Traffic Sign Detection via Improved Sparse R-CNN for Autonomous Vehicles
Traffic sign detection is an important component of autonomous vehicles. There is still a mismatch problem between the existing detection algorithm and its practical application in real traffic scenes, which is mainly due to the detection accuracy and data acquisition. To tackle this problem, this s...
Saved in:
Published in | Journal of advanced transportation Vol. 2022; pp. 1 - 16 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Hindawi
01.03.2022
John Wiley & Sons, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Traffic sign detection is an important component of autonomous vehicles. There is still a mismatch problem between the existing detection algorithm and its practical application in real traffic scenes, which is mainly due to the detection accuracy and data acquisition. To tackle this problem, this study proposed an improved sparse R-CNN that integrates coordinate attention block with ResNeSt and builds a feature pyramid to modify the backbone, which enables the extracted features to focus on important information, and improves the detection accuracy. In order to obtain more diverse data, the augmentation method used is specifically designed for complex traffic scenarios, and we also present a traffic sign dataset in this study. For on-road autonomous vehicles, we designed two modules, self-adaption augmentation (SAA) and detection time augmentation (DTA), to improve the robustness of the detection algorithm. The evaluations on traffic sign datasets and on-road testing demonstrate the accuracy and effectiveness of the proposed method. |
---|---|
AbstractList | Traffic sign detection is an important component of autonomous vehicles. There is still a mismatch problem between the existing detection algorithm and its practical application in real traffic scenes, which is mainly due to the detection accuracy and data acquisition. To tackle this problem, this study proposed an improved sparse R-CNN that integrates coordinate attention block with ResNeSt and builds a feature pyramid to modify the backbone, which enables the extracted features to focus on important information, and improves the detection accuracy. In order to obtain more diverse data, the augmentation method used is specifically designed for complex traffic scenarios, and we also present a traffic sign dataset in this study. For on-road autonomous vehicles, we designed two modules, self-adaption augmentation (SAA) and detection time augmentation (DTA), to improve the robustness of the detection algorithm. The evaluations on traffic sign datasets and on-road testing demonstrate the accuracy and effectiveness of the proposed method. |
Audience | Academic |
Author | Bao, Hong Pan, Feng Pan, Weiguo Liang, Tianjiao |
Author_xml | – sequence: 1 givenname: Tianjiao orcidid: 0000-0002-6062-6166 surname: Liang fullname: Liang, Tianjiao organization: Beijing Key Laboratory of Information Service EngineeringBeijing Union UniversityBeijingChinabuu.edu.cn – sequence: 2 givenname: Hong surname: Bao fullname: Bao, Hong organization: Beijing Key Laboratory of Information Service EngineeringBeijing Union UniversityBeijingChinabuu.edu.cn – sequence: 3 givenname: Weiguo orcidid: 0000-0002-2293-1004 surname: Pan fullname: Pan, Weiguo organization: Beijing Key Laboratory of Information Service EngineeringBeijing Union UniversityBeijingChinabuu.edu.cn – sequence: 4 givenname: Feng orcidid: 0000-0002-7927-456X surname: Pan fullname: Pan, Feng organization: Beijing Key Laboratory of Information Service EngineeringBeijing Union UniversityBeijingChinabuu.edu.cn |
BookMark | eNp9kl1rFDEUhgep4LZ65w8Y8FKnzcckM7lc1moXSgVbvQ0nX7NZdpM1man478069QuqBBJ4ec57zsk5p9VJiMFW1UuMzjFm7IIgQi5oTxij5Em1IKglDcWCnVQLhEXX8I6IZ9VpzluEqGCiXVRXdwmc87q-9UOo39rR6tHHUN97qNf7Q4r31tS3B0jZ1h-b1c1N7WKql9MYQ9zHKdef7cbrnc3Pq6cOdtm-eHjPqk_vLu9WV831h_fr1fK60Qx3Y9M7ppg2nCktQDmsWi1Mi0Br3fXcKcJFzwkyrbKqCFYbgQEh5axTGAlFz6r17GsibOUh-T2kbzKClz-EmAYJaTyWJBUT1ADRmmnS9mAE7WiPeE8d60QLpni9mr1Kn18mm0e5jVMKpXxJOO1Z2xNKCtXM1ADF1AcXxwR6sMEm2JUBOF_kJRcd5xRhWvjzR_hyjN17_WjAmz8C1JR9sLlc2Q-bMQ8w5fw3TmZcp5hzsk5qP8JxaiWP30mM5HEb5HEb5MM2_M7xK-jn1_0Dfz3jGx8MfPX_p78Dv1XB0w |
CitedBy_id | crossref_primary_10_1049_ipr2_13141 crossref_primary_10_3390_app12125972 crossref_primary_10_3390_s22134833 crossref_primary_10_3390_ijgi13030104 crossref_primary_10_1109_ACCESS_2023_3266284 crossref_primary_10_3390_electronics12122739 crossref_primary_10_3390_rs14143498 crossref_primary_10_1109_ACCESS_2023_3332475 crossref_primary_10_3390_electronics12020305 crossref_primary_10_1109_ACCESS_2024_3349978 crossref_primary_10_3390_app12189366 crossref_primary_10_1109_ACCESS_2023_3293532 crossref_primary_10_1109_ACCESS_2024_3378748 crossref_primary_10_1109_ACCESS_2023_3324146 crossref_primary_10_1109_ACCESS_2025_3534321 crossref_primary_10_1109_ACCESS_2023_3329713 crossref_primary_10_1109_ACCESS_2024_3462629 crossref_primary_10_3390_app13105901 crossref_primary_10_3934_electreng_2023016 crossref_primary_10_1109_ACCESS_2023_3323618 crossref_primary_10_3390_s22218097 crossref_primary_10_1007_s00371_024_03287_5 crossref_primary_10_1038_s41598_025_94610_0 crossref_primary_10_1109_ACCESS_2024_3357781 crossref_primary_10_1016_j_oceaneng_2024_119600 crossref_primary_10_1109_ACCESS_2023_3333894 crossref_primary_10_1109_ACCESS_2024_3435384 crossref_primary_10_1109_ACCESS_2024_3437642 crossref_primary_10_1109_ACCESS_2023_3322371 crossref_primary_10_1109_ACCESS_2023_3289586 crossref_primary_10_3390_s25010230 crossref_primary_10_1109_ACCESS_2023_3347352 crossref_primary_10_1007_s11554_023_01403_7 crossref_primary_10_3390_app13074533 crossref_primary_10_3389_fbioe_2022_944944 crossref_primary_10_3389_frobt_2024_1212070 crossref_primary_10_1109_ACCESS_2023_3263479 crossref_primary_10_1109_ACCESS_2023_3321966 crossref_primary_10_1109_ACCESS_2022_3166923 crossref_primary_10_1109_ACCESS_2023_3306951 crossref_primary_10_1049_ipr2_13056 crossref_primary_10_1109_ACCESS_2023_3256723 crossref_primary_10_1109_ACCESS_2023_3339775 crossref_primary_10_3934_mbe_2023851 crossref_primary_10_1109_ACCESS_2023_3315589 crossref_primary_10_1155_2022_4285436 crossref_primary_10_1109_ACCESS_2025_3529289 crossref_primary_10_1109_ACCESS_2024_3470815 crossref_primary_10_3390_axioms13050335 |
Cites_doi | 10.1109/CVPR.2016.91 10.1109/TPAMI.2020.3032166 10.1109/CVPR.2016.90 10.1109/CVPR46437.2021.01422 10.1109/CVPR.2014.81 10.1109/TITS.2012.2209421 10.1109/UBMYK48245.2019.8965590 10.1109/CVPR42600.2020.01160 10.1109/TPAMI.2019.2913372 10.1109/JIOT.2020.3034899 10.1109/tnsm.2021.3098157 10.1109/IJCNN.2013.6706807 10.1145/3065386 10.1109/CVPR46437.2021.01350 10.1109/ACCESS.2020.3047414 10.1109/CVPR.2018.00644 10.1007/978-3-319-46448-0_2 10.1609/aaai.v34i07.6999 10.1109/TPAMI.2016.2577031 10.1109/ACCESS.2021.3094201 10.1109/TPAMI.2018.2844175 10.1109/ACCESS.2021.3059052 10.1109/CVPR.2018.00647 10.1007/978-3-030-01234-2_1 10.1109/CVPR.2017.690 10.1109/CVPR.2016.232 10.1109/TITS.2019.2913588 10.1109/TCCN.2017.2758370 10.3390/a10040127 10.1007/978-3-030-58452-8_13 10.1109/CVPR.2005.177 10.1109/5254.708428 10.1109/TPAMI.2018.2858826 10.1109/ICOSP.2014.7015147 10.1109/CVPR.2017.634 10.1109/TNSM.2019.2899085 10.1007/978-3-319-48890-5_20 10.1109/ICCV.2015.169 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Tianjiao Liang et al. COPYRIGHT 2022 John Wiley & Sons, Inc. Copyright © 2022 Tianjiao Liang et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Copyright © 2022 Tianjiao Liang et al. – notice: COPYRIGHT 2022 John Wiley & Sons, Inc. – notice: Copyright © 2022 Tianjiao Liang et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | RHU RHW RHX AAYXX CITATION N95 3V. 7ST 7WY 7WZ 7XB 87Z 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ C1K CCPQU DWQXO FR3 FRNLG F~G HCIFZ K60 K6~ KR7 L.- L6V M0C M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U SOI DOA |
DOI | 10.1155/2022/3825532 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Gale Business: Insights ProQuest Central (Corporate) Environment Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) SciTech Collection (ProQuest) ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Collection (ProQuest) Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Environment Abstracts DOAJ: Directory of Open Access Journal (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection Civil Engineering Abstracts ABI/INFORM Global Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2042-3195 |
Editor | Yao, Zhihong |
Editor_xml | – sequence: 1 givenname: Zhihong surname: Yao fullname: Yao, Zhihong |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_b593da2cc5c248ad937380683f5794ad A697663013 10_1155_2022_3825532 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61802019; 61932012; 61871039 – fundername: Beijing Municipal Education Commission Science and Technology grantid: KM201911417003; KM201911417009; KM201911417001 – fundername: Beijing Union University grantid: YZ2020K001; YZ2021K001 |
GroupedDBID | -~X ..I 05W 0R~ 1OC 24P 29J 3SF 4.4 52U 5GY 7WY 8-1 8FL AAESR AAFWJ AAJEY AAONW ABDBF ABJCF ABUWG ACCMX ACIWK ACNCT ACUHS ADBBV ADIZJ AENEX AEUYN AFBPY AFKRA AFPKN AFRAH AJXKR ALMA_UNASSIGNED_HOLDINGS ARAPS ATUGU AZVAB BAAKF BCNDV BDRZF BENPR BEZIV BGLVJ BHBCM BNHUX BOGZA BRXPI CCPQU DU5 DWQXO EBS ESX FRNLG G-S GODZA GROUPED_DOAJ H13 HCIFZ HZ~ I-F IAO IOF ITC LITHE M0C M7S MY~ N95 O9- OK1 P2P PHGZT PIMPY PQBIZ PQBZA PTHSS RHU RHW RHX TN5 TUS WBKPD WH7 AAYXX CITATION PHGZM PMFND 3V. 7ST 7XB 8FD 8FE 8FG 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC C1K FR3 K60 K6~ KR7 L.- L6V P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U SOI PUEGO |
ID | FETCH-LOGICAL-c517t-8f5b5cd65bc9abf1b4c9d40accc786fb2698620d4beb786ecd91a00bfefb109b3 |
IEDL.DBID | BENPR |
ISSN | 0197-6729 |
IngestDate | Wed Aug 27 01:18:51 EDT 2025 Sun Jul 13 05:34:31 EDT 2025 Fri Jun 13 00:09:17 EDT 2025 Tue Jun 10 21:03:29 EDT 2025 Fri May 23 02:36:37 EDT 2025 Tue Jul 01 00:34:13 EDT 2025 Thu Apr 24 23:11:47 EDT 2025 Wed Apr 16 06:24:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-8f5b5cd65bc9abf1b4c9d40accc786fb2698620d4beb786ecd91a00bfefb109b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7927-456X 0000-0002-6062-6166 0000-0002-2293-1004 |
OpenAccessLink | https://www.proquest.com/docview/2638548232?pq-origsite=%requestingapplication% |
PQID | 2638548232 |
PQPubID | 1006382 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b593da2cc5c248ad937380683f5794ad proquest_journals_2638548232 gale_infotracgeneralonefile_A697663013 gale_infotracacademiconefile_A697663013 gale_businessinsightsgauss_A697663013 crossref_citationtrail_10_1155_2022_3825532 crossref_primary_10_1155_2022_3825532 hindawi_primary_10_1155_2022_3825532 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Journal of advanced transportation |
PublicationYear | 2022 |
Publisher | Hindawi John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley |
References | 44 45 47 49 K. Simonyan (33) 2015 I. Loshchilov (46) 2019 X. Glorot (48) 50 10 11 12 13 D. Hendrycks (41) 2019 16 17 18 19 S. Sabour (24) 1 A. Vaswani (3) 2 5 6 7 8 H. Zhang (9) 2020 20 21 22 23 25 26 27 A. Dosovitskiy (4) 2021 28 K. Sun (29) 2019 30 31 32 A. Bochkovskiy (14) 2020 34 35 J. Park (38) 2018 36 37 39 J. Redmon (15) 2018 40 42 43 |
References_xml | – year: 2015 ident: 33 article-title: Very deep convolutional networks for large-scale image recognition – year: 2019 ident: 46 article-title: Decoupled weight decay regularization – ident: 17 doi: 10.1109/CVPR.2016.91 – ident: 20 doi: 10.1109/TPAMI.2020.3032166 – ident: 34 doi: 10.1109/CVPR.2016.90 – ident: 6 doi: 10.1109/CVPR46437.2021.01422 – ident: 7 doi: 10.1109/CVPR.2014.81 – year: 2020 ident: 9 article-title: Resnest: split-attention networks – ident: 43 doi: 10.1109/TITS.2012.2209421 – ident: 13 doi: 10.1109/UBMYK48245.2019.8965590 – ident: 30 doi: 10.1109/CVPR42600.2020.01160 – ident: 37 doi: 10.1109/TPAMI.2019.2913372 – ident: 22 doi: 10.1109/JIOT.2020.3034899 – ident: 50 doi: 10.1109/tnsm.2021.3098157 – ident: 42 doi: 10.1109/IJCNN.2013.6706807 – ident: 47 doi: 10.1145/3065386 – ident: 40 doi: 10.1109/CVPR46437.2021.01350 – ident: 28 doi: 10.1109/ACCESS.2020.3047414 – year: 2020 ident: 14 article-title: Yolov4: optimal speed and accuracy of object detection – ident: 32 doi: 10.1109/CVPR.2018.00644 – ident: 18 doi: 10.1007/978-3-319-46448-0_2 – ident: 35 doi: 10.1609/aaai.v34i07.6999 – ident: 8 doi: 10.1109/TPAMI.2016.2577031 – year: 2018 ident: 38 article-title: BAM: bottleneck attention module – ident: 25 doi: 10.1109/ACCESS.2021.3094201 – ident: 27 doi: 10.1109/TPAMI.2018.2844175 – ident: 23 doi: 10.1109/ACCESS.2021.3059052 – ident: 49 doi: 10.1109/CVPR.2018.00647 – start-page: 3859 ident: 24 article-title: Dynamic routing between capsules – ident: 39 doi: 10.1007/978-3-030-01234-2_1 – ident: 16 doi: 10.1109/CVPR.2017.690 – ident: 44 doi: 10.1109/CVPR.2016.232 – ident: 26 doi: 10.1109/TITS.2019.2913588 – ident: 2 doi: 10.1109/TCCN.2017.2758370 – start-page: 6000 ident: 3 article-title: Attention is all you need – ident: 45 doi: 10.3390/a10040127 – ident: 5 doi: 10.1007/978-3-030-58452-8_13 – ident: 11 doi: 10.1109/CVPR.2005.177 – ident: 12 doi: 10.1109/5254.708428 – ident: 19 doi: 10.1109/TPAMI.2018.2858826 – start-page: 249 ident: 48 article-title: Understanding the difficulty of training deep feedforward neural networks – year: 2019 ident: 29 article-title: High-resolution representations for labeling pixels and regions – year: 2021 ident: 4 article-title: An image is worth 16x16 words: transformers for image recognition at scale – ident: 10 doi: 10.1109/ICOSP.2014.7015147 – year: 2019 ident: 41 article-title: Benchmarking neural network robustness to common corruptions and surface variations – ident: 36 doi: 10.1109/CVPR.2017.634 – ident: 1 doi: 10.1109/TNSM.2019.2899085 – ident: 31 doi: 10.1007/978-3-319-48890-5_20 – ident: 21 doi: 10.1109/ICCV.2015.169 – year: 2018 ident: 15 article-title: Yolov3: an incremental improvement |
SSID | ssj0039594 |
Score | 2.513597 |
Snippet | Traffic sign detection is an important component of autonomous vehicles. There is still a mismatch problem between the existing detection algorithm and its... |
SourceID | doaj proquest gale crossref hindawi |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Algorithms Augmentation Autonomous vehicles Candidates Computer vision Data acquisition Data collection Datasets Deep learning Design Driverless cars Feature extraction Methods Proposals Semantics Signs Traffic control Traffic signs Transportation Vehicles |
SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journal (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQpUr0gChQkRKQD4Ue0Kq7fmV9DIEqQiIHQlBvll-bRqq2UXcDf5-ZXSdqVFAvXPZgjWTvjD0znzX-hpAzq6uY5y5kZcVEJiCkZRZMnfFQQrAY8SAVPhT-NlPThfh6Ja_utfrCmrCeHrhX3IWTmgfLvJeeidIGjVQ8uSp5JWEr2YDeF2LeFkz1PphrqcW2zF1KRPjsggMYkpztBaCOp3_njQ-vEQf_Xj3wy12wuXxOnqUskY771R2TJ7F-QY7ucQe-JFOIMkj_QOerZU0_x7arqarpr5Wl_U1BDHS-Btwa6fdsMptRSE_peNPiKwaA-_RnvO5K4l6RxeWXH5NpltoiZF4Woxa0Kp30QUnntXVV4YTXQeTWez8qVeWY0gBT8iBcdDAQfdCFBXtUsXJFrh0_IQf1bR1fEypg1DttvVJR6ArSASEgpEnmRl6xQgzIx62ujE-c4di64sZ02EFKg5o1SbMD8n4nve65Mv4h9wnVvpNBhutuAOxukt3NY3aHydBoJvXqhE-DtxnN0m6axowVpFkKnBcfkPNODs8rLN3b9OwAFIDMV3uSH_Yklz3v998Ez9JGeeQ3h9tdZJJjaAwDfwcgEfLY0_-hhTfkKU7ZF8UNyUF7t4lvIUtq3bvuQPwBvQAK8g priority: 102 providerName: Directory of Open Access Journals – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT-swELYACQkOiFWUTT6wHFD0knhJfCybKiR6YFNvlreUSk95iKTw9xknbkWBJ7hEijXZZuyZ-ZzxZ4QOlShcHGsb5UVKIwohLVJg6ojYHIJFRizjfqHwTZ_3Huj1gA0CSVL19Rc-RDsPz9M_BJAMI-Br56GDeVDeG0wcLhFMtBTeIos4JIuT-vZP185Enoagf-qGF588AH4bfXHITZS5WkUrIT3E3daea2jOleto-QNp4AbqQXjxvA_4bjQs8YWrm2KqEr-OFG6nCJzFd88AWB2-jc77fQx5Ke6Oa798AXA-fnRPTS3cJnq4urw_70VhP4TIsCSrQZ1MM2M500YoXSSaGmFprIwxWc4LnXIB-CS2VDsNDc5YkSgwROEKncRCky20UP4r3TbCFFqNFspw7qgoIA-gFGIZS3VmeJrQDjqd6EqaQBbu96z4KxvQwJj0mpVBsx10NJV-bkky_iN35tU-lfHU1k0DmFuGkSI1E8Sq1BhmUporKzz3UsxzUjDwHcrCw7zRZNikEw6Vn8aohmpcVbLLIb_i4LVIB500cn6gwqsbFdYbgAI85dWM5PGM5LAl_P5O8DB0lB8-c2_Si2TwCJVMwdEBOoQEdud3d9lFS_60rXfbQwv1y9jtQwJU64Om-78D6Qb6LQ priority: 102 providerName: Hindawi Publishing |
Title | Traffic Sign Detection via Improved Sparse R-CNN for Autonomous Vehicles |
URI | https://dx.doi.org/10.1155/2022/3825532 https://www.proquest.com/docview/2638548232 https://doaj.org/article/b593da2cc5c248ad937380683f5794ad |
Volume | 2022 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEF7RVkhwQDzV0BLtocABrWp7H_aeUFoaIiQilFKU22pfTiMhJ9RO-fvM2utAxOviw2ZkJ7Pjbx6Z_QahEy1LnyTGkaLMGGHg0oiGrSbUFeAscuq4CAeFP07F5Ip9mPN5LLjVsa2yx8QWqN3Khhr5aQaGAtE1BABv199ImBoV_l2NIzT20AFAcAHJ18HZxfTTrMdiKrns2L1lTgTEkX3rO-ch689OKSRInGY7Tqnl7t8i9N3rkBt_X_6G1a0DGj9ED2LkiEfdVj9Cd3z1GN3_hU_wCZqA5wmUEPhyuajwO9-0fVYVvl1q3FUPvMOXa8hlPZ6R8-kUQ8iKR5smnGxYbWr8xV-3bXJP0dX44vP5hMRRCcTyNG9A09xw6wQ3VmpTpoZZ6ViirbV5IUqTCQmpS-KY8QYWvHUy1bBHpS9NmkhDn6H9alX5Q4QZrFojtRXCM1lCiMAYuDmemdyKLGUD9KbXlbKRRzyMs_iq2nyCcxU0q6JmB-jlVnrd8Wf8Re4sqH0rE1iv24XVzULFl0gZLqnTmbXcZqzQTgZapkQUtOQAK9rBw8KmqTi_Ey51qHDUC72pazUSEHoJADQ6QK9bufAOw1e3Oh5FAAUENqwdyVc7kouOC_xPgifRUP7zM497K1IRLGr107Sf__vjI3Qv3KxrgTtG-83Nxr-AmKgxQ7RXjN8Po_kP28oCXGeT-Q8hQwjc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgQcEE8RKLCHFg7Iqr2veA8IhZaQ0jYH2qLeln05jYSSUCdU_Cl-IzN-BCJep158WI9s7-w817PfELJpdRHT1IUkL5hIBLi0xMJSJzzk4Cy6PEiFB4UPh2pwIt6fytM18r09C4Nlla1NrAx1mHrcI99mICgQXUMA8Hr2JcGuUfh3tW2hUYvFfvx2ASlb-WpvF9Z3i7H-2-OdQdJ0FUi8zLpz-CjppA9KOq-tKzInvA4itd77bq4Kx5SGKD8NwkUHA9EHnVmYThELl6XacXjuFXJVcK5Ro_L-u9bycy11jSWuu4mCqLUttJcS9xjYNod0THK24gKrTgFLf3DtDDPxi_FvnqFyd_3b5FYTp9JeLVh3yFqc3CU3f0EvvEcG4OcQgIIejUcTuhvnVVXXhH4dW1rvVcRAj2aQOUf6IdkZDikEyLS3mOM5iumipB_jWVWUd5-cXAoLH5D1yXQSHxIqYNQ7bb1SUegCAhIhwKlK5rpesUx0yMuWV8Y3qOXYPOOzqbIXKQ1y1jSc7ZCtJfWsRuv4C90bZPuSBjG2q4Hp-cg0Kmuc1DxY5r30TOQ2aASBSlXOCwlGzAZ4GS6aabqFwqXE_ZRyZBdlaXoKAj0F5pN3yIuKDi0GfLq3zcEHYABib61QPl-hHNXI438i3GwE5T_T3GilyDSmqTQ_FenRv28_I9cHx4cH5mBvuP-Y3MAH18V3G2R9fr6ITyAam7unlQpQ8umyde4HG_xENA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdGJxAcEJ-iMMCHDQ4oauLYTnxAqFtXdQyqaWNoN-OvdJVQWpaWiX-Nv47nxClUfJ12ycF5SuLn9-k8_x5C20oULo61jfKC0IiCS4sULHWU2hycRZZaxv1B4fdjPjqlb8_Y2Qb63p6F8WWVrU2sDbWdGb9H3iMgKBBdQwDQK0JZxNFg-Gb-JfIdpPyf1radRiMih-7bJaRv1euDAaz1DiHD_Q97oyh0GIgMS7IFfCDTzFjOtBFKF4mmRlgaK2NMlvNCEy4g4o8t1U7DgDNWJAqmVrhCJ7HQKTz3GtrMICuKO2hzd398dNz6gVQw0SCLiyziEMO2ZfeM-R0H0kshOWMpWXOIdd-AlXe4fu7z8svpb36idn7DO-h2iFpxvxGzu2jDlffQrV-wDO-jEXg9D0eBT6aTEg_coq7xKvHXqcLNzoWz-GQOebTDx9HeeIwhXMb95cKfqpgtK_zRndcleg_Q6ZUw8SHqlLPSPUKYwqjRQhnOHRUFhCeUgotlRGeGk4R20auWV9IEDHPfSuOzrHMZxqTnrAyc7aKdFfW8we74C92uZ_uKxiNu1wOzi4kMCiw1E6lVxBhmCM2VFR4SKuZ5WjAwacrCy_yiydA7FC6V312pJmpZVbLPIezjYEzTLnpZ03n7AZ9uVDgGAQzwSFxrlC_WKCcNDvmfCLeDoPxnmlutFMlgqCr5U60e__v2c3QD9E2-OxgfPkE3_XObSrwt1FlcLN1TCM0W-lnQAYw-XbXa_QC-rEnG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Traffic+Sign+Detection+via+Improved+Sparse+R-CNN+for+Autonomous+Vehicles&rft.jtitle=Journal+of+advanced+transportation&rft.au=Liang%2C+Tianjiao&rft.au=Bao%2C+Hong&rft.au=Pan%2C+Weiguo&rft.au=Pan%2C+Feng&rft.date=2022-03-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0197-6729&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F3825532&rft.externalDocID=A697663013 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-6729&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-6729&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-6729&client=summon |