Bond engineering of molecular ferroelectrics renders soft and high-performance piezoelectric energy harvesting materials

Piezoelectric materials convert mechanical stress to electrical energy and thus are widely used in energy harvesting and wearable devices. However, in the piezoelectric family, there are two pairs of properties that improving one of them will generally compromises the other, which limits their appli...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 5607 - 10
Main Authors Hu, Yuzhong, Parida, Kaushik, Zhang, Hao, Wang, Xin, Li, Yongxin, Zhou, Xinran, Morris, Samuel Alexander, Liew, Weng Heng, Wang, Haomin, Li, Tao, Jiang, Feng, Yang, Mingmin, Alexe, Marin, Du, Zehui, Gan, Chee Lip, Yao, Kui, Xu, Bin, Lee, Pooi See, Fan, Hong Jin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 24.09.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Piezoelectric materials convert mechanical stress to electrical energy and thus are widely used in energy harvesting and wearable devices. However, in the piezoelectric family, there are two pairs of properties that improving one of them will generally compromises the other, which limits their applications. The first pair is piezoelectric strain and voltage constant, and the second is piezoelectric performance and mechanical softness. Here, we report a molecular bond weakening strategy to mitigate these issues in organic-inorganic hybrid piezoelectrics. By introduction of large-size halide elements, the metal-halide bonds can be effectively weakened, leading to a softening effect on bond strength and reduction in polarization switching barrier. The obtained solid solution C 6 H 5 N(CH 3 ) 3 CdBr 2 Cl 0.75 I 0.25 exhibits excellent piezoelectric constants ( d 33  = 367 pm/V, g 33  = 3595 × 10 −3  Vm/N), energy harvesting property (power density is 11 W/m 2 ), and superior mechanical softness (0.8 GPa), promising this hybrid as high-performance soft piezoelectrics. Improving piezoelectric strain and voltage constant generally compromises piezoelectric performance and mechanical softness. Here, the authors report a bond weakening strategy for organic-inorganic hybrid piezoelectrics and mitigated these issues.
AbstractList Piezoelectric materials convert mechanical stress to electrical energy and thus are widely used in energy harvesting and wearable devices. However, in the piezoelectric family, there are two pairs of properties that improving one of them will generally compromises the other, which limits their applications. The first pair is piezoelectric strain and voltage constant, and the second is piezoelectric performance and mechanical softness. Here, we report a molecular bond weakening strategy to mitigate these issues in organic-inorganic hybrid piezoelectrics. By introduction of large-size halide elements, the metal-halide bonds can be effectively weakened, leading to a softening effect on bond strength and reduction in polarization switching barrier. The obtained solid solution C6H5N(CH3)3CdBr2Cl0.75I0.25 exhibits excellent piezoelectric constants (d33 = 367 pm/V, g33 = 3595 × 10−3 Vm/N), energy harvesting property (power density is 11 W/m2), and superior mechanical softness (0.8 GPa), promising this hybrid as high-performance soft piezoelectrics.Improving piezoelectric strain and voltage constant generally compromises piezoelectric performance and mechanical softness. Here, the authors report a bond weakening strategy for organic-inorganic hybrid piezoelectrics and mitigated these issues.
Piezoelectric materials convert mechanical stress to electrical energy and thus are widely used in energy harvesting and wearable devices. However, in the piezoelectric family, there are two pairs of properties that improving one of them will generally compromises the other, which limits their applications. The first pair is piezoelectric strain and voltage constant, and the second is piezoelectric performance and mechanical softness. Here, we report a molecular bond weakening strategy to mitigate these issues in organic-inorganic hybrid piezoelectrics. By introduction of large-size halide elements, the metal-halide bonds can be effectively weakened, leading to a softening effect on bond strength and reduction in polarization switching barrier. The obtained solid solution C 6 H 5 N(CH 3 ) 3 CdBr 2 Cl 0.75 I 0.25 exhibits excellent piezoelectric constants ( d 33  = 367 pm/V, g 33  = 3595 × 10 −3  Vm/N), energy harvesting property (power density is 11 W/m 2 ), and superior mechanical softness (0.8 GPa), promising this hybrid as high-performance soft piezoelectrics. Improving piezoelectric strain and voltage constant generally compromises piezoelectric performance and mechanical softness. Here, the authors report a bond weakening strategy for organic-inorganic hybrid piezoelectrics and mitigated these issues.
Piezoelectric materials convert mechanical stress to electrical energy and thus are widely used in energy harvesting and wearable devices. However, in the piezoelectric family, there are two pairs of properties that improving one of them will generally compromises the other, which limits their applications. The first pair is piezoelectric strain and voltage constant, and the second is piezoelectric performance and mechanical softness. Here, we report a molecular bond weakening strategy to mitigate these issues in organic-inorganic hybrid piezoelectrics. By introduction of large-size halide elements, the metal-halide bonds can be effectively weakened, leading to a softening effect on bond strength and reduction in polarization switching barrier. The obtained solid solution C 6 H 5 N(CH 3 ) 3 CdBr 2 Cl 0.75 I 0.25 exhibits excellent piezoelectric constants ( d 33  = 367 pm/V, g 33  = 3595 × 10 −3  Vm/N), energy harvesting property (power density is 11 W/m 2 ), and superior mechanical softness (0.8 GPa), promising this hybrid as high-performance soft piezoelectrics.
Piezoelectric materials convert mechanical stress to electrical energy and thus are widely used in energy harvesting and wearable devices. However, in the piezoelectric family, there are two pairs of properties that improving one of them will generally compromises the other, which limits their applications. The first pair is piezoelectric strain and voltage constant, and the second is piezoelectric performance and mechanical softness. Here, we report a molecular bond weakening strategy to mitigate these issues in organic-inorganic hybrid piezoelectrics. By introduction of large-size halide elements, the metal-halide bonds can be effectively weakened, leading to a softening effect on bond strength and reduction in polarization switching barrier. The obtained solid solution C6H5N(CH3)3CdBr2Cl0.75I0.25 exhibits excellent piezoelectric constants (d33 = 367 pm/V, g33 = 3595 × 10-3 Vm/N), energy harvesting property (power density is 11 W/m2), and superior mechanical softness (0.8 GPa), promising this hybrid as high-performance soft piezoelectrics.Piezoelectric materials convert mechanical stress to electrical energy and thus are widely used in energy harvesting and wearable devices. However, in the piezoelectric family, there are two pairs of properties that improving one of them will generally compromises the other, which limits their applications. The first pair is piezoelectric strain and voltage constant, and the second is piezoelectric performance and mechanical softness. Here, we report a molecular bond weakening strategy to mitigate these issues in organic-inorganic hybrid piezoelectrics. By introduction of large-size halide elements, the metal-halide bonds can be effectively weakened, leading to a softening effect on bond strength and reduction in polarization switching barrier. The obtained solid solution C6H5N(CH3)3CdBr2Cl0.75I0.25 exhibits excellent piezoelectric constants (d33 = 367 pm/V, g33 = 3595 × 10-3 Vm/N), energy harvesting property (power density is 11 W/m2), and superior mechanical softness (0.8 GPa), promising this hybrid as high-performance soft piezoelectrics.
Improving piezoelectric strain and voltage constant generally compromises piezoelectric performance and mechanical softness. Here, the authors report a bond weakening strategy for organic-inorganic hybrid piezoelectrics and mitigated these issues.
ArticleNumber 5607
Author Jiang, Feng
Morris, Samuel Alexander
Du, Zehui
Wang, Xin
Liew, Weng Heng
Gan, Chee Lip
Yang, Mingmin
Zhang, Hao
Yao, Kui
Xu, Bin
Wang, Haomin
Li, Tao
Zhou, Xinran
Hu, Yuzhong
Fan, Hong Jin
Alexe, Marin
Lee, Pooi See
Li, Yongxin
Parida, Kaushik
Author_xml – sequence: 1
  givenname: Yuzhong
  orcidid: 0000-0001-5951-1938
  surname: Hu
  fullname: Hu, Yuzhong
  email: yuzhong.hu@warwick.ac.uk
  organization: School of Physical and Mathematical Sciences, Nanyang Technological University, Department of Physics, The University of Warwick
– sequence: 2
  givenname: Kaushik
  surname: Parida
  fullname: Parida, Kaushik
  organization: School of Materials Science and Engineering, Nanyang Technological University, Department of Polymer and Process Engineering, Indian Institute of Technology
– sequence: 3
  givenname: Hao
  surname: Zhang
  fullname: Zhang, Hao
  organization: School of Materials Science and Engineering, Nanyang Technological University
– sequence: 4
  givenname: Xin
  surname: Wang
  fullname: Wang, Xin
  organization: Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University
– sequence: 5
  givenname: Yongxin
  orcidid: 0000-0002-7860-3237
  surname: Li
  fullname: Li, Yongxin
  organization: Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University
– sequence: 6
  givenname: Xinran
  surname: Zhou
  fullname: Zhou, Xinran
  organization: School of Materials Science and Engineering, Nanyang Technological University
– sequence: 7
  givenname: Samuel Alexander
  surname: Morris
  fullname: Morris, Samuel Alexander
  organization: Facility for Analysis, Characterisation, Testing and Simulation (FACTS), Nanyang Technological University
– sequence: 8
  givenname: Weng Heng
  surname: Liew
  fullname: Liew, Weng Heng
  organization: Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research)
– sequence: 9
  givenname: Haomin
  surname: Wang
  fullname: Wang, Haomin
  organization: School of Materials Science and Engineering, Nanyang Technological University
– sequence: 10
  givenname: Tao
  surname: Li
  fullname: Li, Tao
  organization: School of Materials Science and Engineering, Nanyang Technological University
– sequence: 11
  givenname: Feng
  surname: Jiang
  fullname: Jiang, Feng
  organization: School of Materials Science and Engineering, Nanyang Technological University
– sequence: 12
  givenname: Mingmin
  surname: Yang
  fullname: Yang, Mingmin
  organization: Department of Physics, The University of Warwick
– sequence: 13
  givenname: Marin
  orcidid: 0000-0002-0386-3026
  surname: Alexe
  fullname: Alexe, Marin
  organization: Department of Physics, The University of Warwick
– sequence: 14
  givenname: Zehui
  surname: Du
  fullname: Du, Zehui
  organization: Temasek Laboratories, Nanyang Technological University
– sequence: 15
  givenname: Chee Lip
  surname: Gan
  fullname: Gan, Chee Lip
  organization: School of Materials Science and Engineering, Nanyang Technological University
– sequence: 16
  givenname: Kui
  orcidid: 0000-0001-5875-4815
  surname: Yao
  fullname: Yao, Kui
  organization: Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research)
– sequence: 17
  givenname: Bin
  orcidid: 0000-0002-0107-0727
  surname: Xu
  fullname: Xu, Bin
  organization: Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University
– sequence: 18
  givenname: Pooi See
  orcidid: 0000-0003-1383-1623
  surname: Lee
  fullname: Lee, Pooi See
  email: pslee@ntu.edu.sg
  organization: School of Materials Science and Engineering, Nanyang Technological University
– sequence: 19
  givenname: Hong Jin
  orcidid: 0000-0003-1237-4555
  surname: Fan
  fullname: Fan, Hong Jin
  email: fanhj@ntu.edu.sg
  organization: School of Physical and Mathematical Sciences, Nanyang Technological University
BookMark eNp9Ustu1TAUjFCRKJf-AKtIbNgE_IztDRJUPCpVYgNry3GOc32V2MFOKsrX43tTHu2i3hw_ZuYcj-Z5dRZigKp6idEbjKh8mxlmrWgQIQ2llPCmfVKdE8RwgwWhZ__tn1UXOR9QWVRhydh59fNDDH0NYfABIPkw1NHVUxzBrqNJtYOUIpTTkrzNdYLQQ8p1jm6pTSHu_bBvZkgupskEC_Xs4ddfQtGFNNzWe5NuIC9H9ckspY0Z84vqqSsFLu7qrvr-6eO3yy_N9dfPV5fvrxvLsVgaxQh3lDlsUNcZZ4UDAz2nUnRcGMaJkgJJ2jtMpVOodYCU6kRPjaOAoKO76mrT7aM56Dn5yaRbHY3Xp4uYBm3S4u0ImhOBOkaEAdkx2iKJuOEOKe6YJa6XRevdpjWv3QS9hbAkM94Tvf8S_F4P8UYrjhQt_u-q13cCKf5YiyV68tnCOJoAcc2aCCxa1UpJC_TVA-ghrikUq06oMh6VqqDkhrIp5pzAaesXs_h47O9HjZE-RkRvEdElIvoUEd0WKnlA_fOPR0l0I-X5GBZI_6Z6hPUb2YXTww
CitedBy_id crossref_primary_10_1039_D2TA09005H
crossref_primary_10_1039_D4SC05442C
crossref_primary_10_1021_jacs_3c06708
crossref_primary_10_1016_j_mser_2024_100876
crossref_primary_10_1126_science_adj1946
crossref_primary_10_1002_anie_202319650
crossref_primary_10_1016_j_actamat_2025_120819
crossref_primary_10_1038_s41467_024_51106_1
crossref_primary_10_1002_advs_202302426
crossref_primary_10_1021_acs_inorgchem_3c02607
crossref_primary_10_32604_fdmp_2024_058444
crossref_primary_10_1021_jacs_2c12306
crossref_primary_10_1063_5_0194409
crossref_primary_10_1039_D2SC05857J
crossref_primary_10_1002_adma_202302436
crossref_primary_10_1021_jacs_3c00634
crossref_primary_10_1021_jacs_2c11213
crossref_primary_10_1002_aenm_202400241
crossref_primary_10_1080_15599612_2024_2332242
crossref_primary_10_1002_adom_202301795
crossref_primary_10_1016_j_jcis_2024_04_116
crossref_primary_10_1038_s41467_025_56233_x
crossref_primary_10_1038_s41467_023_44453_y
crossref_primary_10_1002_sstr_202300135
crossref_primary_10_1002_smll_202303366
crossref_primary_10_1016_j_nanoen_2023_108526
crossref_primary_10_1016_j_nanoen_2023_109101
crossref_primary_10_1016_j_nanoen_2024_109420
crossref_primary_10_1002_adma_202405363
crossref_primary_10_1021_acsaem_3c03279
crossref_primary_10_1002_smll_202207663
crossref_primary_10_1080_00150193_2024_2325898
crossref_primary_10_1002_adma_202408153
crossref_primary_10_1116_6_0002794
crossref_primary_10_1002_adma_202417422
crossref_primary_10_1039_D4SC04185B
crossref_primary_10_1016_j_cej_2024_154249
crossref_primary_10_1021_acsenergylett_4c00444
crossref_primary_10_1038_s41467_024_48551_3
crossref_primary_10_1002_adfm_202417618
crossref_primary_10_1021_jacs_3c09395
crossref_primary_10_1002_smll_202306989
crossref_primary_10_1021_acsapm_3c01482
crossref_primary_10_1016_j_nanoen_2024_110489
crossref_primary_10_1021_acsnano_4c09933
crossref_primary_10_1002_ange_202319650
crossref_primary_10_3390_mi14030603
crossref_primary_10_3390_mi15091133
crossref_primary_10_1073_pnas_2400568121
Cites_doi 10.1002/adma.202006093
10.1016/j.joule.2018.03.011
10.1021/jacs.9b12368
10.1080/00150193.2015.997146
10.1021/ar010054t
10.1126/science.1229675
10.1143/JPSJ.27.387
10.1021/ja500618z
10.1007/s00542-013-2029-z
10.1126/science.aav3057
10.1038/s41563-020-0659-y
10.1002/jcc.24300
10.1038/nature21004
10.1038/s41563-020-00875-3
10.1021/jp202489s
10.1063/1.1641960
10.1002/adma.202002208
10.1002/adma.201901924
10.1109/TUFFC.2003.1182115
10.1126/science.abb3209
10.1103/PhysRevB.67.153404
10.1111/jace.13713
10.1595/003214001X4527482
10.1016/j.mser.2018.08.001
10.1002/adma.201904664
10.1016/S1359-6454(98)00167-0
10.1063/1.2841941
10.1038/s41928-018-0189-7
10.1038/s41586-019-1891-y
10.1021/acsnano.9b03161
10.1126/science.aai8535
10.1002/cssc.201700991
10.1038/s41586-020-2602-4
10.1103/PhysRevB.54.11169
10.1038/s41586-018-0550-z
10.1016/j.ccr.2019.03.020
10.1063/1.4994968
10.1039/D1EE03025F
10.1103/PhysRevLett.77.3865
10.1088/0022-3727/29/7/046
10.1038/s41563-018-0034-4
10.1021/acsami.0c02313
10.1103/PhysRevLett.83.1347
10.1063/1.365981
10.1002/jcc.20495
10.1103/PhysRevB.47.558
10.1002/anie.201907660
10.1016/j.isci.2020.101682
ContentType Journal Article
Copyright Crown 2022
Crown 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. Crown.
Copyright_xml – notice: Crown 2022
– notice: Crown 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. Crown.
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-022-33325-6
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health Medical collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Engineering
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_5270b427ae8b4360805a5f095f4c2fd8
PMC9509372
10_1038_s41467_022_33325_6
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 12074277
  funderid: https://doi.org/10.13039/501100001809
– fundername: ;
  grantid: 12074277
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c517t-9425f34f1a0bbafc7feaed5387b57a452987083df138f906fe099b7d3af3e0eb3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:24:39 EDT 2025
Thu Aug 21 18:39:24 EDT 2025
Fri Jul 11 12:26:32 EDT 2025
Wed Aug 13 09:51:48 EDT 2025
Thu Apr 24 22:52:20 EDT 2025
Tue Jul 01 00:58:26 EDT 2025
Fri Feb 21 02:38:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-9425f34f1a0bbafc7feaed5387b57a452987083df138f906fe099b7d3af3e0eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0107-0727
0000-0002-0386-3026
0000-0002-7860-3237
0000-0003-1383-1623
0000-0003-1237-4555
0000-0001-5951-1938
0000-0001-5875-4815
OpenAccessLink https://www.proquest.com/docview/2717360389?pq-origsite=%requestingapplication%
PQID 2717360389
PQPubID 546298
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_5270b427ae8b4360805a5f095f4c2fd8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9509372
proquest_miscellaneous_2717696883
proquest_journals_2717360389
crossref_citationtrail_10_1038_s41467_022_33325_6
crossref_primary_10_1038_s41467_022_33325_6
springer_journals_10_1038_s41467_022_33325_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-24
PublicationDateYYYYMMDD 2022-09-24
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-24
  day: 24
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References LiuXPolarization-driven self-powered photodetection in a single-phase biaxial hybrid perovskite ferroelectricAngew. Chem. Int. Ed.20195814504145081:CAS:528:DC%2BC1MXhslWkurjF10.1002/anie.201907660
Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. 27, 1787–1799, https://doi.org/10.1002/jcc.20495 (2006).
LingYDisruptive, soft, wearable sensorsAdv. Mater.20203219046641:CAS:528:DC%2BC1MXitFCjtrvJ10.1002/adma.201904664
SunSFactors influencing the mechanical properties of formamidinium lead halides and related hybrid perovskitesChemSusChem.201710374037451:CAS:528:DC%2BC2sXht1eksbnL2866607910.1002/cssc.201700991
KresseGHafnerJAb initio molecular dynamics for liquid metalsPhys. Rev. B1993475585611993PhRvB..47..558K1:CAS:528:DyaK3sXlt1Gnsr0%3D10.1103/PhysRevB.47.558
LimH-RAdvanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environmentAdv. Mater.20203219019241:CAS:528:DC%2BC1MXhtlejtrvN10.1002/adma.201901924
LiuYFerroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundaryNature2018562961002018Natur.562...96L1:CAS:528:DC%2BC1cXhvVOjsLfK3028310210.1038/s41586-018-0550-z
Sheppard, D., Terrell, R. & Henkelman, G. Optimization methods for finding minimum energy paths. 128, 134106, https://doi.org/10.1063/1.2841941 (2008).
ChenX-GTwo-dimensional layered perovskite ferroelectric with giant piezoelectric voltage coefficientJ. Am. Chem. Soc.2020142107710821:CAS:528:DC%2BC1MXisVekt73I3185149510.1021/jacs.9b12368
QiuCTransparent ferroelectric crystals with ultrahigh piezoelectricityNature20205773503542020Natur.577..350Q1:CAS:528:DC%2BB3cXjsVejsrk%3D3194205510.1038/s41586-019-1891-y
Uchino, K. Advanced piezoelectric materials: Science and technology. (Woodhead Publishing, 2017).
PandaPKSahooBPZT to lead free piezo ceramics: A ReviewFerroelectrics20154741281431:CAS:528:DC%2BC2MXjslOqtL8%3D10.1080/00150193.2015.997146
LiuHGiant piezoelectricity in oxide thin films with nanopillar structureScience20203692922972020Sci...369..292L1:CAS:528:DC%2BB3cXhsVSjtLfN3267537010.1126/science.abb3209
SongH-CPiezoelectric energy harvesting design principles for materials and structures: Material figure-of-merit and self-resonance tuningAdv. Mater.20203220022081:CAS:528:DC%2BB3cXhvFyqtr%2FJ10.1002/adma.202002208
ViehlandDEffect of uniaxial stress on the large-signal electromechanical properties of electrostrictive and piezoelectric lead magnesium niobate lead titanate ceramicsJ. Appl. Phys.200495196919722004JAP....95.1969V1:CAS:528:DC%2BD2cXosVOqug%3D%3D10.1063/1.1641960
OrgéasLFavierDStress-induced martensitic transformation of a NiTi alloy in isothermal shear, tension and compressionActa. Mater.199846557955911998AcMat..46.5579O10.1016/S1359-6454(98)00167-0
FragaMAFurlanHPessoaRSMassiMWide bandgap semiconductor thin films for piezoelectric and piezoresistive MEMS sensors applied at high temperatures: an overviewMicrosyst. Technol.2014209211:CAS:528:DC%2BC3sXhvFyksr%2FI10.1007/s00542-013-2029-z
LiaoW-QA molecular perovskite solid solution with piezoelectricity stronger than lead zirconate titanateScience2019363120612102019Sci...363.1206L1:CAS:528:DC%2BC1MXks1yrsr4%3D3087252210.1126/science.aav3057
JiL-JSunS-JQinYLiKLiWMechanical properties of hybrid organic-inorganic perovskitesCoord. Chem. Rev.201939115291:CAS:528:DC%2BC1MXnsFGht7Y%3D10.1016/j.ccr.2019.03.020
KresseGFurthmüllerJEfficient iterative schemes for ab initio total-energy calculations using a plane-wave basis setPhys. Rev. B19965411169111861996PhRvB..5411169K1:CAS:528:DyaK28Xms1Whu7Y%3D10.1103/PhysRevB.54.11169
TuQExploring the factors affecting the mechanical properties of 2D hybrid organic–inorganic perovskitesACS Appl. Mater. Interfaces20201220440204471:CAS:528:DC%2BB3cXmvV2qtLk%3D3227513210.1021/acsami.0c02313
CoondooIEnhanced Piezoelectric Properties of Praseodymium-Modified Lead-Free (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 CeramicsJ. Am. Ceram. Soc.201598312731351:CAS:528:DC%2BC2MXhtVOrsbzN10.1111/jace.13713
MaintzSDeringerVLTchougréeffALDronskowskiRLOBSTER: A tool to extract chemical bonding from plane-wave based DFTJ. Computational Chem.201637103010351:CAS:528:DC%2BC28XjsVamtrg%3D10.1002/jcc.24300
DamjanovicDStress and frequency dependence of the direct piezoelectric effect in ferroelectric ceramicsJ. Appl. Phys.199782178817971997JAP....82.1788D1:CAS:528:DyaK2sXlsFSjsLc%3D10.1063/1.365981
SomeyaTBaoZMalliarasGGThe rise of plastic bioelectronicsNature20165403793852016Natur.540..379S1:CAS:528:DC%2BC28XitVyru7%2FO2797476910.1038/nature21004
FanXDingYLiuYLiangJChenYPlasmonic Ti3C2Tx MXene enables highly efficient photothermal conversion for healable and transparent wearable deviceACS Nano.201913812481341:CAS:528:DC%2BC1MXhtF2ksb%2FO3124404610.1021/acsnano.9b03161
BellaicheLVanderbiltDIntrinsic piezoelectric response in perovskite alloys: PMN-PT versus PZTPhys. Rev. Lett.199983134713501999PhRvL..83.1347B1:CAS:528:DyaK1MXlt1yisbs%3D10.1103/PhysRevLett.83.1347
YangM-MPiezoelectric and pyroelectric effects induced by interface polar symmetryNature20205843773811:CAS:528:DC%2BB3cXhs1Cju7fP3281489010.1038/s41586-020-2602-4
HanMThree-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implantsNat. Electron.20192263510.1038/s41928-018-0189-7
HaoJLiWZhaiJChenHProgress in high-strain perovskite piezoelectric ceramicsMater. Sci. Eng.: R: Rep.201913515710.1016/j.mser.2018.08.001
KuiYTayFEHMeasurement of longitudinal piezoelectric coefficient of thin films by a laser-scanning vibrometerIEEE Trans. Ultrason., Ferroelectr., Frequency Control20035011311610.1109/TUFFC.2003.1182115
LiWMechanical tunability via hydrogen bonding in metal–organic frameworks with the perovskite architectureJ. Am. Chem. Soc.2014136780178041:CAS:528:DC%2BC2cXns12jtL4%3D2481531910.1021/ja500618z
LiTHigh-Performance Poly(vinylidene difluoride)/Dopamine Core/Shell Piezoelectric nanofiber and its application for biomedical sensorsAdv. Mater.20213320060931:CAS:528:DC%2BB3cXisVyitrnO10.1002/adma.202006093
PanMTriboelectric and Piezoelectric nanogenerators for future soft robots and machinesiScience2020231016822020iSci...23j1682P33163937760742410.1016/j.isci.2020.101682
SalvadoriMCBrownIGVazARMeloLLCattaniMMeasurement of the elastic modulus of nanostructured gold and platinum thin filmsPhys. Rev. B2003671534042003PhRvB..67o3404S10.1103/PhysRevB.67.153404
AizuKPossible Species of “Ferroelastic” crystals and of simultaneously ferroelectric and ferroelastic crystalsJ. Phys. Soc. Jpn.1969273873961969JPSJ...27..387A1:CAS:528:DyaF1MXltFOhurw%3D10.1143/JPSJ.27.387
YanMPorous ferroelectric materials for energy technologies: Current status and future perspectivesEnergy. Environ. Sci.202114615861901:CAS:528:DC%2BB3MXisVentb7I10.1039/D1EE03025F
DamjanovicDDemartinMThe Rayleigh law in piezoelectric ceramicsJ. Phys. D: Appl. Phys.199629205720601996JPhD...29.2057D1:CAS:528:DyaK28XksFCls7s%3D10.1088/0022-3727/29/7/046
ShuLPhotoflexoelectric effect in halide perovskitesNat. Mater.2020196056092020NatMa..19..605S1:CAS:528:DC%2BB3cXnsFarur8%3D3231326510.1038/s41563-020-0659-y
MerkerJLuptonDTopferMKnakeHHigh temperature mechanical properties of the platinum group metalsPlatin. Met. Rev.(UK)20014574821:CAS:528:DC%2BD3MXltVOgsLg%3D
SenguptaDCharacterization of single polyvinylidene fluoride (PVDF) nanofiber for flow sensing applicationsAIP Adv.201771052052017AIPA....7j5205S10.1063/1.4994968
FuD-WDiisopropylammonium bromide is a high-temperature molecular ferroelectric crystalScience20133394254282013Sci...339..425F1:CAS:528:DC%2BC3sXhtFynsb0%3D2334928510.1126/science.1229675
YouYMAn organic-inorganic perovskite ferroelectric with large piezoelectric responseScience20173573063092017Sci...357..306Y1:CAS:528:DC%2BC2sXhtFygs73L2872951110.1126/science.aai8535
DesirajuGRHydrogen bridges in crystal engineering:  Interactions without BordersAcc. Chem. Res.2002355655731:CAS:528:DC%2BD38Xjt1Ojsrs%3D1211899610.1021/ar010054t
LiFUltrahigh piezoelectricity in ferroelectric ceramics by designNat. Mater.2018173493542018JNuM..502..349L1:CAS:528:DC%2BC1cXlvFKnsLw%3D2955599910.1038/s41563-018-0034-4
Xu, R. & Kim, S. Figures of merits of piezoelectric materials in energy harvesters. Proceed. PowerMEMS, 464–467 (2012).
DeringerVLTchougréeffALDronskowskiRCrystal Orbital Hamilton Population (COHP) Analysis As Projected from Plane-Wave Basis SetsJ. Phys. Chem. A2011115546154661:CAS:528:DC%2BC3MXlslKitr8%3D2154859410.1021/jp202489s
PerdewJPBurkeKErnzerhofMGeneralized gradient approximation made simplePhys. Rev. Lett.199677386538681996PhRvL..77.3865P1:CAS:528:DyaK28XmsVCgsbs%3D1006232810.1103/PhysRevLett.77.3865
HuYFerroelastic-switching-driven large shear strain and piezoelectricity in a hybrid ferroelectricNat. Mater.2021206126172021NatMa..20..612H1:CAS:528:DC%2BB3MXhtF2qtr4%3D3343214710.1038/s41563-020-00875-3
YangZZhouSZuJInmanDHigh-performance piezoelectric energy harvesters and their applicationsJoule201826426971:CAS:528:DC%2BC1cXpsFOnur4%3D10.1016/j.joule.2018.03.011
Z Yang (33325_CR6) 2018; 2
Y Kui (33325_CR31) 2003; 50
S Maintz (33325_CR50) 2016; 37
X Fan (33325_CR43) 2019; 13
M Pan (33325_CR3) 2020; 23
L Orgéas (33325_CR26) 1998; 46
J Hao (33325_CR29) 2019; 135
S Sun (33325_CR38) 2017; 10
D-W Fu (33325_CR35) 2013; 339
H-C Song (33325_CR14) 2020; 32
Y Hu (33325_CR23) 2021; 20
GR Desiraju (33325_CR41) 2002; 35
K Aizu (33325_CR25) 1969; 27
33325_CR47
C Qiu (33325_CR42) 2020; 577
J Merker (33325_CR36) 2001; 45
G Kresse (33325_CR44) 1993; 47
33325_CR48
W-Q Liao (33325_CR22) 2019; 363
L Bellaiche (33325_CR34) 1999; 83
Q Tu (33325_CR40) 2020; 12
MC Salvadori (33325_CR37) 2003; 67
L Shu (33325_CR20) 2020; 19
YM You (33325_CR18) 2017; 357
Y Liu (33325_CR13) 2018; 562
D Damjanovic (33325_CR28) 1997; 82
D Viehland (33325_CR30) 2004; 95
D Sengupta (33325_CR12) 2017; 7
MA Fraga (33325_CR10) 2014; 20
PK Panda (33325_CR9) 2015; 474
D Damjanovic (33325_CR33) 1996; 29
G Kresse (33325_CR45) 1996; 54
L-J Ji (33325_CR24) 2019; 391
I Coondoo (33325_CR15) 2015; 98
Y Ling (33325_CR7) 2020; 32
W Li (33325_CR39) 2014; 136
VL Deringer (33325_CR49) 2011; 115
H-R Lim (33325_CR8) 2020; 32
M Han (33325_CR4) 2019; 2
H Liu (33325_CR32) 2020; 369
X Liu (33325_CR19) 2019; 58
M-M Yang (33325_CR27) 2020; 584
T Someya (33325_CR5) 2016; 540
X-G Chen (33325_CR21) 2020; 142
T Li (33325_CR11) 2021; 33
F Li (33325_CR16) 2018; 17
JP Perdew (33325_CR46) 1996; 77
M Yan (33325_CR2) 2021; 14
33325_CR1
33325_CR17
References_xml – reference: LiuHGiant piezoelectricity in oxide thin films with nanopillar structureScience20203692922972020Sci...369..292L1:CAS:528:DC%2BB3cXhsVSjtLfN3267537010.1126/science.abb3209
– reference: PandaPKSahooBPZT to lead free piezo ceramics: A ReviewFerroelectrics20154741281431:CAS:528:DC%2BC2MXjslOqtL8%3D10.1080/00150193.2015.997146
– reference: DeringerVLTchougréeffALDronskowskiRCrystal Orbital Hamilton Population (COHP) Analysis As Projected from Plane-Wave Basis SetsJ. Phys. Chem. A2011115546154661:CAS:528:DC%2BC3MXlslKitr8%3D2154859410.1021/jp202489s
– reference: SunSFactors influencing the mechanical properties of formamidinium lead halides and related hybrid perovskitesChemSusChem.201710374037451:CAS:528:DC%2BC2sXht1eksbnL2866607910.1002/cssc.201700991
– reference: ChenX-GTwo-dimensional layered perovskite ferroelectric with giant piezoelectric voltage coefficientJ. Am. Chem. Soc.2020142107710821:CAS:528:DC%2BC1MXisVekt73I3185149510.1021/jacs.9b12368
– reference: FragaMAFurlanHPessoaRSMassiMWide bandgap semiconductor thin films for piezoelectric and piezoresistive MEMS sensors applied at high temperatures: an overviewMicrosyst. Technol.2014209211:CAS:528:DC%2BC3sXhvFyksr%2FI10.1007/s00542-013-2029-z
– reference: OrgéasLFavierDStress-induced martensitic transformation of a NiTi alloy in isothermal shear, tension and compressionActa. Mater.199846557955911998AcMat..46.5579O10.1016/S1359-6454(98)00167-0
– reference: YangZZhouSZuJInmanDHigh-performance piezoelectric energy harvesters and their applicationsJoule201826426971:CAS:528:DC%2BC1cXpsFOnur4%3D10.1016/j.joule.2018.03.011
– reference: LiuXPolarization-driven self-powered photodetection in a single-phase biaxial hybrid perovskite ferroelectricAngew. Chem. Int. Ed.20195814504145081:CAS:528:DC%2BC1MXhslWkurjF10.1002/anie.201907660
– reference: HaoJLiWZhaiJChenHProgress in high-strain perovskite piezoelectric ceramicsMater. Sci. Eng.: R: Rep.201913515710.1016/j.mser.2018.08.001
– reference: JiL-JSunS-JQinYLiKLiWMechanical properties of hybrid organic-inorganic perovskitesCoord. Chem. Rev.201939115291:CAS:528:DC%2BC1MXnsFGht7Y%3D10.1016/j.ccr.2019.03.020
– reference: SongH-CPiezoelectric energy harvesting design principles for materials and structures: Material figure-of-merit and self-resonance tuningAdv. Mater.20203220022081:CAS:528:DC%2BB3cXhvFyqtr%2FJ10.1002/adma.202002208
– reference: TuQExploring the factors affecting the mechanical properties of 2D hybrid organic–inorganic perovskitesACS Appl. Mater. Interfaces20201220440204471:CAS:528:DC%2BB3cXmvV2qtLk%3D3227513210.1021/acsami.0c02313
– reference: AizuKPossible Species of “Ferroelastic” crystals and of simultaneously ferroelectric and ferroelastic crystalsJ. Phys. Soc. Jpn.1969273873961969JPSJ...27..387A1:CAS:528:DyaF1MXltFOhurw%3D10.1143/JPSJ.27.387
– reference: Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. 27, 1787–1799, https://doi.org/10.1002/jcc.20495 (2006).
– reference: FuD-WDiisopropylammonium bromide is a high-temperature molecular ferroelectric crystalScience20133394254282013Sci...339..425F1:CAS:528:DC%2BC3sXhtFynsb0%3D2334928510.1126/science.1229675
– reference: YouYMAn organic-inorganic perovskite ferroelectric with large piezoelectric responseScience20173573063092017Sci...357..306Y1:CAS:528:DC%2BC2sXhtFygs73L2872951110.1126/science.aai8535
– reference: MerkerJLuptonDTopferMKnakeHHigh temperature mechanical properties of the platinum group metalsPlatin. Met. Rev.(UK)20014574821:CAS:528:DC%2BD3MXltVOgsLg%3D
– reference: LiTHigh-Performance Poly(vinylidene difluoride)/Dopamine Core/Shell Piezoelectric nanofiber and its application for biomedical sensorsAdv. Mater.20213320060931:CAS:528:DC%2BB3cXisVyitrnO10.1002/adma.202006093
– reference: Xu, R. & Kim, S. Figures of merits of piezoelectric materials in energy harvesters. Proceed. PowerMEMS, 464–467 (2012).
– reference: PanMTriboelectric and Piezoelectric nanogenerators for future soft robots and machinesiScience2020231016822020iSci...23j1682P33163937760742410.1016/j.isci.2020.101682
– reference: PerdewJPBurkeKErnzerhofMGeneralized gradient approximation made simplePhys. Rev. Lett.199677386538681996PhRvL..77.3865P1:CAS:528:DyaK28XmsVCgsbs%3D1006232810.1103/PhysRevLett.77.3865
– reference: KresseGFurthmüllerJEfficient iterative schemes for ab initio total-energy calculations using a plane-wave basis setPhys. Rev. B19965411169111861996PhRvB..5411169K1:CAS:528:DyaK28Xms1Whu7Y%3D10.1103/PhysRevB.54.11169
– reference: HanMThree-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implantsNat. Electron.20192263510.1038/s41928-018-0189-7
– reference: DamjanovicDStress and frequency dependence of the direct piezoelectric effect in ferroelectric ceramicsJ. Appl. Phys.199782178817971997JAP....82.1788D1:CAS:528:DyaK2sXlsFSjsLc%3D10.1063/1.365981
– reference: HuYFerroelastic-switching-driven large shear strain and piezoelectricity in a hybrid ferroelectricNat. Mater.2021206126172021NatMa..20..612H1:CAS:528:DC%2BB3MXhtF2qtr4%3D3343214710.1038/s41563-020-00875-3
– reference: SomeyaTBaoZMalliarasGGThe rise of plastic bioelectronicsNature20165403793852016Natur.540..379S1:CAS:528:DC%2BC28XitVyru7%2FO2797476910.1038/nature21004
– reference: KresseGHafnerJAb initio molecular dynamics for liquid metalsPhys. Rev. B1993475585611993PhRvB..47..558K1:CAS:528:DyaK3sXlt1Gnsr0%3D10.1103/PhysRevB.47.558
– reference: DamjanovicDDemartinMThe Rayleigh law in piezoelectric ceramicsJ. Phys. D: Appl. Phys.199629205720601996JPhD...29.2057D1:CAS:528:DyaK28XksFCls7s%3D10.1088/0022-3727/29/7/046
– reference: MaintzSDeringerVLTchougréeffALDronskowskiRLOBSTER: A tool to extract chemical bonding from plane-wave based DFTJ. Computational Chem.201637103010351:CAS:528:DC%2BC28XjsVamtrg%3D10.1002/jcc.24300
– reference: QiuCTransparent ferroelectric crystals with ultrahigh piezoelectricityNature20205773503542020Natur.577..350Q1:CAS:528:DC%2BB3cXjsVejsrk%3D3194205510.1038/s41586-019-1891-y
– reference: YangM-MPiezoelectric and pyroelectric effects induced by interface polar symmetryNature20205843773811:CAS:528:DC%2BB3cXhs1Cju7fP3281489010.1038/s41586-020-2602-4
– reference: LingYDisruptive, soft, wearable sensorsAdv. Mater.20203219046641:CAS:528:DC%2BC1MXitFCjtrvJ10.1002/adma.201904664
– reference: DesirajuGRHydrogen bridges in crystal engineering:  Interactions without BordersAcc. Chem. Res.2002355655731:CAS:528:DC%2BD38Xjt1Ojsrs%3D1211899610.1021/ar010054t
– reference: ShuLPhotoflexoelectric effect in halide perovskitesNat. Mater.2020196056092020NatMa..19..605S1:CAS:528:DC%2BB3cXnsFarur8%3D3231326510.1038/s41563-020-0659-y
– reference: SalvadoriMCBrownIGVazARMeloLLCattaniMMeasurement of the elastic modulus of nanostructured gold and platinum thin filmsPhys. Rev. B2003671534042003PhRvB..67o3404S10.1103/PhysRevB.67.153404
– reference: LiuYFerroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundaryNature2018562961002018Natur.562...96L1:CAS:528:DC%2BC1cXhvVOjsLfK3028310210.1038/s41586-018-0550-z
– reference: YanMPorous ferroelectric materials for energy technologies: Current status and future perspectivesEnergy. Environ. Sci.202114615861901:CAS:528:DC%2BB3MXisVentb7I10.1039/D1EE03025F
– reference: Sheppard, D., Terrell, R. & Henkelman, G. Optimization methods for finding minimum energy paths. 128, 134106, https://doi.org/10.1063/1.2841941 (2008).
– reference: Uchino, K. Advanced piezoelectric materials: Science and technology. (Woodhead Publishing, 2017).
– reference: KuiYTayFEHMeasurement of longitudinal piezoelectric coefficient of thin films by a laser-scanning vibrometerIEEE Trans. Ultrason., Ferroelectr., Frequency Control20035011311610.1109/TUFFC.2003.1182115
– reference: CoondooIEnhanced Piezoelectric Properties of Praseodymium-Modified Lead-Free (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 CeramicsJ. Am. Ceram. Soc.201598312731351:CAS:528:DC%2BC2MXhtVOrsbzN10.1111/jace.13713
– reference: LiaoW-QA molecular perovskite solid solution with piezoelectricity stronger than lead zirconate titanateScience2019363120612102019Sci...363.1206L1:CAS:528:DC%2BC1MXks1yrsr4%3D3087252210.1126/science.aav3057
– reference: LiWMechanical tunability via hydrogen bonding in metal–organic frameworks with the perovskite architectureJ. Am. Chem. Soc.2014136780178041:CAS:528:DC%2BC2cXns12jtL4%3D2481531910.1021/ja500618z
– reference: SenguptaDCharacterization of single polyvinylidene fluoride (PVDF) nanofiber for flow sensing applicationsAIP Adv.201771052052017AIPA....7j5205S10.1063/1.4994968
– reference: FanXDingYLiuYLiangJChenYPlasmonic Ti3C2Tx MXene enables highly efficient photothermal conversion for healable and transparent wearable deviceACS Nano.201913812481341:CAS:528:DC%2BC1MXhtF2ksb%2FO3124404610.1021/acsnano.9b03161
– reference: LimH-RAdvanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environmentAdv. Mater.20203219019241:CAS:528:DC%2BC1MXhtlejtrvN10.1002/adma.201901924
– reference: ViehlandDEffect of uniaxial stress on the large-signal electromechanical properties of electrostrictive and piezoelectric lead magnesium niobate lead titanate ceramicsJ. Appl. Phys.200495196919722004JAP....95.1969V1:CAS:528:DC%2BD2cXosVOqug%3D%3D10.1063/1.1641960
– reference: LiFUltrahigh piezoelectricity in ferroelectric ceramics by designNat. Mater.2018173493542018JNuM..502..349L1:CAS:528:DC%2BC1cXlvFKnsLw%3D2955599910.1038/s41563-018-0034-4
– reference: BellaicheLVanderbiltDIntrinsic piezoelectric response in perovskite alloys: PMN-PT versus PZTPhys. Rev. Lett.199983134713501999PhRvL..83.1347B1:CAS:528:DyaK1MXlt1yisbs%3D10.1103/PhysRevLett.83.1347
– volume: 33
  start-page: 2006093
  year: 2021
  ident: 33325_CR11
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202006093
– volume: 2
  start-page: 642
  year: 2018
  ident: 33325_CR6
  publication-title: Joule
  doi: 10.1016/j.joule.2018.03.011
– volume: 142
  start-page: 1077
  year: 2020
  ident: 33325_CR21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b12368
– volume: 474
  start-page: 128
  year: 2015
  ident: 33325_CR9
  publication-title: Ferroelectrics
  doi: 10.1080/00150193.2015.997146
– volume: 35
  start-page: 565
  year: 2002
  ident: 33325_CR41
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar010054t
– volume: 339
  start-page: 425
  year: 2013
  ident: 33325_CR35
  publication-title: Science
  doi: 10.1126/science.1229675
– volume: 27
  start-page: 387
  year: 1969
  ident: 33325_CR25
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.27.387
– volume: 136
  start-page: 7801
  year: 2014
  ident: 33325_CR39
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja500618z
– volume: 20
  start-page: 9
  year: 2014
  ident: 33325_CR10
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-013-2029-z
– volume: 363
  start-page: 1206
  year: 2019
  ident: 33325_CR22
  publication-title: Science
  doi: 10.1126/science.aav3057
– volume: 19
  start-page: 605
  year: 2020
  ident: 33325_CR20
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0659-y
– volume: 37
  start-page: 1030
  year: 2016
  ident: 33325_CR50
  publication-title: J. Computational Chem.
  doi: 10.1002/jcc.24300
– volume: 540
  start-page: 379
  year: 2016
  ident: 33325_CR5
  publication-title: Nature
  doi: 10.1038/nature21004
– volume: 20
  start-page: 612
  year: 2021
  ident: 33325_CR23
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-00875-3
– volume: 115
  start-page: 5461
  year: 2011
  ident: 33325_CR49
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp202489s
– volume: 95
  start-page: 1969
  year: 2004
  ident: 33325_CR30
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1641960
– volume: 32
  start-page: 2002208
  year: 2020
  ident: 33325_CR14
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002208
– volume: 32
  start-page: 1901924
  year: 2020
  ident: 33325_CR8
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901924
– volume: 50
  start-page: 113
  year: 2003
  ident: 33325_CR31
  publication-title: IEEE Trans. Ultrason., Ferroelectr., Frequency Control
  doi: 10.1109/TUFFC.2003.1182115
– volume: 369
  start-page: 292
  year: 2020
  ident: 33325_CR32
  publication-title: Science
  doi: 10.1126/science.abb3209
– volume: 67
  start-page: 153404
  year: 2003
  ident: 33325_CR37
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.67.153404
– volume: 98
  start-page: 3127
  year: 2015
  ident: 33325_CR15
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.13713
– volume: 45
  start-page: 74
  year: 2001
  ident: 33325_CR36
  publication-title: Platin. Met. Rev.(UK)
  doi: 10.1595/003214001X4527482
– volume: 135
  start-page: 1
  year: 2019
  ident: 33325_CR29
  publication-title: Mater. Sci. Eng.: R: Rep.
  doi: 10.1016/j.mser.2018.08.001
– volume: 32
  start-page: 1904664
  year: 2020
  ident: 33325_CR7
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904664
– volume: 46
  start-page: 5579
  year: 1998
  ident: 33325_CR26
  publication-title: Acta. Mater.
  doi: 10.1016/S1359-6454(98)00167-0
– ident: 33325_CR48
  doi: 10.1063/1.2841941
– volume: 2
  start-page: 26
  year: 2019
  ident: 33325_CR4
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0189-7
– volume: 577
  start-page: 350
  year: 2020
  ident: 33325_CR42
  publication-title: Nature
  doi: 10.1038/s41586-019-1891-y
– volume: 13
  start-page: 8124
  year: 2019
  ident: 33325_CR43
  publication-title: ACS Nano.
  doi: 10.1021/acsnano.9b03161
– volume: 357
  start-page: 306
  year: 2017
  ident: 33325_CR18
  publication-title: Science
  doi: 10.1126/science.aai8535
– volume: 10
  start-page: 3740
  year: 2017
  ident: 33325_CR38
  publication-title: ChemSusChem.
  doi: 10.1002/cssc.201700991
– volume: 584
  start-page: 377
  year: 2020
  ident: 33325_CR27
  publication-title: Nature
  doi: 10.1038/s41586-020-2602-4
– volume: 54
  start-page: 11169
  year: 1996
  ident: 33325_CR45
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 562
  start-page: 96
  year: 2018
  ident: 33325_CR13
  publication-title: Nature
  doi: 10.1038/s41586-018-0550-z
– volume: 391
  start-page: 15
  year: 2019
  ident: 33325_CR24
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2019.03.020
– volume: 7
  start-page: 105205
  year: 2017
  ident: 33325_CR12
  publication-title: AIP Adv.
  doi: 10.1063/1.4994968
– volume: 14
  start-page: 6158
  year: 2021
  ident: 33325_CR2
  publication-title: Energy. Environ. Sci.
  doi: 10.1039/D1EE03025F
– volume: 77
  start-page: 3865
  year: 1996
  ident: 33325_CR46
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– ident: 33325_CR1
– volume: 29
  start-page: 2057
  year: 1996
  ident: 33325_CR33
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/29/7/046
– volume: 17
  start-page: 349
  year: 2018
  ident: 33325_CR16
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0034-4
– volume: 12
  start-page: 20440
  year: 2020
  ident: 33325_CR40
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c02313
– volume: 83
  start-page: 1347
  year: 1999
  ident: 33325_CR34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.83.1347
– volume: 82
  start-page: 1788
  year: 1997
  ident: 33325_CR28
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.365981
– ident: 33325_CR47
  doi: 10.1002/jcc.20495
– ident: 33325_CR17
– volume: 47
  start-page: 558
  year: 1993
  ident: 33325_CR44
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.558
– volume: 58
  start-page: 14504
  year: 2019
  ident: 33325_CR19
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201907660
– volume: 23
  start-page: 101682
  year: 2020
  ident: 33325_CR3
  publication-title: iScience
  doi: 10.1016/j.isci.2020.101682
SSID ssj0000391844
Score 2.5999227
Snippet Piezoelectric materials convert mechanical stress to electrical energy and thus are widely used in energy harvesting and wearable devices. However, in the...
Improving piezoelectric strain and voltage constant generally compromises piezoelectric performance and mechanical softness. Here, the authors report a bond...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5607
SubjectTerms 119/118
142/136
639/301/119/1002
639/301/119/996
639/4077/4072/4062
639/638/298/917
Bonding strength
Chemical bonds
Crystal structure
Electric potential
Energy
Energy harvesting
Engineering
Ferroelectric materials
Ferroelectricity
Ferroelectrics
Humanities and Social Sciences
Laboratories
Metal halides
multidisciplinary
Phase transitions
Piezoelectricity
Science
Science (multidisciplinary)
Shear strain
Softness
Solid solutions
Strain
Voltage
Wearable computers
Wearable technology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUMgl9JFSt2lRIbdWxJZkyT62pSEUmlMDuQlJHpGFxLvYG0j76zuSvLtxoM2lV-thSTOjGTEz3xByHFDHcRsUg1oKJl0JzElnGaomrySo0tuYKPzjXJ1dyO-X9eW9Ul8xJizDA-eDO6m5Lp3k2kLjpFBo4NS2DmgYBOl56FKaL0587zGV7mDR4tNFTlkypWhORpnuhBS8LgSvmZppogTYP7MyH8ZIPnCUJv1z-owcTIYj_ZwX_Jw8gf4FeZpLSf56Se5ifWAKO3RBugz0ZlP7lgYYhmUuebPwIx1SAbmRjngJU4sDI2oxW-2SCOhqAb-3AyikDEF6ZYeEyoGzo6GbefeQXJx--_n1jE1VFZivK71mLUppEDJUtnTOBq8DWOjw3tOu1jb6YVGEG9GFSjShLVUANCKd7oQNAkp8e78ie_2yh9eE-sp5B6gEOe-kDbq1wWIP15adA1RzBak2J2z8BDkeK19cm-T6Fo3JVDFIFZOoYlRBPm7HrDLgxj97f4mE2_aMYNnpA7KQmVjIPMZCBTnakN1MEjwaHsMTVIQfLMiHbTPKXnSo2B6Wt7lPBBdqREH0jF1mC5q39IurhOLdoqkmNC_Ipw1j7X7-9w2_-R8bfkv2eRSE5Fw7Invr4RbeoW21du-TGP0Ba6sjEQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health Medical collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFD_oRHAPQ6didUoE3zSsTdKmfRoqjiHok4P7FpI0cRe0vWvvYPOv9yT9uHbgXpukTXs-m5P8fgDvPMY4pn1BXS44FSZ11AijKYYmWwhXpFaHg8Lfvhdn5-LrKl-NC279uK1y8onRUdetDWvkxyyUi4sAB3eyuaSBNSpUV0cKjfvwIECXhS1dciXnNZaAfl4KMZ6VwbHHvYieIW5h55zltFjEowjbv8g1b--UvFUujVHo9DEcjOkj-TjI-wncc80hPBwIJW8OYf8feMGncB04g4nbXSKtJ78nPlziXde1Aw3O2vaki6RyPenRMRONAwOSMd3sDhaQzdr9mQcQF08NkgvdRaQOvDsmv4M-P4Pz0y8_Pp_RkWmB2jyTW1qh5XoufKZTY7S30jvtavSF0uRSh9osmnXJa5_x0ldp4R0mlkbWXHvuUvwffw57Tdu4F0BsZqxxGBgZq4X2stJeYw9TpbVxGPoSyKbvrewIQx7YMH6pWA7npRpkpFBGKspIFQm8n8dsBhCOO3t_CmKcewYA7Xih7X6q0R5VzmRqBJPalUagXpVprnOP-aYXlvm6TOBoUgI1WnWvdjqYwNu5Ge0xFFl049qroU8AHCp5AnKhPIsJLVua9UVE9q4wfeOSJfBhUrPdw___wi_vnusreMSCwsdS2hHsbbsr9xozqa15E83lL7kFH80
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9UwEB_WFcGL-InVVSJ402CbpEl71IfLIujJhb2FJE3cB9o-2rew-tc7ST8eXVTw2sz0a2Yy087MbwBeB_RxzARJfSk4FTb31AprKLomJ4WXuTOxUfjzF3l2Lj5dlBdHwOZemFS0nyAt0zY9V4e9G0Qy6VR7zjkrqbwFtyN0e9Tqjdws_1Ui4nklxNQfk_PqD6wrH5Sg-lfx5c3qyBsp0uR5Tu_DvSlkJO_Hm3wAR759CHfGIZI_H8F1nAxM_AFXkHSB_Jin3pLg-74bh91s3UD6NDpuIANuv8QgY8QrprtD-wDZbf2vhYH41BtILk2f8Djw7Bjijlr7GM5PP37dnNFpngJ1ZaH2tEb7DFyEwuTWmuBU8MY3uOMpWyoTM7BovBVvQsGrUOcyeAwfrWq4Cdzn-NX9BI7brvVPgbjCOuvR_THWCBNUbYJBClvnjfXo4DIo5jes3QQ2HmdefNcp6c0rPUpFo1R0koqWGbxZeHYj1MY_qT9EwS2UESY7Hej6b3pSG10ylVvBlPGVFVxidFyaMmBUGYRjoakyOJnFrifbHTSLhQkyAg9m8GpZRquLqRTT-u5qpImwQhXPQK3UZXVD65V2e5nwu2sM0rhiGbydFetw8b8_8LP_I38Od1lU-ZRAO4HjfX_lX2D8tLcvk8H8BmyEGPw
  priority: 102
  providerName: Springer Nature
Title Bond engineering of molecular ferroelectrics renders soft and high-performance piezoelectric energy harvesting materials
URI https://link.springer.com/article/10.1038/s41467-022-33325-6
https://www.proquest.com/docview/2717360389
https://www.proquest.com/docview/2717696883
https://pubmed.ncbi.nlm.nih.gov/PMC9509372
https://doaj.org/article/5270b427ae8b4360805a5f095f4c2fd8
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_6wWAvY5_MWxc02NumzZZky34YIw3NSqBlbAvkzUi2tAY6O7NTaPfX7yTbCSndYC822JJj6-50P-V0vwN4Y9HHMWUTamLBqdChoVpoRdE1FYkwSVgolyh8dp6czsVsES_2YCh31A9ge-fSztWTmjeX769_3XxCg__YpYynH1rhzd3vS-ecxTTZh0P0TNIZ6lkP9_3MzDNc0LhAMwtFRNF38z6P5u7H7PgqT-m_g0Nv76K8FUr1Hmr6EB700JKMO114BHumegz3umKTN0_g2lUQJmbLP0hqS34O1XGJNU1Td0VxlkVLGl9iriUtTtNEYUfHa0xX2zQDslqa35sOxPgcQnKhGs_bgU9HKNxp91OYT0--T05pX3eBFnEk1zRDO7Zc2EiFWitbSGuUKXFmlDqWykVq0chTXtqIpzYLE2sQZmpZcmW5CXF1_gwOqroyz4EUkS60QTfJWCmUlZmyClvoLCy1QUcYQDSMcF70pOSuNsZl7oPjPM07qeQoldxLJU8CeLvps-ooOf7Z-tgJbtPS0Wn7C3XzI--tM4-ZDLVgUplUC54gio5VbBF9WlEwW6YBHA1izwcVzZnbwJA4gsIAXm9uo3W6kIuqTH3VtXH0QykPQO6oy84L7d6plhee5ztDMMclC-DdoFjbH__7B7_4r-F5CfeZ03gfZzuCg3VzZV4hzFrrEezLhcRjOv08gsPxePZthufjk_MvX_HqJJmM_B8YI29jfwCB7irB
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQcEBQqAgWMBCeImthOnBwQ4lVt6ePUSnszdmLTlWiyTbaC8qP4jYydx7KV6K3XxE6czDeeScb-PoBXFmMcVTYNTcJZyHVkQs21CjE0FSk3aVQot1H44DCdHPOv02S6Bn-GvTBuWeUwJ_qJuqwL9498m7pycero4N7Pz0KnGuWqq4OERgeLPXPxEz_Z2ne7n9G-rynd-XL0aRL2qgJhkcRiEeaIUsu4jVWktbKFsEaZEv1e6EQoV4dECGestDHLbB6l1mASpUXJlGUmwm9PvO4NuImBN3IeJaZi_Kfj2NYzzvu9OTjW7Zb7mcgvmWeMJmG6Ev-8TMBKbnt5Zeal8qyPejv34V6frpIPHb4ewJqpNuBWJ2B5sQF3_6EzfAi_nEYxMctDpLbkdNDfJdY0Td3J7syKljRexK4lLQYCorCjY04O58uNDGQ-M7_HDsT4XYrkRDWeGQSvjsl25z-P4PhabLAJ61VdmcdAilgX2mAgprTkyopcWYUtdB6V2mCoDSAe3rcsetpzp77xQ_ryO8tkZyOJNpLeRjIN4M3YZ96RflzZ-qMz49jSEXb7A3XzXfb-LxMqIs2pUCbTHHGcRYlKLOa3lhfUllkAWwMIZD-LtHKJ-QBejqfR_11RR1WmPu_aOIKjjAUgVsCzMqDVM9XsxDOJ55guMkEDeDvAbHnz_z_wk6vH-gJuT44O9uX-7uHeU7hDHfh9GW8L1hfNuXmGWdxCP_euQ-DbdfvqX2CPXa4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAcEBQQgQJGghNEm9hOnBwQAsqqpVBxoNLejJ3YdKU2WZKtoPw0fh1j57FsJXrrNbETJ_NMxvN9AM8txjiqbBqahLOQ68iEmmsVYmgqUm7SqFCuUfjzQbp7yD_OktkG_Bl6Ydy2ysEnekdd1oX7Rz6hrlycOji4ie23RXzZmb5Z_Agdg5SrtA50Gp2K7Juzn_j51r7e20FZv6B0-uHr-92wZxgIiyQWyzBHjbWM21hFWitbCGuUKdEHCJ0I5WqSqM4ZK23MMptHqTWYUGlRMmWZifA7FK97Ba4KlsTOxsRMjP93HPJ6xnnfp4PrnrTceyW_fZ4xmoTpWiz0lAFree75XZrnSrU-Ak5vw60-dSVvO127Axum2oJrHZnl2Rbc_Afa8C78cnzFxKwOkdqSk4GLl1jTNHVHwTMvWtJ4QruWtBgUiMKJDkU5XKyaGshibn6PE4jxHYvkSDUeJQSvjol3Z0v34PBSZHAfNqu6Mg-AFLEutMGgTGnJlRW5sgpH6DwqtcGwG0A8vG9Z9BDojonjWPpSPMtkJyOJMpJeRjIN4OU4Z9EBgFw4-p0T4zjSgXf7A3XzXfa-QCZURJpToUymOep0FiUqsZjrWl5QW2YBbA9KIHuP0sqV_gfwbDyNvsAVeFRl6tNujAM7ylgAYk151ha0fqaaH3lU8RxTRyZoAK8GNVvd_P8P_PDitT6F62il8tPewf4juEGd7vuK3jZsLptT8xgTuqV-4i2HwLfLNtW_f0Bh5A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bond+engineering+of+molecular+ferroelectrics+renders+soft+and+high-performance+piezoelectric+energy+harvesting+materials&rft.jtitle=Nature+communications&rft.au=Hu%2C+Yuzhong&rft.au=Parida%2C+Kaushik&rft.au=Zhang%2C+Hao&rft.au=Wang%2C+Xin&rft.date=2022-09-24&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-022-33325-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_022_33325_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon