Amplitudes, observables, and classical scattering

A bstract We present a formalism for computing classically measurable quantities directly from on-shell quantum scattering amplitudes. We discuss the ingredients needed for obtaining the classical result, and show how to set up the calculation to derive the result efficiently. We do this without spe...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2019; no. 2; pp. 1 - 69
Main Authors Kosower, David A., Maybee, Ben, O’Connell, Donal
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2019
Springer Nature B.V
Springer
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract We present a formalism for computing classically measurable quantities directly from on-shell quantum scattering amplitudes. We discuss the ingredients needed for obtaining the classical result, and show how to set up the calculation to derive the result efficiently. We do this without specializing to a specific theory. We study in detail two examples in electrodynamics: the momentum transfer in spinless scattering to next-to-leading order, and the momentum radiated to leading order.
AbstractList Abstract We present a formalism for computing classically measurable quantities directly from on-shell quantum scattering amplitudes. We discuss the ingredients needed for obtaining the classical result, and show how to set up the calculation to derive the result efficiently. We do this without specializing to a specific theory. We study in detail two examples in electrodynamics: the momentum transfer in spinless scattering to next-to-leading order, and the momentum radiated to leading order.
We present a formalism for computing classically measurable quantities directly from on-shell quantum scattering amplitudes. We discuss the ingredients needed for obtaining the classical result, and show how to set up the calculation to derive the result efficiently. We do this without specializing to a specific theory. We study in detail two examples in electrodynamics: the momentum transfer in spinless scattering to next-to-leading order, and the momentum radiated to leading order.
A bstract We present a formalism for computing classically measurable quantities directly from on-shell quantum scattering amplitudes. We discuss the ingredients needed for obtaining the classical result, and show how to set up the calculation to derive the result efficiently. We do this without specializing to a specific theory. We study in detail two examples in electrodynamics: the momentum transfer in spinless scattering to next-to-leading order, and the momentum radiated to leading order.
ArticleNumber 137
Author Maybee, Ben
Kosower, David A.
O’Connell, Donal
Author_xml – sequence: 1
  givenname: David A.
  surname: Kosower
  fullname: Kosower, David A.
  email: David.Kosower@cea.fr
  organization: Institut de Physique Théorique, CEA, CNRS, Université Paris-Saclay
– sequence: 2
  givenname: Ben
  surname: Maybee
  fullname: Maybee, Ben
  organization: Higgs Centre for Theoretical Physics, School of Physics and Astronomy, The University of Edinburgh
– sequence: 3
  givenname: Donal
  surname: O’Connell
  fullname: O’Connell, Donal
  organization: Higgs Centre for Theoretical Physics, School of Physics and Astronomy, The University of Edinburgh
BackLink https://hal.science/hal-01952692$$DView record in HAL
BookMark eNp9kUFrGzEQhUVJoXaac6-GXhqIm5G8WklHE5w4xdAechezktaRWa9cSQ7k30ebDUkbaE-Shve90cybkpM-9I6QLxS-UwBx-WO9-gXsGwOqzulCfCATCkzNZSXUyR_3T2Sa0g6AcqpgQuhyf-h8PlqXLmahSS4-YNMND-ztzHSYkjfYzZLBnF30_fYz-dhil9zZy3lK7q5Xd1fr-ebnze3VcjM3nIo8V1K5tnRhiNZY4RpYOGu5kMA5RS4BLOd1LRmTDVQt2qp2pkGBdcsFqMUpuR1tbcCdPkS_x_ioA3r9XAhxqzFmbzqnhRRMGuRiYdqqqWukXCoqpBOcSyGxeJ2PXvfY_WW1Xm70UCs746xW7IEW7ddRe4jh99GlrHfhGPsyqWZUltFoxeuiuhxVJoaUomtfbSnoIQ49xqGHOHSJoxD8HWF8xuxDnyP67j8cjFw6DNt38e0__0KeAJ80nBE
CitedBy_id crossref_primary_10_1103_PhysRevD_102_104065
crossref_primary_10_1103_PhysRevD_104_026009
crossref_primary_10_1103_PhysRevD_99_104004
crossref_primary_10_1007_JHEP06_2020_144
crossref_primary_10_1016_j_physletb_2022_137634
crossref_primary_10_1103_PhysRevD_100_066028
crossref_primary_10_1103_PhysRevD_110_L081901
crossref_primary_10_1103_PhysRevLett_133_211402
crossref_primary_10_1103_PhysRevD_109_063032
crossref_primary_10_1007_JHEP05_2023_177
crossref_primary_10_1007_JHEP11_2021_088
crossref_primary_10_1103_PhysRevD_108_106003
crossref_primary_10_1007_JHEP08_2024_074
crossref_primary_10_1007_JHEP10_2021_118
crossref_primary_10_1007_JHEP11_2021_087
crossref_primary_10_1103_PhysRevD_102_024060
crossref_primary_10_1103_PhysRevD_110_076018
crossref_primary_10_1007_JHEP03_2020_173
crossref_primary_10_1007_JHEP06_2023_004
crossref_primary_10_1007_JHEP06_2023_126
crossref_primary_10_1103_PhysRevD_106_094041
crossref_primary_10_1103_PhysRevLett_130_021601
crossref_primary_10_1103_PhysRevD_102_124008
crossref_primary_10_1103_PhysRevD_110_064033
crossref_primary_10_1007_JHEP02_2025_019
crossref_primary_10_1103_PhysRevD_106_026013
crossref_primary_10_1007_JHEP05_2023_047
crossref_primary_10_1007_JHEP08_2024_188
crossref_primary_10_1007_JHEP05_2021_214
crossref_primary_10_1007_JHEP12_2020_103
crossref_primary_10_1007_JHEP10_2021_008
crossref_primary_10_1103_PhysRevD_102_105011
crossref_primary_10_1007_JHEP10_2020_211
crossref_primary_10_1103_PhysRevLett_125_031601
crossref_primary_10_1142_S0217732321501388
crossref_primary_10_1007_JHEP05_2023_088
crossref_primary_10_1016_j_physrep_2024_06_002
crossref_primary_10_1007_JHEP01_2020_014
crossref_primary_10_1007_JHEP03_2023_177
crossref_primary_10_1007_JHEP06_2024_181
crossref_primary_10_1007_JHEP03_2021_201
crossref_primary_10_1103_PhysRevD_106_056007
crossref_primary_10_1007_JHEP02_2022_156
crossref_primary_10_1007_JHEP11_2020_023
crossref_primary_10_1103_PhysRevD_106_024042
crossref_primary_10_1007_JHEP08_2020_038
crossref_primary_10_1103_PhysRevLett_131_241402
crossref_primary_10_1007_JHEP01_2023_140
crossref_primary_10_1007_JHEP10_2021_011
crossref_primary_10_1007_JHEP12_2024_213
crossref_primary_10_1103_PhysRevD_109_084071
crossref_primary_10_1007_JHEP11_2023_233
crossref_primary_10_1103_PhysRevLett_133_071601
crossref_primary_10_1007_JHEP02_2023_197
crossref_primary_10_1103_PhysRevLett_131_011601
crossref_primary_10_1103_PhysRevLett_131_011603
crossref_primary_10_1007_JHEP02_2021_007
crossref_primary_10_1007_JHEP03_2022_141
crossref_primary_10_1103_PhysRevD_99_064054
crossref_primary_10_1007_JHEP11_2020_160
crossref_primary_10_1007_JHEP05_2022_027
crossref_primary_10_1007_JHEP08_2020_147
crossref_primary_10_1007_JHEP08_2024_080
crossref_primary_10_1007_JHEP08_2022_131
crossref_primary_10_1007_JHEP01_2020_010
crossref_primary_10_1007_JHEP03_2024_089
crossref_primary_10_1007_JHEP05_2021_239
crossref_primary_10_1103_PhysRevD_102_124025
crossref_primary_10_1007_JHEP05_2021_238
crossref_primary_10_1103_PhysRevD_109_036007
crossref_primary_10_1007_JHEP10_2021_148
crossref_primary_10_1088_1361_6382_acfb6d
crossref_primary_10_1103_PhysRevD_106_124026
crossref_primary_10_1016_j_physrep_2023_01_003
crossref_primary_10_1103_PhysRevD_103_045002
crossref_primary_10_1103_PhysRevD_109_125008
crossref_primary_10_1007_JHEP03_2025_125
crossref_primary_10_1103_PhysRevD_106_124030
crossref_primary_10_1103_PhysRevLett_130_201402
crossref_primary_10_1103_PhysRevD_106_L081901
crossref_primary_10_1002_prop_202100075
crossref_primary_10_1103_PhysRevD_111_L021701
crossref_primary_10_1007_JHEP01_2024_139
crossref_primary_10_1007_JHEP05_2020_051
crossref_primary_10_1088_1751_8121_ad8b02
crossref_primary_10_1007_JHEP02_2021_217
crossref_primary_10_1103_PhysRevLett_126_201103
crossref_primary_10_1140_epjc_s10052_021_09482_1
crossref_primary_10_1007_JHEP02_2020_092
crossref_primary_10_1007_JHEP03_2025_126
crossref_primary_10_1007_JHEP07_2021_047
crossref_primary_10_1103_PhysRevLett_126_171601
crossref_primary_10_21468_SciPostPhysProc_7_023
crossref_primary_10_1007_JHEP06_2024_087
crossref_primary_10_1007_JHEP07_2021_169
crossref_primary_10_1007_JHEP12_2019_019
crossref_primary_10_1007_JHEP05_2024_192
crossref_primary_10_1007_JHEP10_2024_005
crossref_primary_10_1103_PhysRevD_100_104024
crossref_primary_10_1007_JHEP04_2023_008
crossref_primary_10_1103_PhysRevD_104_065014
crossref_primary_10_1007_JHEP07_2024_009
crossref_primary_10_1007_JHEP03_2022_147
crossref_primary_10_1007_JHEP11_2019_070
crossref_primary_10_1007_JHEP07_2020_122
crossref_primary_10_1007_JHEP10_2022_073
crossref_primary_10_1103_PhysRevD_104_024037
crossref_primary_10_1007_JHEP06_2023_048
crossref_primary_10_1103_PhysRevD_103_045015
crossref_primary_10_1103_PhysRevLett_131_221401
crossref_primary_10_1103_PhysRevLett_133_221401
crossref_primary_10_1007_JHEP03_2023_068
crossref_primary_10_1007_JHEP07_2021_037
crossref_primary_10_1007_JHEP01_2020_072
crossref_primary_10_1007_JHEP08_2023_109
crossref_primary_10_1103_PhysRevD_102_084047
crossref_primary_10_1103_PhysRevD_100_084040
crossref_primary_10_1103_PhysRevLett_128_141102
crossref_primary_10_1103_PhysRevD_99_126008
crossref_primary_10_1103_PhysRevD_107_024012
crossref_primary_10_1007_JHEP04_2019_156
crossref_primary_10_1007_JHEP11_2021_213
crossref_primary_10_1088_1751_8121_ad5fd0
crossref_primary_10_1007_JHEP06_2023_170
crossref_primary_10_1007_JHEP12_2022_018
crossref_primary_10_1007_JHEP12_2024_207
crossref_primary_10_1103_PhysRevD_107_L081701
crossref_primary_10_1103_PhysRevD_106_044013
crossref_primary_10_1103_PhysRevD_108_084036
crossref_primary_10_1103_PhysRevLett_122_201603
crossref_primary_10_1007_JHEP03_2021_247
crossref_primary_10_1007_JHEP09_2020_200
crossref_primary_10_1007_JHEP09_2022_013
crossref_primary_10_1103_PhysRevD_102_086015
crossref_primary_10_1103_PhysRevLett_129_121601
crossref_primary_10_1007_JHEP05_2024_050
crossref_primary_10_1098_rsta_2021_0181
crossref_primary_10_1103_PhysRevD_110_064005
crossref_primary_10_1103_PhysRevD_101_066004
crossref_primary_10_1007_JHEP06_2021_012
crossref_primary_10_1007_JHEP09_2023_183
crossref_primary_10_1103_PhysRevLett_132_241402
crossref_primary_10_1007_JHEP07_2022_072
crossref_primary_10_1007_JHEP10_2024_023
crossref_primary_10_1103_PhysRevD_104_124015
crossref_primary_10_1103_PhysRevD_104_024041
crossref_primary_10_1103_PhysRevD_101_064066
crossref_primary_10_1007_JHEP10_2023_108
crossref_primary_10_1007_JHEP10_2020_026
crossref_primary_10_1016_j_physletb_2019_135100
crossref_primary_10_1103_PhysRevLett_125_191601
crossref_primary_10_1007_JHEP01_2020_046
crossref_primary_10_1007_JHEP04_2019_171
crossref_primary_10_1103_PhysRevD_110_124005
crossref_primary_10_1007_JHEP01_2025_066
crossref_primary_10_1007_JHEP01_2025_186
crossref_primary_10_1103_PhysRevD_104_014013
crossref_primary_10_1103_PhysRevLett_130_101401
crossref_primary_10_1007_JHEP10_2024_132
crossref_primary_10_1103_PhysRevD_109_124046
crossref_primary_10_1007_JHEP08_2024_045
crossref_primary_10_1007_JHEP08_2024_161
crossref_primary_10_1007_JHEP09_2023_059
crossref_primary_10_1103_PhysRevLett_126_101103
crossref_primary_10_1007_JHEP03_2022_071
crossref_primary_10_1103_PhysRevLett_132_201602
crossref_primary_10_1007_JHEP05_2021_056
crossref_primary_10_1007_JHEP09_2019_056
crossref_primary_10_1007_JHEP01_2022_045
crossref_primary_10_1103_PhysRevD_102_046014
crossref_primary_10_1103_PhysRevD_101_084009
crossref_primary_10_1007_JHEP03_2022_074
crossref_primary_10_1007_JHEP07_2024_173
crossref_primary_10_1007_JHEP11_2024_109
crossref_primary_10_1103_PhysRevD_104_046016
crossref_primary_10_1007_JHEP05_2024_265
crossref_primary_10_1103_PhysRevD_105_026004
crossref_primary_10_1103_PhysRevD_105_026007
crossref_primary_10_1007_JHEP05_2024_148
crossref_primary_10_1103_PhysRevD_109_L041504
crossref_primary_10_1103_PhysRevD_109_026007
crossref_primary_10_1007_JHEP02_2020_046
crossref_primary_10_1007_JHEP09_2023_162
crossref_primary_10_1007_JHEP11_2021_126
crossref_primary_10_1103_PhysRevD_103_026001
crossref_primary_10_1007_JHEP05_2023_211
crossref_primary_10_1007_JHEP05_2021_188
crossref_primary_10_1007_JHEP07_2024_062
crossref_primary_10_1007_JHEP12_2020_076
crossref_primary_10_1007_JHEP11_2023_092
crossref_primary_10_1103_PhysRevD_102_046005
crossref_primary_10_1007_JHEP05_2024_034
crossref_primary_10_1103_PhysRevLett_126_061602
crossref_primary_10_1103_PhysRevLett_128_011101
crossref_primary_10_1007_JHEP09_2024_196
crossref_primary_10_1103_PhysRevD_110_056010
crossref_primary_10_1007_JHEP03_2022_077
crossref_primary_10_1007_JHEP06_2023_096
crossref_primary_10_1007_JHEP03_2025_144
crossref_primary_10_1007_JHEP11_2024_124
crossref_primary_10_1103_PhysRevD_109_124018
crossref_primary_10_1007_JHEP07_2024_272
crossref_primary_10_1007_JHEP10_2022_105
crossref_primary_10_1007_JHEP03_2021_289
crossref_primary_10_1007_JHEP12_2019_156
crossref_primary_10_1007_JHEP12_2024_060
crossref_primary_10_1007_JHEP03_2024_015
crossref_primary_10_1103_PhysRevD_107_026022
crossref_primary_10_1007_JHEP04_2023_023
crossref_primary_10_21468_SciPostPhys_10_5_101
crossref_primary_10_1007_JHEP11_2021_228
crossref_primary_10_1103_PhysRevD_109_106020
crossref_primary_10_1103_PhysRevD_108_124052
crossref_primary_10_1007_JHEP11_2021_221
crossref_primary_10_1103_PhysRevD_110_L041502
crossref_primary_10_1103_PhysRevD_108_084065
crossref_primary_10_1103_PhysRevLett_124_141601
crossref_primary_10_1007_JHEP06_2020_096
crossref_primary_10_1007_JHEP09_2020_074
crossref_primary_10_1103_PhysRevD_105_124001
crossref_primary_10_1103_PhysRevD_109_094047
crossref_primary_10_1007_JHEP03_2024_125
crossref_primary_10_1007_JHEP02_2024_161
crossref_primary_10_1007_JHEP08_2023_207
crossref_primary_10_1007_JHEP01_2025_140
crossref_primary_10_1103_PhysRevLett_129_141102
crossref_primary_10_1007_JHEP09_2024_053
crossref_primary_10_1103_PhysRevD_100_086006
crossref_primary_10_1007_JHEP08_2024_243
crossref_primary_10_1007_JHEP02_2022_209
crossref_primary_10_1103_PhysRevD_107_064051
crossref_primary_10_1103_PhysRevD_107_085011
crossref_primary_10_1103_PhysRevD_104_044034
crossref_primary_10_1007_JHEP04_2024_058
crossref_primary_10_1007_JHEP10_2019_107
crossref_primary_10_1007_JHEP12_2020_142
crossref_primary_10_1103_PhysRevLett_133_111601
crossref_primary_10_1007_JHEP12_2023_118
crossref_primary_10_1007_JHEP10_2022_128
crossref_primary_10_1007_JHEP02_2024_026
crossref_primary_10_1007_JHEP08_2023_188
crossref_primary_10_1007_JHEP08_2021_172
crossref_primary_10_1007_JHEP01_2022_006
crossref_primary_10_1088_1475_7516_2023_11_034
crossref_primary_10_1007_JHEP04_2021_234
crossref_primary_10_1007_s10714_024_03276_y
crossref_primary_10_1103_PhysRevD_108_024025
crossref_primary_10_1103_PhysRevD_107_044033
crossref_primary_10_1103_PhysRevLett_129_121101
crossref_primary_10_1007_JHEP04_2024_060
crossref_primary_10_1007_JHEP12_2024_039
crossref_primary_10_1103_PhysRevD_104_104029
crossref_primary_10_1007_JHEP12_2020_138
crossref_primary_10_1007_JHEP06_2023_204
crossref_primary_10_1088_1361_6382_adaabc
crossref_primary_10_1007_JHEP11_2021_184
crossref_primary_10_1007_JHEP09_2023_109
crossref_primary_10_1007_JHEP12_2020_030
crossref_primary_10_1007_JHEP08_2022_148
crossref_primary_10_1007_JHEP04_2021_253
crossref_primary_10_1103_PhysRevD_108_024033
crossref_primary_10_1103_PhysRevD_109_045011
crossref_primary_10_1007_JHEP05_2022_055
crossref_primary_10_1103_PhysRevLett_132_091402
crossref_primary_10_1007_JHEP02_2023_107
crossref_primary_10_1007_JHEP02_2023_105
crossref_primary_10_1007_JHEP07_2023_181
crossref_primary_10_1103_PhysRevD_103_064036
crossref_primary_10_1007_JHEP12_2020_024
crossref_primary_10_1007_JHEP05_2021_015
crossref_primary_10_1007_s40766_020_00003_6
crossref_primary_10_1007_JHEP01_2022_027
crossref_primary_10_1103_PhysRevLett_132_251603
crossref_primary_10_1103_PhysRevD_104_105012
crossref_primary_10_1007_JHEP10_2019_206
crossref_primary_10_1103_PhysRevD_100_024048
crossref_primary_10_1103_PhysRevLett_132_251601
crossref_primary_10_1103_PhysRevLett_126_201602
crossref_primary_10_1007_JHEP03_2023_254
crossref_primary_10_1103_PhysRevD_111_064048
crossref_primary_10_1007_JHEP03_2023_136
crossref_primary_10_1142_S0217732320500765
crossref_primary_10_1007_JHEP06_2024_015
crossref_primary_10_1007_JHEP03_2021_097
crossref_primary_10_1103_PhysRevLett_124_211601
crossref_primary_10_1007_JHEP05_2020_105
crossref_primary_10_1007_JHEP01_2025_111
crossref_primary_10_1007_JHEP11_2020_106
crossref_primary_10_1103_PhysRevD_104_084031
crossref_primary_10_1140_epjc_s10052_025_13814_w
crossref_primary_10_1103_PhysRevLett_128_161103
crossref_primary_10_1007_JHEP04_2022_154
crossref_primary_10_1103_PhysRevLett_128_161104
crossref_primary_10_1007_JHEP05_2021_268
crossref_primary_10_1103_PhysRevResearch_4_013127
crossref_primary_10_1007_JHEP08_2022_281
crossref_primary_10_1007_JHEP09_2019_040
crossref_primary_10_1103_PhysRevD_108_124016
crossref_primary_10_1103_PhysRevLett_134_071603
crossref_primary_10_1103_PhysRevLett_132_191603
crossref_primary_10_1007_JHEP12_2023_103
crossref_primary_10_1007_JHEP10_2022_135
crossref_primary_10_1007_JHEP02_2021_048
crossref_primary_10_1103_PhysRevLett_132_221401
crossref_primary_10_21468_SciPostPhys_13_2_032
crossref_primary_10_1007_JHEP11_2019_148
crossref_primary_10_1007_JHEP06_2024_032
crossref_primary_10_1103_PhysRevLett_125_261103
crossref_primary_10_1103_PhysRevD_110_044028
crossref_primary_10_1007_JHEP07_2020_093
crossref_primary_10_1103_PhysRevD_109_044064
crossref_primary_10_1007_JHEP08_2022_299
crossref_primary_10_1007_JHEP07_2023_042
crossref_primary_10_1007_JHEP03_2023_130
crossref_primary_10_1103_PhysRevD_103_024030
crossref_primary_10_1088_1361_6382_ad210f
crossref_primary_10_1007_JHEP05_2019_023
crossref_primary_10_1103_PhysRevD_108_024050
crossref_primary_10_1007_JHEP08_2022_172
crossref_primary_10_1007_JHEP03_2022_214
Cites_doi 10.1103/PhysRevD.50.3874
10.1088/1475-7516/2014/12/003
10.1088/1475-7516/2016/01/011
10.1103/PhysRevLett.95.121101
10.1103/PhysRevD.73.104031
10.1007/JHEP04(2017)069
10.1007/JHEP01(2017)052
10.1007/JHEP11(2016)117
10.1016/j.aop.2009.09.001
10.1142/S0217751X14501322
10.1103/PhysRevD.78.044012
10.1103/PhysRevLett.93.201602
10.1103/PhysRevLett.105.061602
10.1007/JHEP02(2014)111
10.1142/S0217751X88000710
10.1103/PhysRevD.62.064015
10.1103/PhysRevD.68.084005
10.1103/PhysRevD.74.024017
10.1007/s10714-008-0661-1
10.1016/0550-3213(86)90362-7
10.1088/1361-6382/aa941e
10.1103/PhysRevD.86.044029
10.1103/PhysRevLett.121.251101
10.1017/CBO9781139583961.009
10.1103/PhysRevD.59.084006
10.1007/s10714-008-0673-x
10.1016/S0370-2693(02)01246-7
10.1002/andp.19043190703
10.1007/JHEP05(2015)144
10.1103/PhysRevLett.121.171601
10.1016/0370-2693(87)90346-7
10.12942/lrr-2014-2
10.1007/JHEP06(2015)059
10.1088/0264-9381/25/14/145011
10.1016/0550-3213(92)90627-N
10.1016/j.cpc.2016.08.019
10.1007/JHEP12(2014)056
10.1007/s41114-018-0016-5
10.1016/j.nuclphysb.2013.09.007
10.1016/j.aop.2012.02.006
10.1088/1475-7516/2012/09/028
10.1088/0264-9381/31/4/043001
10.1088/0264-9381/27/20/205001
10.1007/JHEP11(2010)100
10.1103/PhysRev.113.745
10.1007/JHEP09(2015)219
10.1103/PhysRev.117.1595
10.1088/1475-7516/2016/01/008
10.1088/0264-9381/28/14/145021
10.1103/PhysRevLett.72.2996
10.1007/JHEP10(2018)056
10.1007/JHEP09(2018)105
10.1142/S0217751X15500116
10.1103/PhysRevLett.114.061301
10.1016/0370-2693(92)91366-H
10.1007/JHEP10(2018)038
10.1007/JHEP11(2013)096
10.1103/PhysRevD.64.124013
10.1007/JHEP06(2016)023
10.1103/PhysRevLett.115.171301
10.1103/PhysRevD.67.084033
10.1016/j.physrep.2016.04.003
10.1103/PhysRevD.78.044013
10.1007/JHEP11(2018)162
10.1016/0550-3213(90)90375-N
10.1016/0370-2693(87)90159-6
10.1016/0550-3213(93)90367-X
10.1103/PhysRevD.62.084011
10.1007/JHEP03(2016)030
10.1007/JHEP03(2018)044
10.1088/1475-7516/2011/03/009
10.1007/s10714-006-0345-7
10.1103/PhysRevLett.105.094802
10.1103/PhysRev.116.1322
ContentType Journal Article
Copyright The Author(s) 2019
Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2019
– notice: Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
1XC
DOA
DOI 10.1007/JHEP02(2019)137
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Hyper Article en Ligne (HAL)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 69
ExternalDocumentID oai_doaj_org_article_78728ca573cf4b66a1589178e755878a
oai_HAL_hal_01952692v1
10_1007_JHEP02_2019_137
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
EJD
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
AAYZH
ABFSG
ABTEG
ACAFW
ACARI
ACBXY
ACSTC
ADKPE
ADRFC
AEFHF
AEJGL
AERVB
AETNG
AEZWR
AFHIU
AFLOW
AGJBK
AGQPQ
AHSBF
AHSEE
AHWEU
AIXLP
AIYBF
AKPSB
AMVHM
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EMSAF
EPQRW
EQZZN
H13
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PHGZM
PHGZT
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
1XC
PUEGO
ID FETCH-LOGICAL-c517t-989ef0152aadcd7eb03edd5780551a5800d55668228b04fad46ecba7a6f57093
IEDL.DBID C6C
ISSN 1029-8479
1126-6708
IngestDate Wed Aug 27 01:24:48 EDT 2025
Fri May 09 12:16:54 EDT 2025
Sun Jul 13 04:08:51 EDT 2025
Tue Jul 01 03:54:13 EDT 2025
Thu Apr 24 23:06:07 EDT 2025
Fri Feb 21 02:33:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Classical Theories of Gravity
Scattering Amplitudes
scattering: classical
electromagnetic field
spinless
scattering amplitude
higher-order: 1
momentum transfer
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-989ef0152aadcd7eb03edd5780551a5800d55668228b04fad46ecba7a6f57093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1007/JHEP02(2019)137
PQID 2185171456
PQPubID 2034718
PageCount 69
ParticipantIDs doaj_primary_oai_doaj_org_article_78728ca573cf4b66a1589178e755878a
hal_primary_oai_HAL_hal_01952692v1
proquest_journals_2185171456
crossref_primary_10_1007_JHEP02_2019_137
crossref_citationtrail_10_1007_JHEP02_2019_137
springer_journals_10_1007_JHEP02_2019_137
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer
– name: SpringerOpen
References PlefkaJSteinhoffJWormsbecherWEffective action of dilaton gravity as the classical double copy of Yang-Mills theoryPhys. Rev.2019D 992019PhRvD..99b4021P[arXiv:1807.09859] [INSPIRE]
R.A. Porto and I.Z. Rothstein, Comment on ‘On the next-to-leading order gravitational spin(1)-spin(2) dynamics’ by J. Steinhoff et al., arXiv:0712.2032 [INSPIRE].
M. Levi and J. Steinhoff, Complete conservative dynamics for inspiralling compact binaries with spins at fourth post-Newtonian order, arXiv:1607.04252 [INSPIRE].
F. Cachazo and A. Guevara, Leading Singularities and Classical Gravitational Scattering, arXiv:1705.10262 [INSPIRE].
ChuY-ZThe n-body problem in General Relativity up to the second post-Newtonian order from perturbative field theoryPhys. Rev.2009D 792009PhRvD..79d4031C[arXiv:0812.0012] [INSPIRE]
N.E.J. Bjerrum-Bohr, J.F. Donoghue and B.R. Holstein, Quantum gravitational corrections to the nonrelativistic scattering potential of two masses, Phys. Rev.D 67 (2003) 084033 [Erratum ibid.D 71 (2005) 069903] [hep-th/0211072] [INSPIRE].
LIGO Scientific and Virgo collaborations, GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2, Phys. Rev. Lett.118 (2017) 221101 [Erratum ibid.121 (2018) 129901] [arXiv:1706.01812] [INSPIRE].
PortoRAThe effective field theorist’s approach to gravitational dynamicsPhys. Rept.201663312016PhR...633....1P350314310.1016/j.physrep.2016.04.0031359.83024[arXiv:1601.04914] [INSPIRE]
FoffaSSturaniRTail terms in gravitational radiation reaction via effective field theoryPhys. Rev.2013D 872013PhRvD..87d4056F[arXiv:1111.5488] [INSPIRE]
CiafaloniMColferaiDCoradeschiFVenezianoGUnified limiting form of graviton radiation at extreme energiesPhys. Rev.2016D 932016PhRvD..93d4052C3499366[arXiv:1512.00281] [INSPIRE]
J.D. Jackson, Classical Electrodynamics, third edition, Wiley, New York U.S.A. (1998) [ISBN:978-0471309321].
F. Pretorius, Binary Black Hole Coalescence, arXiv:0710.1338 [INSPIRE].
DonoghueJFTormaTOn the power counting of loop diagrams in general relativityPhys. Rev.1996D 5449631996PhRvD..54.4963D[hep-th/9602121] [INSPIRE]
LaddhaASenALogarithmic Terms in the Soft Expansion in Four DimensionsJHEP2018100562018JHEP...10..056L389104010.1007/JHEP10(2018)0561402.83081[arXiv:1804.09193] [INSPIRE]
AmatiDCiafaloniMVenezianoGClassical and Quantum Gravity Effects from Planckian Energy Superstring CollisionsInt. J. Mod. Phys.1988A 316151988IJMPA...3.1615A10.1142/S0217751X88000710[INSPIRE]
CiafaloniMColferaiDVenezianoGEmerging Hawking-Like Radiation from Gravitational Bremsstrahlung Beyond the Planck ScalePhys. Rev. Lett.20151151713012015PhRvL.115q1301C10.1103/PhysRevLett.115.171301[arXiv:1505.06619] [INSPIRE]
GilmoreJBRossAEffective field theory calculation of second post-Newtonian binary dynamicsPhys. Rev.2008D 781240212008PhRvD..78l4021G[arXiv:0810.1328] [INSPIRE]
A. Buonanno and B.S. Sathyaprakash, Sources of Gravitational Waves: Theory and Observations, pp. 287–346, (2014), arXiv:1410.7832 [INSPIRE].
NeillDRothsteinIZClassical Space-Times from the S MatrixNucl. Phys.2013B 8771772013NuPhB.877..177N312483710.1016/j.nuclphysb.2013.09.0071284.83052[arXiv:1304.7263] [INSPIRE]
GoldbergerWDRidgwayAKRadiation and the classical double copy for color chargesPhys. Rev.2017D 951250102017PhRvD..95l5010G3829776[arXiv:1611.03493] [INSPIRE]
CheungCRothsteinIZSolonMPFrom Scattering Amplitudes to Classical Potentials in the Post-Minkowskian ExpansionPhys. Rev. Lett.20181212511012018PhRvL.121y1101C10.1103/PhysRevLett.121.251101[arXiv:1808.02489] [INSPIRE]
M. Abraham, Theorie der Elektrizität. Vol. II: Elektromagnetische Theorie der Strahlung, Teubner, Leipzig Germany (1904).
D’AppollonioGDi VecchiaPRussoRVenezianoGHigh-energy string-brane scattering: Leading eikonal and beyondJHEP2010111002010JHEP...11..100D279508110.1007/JHEP11(2010)1001294.81189[arXiv:1008.4773] [INSPIRE]
GalleyCRTiglioMRadiation reaction and gravitational waves in the effective field theory approachPhys. Rev.2009D 791240272009PhRvD..79l4027G[arXiv:0903.1122] [INSPIRE]
LeviMSteinhoffJEFTofPNG: A package for high precision computation with the Effective Field Theory of Post-Newtonian GravityClass. Quant. Grav.2017342440012017CQGra..34x4001L373276610.1088/1361-6382/aa941e[arXiv:1705.06309] [INSPIRE]
DamourTHigh-energy gravitational scattering and the general relativistic two-body problemPhys. Rev.2018D 972018PhRvD..97d4038D3804325[arXiv:1710.10599] [INSPIRE]
LaddhaASenAGravity Waves from Soft Theorem in General DimensionsJHEP2018091052018JHEP...09..105L386838210.1007/JHEP09(2018)1051398.83023[arXiv:1801.07719] [INSPIRE]
B. Sahoo and A. Sen, Classical and Quantum Results on Logarithmic Terms in the Soft Theorem in Four Dimensions, arXiv:1808.03288 [INSPIRE].
ColladoAKDi VecchiaPRussoRThomasSThe subleading eikonal in supergravity theoriesJHEP2018100382018JHEP...10..038C389105810.1007/JHEP10(2018)0381402.83106[arXiv:1807.04588] [INSPIRE]
J.F. Donoghue, Leading quantum correction to the Newtonian potential, Phys. Rev. Lett.72 (1994) 2996 [gr-qc/9310024] [INSPIRE].
EllisJTikZ-Feynman: Feynman diagrams with TikZComput. Phys. Commun.20172101032017CoPhC.210..103E10.1016/j.cpc.2016.08.019[arXiv:1601.05437] [INSPIRE]
BirnholtzOComments on initial conditions for the Abraham-Lorentz(-Dirac) equationInt. J. Mod. Phys.2015A 3015500112015IJMPA..3050011B330229010.1142/S0217751X15500116[arXiv:1410.5871] [INSPIRE]
LIGO Scientific and Virgo collaborations, Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett.116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].
GoldbergerWDPrabhuSGThompsonJOClassical gluon and graviton radiation from the bi-adjoint scalar double copyPhys. Rev.2017D 962017PhRvD..96f5009G3856389[arXiv:1705.09263] [INSPIRE]
LeviMNext to Leading Order gravitational Spin-Orbit coupling in an Effective Field Theory approachPhys. Rev.2010D 821040042010PhRvD..82j4004L[arXiv:1006.4139] [INSPIRE]
J.F. Donoghue, General relativity as an effective field theory: The leading quantum corrections, Phys. Rev.D 50 (1994) 3874 [gr-qc/9405057] [INSPIRE].
ArnowittRLDeserSMisnerCWCanonical variables for general relativityPhys. Rev.196011715951960PhRv..117.1595A11366810.1103/PhysRev.117.15950091.21203[INSPIRE]
LIGO Scientific and Virgo collaborations, GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence, Phys. Rev. Lett.116 (2016) 241103 [arXiv:1606.04855] [INSPIRE].
PortoRARossARothsteinIZSpin induced multipole moments for the gravitational wave flux from binary inspirals to third Post-Newtonian orderJCAP2011030092011JCAP...03..009P10.1088/1475-7516/2011/03/009[arXiv:1007.1312] [INSPIRE]
LeviMNext to Leading Order gravitational Spin1-Spin2 coupling with Kaluza-Klein reductionPhys. Rev.2010D 822010PhRvD..82f4029L[arXiv:0802.1508] [INSPIRE]
R.A. Porto, Post-Newtonian corrections to the motion of spinning bodies in NRGR, Phys. Rev.D 73 (2006) 104031 [gr-qc/0511061] [INSPIRE].
Bjerrum-BohrNEJHolsteinBRPlantéLVanhovePGraviton-Photon ScatteringPhys. Rev.2015D 912015PhRvD..91f4008B[arXiv:1410.4148] [INSPIRE]
T. Damour, P. Jaranowski and G. Schaefer, On the determination of the last stable orbit for circular general relativistic binaries at the third postNewtonian approximation, Phys. Rev.D 62 (2000) 084011 [gr-qc/0005034] [INSPIRE].
BirnholtzOHadarSKolBTheory of post-Newtonian radiation and reactionPhys. Rev.2013D 881040372013PhRvD..88j4037B[arXiv:1305.6930] [INSPIRE]
N.E.J. Bjerrum-Bohr, J.F. Donoghue and B.R. Holstein, Quantum corrections to the Schwarzschild and Kerr metrics, Phys. Rev.D 68 (2003) 084005 [Erratum ibid.D 71 (2005) 069904] [hep-th/0211071] [INSPIRE].
GoldbergerWDRidgwayAKBound states and the classical double copyPhys. Rev.2018D 972018PhRvD..97h5019G3846507[arXiv:1711.09493] [INSPIRE]
AmatiDCiafaloniMVenezianoGPlanckian scattering beyond the semiclassical approximationPhys. Lett.1992B 289871992PhLB..289...87A10.1016/0370-2693(92)91366-H[INSPIRE]
L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields, fourth edition, Butterworth-Heinemann, Oxford U.K. (1975), [ISBN:978-0750627689].
GoldbergerWDRothsteinIZTowers of Gravitational TheoriesGen. Rel. Grav.20063815372006GReGr..38.1537G228175510.1007/s10714-006-0345-71117.83094[hep-th/0605238] [INSPIRE]
HergtSSteinhoffJSchaeferGElimination of the spin supplementary condition in the effective field theory approach to the post-Newtonian approximationAnnals Phys.201232714942012AnPhy.327.1494H10.1016/j.aop.2012.02.0061246.83058[arXiv:1110.2094] [INSPIRE]
FoffaSMastroliaPSturaniRSturmCEffective field theory approach to the gravitational two-body dynamics, at fourth post-Newtonian order and quintic in the Newton constantPhys. Rev.2017D 951040092017PhRvD..95j4009F3817944[arXiv:1612.00482] [INSPIRE]
GoldbergerWDRossAGravitational radiative corrections from effective field theoryPhys. Rev.2010D 811240152010PhRvD..81l4015G[arXiv:0912.4254] [INSPIRE]
HolsteinBRDonoghueJFClassical physics and quantum loopsPhys. Rev. Lett.2004932016022004PhRvL..93t1602H211826010.1103/PhysRevLett.93.201602[hep-th/0405239] [INSPIRE]
D’AppollonioGDi VecchiaPRussoRVenezianoGA microscopic description of absorption in high-energy string-brane collisionsJHEP20160303010.1007/JHEP03(2016)030[arXiv:1510.03837] [INSPIRE]
SucherJTwo photon exchange force in scalar quantum electrodynamics: The Asymptotic storyPhys. Rev.1994D 4942841994PhRvD..49.4284S[INSPIRE]
SchäferGJaranowskiPHamiltonian formulation of general relativity and post-Newtonian dynamics of compact binariesLiving Rev. Rel.201821710.1007/s41114-018-0016-5[arXiv:1805.07240] [INSPIRE]
FoffaSSturaniREffective field theory methods to model compact binariesClass. Quant. Grav.2014312014CQGra..31d3001F316822310.1088/0264-9381/31/4/0430011286.83034[arXiv:1309.3474] [INSPIRE]
MuzinichIJSoldateMHigh-Energy Unitarity of Gravitation and StringsPhys. Rev.1988D 373591988PhRvD..37..359M[INSPIRE]
ArnowittRDeserSQuantum Theory of Gravitation: General Formulation and Linearized TheoryPhys. Rev.19591137451959PhRv..113..745A10111410.1103/PhysRev.113.7450083.43201[INSPIRE]
Goldber
B Kol (10020_CR32) 2008; 40
MH Al-Hashimi (10020_CR117) 2009; 324
10020_CR33
10020_CR30
B Kol (10020_CR38) 2009; D 80
IJ Muzinich (10020_CR120) 1988; D 37
10020_CR27
10020_CR25
10020_CR24
G D’Appollonio (10020_CR130) 2015; 05
M Ciafaloni (10020_CR131) 2015; 115
G D’Appollonio (10020_CR132) 2016; 03
D Amati (10020_CR121) 1988; A 3
A Laddha (10020_CR102) 2018; 09
RA Porto (10020_CR20) 2016; 633
O Birnholtz (10020_CR52) 2013; D 88
IJ Muzinich (10020_CR126) 1995; D 52
JF Donoghue (10020_CR79) 1996; D 54
O Birnholtz (10020_CR115) 2014; A 29
10020_CR140
M Levi (10020_CR44) 2012; D 85
R Monteiro (10020_CR89) 2014; 12
10020_CR10
L Blanchet (10020_CR12) 2014; 17
M Levi (10020_CR66) 2017; 34
S Chakrabarti (10020_CR53) 2013; D 88
R Arnowitt (10020_CR7) 1959; 113
WD Goldberger (10020_CR23) 2006; 38
10020_CR93
10020_CR138
Z Bern (10020_CR87) 2008; D 78
CR Galley (10020_CR113) 2010; 105
J Sucher (10020_CR136) 1994; D 49
S Hergt (10020_CR45) 2012; 327
S Melville (10020_CR128) 2014; D 89
10020_CR129
RA Porto (10020_CR26) 2008; D 77
PAM Dirac (10020_CR109) 1938; A 167
D Amati (10020_CR123) 1992; B 289
O Birnholtz (10020_CR116) 2015; A 30
A Ross (10020_CR47) 2012; D 85
Z Bern (10020_CR88) 2010; 105
10020_CR21
RL Arnowitt (10020_CR8) 1959; 116
10020_CR18
M Levi (10020_CR59) 2016; 01
10020_CR16
10020_CR17
A Laddha (10020_CR103) 2018; 10
10020_CR14
10020_CR15
Y-Z Chu (10020_CR35) 2009; D 79
10020_CR13
T Damour (10020_CR85) 2018; D 97
M Levi (10020_CR31) 2010; D 82
10020_CR119
10020_CR77
10020_CR110
10020_CR74
10020_CR111
10020_CR75
10020_CR112
A Luna (10020_CR134) 2017; 01
M Levi (10020_CR56) 2014; 12
M Levi (10020_CR58) 2015; 09
BR Holstein (10020_CR83) 2004; 93
WD Goldberger (10020_CR94) 2017; D 96
NEJ Bjerrum-Bohr (10020_CR76) 2018; 121
H Kawai (10020_CR86) 1986; B 269
CR Galley (10020_CR37) 2009; D 79
10020_CR80
10020_CR107
M Abraham (10020_CR108) 1904; 14
WD Goldberger (10020_CR50) 2014; D 89
NT Maia (10020_CR67) 2017; D 96
HA Lorentz (10020_CR105) 1892; 25
A Luna (10020_CR137) 2018; 03
D Amati (10020_CR125) 1993; B 403
10020_CR100
10020_CR81
10020_CR104
M Levi (10020_CR57) 2015; 06
NEJ Bjerrum-Bohr (10020_CR71) 2015; D 91
10020_CR82
AK Collado (10020_CR135) 2018; 10
WD Goldberger (10020_CR91) 2017; D 95
C Cheung (10020_CR101) 2018; 121
T Damour (10020_CR84) 2016; D 94
J Ellis (10020_CR139) 2017; 210
S Foffa (10020_CR46) 2013; D 87
M Ciafaloni (10020_CR133) 2016; D 93
10020_CR78
C-H Shen (10020_CR95) 2018; 11
D Amati (10020_CR118) 1987; B 197
RL Arnowitt (10020_CR9) 1960; 117
NT Maia (10020_CR68) 2017; D 96
CR Galley (10020_CR29) 2009; D 79
WD Goldberger (10020_CR22) 2006; D 73
WD Goldberger (10020_CR36) 2010; D 81
B Kol (10020_CR42) 2011; 28
M Levi (10020_CR60) 2016; 01
10020_CR6
A Luna (10020_CR90) 2016; 06
10020_CR5
B Kol (10020_CR28) 2008; 25
10020_CR4
J Li (10020_CR99) 2018; D 97
10020_CR3
RA Porto (10020_CR64) 2017; D 96
10020_CR2
10020_CR1
G Schäfer (10020_CR11) 2018; 21
RA Porto (10020_CR65) 2017; D 96
CR Galley (10020_CR51) 2013; 11
10020_CR49
NEJ Bjerrum-Bohr (10020_CR70) 2014; 02
10020_CR48
S Foffa (10020_CR55) 2014; D 89
M Abraham (10020_CR106) 1903; 10
D Amati (10020_CR122) 1990; B 347
G D’Appollonio (10020_CR127) 2010; 11
M Levi (10020_CR40) 2010; D 82
WD Goldberger (10020_CR19) 2006; D 73
JB Gilmore (10020_CR34) 2008; D 78
S Foffa (10020_CR43) 2011; D 84
S Foffa (10020_CR63) 2017; D 95
WD Goldberger (10020_CR96) 2018; D 97
WD Goldberger (10020_CR98) 2018; D 97
RA Porto (10020_CR41) 2011; 03
RA Porto (10020_CR39) 2010; 27
CR Galley (10020_CR61) 2016; D 93
DN Kabat (10020_CR124) 1992; B 388
NEJ Bjerrum-Bohr (10020_CR73) 2016; 11
O Birnholtz (10020_CR114) 2013; D 88
10020_CR62
A Luna (10020_CR92) 2017; 04
D Neill (10020_CR69) 2013; B 877
S Foffa (10020_CR54) 2014; 31
NEJ Bjerrum-Bohr (10020_CR72) 2015; 114
J Plefka (10020_CR97) 2019; D 99
References_xml – reference: CheungCRothsteinIZSolonMPFrom Scattering Amplitudes to Classical Potentials in the Post-Minkowskian ExpansionPhys. Rev. Lett.20181212511012018PhRvL.121y1101C10.1103/PhysRevLett.121.251101[arXiv:1808.02489] [INSPIRE]
– reference: L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields, fourth edition, Butterworth-Heinemann, Oxford U.K. (1975), [ISBN:978-0750627689].
– reference: MaiaNTGalleyCRLeibovichAKPortoRARadiation reaction for spinning bodies in effective field theory I: Spin-orbit effectsPhys. Rev.2017D 962017PhRvD..96h4064M3861671[arXiv:1705.07934] [INSPIRE]
– reference: KawaiHLewellenDCTyeSHHA Relation Between Tree Amplitudes of Closed and Open StringsNucl. Phys.1986B 26911986NuPhB.269....1K83866710.1016/0550-3213(86)90362-7[INSPIRE]
– reference: GoldbergerWDRidgwayAKBound states and the classical double copyPhys. Rev.2018D 972018PhRvD..97h5019G3846507[arXiv:1711.09493] [INSPIRE]
– reference: LaddhaASenAGravity Waves from Soft Theorem in General DimensionsJHEP2018091052018JHEP...09..105L386838210.1007/JHEP09(2018)1051398.83023[arXiv:1801.07719] [INSPIRE]
– reference: PortoRAAbsorption effects due to spin in the worldline approach to black hole dynamicsPhys. Rev.2008D 772008PhRvD..77f4026P2495433[arXiv:0710.5150] [INSPIRE]
– reference: ArnowittRLDeserSMisnerCWDynamical Structure and Definition of Energy in General RelativityPhys. Rev.195911613221959PhRv..116.1322A11366710.1103/PhysRev.116.13220092.20704[INSPIRE]
– reference: T. Damour, Coalescence of two spinning black holes: an effective one-body approach, Phys. Rev.D 64 (2001) 124013 [gr-qc/0103018] [INSPIRE].
– reference: DamourTGravitational scattering, post-Minkowskian approximation and Effective One-Body theoryPhys. Rev.2016D 941040152016PhRvD..94j4015D3745958[arXiv:1609.00354] [INSPIRE]
– reference: GalleyCRPortoRAGravitational self-force in the ultra-relativistic limit: the “large-N” expansionJHEP2013110962013JHEP...11..096G10.1007/JHEP11(2013)096[arXiv:1302.4486] [INSPIRE]
– reference: LeviMSteinhoffJNext-to-next-to-leading order gravitational spin-squared potential via the effective field theory for spinning objects in the post-Newtonian schemeJCAP2016010082016JCAP...01..008L347235710.1088/1475-7516/2016/01/008[arXiv:1506.05794] [INSPIRE]
– reference: KabatDNOrtizMEikonal quantum gravity and Planckian scatteringNucl. Phys.1992B 3885701992NuPhB.388..570K10.1016/0550-3213(92)90627-N[hep-th/9203082] [INSPIRE]
– reference: GoldbergerWDRothsteinIZTowers of Gravitational TheoriesGen. Rel. Grav.20063815372006GReGr..38.1537G228175510.1007/s10714-006-0345-71117.83094[hep-th/0605238] [INSPIRE]
– reference: J.F. Donoghue, General relativity as an effective field theory: The leading quantum corrections, Phys. Rev.D 50 (1994) 3874 [gr-qc/9405057] [INSPIRE].
– reference: NeillDRothsteinIZClassical Space-Times from the S MatrixNucl. Phys.2013B 8771772013NuPhB.877..177N312483710.1016/j.nuclphysb.2013.09.0071284.83052[arXiv:1304.7263] [INSPIRE]
– reference: BirnholtzOHadarSKolBRadiation reaction at the level of the actionInt. J. Mod. Phys.2014A 2914501322014IJMPA..2950132B10.1142/S0217751X145013221301.70018[arXiv:1402.2610] [INSPIRE]
– reference: PortoRAThe effective field theorist’s approach to gravitational dynamicsPhys. Rept.201663312016PhR...633....1P350314310.1016/j.physrep.2016.04.0031359.83024[arXiv:1601.04914] [INSPIRE]
– reference: B. Sahoo and A. Sen, Classical and Quantum Results on Logarithmic Terms in the Soft Theorem in Four Dimensions, arXiv:1808.03288 [INSPIRE].
– reference: AbrahamMPrinzipien der Dynamik des ElektronsAnn. Phys.19031010534.0915.02
– reference: HergtSSteinhoffJSchaeferGElimination of the spin supplementary condition in the effective field theory approach to the post-Newtonian approximationAnnals Phys.201232714942012AnPhy.327.1494H10.1016/j.aop.2012.02.0061246.83058[arXiv:1110.2094] [INSPIRE]
– reference: R.A. Porto and I.Z. Rothstein, Next to Leading Order Spin(1)Spin(1) Effects in the Motion of Inspiralling Compact Binaries, Phys. Rev.D 78 (2008) 044013 [Erratum ibid.D 81 (2010) 029905] [arXiv:0804.0260] [INSPIRE].
– reference: CiafaloniMColferaiDCoradeschiFVenezianoGUnified limiting form of graviton radiation at extreme energiesPhys. Rev.2016D 932016PhRvD..93d4052C3499366[arXiv:1512.00281] [INSPIRE]
– reference: AmatiDCiafaloniMVenezianoGClassical and Quantum Gravity Effects from Planckian Energy Superstring CollisionsInt. J. Mod. Phys.1988A 316151988IJMPA...3.1615A10.1142/S0217751X88000710[INSPIRE]
– reference: M. Levi, Effective Field Theories of Post-Newtonian Gravity: A comprehensive review, arXiv:1807.01699 [INSPIRE].
– reference: LeviMSteinhoffJEFTofPNG: A package for high precision computation with the Effective Field Theory of Post-Newtonian GravityClass. Quant. Grav.2017342440012017CQGra..34x4001L373276610.1088/1361-6382/aa941e[arXiv:1705.06309] [INSPIRE]
– reference: FoffaSSturaniRTail terms in gravitational radiation reaction via effective field theoryPhys. Rev.2013D 872013PhRvD..87d4056F[arXiv:1111.5488] [INSPIRE]
– reference: GalleyCRTiglioMRadiation reaction and gravitational waves in the effective field theory approachPhys. Rev.2009D 791240272009PhRvD..79l4027G[arXiv:0903.1122] [INSPIRE]
– reference: M. Levi and J. Steinhoff, Complete conservative dynamics for inspiralling compact binaries with spins at fourth post-Newtonian order, arXiv:1607.04252 [INSPIRE].
– reference: F. Pretorius, Binary Black Hole Coalescence, arXiv:0710.1338 [INSPIRE].
– reference: A. Buonanno and T. Damour, Transition from inspiral to plunge in binary black hole coalescences, Phys. Rev.D 62 (2000) 064015 [gr-qc/0001013] [INSPIRE].
– reference: BirnholtzOComments on initial conditions for the Abraham-Lorentz(-Dirac) equationInt. J. Mod. Phys.2015A 3015500112015IJMPA..3050011B330229010.1142/S0217751X15500116[arXiv:1410.5871] [INSPIRE]
– reference: HolsteinBRDonoghueJFClassical physics and quantum loopsPhys. Rev. Lett.2004932016022004PhRvL..93t1602H211826010.1103/PhysRevLett.93.201602[hep-th/0405239] [INSPIRE]
– reference: KolBLeviMSmolkinMComparing space+time decompositions in the post-Newtonian limitClass. Quant. Grav.2011281450212011CQGra..28n5021K282261710.1088/0264-9381/28/14/1450211222.83155[arXiv:1011.6024] [INSPIRE]
– reference: ArnowittRDeserSQuantum Theory of Gravitation: General Formulation and Linearized TheoryPhys. Rev.19591137451959PhRv..113..745A10111410.1103/PhysRev.113.7450083.43201[INSPIRE]
– reference: A. Higuchi, Radiation reaction in quantum field theory, Phys. Rev.D 66 (2002) 105004 [Erratum ibid.D 69 (2004) 129903] [quant-ph/0208017] [INSPIRE].
– reference: LIGO Scientific and Virgo collaborations, GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence, Phys. Rev. Lett.119 (2017) 141101 [arXiv:1709.09660] [INSPIRE].
– reference: ShenC-HGravitational Radiation from Color-Kinematics DualityJHEP2018111622018JHEP...11..162S390042010.1007/JHEP11(2018)1621404.83022[arXiv:1806.07388] [INSPIRE]
– reference: GoldbergerWDLiJPrabhuSGSpinning particles, axion radiation and the classical double copyPhys. Rev.2018D 971050182018PhRvD..97j5018G3884467[arXiv:1712.09250] [INSPIRE]
– reference: GalleyCRHuBLSelf-force on extreme mass ratio inspirals via curved spacetime effective field theoryPhys. Rev.2009D 792009PhRvD..79f4002G[arXiv:0801.0900] [INSPIRE]
– reference: MaiaNTGalleyCRLeibovichAKPortoRARadiation reaction for spinning bodies in effective field theory II: Spin-spin effectsPhys. Rev.2017D 962017PhRvD..96h4065M3861672[arXiv:1705.07938] [INSPIRE]
– reference: LIGO Scientific and Virgo collaborations, GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2, Phys. Rev. Lett.118 (2017) 221101 [Erratum ibid.121 (2018) 129901] [arXiv:1706.01812] [INSPIRE].
– reference: Bjerrum-BohrNEJDamgaardPHFestucciaGPlantéLVanhovePGeneral Relativity from Scattering AmplitudesPhys. Rev. Lett.20181211716012018PhRvL.121q1601B10.1103/PhysRevLett.121.171601[arXiv:1806.04920] [INSPIRE]
– reference: SucherJTwo photon exchange force in scalar quantum electrodynamics: The Asymptotic storyPhys. Rev.1994D 4942841994PhRvD..49.4284S[INSPIRE]
– reference: GalleyCRLeibovichAKPortoRARossATail effect in gravitational radiation reaction: Time nonlocality and renormalization group evolutionPhys. Rev.2016D 931240102016PhRvD..93l4010G3621065[arXiv:1511.07379] [INSPIRE]
– reference: Bjerrum-BohrNEJDonoghueJFHolsteinBRPlantéLVanhovePBending of Light in Quantum GravityPhys. Rev. Lett.20151142015PhRvL.114f1301B10.1103/PhysRevLett.114.0613011390.83057[arXiv:1410.7590] [INSPIRE]
– reference: A. Buonanno and T. Damour, Effective one-body approach to general relativistic two-body dynamics, Phys. Rev.D 59 (1999) 084006 [gr-qc/9811091] [INSPIRE].
– reference: BernZCarrascoJJMJohanssonHNew Relations for Gauge-Theory AmplitudesPhys. Rev.2008D 782008PhRvD..78h5011B2470033[arXiv:0805.3993] [INSPIRE]
– reference: PortoRARossARothsteinIZSpin induced multipole moments for the gravitational wave flux from binary inspirals to third Post-Newtonian orderJCAP2011030092011JCAP...03..009P10.1088/1475-7516/2011/03/009[arXiv:1007.1312] [INSPIRE]
– reference: R.A. Porto and I.Z. Rothstein, Spin(1)Spin(2) Effects in the Motion of Inspiralling Compact Binaries at Third Order in the Post-Newtonian Expansion, Phys. Rev.D 78 (2008) 044012 [Erratum ibid.D 81 (2010) 029904] [arXiv:0802.0720] [INSPIRE].
– reference: GalleyCRLeibovichAKRothsteinIZFinite size corrections to the radiation reaction force in classical electrodynamicsPhys. Rev. Lett.20101052010PhRvL.105i4802G10.1103/PhysRevLett.105.094802[arXiv:1005.2617] [INSPIRE]
– reference: LiJPrabhuSGGravitational radiation from the classical spinning double copyPhys. Rev.2018D 971050192018PhRvD..97j5019L3884468[arXiv:1803.02405] [INSPIRE]
– reference: R.L. Arnowitt, S. Deser and C.W. Misner, The Dynamics of general relativity, Gen. Rel. Grav.40 (2008) 1997 [gr-qc/0405109] [INSPIRE].
– reference: R.A. Porto and I.Z. Rothstein, The Hyperfine Einstein-Infeld-Hoffmann potential, Phys. Rev. Lett.97 (2006) 021101 [gr-qc/0604099] [INSPIRE].
– reference: GoldbergerWDRossARothsteinIZBlack hole mass dynamics and renormalization group evolutionPhys. Rev.2014D 891240332014PhRvD..89l4033G[arXiv:1211.6095] [INSPIRE]
– reference: LunaAPerturbative spacetimes from Yang-Mills theoryJHEP2017040692017JHEP...04..069L365769910.1007/JHEP04(2017)069[arXiv:1611.07508] [INSPIRE]
– reference: R. Akhoury, R. Saotome and G. Sterman, High Energy Scattering in Perturbative Quantum Gravity at Next to Leading Power, arXiv:1308.5204 [INSPIRE].
– reference: Bjerrum-BohrNEJHolsteinBRPlantéLVanhovePGraviton-Photon ScatteringPhys. Rev.2015D 912015PhRvD..91f4008B[arXiv:1410.4148] [INSPIRE]
– reference: LeviMSteinhoffJNext-to-next-to-leading order gravitational spin-orbit coupling via the effective field theory for spinning objects in the post-Newtonian schemeJCAP2016010112016JCAP...01..011L347235410.1088/1475-7516/2016/01/011[arXiv:1506.05056] [INSPIRE]
– reference: MuzinichIJVokosSLong range forces in quantum gravityPhys. Rev.1995D 5234721995PhRvD..52.3472M[hep-th/9501083] [INSPIRE]
– reference: DonoghueJFTormaTOn the power counting of loop diagrams in general relativityPhys. Rev.1996D 5449631996PhRvD..54.4963D[hep-th/9602121] [INSPIRE]
– reference: D’AppollonioGDi VecchiaPRussoRVenezianoGRegge behavior saves String Theory from causality violationsJHEP2015051442015JHEP...05..144D335885910.1007/JHEP05(2015)1441388.83065[arXiv:1502.01254] [INSPIRE]
– reference: RossAMultipole expansion at the level of the actionPhys. Rev.2012D 851250332012PhRvD..85l5033R[arXiv:1202.4750] [INSPIRE]
– reference: LeviMBinary dynamics from spin1-spin2 coupling at fourth post-Newtonian orderPhys. Rev.2012D 852012PhRvD..85f4043L[arXiv:1107.4322] [INSPIRE]
– reference: R.A. Porto, A. Ross and I.Z. Rothstein, Spin induced multipole moments for the gravitational wave amplitude from binary inspirals to 2.5 Post-Newtonian order, JCAP09 (2012) 028 [arXiv:1203.2962] [INSPIRE].
– reference: GoldbergerWDRidgwayAKRadiation and the classical double copy for color chargesPhys. Rev.2017D 951250102017PhRvD..95l5010G3829776[arXiv:1611.03493] [INSPIRE]
– reference: DiracPAMClassical theory of radiating electronsProc. Roy. Soc. Lond.1938A 1671481938RSPSA.167..148D64.1481.03
– reference: FoffaSMastroliaPSturaniRSturmCEffective field theory approach to the gravitational two-body dynamics, at fourth post-Newtonian order and quintic in the Newton constantPhys. Rev.2017D 951040092017PhRvD..95j4009F3817944[arXiv:1612.00482] [INSPIRE]
– reference: AmatiDCiafaloniMVenezianoGEffective action and all order gravitational eikonal at Planckian energiesNucl. Phys.1993B 4037071993NuPhB.403..707A10.1016/0550-3213(93)90367-X[INSPIRE]
– reference: MelvilleSNaculichSGSchnitzerHJWhiteCDWilson line approach to gravity in the high energy limitPhys. Rev.2014D 892014PhRvD..89b5009M[arXiv:1306.6019] [INSPIRE]
– reference: J. Schwinger, L.L. DeRaad Jr., K.A. Milton and W.Y. Tsai, Classical Electrodynamics, Perseus, New York U.S.A. (1998) [ISBN:978-0738200569].
– reference: AmatiDCiafaloniMVenezianoGPlanckian scattering beyond the semiclassical approximationPhys. Lett.1992B 289871992PhLB..289...87A10.1016/0370-2693(92)91366-H[INSPIRE]
– reference: MonteiroRO’ConnellDWhiteCDBlack holes and the double copyJHEP2014120562014JHEP...12..056M330353710.1007/JHEP12(2014)0561333.83048[arXiv:1410.0239] [INSPIRE]
– reference: N.E.J. Bjerrum-Bohr, J.F. Donoghue and B.R. Holstein, Quantum corrections to the Schwarzschild and Kerr metrics, Phys. Rev.D 68 (2003) 084005 [Erratum ibid.D 71 (2005) 069904] [hep-th/0211071] [INSPIRE].
– reference: KolBSmolkinMDressing the Post-Newtonian two-body problem and Classical Effective Field TheoryPhys. Rev.2009D 801240442009PhRvD..80l4044K[arXiv:0910.5222] [INSPIRE]
– reference: GoldbergerWDPrabhuSGThompsonJOClassical gluon and graviton radiation from the bi-adjoint scalar double copyPhys. Rev.2017D 962017PhRvD..96f5009G3856389[arXiv:1705.09263] [INSPIRE]
– reference: N.E.J. Bjerrum-Bohr, J.F. Donoghue and B.R. Holstein, Quantum gravitational corrections to the nonrelativistic scattering potential of two masses, Phys. Rev.D 67 (2003) 084033 [Erratum ibid.D 71 (2005) 069903] [hep-th/0211072] [INSPIRE].
– reference: PortoRANext to leading order spin-orbit effects in the motion of inspiralling compact binariesClass. Quant. Grav.2010272050012010CQGra..27t5001P10.1088/0264-9381/27/20/2050011202.83019[arXiv:1005.5730] [INSPIRE]
– reference: Al-HashimiMHWieseUJMinimal Position-Velocity Uncertainty Wave Packets in Relativistic and Non-relativistic Quantum MechanicsAnnals Phys.200932425992009AnPhy.324.2599A256331910.1016/j.aop.2009.09.0011183.81085[arXiv:0907.5178] [INSPIRE]
– reference: LeviMNext to Leading Order gravitational Spin1-Spin2 coupling with Kaluza-Klein reductionPhys. Rev.2010D 822010PhRvD..82f4029L[arXiv:0802.1508] [INSPIRE]
– reference: LunaAMonteiroRNicholsonIO’ConnellDWhiteCDThe double copy: Bremsstrahlung and accelerating black holesJHEP2016060232016JHEP...06..023L353818410.1007/JHEP06(2016)0231388.83025[arXiv:1603.05737] [INSPIRE]
– reference: A. Guevara, Holomorphic Classical Limit for Spin Effects in Gravitational and Electromagnetic Scattering, arXiv:1706.02314 [INSPIRE].
– reference: D’AppollonioGDi VecchiaPRussoRVenezianoGA microscopic description of absorption in high-energy string-brane collisionsJHEP20160303010.1007/JHEP03(2016)030[arXiv:1510.03837] [INSPIRE]
– reference: PortoRALamb shift and the gravitational binding energy for binary black holesPhys. Rev.2017D 962017PhRvD..96b4063P3842289[arXiv:1703.06434] [INSPIRE]
– reference: GoldbergerWDRothsteinIZAn Effective field theory of gravity for extended objectsPhys. Rev.2006D 731040292006PhRvD..73j4029G2224727[hep-th/0409156] [INSPIRE]
– reference: B.R. Holstein and A. Ross, Spin Effects in Long Range Gravitational Scattering, arXiv:0802.0716 [INSPIRE].
– reference: AmatiDCiafaloniMVenezianoGHigher Order Gravitational Deflection and Soft Bremsstrahlung in Planckian Energy Superstring CollisionsNucl. Phys.1990B 3475501990NuPhB.347..550A10.1016/0550-3213(90)90375-N[INSPIRE]
– reference: BernZCarrascoJJMJohanssonHPerturbative Quantum Gravity as a Double Copy of Gauge TheoryPhys. Rev. Lett.20101052010PhRvL.105f1602B267304010.1103/PhysRevLett.105.061602[arXiv:1004.0476] [INSPIRE]
– reference: MuzinichIJSoldateMHigh-Energy Unitarity of Gravitation and StringsPhys. Rev.1988D 373591988PhRvD..37..359M[INSPIRE]
– reference: PortoRARothsteinIZApparent ambiguities in the post-Newtonian expansion for binary systemsPhys. Rev.2017D 962017PhRvD..96b4062P[arXiv:1703.06433] [INSPIRE]
– reference: A. Luna, R. Monteiro, I. Nicholson and D. O’Connell, Type D Spacetimes and the Weyl Double Copy, arXiv:1810.08183 [INSPIRE].
– reference: ArnowittRLDeserSMisnerCWCanonical variables for general relativityPhys. Rev.196011715951960PhRv..117.1595A11366810.1103/PhysRev.117.15950091.21203[INSPIRE]
– reference: R.A. Porto and I.Z. Rothstein, Comment on ‘On the next-to-leading order gravitational spin(1)-spin(2) dynamics’ by J. Steinhoff et al., arXiv:0712.2032 [INSPIRE].
– reference: EllisJTikZ-Feynman: Feynman diagrams with TikZComput. Phys. Commun.20172101032017CoPhC.210..103E10.1016/j.cpc.2016.08.019[arXiv:1601.05437] [INSPIRE]
– reference: LeviMSteinhoffJLeading order finite size effects with spins for inspiralling compact binariesJHEP2015060592015JHEP...06..059L10.1007/JHEP06(2015)059[arXiv:1410.2601] [INSPIRE]
– reference: C.R. Galley, B.L. Hu and S.-Y. Lin, Electromagnetic and gravitational self-force on a relativistic particle from quantum fields in curved space, Phys. Rev.D 74 (2006) 024017 [gr-qc/0603099] [INSPIRE].
– reference: ChakrabartiSDelsateTSteinhoffJEffective action and linear response of compact objects in Newtonian gravityPhys. Rev.2013D 882013PhRvD..88h4038C[arXiv:1306.5820] [INSPIRE]
– reference: R.A. Porto, Post-Newtonian corrections to the motion of spinning bodies in NRGR, Phys. Rev.D 73 (2006) 104031 [gr-qc/0511061] [INSPIRE].
– reference: LeviMNext to Leading Order gravitational Spin-Orbit coupling in an Effective Field Theory approachPhys. Rev.2010D 821040042010PhRvD..82j4004L[arXiv:1006.4139] [INSPIRE]
– reference: GilmoreJBRossAEffective field theory calculation of second post-Newtonian binary dynamicsPhys. Rev.2008D 781240212008PhRvD..78l4021G[arXiv:0810.1328] [INSPIRE]
– reference: KolBThe Delocalized Effective Degrees of Freedom of a Black Hole at Low FrequenciesGen. Rel. Grav.20084020612008GReGr..40.2061K244335910.1007/s10714-008-0673-x1152.83382[arXiv:0804.0187] [INSPIRE]
– reference: J.F. Donoghue, Leading quantum correction to the Newtonian potential, Phys. Rev. Lett.72 (1994) 2996 [gr-qc/9310024] [INSPIRE].
– reference: LIGO Scientific and Virgo collaborations, Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett.116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].
– reference: LunaAMelvilleSNaculichSGWhiteCDNext-to-soft corrections to high energy scattering in QCD and gravityJHEP2017010522017JHEP...01..052L362858210.1007/JHEP01(2017)0521373.83045[arXiv:1611.02172] [INSPIRE]
– reference: LaddhaASenALogarithmic Terms in the Soft Expansion in Four DimensionsJHEP2018100562018JHEP...10..056L389104010.1007/JHEP10(2018)0561402.83081[arXiv:1804.09193] [INSPIRE]
– reference: J.D. Jackson, Classical Electrodynamics, third edition, Wiley, New York U.S.A. (1998) [ISBN:978-0471309321].
– reference: FoffaSGravitating binaries at 5PN in the post-Minkowskian approximationPhys. Rev.2014D 892014PhRvD..89b4019F[arXiv:1309.3956] [INSPIRE]
– reference: ChuY-ZThe n-body problem in General Relativity up to the second post-Newtonian order from perturbative field theoryPhys. Rev.2009D 792009PhRvD..79d4031C[arXiv:0812.0012] [INSPIRE]
– reference: M. Abraham, Theorie der Elektrizität. Vol. II: Elektromagnetische Theorie der Strahlung, Teubner, Leipzig Germany (1904).
– reference: BlanchetLGravitational Radiation from Post-Newtonian Sources and Inspiralling Compact BinariesLiving Rev. Rel.201417210.12942/lrr-2014-21316.83003[arXiv:1310.1528] [INSPIRE]
– reference: AmatiDCiafaloniMVenezianoGSuperstring Collisions at Planckian EnergiesPhys. Lett.1987B 197811987PhLB..197...81A10.1016/0370-2693(87)90346-7[INSPIRE]
– reference: C.R. Galley and A.K. Leibovich, Radiation reaction at 3.5 post-Newtonian order in effective field theory, Phys. Rev.D 86 (2012) 044029 [arXiv:1205.3842] [INSPIRE].
– reference: DamourTHigh-energy gravitational scattering and the general relativistic two-body problemPhys. Rev.2018D 972018PhRvD..97d4038D3804325[arXiv:1710.10599] [INSPIRE]
– reference: LeviMSteinhoffJSpinning gravitating objects in the effective field theory in the post-Newtonian schemeJHEP2015092192015JHEP...09..219L343054610.1007/JHEP09(2015)2191388.83031[arXiv:1501.04956] [INSPIRE]
– reference: F. Cachazo and A. Guevara, Leading Singularities and Classical Gravitational Scattering, arXiv:1705.10262 [INSPIRE].
– reference: AbrahamMZur Theorie der Strahlung und des StrahlungsdruckesAnn. Phys.19041423610.1002/andp.1904319070335.0839.02
– reference: SchäferGJaranowskiPHamiltonian formulation of general relativity and post-Newtonian dynamics of compact binariesLiving Rev. Rel.201821710.1007/s41114-018-0016-5[arXiv:1805.07240] [INSPIRE]
– reference: D’AppollonioGDi VecchiaPRussoRVenezianoGHigh-energy string-brane scattering: Leading eikonal and beyondJHEP2010111002010JHEP...11..100D279508110.1007/JHEP11(2010)1001294.81189[arXiv:1008.4773] [INSPIRE]
– reference: LeviMSteinhoffJEquivalence of ADM Hamiltonian and Effective Field Theory approaches at next-to-next-to-leading order spin1-spin2 coupling of binary inspiralsJCAP2014120032014JCAP...12..003L10.1088/1475-7516/2014/12/003[arXiv:1408.5762] [INSPIRE]
– reference: F. Pretorius, Evolution of binary black hole spacetimes, Phys. Rev. Lett.95 (2005) 121101 [gr-qc/0507014] [INSPIRE].
– reference: Bjerrum-BohrNEJDonoghueJFVanhovePOn-shell Techniques and Universal Results in Quantum GravityJHEP2014021112014JHEP...02..111B318313810.1007/JHEP02(2014)1111333.83043[arXiv:1309.0804] [INSPIRE]
– reference: T. Damour, P. Jaranowski and G. Schaefer, On the determination of the last stable orbit for circular general relativistic binaries at the third postNewtonian approximation, Phys. Rev.D 62 (2000) 084011 [gr-qc/0005034] [INSPIRE].
– reference: KolBSmolkinMNon-Relativistic Gravitation: From Newton to Einstein and BackClass. Quant. Grav.2008251450112008CQGra..25n5011K243052910.1088/0264-9381/25/14/1450111180.83019[arXiv:0712.4116] [INSPIRE]
– reference: LorentzHALa théorie élecromagnetique de Maxwell et son application aux corps mouvemantsArch. Néerl. Sci. Exactes Nat.189225363
– reference: FoffaSSturaniREffective field theory calculation of conservative binary dynamics at third post-Newtonian orderPhys. Rev.2011D 842011PhRvD..84d4031F[arXiv:1104.1122] [INSPIRE]
– reference: FoffaSSturaniREffective field theory methods to model compact binariesClass. Quant. Grav.2014312014CQGra..31d3001F316822310.1088/0264-9381/31/4/0430011286.83034[arXiv:1309.3474] [INSPIRE]
– reference: Bjerrum-BohrNEJDonoghueJFHolsteinBRPlanteLVanhovePLight-like Scattering in Quantum GravityJHEP2016111172016JHEP...11..117B359478010.1007/JHEP11(2016)1171390.83057[arXiv:1609.07477] [INSPIRE]
– reference: GoldbergerWDRothsteinIZDissipative effects in the worldline approach to black hole dynamicsPhys. Rev.2006D 731040302006PhRvD..73j4030G2224728[hep-th/0511133] [INSPIRE]
– reference: CiafaloniMColferaiDVenezianoGEmerging Hawking-Like Radiation from Gravitational Bremsstrahlung Beyond the Planck ScalePhys. Rev. Lett.20151151713012015PhRvL.115q1301C10.1103/PhysRevLett.115.171301[arXiv:1505.06619] [INSPIRE]
– reference: ColladoAKDi VecchiaPRussoRThomasSThe subleading eikonal in supergravity theoriesJHEP2018100382018JHEP...10..038C389105810.1007/JHEP10(2018)0381402.83106[arXiv:1807.04588] [INSPIRE]
– reference: GoldbergerWDRossAGravitational radiative corrections from effective field theoryPhys. Rev.2010D 811240152010PhRvD..81l4015G[arXiv:0912.4254] [INSPIRE]
– reference: A. Buonanno and B.S. Sathyaprakash, Sources of Gravitational Waves: Theory and Observations, pp. 287–346, (2014), arXiv:1410.7832 [INSPIRE].
– reference: LIGO Scientific and Virgo collaborations, GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence, Phys. Rev. Lett.116 (2016) 241103 [arXiv:1606.04855] [INSPIRE].
– reference: LIGO Scientific and Virgo collaborations, GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett.119 (2017) 161101 [arXiv:1710.05832] [INSPIRE].
– reference: PlefkaJSteinhoffJWormsbecherWEffective action of dilaton gravity as the classical double copy of Yang-Mills theoryPhys. Rev.2019D 992019PhRvD..99b4021P[arXiv:1807.09859] [INSPIRE]
– reference: G. ’t Hooft, Graviton Dominance in Ultrahigh-Energy Scattering, Phys. Lett.B 198 (1987) 61 [INSPIRE].
– reference: LunaANicholsonIO’ConnellDWhiteCDInelastic Black Hole Scattering from Charged Scalar AmplitudesJHEP2018030442018JHEP...03..044L379854110.1007/JHEP03(2018)0441388.83477[arXiv:1711.03901] [INSPIRE]
– reference: BirnholtzOHadarSKolBTheory of post-Newtonian radiation and reactionPhys. Rev.2013D 881040372013PhRvD..88j4037B[arXiv:1305.6930] [INSPIRE]
– reference: J.F. Donoghue, B.R. Holstein, B. Garbrecht and T. Konstandin, Quantum corrections to the Reissner-Nordstrom and Kerr-Newman metrics, Phys. Lett.B 529 (2002) 132 [Erratum ibid.B 612 (2005) 311] [hep-th/0112237] [INSPIRE].
– ident: 10020_CR78
  doi: 10.1103/PhysRevD.50.3874
– volume: D 97
  year: 2018
  ident: 10020_CR85
  publication-title: Phys. Rev.
– volume: 12
  start-page: 003
  year: 2014
  ident: 10020_CR56
  publication-title: JCAP
  doi: 10.1088/1475-7516/2014/12/003
– volume: 01
  start-page: 011
  year: 2016
  ident: 10020_CR59
  publication-title: JCAP
  doi: 10.1088/1475-7516/2016/01/011
– ident: 10020_CR17
  doi: 10.1103/PhysRevLett.95.121101
– ident: 10020_CR21
– ident: 10020_CR24
  doi: 10.1103/PhysRevD.73.104031
– volume: 04
  start-page: 069
  year: 2017
  ident: 10020_CR92
  publication-title: JHEP
  doi: 10.1007/JHEP04(2017)069
– volume: 25
  start-page: 363
  year: 1892
  ident: 10020_CR105
  publication-title: Arch. Néerl. Sci. Exactes Nat.
– volume: 01
  start-page: 052
  year: 2017
  ident: 10020_CR134
  publication-title: JHEP
  doi: 10.1007/JHEP01(2017)052
– volume: 11
  start-page: 117
  year: 2016
  ident: 10020_CR73
  publication-title: JHEP
  doi: 10.1007/JHEP11(2016)117
– ident: 10020_CR104
– volume: D 49
  start-page: 4284
  year: 1994
  ident: 10020_CR136
  publication-title: Phys. Rev.
– volume: D 78
  year: 2008
  ident: 10020_CR87
  publication-title: Phys. Rev.
– volume: 324
  start-page: 2599
  year: 2009
  ident: 10020_CR117
  publication-title: Annals Phys.
  doi: 10.1016/j.aop.2009.09.001
– volume: A 29
  start-page: 1450132
  year: 2014
  ident: 10020_CR115
  publication-title: Int. J. Mod. Phys.
  doi: 10.1142/S0217751X14501322
– volume: D 89
  year: 2014
  ident: 10020_CR55
  publication-title: Phys. Rev.
– volume: D 91
  year: 2015
  ident: 10020_CR71
  publication-title: Phys. Rev.
– ident: 10020_CR4
– ident: 10020_CR30
  doi: 10.1103/PhysRevD.78.044012
– volume: D 88
  start-page: 104037
  year: 2013
  ident: 10020_CR114
  publication-title: Phys. Rev.
– volume: 93
  start-page: 201602
  year: 2004
  ident: 10020_CR83
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.201602
– ident: 10020_CR138
– volume: 105
  year: 2010
  ident: 10020_CR88
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.061602
– volume: 02
  start-page: 111
  year: 2014
  ident: 10020_CR70
  publication-title: JHEP
  doi: 10.1007/JHEP02(2014)111
– volume: D 96
  year: 2017
  ident: 10020_CR94
  publication-title: Phys. Rev.
– volume: A 3
  start-page: 1615
  year: 1988
  ident: 10020_CR121
  publication-title: Int. J. Mod. Phys.
  doi: 10.1142/S0217751X88000710
– volume: D 77
  year: 2008
  ident: 10020_CR26
  publication-title: Phys. Rev.
– volume: D 78
  start-page: 124021
  year: 2008
  ident: 10020_CR34
  publication-title: Phys. Rev.
– ident: 10020_CR107
– ident: 10020_CR14
  doi: 10.1103/PhysRevD.62.064015
– volume: D 87
  year: 2013
  ident: 10020_CR46
  publication-title: Phys. Rev.
– ident: 10020_CR81
  doi: 10.1103/PhysRevD.68.084005
– ident: 10020_CR112
  doi: 10.1103/PhysRevD.74.024017
– ident: 10020_CR10
  doi: 10.1007/s10714-008-0661-1
– ident: 10020_CR110
– volume: D 96
  year: 2017
  ident: 10020_CR65
  publication-title: Phys. Rev.
– volume: B 269
  start-page: 1
  year: 1986
  ident: 10020_CR86
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(86)90362-7
– ident: 10020_CR27
– volume: A 167
  start-page: 148
  year: 1938
  ident: 10020_CR109
  publication-title: Proc. Roy. Soc. Lond.
– volume: 34
  start-page: 244001
  year: 2017
  ident: 10020_CR66
  publication-title: Class. Quant. Grav.
  doi: 10.1088/1361-6382/aa941e
– ident: 10020_CR49
  doi: 10.1103/PhysRevD.86.044029
– volume: D 88
  start-page: 104037
  year: 2013
  ident: 10020_CR52
  publication-title: Phys. Rev.
– volume: 121
  start-page: 251101
  year: 2018
  ident: 10020_CR101
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.251101
– ident: 10020_CR6
  doi: 10.1017/CBO9781139583961.009
– ident: 10020_CR13
  doi: 10.1103/PhysRevD.59.084006
– volume: D 54
  start-page: 4963
  year: 1996
  ident: 10020_CR79
  publication-title: Phys. Rev.
– volume: D 52
  start-page: 3472
  year: 1995
  ident: 10020_CR126
  publication-title: Phys. Rev.
– ident: 10020_CR129
– ident: 10020_CR18
– volume: 40
  start-page: 2061
  year: 2008
  ident: 10020_CR32
  publication-title: Gen. Rel. Grav.
  doi: 10.1007/s10714-008-0673-x
– ident: 10020_CR75
– ident: 10020_CR2
– ident: 10020_CR80
  doi: 10.1016/S0370-2693(02)01246-7
– volume: 14
  start-page: 236
  year: 1904
  ident: 10020_CR108
  publication-title: Ann. Phys.
  doi: 10.1002/andp.19043190703
– volume: 05
  start-page: 144
  year: 2015
  ident: 10020_CR130
  publication-title: JHEP
  doi: 10.1007/JHEP05(2015)144
– volume: D 82
  start-page: 104004
  year: 2010
  ident: 10020_CR40
  publication-title: Phys. Rev.
– volume: D 93
  start-page: 124010
  year: 2016
  ident: 10020_CR61
  publication-title: Phys. Rev.
– volume: D 93
  year: 2016
  ident: 10020_CR133
  publication-title: Phys. Rev.
– volume: 121
  start-page: 171601
  year: 2018
  ident: 10020_CR76
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.171601
– volume: B 197
  start-page: 81
  year: 1987
  ident: 10020_CR118
  publication-title: Phys. Lett.
  doi: 10.1016/0370-2693(87)90346-7
– ident: 10020_CR140
– volume: 17
  start-page: 2
  year: 2014
  ident: 10020_CR12
  publication-title: Living Rev. Rel.
  doi: 10.12942/lrr-2014-2
– volume: D 81
  start-page: 124015
  year: 2010
  ident: 10020_CR36
  publication-title: Phys. Rev.
– volume: 06
  start-page: 059
  year: 2015
  ident: 10020_CR57
  publication-title: JHEP
  doi: 10.1007/JHEP06(2015)059
– volume: D 37
  start-page: 359
  year: 1988
  ident: 10020_CR120
  publication-title: Phys. Rev.
– volume: D 97
  year: 2018
  ident: 10020_CR96
  publication-title: Phys. Rev.
– volume: 25
  start-page: 145011
  year: 2008
  ident: 10020_CR28
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/25/14/145011
– volume: B 388
  start-page: 570
  year: 1992
  ident: 10020_CR124
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(92)90627-N
– volume: 210
  start-page: 103
  year: 2017
  ident: 10020_CR139
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2016.08.019
– volume: 10
  start-page: 105
  year: 1903
  ident: 10020_CR106
  publication-title: Ann. Phys.
– volume: 12
  start-page: 056
  year: 2014
  ident: 10020_CR89
  publication-title: JHEP
  doi: 10.1007/JHEP12(2014)056
– volume: 21
  start-page: 7
  year: 2018
  ident: 10020_CR11
  publication-title: Living Rev. Rel.
  doi: 10.1007/s41114-018-0016-5
– ident: 10020_CR5
– volume: B 877
  start-page: 177
  year: 2013
  ident: 10020_CR69
  publication-title: Nucl. Phys.
  doi: 10.1016/j.nuclphysb.2013.09.007
– volume: 327
  start-page: 1494
  year: 2012
  ident: 10020_CR45
  publication-title: Annals Phys.
  doi: 10.1016/j.aop.2012.02.006
– ident: 10020_CR48
  doi: 10.1088/1475-7516/2012/09/028
– volume: 31
  year: 2014
  ident: 10020_CR54
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/31/4/043001
– ident: 10020_CR3
– volume: D 95
  start-page: 125010
  year: 2017
  ident: 10020_CR91
  publication-title: Phys. Rev.
– volume: 27
  start-page: 205001
  year: 2010
  ident: 10020_CR39
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/27/20/205001
– volume: 11
  start-page: 100
  year: 2010
  ident: 10020_CR127
  publication-title: JHEP
  doi: 10.1007/JHEP11(2010)100
– volume: D 96
  year: 2017
  ident: 10020_CR68
  publication-title: Phys. Rev.
– volume: 113
  start-page: 745
  year: 1959
  ident: 10020_CR7
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.113.745
– ident: 10020_CR25
– volume: D 79
  year: 2009
  ident: 10020_CR35
  publication-title: Phys. Rev.
– volume: 09
  start-page: 219
  year: 2015
  ident: 10020_CR58
  publication-title: JHEP
  doi: 10.1007/JHEP09(2015)219
– volume: 117
  start-page: 1595
  year: 1960
  ident: 10020_CR9
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.117.1595
– volume: D 85
  start-page: 125033
  year: 2012
  ident: 10020_CR47
  publication-title: Phys. Rev.
– volume: 01
  start-page: 008
  year: 2016
  ident: 10020_CR60
  publication-title: JCAP
  doi: 10.1088/1475-7516/2016/01/008
– ident: 10020_CR111
– volume: D 82
  year: 2010
  ident: 10020_CR31
  publication-title: Phys. Rev.
– volume: 28
  start-page: 145021
  year: 2011
  ident: 10020_CR42
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/28/14/145021
– ident: 10020_CR77
  doi: 10.1103/PhysRevLett.72.2996
– volume: 10
  start-page: 056
  year: 2018
  ident: 10020_CR103
  publication-title: JHEP
  doi: 10.1007/JHEP10(2018)056
– ident: 10020_CR100
– volume: 09
  start-page: 105
  year: 2018
  ident: 10020_CR102
  publication-title: JHEP
  doi: 10.1007/JHEP09(2018)105
– volume: D 89
  start-page: 124033
  year: 2014
  ident: 10020_CR50
  publication-title: Phys. Rev.
– volume: D 94
  start-page: 104015
  year: 2016
  ident: 10020_CR84
  publication-title: Phys. Rev.
– volume: D 73
  start-page: 104030
  year: 2006
  ident: 10020_CR22
  publication-title: Phys. Rev.
– volume: A 30
  start-page: 1550011
  year: 2015
  ident: 10020_CR116
  publication-title: Int. J. Mod. Phys.
  doi: 10.1142/S0217751X15500116
– volume: D 79
  start-page: 124027
  year: 2009
  ident: 10020_CR37
  publication-title: Phys. Rev.
– volume: 114
  year: 2015
  ident: 10020_CR72
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.061301
– volume: B 289
  start-page: 87
  year: 1992
  ident: 10020_CR123
  publication-title: Phys. Lett.
  doi: 10.1016/0370-2693(92)91366-H
– volume: 10
  start-page: 038
  year: 2018
  ident: 10020_CR135
  publication-title: JHEP
  doi: 10.1007/JHEP10(2018)038
– volume: D 95
  start-page: 104009
  year: 2017
  ident: 10020_CR63
  publication-title: Phys. Rev.
– volume: D 96
  year: 2017
  ident: 10020_CR67
  publication-title: Phys. Rev.
– volume: 11
  start-page: 096
  year: 2013
  ident: 10020_CR51
  publication-title: JHEP
  doi: 10.1007/JHEP11(2013)096
– volume: D 84
  year: 2011
  ident: 10020_CR43
  publication-title: Phys. Rev.
– volume: D 85
  year: 2012
  ident: 10020_CR44
  publication-title: Phys. Rev.
– ident: 10020_CR15
  doi: 10.1103/PhysRevD.64.124013
– ident: 10020_CR74
– volume: 06
  start-page: 023
  year: 2016
  ident: 10020_CR90
  publication-title: JHEP
  doi: 10.1007/JHEP06(2016)023
– ident: 10020_CR1
– volume: 115
  start-page: 171301
  year: 2015
  ident: 10020_CR131
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.171301
– ident: 10020_CR82
  doi: 10.1103/PhysRevD.67.084033
– volume: 633
  start-page: 1
  year: 2016
  ident: 10020_CR20
  publication-title: Phys. Rept.
  doi: 10.1016/j.physrep.2016.04.003
– ident: 10020_CR33
  doi: 10.1103/PhysRevD.78.044013
– volume: D 89
  year: 2014
  ident: 10020_CR128
  publication-title: Phys. Rev.
– volume: D 73
  start-page: 104029
  year: 2006
  ident: 10020_CR19
  publication-title: Phys. Rev.
– ident: 10020_CR62
– volume: 11
  start-page: 162
  year: 2018
  ident: 10020_CR95
  publication-title: JHEP
  doi: 10.1007/JHEP11(2018)162
– volume: D 97
  start-page: 105018
  year: 2018
  ident: 10020_CR98
  publication-title: Phys. Rev.
– volume: D 88
  year: 2013
  ident: 10020_CR53
  publication-title: Phys. Rev.
– volume: B 347
  start-page: 550
  year: 1990
  ident: 10020_CR122
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(90)90375-N
– ident: 10020_CR119
  doi: 10.1016/0370-2693(87)90159-6
– volume: D 99
  year: 2019
  ident: 10020_CR97
  publication-title: Phys. Rev.
– volume: D 97
  start-page: 105019
  year: 2018
  ident: 10020_CR99
  publication-title: Phys. Rev.
– volume: B 403
  start-page: 707
  year: 1993
  ident: 10020_CR125
  publication-title: Nucl. Phys.
  doi: 10.1016/0550-3213(93)90367-X
– volume: D 79
  year: 2009
  ident: 10020_CR29
  publication-title: Phys. Rev.
– ident: 10020_CR16
  doi: 10.1103/PhysRevD.62.084011
– volume: 03
  start-page: 030
  year: 2016
  ident: 10020_CR132
  publication-title: JHEP
  doi: 10.1007/JHEP03(2016)030
– volume: D 96
  year: 2017
  ident: 10020_CR64
  publication-title: Phys. Rev.
– volume: 03
  start-page: 044
  year: 2018
  ident: 10020_CR137
  publication-title: JHEP
  doi: 10.1007/JHEP03(2018)044
– volume: D 80
  start-page: 124044
  year: 2009
  ident: 10020_CR38
  publication-title: Phys. Rev.
– volume: 03
  start-page: 009
  year: 2011
  ident: 10020_CR41
  publication-title: JCAP
  doi: 10.1088/1475-7516/2011/03/009
– volume: 38
  start-page: 1537
  year: 2006
  ident: 10020_CR23
  publication-title: Gen. Rel. Grav.
  doi: 10.1007/s10714-006-0345-7
– volume: 105
  year: 2010
  ident: 10020_CR113
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.094802
– volume: 116
  start-page: 1322
  year: 1959
  ident: 10020_CR8
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.116.1322
– ident: 10020_CR93
SSID ssj0015190
Score 2.692489
Snippet A bstract We present a formalism for computing classically measurable quantities directly from on-shell quantum scattering amplitudes. We discuss the...
We present a formalism for computing classically measurable quantities directly from on-shell quantum scattering amplitudes. We discuss the ingredients needed...
Abstract We present a formalism for computing classically measurable quantities directly from on-shell quantum scattering amplitudes. We discuss the...
SourceID doaj
hal
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Amplitudes
Classical and Quantum Gravitation
Classical Theories of Gravity
Electrodynamics
Elementary Particles
General Relativity and Quantum Cosmology
High energy physics
High Energy Physics - Theory
Momentum transfer
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Scattering
Scattering Amplitudes
String Theory
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yELyIn1idUsTDBtY1bb56nLIxhoiHCbuFfBUPYxM3_fvNS9s5heHFY9I0Td9Leb8kr78fQjc4K3PslIZdG5YQnatEWV-EUMVxKYRTIUH2iY1eyHhKpxtSX5ATVtEDV4br-QmVCaMoz01JNGMKgw4eF45TKrgI0MjHvGYxVZ8feFySNkQ-Ke-NR4PnNOv4YFd0MUieb8SgQNXvI8srJEJuoMxfB6Mh3gwP0H4NFON-NcBDtOPmR2g3JGya5THCfUgFB2LK5W280GFvVc-goOY2NoCJwfzx0gQCTf-IEzQZDiYPo6SWP0gMxXyVFKJwpX-VTClrLHc6zZ21FEQIKFbUIz1LPRjzEV7olJTKEuaMVlyxkvK0yE9Ra76YuzMUF6VKneY5J5YTxWyQOVckN8IUqbUkQneNPaSpqcFBoWImG1LjyoASDCi9ASPUWd_wVrFibG96DwZeNwM661DhnSxrJ8u_nByha--eH32M-o8S6uCHx4wV2SeOULvxnqw_xKX0CIaCxjtlEeo2Hv2-vGXQ5_8x6Au0B_1VKd5t1Fq9f7hLj2BW-ipM1i8C_-c5
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEB_0pOBLabWlqVpC6YOCqfnYrzyVs5wcUkREwbdl9iPtg9xZc_r3u7O3ObVgH7PZbLIzuzPD7OT3A_hW1V1TeTSUtREFMw0W6MIluSpZdUp5jAWyZ2J6xU6v-XVKuPWprHKwidFQu7mlHPlRcEWcyLq5-HH7tyDWKDpdTRQa67ARTLBSI9g4npydX6zOEUJ8Ug6APqU8Op1Ozst6Pzi99qAi6vNnvihC9gcP84cKIp9Fm_8ckEa_c_IO3qaAMR8vNfwe1vxsC97Ewk3bb0M1ppJwAqjsD_O5iTlWc0MXOHO5pdiY1JD3NgJphld8gMuTyeXPaZFoEAobZrwoWtX6LkylRnTWSW_KxjvHiYyAV8hDxOd4CMqCp1emZB06Jrw1KFF0XJZt8xFGs_nMf4K87bD0RjaSOclQuEh3jqyxyralcyyD74M8tE0Q4cRUcaMHcOOlADUJUAcBZrC_euB2iY7xetdjEvCqG8Fax4b53W-ddokO1qNWFrlsbMeMEFgR6aFUXnKupMIMvgb1vBhjOv6lqY1-fKxFWz9UGewO2tNpQ_b6aflkcDBo9On2Kx_9-f9D7cAm9VwWce_CaHF37_dCjLIwX9JCfATFKeE_
  priority: 102
  providerName: ProQuest
Title Amplitudes, observables, and classical scattering
URI https://link.springer.com/article/10.1007/JHEP02(2019)137
https://www.proquest.com/docview/2185171456
https://hal.science/hal-01952692
https://doaj.org/article/78728ca573cf4b66a1589178e755878a
Volume 2019
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RVkhcEE8RKKsIcWglAnHiV47b1S6rClUVaqXerPEj4lBtEbvw-5nxJgst6oFLEjt2HjOx54s9_gbgvWj6ViT0PGqjK-lbrDBSkk2VEb21CbOD7JleXsrTK3U1kCTxWpg78_efTpfz87o5IjPVHYvW7MGBoh3HaJjp2W66gGBIPfL2_FvplsnJzPxkSL6x3-NfoPLOPGg2L4sn8HjAheV0q8in8CCtnsHD7J8Z1s9BTNnzm3ko1x_KG5-HUv01J3AVy8AQmKVdrkPmy6RbvICLxfxitqyGaAdVUMJsqs52qadXaRBjiCb5uk0xKo45oAQqAnZREfYig259LXuMUqfg0aDulam79iXsr25W6RWUXY918qY1MhqJOuao5ijbYENXxygL-DjKw4WBCZwDUly7kcN4K0DHAnQkwAKOdhW-b0kw7i96wgLeFWP26pxBSnVDY3DUSTQ2oDJt6KXXGgXHNjQ2GaWssVjAO1LPrWssp18c5_H6xkZ3zS9RwOGoPTe0u7UjwKI4pLvSBRyPGv1z-p6Hfv0fZd_AIz7cOm4fwv7mx8_0lnDJxk9gzy4-T-DgZH52_pVSs0ZO8nc6yX_6tL1spr8BezHckQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VrRBcKp4itECEQGolQvOwY-eA0AJd0napOCxSb5ZfKYdqtzRbED-q_7EzTrItSOXWYxzHiWZsfxN7_H0Ar7O8KTKvDa3alAkzhU60w0uCKpE1UnodEmQPy_o72z_iRytwMZyFobTKYU4ME7WbW1oj30Eo4iTWzcsPpz8TUo2i3dVBQqPrFgf-z2_8ZWvf731G_77J8_Hu9FOd9KoCicUGFkklK98gCOZaO-uEN2nhnePE7c8zzTGAchxjHAROaVLWaMdKb40Wumy4CNxLOOOvsQKBnA6mj78sNy0wGEoH9qBU7OzXu9_SfAsRttrOSGf9GvAFfQCEsx-UfXkttP1nNzaA3Pg-rPfRaTzqutMDWPGzh3AnZIna9hFkI8o_JzbM9m08N2FB15zQhZ652FIgTj6PWxtYO_EVj2F6G9Z5Aquz-cw_hbhqdOqNKARzgunSBW11zQorbZU6xyJ4N9hD2Z6PnGQxTtTApNwZUJEBFRowgq3lA6cdFcfNVT-SgZfViEM7FMzPjlU_JBVOVbm0movCNsyUpc5IYVFILziXQuoIXqF7_mqjHk0UldEpy7ys8l9ZBJuD91Q_-lt11Vcj2B48enX7ho9-9v-mXsLdevp1oiZ7hwcbcI-e6rLHN2F1cXbun2NwtDAvQpeMQd3yELgEpDccLg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VW4G4oPISgQIRAqmVCJuHHTsHhLZ0V9uHVitUpN4svwKHarc0WxA_jX_HjJNsC1K59RjHdqLxeGZsj78P4E2W10XmtaFdmzJhptCJdvhIrkpktZRehwTZWTn9wg5P-ekG_O7vwlBaZW8Tg6F2S0t75EN0RZzIunk5rLu0iPn-5OP594QYpOiktafTaFXkyP_6icu35sPBPo712zyfjE8-TZOOYSCx2NkqqWTla3SIudbOOuFNWnjnOOH880xzDKYcx3gHnag0Kau1Y6W3Rgtd1lwEHCa0_puCFkUD2Nwbz-af10cYGBqlPZZQKoaH0_E8zXfQ31a7GbGuX3ODgS0Ands3ysW8Fuj-czYbXN5kC-53sWo8apXrAWz4xUO4E3JGbfMIshFloxM2ZvMuXpqwvWvO6EEvXGwpLCcNiBsbMDzxE4_h5Dbk8wQGi-XCP4W4qnXqjSgEc4Lp0gWmdc0KK22VOscieN_LQ9kOnZxIMs5Uj6vcClCRABUKMIKddYPzFpjj5qp7JOB1NULUDgXLi6-qm6AKDVcureaisDUzZakz4lsU0gvOpZA6gtc4PH_1MR0dKyqjO5d5WeU_sgi2-9FTnS1o1JXmRrDbj-jV6xt--tn_u3oFd1H91fHB7Og53KNGbSr5NgxWF5f-BUZKK_Oy08kY1C3Pgj_RJiHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amplitudes%2C+observables%2C+and+classical+scattering&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Kosower%2C+David+A.&rft.au=Maybee%2C+Ben&rft.au=O%E2%80%99Connell%2C+Donal&rft.date=2019-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=1029-8479&rft.volume=2019&rft.issue=2&rft_id=info:doi/10.1007%2FJHEP02%282019%29137&rft.externalDocID=10_1007_JHEP02_2019_137
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon