Bi@Sn core–shell structure with compressive strain boosts the electroreduction of CO into formic acid publication-title: Adv. Sci. doi: 10.1002/advs.201902989 – volume: 58 start-page: 14197 year: 2019 end-page: 14201 ident: CR15 article-title: Boosting electrochemical reduction of CO at a low overpotential by amorphous Ag−Bi−S−O decorated Bi nanocrystals publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201908735 – volume: 16 start-page: 70 year: 2017 end-page: 81 ident: CR1 article-title: Materials for solar fuels and chemicals publication-title: Nat. Mater. doi: 10.1038/nmat4778 – volume: 9 year: 2018 ident: CR13 article-title: Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO reduction to formate publication-title: Nat. Commun. doi: 10.1038/s41467-018-03712-z – volume: 29 start-page: 235 year: 1979 end-page: 238 ident: CR30 article-title: Electron band structure of α-ZnIn S and related polytypes publication-title: Solid State Commun. doi: 10.1016/0038-1098(79)91045-7 – volume: 30 start-page: 1802858 year: 2018 ident: CR33 article-title: 2D metal oxyhalide-derived catalysts for efficient CO electroreduction publication-title: Adv. Mater. doi: 10.1002/adma.201802858 – volume: 99 start-page: 314 year: 1980 end-page: 317 ident: CR52 article-title: Electronic properties of the layer compound ZnIn2S4 publication-title: Phys. B+C. doi: 10.1016/0378-4363(80)90252-1 – volume: 12 year: 2021 ident: CR48 article-title: Converting copper sulfide to copper with surface sulfur for electrocatalytic alkyne semi-hydrogenation with water publication-title: Nat. Commun. doi: 10.1038/s41467-021-24059-y – volume: 10 year: 2019 ident: CR20 article-title: Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction publication-title: Nat. Commun. doi: 10.1038/s41467-019-10819-4 – volume: 115 start-page: 6149 year: 2011 end-page: 6155 ident: CR26 article-title: Template-free hydrothermal synthesis of ZnIn S floriated microsphere as an efficient photocatalyst for H production under visible-light irradiation publication-title: J. Phys. Chem. C. doi: 10.1021/jp1112729 – volume: 7 start-page: 22879 year: 2019 end-page: 22883 ident: CR37 article-title: Selective electrochemical reduction of carbon dioxide to formic acid using indium–zinc bimetallic nanocrystals publication-title: J. Mater. Chem. A doi: 10.1039/C9TA06285H – volume: 9 start-page: 358 year: 2016 end-page: 363 ident: CR61 article-title: Theoretical insight into the trends that guide the electrochemical reduction of carbon dioxide to formic acid publication-title: ChemSusChem doi: 10.1002/cssc.201501197 – volume: 181−182 start-page: 59 year: 2000 end-page: 62 ident: CR29 article-title: Thermoelectric properties of layer-structured (ZnS) In S publication-title: Key Eng. Mater. doi: 10.4028/www.scientific.net/KEM.181-182.59 – volume: 2 start-page: 448 year: 2019 end-page: 456 ident: CR55 article-title: Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water publication-title: Nat. Catal. doi: 10.1038/s41929-019-0241-7 – volume: 56 start-page: 4212 year: 2020 end-page: 4215 ident: CR43 article-title: Decoration of In nanoparticles on In S nanosheets enables efficient electrochemical reduction of CO publication-title: Chem. Commun. doi: 10.1039/C9CC10078D – volume: 140 start-page: 2880 year: 2018 end-page: 2889 ident: CR62 article-title: Boosting formate production in electrocatalytic CO reduction over wide potential window on Pd surfaces publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12506 – volume: 37 start-page: 1030 year: 2016 end-page: 1035 ident: CR63 article-title: LOBSTER: a tool to extract chemical bonding from plane-wave based DFT publication-title: J. Comput. Chem. doi: 10.1002/jcc.24300 – volume: 11 year: 2020 ident: CR23 article-title: Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to formate publication-title: Nat. Commun. doi: 10.1038/s41467-020-17120-9 – volume: 59 start-page: 22465 year: 2020 end-page: 22469 ident: CR36 article-title: Design of a single-atom indium -N interface for efficient electroreduction of CO to formate publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202010903 – volume: 141 start-page: 9902 year: 2019 end-page: 9909 ident: CR50 article-title: SO induced selectivity change in CO electroreduction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b03215 – volume: 5 start-page: 20090 year: 2020 end-page: 20099 ident: CR53 article-title: Electronic structure and oxidation mechanism of nickel–copper converter matte from first-principles calculations publication-title: ACS Omega doi: 10.1021/acsomega.0c01713 – volume: 50 start-page: 17953 year: 1994 end-page: 17979 ident: CR59 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 19 start-page: 6547 year: 2019 end-page: 6553 ident: CR40 article-title: Harmonizing the electronic structures of the adsorbate and catalysts for efficient CO reduction publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b02782 – volume: 10 start-page: 2001709 year: 2020 ident: CR19 article-title: Bi-based metal-organic framework derived leafy bismuth nanosheets for carbon dioxide electroreduction publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202001709 – volume: 31 start-page: 2006704 year: 2021 ident: CR32 article-title: Monoclinic Scheelite Bismuth Vanadate derived Bismuthene nanosheets with rapid kinetics for electrochemically reducing carbon dioxide to formate publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202006704 – volume: 6 start-page: 10313 year: 2018 end-page: 10319 ident: CR35 article-title: High efficiency electrochemical reduction of CO beyond the two-electron transfer pathway on grain boundary rich ultra-small SnO nanoparticles publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01367E – ident: CR47 – volume: 57 start-page: 10954 year: 2018 end-page: 10958 ident: CR42 article-title: Nickel doping in atomically thin tin disulfide nanosheets enables highly efficient CO reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201806043 – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: CR60 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 14 start-page: 852 year: 2020 end-page: 859 ident: CR14 article-title: Exfoliated ultrathin ZnIn S nanosheets with abundant zinc vacancies for enhanced CO electroreduction to formate publication-title: ChemSusChem doi: 10.1002/cssc.202002785 – volume: 59 start-page: 4814 year: 2020 end-page: 4821 ident: CR12 article-title: In situ reconstruction of a hierarchical Sn−Cu/SnOx core/shell catalyst for high-performance CO electroreduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201916538 – volume: 11 year: 2020 ident: CR4 article-title: Electrochemical CO reduction to high-concentration pure formic acid solutions in an all-solid-state reactor publication-title: Nat. Commun. doi: 10.1038/s41467-020-17403-1 – volume: 10 year: 2019 ident: CR16 article-title: Promoting electrocatalytic CO reduction to formate via sulfur-boosting water activation on indium surfaces publication-title: Nat. Commun. doi: 10.1038/s41467-019-08805-x – volume: 47 start-page: 558 year: 1993 end-page: 561 ident: CR58 article-title: Ab initio molecular dynamics for liquid metals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.558 – volume: 279 start-page: 119383 year: 2020 ident: CR38 article-title: Defects and conductive nitrogen−carbon framework regulated ZnInOx nanosheets for boosting CO electrocatalytic reduction publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2020.119383 – volume: 3 start-page: 122 year: 2017 end-page: 133 ident: CR49 article-title: In situ electrochemical production of ultrathin nickel nanosheets for hydrogen evolution electrocatalysis publication-title: Chem doi: 10.1016/j.chempr.2017.05.011 – volume: 1 start-page: 16009 year: 2016 ident: CR2 article-title: Nanostructured electrocatalysts with tunable activity and selectivity publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.9 – volume: 1 start-page: 794 year: 2017 end-page: 805 ident: CR18 article-title: Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO to formate publication-title: Joule doi: 10.1016/j.joule.2017.09.014 – volume: 20 start-page: 6097 year: 2020 end-page: 6103 ident: CR24 article-title: Surface nitrogen-injection engineering for high formation rate of CO reduction to formate publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c02144 – volume: 6 start-page: 79 year: 2020 end-page: 84 ident: CR17 article-title: CO2 electroreduction to formate at a partial current density of 930 mA cm with InP colloidal quantum dot derived catalysts publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c02165 – volume: 142 start-page: 6878 year: 2020 end-page: 6883 ident: CR5 article-title: Grain-boundary-rich copper for efficient solar-driven electrochemical CO reduction to ethylene and ethanol publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00971 – volume: 95 start-page: 393 year: 2010 end-page: 399 ident: CR31 article-title: Photocatalytic performance of tetragonal and cubic β-In S for the water splitting under visible light irradiation publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2010.01.018 – volume: 124 start-page: 6145 year: 2020 end-page: 6153 ident: CR51 article-title: Understanding how atomic sulfur controls the selectivity of the electroreduction of CO to formic acid on metallic Cu surfaces publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.9b11830 – volume: 113 start-page: 4433 year: 2009 end-page: 4440 ident: CR27 article-title: Photocatalytic degradation of dyes by ZnIn S microspheres under visible light irradiation publication-title: J. Phys. Chem. C. doi: 10.1021/jp8092513 – volume: 39 start-page: 1833 year: 1994 end-page: 1839 ident: CR11 article-title: Electrocatalytic process of CO selectivity in electrochemical reduction of CO at metal electrodes in aqueous media publication-title: Electrochim. Acta doi: 10.1016/0013-4686(94)85172-7 – volume: 97 start-page: 8617 year: 1993 end-page: 8624 ident: CR64 article-title: Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations publication-title: J. Phys. Chem. doi: 10.1021/j100135a014 – volume: 2 start-page: 825 year: 2018 end-page: 832 ident: CR10 article-title: What should we make with CO and how can we make it? publication-title: Joule doi: 10.1016/j.joule.2017.09.003 – volume: 27 start-page: 225 year: 2016 end-page: 229 ident: CR22 article-title: Origin of the performance degradation and implementation of stable tin electrodes for the conversion of CO to fuels publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.06.028 – volume: 137 start-page: 408 year: 2006 end-page: 412 ident: CR46 article-title: Raman scattering studies of the Ge–In sulfide glasses publication-title: Solid State Commun. doi: 10.1016/j.ssc.2005.12.032 – volume: 5 start-page: 7050 year: 2012 end-page: 7059 ident: CR57 article-title: New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces publication-title: Energy Environ. Sci. doi: 10.1039/c2ee21234j – volume: 59 start-page: 8706 year: 2020 end-page: 8712 ident: CR3 article-title: High-curvature transition-metal chalcogenide nanostructures with a pronounced proximity effect enable fast and selective CO electroreduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201912348 – volume: 1 start-page: 111 year: 2018 end-page: 119 ident: CR8 article-title: Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO reduction publication-title: Nat. Catal. doi: 10.1038/s41929-017-0009-x – volume: 369 start-page: 542 year: 2020 end-page: 545 ident: CR54 article-title: Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe publication-title: Science doi: 10.1126/science.aba9778 – volume: 57 start-page: 2165 year: 2018 end-page: 2177 ident: CR9 article-title: General techno-economic analysis of CO electrolysis systems publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b03514 – volume: 10 year: 2019 ident: 26124_CR16 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08805-x – volume: 11 year: 2020 ident: 26124_CR23 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17120-9 – volume: 57 start-page: 10954 year: 2018 ident: 26124_CR42 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201806043 – volume: 19 start-page: 6547 year: 2019 ident: 26124_CR40 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b02782 – volume: 7 start-page: 27514 year: 2019 ident: 26124_CR41 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA11140A – volume: 2 start-page: 825 year: 2018 ident: 26124_CR10 publication-title: Joule doi: 10.1016/j.joule.2017.09.003 – ident: 26124_CR47 – volume: 9 start-page: 358 year: 2016 ident: 26124_CR61 publication-title: ChemSusChem doi: 10.1002/cssc.201501197 – volume: 140 start-page: 2880 year: 2018 ident: 26124_CR62 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12506 – volume: 59 start-page: 4814 year: 2020 ident: 26124_CR12 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201916538 – volume: 31 start-page: 2006704 year: 2021 ident: 26124_CR32 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202006704 – volume: 56 start-page: 4212 year: 2020 ident: 26124_CR43 publication-title: Chem. Commun. doi: 10.1039/C9CC10078D – volume: 7 start-page: 4505 year: 2019 ident: 26124_CR39 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11645H – volume: 142 start-page: 6878 year: 2020 ident: 26124_CR5 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00971 – volume: 6 start-page: 79 year: 2020 ident: 26124_CR17 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c02165 – volume: 27 start-page: 225 year: 2016 ident: 26124_CR22 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.06.028 – volume: 141 start-page: 9902 year: 2019 ident: 26124_CR50 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b03215 – volume: 37 start-page: 1030 year: 2016 ident: 26124_CR63 publication-title: J. Comput. Chem. doi: 10.1002/jcc.24300 – volume: 58 start-page: 14197 year: 2019 ident: 26124_CR15 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201908735 – volume: 12 year: 2021 ident: 26124_CR48 publication-title: Nat. Commun. doi: 10.1038/s41467-021-24059-y – volume: 59 start-page: 15014 year: 2020 ident: 26124_CR21 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202005577 – volume: 95 start-page: 393 year: 2010 ident: 26124_CR31 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2010.01.018 – volume: 2 start-page: 448 year: 2019 ident: 26124_CR55 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0241-7 – volume: 113 start-page: 4433 year: 2009 ident: 26124_CR27 publication-title: J. Phys. Chem. C. doi: 10.1021/jp8092513 – volume: 10 start-page: 645 year: 1995 ident: 26124_CR45 publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/10/5/013 – volume: 39 start-page: 1833 year: 1994 ident: 26124_CR11 publication-title: Electrochim. Acta doi: 10.1016/0013-4686(94)85172-7 – volume: 128 start-page: 7222 year: 2006 ident: 26124_CR28 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0580845 – volume: 14 start-page: 852 year: 2020 ident: 26124_CR14 publication-title: ChemSusChem doi: 10.1002/cssc.202002785 – volume: 30 start-page: 1802858 year: 2018 ident: 26124_CR33 publication-title: Adv. Mater. doi: 10.1002/adma.201802858 – volume: 115 start-page: 6149 year: 2011 ident: 26124_CR26 publication-title: J. Phys. Chem. C. doi: 10.1021/jp1112729 – volume: 143 start-page: 8011 year: 2021 ident: 26124_CR7 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c01190 – volume: 77 start-page: 3865 year: 1996 ident: 26124_CR60 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 3 start-page: 122 year: 2017 ident: 26124_CR49 publication-title: Chem doi: 10.1016/j.chempr.2017.05.011 – volume: 1 start-page: 794 year: 2017 ident: 26124_CR18 publication-title: Joule doi: 10.1016/j.joule.2017.09.014 – volume: 7 start-page: 22879 year: 2019 ident: 26124_CR37 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA06285H – volume: 59 start-page: 8706 year: 2020 ident: 26124_CR3 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201912348 – volume: 7 start-page: 1902989 year: 2020 ident: 26124_CR34 publication-title: Adv. Sci. doi: 10.1002/advs.201902989 – volume: 181−182 start-page: 59 year: 2000 ident: 26124_CR29 publication-title: Key Eng. Mater. doi: 10.4028/www.scientific.net/KEM.181-182.59 – volume: 124 start-page: 6145 year: 2020 ident: 26124_CR51 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.9b11830 – volume: 137 start-page: 408 year: 2006 ident: 26124_CR46 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2005.12.032 – volume: 50 start-page: 17953 year: 1994 ident: 26124_CR59 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 138 start-page: 1359 year: 2016 ident: 26124_CR25 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11986 – volume: 5 start-page: 20090 year: 2020 ident: 26124_CR53 publication-title: ACS Omega doi: 10.1021/acsomega.0c01713 – volume: 10 start-page: 2001709 year: 2020 ident: 26124_CR19 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202001709 – volume: 10 year: 2019 ident: 26124_CR20 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10819-4 – volume: 11 year: 2020 ident: 26124_CR4 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17403-1 – volume: 369 start-page: 542 year: 2020 ident: 26124_CR54 publication-title: Science doi: 10.1126/science.aba9778 – volume: 16 start-page: 70 year: 2017 ident: 26124_CR1 publication-title: Nat. Mater. doi: 10.1038/nmat4778 – volume: 59 start-page: 22465 year: 2020 ident: 26124_CR36 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202010903 – volume: 1 start-page: 421 year: 2018 ident: 26124_CR6 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0084-7 – volume: 196 start-page: 10112 year: 2011 ident: 26124_CR44 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.08.103 – volume: 1 start-page: 16009 year: 2016 ident: 26124_CR2 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.9 – volume: 20 start-page: 6097 year: 2020 ident: 26124_CR24 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c02144 – volume: 29 start-page: 235 year: 1979 ident: 26124_CR30 publication-title: Solid State Commun. doi: 10.1016/0038-1098(79)91045-7 – volume: 99 start-page: 314 year: 1980 ident: 26124_CR52 publication-title: Phys. B+C. doi: 10.1016/0378-4363(80)90252-1 – volume: 57 start-page: 2165 year: 2018 ident: 26124_CR9 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b03514 – volume: 5 start-page: 7050 year: 2012 ident: 26124_CR57 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee21234j – volume: 11 start-page: 8854 year: 2020 ident: 26124_CR56 publication-title: Chem. Sci. doi: 10.1039/D0SC03047C – volume: 47 start-page: 558 year: 1993 ident: 26124_CR58 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.558 – volume: 279 start-page: 119383 year: 2020 ident: 26124_CR38 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2020.119383 – volume: 115 start-page: 5461 year: 2011 ident: 26124_CR65 publication-title: J. Phys. Chem. A doi: 10.1021/jp202489s – volume: 9 year: 2018 ident: 26124_CR13 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03712-z – volume: 97 start-page: 8617 year: 1993 ident: 26124_CR64 publication-title: J. Phys. Chem. doi: 10.1021/j100135a014 – volume: 1 start-page: 111 year: 2018 ident: 26124_CR8 publication-title: Nat. Catal. doi: 10.1038/s41929-017-0009-x – volume: 6 start-page: 10313 year: 2018 ident: 26124_CR35 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01367E |
SSID | ssj0000391844 |
Score | 2.661834 |
Snippet | Recently developed solid-state catalysts can mediate carbon dioxide (CO
2
) electroreduction to valuable products at high rates and selectivities. However,... Recently developed solid-state catalysts can mediate carbon dioxide (CO2) electroreduction to valuable products at high rates and selectivities. However, under... Developing durable catalysts for carbon dioxide reduction to formate at commercial-scale current densities is challenging. This work reports that indium... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5835 |
SubjectTerms | 639/301/299/886 639/638/161/886 639/638/298 Carbon dioxide Catalysts Current density Electrolysis Electrowinning Humanities and Social Sciences Indium Intermediates multidisciplinary Science Science (multidisciplinary) Sulfides Sulfur Zinc |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SELwUPypdWyWCt7o0n5vsUYulCNpLC72FbLKhhXaf9O07PP96Z5J9z25BvXjdTLLJZCYzYSa_IeRDDK2XXSNq1sS-Vso3ddvZUHPPfApWecnwcfK3783Zpfp6pa8elPrCnLACD1wYd8yl0p3wUWl8M9k1HZMphYSw5CYlk3E-weY9uEzlM1i2cHVR0ysZJu3xUuUzATMSEDVL1euZJcqA_TMv83GO5KNAabY_p8_J7uQ40k9lwi_Ik354SZ6WUpLrV8SD14h5rj-hM8U49OqOLle36Sb2FPxSenIu6FTy5h7RWnE_6LigxWftqR8pIhdTRI6g3ZrCOIEickMBOgbqPXJ5-uXi5KyeyifUQXMz1q0NMqrG85hY8FzwJMBWJ20SBtdi4CYa4RFPntneMxtAdxPTWlieLAYoX5OdYTH0-4TyaKRNplGJeSWitpx1LYwTvI9eBF0RvmGlCxO2OJa4uHU5xi2tK-x3wH6X2e_WFTna9vlRkDX-Sv0Zd2hLiajY-QPIiptkxf1LVipyuNlfN6nq0sGZ1QpmDFcVeb9tBiXDyIkf-sWq0MDNr7EwhJnJxWxC85bh5jrDdVvVCvAAKvJxI0G_f_7nBb_5Hws-IM8ESnxOeDgkO-P9qn8LTtTYvcv68gvWIBiW priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VIiQuFU-RUpCRuEHAr8TOASGoqCqkwoWVerMcO4ZK2yzsZiXCr8fjJItSlV7jsZPMwx5rZr4BeOldZUVd8pyWvsmltGVe1drlzFIbnJZWUCxOPvtSni7k5_PifA-mdkcjAzfXXu2wn9RivXzz-1f_Phr8u6FkXL_dyGTumGyAgFgy72_B7XgyKTTUs9HdTzuzqOKFRo61M9dPnZ1PCcZ_5ntezZy8Ej5Np9LJPTgY3UnyYZD_fdhr2gdwZ2gw2T8EG31JzH79EycTjE5vL8lmuwwXviHRWyXHXzkZG-GsEcMVpUS6FRk82YbYjiCeMUE8CVL3JK7jCOI5DPDHkfoRLE4-fTs-zcemCrkrmOrySjvhZWmZD9RZxlng8QQPhQoYcvOOKa-4RZR5qhtLtYsWHWhRcM2CxrDlY9hvV23zBAjzSuigShmoldwXmtG6ius4a73lrsiATaw0bkQcx8YXS5Mi30Kbgf0mst8k9ps-g1e7OT8HvI0bqT-ihHaUiJWdHqzW381oeoYJWdTcellg1W1d1lSE4AIC26sQlMjgaJKvmfTPxJ2s4lQpJjN4sRuOpofxFNs2q-1AE--DpY5LqJlezD5oPtJe_Egg3lpWPPoFGbyeNOjfy___w4c3f-tTuMtRl1OCwxHsd-tt8yw6TV39PFnCX_WhE8I priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals (WRLC) dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9UwEB_WFcGL-InVVSJ402K-kx714bII6sWFvYU0aXRh7ZP3-g7Pv95M2j7pooLXZpK2k5nMtDPzG4CXMTRetJrXVMeultLrumltqJmnPgUrvaBYnPzxkz47lx8u1MUR8LkWpiTtF0jLckzP2WFvtrKoNCYUIOiVrPc34CZCt6NUr_Tq8F8FEc-tlFN9DBX2D1MXNqhA9S_8y-vZkddCpMXynN6FO5PLSN6OD3kPjrr-Ptwam0juH4DP_iJmuP7MkwlGoHffyXZ3lS5jR7JHSlafOZma3WwQpxV3ggxrMnqrHfEDQcxigpgRpN2TvE4giNkwQhxn6odwfvr-y-qsnhon1EExM9SNDSJK7VlMNHjGWeLZSidlEobVYmAmGu4RSZ7azlMbstYmqhS3LFkMTT6C437dd4-BsGiETUbLRL3kUVlG2yavE7yPngdVAZtZ6cKEKo7NLa5ciW4L60b2u8x-V9jv9hW8Osz5MWJq_JP6He7QgRLxsMuF9earm-TDMSFVy32UCitrW91SkVJICF5vUjKigpN5f92kpFuXT6uGU2OYrODFYTirF8ZMfN-tdyNN_ubTNi9hFnKxeKDlSH_5rQB1W9nwbPsreD1L0O-b__2Fn_wf-VO4zVG2S1LDCRwPm133LDtKQ_u8aMYvA6gOmw priority: 102 providerName: Springer Nature |
Title | Stabilizing indium sulfide for CO2 electroreduction to formate at high rate by zinc incorporation |
URI | https://link.springer.com/article/10.1038/s41467-021-26124-y https://www.proquest.com/docview/2579207714 https://www.proquest.com/docview/2579626683 https://pubmed.ncbi.nlm.nih.gov/PMC8492718 https://doaj.org/article/1345b2ad459647b6b03ffcf27507ff73 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBddy2AvY-s25rULKvRtM5Vk2ZKfRhqalUC7sa2QNyFLVlfo7DZxHrK_fjpZSXFhfZFBX5alO-l8d_odQsfWlDqrCpaSwtYp57pIy0qalGqinZFcZwQuJ19cFudXfDbP51HhtoxulZs9MWzUtjWgIz_xpFUyIgTlX-7uU4gaBdbVGELjGdoD6DJw6RJzsdWxAPq55DzelSGZPFnysDOAXwJgZ_F0PTiPAmz_QNZ87Cn5yFwaTqHpK_Qyio943K_3a7RTN_voeR9Qcv0GaS87grfrX98YgzV69QcvV7fuxtbYS6d48o3hGPhmAZitsCq4a3EvudZYdxjwizHgR-BqjX0_BgN-Qw937Gu_RVfTs1-T8zQGUUhNTkWXltJklheaWkeMpow65k9slwsHJjZrqLCCaUCVJ7LWRBrPwY7kOZPUSTBTvkO7TdvU7xGmVmTSiYI7ojmzuaSkKn0_RmurmckTRDdTqUxEGIdAF7cqWLozqfrpV376VZh-tU7Qp22bux5f48nap7BC25qAjR0y2sW1iqymaMbzimnLc7hlWxUVyZwzDoDshXMiS9DhZn1VZNileiCvBB1tiz2rgf1EN3W76uv4_79C-i7EgC4GAxqWNDe_A2i35CXzckCCPm8o6OHl___gD0-P9QC9YEDLwaHhEO12i1X90QtJXTUKnOBTOf06Qnvj8eznzD9Pzy6___C5k2IyCuoHn15w-Q_fURcV |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFNNKWAkOEFU23Fi54AQFKotfXBppb0Zx46hUkna3axQ-FH8Rjx5bLWV6K3X-JFk_I099oy_AXjtbG6SIuMxzVwZC2GyOC-UjZmhxlslTELxcvLhUTY5EV-n6XQN_o53YTCscpwTu4na1RbPyLcDtHJOpWTiw_lFjFmj0Ls6ptDoYbFftr_Dlm3-fu9zGN83nO9-Od6ZxENWgdimTDZxrmziRGaY89QaxpnnYQnzqfToc3KWSSe5QZp1qkpDlQ2Q9jRNuWJeod8u9HsLboeFl6JGyalcnukg27oSYribQxO1PRfdTIRxEMjVJeJ2Zf3r0gSs2LZXIzOvuGe7VW_3AdwfzFXyscfXQ1grq0dwp09g2T4GE2xVjK79ExoT9H4vfpH54syfupIEa5jsfONkSLQzQ45YRAFpatJbyiUxDUG-ZIJ8FaRoSejHEuSL6OmVQ-0ncHIj4n0K61VdlRtAmJOJ8jITnhrBXaoYLfLQjzXGGW7TCNgoSm0HRnNMrHGmO896onQvfh3Erzvx6zaCt8s25z2fx7W1P-EILWsiF3f3oJ790INqa5aItODGiRRv9RZZQRPvrUfifOm9TCLYGsdXDxPEXF_COYJXy-Kg2uivMVVZL_o6Yb-ZqdCFXMHFygetllSnPzuScCVyHuyOCN6NCLp8-f9_ePP6b30JdyfHhwf6YO9o_xnc44jrLphiC9ab2aJ8Hgy0pnjRaQWB7zethv8AOZpLEg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4ilSChgJThCtn7FzQAhaVi2FwoFKezOOHUOlNim7WaHw0_h1ePLYaivRW6_xI8n4G3vsGX-D0AvvcsuLjKUk82UqhM3SvNAupZbY4LSwnMDl5M-H2d6R-DiTsw30d7wLA2GV45zYTdS-dnBGPonQyhlRiopJGMIivu5O3579SiGDFHhax3QaPUQOyvZ33L4t3uzvxrF-ydj0w7edvXTIMJA6SVWT5tpxLzJLfSDOUkYDi8tZkCqA_8k7qrxiFijXiS4t0S7COxApmaZBgw8v9nsNXVdcUtAxNVOr8x1gXtdCDPd0CNeThehmJYiJAN4ukbZra2GXMmDNzr0YpXnBVdutgNM76PZguuJ3Pdbuoo2yuodu9Mks2_vIRrsVIm3_xMYYPOHLU7xYnoRjX-JoGeOdLwwPSXfmwBcLiMBNjXurucS2wcCdjIG7Ahctjv04DNwRPdVyrP0AHV2JeB-izaquykcIU6-4DioTgVjBvNSUFHnsx1nrLXMyQXQUpXEDuzkk2TgxnZeda9OL30Txm078pk3Qq1Wbs57b49La72GEVjWBl7t7UM9_mEHNDeVCFsx6IeGGb5EVhIfgApDoqxAUT9D2OL5mmCwW5hzaCXq-Ko5qDr4bW5X1sq8T956Zjl2oNVysfdB6SXX8syMM1yJn0QZJ0OsRQecv__8Pb13-rc_QzaiA5tP-4cFjdIsBrLu4im202cyX5ZNoqzXF004pMPp-1Vr4D8HyT0g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stabilizing+indium+sulfide+for+CO2+electroreduction+to+formate+at+high+rate+by+zinc+incorporation&rft.jtitle=Nature+communications&rft.au=Li-Ping%2C+Chi&rft.au=Zhuang-Zhuang%2C+Niu&rft.au=Xiao-Long%2C+Zhang&rft.au=Peng-Peng%2C+Yang&rft.date=2021-10-05&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-021-26124-y&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |