Stabilizing indium sulfide for CO2 electroreduction to formate at high rate by zinc incorporation

Recently developed solid-state catalysts can mediate carbon dioxide (CO 2 ) electroreduction to valuable products at high rates and selectivities. However, under commercially relevant current densities of > 200 milliamperes per square centimeter (mA cm −2 ), catalysts often undergo particle agglo...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; pp. 5835 - 9
Main Authors Chi, Li-Ping, Niu, Zhuang-Zhuang, Zhang, Xiao-Long, Yang, Peng-Peng, Liao, Jie, Gao, Fei-Yue, Wu, Zhi-Zheng, Tang, Kai-Bin, Gao, Min-Rui
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.10.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently developed solid-state catalysts can mediate carbon dioxide (CO 2 ) electroreduction to valuable products at high rates and selectivities. However, under commercially relevant current densities of > 200 milliamperes per square centimeter (mA cm −2 ), catalysts often undergo particle agglomeration, active-phase change, and/or element dissolution, making the long-term operational stability a considerable challenge. Here we report an indium sulfide catalyst that is stabilized by adding zinc in the structure and shows dramatically improved stability. The obtained ZnIn 2 S 4 catalyst can reduce CO 2 to formate with 99.3% Faradaic efficiency at 300 mA cm −2 over 60 h of continuous operation without decay. By contrast, similarly synthesized indium sulfide without zinc participation deteriorates quickly under the same conditions. Combining experimental and theoretical studies, we unveil that the introduction of zinc largely enhances the covalency of In-S bonds, which “locks” sulfur—a catalytic site that can activate H 2 O to react with CO 2 , yielding HCOO* intermediates—from being dissolved during high-rate electrolysis. Developing durable catalysts for carbon dioxide reduction to formate at commercial-scale current densities is challenging. This work reports that indium sulfide stabilized through zinc incorporation can produce formate efficiently and quickly at high current densities over long timescales.
AbstractList Developing durable catalysts for carbon dioxide reduction to formate at commercial-scale current densities is challenging. This work reports that indium sulfide stabilized through zinc incorporation can produce formate efficiently and quickly at high current densities over long timescales.
Recently developed solid-state catalysts can mediate carbon dioxide (CO 2 ) electroreduction to valuable products at high rates and selectivities. However, under commercially relevant current densities of > 200 milliamperes per square centimeter (mA cm −2 ), catalysts often undergo particle agglomeration, active-phase change, and/or element dissolution, making the long-term operational stability a considerable challenge. Here we report an indium sulfide catalyst that is stabilized by adding zinc in the structure and shows dramatically improved stability. The obtained ZnIn 2 S 4 catalyst can reduce CO 2 to formate with 99.3% Faradaic efficiency at 300 mA cm −2 over 60 h of continuous operation without decay. By contrast, similarly synthesized indium sulfide without zinc participation deteriorates quickly under the same conditions. Combining experimental and theoretical studies, we unveil that the introduction of zinc largely enhances the covalency of In-S bonds, which “locks” sulfur—a catalytic site that can activate H 2 O to react with CO 2 , yielding HCOO* intermediates—from being dissolved during high-rate electrolysis. Developing durable catalysts for carbon dioxide reduction to formate at commercial-scale current densities is challenging. This work reports that indium sulfide stabilized through zinc incorporation can produce formate efficiently and quickly at high current densities over long timescales.
Recently developed solid-state catalysts can mediate carbon dioxide (CO2) electroreduction to valuable products at high rates and selectivities. However, under commercially relevant current densities of > 200 milliamperes per square centimeter (mA cm-2), catalysts often undergo particle agglomeration, active-phase change, and/or element dissolution, making the long-term operational stability a considerable challenge. Here we report an indium sulfide catalyst that is stabilized by adding zinc in the structure and shows dramatically improved stability. The obtained ZnIn2S4 catalyst can reduce CO2 to formate with 99.3% Faradaic efficiency at 300 mA cm-2 over 60 h of continuous operation without decay. By contrast, similarly synthesized indium sulfide without zinc participation deteriorates quickly under the same conditions. Combining experimental and theoretical studies, we unveil that the introduction of zinc largely enhances the covalency of In-S bonds, which "locks" sulfur-a catalytic site that can activate H2O to react with CO2, yielding HCOO* intermediates-from being dissolved during high-rate electrolysis.Recently developed solid-state catalysts can mediate carbon dioxide (CO2) electroreduction to valuable products at high rates and selectivities. However, under commercially relevant current densities of > 200 milliamperes per square centimeter (mA cm-2), catalysts often undergo particle agglomeration, active-phase change, and/or element dissolution, making the long-term operational stability a considerable challenge. Here we report an indium sulfide catalyst that is stabilized by adding zinc in the structure and shows dramatically improved stability. The obtained ZnIn2S4 catalyst can reduce CO2 to formate with 99.3% Faradaic efficiency at 300 mA cm-2 over 60 h of continuous operation without decay. By contrast, similarly synthesized indium sulfide without zinc participation deteriorates quickly under the same conditions. Combining experimental and theoretical studies, we unveil that the introduction of zinc largely enhances the covalency of In-S bonds, which "locks" sulfur-a catalytic site that can activate H2O to react with CO2, yielding HCOO* intermediates-from being dissolved during high-rate electrolysis.
Recently developed solid-state catalysts can mediate carbon dioxide (CO2) electroreduction to valuable products at high rates and selectivities. However, under commercially relevant current densities of > 200 milliamperes per square centimeter (mA cm−2), catalysts often undergo particle agglomeration, active-phase change, and/or element dissolution, making the long-term operational stability a considerable challenge. Here we report an indium sulfide catalyst that is stabilized by adding zinc in the structure and shows dramatically improved stability. The obtained ZnIn2S4 catalyst can reduce CO2 to formate with 99.3% Faradaic efficiency at 300 mA cm−2 over 60 h of continuous operation without decay. By contrast, similarly synthesized indium sulfide without zinc participation deteriorates quickly under the same conditions. Combining experimental and theoretical studies, we unveil that the introduction of zinc largely enhances the covalency of In-S bonds, which “locks” sulfur—a catalytic site that can activate H2O to react with CO2, yielding HCOO* intermediates—from being dissolved during high-rate electrolysis.Developing durable catalysts for carbon dioxide reduction to formate at commercial-scale current densities is challenging. This work reports that indium sulfide stabilized through zinc incorporation can produce formate efficiently and quickly at high current densities over long timescales.
Recently developed solid-state catalysts can mediate carbon dioxide (CO 2 ) electroreduction to valuable products at high rates and selectivities. However, under commercially relevant current densities of > 200 milliamperes per square centimeter (mA cm −2 ), catalysts often undergo particle agglomeration, active-phase change, and/or element dissolution, making the long-term operational stability a considerable challenge. Here we report an indium sulfide catalyst that is stabilized by adding zinc in the structure and shows dramatically improved stability. The obtained ZnIn 2 S 4 catalyst can reduce CO 2 to formate with 99.3% Faradaic efficiency at 300 mA cm −2 over 60 h of continuous operation without decay. By contrast, similarly synthesized indium sulfide without zinc participation deteriorates quickly under the same conditions. Combining experimental and theoretical studies, we unveil that the introduction of zinc largely enhances the covalency of In-S bonds, which “locks” sulfur—a catalytic site that can activate H 2 O to react with CO 2 , yielding HCOO* intermediates—from being dissolved during high-rate electrolysis.
ArticleNumber 5835
Author Niu, Zhuang-Zhuang
Zhang, Xiao-Long
Gao, Fei-Yue
Yang, Peng-Peng
Wu, Zhi-Zheng
Liao, Jie
Tang, Kai-Bin
Chi, Li-Ping
Gao, Min-Rui
Author_xml – sequence: 1
  givenname: Li-Ping
  orcidid: 0000-0001-5020-0340
  surname: Chi
  fullname: Chi, Li-Ping
  organization: Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China
– sequence: 2
  givenname: Zhuang-Zhuang
  orcidid: 0000-0002-8412-4953
  surname: Niu
  fullname: Niu, Zhuang-Zhuang
  organization: Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China
– sequence: 3
  givenname: Xiao-Long
  orcidid: 0000-0002-5596-0776
  surname: Zhang
  fullname: Zhang, Xiao-Long
  organization: Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China
– sequence: 4
  givenname: Peng-Peng
  orcidid: 0000-0002-5923-1722
  surname: Yang
  fullname: Yang, Peng-Peng
  organization: Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China
– sequence: 5
  givenname: Jie
  orcidid: 0000-0002-4014-7838
  surname: Liao
  fullname: Liao, Jie
  organization: Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China
– sequence: 6
  givenname: Fei-Yue
  orcidid: 0000-0002-3811-7509
  surname: Gao
  fullname: Gao, Fei-Yue
  organization: Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China
– sequence: 7
  givenname: Zhi-Zheng
  orcidid: 0000-0003-2022-9147
  surname: Wu
  fullname: Wu, Zhi-Zheng
  organization: Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China
– sequence: 8
  givenname: Kai-Bin
  orcidid: 0000-0002-0398-1196
  surname: Tang
  fullname: Tang, Kai-Bin
  email: kbtang@ustc.edu.cn
  organization: Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China
– sequence: 9
  givenname: Min-Rui
  orcidid: 0000-0002-7805-803X
  surname: Gao
  fullname: Gao, Min-Rui
  email: mgao@ustc.edu.cn
  organization: Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China
BookMark eNp9kstu3CAUhlGVqrk0L9CVpW66ccoBbPCmUjXqJVKkLNquEebiYWSbKeBK06cvM07VJouw4HLO_38H0LlEZ3OYLUJvAN8ApuJ9YsBaXmMCNWmBsPrwAl0QzKAGTujZf_tzdJ3SDpdBOxCMvULnlLUAwLoLpL5l1fvR__bzUPnZ-GWq0jI6b2zlQqw296Syo9U5hmjNorMPc5XDMTepbCuVq60ftlU8HvpDVTi6cHSI-1BiRf0avXRqTPb6Yb1CPz5_-r75Wt_df7ndfLyrdQM8153Q1LBWgXFYKyDgSFOmhjtBKDYauOFEUS4EFlZhobngDjcNEeAEJpheoduVa4LayX30k4oHGZSXp0CIg1Qxez1aCZQ1PVGGNV3LeN_2mDqnHeEN5s5xWlgfVtZ-6SdrtJ1zVOMj6OPM7LdyCL-kYB3hIArg3QMghp-LTVlOPmk7jmq2YUmSNLxrSduKY623T6S7sMS5fNVJRTDnwIpKrCodQ0rROql9Pv1vqe9HCVge20KubSFLW8hTW8hDsZIn1r_veNZEV1Mq4nmw8d-tnnH9AYh4yxw
CitedBy_id crossref_primary_10_1002_anie_202412144
crossref_primary_10_1016_j_cej_2024_149987
crossref_primary_10_1002_smll_202303172
crossref_primary_10_1002_smm2_1109
crossref_primary_10_1002_sstr_202400548
crossref_primary_10_1016_j_susmat_2025_e01260
crossref_primary_10_1021_acscatal_2c06135
crossref_primary_10_1002_sus2_185
crossref_primary_10_1002_aenm_202404178
crossref_primary_10_1016_j_ccr_2022_214970
crossref_primary_10_1016_j_jece_2023_111645
crossref_primary_10_1016_j_cej_2024_150051
crossref_primary_10_1021_acsami_3c11342
crossref_primary_10_1016_j_mtphys_2023_101250
crossref_primary_10_1039_D1CY01378E
crossref_primary_10_1021_acsnano_3c01059
crossref_primary_10_1021_jacs_2c13384
crossref_primary_10_1039_D4SC06172A
crossref_primary_10_1021_acscatal_2c05957
crossref_primary_10_1016_j_nanoen_2022_107865
crossref_primary_10_1016_j_cej_2025_161232
crossref_primary_10_1039_D3NR05344J
crossref_primary_10_1016_j_joule_2024_03_008
crossref_primary_10_1016_j_ijhydene_2024_02_291
crossref_primary_10_1016_j_apsusc_2022_155696
crossref_primary_10_1016_j_jcat_2023_115125
crossref_primary_10_1002_anie_202425195
crossref_primary_10_1002_anie_202200552
crossref_primary_10_1039_D4TA05122J
crossref_primary_10_1002_smm2_1086
crossref_primary_10_1039_D3TA05144G
crossref_primary_10_1002_cey2_362
crossref_primary_10_1021_acssuschemeng_3c00230
crossref_primary_10_1016_j_jechem_2024_11_032
crossref_primary_10_1002_smll_202400191
crossref_primary_10_1021_acssuschemeng_3c08233
crossref_primary_10_1002_smll_202306795
crossref_primary_10_1016_j_jechem_2025_01_041
crossref_primary_10_1021_acsenergylett_3c00489
crossref_primary_10_1002_aenm_202301597
crossref_primary_10_1002_ange_202412452
crossref_primary_10_1016_j_mtchem_2024_102457
crossref_primary_10_1016_j_esci_2023_100172
crossref_primary_10_1016_j_jcis_2024_03_137
crossref_primary_10_1021_acs_nanolett_4c03067
crossref_primary_10_1039_D2CP05761A
crossref_primary_10_1002_ange_202200552
crossref_primary_10_1016_j_apcata_2024_119828
crossref_primary_10_1002_adma_202412299
crossref_primary_10_1002_anie_202304050
crossref_primary_10_1002_adfm_202425606
crossref_primary_10_1021_acscatal_4c02619
crossref_primary_10_1021_jacs_2c12952
crossref_primary_10_1039_D3SE00103B
crossref_primary_10_1002_ange_202425195
crossref_primary_10_1016_j_ces_2022_118354
crossref_primary_10_1016_j_surfin_2024_105163
crossref_primary_10_1016_j_ces_2023_118838
crossref_primary_10_1021_acscatal_2c02549
crossref_primary_10_1021_acsestengg_4c00720
crossref_primary_10_1016_j_apcatb_2023_122880
crossref_primary_10_1002_ange_202412144
crossref_primary_10_1016_j_jechem_2024_09_057
crossref_primary_10_1002_ange_202304050
crossref_primary_10_1002_anie_202305530
crossref_primary_10_1126_sciadv_adi6119
crossref_primary_10_1007_s12598_022_02212_w
crossref_primary_10_1002_smll_202201311
crossref_primary_10_1002_smll_202305562
crossref_primary_10_3390_app13053023
crossref_primary_10_1016_j_mtsust_2025_101089
crossref_primary_10_1021_acscatal_2c06228
crossref_primary_10_1007_s12274_022_4664_0
crossref_primary_10_1002_adfm_202408977
crossref_primary_10_1039_D3QI02499G
crossref_primary_10_1002_smll_202301128
crossref_primary_10_1016_j_mtcata_2023_100009
crossref_primary_10_1039_D3EE00635B
crossref_primary_10_1039_D3QM00835E
crossref_primary_10_1002_ange_202305530
crossref_primary_10_1038_s41467_022_34278_6
crossref_primary_10_1021_acsami_1c23430
crossref_primary_10_1002_smtd_202401157
crossref_primary_10_1039_D4SU00069B
crossref_primary_10_3390_catal15030203
crossref_primary_10_1021_acsami_3c05892
crossref_primary_10_1007_s12274_022_4844_y
crossref_primary_10_1021_jacs_2c10351
crossref_primary_10_1039_D3QM00364G
crossref_primary_10_1007_s12598_024_02722_9
crossref_primary_10_1002_ange_202310740
crossref_primary_10_1021_acsenergylett_5c00079
crossref_primary_10_1002_inf2_12375
crossref_primary_10_1021_acsami_4c21829
crossref_primary_10_1021_acs_analchem_4c03215
crossref_primary_10_1039_D4TA04145C
crossref_primary_10_1021_acs_jpcc_2c05399
crossref_primary_10_1021_acssuschemeng_2c02919
crossref_primary_10_1016_j_cej_2022_138260
crossref_primary_10_1016_j_apsusc_2023_157210
crossref_primary_10_1038_s41467_024_51475_7
crossref_primary_10_3389_fchem_2022_983778
crossref_primary_10_1039_D4CS00229F
crossref_primary_10_1002_ange_202307612
crossref_primary_10_1016_j_jcou_2022_102331
crossref_primary_10_1039_D2NR06638F
crossref_primary_10_1021_acsami_4c04437
crossref_primary_10_1039_D3CY00236E
crossref_primary_10_1002_smtd_202300957
crossref_primary_10_1016_j_jechem_2022_12_022
crossref_primary_10_1016_j_jes_2024_03_017
crossref_primary_10_1039_D3TA00628J
crossref_primary_10_1007_s40843_024_2835_3
crossref_primary_10_1007_s10562_024_04663_5
crossref_primary_10_1002_adma_202402979
crossref_primary_10_1016_j_jallcom_2023_172772
crossref_primary_10_1007_s41061_024_00487_4
crossref_primary_10_1002_sstr_202300323
crossref_primary_10_1002_adma_202306288
crossref_primary_10_1021_acsnano_4c10943
crossref_primary_10_1021_acscatal_2c02627
crossref_primary_10_1002_anie_202412452
crossref_primary_10_1021_jacs_4c05813
crossref_primary_10_1002_anie_202307612
crossref_primary_10_1073_pnas_2312876120
crossref_primary_10_1039_D2CS00849A
crossref_primary_10_1016_j_greenca_2024_02_003
crossref_primary_10_1016_j_jallcom_2023_170514
crossref_primary_10_1039_D3SE00651D
crossref_primary_10_1016_j_jechem_2023_08_031
crossref_primary_10_1002_anie_202408412
crossref_primary_10_1002_anie_202310740
crossref_primary_10_1016_j_cclet_2022_107775
crossref_primary_10_1016_j_jece_2022_109171
crossref_primary_10_1021_acscatal_2c04088
crossref_primary_10_1016_j_cej_2024_156455
crossref_primary_10_1002_aenm_202202054
crossref_primary_10_1002_ange_202408412
crossref_primary_10_1039_D3CS00887H
crossref_primary_10_1021_acsenergylett_3c00022
crossref_primary_10_1021_acscatal_2c02617
crossref_primary_10_1039_D3CC00451A
Cites_doi 10.1021/jacs.5b11986
10.1021/jacs.1c01190
10.1021/ja0580845
10.1039/C8TA11645H
10.1016/j.jpowsour.2011.08.103
10.1002/anie.202005577
10.1088/0268-1242/10/5/013
10.1021/jp202489s
10.1039/D0SC03047C
10.1039/C9TA11140A
10.1038/s41929-018-0084-7
10.1002/advs.201902989
10.1002/anie.201908735
10.1038/nmat4778
10.1038/s41467-018-03712-z
10.1016/0038-1098(79)91045-7
10.1002/adma.201802858
10.1016/0378-4363(80)90252-1
10.1038/s41467-021-24059-y
10.1038/s41467-019-10819-4
10.1021/jp1112729
10.1039/C9TA06285H
10.1002/cssc.201501197
10.4028/www.scientific.net/KEM.181-182.59
10.1038/s41929-019-0241-7
10.1039/C9CC10078D
10.1021/jacs.7b12506
10.1002/jcc.24300
10.1038/s41467-020-17120-9
10.1002/anie.202010903
10.1021/jacs.9b03215
10.1021/acsomega.0c01713
10.1103/PhysRevB.50.17953
10.1021/acs.nanolett.9b02782
10.1002/aenm.202001709
10.1002/adfm.202006704
10.1039/C8TA01367E
10.1002/anie.201806043
10.1103/PhysRevLett.77.3865
10.1002/cssc.202002785
10.1002/anie.201916538
10.1038/s41467-020-17403-1
10.1038/s41467-019-08805-x
10.1103/PhysRevB.47.558
10.1016/j.apcatb.2020.119383
10.1016/j.chempr.2017.05.011
10.1038/natrevmats.2016.9
10.1016/j.joule.2017.09.014
10.1021/acs.nanolett.0c02144
10.1021/acsenergylett.0c02165
10.1021/jacs.0c00971
10.1016/j.apcatb.2010.01.018
10.1021/acs.jpcc.9b11830
10.1021/jp8092513
10.1016/0013-4686(94)85172-7
10.1021/j100135a014
10.1016/j.joule.2017.09.003
10.1016/j.nanoen.2016.06.028
10.1016/j.ssc.2005.12.032
10.1039/c2ee21234j
10.1002/anie.201912348
10.1038/s41929-017-0009-x
10.1126/science.aba9778
10.1021/acs.iecr.7b03514
ContentType Journal Article
Copyright The Author(s) 2021. corrected publication 2021
The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021. The Author(s).
The Author(s) 2021, corrected publication 2021
Copyright_xml – notice: The Author(s) 2021. corrected publication 2021
– notice: The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021. The Author(s).
– notice: The Author(s) 2021, corrected publication 2021
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-021-26124-y
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (New)
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 9
ExternalDocumentID oai_doaj_org_article_1345b2ad459647b6b03ffcf27507ff73
PMC8492718
10_1038_s41467_021_26124_y
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c517t-98c3d46a1df0ca121f2521f57f8230dc17d72a378808ea08c787f055281f80203
IEDL.DBID 7X7
ISSN 2041-1723
IngestDate Wed Aug 27 00:52:15 EDT 2025
Thu Aug 21 13:43:09 EDT 2025
Thu Jul 10 19:28:18 EDT 2025
Wed Aug 13 11:25:18 EDT 2025
Tue Jul 01 04:17:36 EDT 2025
Thu Apr 24 22:52:19 EDT 2025
Fri Feb 21 02:39:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-98c3d46a1df0ca121f2521f57f8230dc17d72a378808ea08c787f055281f80203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2022-9147
0000-0002-8412-4953
0000-0002-3811-7509
0000-0002-4014-7838
0000-0002-7805-803X
0000-0002-0398-1196
0000-0002-5596-0776
0000-0002-5923-1722
0000-0001-5020-0340
OpenAccessLink https://www.proquest.com/docview/2579207714?pq-origsite=%requestingapplication%
PMID 34611149
PQID 2579207714
PQPubID 546298
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_1345b2ad459647b6b03ffcf27507ff73
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8492718
proquest_miscellaneous_2579626683
proquest_journals_2579207714
crossref_citationtrail_10_1038_s41467_021_26124_y
crossref_primary_10_1038_s41467_021_26124_y
springer_journals_10_1038_s41467_021_26124_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-05
PublicationDateYYYYMMDD 2021-10-05
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Hao (CR55) 2019; 2
Shang (CR36) 2020; 59
Zhang (CR40) 2019; 19
Gou (CR28) 2006; 128
Niu (CR7) 2021; 143
Blöchl (CR59) 1994; 50
Maintz, Deringer, Tchougréeff, Dronskowski (CR63) 2016; 37
Aymerich, Meloni, Mula (CR52) 1980; 99
Mistry, Varela, Kühl, Strasser, Cuenya (CR2) 2016; 1
Grigioni (CR17) 2020; 6
Huang (CR25) 2016; 138
Xing (CR34) 2020; 7
Liu, Liu, Li (CR51) 2020; 124
Kwon (CR37) 2019; 7
Kresse, Hafner (CR58) 1993; 47
Luo, Xie, Li, Zhang, Züttel (CR39) 2019; 7
Deringer, Tchougréeff, Dronskowski (CR65) 2011; 115
Wang (CR14) 2020; 14
Tao (CR53) 2020; 5
Shen, Chen, Wang, Zhao, Guo (CR44) 2011; 196
Fan, Xia, Zhu, Lu, Wang (CR4) 2020; 11
Ma (CR32) 2021; 31
CR47
Gong (CR20) 2019; 10
Dronskowski, Bloechl (CR64) 1993; 97
García de Arquer (CR33) 2018; 30
Ye (CR12) 2020; 59
Wu, Sun, Zhou (CR22) 2016; 27
Yoo, Christensen, Vegge, Nørskov, Studt (CR61) 2016; 9
Jouny, Luc, Jiao (CR9) 2018; 57
Zhou (CR15) 2019; 58
Wu (CR48) 2021; 12
Han (CR13) 2018; 9
Shi (CR23) 2020; 11
Yuan (CR43) 2020; 56
Hori, Wakebe, Tsukamoto, Koga (CR11) 1994; 39
Aymerich, Meloni, Mula (CR30) 1979; 29
Tao, Mao, Dong, Xiao, Zhao (CR46) 2006; 137
Luc (CR50) 2019; 141
Zhang (CR42) 2018; 57
Wang (CR41) 2019; 7
Fu (CR31) 2010; 95
Perdew, Burke, Ernzerhof (CR60) 1996; 77
Jiang (CR8) 2018; 1
Yang (CR19) 2020; 10
Chen (CR5) 2020; 142
Ma (CR16) 2019; 10
Hu (CR49) 2017; 3
Liang (CR35) 2018; 6
Cao (CR21) 2020; 59
Montoya (CR1) 2017; 16
Ma, Kim, Chorkendorff, Seger (CR56) 2020; 11
Gao (CR3) 2020; 59
Bushuyev (CR10) 2018; 2
Jiang, Zhang, Jiang, Wu, Cai (CR62) 2018; 140
Lopez-Rivera, Martinez, Fontal, Giriat, Medina (CR45) 1995; 10
Zhuang (CR6) 2018; 1
Cheng (CR24) 2020; 20
Chen (CR27) 2009; 113
Wei (CR54) 2020; 369
Chai, Peng, Zeng, Zhang, Liu (CR26) 2011; 115
Kuhl, Cave, Abram, Jaramillo (CR57) 2012; 5
Otsuka, Seo, Koumoto (CR29) 2000; 181−182
Zheng (CR18) 2017; 1
Zhang (CR38) 2020; 279
Z Chen (26124_CR5) 2020; 142
I Grigioni (26124_CR17) 2020; 6
JP Perdew (26124_CR60) 1996; 77
M Ma (26124_CR56) 2020; 11
J Yang (26124_CR19) 2020; 10
Q Gong (26124_CR20) 2019; 10
W Luo (26124_CR39) 2019; 7
Y Shi (26124_CR23) 2020; 11
R Otsuka (26124_CR29) 2000; 181−182
F-Y Gao (26124_CR3) 2020; 59
OS Bushuyev (26124_CR10) 2018; 2
X Gou (26124_CR28) 2006; 128
X Fu (26124_CR31) 2010; 95
W Ma (26124_CR32) 2021; 31
F Aymerich (26124_CR52) 1980; 99
Y Hori (26124_CR11) 1994; 39
K Ye (26124_CR12) 2020; 59
KP Kuhl (26124_CR57) 2012; 5
C Cao (26124_CR21) 2020; 59
W Ma (26124_CR16) 2019; 10
Z-Z Niu (26124_CR7) 2021; 143
PE Blöchl (26124_CR59) 1994; 50
B Chai (26124_CR26) 2011; 115
JH Montoya (26124_CR1) 2017; 16
F Aymerich (26124_CR30) 1979; 29
A Zhang (26124_CR42) 2018; 57
J Wu (26124_CR22) 2016; 27
X Yuan (26124_CR43) 2020; 56
Y Wu (26124_CR48) 2021; 12
C Hu (26124_CR49) 2017; 3
M Jouny (26124_CR9) 2018; 57
S Shen (26124_CR44) 2011; 196
FP García de Arquer (26124_CR33) 2018; 30
C Liang (26124_CR35) 2018; 6
W Luc (26124_CR50) 2019; 141
H Tao (26124_CR46) 2006; 137
T-T Zhuang (26124_CR6) 2018; 1
L Fan (26124_CR4) 2020; 11
VL Deringer (26124_CR65) 2011; 115
H Shang (26124_CR36) 2020; 59
D Liu (26124_CR51) 2020; 124
H Cheng (26124_CR24) 2020; 20
Y-C Hao (26124_CR55) 2019; 2
Z-F Huang (26124_CR25) 2016; 138
J Wang (26124_CR41) 2019; 7
R Dronskowski (26124_CR64) 1993; 97
X Zhang (26124_CR38) 2020; 279
X Zheng (26124_CR18) 2017; 1
G Kresse (26124_CR58) 1993; 47
S Maintz (26124_CR63) 2016; 37
N Han (26124_CR13) 2018; 9
IS Kwon (26124_CR37) 2019; 7
A Zhang (26124_CR40) 2019; 19
JS Yoo (26124_CR61) 2016; 9
K Jiang (26124_CR8) 2018; 1
26124_CR47
B Jiang (26124_CR62) 2018; 140
SA Lopez-Rivera (26124_CR45) 1995; 10
Y Xing (26124_CR34) 2020; 7
Z Wang (26124_CR14) 2020; 14
T-R Wei (26124_CR54) 2020; 369
Z Chen (26124_CR27) 2009; 113
W Tao (26124_CR53) 2020; 5
H Mistry (26124_CR2) 2016; 1
J-H Zhou (26124_CR15) 2019; 58
References_xml – volume: 138
  start-page: 1359
  year: 2016
  end-page: 1365
  ident: CR25
  article-title: Hollow cobalt-based bimetallic sulfide polyhedra for efficient all-pH-value electrochemical and photocatalytic hydrogen evolution
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11986
– volume: 143
  start-page: 8011
  year: 2021
  end-page: 8021
  ident: CR7
  article-title: Hierarchical copper with inherent hydrophobicity mitigates electrode flooding for high-rate CO electroreduction to multicarbon products
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c01190
– volume: 128
  start-page: 7222
  year: 2006
  end-page: 7229
  ident: CR28
  article-title: Shape-controlled synthesis of ternary chalcogenide ZnIn S and CuIn(S,Se) nano-/microstructures via facile solution route
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0580845
– volume: 7
  start-page: 4505
  year: 2019
  end-page: 4515
  ident: CR39
  article-title: 3D hierarchical porous indium catalyst for highly efficient electroreduction of CO
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA11645H
– volume: 196
  start-page: 10112
  year: 2011
  end-page: 10119
  ident: CR44
  article-title: Microwave-assisted hydrothermal synthesis of transition-metal doped ZnIn2S4 and its photocatalytic activity for hydrogen evolution under visible light
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.08.103
– volume: 59
  start-page: 15014
  year: 2020
  end-page: 15020
  ident: CR21
  article-title: Metal-organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202005577
– volume: 10
  start-page: 645
  year: 1995
  end-page: 652
  ident: CR45
  article-title: Raman study of a ZnIn2S4 layered compound
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/10/5/013
– volume: 115
  start-page: 5461
  year: 2011
  end-page: 5466
  ident: CR65
  article-title: Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp202489s
– volume: 11
  start-page: 8854
  year: 2020
  end-page: 8861
  ident: CR56
  article-title: Role of ion-selective membranes in the carbon balance for CO electroreduction via gas diffusion electrode reactor designs
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC03047C
– volume: 7
  start-page: 27514
  year: 2019
  end-page: 27521
  ident: CR41
  article-title: Heterostructured intermetallic CuSn catalysts: high performance towards the electrochemical reduction of CO to formate
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA11140A
– volume: 1
  start-page: 421
  year: 2018
  end-page: 428
  ident: CR6
  article-title: Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0084-7
– volume: 7
  start-page: 1902989
  year: 2020
  ident: CR34
  article-title: Bi@Sn core–shell structure with compressive strain boosts the electroreduction of CO into formic acid
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201902989
– volume: 58
  start-page: 14197
  year: 2019
  end-page: 14201
  ident: CR15
  article-title: Boosting electrochemical reduction of CO at a low overpotential by amorphous Ag−Bi−S−O decorated Bi nanocrystals
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201908735
– volume: 16
  start-page: 70
  year: 2017
  end-page: 81
  ident: CR1
  article-title: Materials for solar fuels and chemicals
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4778
– volume: 9
  year: 2018
  ident: CR13
  article-title: Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO reduction to formate
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03712-z
– volume: 29
  start-page: 235
  year: 1979
  end-page: 238
  ident: CR30
  article-title: Electron band structure of α-ZnIn S and related polytypes
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(79)91045-7
– volume: 30
  start-page: 1802858
  year: 2018
  ident: CR33
  article-title: 2D metal oxyhalide-derived catalysts for efficient CO electroreduction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802858
– volume: 99
  start-page: 314
  year: 1980
  end-page: 317
  ident: CR52
  article-title: Electronic properties of the layer compound ZnIn2S4
  publication-title: Phys. B+C.
  doi: 10.1016/0378-4363(80)90252-1
– volume: 12
  year: 2021
  ident: CR48
  article-title: Converting copper sulfide to copper with surface sulfur for electrocatalytic alkyne semi-hydrogenation with water
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24059-y
– volume: 10
  year: 2019
  ident: CR20
  article-title: Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10819-4
– volume: 115
  start-page: 6149
  year: 2011
  end-page: 6155
  ident: CR26
  article-title: Template-free hydrothermal synthesis of ZnIn S floriated microsphere as an efficient photocatalyst for H production under visible-light irradiation
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp1112729
– volume: 7
  start-page: 22879
  year: 2019
  end-page: 22883
  ident: CR37
  article-title: Selective electrochemical reduction of carbon dioxide to formic acid using indium–zinc bimetallic nanocrystals
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA06285H
– volume: 9
  start-page: 358
  year: 2016
  end-page: 363
  ident: CR61
  article-title: Theoretical insight into the trends that guide the electrochemical reduction of carbon dioxide to formic acid
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201501197
– volume: 181−182
  start-page: 59
  year: 2000
  end-page: 62
  ident: CR29
  article-title: Thermoelectric properties of layer-structured (ZnS) In S
  publication-title: Key Eng. Mater.
  doi: 10.4028/www.scientific.net/KEM.181-182.59
– volume: 2
  start-page: 448
  year: 2019
  end-page: 456
  ident: CR55
  article-title: Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0241-7
– volume: 56
  start-page: 4212
  year: 2020
  end-page: 4215
  ident: CR43
  article-title: Decoration of In nanoparticles on In S nanosheets enables efficient electrochemical reduction of CO
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC10078D
– volume: 140
  start-page: 2880
  year: 2018
  end-page: 2889
  ident: CR62
  article-title: Boosting formate production in electrocatalytic CO reduction over wide potential window on Pd surfaces
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12506
– volume: 37
  start-page: 1030
  year: 2016
  end-page: 1035
  ident: CR63
  article-title: LOBSTER: a tool to extract chemical bonding from plane-wave based DFT
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.24300
– volume: 11
  year: 2020
  ident: CR23
  article-title: Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to formate
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17120-9
– volume: 59
  start-page: 22465
  year: 2020
  end-page: 22469
  ident: CR36
  article-title: Design of a single-atom indium -N interface for efficient electroreduction of CO to formate
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202010903
– volume: 141
  start-page: 9902
  year: 2019
  end-page: 9909
  ident: CR50
  article-title: SO induced selectivity change in CO electroreduction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b03215
– volume: 5
  start-page: 20090
  year: 2020
  end-page: 20099
  ident: CR53
  article-title: Electronic structure and oxidation mechanism of nickel–copper converter matte from first-principles calculations
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c01713
– volume: 50
  start-page: 17953
  year: 1994
  end-page: 17979
  ident: CR59
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 19
  start-page: 6547
  year: 2019
  end-page: 6553
  ident: CR40
  article-title: Harmonizing the electronic structures of the adsorbate and catalysts for efficient CO reduction
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b02782
– volume: 10
  start-page: 2001709
  year: 2020
  ident: CR19
  article-title: Bi-based metal-organic framework derived leafy bismuth nanosheets for carbon dioxide electroreduction
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202001709
– volume: 31
  start-page: 2006704
  year: 2021
  ident: CR32
  article-title: Monoclinic Scheelite Bismuth Vanadate derived Bismuthene nanosheets with rapid kinetics for electrochemically reducing carbon dioxide to formate
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202006704
– volume: 6
  start-page: 10313
  year: 2018
  end-page: 10319
  ident: CR35
  article-title: High efficiency electrochemical reduction of CO beyond the two-electron transfer pathway on grain boundary rich ultra-small SnO nanoparticles
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA01367E
– ident: CR47
– volume: 57
  start-page: 10954
  year: 2018
  end-page: 10958
  ident: CR42
  article-title: Nickel doping in atomically thin tin disulfide nanosheets enables highly efficient CO reduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201806043
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: CR60
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 14
  start-page: 852
  year: 2020
  end-page: 859
  ident: CR14
  article-title: Exfoliated ultrathin ZnIn S nanosheets with abundant zinc vacancies for enhanced CO electroreduction to formate
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202002785
– volume: 59
  start-page: 4814
  year: 2020
  end-page: 4821
  ident: CR12
  article-title: In situ reconstruction of a hierarchical Sn−Cu/SnOx core/shell catalyst for high-performance CO electroreduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201916538
– volume: 11
  year: 2020
  ident: CR4
  article-title: Electrochemical CO reduction to high-concentration pure formic acid solutions in an all-solid-state reactor
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17403-1
– volume: 10
  year: 2019
  ident: CR16
  article-title: Promoting electrocatalytic CO reduction to formate via sulfur-boosting water activation on indium surfaces
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08805-x
– volume: 47
  start-page: 558
  year: 1993
  end-page: 561
  ident: CR58
  article-title: Ab initio molecular dynamics for liquid metals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.558
– volume: 279
  start-page: 119383
  year: 2020
  ident: CR38
  article-title: Defects and conductive nitrogen−carbon framework regulated ZnInOx nanosheets for boosting CO electrocatalytic reduction
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2020.119383
– volume: 3
  start-page: 122
  year: 2017
  end-page: 133
  ident: CR49
  article-title: In situ electrochemical production of ultrathin nickel nanosheets for hydrogen evolution electrocatalysis
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.05.011
– volume: 1
  start-page: 16009
  year: 2016
  ident: CR2
  article-title: Nanostructured electrocatalysts with tunable activity and selectivity
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.9
– volume: 1
  start-page: 794
  year: 2017
  end-page: 805
  ident: CR18
  article-title: Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO to formate
  publication-title: Joule
  doi: 10.1016/j.joule.2017.09.014
– volume: 20
  start-page: 6097
  year: 2020
  end-page: 6103
  ident: CR24
  article-title: Surface nitrogen-injection engineering for high formation rate of CO reduction to formate
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c02144
– volume: 6
  start-page: 79
  year: 2020
  end-page: 84
  ident: CR17
  article-title: CO2 electroreduction to formate at a partial current density of 930 mA cm with InP colloidal quantum dot derived catalysts
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c02165
– volume: 142
  start-page: 6878
  year: 2020
  end-page: 6883
  ident: CR5
  article-title: Grain-boundary-rich copper for efficient solar-driven electrochemical CO reduction to ethylene and ethanol
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c00971
– volume: 95
  start-page: 393
  year: 2010
  end-page: 399
  ident: CR31
  article-title: Photocatalytic performance of tetragonal and cubic β-In S for the water splitting under visible light irradiation
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2010.01.018
– volume: 124
  start-page: 6145
  year: 2020
  end-page: 6153
  ident: CR51
  article-title: Understanding how atomic sulfur controls the selectivity of the electroreduction of CO to formic acid on metallic Cu surfaces
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.9b11830
– volume: 113
  start-page: 4433
  year: 2009
  end-page: 4440
  ident: CR27
  article-title: Photocatalytic degradation of dyes by ZnIn S microspheres under visible light irradiation
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp8092513
– volume: 39
  start-page: 1833
  year: 1994
  end-page: 1839
  ident: CR11
  article-title: Electrocatalytic process of CO selectivity in electrochemical reduction of CO at metal electrodes in aqueous media
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(94)85172-7
– volume: 97
  start-page: 8617
  year: 1993
  end-page: 8624
  ident: CR64
  article-title: Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100135a014
– volume: 2
  start-page: 825
  year: 2018
  end-page: 832
  ident: CR10
  article-title: What should we make with CO and how can we make it?
  publication-title: Joule
  doi: 10.1016/j.joule.2017.09.003
– volume: 27
  start-page: 225
  year: 2016
  end-page: 229
  ident: CR22
  article-title: Origin of the performance degradation and implementation of stable tin electrodes for the conversion of CO to fuels
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.06.028
– volume: 137
  start-page: 408
  year: 2006
  end-page: 412
  ident: CR46
  article-title: Raman scattering studies of the Ge–In sulfide glasses
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2005.12.032
– volume: 5
  start-page: 7050
  year: 2012
  end-page: 7059
  ident: CR57
  article-title: New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee21234j
– volume: 59
  start-page: 8706
  year: 2020
  end-page: 8712
  ident: CR3
  article-title: High-curvature transition-metal chalcogenide nanostructures with a pronounced proximity effect enable fast and selective CO electroreduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201912348
– volume: 1
  start-page: 111
  year: 2018
  end-page: 119
  ident: CR8
  article-title: Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO reduction
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-017-0009-x
– volume: 369
  start-page: 542
  year: 2020
  end-page: 545
  ident: CR54
  article-title: Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe
  publication-title: Science
  doi: 10.1126/science.aba9778
– volume: 57
  start-page: 2165
  year: 2018
  end-page: 2177
  ident: CR9
  article-title: General techno-economic analysis of CO electrolysis systems
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b03514
– volume: 10
  year: 2019
  ident: 26124_CR16
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08805-x
– volume: 11
  year: 2020
  ident: 26124_CR23
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17120-9
– volume: 57
  start-page: 10954
  year: 2018
  ident: 26124_CR42
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201806043
– volume: 19
  start-page: 6547
  year: 2019
  ident: 26124_CR40
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b02782
– volume: 7
  start-page: 27514
  year: 2019
  ident: 26124_CR41
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA11140A
– volume: 2
  start-page: 825
  year: 2018
  ident: 26124_CR10
  publication-title: Joule
  doi: 10.1016/j.joule.2017.09.003
– ident: 26124_CR47
– volume: 9
  start-page: 358
  year: 2016
  ident: 26124_CR61
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201501197
– volume: 140
  start-page: 2880
  year: 2018
  ident: 26124_CR62
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12506
– volume: 59
  start-page: 4814
  year: 2020
  ident: 26124_CR12
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201916538
– volume: 31
  start-page: 2006704
  year: 2021
  ident: 26124_CR32
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202006704
– volume: 56
  start-page: 4212
  year: 2020
  ident: 26124_CR43
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC10078D
– volume: 7
  start-page: 4505
  year: 2019
  ident: 26124_CR39
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA11645H
– volume: 142
  start-page: 6878
  year: 2020
  ident: 26124_CR5
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c00971
– volume: 6
  start-page: 79
  year: 2020
  ident: 26124_CR17
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c02165
– volume: 27
  start-page: 225
  year: 2016
  ident: 26124_CR22
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.06.028
– volume: 141
  start-page: 9902
  year: 2019
  ident: 26124_CR50
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b03215
– volume: 37
  start-page: 1030
  year: 2016
  ident: 26124_CR63
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.24300
– volume: 58
  start-page: 14197
  year: 2019
  ident: 26124_CR15
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201908735
– volume: 12
  year: 2021
  ident: 26124_CR48
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24059-y
– volume: 59
  start-page: 15014
  year: 2020
  ident: 26124_CR21
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202005577
– volume: 95
  start-page: 393
  year: 2010
  ident: 26124_CR31
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2010.01.018
– volume: 2
  start-page: 448
  year: 2019
  ident: 26124_CR55
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0241-7
– volume: 113
  start-page: 4433
  year: 2009
  ident: 26124_CR27
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp8092513
– volume: 10
  start-page: 645
  year: 1995
  ident: 26124_CR45
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/10/5/013
– volume: 39
  start-page: 1833
  year: 1994
  ident: 26124_CR11
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(94)85172-7
– volume: 128
  start-page: 7222
  year: 2006
  ident: 26124_CR28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0580845
– volume: 14
  start-page: 852
  year: 2020
  ident: 26124_CR14
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202002785
– volume: 30
  start-page: 1802858
  year: 2018
  ident: 26124_CR33
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802858
– volume: 115
  start-page: 6149
  year: 2011
  ident: 26124_CR26
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp1112729
– volume: 143
  start-page: 8011
  year: 2021
  ident: 26124_CR7
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c01190
– volume: 77
  start-page: 3865
  year: 1996
  ident: 26124_CR60
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 3
  start-page: 122
  year: 2017
  ident: 26124_CR49
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.05.011
– volume: 1
  start-page: 794
  year: 2017
  ident: 26124_CR18
  publication-title: Joule
  doi: 10.1016/j.joule.2017.09.014
– volume: 7
  start-page: 22879
  year: 2019
  ident: 26124_CR37
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA06285H
– volume: 59
  start-page: 8706
  year: 2020
  ident: 26124_CR3
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201912348
– volume: 7
  start-page: 1902989
  year: 2020
  ident: 26124_CR34
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201902989
– volume: 181−182
  start-page: 59
  year: 2000
  ident: 26124_CR29
  publication-title: Key Eng. Mater.
  doi: 10.4028/www.scientific.net/KEM.181-182.59
– volume: 124
  start-page: 6145
  year: 2020
  ident: 26124_CR51
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.9b11830
– volume: 137
  start-page: 408
  year: 2006
  ident: 26124_CR46
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2005.12.032
– volume: 50
  start-page: 17953
  year: 1994
  ident: 26124_CR59
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 138
  start-page: 1359
  year: 2016
  ident: 26124_CR25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11986
– volume: 5
  start-page: 20090
  year: 2020
  ident: 26124_CR53
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c01713
– volume: 10
  start-page: 2001709
  year: 2020
  ident: 26124_CR19
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202001709
– volume: 10
  year: 2019
  ident: 26124_CR20
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10819-4
– volume: 11
  year: 2020
  ident: 26124_CR4
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17403-1
– volume: 369
  start-page: 542
  year: 2020
  ident: 26124_CR54
  publication-title: Science
  doi: 10.1126/science.aba9778
– volume: 16
  start-page: 70
  year: 2017
  ident: 26124_CR1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4778
– volume: 59
  start-page: 22465
  year: 2020
  ident: 26124_CR36
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202010903
– volume: 1
  start-page: 421
  year: 2018
  ident: 26124_CR6
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0084-7
– volume: 196
  start-page: 10112
  year: 2011
  ident: 26124_CR44
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.08.103
– volume: 1
  start-page: 16009
  year: 2016
  ident: 26124_CR2
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.9
– volume: 20
  start-page: 6097
  year: 2020
  ident: 26124_CR24
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c02144
– volume: 29
  start-page: 235
  year: 1979
  ident: 26124_CR30
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(79)91045-7
– volume: 99
  start-page: 314
  year: 1980
  ident: 26124_CR52
  publication-title: Phys. B+C.
  doi: 10.1016/0378-4363(80)90252-1
– volume: 57
  start-page: 2165
  year: 2018
  ident: 26124_CR9
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b03514
– volume: 5
  start-page: 7050
  year: 2012
  ident: 26124_CR57
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee21234j
– volume: 11
  start-page: 8854
  year: 2020
  ident: 26124_CR56
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC03047C
– volume: 47
  start-page: 558
  year: 1993
  ident: 26124_CR58
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.558
– volume: 279
  start-page: 119383
  year: 2020
  ident: 26124_CR38
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2020.119383
– volume: 115
  start-page: 5461
  year: 2011
  ident: 26124_CR65
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp202489s
– volume: 9
  year: 2018
  ident: 26124_CR13
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03712-z
– volume: 97
  start-page: 8617
  year: 1993
  ident: 26124_CR64
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100135a014
– volume: 1
  start-page: 111
  year: 2018
  ident: 26124_CR8
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-017-0009-x
– volume: 6
  start-page: 10313
  year: 2018
  ident: 26124_CR35
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA01367E
SSID ssj0000391844
Score 2.661834
Snippet Recently developed solid-state catalysts can mediate carbon dioxide (CO 2 ) electroreduction to valuable products at high rates and selectivities. However,...
Recently developed solid-state catalysts can mediate carbon dioxide (CO2) electroreduction to valuable products at high rates and selectivities. However, under...
Developing durable catalysts for carbon dioxide reduction to formate at commercial-scale current densities is challenging. This work reports that indium...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5835
SubjectTerms 639/301/299/886
639/638/161/886
639/638/298
Carbon dioxide
Catalysts
Current density
Electrolysis
Electrowinning
Humanities and Social Sciences
Indium
Intermediates
multidisciplinary
Science
Science (multidisciplinary)
Sulfides
Sulfur
Zinc
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SELwUPypdWyWCt7o0n5vsUYulCNpLC72FbLKhhXaf9O07PP96Z5J9z25BvXjdTLLJZCYzYSa_IeRDDK2XXSNq1sS-Vso3ddvZUHPPfApWecnwcfK3783Zpfp6pa8elPrCnLACD1wYd8yl0p3wUWl8M9k1HZMphYSw5CYlk3E-weY9uEzlM1i2cHVR0ysZJu3xUuUzATMSEDVL1euZJcqA_TMv83GO5KNAabY_p8_J7uQ40k9lwi_Ik354SZ6WUpLrV8SD14h5rj-hM8U49OqOLle36Sb2FPxSenIu6FTy5h7RWnE_6LigxWftqR8pIhdTRI6g3ZrCOIEickMBOgbqPXJ5-uXi5KyeyifUQXMz1q0NMqrG85hY8FzwJMBWJ20SBtdi4CYa4RFPntneMxtAdxPTWlieLAYoX5OdYTH0-4TyaKRNplGJeSWitpx1LYwTvI9eBF0RvmGlCxO2OJa4uHU5xi2tK-x3wH6X2e_WFTna9vlRkDX-Sv0Zd2hLiajY-QPIiptkxf1LVipyuNlfN6nq0sGZ1QpmDFcVeb9tBiXDyIkf-sWq0MDNr7EwhJnJxWxC85bh5jrDdVvVCvAAKvJxI0G_f_7nBb_5Hws-IM8ESnxOeDgkO-P9qn8LTtTYvcv68gvWIBiW
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VIiQuFU-RUpCRuEHAr8TOASGoqCqkwoWVerMcO4ZK2yzsZiXCr8fjJItSlV7jsZPMwx5rZr4BeOldZUVd8pyWvsmltGVe1drlzFIbnJZWUCxOPvtSni7k5_PifA-mdkcjAzfXXu2wn9RivXzz-1f_Phr8u6FkXL_dyGTumGyAgFgy72_B7XgyKTTUs9HdTzuzqOKFRo61M9dPnZ1PCcZ_5ntezZy8Ej5Np9LJPTgY3UnyYZD_fdhr2gdwZ2gw2T8EG31JzH79EycTjE5vL8lmuwwXviHRWyXHXzkZG-GsEcMVpUS6FRk82YbYjiCeMUE8CVL3JK7jCOI5DPDHkfoRLE4-fTs-zcemCrkrmOrySjvhZWmZD9RZxlng8QQPhQoYcvOOKa-4RZR5qhtLtYsWHWhRcM2CxrDlY9hvV23zBAjzSuigShmoldwXmtG6ius4a73lrsiATaw0bkQcx8YXS5Mi30Kbgf0mst8k9ps-g1e7OT8HvI0bqT-ihHaUiJWdHqzW381oeoYJWdTcellg1W1d1lSE4AIC26sQlMjgaJKvmfTPxJ2s4lQpJjN4sRuOpofxFNs2q-1AE--DpY5LqJlezD5oPtJe_Egg3lpWPPoFGbyeNOjfy___w4c3f-tTuMtRl1OCwxHsd-tt8yw6TV39PFnCX_WhE8I
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals (WRLC)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9UwEB_WFcGL-InVVSJ402K-kx714bII6sWFvYU0aXRh7ZP3-g7Pv95M2j7pooLXZpK2k5nMtDPzG4CXMTRetJrXVMeultLrumltqJmnPgUrvaBYnPzxkz47lx8u1MUR8LkWpiTtF0jLckzP2WFvtrKoNCYUIOiVrPc34CZCt6NUr_Tq8F8FEc-tlFN9DBX2D1MXNqhA9S_8y-vZkddCpMXynN6FO5PLSN6OD3kPjrr-Ptwam0juH4DP_iJmuP7MkwlGoHffyXZ3lS5jR7JHSlafOZma3WwQpxV3ggxrMnqrHfEDQcxigpgRpN2TvE4giNkwQhxn6odwfvr-y-qsnhon1EExM9SNDSJK7VlMNHjGWeLZSidlEobVYmAmGu4RSZ7azlMbstYmqhS3LFkMTT6C437dd4-BsGiETUbLRL3kUVlG2yavE7yPngdVAZtZ6cKEKo7NLa5ciW4L60b2u8x-V9jv9hW8Osz5MWJq_JP6He7QgRLxsMuF9earm-TDMSFVy32UCitrW91SkVJICF5vUjKigpN5f92kpFuXT6uGU2OYrODFYTirF8ZMfN-tdyNN_ubTNi9hFnKxeKDlSH_5rQB1W9nwbPsreD1L0O-b__2Fn_wf-VO4zVG2S1LDCRwPm133LDtKQ_u8aMYvA6gOmw
  priority: 102
  providerName: Springer Nature
Title Stabilizing indium sulfide for CO2 electroreduction to formate at high rate by zinc incorporation
URI https://link.springer.com/article/10.1038/s41467-021-26124-y
https://www.proquest.com/docview/2579207714
https://www.proquest.com/docview/2579626683
https://pubmed.ncbi.nlm.nih.gov/PMC8492718
https://doaj.org/article/1345b2ad459647b6b03ffcf27507ff73
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBddy2AvY-s25rULKvRtM5Vk2ZKfRhqalUC7sa2QNyFLVlfo7DZxHrK_fjpZSXFhfZFBX5alO-l8d_odQsfWlDqrCpaSwtYp57pIy0qalGqinZFcZwQuJ19cFudXfDbP51HhtoxulZs9MWzUtjWgIz_xpFUyIgTlX-7uU4gaBdbVGELjGdoD6DJw6RJzsdWxAPq55DzelSGZPFnysDOAXwJgZ_F0PTiPAmz_QNZ87Cn5yFwaTqHpK_Qyio943K_3a7RTN_voeR9Qcv0GaS87grfrX98YgzV69QcvV7fuxtbYS6d48o3hGPhmAZitsCq4a3EvudZYdxjwizHgR-BqjX0_BgN-Qw937Gu_RVfTs1-T8zQGUUhNTkWXltJklheaWkeMpow65k9slwsHJjZrqLCCaUCVJ7LWRBrPwY7kOZPUSTBTvkO7TdvU7xGmVmTSiYI7ojmzuaSkKn0_RmurmckTRDdTqUxEGIdAF7cqWLozqfrpV376VZh-tU7Qp22bux5f48nap7BC25qAjR0y2sW1iqymaMbzimnLc7hlWxUVyZwzDoDshXMiS9DhZn1VZNileiCvBB1tiz2rgf1EN3W76uv4_79C-i7EgC4GAxqWNDe_A2i35CXzckCCPm8o6OHl___gD0-P9QC9YEDLwaHhEO12i1X90QtJXTUKnOBTOf06Qnvj8eznzD9Pzy6___C5k2IyCuoHn15w-Q_fURcV
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFNNKWAkOEFU23Fi54AQFKotfXBppb0Zx46hUkna3axQ-FH8Rjx5bLWV6K3X-JFk_I099oy_AXjtbG6SIuMxzVwZC2GyOC-UjZmhxlslTELxcvLhUTY5EV-n6XQN_o53YTCscpwTu4na1RbPyLcDtHJOpWTiw_lFjFmj0Ls6ptDoYbFftr_Dlm3-fu9zGN83nO9-Od6ZxENWgdimTDZxrmziRGaY89QaxpnnYQnzqfToc3KWSSe5QZp1qkpDlQ2Q9jRNuWJeod8u9HsLboeFl6JGyalcnukg27oSYribQxO1PRfdTIRxEMjVJeJ2Zf3r0gSs2LZXIzOvuGe7VW_3AdwfzFXyscfXQ1grq0dwp09g2T4GE2xVjK79ExoT9H4vfpH54syfupIEa5jsfONkSLQzQ45YRAFpatJbyiUxDUG-ZIJ8FaRoSejHEuSL6OmVQ-0ncHIj4n0K61VdlRtAmJOJ8jITnhrBXaoYLfLQjzXGGW7TCNgoSm0HRnNMrHGmO896onQvfh3Erzvx6zaCt8s25z2fx7W1P-EILWsiF3f3oJ790INqa5aItODGiRRv9RZZQRPvrUfifOm9TCLYGsdXDxPEXF_COYJXy-Kg2uivMVVZL_o6Yb-ZqdCFXMHFygetllSnPzuScCVyHuyOCN6NCLp8-f9_ePP6b30JdyfHhwf6YO9o_xnc44jrLphiC9ab2aJ8Hgy0pnjRaQWB7zethv8AOZpLEg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4ilSChgJThCtn7FzQAhaVi2FwoFKezOOHUOlNim7WaHw0_h1ePLYaivRW6_xI8n4G3vsGX-D0AvvcsuLjKUk82UqhM3SvNAupZbY4LSwnMDl5M-H2d6R-DiTsw30d7wLA2GV45zYTdS-dnBGPonQyhlRiopJGMIivu5O3579SiGDFHhax3QaPUQOyvZ33L4t3uzvxrF-ydj0w7edvXTIMJA6SVWT5tpxLzJLfSDOUkYDi8tZkCqA_8k7qrxiFijXiS4t0S7COxApmaZBgw8v9nsNXVdcUtAxNVOr8x1gXtdCDPd0CNeThehmJYiJAN4ukbZra2GXMmDNzr0YpXnBVdutgNM76PZguuJ3Pdbuoo2yuodu9Mks2_vIRrsVIm3_xMYYPOHLU7xYnoRjX-JoGeOdLwwPSXfmwBcLiMBNjXurucS2wcCdjIG7Ahctjv04DNwRPdVyrP0AHV2JeB-izaquykcIU6-4DioTgVjBvNSUFHnsx1nrLXMyQXQUpXEDuzkk2TgxnZeda9OL30Txm078pk3Qq1Wbs57b49La72GEVjWBl7t7UM9_mEHNDeVCFsx6IeGGb5EVhIfgApDoqxAUT9D2OL5mmCwW5hzaCXq-Ko5qDr4bW5X1sq8T956Zjl2oNVysfdB6SXX8syMM1yJn0QZJ0OsRQecv__8Pb13-rc_QzaiA5tP-4cFjdIsBrLu4im202cyX5ZNoqzXF004pMPp-1Vr4D8HyT0g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stabilizing+indium+sulfide+for+CO2+electroreduction+to+formate+at+high+rate+by+zinc+incorporation&rft.jtitle=Nature+communications&rft.au=Li-Ping%2C+Chi&rft.au=Zhuang-Zhuang%2C+Niu&rft.au=Xiao-Long%2C+Zhang&rft.au=Peng-Peng%2C+Yang&rft.date=2021-10-05&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-021-26124-y&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon