Amplitudes, observables, and classical scattering
A bstract We present a formalism for computing classically measurable quantities directly from on-shell quantum scattering amplitudes. We discuss the ingredients needed for obtaining the classical result, and show how to set up the calculation to derive the result efficiently. We do this without spe...
Saved in:
Published in | The journal of high energy physics Vol. 2019; no. 2; pp. 1 - 69 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2019
Springer Nature B.V Springer SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
We present a formalism for computing classically measurable quantities directly from on-shell quantum scattering amplitudes. We discuss the ingredients needed for obtaining the classical result, and show how to set up the calculation to derive the result efficiently. We do this without specializing to a specific theory. We study in detail two examples in electrodynamics: the momentum transfer in spinless scattering to next-to-leading order, and the momentum radiated to leading order. |
---|---|
AbstractList | Abstract We present a formalism for computing classically measurable quantities directly from on-shell quantum scattering amplitudes. We discuss the ingredients needed for obtaining the classical result, and show how to set up the calculation to derive the result efficiently. We do this without specializing to a specific theory. We study in detail two examples in electrodynamics: the momentum transfer in spinless scattering to next-to-leading order, and the momentum radiated to leading order. We present a formalism for computing classically measurable quantities directly from on-shell quantum scattering amplitudes. We discuss the ingredients needed for obtaining the classical result, and show how to set up the calculation to derive the result efficiently. We do this without specializing to a specific theory. We study in detail two examples in electrodynamics: the momentum transfer in spinless scattering to next-to-leading order, and the momentum radiated to leading order. A bstract We present a formalism for computing classically measurable quantities directly from on-shell quantum scattering amplitudes. We discuss the ingredients needed for obtaining the classical result, and show how to set up the calculation to derive the result efficiently. We do this without specializing to a specific theory. We study in detail two examples in electrodynamics: the momentum transfer in spinless scattering to next-to-leading order, and the momentum radiated to leading order. |
ArticleNumber | 137 |
Author | Maybee, Ben Kosower, David A. O’Connell, Donal |
Author_xml | – sequence: 1 givenname: David A. surname: Kosower fullname: Kosower, David A. email: David.Kosower@cea.fr organization: Institut de Physique Théorique, CEA, CNRS, Université Paris-Saclay – sequence: 2 givenname: Ben surname: Maybee fullname: Maybee, Ben organization: Higgs Centre for Theoretical Physics, School of Physics and Astronomy, The University of Edinburgh – sequence: 3 givenname: Donal surname: O’Connell fullname: O’Connell, Donal organization: Higgs Centre for Theoretical Physics, School of Physics and Astronomy, The University of Edinburgh |
BackLink | https://hal.science/hal-01952692$$DView record in HAL |
BookMark | eNp9kUFrGzEQhUVJoXaac6-GXhqIm5G8WklHE5w4xdAechezktaRWa9cSQ7k30ebDUkbaE-Shve90cybkpM-9I6QLxS-UwBx-WO9-gXsGwOqzulCfCATCkzNZSXUyR_3T2Sa0g6AcqpgQuhyf-h8PlqXLmahSS4-YNMND-ztzHSYkjfYzZLBnF30_fYz-dhil9zZy3lK7q5Xd1fr-ebnze3VcjM3nIo8V1K5tnRhiNZY4RpYOGu5kMA5RS4BLOd1LRmTDVQt2qp2pkGBdcsFqMUpuR1tbcCdPkS_x_ioA3r9XAhxqzFmbzqnhRRMGuRiYdqqqWukXCoqpBOcSyGxeJ2PXvfY_WW1Xm70UCs746xW7IEW7ddRe4jh99GlrHfhGPsyqWZUltFoxeuiuhxVJoaUomtfbSnoIQ49xqGHOHSJoxD8HWF8xuxDnyP67j8cjFw6DNt38e0__0KeAJ80nBE |
CitedBy_id | crossref_primary_10_1103_PhysRevD_102_104065 crossref_primary_10_1103_PhysRevD_104_026009 crossref_primary_10_1103_PhysRevD_99_104004 crossref_primary_10_1007_JHEP06_2020_144 crossref_primary_10_1016_j_physletb_2022_137634 crossref_primary_10_1103_PhysRevD_100_066028 crossref_primary_10_1103_PhysRevD_110_L081901 crossref_primary_10_1103_PhysRevLett_133_211402 crossref_primary_10_1103_PhysRevD_109_063032 crossref_primary_10_1007_JHEP05_2023_177 crossref_primary_10_1007_JHEP11_2021_088 crossref_primary_10_1103_PhysRevD_108_106003 crossref_primary_10_1007_JHEP08_2024_074 crossref_primary_10_1007_JHEP10_2021_118 crossref_primary_10_1007_JHEP11_2021_087 crossref_primary_10_1103_PhysRevD_102_024060 crossref_primary_10_1103_PhysRevD_110_076018 crossref_primary_10_1007_JHEP03_2020_173 crossref_primary_10_1007_JHEP06_2023_004 crossref_primary_10_1007_JHEP06_2023_126 crossref_primary_10_1103_PhysRevD_106_094041 crossref_primary_10_1103_PhysRevLett_130_021601 crossref_primary_10_1103_PhysRevD_102_124008 crossref_primary_10_1103_PhysRevD_110_064033 crossref_primary_10_1007_JHEP02_2025_019 crossref_primary_10_1103_PhysRevD_106_026013 crossref_primary_10_1007_JHEP05_2023_047 crossref_primary_10_1007_JHEP08_2024_188 crossref_primary_10_1007_JHEP05_2021_214 crossref_primary_10_1007_JHEP12_2020_103 crossref_primary_10_1007_JHEP10_2021_008 crossref_primary_10_1103_PhysRevD_102_105011 crossref_primary_10_1007_JHEP10_2020_211 crossref_primary_10_1103_PhysRevLett_125_031601 crossref_primary_10_1142_S0217732321501388 crossref_primary_10_1007_JHEP05_2023_088 crossref_primary_10_1016_j_physrep_2024_06_002 crossref_primary_10_1007_JHEP01_2020_014 crossref_primary_10_1007_JHEP03_2023_177 crossref_primary_10_1007_JHEP06_2024_181 crossref_primary_10_1007_JHEP03_2021_201 crossref_primary_10_1103_PhysRevD_106_056007 crossref_primary_10_1007_JHEP02_2022_156 crossref_primary_10_1007_JHEP11_2020_023 crossref_primary_10_1103_PhysRevD_106_024042 crossref_primary_10_1007_JHEP08_2020_038 crossref_primary_10_1103_PhysRevLett_131_241402 crossref_primary_10_1007_JHEP01_2023_140 crossref_primary_10_1007_JHEP10_2021_011 crossref_primary_10_1007_JHEP12_2024_213 crossref_primary_10_1103_PhysRevD_109_084071 crossref_primary_10_1007_JHEP11_2023_233 crossref_primary_10_1103_PhysRevLett_133_071601 crossref_primary_10_1007_JHEP02_2023_197 crossref_primary_10_1103_PhysRevLett_131_011601 crossref_primary_10_1103_PhysRevLett_131_011603 crossref_primary_10_1007_JHEP02_2021_007 crossref_primary_10_1007_JHEP03_2022_141 crossref_primary_10_1103_PhysRevD_99_064054 crossref_primary_10_1007_JHEP11_2020_160 crossref_primary_10_1007_JHEP05_2022_027 crossref_primary_10_1007_JHEP08_2020_147 crossref_primary_10_1007_JHEP08_2024_080 crossref_primary_10_1007_JHEP08_2022_131 crossref_primary_10_1007_JHEP01_2020_010 crossref_primary_10_1007_JHEP03_2024_089 crossref_primary_10_1007_JHEP05_2021_239 crossref_primary_10_1103_PhysRevD_102_124025 crossref_primary_10_1007_JHEP05_2021_238 crossref_primary_10_1103_PhysRevD_109_036007 crossref_primary_10_1007_JHEP10_2021_148 crossref_primary_10_1088_1361_6382_acfb6d crossref_primary_10_1103_PhysRevD_106_124026 crossref_primary_10_1016_j_physrep_2023_01_003 crossref_primary_10_1103_PhysRevD_103_045002 crossref_primary_10_1103_PhysRevD_109_125008 crossref_primary_10_1007_JHEP03_2025_125 crossref_primary_10_1103_PhysRevD_106_124030 crossref_primary_10_1103_PhysRevLett_130_201402 crossref_primary_10_1103_PhysRevD_106_L081901 crossref_primary_10_1002_prop_202100075 crossref_primary_10_1103_PhysRevD_111_L021701 crossref_primary_10_1007_JHEP01_2024_139 crossref_primary_10_1007_JHEP05_2020_051 crossref_primary_10_1088_1751_8121_ad8b02 crossref_primary_10_1007_JHEP02_2021_217 crossref_primary_10_1103_PhysRevLett_126_201103 crossref_primary_10_1140_epjc_s10052_021_09482_1 crossref_primary_10_1007_JHEP02_2020_092 crossref_primary_10_1007_JHEP03_2025_126 crossref_primary_10_1007_JHEP07_2021_047 crossref_primary_10_1103_PhysRevLett_126_171601 crossref_primary_10_21468_SciPostPhysProc_7_023 crossref_primary_10_1007_JHEP06_2024_087 crossref_primary_10_1007_JHEP07_2021_169 crossref_primary_10_1007_JHEP12_2019_019 crossref_primary_10_1007_JHEP05_2024_192 crossref_primary_10_1007_JHEP10_2024_005 crossref_primary_10_1103_PhysRevD_100_104024 crossref_primary_10_1007_JHEP04_2023_008 crossref_primary_10_1103_PhysRevD_104_065014 crossref_primary_10_1007_JHEP07_2024_009 crossref_primary_10_1007_JHEP03_2022_147 crossref_primary_10_1007_JHEP11_2019_070 crossref_primary_10_1007_JHEP07_2020_122 crossref_primary_10_1007_JHEP10_2022_073 crossref_primary_10_1103_PhysRevD_104_024037 crossref_primary_10_1007_JHEP06_2023_048 crossref_primary_10_1103_PhysRevD_103_045015 crossref_primary_10_1103_PhysRevLett_131_221401 crossref_primary_10_1103_PhysRevLett_133_221401 crossref_primary_10_1007_JHEP03_2023_068 crossref_primary_10_1007_JHEP07_2021_037 crossref_primary_10_1007_JHEP01_2020_072 crossref_primary_10_1007_JHEP08_2023_109 crossref_primary_10_1103_PhysRevD_102_084047 crossref_primary_10_1103_PhysRevD_100_084040 crossref_primary_10_1103_PhysRevLett_128_141102 crossref_primary_10_1103_PhysRevD_99_126008 crossref_primary_10_1103_PhysRevD_107_024012 crossref_primary_10_1007_JHEP04_2019_156 crossref_primary_10_1007_JHEP11_2021_213 crossref_primary_10_1088_1751_8121_ad5fd0 crossref_primary_10_1007_JHEP06_2023_170 crossref_primary_10_1007_JHEP12_2022_018 crossref_primary_10_1007_JHEP12_2024_207 crossref_primary_10_1103_PhysRevD_107_L081701 crossref_primary_10_1103_PhysRevD_106_044013 crossref_primary_10_1103_PhysRevD_108_084036 crossref_primary_10_1103_PhysRevLett_122_201603 crossref_primary_10_1007_JHEP03_2021_247 crossref_primary_10_1007_JHEP09_2020_200 crossref_primary_10_1007_JHEP09_2022_013 crossref_primary_10_1103_PhysRevD_102_086015 crossref_primary_10_1103_PhysRevLett_129_121601 crossref_primary_10_1007_JHEP05_2024_050 crossref_primary_10_1098_rsta_2021_0181 crossref_primary_10_1103_PhysRevD_110_064005 crossref_primary_10_1103_PhysRevD_101_066004 crossref_primary_10_1007_JHEP06_2021_012 crossref_primary_10_1007_JHEP09_2023_183 crossref_primary_10_1103_PhysRevLett_132_241402 crossref_primary_10_1007_JHEP07_2022_072 crossref_primary_10_1007_JHEP10_2024_023 crossref_primary_10_1103_PhysRevD_104_124015 crossref_primary_10_1103_PhysRevD_104_024041 crossref_primary_10_1103_PhysRevD_101_064066 crossref_primary_10_1007_JHEP10_2023_108 crossref_primary_10_1007_JHEP10_2020_026 crossref_primary_10_1016_j_physletb_2019_135100 crossref_primary_10_1103_PhysRevLett_125_191601 crossref_primary_10_1007_JHEP01_2020_046 crossref_primary_10_1007_JHEP04_2019_171 crossref_primary_10_1103_PhysRevD_110_124005 crossref_primary_10_1007_JHEP01_2025_066 crossref_primary_10_1007_JHEP01_2025_186 crossref_primary_10_1103_PhysRevD_104_014013 crossref_primary_10_1103_PhysRevLett_130_101401 crossref_primary_10_1007_JHEP10_2024_132 crossref_primary_10_1103_PhysRevD_109_124046 crossref_primary_10_1007_JHEP08_2024_045 crossref_primary_10_1007_JHEP08_2024_161 crossref_primary_10_1007_JHEP09_2023_059 crossref_primary_10_1103_PhysRevLett_126_101103 crossref_primary_10_1007_JHEP03_2022_071 crossref_primary_10_1103_PhysRevLett_132_201602 crossref_primary_10_1007_JHEP05_2021_056 crossref_primary_10_1007_JHEP09_2019_056 crossref_primary_10_1007_JHEP01_2022_045 crossref_primary_10_1103_PhysRevD_102_046014 crossref_primary_10_1103_PhysRevD_101_084009 crossref_primary_10_1007_JHEP03_2022_074 crossref_primary_10_1007_JHEP07_2024_173 crossref_primary_10_1007_JHEP11_2024_109 crossref_primary_10_1103_PhysRevD_104_046016 crossref_primary_10_1007_JHEP05_2024_265 crossref_primary_10_1103_PhysRevD_105_026004 crossref_primary_10_1103_PhysRevD_105_026007 crossref_primary_10_1007_JHEP05_2024_148 crossref_primary_10_1103_PhysRevD_109_L041504 crossref_primary_10_1103_PhysRevD_109_026007 crossref_primary_10_1007_JHEP02_2020_046 crossref_primary_10_1007_JHEP09_2023_162 crossref_primary_10_1007_JHEP11_2021_126 crossref_primary_10_1103_PhysRevD_103_026001 crossref_primary_10_1007_JHEP05_2023_211 crossref_primary_10_1007_JHEP05_2021_188 crossref_primary_10_1007_JHEP07_2024_062 crossref_primary_10_1007_JHEP12_2020_076 crossref_primary_10_1007_JHEP11_2023_092 crossref_primary_10_1103_PhysRevD_102_046005 crossref_primary_10_1007_JHEP05_2024_034 crossref_primary_10_1103_PhysRevLett_126_061602 crossref_primary_10_1103_PhysRevLett_128_011101 crossref_primary_10_1007_JHEP09_2024_196 crossref_primary_10_1103_PhysRevD_110_056010 crossref_primary_10_1007_JHEP03_2022_077 crossref_primary_10_1007_JHEP06_2023_096 crossref_primary_10_1007_JHEP03_2025_144 crossref_primary_10_1007_JHEP11_2024_124 crossref_primary_10_1103_PhysRevD_109_124018 crossref_primary_10_1007_JHEP07_2024_272 crossref_primary_10_1007_JHEP10_2022_105 crossref_primary_10_1007_JHEP03_2021_289 crossref_primary_10_1007_JHEP12_2019_156 crossref_primary_10_1007_JHEP12_2024_060 crossref_primary_10_1007_JHEP03_2024_015 crossref_primary_10_1103_PhysRevD_107_026022 crossref_primary_10_1007_JHEP04_2023_023 crossref_primary_10_21468_SciPostPhys_10_5_101 crossref_primary_10_1007_JHEP11_2021_228 crossref_primary_10_1103_PhysRevD_109_106020 crossref_primary_10_1103_PhysRevD_108_124052 crossref_primary_10_1007_JHEP11_2021_221 crossref_primary_10_1103_PhysRevD_110_L041502 crossref_primary_10_1103_PhysRevD_108_084065 crossref_primary_10_1103_PhysRevLett_124_141601 crossref_primary_10_1007_JHEP06_2020_096 crossref_primary_10_1007_JHEP09_2020_074 crossref_primary_10_1103_PhysRevD_105_124001 crossref_primary_10_1103_PhysRevD_109_094047 crossref_primary_10_1007_JHEP03_2024_125 crossref_primary_10_1007_JHEP02_2024_161 crossref_primary_10_1007_JHEP08_2023_207 crossref_primary_10_1007_JHEP01_2025_140 crossref_primary_10_1103_PhysRevLett_129_141102 crossref_primary_10_1007_JHEP09_2024_053 crossref_primary_10_1103_PhysRevD_100_086006 crossref_primary_10_1007_JHEP08_2024_243 crossref_primary_10_1007_JHEP02_2022_209 crossref_primary_10_1103_PhysRevD_107_064051 crossref_primary_10_1103_PhysRevD_107_085011 crossref_primary_10_1103_PhysRevD_104_044034 crossref_primary_10_1007_JHEP04_2024_058 crossref_primary_10_1007_JHEP10_2019_107 crossref_primary_10_1007_JHEP12_2020_142 crossref_primary_10_1103_PhysRevLett_133_111601 crossref_primary_10_1007_JHEP12_2023_118 crossref_primary_10_1007_JHEP10_2022_128 crossref_primary_10_1007_JHEP02_2024_026 crossref_primary_10_1007_JHEP08_2023_188 crossref_primary_10_1007_JHEP08_2021_172 crossref_primary_10_1007_JHEP01_2022_006 crossref_primary_10_1088_1475_7516_2023_11_034 crossref_primary_10_1007_JHEP04_2021_234 crossref_primary_10_1007_s10714_024_03276_y crossref_primary_10_1103_PhysRevD_108_024025 crossref_primary_10_1103_PhysRevD_107_044033 crossref_primary_10_1103_PhysRevLett_129_121101 crossref_primary_10_1007_JHEP04_2024_060 crossref_primary_10_1007_JHEP12_2024_039 crossref_primary_10_1103_PhysRevD_104_104029 crossref_primary_10_1007_JHEP12_2020_138 crossref_primary_10_1007_JHEP06_2023_204 crossref_primary_10_1088_1361_6382_adaabc crossref_primary_10_1007_JHEP11_2021_184 crossref_primary_10_1007_JHEP09_2023_109 crossref_primary_10_1007_JHEP12_2020_030 crossref_primary_10_1007_JHEP08_2022_148 crossref_primary_10_1007_JHEP04_2021_253 crossref_primary_10_1103_PhysRevD_108_024033 crossref_primary_10_1103_PhysRevD_109_045011 crossref_primary_10_1007_JHEP05_2022_055 crossref_primary_10_1103_PhysRevLett_132_091402 crossref_primary_10_1007_JHEP02_2023_107 crossref_primary_10_1007_JHEP02_2023_105 crossref_primary_10_1007_JHEP07_2023_181 crossref_primary_10_1103_PhysRevD_103_064036 crossref_primary_10_1007_JHEP12_2020_024 crossref_primary_10_1007_JHEP05_2021_015 crossref_primary_10_1007_s40766_020_00003_6 crossref_primary_10_1007_JHEP01_2022_027 crossref_primary_10_1103_PhysRevLett_132_251603 crossref_primary_10_1103_PhysRevD_104_105012 crossref_primary_10_1007_JHEP10_2019_206 crossref_primary_10_1103_PhysRevD_100_024048 crossref_primary_10_1103_PhysRevLett_132_251601 crossref_primary_10_1103_PhysRevLett_126_201602 crossref_primary_10_1007_JHEP03_2023_254 crossref_primary_10_1103_PhysRevD_111_064048 crossref_primary_10_1007_JHEP03_2023_136 crossref_primary_10_1142_S0217732320500765 crossref_primary_10_1007_JHEP06_2024_015 crossref_primary_10_1007_JHEP03_2021_097 crossref_primary_10_1103_PhysRevLett_124_211601 crossref_primary_10_1007_JHEP05_2020_105 crossref_primary_10_1007_JHEP01_2025_111 crossref_primary_10_1007_JHEP11_2020_106 crossref_primary_10_1103_PhysRevD_104_084031 crossref_primary_10_1140_epjc_s10052_025_13814_w crossref_primary_10_1103_PhysRevLett_128_161103 crossref_primary_10_1007_JHEP04_2022_154 crossref_primary_10_1103_PhysRevLett_128_161104 crossref_primary_10_1007_JHEP05_2021_268 crossref_primary_10_1103_PhysRevResearch_4_013127 crossref_primary_10_1007_JHEP08_2022_281 crossref_primary_10_1007_JHEP09_2019_040 crossref_primary_10_1103_PhysRevD_108_124016 crossref_primary_10_1103_PhysRevLett_134_071603 crossref_primary_10_1103_PhysRevLett_132_191603 crossref_primary_10_1007_JHEP12_2023_103 crossref_primary_10_1007_JHEP10_2022_135 crossref_primary_10_1007_JHEP02_2021_048 crossref_primary_10_1103_PhysRevLett_132_221401 crossref_primary_10_21468_SciPostPhys_13_2_032 crossref_primary_10_1007_JHEP11_2019_148 crossref_primary_10_1007_JHEP06_2024_032 crossref_primary_10_1103_PhysRevLett_125_261103 crossref_primary_10_1103_PhysRevD_110_044028 crossref_primary_10_1007_JHEP07_2020_093 crossref_primary_10_1103_PhysRevD_109_044064 crossref_primary_10_1007_JHEP08_2022_299 crossref_primary_10_1007_JHEP07_2023_042 crossref_primary_10_1007_JHEP03_2023_130 crossref_primary_10_1103_PhysRevD_103_024030 crossref_primary_10_1088_1361_6382_ad210f crossref_primary_10_1007_JHEP05_2019_023 crossref_primary_10_1103_PhysRevD_108_024050 crossref_primary_10_1007_JHEP08_2022_172 crossref_primary_10_1007_JHEP03_2022_214 |
Cites_doi | 10.1103/PhysRevD.50.3874 10.1088/1475-7516/2014/12/003 10.1088/1475-7516/2016/01/011 10.1103/PhysRevLett.95.121101 10.1103/PhysRevD.73.104031 10.1007/JHEP04(2017)069 10.1007/JHEP01(2017)052 10.1007/JHEP11(2016)117 10.1016/j.aop.2009.09.001 10.1142/S0217751X14501322 10.1103/PhysRevD.78.044012 10.1103/PhysRevLett.93.201602 10.1103/PhysRevLett.105.061602 10.1007/JHEP02(2014)111 10.1142/S0217751X88000710 10.1103/PhysRevD.62.064015 10.1103/PhysRevD.68.084005 10.1103/PhysRevD.74.024017 10.1007/s10714-008-0661-1 10.1016/0550-3213(86)90362-7 10.1088/1361-6382/aa941e 10.1103/PhysRevD.86.044029 10.1103/PhysRevLett.121.251101 10.1017/CBO9781139583961.009 10.1103/PhysRevD.59.084006 10.1007/s10714-008-0673-x 10.1016/S0370-2693(02)01246-7 10.1002/andp.19043190703 10.1007/JHEP05(2015)144 10.1103/PhysRevLett.121.171601 10.1016/0370-2693(87)90346-7 10.12942/lrr-2014-2 10.1007/JHEP06(2015)059 10.1088/0264-9381/25/14/145011 10.1016/0550-3213(92)90627-N 10.1016/j.cpc.2016.08.019 10.1007/JHEP12(2014)056 10.1007/s41114-018-0016-5 10.1016/j.nuclphysb.2013.09.007 10.1016/j.aop.2012.02.006 10.1088/1475-7516/2012/09/028 10.1088/0264-9381/31/4/043001 10.1088/0264-9381/27/20/205001 10.1007/JHEP11(2010)100 10.1103/PhysRev.113.745 10.1007/JHEP09(2015)219 10.1103/PhysRev.117.1595 10.1088/1475-7516/2016/01/008 10.1088/0264-9381/28/14/145021 10.1103/PhysRevLett.72.2996 10.1007/JHEP10(2018)056 10.1007/JHEP09(2018)105 10.1142/S0217751X15500116 10.1103/PhysRevLett.114.061301 10.1016/0370-2693(92)91366-H 10.1007/JHEP10(2018)038 10.1007/JHEP11(2013)096 10.1103/PhysRevD.64.124013 10.1007/JHEP06(2016)023 10.1103/PhysRevLett.115.171301 10.1103/PhysRevD.67.084033 10.1016/j.physrep.2016.04.003 10.1103/PhysRevD.78.044013 10.1007/JHEP11(2018)162 10.1016/0550-3213(90)90375-N 10.1016/0370-2693(87)90159-6 10.1016/0550-3213(93)90367-X 10.1103/PhysRevD.62.084011 10.1007/JHEP03(2016)030 10.1007/JHEP03(2018)044 10.1088/1475-7516/2011/03/009 10.1007/s10714-006-0345-7 10.1103/PhysRevLett.105.094802 10.1103/PhysRev.116.1322 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s) 2019 – notice: Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 1XC DOA |
DOI | 10.1007/JHEP02(2019)137 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Hyper Article en Ligne (HAL) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 69 |
ExternalDocumentID | oai_doaj_org_article_78728ca573cf4b66a1589178e755878a oai_HAL_hal_01952692v1 10_1007_JHEP02_2019_137 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS EJD ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT 02O 1JI 1WK 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI AAYXX AAYZH ABFSG ABTEG ACAFW ACARI ACBXY ACSTC ADKPE ADRFC AEFHF AEJGL AERVB AETNG AEZWR AFHIU AFLOW AGJBK AGQPQ AHSBF AHSEE AHWEU AIXLP AIYBF AKPSB AMVHM ARNYC BAPOH BBWZM BGNMA CAG CITATION CJUJL COF CRLBU EDWGO EMSAF EPQRW EQZZN H13 IJHAN IOP IZVLO JCGBZ KOT M45 M4Y NT- NT. NU0 O9- PHGZM PHGZT PJBAE Q02 R4D RIN RKQ RNS ROL RPA S1Z S3P SY9 T37 ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 1XC PUEGO |
ID | FETCH-LOGICAL-c517t-989ef0152aadcd7eb03edd5780551a5800d55668228b04fad46ecba7a6f57093 |
IEDL.DBID | C6C |
ISSN | 1029-8479 1126-6708 |
IngestDate | Wed Aug 27 01:24:48 EDT 2025 Fri May 09 12:16:54 EDT 2025 Sun Jul 13 04:08:51 EDT 2025 Tue Jul 01 03:54:13 EDT 2025 Thu Apr 24 23:06:07 EDT 2025 Fri Feb 21 02:33:40 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Classical Theories of Gravity Scattering Amplitudes scattering: classical electromagnetic field spinless scattering amplitude higher-order: 1 momentum transfer |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-989ef0152aadcd7eb03edd5780551a5800d55668228b04fad46ecba7a6f57093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doi.org/10.1007/JHEP02(2019)137 |
PQID | 2185171456 |
PQPubID | 2034718 |
PageCount | 69 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_78728ca573cf4b66a1589178e755878a hal_primary_oai_HAL_hal_01952692v1 proquest_journals_2185171456 crossref_primary_10_1007_JHEP02_2019_137 crossref_citationtrail_10_1007_JHEP02_2019_137 springer_journals_10_1007_JHEP02_2019_137 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-01 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2019 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer – name: SpringerOpen |
References | PlefkaJSteinhoffJWormsbecherWEffective action of dilaton gravity as the classical double copy of Yang-Mills theoryPhys. Rev.2019D 992019PhRvD..99b4021P[arXiv:1807.09859] [INSPIRE] R.A. Porto and I.Z. Rothstein, Comment on ‘On the next-to-leading order gravitational spin(1)-spin(2) dynamics’ by J. Steinhoff et al., arXiv:0712.2032 [INSPIRE]. M. Levi and J. Steinhoff, Complete conservative dynamics for inspiralling compact binaries with spins at fourth post-Newtonian order, arXiv:1607.04252 [INSPIRE]. F. Cachazo and A. Guevara, Leading Singularities and Classical Gravitational Scattering, arXiv:1705.10262 [INSPIRE]. ChuY-ZThe n-body problem in General Relativity up to the second post-Newtonian order from perturbative field theoryPhys. Rev.2009D 792009PhRvD..79d4031C[arXiv:0812.0012] [INSPIRE] N.E.J. Bjerrum-Bohr, J.F. Donoghue and B.R. Holstein, Quantum gravitational corrections to the nonrelativistic scattering potential of two masses, Phys. Rev.D 67 (2003) 084033 [Erratum ibid.D 71 (2005) 069903] [hep-th/0211072] [INSPIRE]. LIGO Scientific and Virgo collaborations, GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2, Phys. Rev. Lett.118 (2017) 221101 [Erratum ibid.121 (2018) 129901] [arXiv:1706.01812] [INSPIRE]. PortoRAThe effective field theorist’s approach to gravitational dynamicsPhys. Rept.201663312016PhR...633....1P350314310.1016/j.physrep.2016.04.0031359.83024[arXiv:1601.04914] [INSPIRE] FoffaSSturaniRTail terms in gravitational radiation reaction via effective field theoryPhys. Rev.2013D 872013PhRvD..87d4056F[arXiv:1111.5488] [INSPIRE] CiafaloniMColferaiDCoradeschiFVenezianoGUnified limiting form of graviton radiation at extreme energiesPhys. Rev.2016D 932016PhRvD..93d4052C3499366[arXiv:1512.00281] [INSPIRE] J.D. Jackson, Classical Electrodynamics, third edition, Wiley, New York U.S.A. (1998) [ISBN:978-0471309321]. F. Pretorius, Binary Black Hole Coalescence, arXiv:0710.1338 [INSPIRE]. DonoghueJFTormaTOn the power counting of loop diagrams in general relativityPhys. Rev.1996D 5449631996PhRvD..54.4963D[hep-th/9602121] [INSPIRE] LaddhaASenALogarithmic Terms in the Soft Expansion in Four DimensionsJHEP2018100562018JHEP...10..056L389104010.1007/JHEP10(2018)0561402.83081[arXiv:1804.09193] [INSPIRE] AmatiDCiafaloniMVenezianoGClassical and Quantum Gravity Effects from Planckian Energy Superstring CollisionsInt. J. Mod. Phys.1988A 316151988IJMPA...3.1615A10.1142/S0217751X88000710[INSPIRE] CiafaloniMColferaiDVenezianoGEmerging Hawking-Like Radiation from Gravitational Bremsstrahlung Beyond the Planck ScalePhys. Rev. Lett.20151151713012015PhRvL.115q1301C10.1103/PhysRevLett.115.171301[arXiv:1505.06619] [INSPIRE] GilmoreJBRossAEffective field theory calculation of second post-Newtonian binary dynamicsPhys. Rev.2008D 781240212008PhRvD..78l4021G[arXiv:0810.1328] [INSPIRE] A. Buonanno and B.S. Sathyaprakash, Sources of Gravitational Waves: Theory and Observations, pp. 287–346, (2014), arXiv:1410.7832 [INSPIRE]. NeillDRothsteinIZClassical Space-Times from the S MatrixNucl. Phys.2013B 8771772013NuPhB.877..177N312483710.1016/j.nuclphysb.2013.09.0071284.83052[arXiv:1304.7263] [INSPIRE] GoldbergerWDRidgwayAKRadiation and the classical double copy for color chargesPhys. Rev.2017D 951250102017PhRvD..95l5010G3829776[arXiv:1611.03493] [INSPIRE] CheungCRothsteinIZSolonMPFrom Scattering Amplitudes to Classical Potentials in the Post-Minkowskian ExpansionPhys. Rev. Lett.20181212511012018PhRvL.121y1101C10.1103/PhysRevLett.121.251101[arXiv:1808.02489] [INSPIRE] M. Abraham, Theorie der Elektrizität. Vol. II: Elektromagnetische Theorie der Strahlung, Teubner, Leipzig Germany (1904). D’AppollonioGDi VecchiaPRussoRVenezianoGHigh-energy string-brane scattering: Leading eikonal and beyondJHEP2010111002010JHEP...11..100D279508110.1007/JHEP11(2010)1001294.81189[arXiv:1008.4773] [INSPIRE] GalleyCRTiglioMRadiation reaction and gravitational waves in the effective field theory approachPhys. Rev.2009D 791240272009PhRvD..79l4027G[arXiv:0903.1122] [INSPIRE] LeviMSteinhoffJEFTofPNG: A package for high precision computation with the Effective Field Theory of Post-Newtonian GravityClass. Quant. Grav.2017342440012017CQGra..34x4001L373276610.1088/1361-6382/aa941e[arXiv:1705.06309] [INSPIRE] DamourTHigh-energy gravitational scattering and the general relativistic two-body problemPhys. Rev.2018D 972018PhRvD..97d4038D3804325[arXiv:1710.10599] [INSPIRE] LaddhaASenAGravity Waves from Soft Theorem in General DimensionsJHEP2018091052018JHEP...09..105L386838210.1007/JHEP09(2018)1051398.83023[arXiv:1801.07719] [INSPIRE] B. Sahoo and A. Sen, Classical and Quantum Results on Logarithmic Terms in the Soft Theorem in Four Dimensions, arXiv:1808.03288 [INSPIRE]. ColladoAKDi VecchiaPRussoRThomasSThe subleading eikonal in supergravity theoriesJHEP2018100382018JHEP...10..038C389105810.1007/JHEP10(2018)0381402.83106[arXiv:1807.04588] [INSPIRE] J.F. Donoghue, Leading quantum correction to the Newtonian potential, Phys. Rev. Lett.72 (1994) 2996 [gr-qc/9310024] [INSPIRE]. EllisJTikZ-Feynman: Feynman diagrams with TikZComput. Phys. Commun.20172101032017CoPhC.210..103E10.1016/j.cpc.2016.08.019[arXiv:1601.05437] [INSPIRE] BirnholtzOComments on initial conditions for the Abraham-Lorentz(-Dirac) equationInt. J. Mod. Phys.2015A 3015500112015IJMPA..3050011B330229010.1142/S0217751X15500116[arXiv:1410.5871] [INSPIRE] LIGO Scientific and Virgo collaborations, Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett.116 (2016) 061102 [arXiv:1602.03837] [INSPIRE]. GoldbergerWDPrabhuSGThompsonJOClassical gluon and graviton radiation from the bi-adjoint scalar double copyPhys. Rev.2017D 962017PhRvD..96f5009G3856389[arXiv:1705.09263] [INSPIRE] LeviMNext to Leading Order gravitational Spin-Orbit coupling in an Effective Field Theory approachPhys. Rev.2010D 821040042010PhRvD..82j4004L[arXiv:1006.4139] [INSPIRE] J.F. Donoghue, General relativity as an effective field theory: The leading quantum corrections, Phys. Rev.D 50 (1994) 3874 [gr-qc/9405057] [INSPIRE]. ArnowittRLDeserSMisnerCWCanonical variables for general relativityPhys. Rev.196011715951960PhRv..117.1595A11366810.1103/PhysRev.117.15950091.21203[INSPIRE] LIGO Scientific and Virgo collaborations, GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence, Phys. Rev. Lett.116 (2016) 241103 [arXiv:1606.04855] [INSPIRE]. PortoRARossARothsteinIZSpin induced multipole moments for the gravitational wave flux from binary inspirals to third Post-Newtonian orderJCAP2011030092011JCAP...03..009P10.1088/1475-7516/2011/03/009[arXiv:1007.1312] [INSPIRE] LeviMNext to Leading Order gravitational Spin1-Spin2 coupling with Kaluza-Klein reductionPhys. Rev.2010D 822010PhRvD..82f4029L[arXiv:0802.1508] [INSPIRE] R.A. Porto, Post-Newtonian corrections to the motion of spinning bodies in NRGR, Phys. Rev.D 73 (2006) 104031 [gr-qc/0511061] [INSPIRE]. Bjerrum-BohrNEJHolsteinBRPlantéLVanhovePGraviton-Photon ScatteringPhys. Rev.2015D 912015PhRvD..91f4008B[arXiv:1410.4148] [INSPIRE] T. Damour, P. Jaranowski and G. Schaefer, On the determination of the last stable orbit for circular general relativistic binaries at the third postNewtonian approximation, Phys. Rev.D 62 (2000) 084011 [gr-qc/0005034] [INSPIRE]. BirnholtzOHadarSKolBTheory of post-Newtonian radiation and reactionPhys. Rev.2013D 881040372013PhRvD..88j4037B[arXiv:1305.6930] [INSPIRE] N.E.J. Bjerrum-Bohr, J.F. Donoghue and B.R. Holstein, Quantum corrections to the Schwarzschild and Kerr metrics, Phys. Rev.D 68 (2003) 084005 [Erratum ibid.D 71 (2005) 069904] [hep-th/0211071] [INSPIRE]. GoldbergerWDRidgwayAKBound states and the classical double copyPhys. Rev.2018D 972018PhRvD..97h5019G3846507[arXiv:1711.09493] [INSPIRE] AmatiDCiafaloniMVenezianoGPlanckian scattering beyond the semiclassical approximationPhys. Lett.1992B 289871992PhLB..289...87A10.1016/0370-2693(92)91366-H[INSPIRE] L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields, fourth edition, Butterworth-Heinemann, Oxford U.K. (1975), [ISBN:978-0750627689]. GoldbergerWDRothsteinIZTowers of Gravitational TheoriesGen. Rel. Grav.20063815372006GReGr..38.1537G228175510.1007/s10714-006-0345-71117.83094[hep-th/0605238] [INSPIRE] HergtSSteinhoffJSchaeferGElimination of the spin supplementary condition in the effective field theory approach to the post-Newtonian approximationAnnals Phys.201232714942012AnPhy.327.1494H10.1016/j.aop.2012.02.0061246.83058[arXiv:1110.2094] [INSPIRE] FoffaSMastroliaPSturaniRSturmCEffective field theory approach to the gravitational two-body dynamics, at fourth post-Newtonian order and quintic in the Newton constantPhys. Rev.2017D 951040092017PhRvD..95j4009F3817944[arXiv:1612.00482] [INSPIRE] GoldbergerWDRossAGravitational radiative corrections from effective field theoryPhys. Rev.2010D 811240152010PhRvD..81l4015G[arXiv:0912.4254] [INSPIRE] HolsteinBRDonoghueJFClassical physics and quantum loopsPhys. Rev. Lett.2004932016022004PhRvL..93t1602H211826010.1103/PhysRevLett.93.201602[hep-th/0405239] [INSPIRE] D’AppollonioGDi VecchiaPRussoRVenezianoGA microscopic description of absorption in high-energy string-brane collisionsJHEP20160303010.1007/JHEP03(2016)030[arXiv:1510.03837] [INSPIRE] SucherJTwo photon exchange force in scalar quantum electrodynamics: The Asymptotic storyPhys. Rev.1994D 4942841994PhRvD..49.4284S[INSPIRE] SchäferGJaranowskiPHamiltonian formulation of general relativity and post-Newtonian dynamics of compact binariesLiving Rev. Rel.201821710.1007/s41114-018-0016-5[arXiv:1805.07240] [INSPIRE] FoffaSSturaniREffective field theory methods to model compact binariesClass. Quant. Grav.2014312014CQGra..31d3001F316822310.1088/0264-9381/31/4/0430011286.83034[arXiv:1309.3474] [INSPIRE] MuzinichIJSoldateMHigh-Energy Unitarity of Gravitation and StringsPhys. Rev.1988D 373591988PhRvD..37..359M[INSPIRE] ArnowittRDeserSQuantum Theory of Gravitation: General Formulation and Linearized TheoryPhys. Rev.19591137451959PhRv..113..745A10111410.1103/PhysRev.113.7450083.43201[INSPIRE] Goldber B Kol (10020_CR32) 2008; 40 MH Al-Hashimi (10020_CR117) 2009; 324 10020_CR33 10020_CR30 B Kol (10020_CR38) 2009; D 80 IJ Muzinich (10020_CR120) 1988; D 37 10020_CR27 10020_CR25 10020_CR24 G D’Appollonio (10020_CR130) 2015; 05 M Ciafaloni (10020_CR131) 2015; 115 G D’Appollonio (10020_CR132) 2016; 03 D Amati (10020_CR121) 1988; A 3 A Laddha (10020_CR102) 2018; 09 RA Porto (10020_CR20) 2016; 633 O Birnholtz (10020_CR52) 2013; D 88 IJ Muzinich (10020_CR126) 1995; D 52 JF Donoghue (10020_CR79) 1996; D 54 O Birnholtz (10020_CR115) 2014; A 29 10020_CR140 M Levi (10020_CR44) 2012; D 85 R Monteiro (10020_CR89) 2014; 12 10020_CR10 L Blanchet (10020_CR12) 2014; 17 M Levi (10020_CR66) 2017; 34 S Chakrabarti (10020_CR53) 2013; D 88 R Arnowitt (10020_CR7) 1959; 113 WD Goldberger (10020_CR23) 2006; 38 10020_CR93 10020_CR138 Z Bern (10020_CR87) 2008; D 78 CR Galley (10020_CR113) 2010; 105 J Sucher (10020_CR136) 1994; D 49 S Hergt (10020_CR45) 2012; 327 S Melville (10020_CR128) 2014; D 89 10020_CR129 RA Porto (10020_CR26) 2008; D 77 PAM Dirac (10020_CR109) 1938; A 167 D Amati (10020_CR123) 1992; B 289 O Birnholtz (10020_CR116) 2015; A 30 A Ross (10020_CR47) 2012; D 85 Z Bern (10020_CR88) 2010; 105 10020_CR21 RL Arnowitt (10020_CR8) 1959; 116 10020_CR18 M Levi (10020_CR59) 2016; 01 10020_CR16 10020_CR17 A Laddha (10020_CR103) 2018; 10 10020_CR14 10020_CR15 Y-Z Chu (10020_CR35) 2009; D 79 10020_CR13 T Damour (10020_CR85) 2018; D 97 M Levi (10020_CR31) 2010; D 82 10020_CR119 10020_CR77 10020_CR110 10020_CR74 10020_CR111 10020_CR75 10020_CR112 A Luna (10020_CR134) 2017; 01 M Levi (10020_CR56) 2014; 12 M Levi (10020_CR58) 2015; 09 BR Holstein (10020_CR83) 2004; 93 WD Goldberger (10020_CR94) 2017; D 96 NEJ Bjerrum-Bohr (10020_CR76) 2018; 121 H Kawai (10020_CR86) 1986; B 269 CR Galley (10020_CR37) 2009; D 79 10020_CR80 10020_CR107 M Abraham (10020_CR108) 1904; 14 WD Goldberger (10020_CR50) 2014; D 89 NT Maia (10020_CR67) 2017; D 96 HA Lorentz (10020_CR105) 1892; 25 A Luna (10020_CR137) 2018; 03 D Amati (10020_CR125) 1993; B 403 10020_CR100 10020_CR81 10020_CR104 M Levi (10020_CR57) 2015; 06 NEJ Bjerrum-Bohr (10020_CR71) 2015; D 91 10020_CR82 AK Collado (10020_CR135) 2018; 10 WD Goldberger (10020_CR91) 2017; D 95 C Cheung (10020_CR101) 2018; 121 T Damour (10020_CR84) 2016; D 94 J Ellis (10020_CR139) 2017; 210 S Foffa (10020_CR46) 2013; D 87 M Ciafaloni (10020_CR133) 2016; D 93 10020_CR78 C-H Shen (10020_CR95) 2018; 11 D Amati (10020_CR118) 1987; B 197 RL Arnowitt (10020_CR9) 1960; 117 NT Maia (10020_CR68) 2017; D 96 CR Galley (10020_CR29) 2009; D 79 WD Goldberger (10020_CR22) 2006; D 73 WD Goldberger (10020_CR36) 2010; D 81 B Kol (10020_CR42) 2011; 28 M Levi (10020_CR60) 2016; 01 10020_CR6 A Luna (10020_CR90) 2016; 06 10020_CR5 B Kol (10020_CR28) 2008; 25 10020_CR4 J Li (10020_CR99) 2018; D 97 10020_CR3 RA Porto (10020_CR64) 2017; D 96 10020_CR2 10020_CR1 G Schäfer (10020_CR11) 2018; 21 RA Porto (10020_CR65) 2017; D 96 CR Galley (10020_CR51) 2013; 11 10020_CR49 NEJ Bjerrum-Bohr (10020_CR70) 2014; 02 10020_CR48 S Foffa (10020_CR55) 2014; D 89 M Abraham (10020_CR106) 1903; 10 D Amati (10020_CR122) 1990; B 347 G D’Appollonio (10020_CR127) 2010; 11 M Levi (10020_CR40) 2010; D 82 WD Goldberger (10020_CR19) 2006; D 73 JB Gilmore (10020_CR34) 2008; D 78 S Foffa (10020_CR43) 2011; D 84 S Foffa (10020_CR63) 2017; D 95 WD Goldberger (10020_CR96) 2018; D 97 WD Goldberger (10020_CR98) 2018; D 97 RA Porto (10020_CR41) 2011; 03 RA Porto (10020_CR39) 2010; 27 CR Galley (10020_CR61) 2016; D 93 DN Kabat (10020_CR124) 1992; B 388 NEJ Bjerrum-Bohr (10020_CR73) 2016; 11 O Birnholtz (10020_CR114) 2013; D 88 10020_CR62 A Luna (10020_CR92) 2017; 04 D Neill (10020_CR69) 2013; B 877 S Foffa (10020_CR54) 2014; 31 NEJ Bjerrum-Bohr (10020_CR72) 2015; 114 J Plefka (10020_CR97) 2019; D 99 |
References_xml | – reference: CheungCRothsteinIZSolonMPFrom Scattering Amplitudes to Classical Potentials in the Post-Minkowskian ExpansionPhys. Rev. Lett.20181212511012018PhRvL.121y1101C10.1103/PhysRevLett.121.251101[arXiv:1808.02489] [INSPIRE] – reference: L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields, fourth edition, Butterworth-Heinemann, Oxford U.K. (1975), [ISBN:978-0750627689]. – reference: MaiaNTGalleyCRLeibovichAKPortoRARadiation reaction for spinning bodies in effective field theory I: Spin-orbit effectsPhys. Rev.2017D 962017PhRvD..96h4064M3861671[arXiv:1705.07934] [INSPIRE] – reference: KawaiHLewellenDCTyeSHHA Relation Between Tree Amplitudes of Closed and Open StringsNucl. Phys.1986B 26911986NuPhB.269....1K83866710.1016/0550-3213(86)90362-7[INSPIRE] – reference: GoldbergerWDRidgwayAKBound states and the classical double copyPhys. Rev.2018D 972018PhRvD..97h5019G3846507[arXiv:1711.09493] [INSPIRE] – reference: LaddhaASenAGravity Waves from Soft Theorem in General DimensionsJHEP2018091052018JHEP...09..105L386838210.1007/JHEP09(2018)1051398.83023[arXiv:1801.07719] [INSPIRE] – reference: PortoRAAbsorption effects due to spin in the worldline approach to black hole dynamicsPhys. Rev.2008D 772008PhRvD..77f4026P2495433[arXiv:0710.5150] [INSPIRE] – reference: ArnowittRLDeserSMisnerCWDynamical Structure and Definition of Energy in General RelativityPhys. Rev.195911613221959PhRv..116.1322A11366710.1103/PhysRev.116.13220092.20704[INSPIRE] – reference: T. Damour, Coalescence of two spinning black holes: an effective one-body approach, Phys. Rev.D 64 (2001) 124013 [gr-qc/0103018] [INSPIRE]. – reference: DamourTGravitational scattering, post-Minkowskian approximation and Effective One-Body theoryPhys. Rev.2016D 941040152016PhRvD..94j4015D3745958[arXiv:1609.00354] [INSPIRE] – reference: GalleyCRPortoRAGravitational self-force in the ultra-relativistic limit: the “large-N” expansionJHEP2013110962013JHEP...11..096G10.1007/JHEP11(2013)096[arXiv:1302.4486] [INSPIRE] – reference: LeviMSteinhoffJNext-to-next-to-leading order gravitational spin-squared potential via the effective field theory for spinning objects in the post-Newtonian schemeJCAP2016010082016JCAP...01..008L347235710.1088/1475-7516/2016/01/008[arXiv:1506.05794] [INSPIRE] – reference: KabatDNOrtizMEikonal quantum gravity and Planckian scatteringNucl. Phys.1992B 3885701992NuPhB.388..570K10.1016/0550-3213(92)90627-N[hep-th/9203082] [INSPIRE] – reference: GoldbergerWDRothsteinIZTowers of Gravitational TheoriesGen. Rel. Grav.20063815372006GReGr..38.1537G228175510.1007/s10714-006-0345-71117.83094[hep-th/0605238] [INSPIRE] – reference: J.F. Donoghue, General relativity as an effective field theory: The leading quantum corrections, Phys. Rev.D 50 (1994) 3874 [gr-qc/9405057] [INSPIRE]. – reference: NeillDRothsteinIZClassical Space-Times from the S MatrixNucl. Phys.2013B 8771772013NuPhB.877..177N312483710.1016/j.nuclphysb.2013.09.0071284.83052[arXiv:1304.7263] [INSPIRE] – reference: BirnholtzOHadarSKolBRadiation reaction at the level of the actionInt. J. Mod. Phys.2014A 2914501322014IJMPA..2950132B10.1142/S0217751X145013221301.70018[arXiv:1402.2610] [INSPIRE] – reference: PortoRAThe effective field theorist’s approach to gravitational dynamicsPhys. Rept.201663312016PhR...633....1P350314310.1016/j.physrep.2016.04.0031359.83024[arXiv:1601.04914] [INSPIRE] – reference: B. Sahoo and A. Sen, Classical and Quantum Results on Logarithmic Terms in the Soft Theorem in Four Dimensions, arXiv:1808.03288 [INSPIRE]. – reference: AbrahamMPrinzipien der Dynamik des ElektronsAnn. Phys.19031010534.0915.02 – reference: HergtSSteinhoffJSchaeferGElimination of the spin supplementary condition in the effective field theory approach to the post-Newtonian approximationAnnals Phys.201232714942012AnPhy.327.1494H10.1016/j.aop.2012.02.0061246.83058[arXiv:1110.2094] [INSPIRE] – reference: R.A. Porto and I.Z. Rothstein, Next to Leading Order Spin(1)Spin(1) Effects in the Motion of Inspiralling Compact Binaries, Phys. Rev.D 78 (2008) 044013 [Erratum ibid.D 81 (2010) 029905] [arXiv:0804.0260] [INSPIRE]. – reference: CiafaloniMColferaiDCoradeschiFVenezianoGUnified limiting form of graviton radiation at extreme energiesPhys. Rev.2016D 932016PhRvD..93d4052C3499366[arXiv:1512.00281] [INSPIRE] – reference: AmatiDCiafaloniMVenezianoGClassical and Quantum Gravity Effects from Planckian Energy Superstring CollisionsInt. J. Mod. Phys.1988A 316151988IJMPA...3.1615A10.1142/S0217751X88000710[INSPIRE] – reference: M. Levi, Effective Field Theories of Post-Newtonian Gravity: A comprehensive review, arXiv:1807.01699 [INSPIRE]. – reference: LeviMSteinhoffJEFTofPNG: A package for high precision computation with the Effective Field Theory of Post-Newtonian GravityClass. Quant. Grav.2017342440012017CQGra..34x4001L373276610.1088/1361-6382/aa941e[arXiv:1705.06309] [INSPIRE] – reference: FoffaSSturaniRTail terms in gravitational radiation reaction via effective field theoryPhys. Rev.2013D 872013PhRvD..87d4056F[arXiv:1111.5488] [INSPIRE] – reference: GalleyCRTiglioMRadiation reaction and gravitational waves in the effective field theory approachPhys. Rev.2009D 791240272009PhRvD..79l4027G[arXiv:0903.1122] [INSPIRE] – reference: M. Levi and J. Steinhoff, Complete conservative dynamics for inspiralling compact binaries with spins at fourth post-Newtonian order, arXiv:1607.04252 [INSPIRE]. – reference: F. Pretorius, Binary Black Hole Coalescence, arXiv:0710.1338 [INSPIRE]. – reference: A. Buonanno and T. Damour, Transition from inspiral to plunge in binary black hole coalescences, Phys. Rev.D 62 (2000) 064015 [gr-qc/0001013] [INSPIRE]. – reference: BirnholtzOComments on initial conditions for the Abraham-Lorentz(-Dirac) equationInt. J. Mod. Phys.2015A 3015500112015IJMPA..3050011B330229010.1142/S0217751X15500116[arXiv:1410.5871] [INSPIRE] – reference: HolsteinBRDonoghueJFClassical physics and quantum loopsPhys. Rev. Lett.2004932016022004PhRvL..93t1602H211826010.1103/PhysRevLett.93.201602[hep-th/0405239] [INSPIRE] – reference: KolBLeviMSmolkinMComparing space+time decompositions in the post-Newtonian limitClass. Quant. Grav.2011281450212011CQGra..28n5021K282261710.1088/0264-9381/28/14/1450211222.83155[arXiv:1011.6024] [INSPIRE] – reference: ArnowittRDeserSQuantum Theory of Gravitation: General Formulation and Linearized TheoryPhys. Rev.19591137451959PhRv..113..745A10111410.1103/PhysRev.113.7450083.43201[INSPIRE] – reference: A. Higuchi, Radiation reaction in quantum field theory, Phys. Rev.D 66 (2002) 105004 [Erratum ibid.D 69 (2004) 129903] [quant-ph/0208017] [INSPIRE]. – reference: LIGO Scientific and Virgo collaborations, GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence, Phys. Rev. Lett.119 (2017) 141101 [arXiv:1709.09660] [INSPIRE]. – reference: ShenC-HGravitational Radiation from Color-Kinematics DualityJHEP2018111622018JHEP...11..162S390042010.1007/JHEP11(2018)1621404.83022[arXiv:1806.07388] [INSPIRE] – reference: GoldbergerWDLiJPrabhuSGSpinning particles, axion radiation and the classical double copyPhys. Rev.2018D 971050182018PhRvD..97j5018G3884467[arXiv:1712.09250] [INSPIRE] – reference: GalleyCRHuBLSelf-force on extreme mass ratio inspirals via curved spacetime effective field theoryPhys. Rev.2009D 792009PhRvD..79f4002G[arXiv:0801.0900] [INSPIRE] – reference: MaiaNTGalleyCRLeibovichAKPortoRARadiation reaction for spinning bodies in effective field theory II: Spin-spin effectsPhys. Rev.2017D 962017PhRvD..96h4065M3861672[arXiv:1705.07938] [INSPIRE] – reference: LIGO Scientific and Virgo collaborations, GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2, Phys. Rev. Lett.118 (2017) 221101 [Erratum ibid.121 (2018) 129901] [arXiv:1706.01812] [INSPIRE]. – reference: Bjerrum-BohrNEJDamgaardPHFestucciaGPlantéLVanhovePGeneral Relativity from Scattering AmplitudesPhys. Rev. Lett.20181211716012018PhRvL.121q1601B10.1103/PhysRevLett.121.171601[arXiv:1806.04920] [INSPIRE] – reference: SucherJTwo photon exchange force in scalar quantum electrodynamics: The Asymptotic storyPhys. Rev.1994D 4942841994PhRvD..49.4284S[INSPIRE] – reference: GalleyCRLeibovichAKPortoRARossATail effect in gravitational radiation reaction: Time nonlocality and renormalization group evolutionPhys. Rev.2016D 931240102016PhRvD..93l4010G3621065[arXiv:1511.07379] [INSPIRE] – reference: Bjerrum-BohrNEJDonoghueJFHolsteinBRPlantéLVanhovePBending of Light in Quantum GravityPhys. Rev. Lett.20151142015PhRvL.114f1301B10.1103/PhysRevLett.114.0613011390.83057[arXiv:1410.7590] [INSPIRE] – reference: A. Buonanno and T. Damour, Effective one-body approach to general relativistic two-body dynamics, Phys. Rev.D 59 (1999) 084006 [gr-qc/9811091] [INSPIRE]. – reference: BernZCarrascoJJMJohanssonHNew Relations for Gauge-Theory AmplitudesPhys. Rev.2008D 782008PhRvD..78h5011B2470033[arXiv:0805.3993] [INSPIRE] – reference: PortoRARossARothsteinIZSpin induced multipole moments for the gravitational wave flux from binary inspirals to third Post-Newtonian orderJCAP2011030092011JCAP...03..009P10.1088/1475-7516/2011/03/009[arXiv:1007.1312] [INSPIRE] – reference: R.A. Porto and I.Z. Rothstein, Spin(1)Spin(2) Effects in the Motion of Inspiralling Compact Binaries at Third Order in the Post-Newtonian Expansion, Phys. Rev.D 78 (2008) 044012 [Erratum ibid.D 81 (2010) 029904] [arXiv:0802.0720] [INSPIRE]. – reference: GalleyCRLeibovichAKRothsteinIZFinite size corrections to the radiation reaction force in classical electrodynamicsPhys. Rev. Lett.20101052010PhRvL.105i4802G10.1103/PhysRevLett.105.094802[arXiv:1005.2617] [INSPIRE] – reference: LiJPrabhuSGGravitational radiation from the classical spinning double copyPhys. Rev.2018D 971050192018PhRvD..97j5019L3884468[arXiv:1803.02405] [INSPIRE] – reference: R.L. Arnowitt, S. Deser and C.W. Misner, The Dynamics of general relativity, Gen. Rel. Grav.40 (2008) 1997 [gr-qc/0405109] [INSPIRE]. – reference: R.A. Porto and I.Z. Rothstein, The Hyperfine Einstein-Infeld-Hoffmann potential, Phys. Rev. Lett.97 (2006) 021101 [gr-qc/0604099] [INSPIRE]. – reference: GoldbergerWDRossARothsteinIZBlack hole mass dynamics and renormalization group evolutionPhys. Rev.2014D 891240332014PhRvD..89l4033G[arXiv:1211.6095] [INSPIRE] – reference: LunaAPerturbative spacetimes from Yang-Mills theoryJHEP2017040692017JHEP...04..069L365769910.1007/JHEP04(2017)069[arXiv:1611.07508] [INSPIRE] – reference: R. Akhoury, R. Saotome and G. Sterman, High Energy Scattering in Perturbative Quantum Gravity at Next to Leading Power, arXiv:1308.5204 [INSPIRE]. – reference: Bjerrum-BohrNEJHolsteinBRPlantéLVanhovePGraviton-Photon ScatteringPhys. Rev.2015D 912015PhRvD..91f4008B[arXiv:1410.4148] [INSPIRE] – reference: LeviMSteinhoffJNext-to-next-to-leading order gravitational spin-orbit coupling via the effective field theory for spinning objects in the post-Newtonian schemeJCAP2016010112016JCAP...01..011L347235410.1088/1475-7516/2016/01/011[arXiv:1506.05056] [INSPIRE] – reference: MuzinichIJVokosSLong range forces in quantum gravityPhys. Rev.1995D 5234721995PhRvD..52.3472M[hep-th/9501083] [INSPIRE] – reference: DonoghueJFTormaTOn the power counting of loop diagrams in general relativityPhys. Rev.1996D 5449631996PhRvD..54.4963D[hep-th/9602121] [INSPIRE] – reference: D’AppollonioGDi VecchiaPRussoRVenezianoGRegge behavior saves String Theory from causality violationsJHEP2015051442015JHEP...05..144D335885910.1007/JHEP05(2015)1441388.83065[arXiv:1502.01254] [INSPIRE] – reference: RossAMultipole expansion at the level of the actionPhys. Rev.2012D 851250332012PhRvD..85l5033R[arXiv:1202.4750] [INSPIRE] – reference: LeviMBinary dynamics from spin1-spin2 coupling at fourth post-Newtonian orderPhys. Rev.2012D 852012PhRvD..85f4043L[arXiv:1107.4322] [INSPIRE] – reference: R.A. Porto, A. Ross and I.Z. Rothstein, Spin induced multipole moments for the gravitational wave amplitude from binary inspirals to 2.5 Post-Newtonian order, JCAP09 (2012) 028 [arXiv:1203.2962] [INSPIRE]. – reference: GoldbergerWDRidgwayAKRadiation and the classical double copy for color chargesPhys. Rev.2017D 951250102017PhRvD..95l5010G3829776[arXiv:1611.03493] [INSPIRE] – reference: DiracPAMClassical theory of radiating electronsProc. Roy. Soc. Lond.1938A 1671481938RSPSA.167..148D64.1481.03 – reference: FoffaSMastroliaPSturaniRSturmCEffective field theory approach to the gravitational two-body dynamics, at fourth post-Newtonian order and quintic in the Newton constantPhys. Rev.2017D 951040092017PhRvD..95j4009F3817944[arXiv:1612.00482] [INSPIRE] – reference: AmatiDCiafaloniMVenezianoGEffective action and all order gravitational eikonal at Planckian energiesNucl. Phys.1993B 4037071993NuPhB.403..707A10.1016/0550-3213(93)90367-X[INSPIRE] – reference: MelvilleSNaculichSGSchnitzerHJWhiteCDWilson line approach to gravity in the high energy limitPhys. Rev.2014D 892014PhRvD..89b5009M[arXiv:1306.6019] [INSPIRE] – reference: J. Schwinger, L.L. DeRaad Jr., K.A. Milton and W.Y. Tsai, Classical Electrodynamics, Perseus, New York U.S.A. (1998) [ISBN:978-0738200569]. – reference: AmatiDCiafaloniMVenezianoGPlanckian scattering beyond the semiclassical approximationPhys. Lett.1992B 289871992PhLB..289...87A10.1016/0370-2693(92)91366-H[INSPIRE] – reference: MonteiroRO’ConnellDWhiteCDBlack holes and the double copyJHEP2014120562014JHEP...12..056M330353710.1007/JHEP12(2014)0561333.83048[arXiv:1410.0239] [INSPIRE] – reference: N.E.J. Bjerrum-Bohr, J.F. Donoghue and B.R. Holstein, Quantum corrections to the Schwarzschild and Kerr metrics, Phys. Rev.D 68 (2003) 084005 [Erratum ibid.D 71 (2005) 069904] [hep-th/0211071] [INSPIRE]. – reference: KolBSmolkinMDressing the Post-Newtonian two-body problem and Classical Effective Field TheoryPhys. Rev.2009D 801240442009PhRvD..80l4044K[arXiv:0910.5222] [INSPIRE] – reference: GoldbergerWDPrabhuSGThompsonJOClassical gluon and graviton radiation from the bi-adjoint scalar double copyPhys. Rev.2017D 962017PhRvD..96f5009G3856389[arXiv:1705.09263] [INSPIRE] – reference: N.E.J. Bjerrum-Bohr, J.F. Donoghue and B.R. Holstein, Quantum gravitational corrections to the nonrelativistic scattering potential of two masses, Phys. Rev.D 67 (2003) 084033 [Erratum ibid.D 71 (2005) 069903] [hep-th/0211072] [INSPIRE]. – reference: PortoRANext to leading order spin-orbit effects in the motion of inspiralling compact binariesClass. Quant. Grav.2010272050012010CQGra..27t5001P10.1088/0264-9381/27/20/2050011202.83019[arXiv:1005.5730] [INSPIRE] – reference: Al-HashimiMHWieseUJMinimal Position-Velocity Uncertainty Wave Packets in Relativistic and Non-relativistic Quantum MechanicsAnnals Phys.200932425992009AnPhy.324.2599A256331910.1016/j.aop.2009.09.0011183.81085[arXiv:0907.5178] [INSPIRE] – reference: LeviMNext to Leading Order gravitational Spin1-Spin2 coupling with Kaluza-Klein reductionPhys. Rev.2010D 822010PhRvD..82f4029L[arXiv:0802.1508] [INSPIRE] – reference: LunaAMonteiroRNicholsonIO’ConnellDWhiteCDThe double copy: Bremsstrahlung and accelerating black holesJHEP2016060232016JHEP...06..023L353818410.1007/JHEP06(2016)0231388.83025[arXiv:1603.05737] [INSPIRE] – reference: A. Guevara, Holomorphic Classical Limit for Spin Effects in Gravitational and Electromagnetic Scattering, arXiv:1706.02314 [INSPIRE]. – reference: D’AppollonioGDi VecchiaPRussoRVenezianoGA microscopic description of absorption in high-energy string-brane collisionsJHEP20160303010.1007/JHEP03(2016)030[arXiv:1510.03837] [INSPIRE] – reference: PortoRALamb shift and the gravitational binding energy for binary black holesPhys. Rev.2017D 962017PhRvD..96b4063P3842289[arXiv:1703.06434] [INSPIRE] – reference: GoldbergerWDRothsteinIZAn Effective field theory of gravity for extended objectsPhys. Rev.2006D 731040292006PhRvD..73j4029G2224727[hep-th/0409156] [INSPIRE] – reference: B.R. Holstein and A. Ross, Spin Effects in Long Range Gravitational Scattering, arXiv:0802.0716 [INSPIRE]. – reference: AmatiDCiafaloniMVenezianoGHigher Order Gravitational Deflection and Soft Bremsstrahlung in Planckian Energy Superstring CollisionsNucl. Phys.1990B 3475501990NuPhB.347..550A10.1016/0550-3213(90)90375-N[INSPIRE] – reference: BernZCarrascoJJMJohanssonHPerturbative Quantum Gravity as a Double Copy of Gauge TheoryPhys. Rev. Lett.20101052010PhRvL.105f1602B267304010.1103/PhysRevLett.105.061602[arXiv:1004.0476] [INSPIRE] – reference: MuzinichIJSoldateMHigh-Energy Unitarity of Gravitation and StringsPhys. Rev.1988D 373591988PhRvD..37..359M[INSPIRE] – reference: PortoRARothsteinIZApparent ambiguities in the post-Newtonian expansion for binary systemsPhys. Rev.2017D 962017PhRvD..96b4062P[arXiv:1703.06433] [INSPIRE] – reference: A. Luna, R. Monteiro, I. Nicholson and D. O’Connell, Type D Spacetimes and the Weyl Double Copy, arXiv:1810.08183 [INSPIRE]. – reference: ArnowittRLDeserSMisnerCWCanonical variables for general relativityPhys. Rev.196011715951960PhRv..117.1595A11366810.1103/PhysRev.117.15950091.21203[INSPIRE] – reference: R.A. Porto and I.Z. Rothstein, Comment on ‘On the next-to-leading order gravitational spin(1)-spin(2) dynamics’ by J. Steinhoff et al., arXiv:0712.2032 [INSPIRE]. – reference: EllisJTikZ-Feynman: Feynman diagrams with TikZComput. Phys. Commun.20172101032017CoPhC.210..103E10.1016/j.cpc.2016.08.019[arXiv:1601.05437] [INSPIRE] – reference: LeviMSteinhoffJLeading order finite size effects with spins for inspiralling compact binariesJHEP2015060592015JHEP...06..059L10.1007/JHEP06(2015)059[arXiv:1410.2601] [INSPIRE] – reference: C.R. Galley, B.L. Hu and S.-Y. Lin, Electromagnetic and gravitational self-force on a relativistic particle from quantum fields in curved space, Phys. Rev.D 74 (2006) 024017 [gr-qc/0603099] [INSPIRE]. – reference: ChakrabartiSDelsateTSteinhoffJEffective action and linear response of compact objects in Newtonian gravityPhys. Rev.2013D 882013PhRvD..88h4038C[arXiv:1306.5820] [INSPIRE] – reference: R.A. Porto, Post-Newtonian corrections to the motion of spinning bodies in NRGR, Phys. Rev.D 73 (2006) 104031 [gr-qc/0511061] [INSPIRE]. – reference: LeviMNext to Leading Order gravitational Spin-Orbit coupling in an Effective Field Theory approachPhys. Rev.2010D 821040042010PhRvD..82j4004L[arXiv:1006.4139] [INSPIRE] – reference: GilmoreJBRossAEffective field theory calculation of second post-Newtonian binary dynamicsPhys. Rev.2008D 781240212008PhRvD..78l4021G[arXiv:0810.1328] [INSPIRE] – reference: KolBThe Delocalized Effective Degrees of Freedom of a Black Hole at Low FrequenciesGen. Rel. Grav.20084020612008GReGr..40.2061K244335910.1007/s10714-008-0673-x1152.83382[arXiv:0804.0187] [INSPIRE] – reference: J.F. Donoghue, Leading quantum correction to the Newtonian potential, Phys. Rev. Lett.72 (1994) 2996 [gr-qc/9310024] [INSPIRE]. – reference: LIGO Scientific and Virgo collaborations, Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett.116 (2016) 061102 [arXiv:1602.03837] [INSPIRE]. – reference: LunaAMelvilleSNaculichSGWhiteCDNext-to-soft corrections to high energy scattering in QCD and gravityJHEP2017010522017JHEP...01..052L362858210.1007/JHEP01(2017)0521373.83045[arXiv:1611.02172] [INSPIRE] – reference: LaddhaASenALogarithmic Terms in the Soft Expansion in Four DimensionsJHEP2018100562018JHEP...10..056L389104010.1007/JHEP10(2018)0561402.83081[arXiv:1804.09193] [INSPIRE] – reference: J.D. Jackson, Classical Electrodynamics, third edition, Wiley, New York U.S.A. (1998) [ISBN:978-0471309321]. – reference: FoffaSGravitating binaries at 5PN in the post-Minkowskian approximationPhys. Rev.2014D 892014PhRvD..89b4019F[arXiv:1309.3956] [INSPIRE] – reference: ChuY-ZThe n-body problem in General Relativity up to the second post-Newtonian order from perturbative field theoryPhys. Rev.2009D 792009PhRvD..79d4031C[arXiv:0812.0012] [INSPIRE] – reference: M. Abraham, Theorie der Elektrizität. Vol. II: Elektromagnetische Theorie der Strahlung, Teubner, Leipzig Germany (1904). – reference: BlanchetLGravitational Radiation from Post-Newtonian Sources and Inspiralling Compact BinariesLiving Rev. Rel.201417210.12942/lrr-2014-21316.83003[arXiv:1310.1528] [INSPIRE] – reference: AmatiDCiafaloniMVenezianoGSuperstring Collisions at Planckian EnergiesPhys. Lett.1987B 197811987PhLB..197...81A10.1016/0370-2693(87)90346-7[INSPIRE] – reference: C.R. Galley and A.K. Leibovich, Radiation reaction at 3.5 post-Newtonian order in effective field theory, Phys. Rev.D 86 (2012) 044029 [arXiv:1205.3842] [INSPIRE]. – reference: DamourTHigh-energy gravitational scattering and the general relativistic two-body problemPhys. Rev.2018D 972018PhRvD..97d4038D3804325[arXiv:1710.10599] [INSPIRE] – reference: LeviMSteinhoffJSpinning gravitating objects in the effective field theory in the post-Newtonian schemeJHEP2015092192015JHEP...09..219L343054610.1007/JHEP09(2015)2191388.83031[arXiv:1501.04956] [INSPIRE] – reference: F. Cachazo and A. Guevara, Leading Singularities and Classical Gravitational Scattering, arXiv:1705.10262 [INSPIRE]. – reference: AbrahamMZur Theorie der Strahlung und des StrahlungsdruckesAnn. Phys.19041423610.1002/andp.1904319070335.0839.02 – reference: SchäferGJaranowskiPHamiltonian formulation of general relativity and post-Newtonian dynamics of compact binariesLiving Rev. Rel.201821710.1007/s41114-018-0016-5[arXiv:1805.07240] [INSPIRE] – reference: D’AppollonioGDi VecchiaPRussoRVenezianoGHigh-energy string-brane scattering: Leading eikonal and beyondJHEP2010111002010JHEP...11..100D279508110.1007/JHEP11(2010)1001294.81189[arXiv:1008.4773] [INSPIRE] – reference: LeviMSteinhoffJEquivalence of ADM Hamiltonian and Effective Field Theory approaches at next-to-next-to-leading order spin1-spin2 coupling of binary inspiralsJCAP2014120032014JCAP...12..003L10.1088/1475-7516/2014/12/003[arXiv:1408.5762] [INSPIRE] – reference: F. Pretorius, Evolution of binary black hole spacetimes, Phys. Rev. Lett.95 (2005) 121101 [gr-qc/0507014] [INSPIRE]. – reference: Bjerrum-BohrNEJDonoghueJFVanhovePOn-shell Techniques and Universal Results in Quantum GravityJHEP2014021112014JHEP...02..111B318313810.1007/JHEP02(2014)1111333.83043[arXiv:1309.0804] [INSPIRE] – reference: T. Damour, P. Jaranowski and G. Schaefer, On the determination of the last stable orbit for circular general relativistic binaries at the third postNewtonian approximation, Phys. Rev.D 62 (2000) 084011 [gr-qc/0005034] [INSPIRE]. – reference: KolBSmolkinMNon-Relativistic Gravitation: From Newton to Einstein and BackClass. Quant. Grav.2008251450112008CQGra..25n5011K243052910.1088/0264-9381/25/14/1450111180.83019[arXiv:0712.4116] [INSPIRE] – reference: LorentzHALa théorie élecromagnetique de Maxwell et son application aux corps mouvemantsArch. Néerl. Sci. Exactes Nat.189225363 – reference: FoffaSSturaniREffective field theory calculation of conservative binary dynamics at third post-Newtonian orderPhys. Rev.2011D 842011PhRvD..84d4031F[arXiv:1104.1122] [INSPIRE] – reference: FoffaSSturaniREffective field theory methods to model compact binariesClass. Quant. Grav.2014312014CQGra..31d3001F316822310.1088/0264-9381/31/4/0430011286.83034[arXiv:1309.3474] [INSPIRE] – reference: Bjerrum-BohrNEJDonoghueJFHolsteinBRPlanteLVanhovePLight-like Scattering in Quantum GravityJHEP2016111172016JHEP...11..117B359478010.1007/JHEP11(2016)1171390.83057[arXiv:1609.07477] [INSPIRE] – reference: GoldbergerWDRothsteinIZDissipative effects in the worldline approach to black hole dynamicsPhys. Rev.2006D 731040302006PhRvD..73j4030G2224728[hep-th/0511133] [INSPIRE] – reference: CiafaloniMColferaiDVenezianoGEmerging Hawking-Like Radiation from Gravitational Bremsstrahlung Beyond the Planck ScalePhys. Rev. Lett.20151151713012015PhRvL.115q1301C10.1103/PhysRevLett.115.171301[arXiv:1505.06619] [INSPIRE] – reference: ColladoAKDi VecchiaPRussoRThomasSThe subleading eikonal in supergravity theoriesJHEP2018100382018JHEP...10..038C389105810.1007/JHEP10(2018)0381402.83106[arXiv:1807.04588] [INSPIRE] – reference: GoldbergerWDRossAGravitational radiative corrections from effective field theoryPhys. Rev.2010D 811240152010PhRvD..81l4015G[arXiv:0912.4254] [INSPIRE] – reference: A. Buonanno and B.S. Sathyaprakash, Sources of Gravitational Waves: Theory and Observations, pp. 287–346, (2014), arXiv:1410.7832 [INSPIRE]. – reference: LIGO Scientific and Virgo collaborations, GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence, Phys. Rev. Lett.116 (2016) 241103 [arXiv:1606.04855] [INSPIRE]. – reference: LIGO Scientific and Virgo collaborations, GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett.119 (2017) 161101 [arXiv:1710.05832] [INSPIRE]. – reference: PlefkaJSteinhoffJWormsbecherWEffective action of dilaton gravity as the classical double copy of Yang-Mills theoryPhys. Rev.2019D 992019PhRvD..99b4021P[arXiv:1807.09859] [INSPIRE] – reference: G. ’t Hooft, Graviton Dominance in Ultrahigh-Energy Scattering, Phys. Lett.B 198 (1987) 61 [INSPIRE]. – reference: LunaANicholsonIO’ConnellDWhiteCDInelastic Black Hole Scattering from Charged Scalar AmplitudesJHEP2018030442018JHEP...03..044L379854110.1007/JHEP03(2018)0441388.83477[arXiv:1711.03901] [INSPIRE] – reference: BirnholtzOHadarSKolBTheory of post-Newtonian radiation and reactionPhys. Rev.2013D 881040372013PhRvD..88j4037B[arXiv:1305.6930] [INSPIRE] – reference: J.F. Donoghue, B.R. Holstein, B. Garbrecht and T. Konstandin, Quantum corrections to the Reissner-Nordstrom and Kerr-Newman metrics, Phys. Lett.B 529 (2002) 132 [Erratum ibid.B 612 (2005) 311] [hep-th/0112237] [INSPIRE]. – ident: 10020_CR78 doi: 10.1103/PhysRevD.50.3874 – volume: D 97 year: 2018 ident: 10020_CR85 publication-title: Phys. Rev. – volume: 12 start-page: 003 year: 2014 ident: 10020_CR56 publication-title: JCAP doi: 10.1088/1475-7516/2014/12/003 – volume: 01 start-page: 011 year: 2016 ident: 10020_CR59 publication-title: JCAP doi: 10.1088/1475-7516/2016/01/011 – ident: 10020_CR17 doi: 10.1103/PhysRevLett.95.121101 – ident: 10020_CR21 – ident: 10020_CR24 doi: 10.1103/PhysRevD.73.104031 – volume: 04 start-page: 069 year: 2017 ident: 10020_CR92 publication-title: JHEP doi: 10.1007/JHEP04(2017)069 – volume: 25 start-page: 363 year: 1892 ident: 10020_CR105 publication-title: Arch. Néerl. Sci. Exactes Nat. – volume: 01 start-page: 052 year: 2017 ident: 10020_CR134 publication-title: JHEP doi: 10.1007/JHEP01(2017)052 – volume: 11 start-page: 117 year: 2016 ident: 10020_CR73 publication-title: JHEP doi: 10.1007/JHEP11(2016)117 – ident: 10020_CR104 – volume: D 49 start-page: 4284 year: 1994 ident: 10020_CR136 publication-title: Phys. Rev. – volume: D 78 year: 2008 ident: 10020_CR87 publication-title: Phys. Rev. – volume: 324 start-page: 2599 year: 2009 ident: 10020_CR117 publication-title: Annals Phys. doi: 10.1016/j.aop.2009.09.001 – volume: A 29 start-page: 1450132 year: 2014 ident: 10020_CR115 publication-title: Int. J. Mod. Phys. doi: 10.1142/S0217751X14501322 – volume: D 89 year: 2014 ident: 10020_CR55 publication-title: Phys. Rev. – volume: D 91 year: 2015 ident: 10020_CR71 publication-title: Phys. Rev. – ident: 10020_CR4 – ident: 10020_CR30 doi: 10.1103/PhysRevD.78.044012 – volume: D 88 start-page: 104037 year: 2013 ident: 10020_CR114 publication-title: Phys. Rev. – volume: 93 start-page: 201602 year: 2004 ident: 10020_CR83 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.201602 – ident: 10020_CR138 – volume: 105 year: 2010 ident: 10020_CR88 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.061602 – volume: 02 start-page: 111 year: 2014 ident: 10020_CR70 publication-title: JHEP doi: 10.1007/JHEP02(2014)111 – volume: D 96 year: 2017 ident: 10020_CR94 publication-title: Phys. Rev. – volume: A 3 start-page: 1615 year: 1988 ident: 10020_CR121 publication-title: Int. J. Mod. Phys. doi: 10.1142/S0217751X88000710 – volume: D 77 year: 2008 ident: 10020_CR26 publication-title: Phys. Rev. – volume: D 78 start-page: 124021 year: 2008 ident: 10020_CR34 publication-title: Phys. Rev. – ident: 10020_CR107 – ident: 10020_CR14 doi: 10.1103/PhysRevD.62.064015 – volume: D 87 year: 2013 ident: 10020_CR46 publication-title: Phys. Rev. – ident: 10020_CR81 doi: 10.1103/PhysRevD.68.084005 – ident: 10020_CR112 doi: 10.1103/PhysRevD.74.024017 – ident: 10020_CR10 doi: 10.1007/s10714-008-0661-1 – ident: 10020_CR110 – volume: D 96 year: 2017 ident: 10020_CR65 publication-title: Phys. Rev. – volume: B 269 start-page: 1 year: 1986 ident: 10020_CR86 publication-title: Nucl. Phys. doi: 10.1016/0550-3213(86)90362-7 – ident: 10020_CR27 – volume: A 167 start-page: 148 year: 1938 ident: 10020_CR109 publication-title: Proc. Roy. Soc. Lond. – volume: 34 start-page: 244001 year: 2017 ident: 10020_CR66 publication-title: Class. Quant. Grav. doi: 10.1088/1361-6382/aa941e – ident: 10020_CR49 doi: 10.1103/PhysRevD.86.044029 – volume: D 88 start-page: 104037 year: 2013 ident: 10020_CR52 publication-title: Phys. Rev. – volume: 121 start-page: 251101 year: 2018 ident: 10020_CR101 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.251101 – ident: 10020_CR6 doi: 10.1017/CBO9781139583961.009 – ident: 10020_CR13 doi: 10.1103/PhysRevD.59.084006 – volume: D 54 start-page: 4963 year: 1996 ident: 10020_CR79 publication-title: Phys. Rev. – volume: D 52 start-page: 3472 year: 1995 ident: 10020_CR126 publication-title: Phys. Rev. – ident: 10020_CR129 – ident: 10020_CR18 – volume: 40 start-page: 2061 year: 2008 ident: 10020_CR32 publication-title: Gen. Rel. Grav. doi: 10.1007/s10714-008-0673-x – ident: 10020_CR75 – ident: 10020_CR2 – ident: 10020_CR80 doi: 10.1016/S0370-2693(02)01246-7 – volume: 14 start-page: 236 year: 1904 ident: 10020_CR108 publication-title: Ann. Phys. doi: 10.1002/andp.19043190703 – volume: 05 start-page: 144 year: 2015 ident: 10020_CR130 publication-title: JHEP doi: 10.1007/JHEP05(2015)144 – volume: D 82 start-page: 104004 year: 2010 ident: 10020_CR40 publication-title: Phys. Rev. – volume: D 93 start-page: 124010 year: 2016 ident: 10020_CR61 publication-title: Phys. Rev. – volume: D 93 year: 2016 ident: 10020_CR133 publication-title: Phys. Rev. – volume: 121 start-page: 171601 year: 2018 ident: 10020_CR76 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.171601 – volume: B 197 start-page: 81 year: 1987 ident: 10020_CR118 publication-title: Phys. Lett. doi: 10.1016/0370-2693(87)90346-7 – ident: 10020_CR140 – volume: 17 start-page: 2 year: 2014 ident: 10020_CR12 publication-title: Living Rev. Rel. doi: 10.12942/lrr-2014-2 – volume: D 81 start-page: 124015 year: 2010 ident: 10020_CR36 publication-title: Phys. Rev. – volume: 06 start-page: 059 year: 2015 ident: 10020_CR57 publication-title: JHEP doi: 10.1007/JHEP06(2015)059 – volume: D 37 start-page: 359 year: 1988 ident: 10020_CR120 publication-title: Phys. Rev. – volume: D 97 year: 2018 ident: 10020_CR96 publication-title: Phys. Rev. – volume: 25 start-page: 145011 year: 2008 ident: 10020_CR28 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/25/14/145011 – volume: B 388 start-page: 570 year: 1992 ident: 10020_CR124 publication-title: Nucl. Phys. doi: 10.1016/0550-3213(92)90627-N – volume: 210 start-page: 103 year: 2017 ident: 10020_CR139 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2016.08.019 – volume: 10 start-page: 105 year: 1903 ident: 10020_CR106 publication-title: Ann. Phys. – volume: 12 start-page: 056 year: 2014 ident: 10020_CR89 publication-title: JHEP doi: 10.1007/JHEP12(2014)056 – volume: 21 start-page: 7 year: 2018 ident: 10020_CR11 publication-title: Living Rev. Rel. doi: 10.1007/s41114-018-0016-5 – ident: 10020_CR5 – volume: B 877 start-page: 177 year: 2013 ident: 10020_CR69 publication-title: Nucl. Phys. doi: 10.1016/j.nuclphysb.2013.09.007 – volume: 327 start-page: 1494 year: 2012 ident: 10020_CR45 publication-title: Annals Phys. doi: 10.1016/j.aop.2012.02.006 – ident: 10020_CR48 doi: 10.1088/1475-7516/2012/09/028 – volume: 31 year: 2014 ident: 10020_CR54 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/31/4/043001 – ident: 10020_CR3 – volume: D 95 start-page: 125010 year: 2017 ident: 10020_CR91 publication-title: Phys. Rev. – volume: 27 start-page: 205001 year: 2010 ident: 10020_CR39 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/27/20/205001 – volume: 11 start-page: 100 year: 2010 ident: 10020_CR127 publication-title: JHEP doi: 10.1007/JHEP11(2010)100 – volume: D 96 year: 2017 ident: 10020_CR68 publication-title: Phys. Rev. – volume: 113 start-page: 745 year: 1959 ident: 10020_CR7 publication-title: Phys. Rev. doi: 10.1103/PhysRev.113.745 – ident: 10020_CR25 – volume: D 79 year: 2009 ident: 10020_CR35 publication-title: Phys. Rev. – volume: 09 start-page: 219 year: 2015 ident: 10020_CR58 publication-title: JHEP doi: 10.1007/JHEP09(2015)219 – volume: 117 start-page: 1595 year: 1960 ident: 10020_CR9 publication-title: Phys. Rev. doi: 10.1103/PhysRev.117.1595 – volume: D 85 start-page: 125033 year: 2012 ident: 10020_CR47 publication-title: Phys. Rev. – volume: 01 start-page: 008 year: 2016 ident: 10020_CR60 publication-title: JCAP doi: 10.1088/1475-7516/2016/01/008 – ident: 10020_CR111 – volume: D 82 year: 2010 ident: 10020_CR31 publication-title: Phys. Rev. – volume: 28 start-page: 145021 year: 2011 ident: 10020_CR42 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/28/14/145021 – ident: 10020_CR77 doi: 10.1103/PhysRevLett.72.2996 – volume: 10 start-page: 056 year: 2018 ident: 10020_CR103 publication-title: JHEP doi: 10.1007/JHEP10(2018)056 – ident: 10020_CR100 – volume: 09 start-page: 105 year: 2018 ident: 10020_CR102 publication-title: JHEP doi: 10.1007/JHEP09(2018)105 – volume: D 89 start-page: 124033 year: 2014 ident: 10020_CR50 publication-title: Phys. Rev. – volume: D 94 start-page: 104015 year: 2016 ident: 10020_CR84 publication-title: Phys. Rev. – volume: D 73 start-page: 104030 year: 2006 ident: 10020_CR22 publication-title: Phys. Rev. – volume: A 30 start-page: 1550011 year: 2015 ident: 10020_CR116 publication-title: Int. J. Mod. Phys. doi: 10.1142/S0217751X15500116 – volume: D 79 start-page: 124027 year: 2009 ident: 10020_CR37 publication-title: Phys. Rev. – volume: 114 year: 2015 ident: 10020_CR72 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.061301 – volume: B 289 start-page: 87 year: 1992 ident: 10020_CR123 publication-title: Phys. Lett. doi: 10.1016/0370-2693(92)91366-H – volume: 10 start-page: 038 year: 2018 ident: 10020_CR135 publication-title: JHEP doi: 10.1007/JHEP10(2018)038 – volume: D 95 start-page: 104009 year: 2017 ident: 10020_CR63 publication-title: Phys. Rev. – volume: D 96 year: 2017 ident: 10020_CR67 publication-title: Phys. Rev. – volume: 11 start-page: 096 year: 2013 ident: 10020_CR51 publication-title: JHEP doi: 10.1007/JHEP11(2013)096 – volume: D 84 year: 2011 ident: 10020_CR43 publication-title: Phys. Rev. – volume: D 85 year: 2012 ident: 10020_CR44 publication-title: Phys. Rev. – ident: 10020_CR15 doi: 10.1103/PhysRevD.64.124013 – ident: 10020_CR74 – volume: 06 start-page: 023 year: 2016 ident: 10020_CR90 publication-title: JHEP doi: 10.1007/JHEP06(2016)023 – ident: 10020_CR1 – volume: 115 start-page: 171301 year: 2015 ident: 10020_CR131 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.171301 – ident: 10020_CR82 doi: 10.1103/PhysRevD.67.084033 – volume: 633 start-page: 1 year: 2016 ident: 10020_CR20 publication-title: Phys. Rept. doi: 10.1016/j.physrep.2016.04.003 – ident: 10020_CR33 doi: 10.1103/PhysRevD.78.044013 – volume: D 89 year: 2014 ident: 10020_CR128 publication-title: Phys. Rev. – volume: D 73 start-page: 104029 year: 2006 ident: 10020_CR19 publication-title: Phys. Rev. – ident: 10020_CR62 – volume: 11 start-page: 162 year: 2018 ident: 10020_CR95 publication-title: JHEP doi: 10.1007/JHEP11(2018)162 – volume: D 97 start-page: 105018 year: 2018 ident: 10020_CR98 publication-title: Phys. Rev. – volume: D 88 year: 2013 ident: 10020_CR53 publication-title: Phys. Rev. – volume: B 347 start-page: 550 year: 1990 ident: 10020_CR122 publication-title: Nucl. Phys. doi: 10.1016/0550-3213(90)90375-N – ident: 10020_CR119 doi: 10.1016/0370-2693(87)90159-6 – volume: D 99 year: 2019 ident: 10020_CR97 publication-title: Phys. Rev. – volume: D 97 start-page: 105019 year: 2018 ident: 10020_CR99 publication-title: Phys. Rev. – volume: B 403 start-page: 707 year: 1993 ident: 10020_CR125 publication-title: Nucl. Phys. doi: 10.1016/0550-3213(93)90367-X – volume: D 79 year: 2009 ident: 10020_CR29 publication-title: Phys. Rev. – ident: 10020_CR16 doi: 10.1103/PhysRevD.62.084011 – volume: 03 start-page: 030 year: 2016 ident: 10020_CR132 publication-title: JHEP doi: 10.1007/JHEP03(2016)030 – volume: D 96 year: 2017 ident: 10020_CR64 publication-title: Phys. Rev. – volume: 03 start-page: 044 year: 2018 ident: 10020_CR137 publication-title: JHEP doi: 10.1007/JHEP03(2018)044 – volume: D 80 start-page: 124044 year: 2009 ident: 10020_CR38 publication-title: Phys. Rev. – volume: 03 start-page: 009 year: 2011 ident: 10020_CR41 publication-title: JCAP doi: 10.1088/1475-7516/2011/03/009 – volume: 38 start-page: 1537 year: 2006 ident: 10020_CR23 publication-title: Gen. Rel. Grav. doi: 10.1007/s10714-006-0345-7 – volume: 105 year: 2010 ident: 10020_CR113 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.094802 – volume: 116 start-page: 1322 year: 1959 ident: 10020_CR8 publication-title: Phys. Rev. doi: 10.1103/PhysRev.116.1322 – ident: 10020_CR93 |
SSID | ssj0015190 |
Score | 2.692489 |
Snippet | A
bstract
We present a formalism for computing classically measurable quantities directly from on-shell quantum scattering amplitudes. We discuss the... We present a formalism for computing classically measurable quantities directly from on-shell quantum scattering amplitudes. We discuss the ingredients needed... Abstract We present a formalism for computing classically measurable quantities directly from on-shell quantum scattering amplitudes. We discuss the... |
SourceID | doaj hal proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Amplitudes Classical and Quantum Gravitation Classical Theories of Gravity Electrodynamics Elementary Particles General Relativity and Quantum Cosmology High energy physics High Energy Physics - Theory Momentum transfer Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory Scattering Scattering Amplitudes String Theory |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yELyIn1idUsTDBtY1bb56nLIxhoiHCbuFfBUPYxM3_fvNS9s5heHFY9I0Td9Leb8kr78fQjc4K3PslIZdG5YQnatEWV-EUMVxKYRTIUH2iY1eyHhKpxtSX5ATVtEDV4br-QmVCaMoz01JNGMKgw4eF45TKrgI0MjHvGYxVZ8feFySNkQ-Ke-NR4PnNOv4YFd0MUieb8SgQNXvI8srJEJuoMxfB6Mh3gwP0H4NFON-NcBDtOPmR2g3JGya5THCfUgFB2LK5W280GFvVc-goOY2NoCJwfzx0gQCTf-IEzQZDiYPo6SWP0gMxXyVFKJwpX-VTClrLHc6zZ21FEQIKFbUIz1LPRjzEV7olJTKEuaMVlyxkvK0yE9Ra76YuzMUF6VKneY5J5YTxWyQOVckN8IUqbUkQneNPaSpqcFBoWImG1LjyoASDCi9ASPUWd_wVrFibG96DwZeNwM661DhnSxrJ8u_nByha--eH32M-o8S6uCHx4wV2SeOULvxnqw_xKX0CIaCxjtlEeo2Hv2-vGXQ5_8x6Au0B_1VKd5t1Fq9f7hLj2BW-ipM1i8C_-c5 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEB_0pOBLabWlqVpC6YOCqfnYrzyVs5wcUkREwbdl9iPtg9xZc_r3u7O3ObVgH7PZbLIzuzPD7OT3A_hW1V1TeTSUtREFMw0W6MIluSpZdUp5jAWyZ2J6xU6v-XVKuPWprHKwidFQu7mlHPlRcEWcyLq5-HH7tyDWKDpdTRQa67ARTLBSI9g4npydX6zOEUJ8Ug6APqU8Op1Ozst6Pzi99qAi6vNnvihC9gcP84cKIp9Fm_8ckEa_c_IO3qaAMR8vNfwe1vxsC97Ewk3bb0M1ppJwAqjsD_O5iTlWc0MXOHO5pdiY1JD3NgJphld8gMuTyeXPaZFoEAobZrwoWtX6LkylRnTWSW_KxjvHiYyAV8hDxOd4CMqCp1emZB06Jrw1KFF0XJZt8xFGs_nMf4K87bD0RjaSOclQuEh3jqyxyralcyyD74M8tE0Q4cRUcaMHcOOlADUJUAcBZrC_euB2iY7xetdjEvCqG8Fax4b53W-ddokO1qNWFrlsbMeMEFgR6aFUXnKupMIMvgb1vBhjOv6lqY1-fKxFWz9UGewO2tNpQ_b6aflkcDBo9On2Kx_9-f9D7cAm9VwWce_CaHF37_dCjLIwX9JCfATFKeE_ priority: 102 providerName: ProQuest |
Title | Amplitudes, observables, and classical scattering |
URI | https://link.springer.com/article/10.1007/JHEP02(2019)137 https://www.proquest.com/docview/2185171456 https://hal.science/hal-01952692 https://doaj.org/article/78728ca573cf4b66a1589178e755878a |
Volume | 2019 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RVkhcEE8RKKsIcWglAnHiV47b1S6rClUVaqXerPEj4lBtEbvw-5nxJgst6oFLEjt2HjOx54s9_gbgvWj6ViT0PGqjK-lbrDBSkk2VEb21CbOD7JleXsrTK3U1kCTxWpg78_efTpfz87o5IjPVHYvW7MGBoh3HaJjp2W66gGBIPfL2_FvplsnJzPxkSL6x3-NfoPLOPGg2L4sn8HjAheV0q8in8CCtnsHD7J8Z1s9BTNnzm3ko1x_KG5-HUv01J3AVy8AQmKVdrkPmy6RbvICLxfxitqyGaAdVUMJsqs52qadXaRBjiCb5uk0xKo45oAQqAnZREfYig259LXuMUqfg0aDulam79iXsr25W6RWUXY918qY1MhqJOuao5ijbYENXxygL-DjKw4WBCZwDUly7kcN4K0DHAnQkwAKOdhW-b0kw7i96wgLeFWP26pxBSnVDY3DUSTQ2oDJt6KXXGgXHNjQ2GaWssVjAO1LPrWssp18c5_H6xkZ3zS9RwOGoPTe0u7UjwKI4pLvSBRyPGv1z-p6Hfv0fZd_AIz7cOm4fwv7mx8_0lnDJxk9gzy4-T-DgZH52_pVSs0ZO8nc6yX_6tL1spr8BezHckQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VrRBcKp4itECEQGolQvOwY-eA0AJd0napOCxSb5ZfKYdqtzRbED-q_7EzTrItSOXWYxzHiWZsfxN7_H0Ar7O8KTKvDa3alAkzhU60w0uCKpE1UnodEmQPy_o72z_iRytwMZyFobTKYU4ME7WbW1oj30Eo4iTWzcsPpz8TUo2i3dVBQqPrFgf-z2_8ZWvf731G_77J8_Hu9FOd9KoCicUGFkklK98gCOZaO-uEN2nhnePE7c8zzTGAchxjHAROaVLWaMdKb40Wumy4CNxLOOOvsQKBnA6mj78sNy0wGEoH9qBU7OzXu9_SfAsRttrOSGf9GvAFfQCEsx-UfXkttP1nNzaA3Pg-rPfRaTzqutMDWPGzh3AnZIna9hFkI8o_JzbM9m08N2FB15zQhZ652FIgTj6PWxtYO_EVj2F6G9Z5Aquz-cw_hbhqdOqNKARzgunSBW11zQorbZU6xyJ4N9hD2Z6PnGQxTtTApNwZUJEBFRowgq3lA6cdFcfNVT-SgZfViEM7FMzPjlU_JBVOVbm0movCNsyUpc5IYVFILziXQuoIXqF7_mqjHk0UldEpy7ys8l9ZBJuD91Q_-lt11Vcj2B48enX7ho9-9v-mXsLdevp1oiZ7hwcbcI-e6rLHN2F1cXbun2NwtDAvQpeMQd3yELgEpDccLg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VW4G4oPISgQIRAqmVCJuHHTsHhLZ0V9uHVitUpN4svwKHarc0WxA_jX_HjJNsC1K59RjHdqLxeGZsj78P4E2W10XmtaFdmzJhptCJdvhIrkpktZRehwTZWTn9wg5P-ekG_O7vwlBaZW8Tg6F2S0t75EN0RZzIunk5rLu0iPn-5OP594QYpOiktafTaFXkyP_6icu35sPBPo712zyfjE8-TZOOYSCx2NkqqWTla3SIudbOOuFNWnjnOOH880xzDKYcx3gHnag0Kau1Y6W3Rgtd1lwEHCa0_puCFkUD2Nwbz-af10cYGBqlPZZQKoaH0_E8zXfQ31a7GbGuX3ODgS0Ands3ysW8Fuj-czYbXN5kC-53sWo8apXrAWz4xUO4E3JGbfMIshFloxM2ZvMuXpqwvWvO6EEvXGwpLCcNiBsbMDzxE4_h5Dbk8wQGi-XCP4W4qnXqjSgEc4Lp0gWmdc0KK22VOscieN_LQ9kOnZxIMs5Uj6vcClCRABUKMIKddYPzFpjj5qp7JOB1NULUDgXLi6-qm6AKDVcureaisDUzZakz4lsU0gvOpZA6gtc4PH_1MR0dKyqjO5d5WeU_sgi2-9FTnS1o1JXmRrDbj-jV6xt--tn_u3oFd1H91fHB7Og53KNGbSr5NgxWF5f-BUZKK_Oy08kY1C3Pgj_RJiHA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amplitudes%2C+observables%2C+and+classical+scattering&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Kosower%2C+David+A.&rft.au=Maybee%2C+Ben&rft.au=O%E2%80%99Connell%2C+Donal&rft.date=2019-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2019&rft.issue=2&rft_id=info:doi/10.1007%2FJHEP02%282019%29137&rft.externalDocID=10_1007_JHEP02_2019_137 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |