Bond engineering of molecular ferroelectrics renders soft and high-performance piezoelectric energy harvesting materials
Piezoelectric materials convert mechanical stress to electrical energy and thus are widely used in energy harvesting and wearable devices. However, in the piezoelectric family, there are two pairs of properties that improving one of them will generally compromises the other, which limits their appli...
Saved in:
Published in | Nature communications Vol. 13; no. 1; pp. 5607 - 10 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
24.09.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Piezoelectric materials convert mechanical stress to electrical energy and thus are widely used in energy harvesting and wearable devices. However, in the piezoelectric family, there are two pairs of properties that improving one of them will generally compromises the other, which limits their applications. The first pair is piezoelectric strain and voltage constant, and the second is piezoelectric performance and mechanical softness. Here, we report a molecular bond weakening strategy to mitigate these issues in organic-inorganic hybrid piezoelectrics. By introduction of large-size halide elements, the metal-halide bonds can be effectively weakened, leading to a softening effect on bond strength and reduction in polarization switching barrier. The obtained solid solution C
6
H
5
N(CH
3
)
3
CdBr
2
Cl
0.75
I
0.25
exhibits excellent piezoelectric constants (
d
33
= 367 pm/V,
g
33
= 3595 × 10
−3
Vm/N), energy harvesting property (power density is 11 W/m
2
), and superior mechanical softness (0.8 GPa), promising this hybrid as high-performance soft piezoelectrics.
Improving piezoelectric strain and voltage constant generally compromises piezoelectric performance and mechanical softness. Here, the authors report a bond weakening strategy for organic-inorganic hybrid piezoelectrics and mitigated these issues. |
---|---|
AbstractList | Piezoelectric materials convert mechanical stress to electrical energy and thus are widely used in energy harvesting and wearable devices. However, in the piezoelectric family, there are two pairs of properties that improving one of them will generally compromises the other, which limits their applications. The first pair is piezoelectric strain and voltage constant, and the second is piezoelectric performance and mechanical softness. Here, we report a molecular bond weakening strategy to mitigate these issues in organic-inorganic hybrid piezoelectrics. By introduction of large-size halide elements, the metal-halide bonds can be effectively weakened, leading to a softening effect on bond strength and reduction in polarization switching barrier. The obtained solid solution C6H5N(CH3)3CdBr2Cl0.75I0.25 exhibits excellent piezoelectric constants (d33 = 367 pm/V, g33 = 3595 × 10−3 Vm/N), energy harvesting property (power density is 11 W/m2), and superior mechanical softness (0.8 GPa), promising this hybrid as high-performance soft piezoelectrics.Improving piezoelectric strain and voltage constant generally compromises piezoelectric performance and mechanical softness. Here, the authors report a bond weakening strategy for organic-inorganic hybrid piezoelectrics and mitigated these issues. Piezoelectric materials convert mechanical stress to electrical energy and thus are widely used in energy harvesting and wearable devices. However, in the piezoelectric family, there are two pairs of properties that improving one of them will generally compromises the other, which limits their applications. The first pair is piezoelectric strain and voltage constant, and the second is piezoelectric performance and mechanical softness. Here, we report a molecular bond weakening strategy to mitigate these issues in organic-inorganic hybrid piezoelectrics. By introduction of large-size halide elements, the metal-halide bonds can be effectively weakened, leading to a softening effect on bond strength and reduction in polarization switching barrier. The obtained solid solution C 6 H 5 N(CH 3 ) 3 CdBr 2 Cl 0.75 I 0.25 exhibits excellent piezoelectric constants ( d 33 = 367 pm/V, g 33 = 3595 × 10 −3 Vm/N), energy harvesting property (power density is 11 W/m 2 ), and superior mechanical softness (0.8 GPa), promising this hybrid as high-performance soft piezoelectrics. Improving piezoelectric strain and voltage constant generally compromises piezoelectric performance and mechanical softness. Here, the authors report a bond weakening strategy for organic-inorganic hybrid piezoelectrics and mitigated these issues. Piezoelectric materials convert mechanical stress to electrical energy and thus are widely used in energy harvesting and wearable devices. However, in the piezoelectric family, there are two pairs of properties that improving one of them will generally compromises the other, which limits their applications. The first pair is piezoelectric strain and voltage constant, and the second is piezoelectric performance and mechanical softness. Here, we report a molecular bond weakening strategy to mitigate these issues in organic-inorganic hybrid piezoelectrics. By introduction of large-size halide elements, the metal-halide bonds can be effectively weakened, leading to a softening effect on bond strength and reduction in polarization switching barrier. The obtained solid solution C 6 H 5 N(CH 3 ) 3 CdBr 2 Cl 0.75 I 0.25 exhibits excellent piezoelectric constants ( d 33 = 367 pm/V, g 33 = 3595 × 10 −3 Vm/N), energy harvesting property (power density is 11 W/m 2 ), and superior mechanical softness (0.8 GPa), promising this hybrid as high-performance soft piezoelectrics. Piezoelectric materials convert mechanical stress to electrical energy and thus are widely used in energy harvesting and wearable devices. However, in the piezoelectric family, there are two pairs of properties that improving one of them will generally compromises the other, which limits their applications. The first pair is piezoelectric strain and voltage constant, and the second is piezoelectric performance and mechanical softness. Here, we report a molecular bond weakening strategy to mitigate these issues in organic-inorganic hybrid piezoelectrics. By introduction of large-size halide elements, the metal-halide bonds can be effectively weakened, leading to a softening effect on bond strength and reduction in polarization switching barrier. The obtained solid solution C6H5N(CH3)3CdBr2Cl0.75I0.25 exhibits excellent piezoelectric constants (d33 = 367 pm/V, g33 = 3595 × 10-3 Vm/N), energy harvesting property (power density is 11 W/m2), and superior mechanical softness (0.8 GPa), promising this hybrid as high-performance soft piezoelectrics.Piezoelectric materials convert mechanical stress to electrical energy and thus are widely used in energy harvesting and wearable devices. However, in the piezoelectric family, there are two pairs of properties that improving one of them will generally compromises the other, which limits their applications. The first pair is piezoelectric strain and voltage constant, and the second is piezoelectric performance and mechanical softness. Here, we report a molecular bond weakening strategy to mitigate these issues in organic-inorganic hybrid piezoelectrics. By introduction of large-size halide elements, the metal-halide bonds can be effectively weakened, leading to a softening effect on bond strength and reduction in polarization switching barrier. The obtained solid solution C6H5N(CH3)3CdBr2Cl0.75I0.25 exhibits excellent piezoelectric constants (d33 = 367 pm/V, g33 = 3595 × 10-3 Vm/N), energy harvesting property (power density is 11 W/m2), and superior mechanical softness (0.8 GPa), promising this hybrid as high-performance soft piezoelectrics. Improving piezoelectric strain and voltage constant generally compromises piezoelectric performance and mechanical softness. Here, the authors report a bond weakening strategy for organic-inorganic hybrid piezoelectrics and mitigated these issues. |
ArticleNumber | 5607 |
Author | Jiang, Feng Morris, Samuel Alexander Du, Zehui Wang, Xin Liew, Weng Heng Gan, Chee Lip Yang, Mingmin Zhang, Hao Yao, Kui Xu, Bin Wang, Haomin Li, Tao Zhou, Xinran Hu, Yuzhong Fan, Hong Jin Alexe, Marin Lee, Pooi See Li, Yongxin Parida, Kaushik |
Author_xml | – sequence: 1 givenname: Yuzhong orcidid: 0000-0001-5951-1938 surname: Hu fullname: Hu, Yuzhong email: yuzhong.hu@warwick.ac.uk organization: School of Physical and Mathematical Sciences, Nanyang Technological University, Department of Physics, The University of Warwick – sequence: 2 givenname: Kaushik surname: Parida fullname: Parida, Kaushik organization: School of Materials Science and Engineering, Nanyang Technological University, Department of Polymer and Process Engineering, Indian Institute of Technology – sequence: 3 givenname: Hao surname: Zhang fullname: Zhang, Hao organization: School of Materials Science and Engineering, Nanyang Technological University – sequence: 4 givenname: Xin surname: Wang fullname: Wang, Xin organization: Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University – sequence: 5 givenname: Yongxin orcidid: 0000-0002-7860-3237 surname: Li fullname: Li, Yongxin organization: Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University – sequence: 6 givenname: Xinran surname: Zhou fullname: Zhou, Xinran organization: School of Materials Science and Engineering, Nanyang Technological University – sequence: 7 givenname: Samuel Alexander surname: Morris fullname: Morris, Samuel Alexander organization: Facility for Analysis, Characterisation, Testing and Simulation (FACTS), Nanyang Technological University – sequence: 8 givenname: Weng Heng surname: Liew fullname: Liew, Weng Heng organization: Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research) – sequence: 9 givenname: Haomin surname: Wang fullname: Wang, Haomin organization: School of Materials Science and Engineering, Nanyang Technological University – sequence: 10 givenname: Tao surname: Li fullname: Li, Tao organization: School of Materials Science and Engineering, Nanyang Technological University – sequence: 11 givenname: Feng surname: Jiang fullname: Jiang, Feng organization: School of Materials Science and Engineering, Nanyang Technological University – sequence: 12 givenname: Mingmin surname: Yang fullname: Yang, Mingmin organization: Department of Physics, The University of Warwick – sequence: 13 givenname: Marin orcidid: 0000-0002-0386-3026 surname: Alexe fullname: Alexe, Marin organization: Department of Physics, The University of Warwick – sequence: 14 givenname: Zehui surname: Du fullname: Du, Zehui organization: Temasek Laboratories, Nanyang Technological University – sequence: 15 givenname: Chee Lip surname: Gan fullname: Gan, Chee Lip organization: School of Materials Science and Engineering, Nanyang Technological University – sequence: 16 givenname: Kui orcidid: 0000-0001-5875-4815 surname: Yao fullname: Yao, Kui organization: Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research) – sequence: 17 givenname: Bin orcidid: 0000-0002-0107-0727 surname: Xu fullname: Xu, Bin organization: Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University – sequence: 18 givenname: Pooi See orcidid: 0000-0003-1383-1623 surname: Lee fullname: Lee, Pooi See email: pslee@ntu.edu.sg organization: School of Materials Science and Engineering, Nanyang Technological University – sequence: 19 givenname: Hong Jin orcidid: 0000-0003-1237-4555 surname: Fan fullname: Fan, Hong Jin email: fanhj@ntu.edu.sg organization: School of Physical and Mathematical Sciences, Nanyang Technological University |
BookMark | eNp9Ustu1TAUjFCRKJf-AKtIbNgE_IztDRJUPCpVYgNry3GOc32V2MFOKsrX43tTHu2i3hw_ZuYcj-Z5dRZigKp6idEbjKh8mxlmrWgQIQ2llPCmfVKdE8RwgwWhZ__tn1UXOR9QWVRhydh59fNDDH0NYfABIPkw1NHVUxzBrqNJtYOUIpTTkrzNdYLQQ8p1jm6pTSHu_bBvZkgupskEC_Xs4ddfQtGFNNzWe5NuIC9H9ckspY0Z84vqqSsFLu7qrvr-6eO3yy_N9dfPV5fvrxvLsVgaxQh3lDlsUNcZZ4UDAz2nUnRcGMaJkgJJ2jtMpVOodYCU6kRPjaOAoKO76mrT7aM56Dn5yaRbHY3Xp4uYBm3S4u0ImhOBOkaEAdkx2iKJuOEOKe6YJa6XRevdpjWv3QS9hbAkM94Tvf8S_F4P8UYrjhQt_u-q13cCKf5YiyV68tnCOJoAcc2aCCxa1UpJC_TVA-ghrikUq06oMh6VqqDkhrIp5pzAaesXs_h47O9HjZE-RkRvEdElIvoUEd0WKnlA_fOPR0l0I-X5GBZI_6Z6hPUb2YXTww |
CitedBy_id | crossref_primary_10_1039_D2TA09005H crossref_primary_10_1039_D4SC05442C crossref_primary_10_1021_jacs_3c06708 crossref_primary_10_1016_j_mser_2024_100876 crossref_primary_10_1126_science_adj1946 crossref_primary_10_1002_anie_202319650 crossref_primary_10_1016_j_actamat_2025_120819 crossref_primary_10_1038_s41467_024_51106_1 crossref_primary_10_1002_advs_202302426 crossref_primary_10_1021_acs_inorgchem_3c02607 crossref_primary_10_32604_fdmp_2024_058444 crossref_primary_10_1021_jacs_2c12306 crossref_primary_10_1063_5_0194409 crossref_primary_10_1039_D2SC05857J crossref_primary_10_1002_adma_202302436 crossref_primary_10_1021_jacs_3c00634 crossref_primary_10_1021_jacs_2c11213 crossref_primary_10_1002_aenm_202400241 crossref_primary_10_1080_15599612_2024_2332242 crossref_primary_10_1002_adom_202301795 crossref_primary_10_1016_j_jcis_2024_04_116 crossref_primary_10_1038_s41467_025_56233_x crossref_primary_10_1038_s41467_023_44453_y crossref_primary_10_1002_sstr_202300135 crossref_primary_10_1002_smll_202303366 crossref_primary_10_1016_j_nanoen_2023_108526 crossref_primary_10_1016_j_nanoen_2023_109101 crossref_primary_10_1016_j_nanoen_2024_109420 crossref_primary_10_1002_adma_202405363 crossref_primary_10_1021_acsaem_3c03279 crossref_primary_10_1002_smll_202207663 crossref_primary_10_1080_00150193_2024_2325898 crossref_primary_10_1002_adma_202408153 crossref_primary_10_1116_6_0002794 crossref_primary_10_1002_adma_202417422 crossref_primary_10_1039_D4SC04185B crossref_primary_10_1016_j_cej_2024_154249 crossref_primary_10_1021_acsenergylett_4c00444 crossref_primary_10_1038_s41467_024_48551_3 crossref_primary_10_1002_adfm_202417618 crossref_primary_10_1021_jacs_3c09395 crossref_primary_10_1002_smll_202306989 crossref_primary_10_1021_acsapm_3c01482 crossref_primary_10_1016_j_nanoen_2024_110489 crossref_primary_10_1021_acsnano_4c09933 crossref_primary_10_1002_ange_202319650 crossref_primary_10_3390_mi14030603 crossref_primary_10_3390_mi15091133 crossref_primary_10_1073_pnas_2400568121 |
Cites_doi | 10.1002/adma.202006093 10.1016/j.joule.2018.03.011 10.1021/jacs.9b12368 10.1080/00150193.2015.997146 10.1021/ar010054t 10.1126/science.1229675 10.1143/JPSJ.27.387 10.1021/ja500618z 10.1007/s00542-013-2029-z 10.1126/science.aav3057 10.1038/s41563-020-0659-y 10.1002/jcc.24300 10.1038/nature21004 10.1038/s41563-020-00875-3 10.1021/jp202489s 10.1063/1.1641960 10.1002/adma.202002208 10.1002/adma.201901924 10.1109/TUFFC.2003.1182115 10.1126/science.abb3209 10.1103/PhysRevB.67.153404 10.1111/jace.13713 10.1595/003214001X4527482 10.1016/j.mser.2018.08.001 10.1002/adma.201904664 10.1016/S1359-6454(98)00167-0 10.1063/1.2841941 10.1038/s41928-018-0189-7 10.1038/s41586-019-1891-y 10.1021/acsnano.9b03161 10.1126/science.aai8535 10.1002/cssc.201700991 10.1038/s41586-020-2602-4 10.1103/PhysRevB.54.11169 10.1038/s41586-018-0550-z 10.1016/j.ccr.2019.03.020 10.1063/1.4994968 10.1039/D1EE03025F 10.1103/PhysRevLett.77.3865 10.1088/0022-3727/29/7/046 10.1038/s41563-018-0034-4 10.1021/acsami.0c02313 10.1103/PhysRevLett.83.1347 10.1063/1.365981 10.1002/jcc.20495 10.1103/PhysRevB.47.558 10.1002/anie.201907660 10.1016/j.isci.2020.101682 |
ContentType | Journal Article |
Copyright | Crown 2022 Crown 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. Crown. |
Copyright_xml | – notice: Crown 2022 – notice: Crown 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. Crown. |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-022-33325-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health Medical collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Engineering |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_5270b427ae8b4360805a5f095f4c2fd8 PMC9509372 10_1038_s41467_022_33325_6 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 12074277 funderid: https://doi.org/10.13039/501100001809 – fundername: ; grantid: 12074277 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c517t-9425f34f1a0bbafc7feaed5387b57a452987083df138f906fe099b7d3af3e0eb3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:24:39 EDT 2025 Thu Aug 21 18:39:24 EDT 2025 Fri Jul 11 12:26:32 EDT 2025 Wed Aug 13 09:51:48 EDT 2025 Thu Apr 24 22:52:20 EDT 2025 Tue Jul 01 00:58:26 EDT 2025 Fri Feb 21 02:38:16 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-9425f34f1a0bbafc7feaed5387b57a452987083df138f906fe099b7d3af3e0eb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0107-0727 0000-0002-0386-3026 0000-0002-7860-3237 0000-0003-1383-1623 0000-0003-1237-4555 0000-0001-5951-1938 0000-0001-5875-4815 |
OpenAccessLink | https://www.proquest.com/docview/2717360389?pq-origsite=%requestingapplication% |
PQID | 2717360389 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5270b427ae8b4360805a5f095f4c2fd8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9509372 proquest_miscellaneous_2717696883 proquest_journals_2717360389 crossref_citationtrail_10_1038_s41467_022_33325_6 crossref_primary_10_1038_s41467_022_33325_6 springer_journals_10_1038_s41467_022_33325_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-24 |
PublicationDateYYYYMMDD | 2022-09-24 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | LiuXPolarization-driven self-powered photodetection in a single-phase biaxial hybrid perovskite ferroelectricAngew. Chem. Int. Ed.20195814504145081:CAS:528:DC%2BC1MXhslWkurjF10.1002/anie.201907660 Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. 27, 1787–1799, https://doi.org/10.1002/jcc.20495 (2006). LingYDisruptive, soft, wearable sensorsAdv. Mater.20203219046641:CAS:528:DC%2BC1MXitFCjtrvJ10.1002/adma.201904664 SunSFactors influencing the mechanical properties of formamidinium lead halides and related hybrid perovskitesChemSusChem.201710374037451:CAS:528:DC%2BC2sXht1eksbnL2866607910.1002/cssc.201700991 KresseGHafnerJAb initio molecular dynamics for liquid metalsPhys. Rev. B1993475585611993PhRvB..47..558K1:CAS:528:DyaK3sXlt1Gnsr0%3D10.1103/PhysRevB.47.558 LimH-RAdvanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environmentAdv. Mater.20203219019241:CAS:528:DC%2BC1MXhtlejtrvN10.1002/adma.201901924 LiuYFerroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundaryNature2018562961002018Natur.562...96L1:CAS:528:DC%2BC1cXhvVOjsLfK3028310210.1038/s41586-018-0550-z Sheppard, D., Terrell, R. & Henkelman, G. Optimization methods for finding minimum energy paths. 128, 134106, https://doi.org/10.1063/1.2841941 (2008). ChenX-GTwo-dimensional layered perovskite ferroelectric with giant piezoelectric voltage coefficientJ. Am. Chem. Soc.2020142107710821:CAS:528:DC%2BC1MXisVekt73I3185149510.1021/jacs.9b12368 QiuCTransparent ferroelectric crystals with ultrahigh piezoelectricityNature20205773503542020Natur.577..350Q1:CAS:528:DC%2BB3cXjsVejsrk%3D3194205510.1038/s41586-019-1891-y Uchino, K. Advanced piezoelectric materials: Science and technology. (Woodhead Publishing, 2017). PandaPKSahooBPZT to lead free piezo ceramics: A ReviewFerroelectrics20154741281431:CAS:528:DC%2BC2MXjslOqtL8%3D10.1080/00150193.2015.997146 LiuHGiant piezoelectricity in oxide thin films with nanopillar structureScience20203692922972020Sci...369..292L1:CAS:528:DC%2BB3cXhsVSjtLfN3267537010.1126/science.abb3209 SongH-CPiezoelectric energy harvesting design principles for materials and structures: Material figure-of-merit and self-resonance tuningAdv. Mater.20203220022081:CAS:528:DC%2BB3cXhvFyqtr%2FJ10.1002/adma.202002208 ViehlandDEffect of uniaxial stress on the large-signal electromechanical properties of electrostrictive and piezoelectric lead magnesium niobate lead titanate ceramicsJ. Appl. Phys.200495196919722004JAP....95.1969V1:CAS:528:DC%2BD2cXosVOqug%3D%3D10.1063/1.1641960 OrgéasLFavierDStress-induced martensitic transformation of a NiTi alloy in isothermal shear, tension and compressionActa. Mater.199846557955911998AcMat..46.5579O10.1016/S1359-6454(98)00167-0 FragaMAFurlanHPessoaRSMassiMWide bandgap semiconductor thin films for piezoelectric and piezoresistive MEMS sensors applied at high temperatures: an overviewMicrosyst. Technol.2014209211:CAS:528:DC%2BC3sXhvFyksr%2FI10.1007/s00542-013-2029-z LiaoW-QA molecular perovskite solid solution with piezoelectricity stronger than lead zirconate titanateScience2019363120612102019Sci...363.1206L1:CAS:528:DC%2BC1MXks1yrsr4%3D3087252210.1126/science.aav3057 JiL-JSunS-JQinYLiKLiWMechanical properties of hybrid organic-inorganic perovskitesCoord. Chem. Rev.201939115291:CAS:528:DC%2BC1MXnsFGht7Y%3D10.1016/j.ccr.2019.03.020 KresseGFurthmüllerJEfficient iterative schemes for ab initio total-energy calculations using a plane-wave basis setPhys. Rev. B19965411169111861996PhRvB..5411169K1:CAS:528:DyaK28Xms1Whu7Y%3D10.1103/PhysRevB.54.11169 TuQExploring the factors affecting the mechanical properties of 2D hybrid organic–inorganic perovskitesACS Appl. Mater. Interfaces20201220440204471:CAS:528:DC%2BB3cXmvV2qtLk%3D3227513210.1021/acsami.0c02313 CoondooIEnhanced Piezoelectric Properties of Praseodymium-Modified Lead-Free (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 CeramicsJ. Am. Ceram. Soc.201598312731351:CAS:528:DC%2BC2MXhtVOrsbzN10.1111/jace.13713 MaintzSDeringerVLTchougréeffALDronskowskiRLOBSTER: A tool to extract chemical bonding from plane-wave based DFTJ. Computational Chem.201637103010351:CAS:528:DC%2BC28XjsVamtrg%3D10.1002/jcc.24300 DamjanovicDStress and frequency dependence of the direct piezoelectric effect in ferroelectric ceramicsJ. Appl. Phys.199782178817971997JAP....82.1788D1:CAS:528:DyaK2sXlsFSjsLc%3D10.1063/1.365981 SomeyaTBaoZMalliarasGGThe rise of plastic bioelectronicsNature20165403793852016Natur.540..379S1:CAS:528:DC%2BC28XitVyru7%2FO2797476910.1038/nature21004 FanXDingYLiuYLiangJChenYPlasmonic Ti3C2Tx MXene enables highly efficient photothermal conversion for healable and transparent wearable deviceACS Nano.201913812481341:CAS:528:DC%2BC1MXhtF2ksb%2FO3124404610.1021/acsnano.9b03161 BellaicheLVanderbiltDIntrinsic piezoelectric response in perovskite alloys: PMN-PT versus PZTPhys. Rev. Lett.199983134713501999PhRvL..83.1347B1:CAS:528:DyaK1MXlt1yisbs%3D10.1103/PhysRevLett.83.1347 YangM-MPiezoelectric and pyroelectric effects induced by interface polar symmetryNature20205843773811:CAS:528:DC%2BB3cXhs1Cju7fP3281489010.1038/s41586-020-2602-4 HanMThree-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implantsNat. Electron.20192263510.1038/s41928-018-0189-7 HaoJLiWZhaiJChenHProgress in high-strain perovskite piezoelectric ceramicsMater. Sci. Eng.: R: Rep.201913515710.1016/j.mser.2018.08.001 KuiYTayFEHMeasurement of longitudinal piezoelectric coefficient of thin films by a laser-scanning vibrometerIEEE Trans. Ultrason., Ferroelectr., Frequency Control20035011311610.1109/TUFFC.2003.1182115 LiWMechanical tunability via hydrogen bonding in metal–organic frameworks with the perovskite architectureJ. Am. Chem. Soc.2014136780178041:CAS:528:DC%2BC2cXns12jtL4%3D2481531910.1021/ja500618z LiTHigh-Performance Poly(vinylidene difluoride)/Dopamine Core/Shell Piezoelectric nanofiber and its application for biomedical sensorsAdv. Mater.20213320060931:CAS:528:DC%2BB3cXisVyitrnO10.1002/adma.202006093 PanMTriboelectric and Piezoelectric nanogenerators for future soft robots and machinesiScience2020231016822020iSci...23j1682P33163937760742410.1016/j.isci.2020.101682 SalvadoriMCBrownIGVazARMeloLLCattaniMMeasurement of the elastic modulus of nanostructured gold and platinum thin filmsPhys. Rev. B2003671534042003PhRvB..67o3404S10.1103/PhysRevB.67.153404 AizuKPossible Species of “Ferroelastic” crystals and of simultaneously ferroelectric and ferroelastic crystalsJ. Phys. Soc. Jpn.1969273873961969JPSJ...27..387A1:CAS:528:DyaF1MXltFOhurw%3D10.1143/JPSJ.27.387 YanMPorous ferroelectric materials for energy technologies: Current status and future perspectivesEnergy. Environ. Sci.202114615861901:CAS:528:DC%2BB3MXisVentb7I10.1039/D1EE03025F DamjanovicDDemartinMThe Rayleigh law in piezoelectric ceramicsJ. Phys. D: Appl. Phys.199629205720601996JPhD...29.2057D1:CAS:528:DyaK28XksFCls7s%3D10.1088/0022-3727/29/7/046 ShuLPhotoflexoelectric effect in halide perovskitesNat. Mater.2020196056092020NatMa..19..605S1:CAS:528:DC%2BB3cXnsFarur8%3D3231326510.1038/s41563-020-0659-y MerkerJLuptonDTopferMKnakeHHigh temperature mechanical properties of the platinum group metalsPlatin. Met. Rev.(UK)20014574821:CAS:528:DC%2BD3MXltVOgsLg%3D SenguptaDCharacterization of single polyvinylidene fluoride (PVDF) nanofiber for flow sensing applicationsAIP Adv.201771052052017AIPA....7j5205S10.1063/1.4994968 FuD-WDiisopropylammonium bromide is a high-temperature molecular ferroelectric crystalScience20133394254282013Sci...339..425F1:CAS:528:DC%2BC3sXhtFynsb0%3D2334928510.1126/science.1229675 YouYMAn organic-inorganic perovskite ferroelectric with large piezoelectric responseScience20173573063092017Sci...357..306Y1:CAS:528:DC%2BC2sXhtFygs73L2872951110.1126/science.aai8535 DesirajuGRHydrogen bridges in crystal engineering: Interactions without BordersAcc. Chem. Res.2002355655731:CAS:528:DC%2BD38Xjt1Ojsrs%3D1211899610.1021/ar010054t LiFUltrahigh piezoelectricity in ferroelectric ceramics by designNat. Mater.2018173493542018JNuM..502..349L1:CAS:528:DC%2BC1cXlvFKnsLw%3D2955599910.1038/s41563-018-0034-4 Xu, R. & Kim, S. Figures of merits of piezoelectric materials in energy harvesters. Proceed. PowerMEMS, 464–467 (2012). DeringerVLTchougréeffALDronskowskiRCrystal Orbital Hamilton Population (COHP) Analysis As Projected from Plane-Wave Basis SetsJ. Phys. Chem. A2011115546154661:CAS:528:DC%2BC3MXlslKitr8%3D2154859410.1021/jp202489s PerdewJPBurkeKErnzerhofMGeneralized gradient approximation made simplePhys. Rev. Lett.199677386538681996PhRvL..77.3865P1:CAS:528:DyaK28XmsVCgsbs%3D1006232810.1103/PhysRevLett.77.3865 HuYFerroelastic-switching-driven large shear strain and piezoelectricity in a hybrid ferroelectricNat. Mater.2021206126172021NatMa..20..612H1:CAS:528:DC%2BB3MXhtF2qtr4%3D3343214710.1038/s41563-020-00875-3 YangZZhouSZuJInmanDHigh-performance piezoelectric energy harvesters and their applicationsJoule201826426971:CAS:528:DC%2BC1cXpsFOnur4%3D10.1016/j.joule.2018.03.011 Z Yang (33325_CR6) 2018; 2 Y Kui (33325_CR31) 2003; 50 S Maintz (33325_CR50) 2016; 37 X Fan (33325_CR43) 2019; 13 M Pan (33325_CR3) 2020; 23 L Orgéas (33325_CR26) 1998; 46 J Hao (33325_CR29) 2019; 135 S Sun (33325_CR38) 2017; 10 D-W Fu (33325_CR35) 2013; 339 H-C Song (33325_CR14) 2020; 32 Y Hu (33325_CR23) 2021; 20 GR Desiraju (33325_CR41) 2002; 35 K Aizu (33325_CR25) 1969; 27 33325_CR47 C Qiu (33325_CR42) 2020; 577 J Merker (33325_CR36) 2001; 45 G Kresse (33325_CR44) 1993; 47 33325_CR48 W-Q Liao (33325_CR22) 2019; 363 L Bellaiche (33325_CR34) 1999; 83 Q Tu (33325_CR40) 2020; 12 MC Salvadori (33325_CR37) 2003; 67 L Shu (33325_CR20) 2020; 19 YM You (33325_CR18) 2017; 357 Y Liu (33325_CR13) 2018; 562 D Damjanovic (33325_CR28) 1997; 82 D Viehland (33325_CR30) 2004; 95 D Sengupta (33325_CR12) 2017; 7 MA Fraga (33325_CR10) 2014; 20 PK Panda (33325_CR9) 2015; 474 D Damjanovic (33325_CR33) 1996; 29 G Kresse (33325_CR45) 1996; 54 L-J Ji (33325_CR24) 2019; 391 I Coondoo (33325_CR15) 2015; 98 Y Ling (33325_CR7) 2020; 32 W Li (33325_CR39) 2014; 136 VL Deringer (33325_CR49) 2011; 115 H-R Lim (33325_CR8) 2020; 32 M Han (33325_CR4) 2019; 2 H Liu (33325_CR32) 2020; 369 X Liu (33325_CR19) 2019; 58 M-M Yang (33325_CR27) 2020; 584 T Someya (33325_CR5) 2016; 540 X-G Chen (33325_CR21) 2020; 142 T Li (33325_CR11) 2021; 33 F Li (33325_CR16) 2018; 17 JP Perdew (33325_CR46) 1996; 77 M Yan (33325_CR2) 2021; 14 33325_CR1 33325_CR17 |
References_xml | – reference: LiuHGiant piezoelectricity in oxide thin films with nanopillar structureScience20203692922972020Sci...369..292L1:CAS:528:DC%2BB3cXhsVSjtLfN3267537010.1126/science.abb3209 – reference: PandaPKSahooBPZT to lead free piezo ceramics: A ReviewFerroelectrics20154741281431:CAS:528:DC%2BC2MXjslOqtL8%3D10.1080/00150193.2015.997146 – reference: DeringerVLTchougréeffALDronskowskiRCrystal Orbital Hamilton Population (COHP) Analysis As Projected from Plane-Wave Basis SetsJ. Phys. Chem. A2011115546154661:CAS:528:DC%2BC3MXlslKitr8%3D2154859410.1021/jp202489s – reference: SunSFactors influencing the mechanical properties of formamidinium lead halides and related hybrid perovskitesChemSusChem.201710374037451:CAS:528:DC%2BC2sXht1eksbnL2866607910.1002/cssc.201700991 – reference: ChenX-GTwo-dimensional layered perovskite ferroelectric with giant piezoelectric voltage coefficientJ. Am. Chem. Soc.2020142107710821:CAS:528:DC%2BC1MXisVekt73I3185149510.1021/jacs.9b12368 – reference: FragaMAFurlanHPessoaRSMassiMWide bandgap semiconductor thin films for piezoelectric and piezoresistive MEMS sensors applied at high temperatures: an overviewMicrosyst. Technol.2014209211:CAS:528:DC%2BC3sXhvFyksr%2FI10.1007/s00542-013-2029-z – reference: OrgéasLFavierDStress-induced martensitic transformation of a NiTi alloy in isothermal shear, tension and compressionActa. Mater.199846557955911998AcMat..46.5579O10.1016/S1359-6454(98)00167-0 – reference: YangZZhouSZuJInmanDHigh-performance piezoelectric energy harvesters and their applicationsJoule201826426971:CAS:528:DC%2BC1cXpsFOnur4%3D10.1016/j.joule.2018.03.011 – reference: LiuXPolarization-driven self-powered photodetection in a single-phase biaxial hybrid perovskite ferroelectricAngew. Chem. Int. Ed.20195814504145081:CAS:528:DC%2BC1MXhslWkurjF10.1002/anie.201907660 – reference: HaoJLiWZhaiJChenHProgress in high-strain perovskite piezoelectric ceramicsMater. Sci. Eng.: R: Rep.201913515710.1016/j.mser.2018.08.001 – reference: JiL-JSunS-JQinYLiKLiWMechanical properties of hybrid organic-inorganic perovskitesCoord. Chem. Rev.201939115291:CAS:528:DC%2BC1MXnsFGht7Y%3D10.1016/j.ccr.2019.03.020 – reference: SongH-CPiezoelectric energy harvesting design principles for materials and structures: Material figure-of-merit and self-resonance tuningAdv. Mater.20203220022081:CAS:528:DC%2BB3cXhvFyqtr%2FJ10.1002/adma.202002208 – reference: TuQExploring the factors affecting the mechanical properties of 2D hybrid organic–inorganic perovskitesACS Appl. Mater. Interfaces20201220440204471:CAS:528:DC%2BB3cXmvV2qtLk%3D3227513210.1021/acsami.0c02313 – reference: AizuKPossible Species of “Ferroelastic” crystals and of simultaneously ferroelectric and ferroelastic crystalsJ. Phys. Soc. Jpn.1969273873961969JPSJ...27..387A1:CAS:528:DyaF1MXltFOhurw%3D10.1143/JPSJ.27.387 – reference: Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. 27, 1787–1799, https://doi.org/10.1002/jcc.20495 (2006). – reference: FuD-WDiisopropylammonium bromide is a high-temperature molecular ferroelectric crystalScience20133394254282013Sci...339..425F1:CAS:528:DC%2BC3sXhtFynsb0%3D2334928510.1126/science.1229675 – reference: YouYMAn organic-inorganic perovskite ferroelectric with large piezoelectric responseScience20173573063092017Sci...357..306Y1:CAS:528:DC%2BC2sXhtFygs73L2872951110.1126/science.aai8535 – reference: MerkerJLuptonDTopferMKnakeHHigh temperature mechanical properties of the platinum group metalsPlatin. Met. Rev.(UK)20014574821:CAS:528:DC%2BD3MXltVOgsLg%3D – reference: LiTHigh-Performance Poly(vinylidene difluoride)/Dopamine Core/Shell Piezoelectric nanofiber and its application for biomedical sensorsAdv. Mater.20213320060931:CAS:528:DC%2BB3cXisVyitrnO10.1002/adma.202006093 – reference: Xu, R. & Kim, S. Figures of merits of piezoelectric materials in energy harvesters. Proceed. PowerMEMS, 464–467 (2012). – reference: PanMTriboelectric and Piezoelectric nanogenerators for future soft robots and machinesiScience2020231016822020iSci...23j1682P33163937760742410.1016/j.isci.2020.101682 – reference: PerdewJPBurkeKErnzerhofMGeneralized gradient approximation made simplePhys. Rev. Lett.199677386538681996PhRvL..77.3865P1:CAS:528:DyaK28XmsVCgsbs%3D1006232810.1103/PhysRevLett.77.3865 – reference: KresseGFurthmüllerJEfficient iterative schemes for ab initio total-energy calculations using a plane-wave basis setPhys. Rev. B19965411169111861996PhRvB..5411169K1:CAS:528:DyaK28Xms1Whu7Y%3D10.1103/PhysRevB.54.11169 – reference: HanMThree-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implantsNat. Electron.20192263510.1038/s41928-018-0189-7 – reference: DamjanovicDStress and frequency dependence of the direct piezoelectric effect in ferroelectric ceramicsJ. Appl. Phys.199782178817971997JAP....82.1788D1:CAS:528:DyaK2sXlsFSjsLc%3D10.1063/1.365981 – reference: HuYFerroelastic-switching-driven large shear strain and piezoelectricity in a hybrid ferroelectricNat. Mater.2021206126172021NatMa..20..612H1:CAS:528:DC%2BB3MXhtF2qtr4%3D3343214710.1038/s41563-020-00875-3 – reference: SomeyaTBaoZMalliarasGGThe rise of plastic bioelectronicsNature20165403793852016Natur.540..379S1:CAS:528:DC%2BC28XitVyru7%2FO2797476910.1038/nature21004 – reference: KresseGHafnerJAb initio molecular dynamics for liquid metalsPhys. Rev. B1993475585611993PhRvB..47..558K1:CAS:528:DyaK3sXlt1Gnsr0%3D10.1103/PhysRevB.47.558 – reference: DamjanovicDDemartinMThe Rayleigh law in piezoelectric ceramicsJ. Phys. D: Appl. Phys.199629205720601996JPhD...29.2057D1:CAS:528:DyaK28XksFCls7s%3D10.1088/0022-3727/29/7/046 – reference: MaintzSDeringerVLTchougréeffALDronskowskiRLOBSTER: A tool to extract chemical bonding from plane-wave based DFTJ. Computational Chem.201637103010351:CAS:528:DC%2BC28XjsVamtrg%3D10.1002/jcc.24300 – reference: QiuCTransparent ferroelectric crystals with ultrahigh piezoelectricityNature20205773503542020Natur.577..350Q1:CAS:528:DC%2BB3cXjsVejsrk%3D3194205510.1038/s41586-019-1891-y – reference: YangM-MPiezoelectric and pyroelectric effects induced by interface polar symmetryNature20205843773811:CAS:528:DC%2BB3cXhs1Cju7fP3281489010.1038/s41586-020-2602-4 – reference: LingYDisruptive, soft, wearable sensorsAdv. Mater.20203219046641:CAS:528:DC%2BC1MXitFCjtrvJ10.1002/adma.201904664 – reference: DesirajuGRHydrogen bridges in crystal engineering: Interactions without BordersAcc. Chem. Res.2002355655731:CAS:528:DC%2BD38Xjt1Ojsrs%3D1211899610.1021/ar010054t – reference: ShuLPhotoflexoelectric effect in halide perovskitesNat. Mater.2020196056092020NatMa..19..605S1:CAS:528:DC%2BB3cXnsFarur8%3D3231326510.1038/s41563-020-0659-y – reference: SalvadoriMCBrownIGVazARMeloLLCattaniMMeasurement of the elastic modulus of nanostructured gold and platinum thin filmsPhys. Rev. B2003671534042003PhRvB..67o3404S10.1103/PhysRevB.67.153404 – reference: LiuYFerroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundaryNature2018562961002018Natur.562...96L1:CAS:528:DC%2BC1cXhvVOjsLfK3028310210.1038/s41586-018-0550-z – reference: YanMPorous ferroelectric materials for energy technologies: Current status and future perspectivesEnergy. Environ. Sci.202114615861901:CAS:528:DC%2BB3MXisVentb7I10.1039/D1EE03025F – reference: Sheppard, D., Terrell, R. & Henkelman, G. Optimization methods for finding minimum energy paths. 128, 134106, https://doi.org/10.1063/1.2841941 (2008). – reference: Uchino, K. Advanced piezoelectric materials: Science and technology. (Woodhead Publishing, 2017). – reference: KuiYTayFEHMeasurement of longitudinal piezoelectric coefficient of thin films by a laser-scanning vibrometerIEEE Trans. Ultrason., Ferroelectr., Frequency Control20035011311610.1109/TUFFC.2003.1182115 – reference: CoondooIEnhanced Piezoelectric Properties of Praseodymium-Modified Lead-Free (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 CeramicsJ. Am. Ceram. Soc.201598312731351:CAS:528:DC%2BC2MXhtVOrsbzN10.1111/jace.13713 – reference: LiaoW-QA molecular perovskite solid solution with piezoelectricity stronger than lead zirconate titanateScience2019363120612102019Sci...363.1206L1:CAS:528:DC%2BC1MXks1yrsr4%3D3087252210.1126/science.aav3057 – reference: LiWMechanical tunability via hydrogen bonding in metal–organic frameworks with the perovskite architectureJ. Am. Chem. Soc.2014136780178041:CAS:528:DC%2BC2cXns12jtL4%3D2481531910.1021/ja500618z – reference: SenguptaDCharacterization of single polyvinylidene fluoride (PVDF) nanofiber for flow sensing applicationsAIP Adv.201771052052017AIPA....7j5205S10.1063/1.4994968 – reference: FanXDingYLiuYLiangJChenYPlasmonic Ti3C2Tx MXene enables highly efficient photothermal conversion for healable and transparent wearable deviceACS Nano.201913812481341:CAS:528:DC%2BC1MXhtF2ksb%2FO3124404610.1021/acsnano.9b03161 – reference: LimH-RAdvanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environmentAdv. Mater.20203219019241:CAS:528:DC%2BC1MXhtlejtrvN10.1002/adma.201901924 – reference: ViehlandDEffect of uniaxial stress on the large-signal electromechanical properties of electrostrictive and piezoelectric lead magnesium niobate lead titanate ceramicsJ. Appl. Phys.200495196919722004JAP....95.1969V1:CAS:528:DC%2BD2cXosVOqug%3D%3D10.1063/1.1641960 – reference: LiFUltrahigh piezoelectricity in ferroelectric ceramics by designNat. Mater.2018173493542018JNuM..502..349L1:CAS:528:DC%2BC1cXlvFKnsLw%3D2955599910.1038/s41563-018-0034-4 – reference: BellaicheLVanderbiltDIntrinsic piezoelectric response in perovskite alloys: PMN-PT versus PZTPhys. Rev. Lett.199983134713501999PhRvL..83.1347B1:CAS:528:DyaK1MXlt1yisbs%3D10.1103/PhysRevLett.83.1347 – volume: 33 start-page: 2006093 year: 2021 ident: 33325_CR11 publication-title: Adv. Mater. doi: 10.1002/adma.202006093 – volume: 2 start-page: 642 year: 2018 ident: 33325_CR6 publication-title: Joule doi: 10.1016/j.joule.2018.03.011 – volume: 142 start-page: 1077 year: 2020 ident: 33325_CR21 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b12368 – volume: 474 start-page: 128 year: 2015 ident: 33325_CR9 publication-title: Ferroelectrics doi: 10.1080/00150193.2015.997146 – volume: 35 start-page: 565 year: 2002 ident: 33325_CR41 publication-title: Acc. Chem. Res. doi: 10.1021/ar010054t – volume: 339 start-page: 425 year: 2013 ident: 33325_CR35 publication-title: Science doi: 10.1126/science.1229675 – volume: 27 start-page: 387 year: 1969 ident: 33325_CR25 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.27.387 – volume: 136 start-page: 7801 year: 2014 ident: 33325_CR39 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja500618z – volume: 20 start-page: 9 year: 2014 ident: 33325_CR10 publication-title: Microsyst. Technol. doi: 10.1007/s00542-013-2029-z – volume: 363 start-page: 1206 year: 2019 ident: 33325_CR22 publication-title: Science doi: 10.1126/science.aav3057 – volume: 19 start-page: 605 year: 2020 ident: 33325_CR20 publication-title: Nat. Mater. doi: 10.1038/s41563-020-0659-y – volume: 37 start-page: 1030 year: 2016 ident: 33325_CR50 publication-title: J. Computational Chem. doi: 10.1002/jcc.24300 – volume: 540 start-page: 379 year: 2016 ident: 33325_CR5 publication-title: Nature doi: 10.1038/nature21004 – volume: 20 start-page: 612 year: 2021 ident: 33325_CR23 publication-title: Nat. Mater. doi: 10.1038/s41563-020-00875-3 – volume: 115 start-page: 5461 year: 2011 ident: 33325_CR49 publication-title: J. Phys. Chem. A doi: 10.1021/jp202489s – volume: 95 start-page: 1969 year: 2004 ident: 33325_CR30 publication-title: J. Appl. Phys. doi: 10.1063/1.1641960 – volume: 32 start-page: 2002208 year: 2020 ident: 33325_CR14 publication-title: Adv. Mater. doi: 10.1002/adma.202002208 – volume: 32 start-page: 1901924 year: 2020 ident: 33325_CR8 publication-title: Adv. Mater. doi: 10.1002/adma.201901924 – volume: 50 start-page: 113 year: 2003 ident: 33325_CR31 publication-title: IEEE Trans. Ultrason., Ferroelectr., Frequency Control doi: 10.1109/TUFFC.2003.1182115 – volume: 369 start-page: 292 year: 2020 ident: 33325_CR32 publication-title: Science doi: 10.1126/science.abb3209 – volume: 67 start-page: 153404 year: 2003 ident: 33325_CR37 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.67.153404 – volume: 98 start-page: 3127 year: 2015 ident: 33325_CR15 publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.13713 – volume: 45 start-page: 74 year: 2001 ident: 33325_CR36 publication-title: Platin. Met. Rev.(UK) doi: 10.1595/003214001X4527482 – volume: 135 start-page: 1 year: 2019 ident: 33325_CR29 publication-title: Mater. Sci. Eng.: R: Rep. doi: 10.1016/j.mser.2018.08.001 – volume: 32 start-page: 1904664 year: 2020 ident: 33325_CR7 publication-title: Adv. Mater. doi: 10.1002/adma.201904664 – volume: 46 start-page: 5579 year: 1998 ident: 33325_CR26 publication-title: Acta. Mater. doi: 10.1016/S1359-6454(98)00167-0 – ident: 33325_CR48 doi: 10.1063/1.2841941 – volume: 2 start-page: 26 year: 2019 ident: 33325_CR4 publication-title: Nat. Electron. doi: 10.1038/s41928-018-0189-7 – volume: 577 start-page: 350 year: 2020 ident: 33325_CR42 publication-title: Nature doi: 10.1038/s41586-019-1891-y – volume: 13 start-page: 8124 year: 2019 ident: 33325_CR43 publication-title: ACS Nano. doi: 10.1021/acsnano.9b03161 – volume: 357 start-page: 306 year: 2017 ident: 33325_CR18 publication-title: Science doi: 10.1126/science.aai8535 – volume: 10 start-page: 3740 year: 2017 ident: 33325_CR38 publication-title: ChemSusChem. doi: 10.1002/cssc.201700991 – volume: 584 start-page: 377 year: 2020 ident: 33325_CR27 publication-title: Nature doi: 10.1038/s41586-020-2602-4 – volume: 54 start-page: 11169 year: 1996 ident: 33325_CR45 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 562 start-page: 96 year: 2018 ident: 33325_CR13 publication-title: Nature doi: 10.1038/s41586-018-0550-z – volume: 391 start-page: 15 year: 2019 ident: 33325_CR24 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2019.03.020 – volume: 7 start-page: 105205 year: 2017 ident: 33325_CR12 publication-title: AIP Adv. doi: 10.1063/1.4994968 – volume: 14 start-page: 6158 year: 2021 ident: 33325_CR2 publication-title: Energy. Environ. Sci. doi: 10.1039/D1EE03025F – volume: 77 start-page: 3865 year: 1996 ident: 33325_CR46 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – ident: 33325_CR1 – volume: 29 start-page: 2057 year: 1996 ident: 33325_CR33 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/29/7/046 – volume: 17 start-page: 349 year: 2018 ident: 33325_CR16 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0034-4 – volume: 12 start-page: 20440 year: 2020 ident: 33325_CR40 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c02313 – volume: 83 start-page: 1347 year: 1999 ident: 33325_CR34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.1347 – volume: 82 start-page: 1788 year: 1997 ident: 33325_CR28 publication-title: J. Appl. Phys. doi: 10.1063/1.365981 – ident: 33325_CR47 doi: 10.1002/jcc.20495 – ident: 33325_CR17 – volume: 47 start-page: 558 year: 1993 ident: 33325_CR44 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.558 – volume: 58 start-page: 14504 year: 2019 ident: 33325_CR19 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201907660 – volume: 23 start-page: 101682 year: 2020 ident: 33325_CR3 publication-title: iScience doi: 10.1016/j.isci.2020.101682 |
SSID | ssj0000391844 |
Score | 2.5999227 |
Snippet | Piezoelectric materials convert mechanical stress to electrical energy and thus are widely used in energy harvesting and wearable devices. However, in the... Improving piezoelectric strain and voltage constant generally compromises piezoelectric performance and mechanical softness. Here, the authors report a bond... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5607 |
SubjectTerms | 119/118 142/136 639/301/119/1002 639/301/119/996 639/4077/4072/4062 639/638/298/917 Bonding strength Chemical bonds Crystal structure Electric potential Energy Energy harvesting Engineering Ferroelectric materials Ferroelectricity Ferroelectrics Humanities and Social Sciences Laboratories Metal halides multidisciplinary Phase transitions Piezoelectricity Science Science (multidisciplinary) Shear strain Softness Solid solutions Strain Voltage Wearable computers Wearable technology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUMgl9JFSt2lRIbdWxJZkyT62pSEUmlMDuQlJHpGFxLvYG0j76zuSvLtxoM2lV-thSTOjGTEz3xByHFDHcRsUg1oKJl0JzElnGaomrySo0tuYKPzjXJ1dyO-X9eW9Ul8xJizDA-eDO6m5Lp3k2kLjpFBo4NS2DmgYBOl56FKaL0587zGV7mDR4tNFTlkypWhORpnuhBS8LgSvmZppogTYP7MyH8ZIPnCUJv1z-owcTIYj_ZwX_Jw8gf4FeZpLSf56Se5ifWAKO3RBugz0ZlP7lgYYhmUuebPwIx1SAbmRjngJU4sDI2oxW-2SCOhqAb-3AyikDEF6ZYeEyoGzo6GbefeQXJx--_n1jE1VFZivK71mLUppEDJUtnTOBq8DWOjw3tOu1jb6YVGEG9GFSjShLVUANCKd7oQNAkp8e78ie_2yh9eE-sp5B6gEOe-kDbq1wWIP15adA1RzBak2J2z8BDkeK19cm-T6Fo3JVDFIFZOoYlRBPm7HrDLgxj97f4mE2_aMYNnpA7KQmVjIPMZCBTnakN1MEjwaHsMTVIQfLMiHbTPKXnSo2B6Wt7lPBBdqREH0jF1mC5q39IurhOLdoqkmNC_Ipw1j7X7-9w2_-R8bfkv2eRSE5Fw7Invr4RbeoW21du-TGP0Ba6sjEQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Health Medical collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFD_oRHAPQ6didUoE3zSsTdKmfRoqjiHok4P7FpI0cRe0vWvvYPOv9yT9uHbgXpukTXs-m5P8fgDvPMY4pn1BXS44FSZ11AijKYYmWwhXpFaHg8Lfvhdn5-LrKl-NC279uK1y8onRUdetDWvkxyyUi4sAB3eyuaSBNSpUV0cKjfvwIECXhS1dciXnNZaAfl4KMZ6VwbHHvYieIW5h55zltFjEowjbv8g1b--UvFUujVHo9DEcjOkj-TjI-wncc80hPBwIJW8OYf8feMGncB04g4nbXSKtJ78nPlziXde1Aw3O2vaki6RyPenRMRONAwOSMd3sDhaQzdr9mQcQF08NkgvdRaQOvDsmv4M-P4Pz0y8_Pp_RkWmB2jyTW1qh5XoufKZTY7S30jvtavSF0uRSh9osmnXJa5_x0ldp4R0mlkbWXHvuUvwffw57Tdu4F0BsZqxxGBgZq4X2stJeYw9TpbVxGPoSyKbvrewIQx7YMH6pWA7npRpkpFBGKspIFQm8n8dsBhCOO3t_CmKcewYA7Xih7X6q0R5VzmRqBJPalUagXpVprnOP-aYXlvm6TOBoUgI1WnWvdjqYwNu5Ge0xFFl049qroU8AHCp5AnKhPIsJLVua9UVE9q4wfeOSJfBhUrPdw___wi_vnusreMSCwsdS2hHsbbsr9xozqa15E83lL7kFH80 priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9UwEB_WFcGL-InVVSJ402CbpEl71IfLIujJhb2FJE3cB9o-2rew-tc7ST8eXVTw2sz0a2Yy087MbwBeB_RxzARJfSk4FTb31AprKLomJ4WXuTOxUfjzF3l2Lj5dlBdHwOZemFS0nyAt0zY9V4e9G0Qy6VR7zjkrqbwFtyN0e9Tqjdws_1Ui4nklxNQfk_PqD6wrH5Sg-lfx5c3qyBsp0uR5Tu_DvSlkJO_Hm3wAR759CHfGIZI_H8F1nAxM_AFXkHSB_Jin3pLg-74bh91s3UD6NDpuIANuv8QgY8QrprtD-wDZbf2vhYH41BtILk2f8Djw7Bjijlr7GM5PP37dnNFpngJ1ZaH2tEb7DFyEwuTWmuBU8MY3uOMpWyoTM7BovBVvQsGrUOcyeAwfrWq4Cdzn-NX9BI7brvVPgbjCOuvR_THWCBNUbYJBClvnjfXo4DIo5jes3QQ2HmdefNcp6c0rPUpFo1R0koqWGbxZeHYj1MY_qT9EwS2UESY7Hej6b3pSG10ylVvBlPGVFVxidFyaMmBUGYRjoakyOJnFrifbHTSLhQkyAg9m8GpZRquLqRTT-u5qpImwQhXPQK3UZXVD65V2e5nwu2sM0rhiGbydFetw8b8_8LP_I38Od1lU-ZRAO4HjfX_lX2D8tLcvk8H8BmyEGPw priority: 102 providerName: Springer Nature |
Title | Bond engineering of molecular ferroelectrics renders soft and high-performance piezoelectric energy harvesting materials |
URI | https://link.springer.com/article/10.1038/s41467-022-33325-6 https://www.proquest.com/docview/2717360389 https://www.proquest.com/docview/2717696883 https://pubmed.ncbi.nlm.nih.gov/PMC9509372 https://doaj.org/article/5270b427ae8b4360805a5f095f4c2fd8 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_6wWAvY5_MWxc02NumzZZky34YIw3NSqBlbAvkzUi2tAY6O7NTaPfX7yTbCSndYC822JJj6-50P-V0vwN4Y9HHMWUTamLBqdChoVpoRdE1FYkwSVgolyh8dp6czsVsES_2YCh31A9ge-fSztWTmjeX769_3XxCg__YpYynH1rhzd3vS-ecxTTZh0P0TNIZ6lkP9_3MzDNc0LhAMwtFRNF38z6P5u7H7PgqT-m_g0Nv76K8FUr1Hmr6EB700JKMO114BHumegz3umKTN0_g2lUQJmbLP0hqS34O1XGJNU1Td0VxlkVLGl9iriUtTtNEYUfHa0xX2zQDslqa35sOxPgcQnKhGs_bgU9HKNxp91OYT0--T05pX3eBFnEk1zRDO7Zc2EiFWitbSGuUKXFmlDqWykVq0chTXtqIpzYLE2sQZmpZcmW5CXF1_gwOqroyz4EUkS60QTfJWCmUlZmyClvoLCy1QUcYQDSMcF70pOSuNsZl7oPjPM07qeQoldxLJU8CeLvps-ooOf7Z-tgJbtPS0Wn7C3XzI--tM4-ZDLVgUplUC54gio5VbBF9WlEwW6YBHA1izwcVzZnbwJA4gsIAXm9uo3W6kIuqTH3VtXH0QykPQO6oy84L7d6plhee5ztDMMclC-DdoFjbH__7B7_4r-F5CfeZ03gfZzuCg3VzZV4hzFrrEezLhcRjOv08gsPxePZthufjk_MvX_HqJJmM_B8YI29jfwCB7irB |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQcEBQqAgWMBCeImthOnBwQ4lVt6ePUSnszdmLTlWiyTbaC8qP4jYydx7KV6K3XxE6czDeeScb-PoBXFmMcVTYNTcJZyHVkQs21CjE0FSk3aVQot1H44DCdHPOv02S6Bn-GvTBuWeUwJ_qJuqwL9498m7pycero4N7Pz0KnGuWqq4OERgeLPXPxEz_Z2ne7n9G-rynd-XL0aRL2qgJhkcRiEeaIUsu4jVWktbKFsEaZEv1e6EQoV4dECGestDHLbB6l1mASpUXJlGUmwm9PvO4NuImBN3IeJaZi_Kfj2NYzzvu9OTjW7Zb7mcgvmWeMJmG6Ev-8TMBKbnt5Zeal8qyPejv34V6frpIPHb4ewJqpNuBWJ2B5sQF3_6EzfAi_nEYxMctDpLbkdNDfJdY0Td3J7syKljRexK4lLQYCorCjY04O58uNDGQ-M7_HDsT4XYrkRDWeGQSvjsl25z-P4PhabLAJ61VdmcdAilgX2mAgprTkyopcWYUtdB6V2mCoDSAe3rcsetpzp77xQ_ryO8tkZyOJNpLeRjIN4M3YZ96RflzZ-qMz49jSEXb7A3XzXfb-LxMqIs2pUCbTHHGcRYlKLOa3lhfUllkAWwMIZD-LtHKJ-QBejqfR_11RR1WmPu_aOIKjjAUgVsCzMqDVM9XsxDOJ55guMkEDeDvAbHnz_z_wk6vH-gJuT44O9uX-7uHeU7hDHfh9GW8L1hfNuXmGWdxCP_euQ-DbdfvqX2CPXa4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAcEBQQgQJGghNEm9hOnBwQAsqqpVBxoNLejJ3YdKU2WZKtoPw0fh1j57FsJXrrNbETJ_NMxvN9AM8txjiqbBqahLOQ68iEmmsVYmgqUm7SqFCuUfjzQbp7yD_OktkG_Bl6Ydy2ysEnekdd1oX7Rz6hrlycOji4ie23RXzZmb5Z_Agdg5SrtA50Gp2K7Juzn_j51r7e20FZv6B0-uHr-92wZxgIiyQWyzBHjbWM21hFWitbCGuUKdEHCJ0I5WqSqM4ZK23MMptHqTWYUGlRMmWZifA7FK97Ba4KlsTOxsRMjP93HPJ6xnnfp4PrnrTceyW_fZ4xmoTpWiz0lAFree75XZrnSrU-Ak5vw60-dSVvO127Axum2oJrHZnl2Rbc_Afa8C78cnzFxKwOkdqSk4GLl1jTNHVHwTMvWtJ4QruWtBgUiMKJDkU5XKyaGshibn6PE4jxHYvkSDUeJQSvjol3Z0v34PBSZHAfNqu6Mg-AFLEutMGgTGnJlRW5sgpH6DwqtcGwG0A8vG9Z9BDojonjWPpSPMtkJyOJMpJeRjIN4OU4Z9EBgFw4-p0T4zjSgXf7A3XzXfa-QCZURJpToUymOep0FiUqsZjrWl5QW2YBbA9KIHuP0sqV_gfwbDyNvsAVeFRl6tNujAM7ylgAYk151ha0fqaaH3lU8RxTRyZoAK8GNVvd_P8P_PDitT6F62il8tPewf4juEGd7vuK3jZsLptT8xgTuqV-4i2HwLfLNtW_f0Bh5A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bond+engineering+of+molecular+ferroelectrics+renders+soft+and+high-performance+piezoelectric+energy+harvesting+materials&rft.jtitle=Nature+communications&rft.au=Hu%2C+Yuzhong&rft.au=Parida%2C+Kaushik&rft.au=Zhang%2C+Hao&rft.au=Wang%2C+Xin&rft.date=2022-09-24&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-022-33325-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_022_33325_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |