Deuterium metabolic imaging – Back to the future

[Display omitted] •The promise of deuterium as a metabolic tracer was recognized soon after the discovery of chemical isotopes.•Deuterium NMR has only seen sporadic applications due to apparent downsides related to relaxation and resolution.•The short relaxation times, low natural abundance and spar...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance (1997) Vol. 326; p. 106932
Main Authors De Feyter, Henk M., de Graaf, Robin A.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.05.2021
Subjects
Online AccessGet full text
ISSN1090-7807
1096-0856
1096-0856
DOI10.1016/j.jmr.2021.106932

Cover

Loading…
Abstract [Display omitted] •The promise of deuterium as a metabolic tracer was recognized soon after the discovery of chemical isotopes.•Deuterium NMR has only seen sporadic applications due to apparent downsides related to relaxation and resolution.•The short relaxation times, low natural abundance and sparsity of the spectra are advantages for in vivo deuterium NMR.•Deuterium metabolic imaging (DMI) is a robust method to map metabolism of deuterated substrates non-invasively in 3D. Deuterium metabolic spectroscopy (DMS) and imaging (DMI) have recently been described as simple and robust MR-based methods to map metabolism with high temporal and/or spatial resolution. The metabolic fate of a wide range of suitable deuterated substrates, including glucose and acetate, can be monitored with deuterium MR methods in which the favorable MR characteristics of deuterium prevent many of the complications that hamper other techniques. The short T1 relaxation times lead to good MR sensitivity, while the low natural abundance prevents the need for water or lipid suppression. The sparsity of the deuterium spectra in combination with the low resonance frequency provides relative immunity to magnetic field inhomogeneity. Taken together, these features combine into a highly robust metabolic imaging method that has strong potential to become a dominant MR research tool and a viable clinical imaging modality. This perspective reviews the history of deuterium as a metabolic tracer, the use of NMR as a detection method for deuterium in vitro and in vivo and the recent development of DMS and DMI. Following a review of the NMR characteristics and the biological effects of deuterium, the promising future of DMI is outlined.
AbstractList Deuterium metabolic spectroscopy (DMS) and imaging (DMI) have recently been described as simple and robust MR-based methods to map metabolism with high temporal and/or spatial resolution. The metabolic fate of a wide range of suitable deuterated substrates, including glucose and acetate, can be monitored with deuterium MR methods in which the favorable MR characteristics of deuterium prevent many of the complications that hamper other techniques. The short T1 relaxation times lead to good MR sensitivity, while the low natural abundance prevents the need for water or lipid suppression. The sparsity of the deuterium spectra in combination with the low resonance frequency provides relative immunity to magnetic field inhomogeneity. Taken together, these features combine into a highly robust metabolic imaging method that has strong potential to become a dominant MR research tool and a viable clinical imaging modality. This perspective reviews the history of deuterium as a metabolic tracer, the use of NMR as a detection method for deuterium in vitro and in vivo and the recent development of DMS and DMI. Following a review of the NMR characteristics and the biological effects of deuterium, the promising future of DMI is outlined.Deuterium metabolic spectroscopy (DMS) and imaging (DMI) have recently been described as simple and robust MR-based methods to map metabolism with high temporal and/or spatial resolution. The metabolic fate of a wide range of suitable deuterated substrates, including glucose and acetate, can be monitored with deuterium MR methods in which the favorable MR characteristics of deuterium prevent many of the complications that hamper other techniques. The short T1 relaxation times lead to good MR sensitivity, while the low natural abundance prevents the need for water or lipid suppression. The sparsity of the deuterium spectra in combination with the low resonance frequency provides relative immunity to magnetic field inhomogeneity. Taken together, these features combine into a highly robust metabolic imaging method that has strong potential to become a dominant MR research tool and a viable clinical imaging modality. This perspective reviews the history of deuterium as a metabolic tracer, the use of NMR as a detection method for deuterium in vitro and in vivo and the recent development of DMS and DMI. Following a review of the NMR characteristics and the biological effects of deuterium, the promising future of DMI is outlined.
[Display omitted] •The promise of deuterium as a metabolic tracer was recognized soon after the discovery of chemical isotopes.•Deuterium NMR has only seen sporadic applications due to apparent downsides related to relaxation and resolution.•The short relaxation times, low natural abundance and sparsity of the spectra are advantages for in vivo deuterium NMR.•Deuterium metabolic imaging (DMI) is a robust method to map metabolism of deuterated substrates non-invasively in 3D. Deuterium metabolic spectroscopy (DMS) and imaging (DMI) have recently been described as simple and robust MR-based methods to map metabolism with high temporal and/or spatial resolution. The metabolic fate of a wide range of suitable deuterated substrates, including glucose and acetate, can be monitored with deuterium MR methods in which the favorable MR characteristics of deuterium prevent many of the complications that hamper other techniques. The short T1 relaxation times lead to good MR sensitivity, while the low natural abundance prevents the need for water or lipid suppression. The sparsity of the deuterium spectra in combination with the low resonance frequency provides relative immunity to magnetic field inhomogeneity. Taken together, these features combine into a highly robust metabolic imaging method that has strong potential to become a dominant MR research tool and a viable clinical imaging modality. This perspective reviews the history of deuterium as a metabolic tracer, the use of NMR as a detection method for deuterium in vitro and in vivo and the recent development of DMS and DMI. Following a review of the NMR characteristics and the biological effects of deuterium, the promising future of DMI is outlined.
Deuterium metabolic spectroscopy (DMS) and imaging (DMI) have recently been described as simple and robust MR-based methods to map metabolism with high temporal and/or spatial resolution. The metabolic fate of a wide range of suitable deuterated substrates, including glucose and acetate, can be monitored with deuterium MR methods in which the favorable MR characteristics of deuterium prevent many of the complications that hamper other techniques. The short T 1 relaxation times lead to good MR sensitivity, while the low natural abundance prevents the need for water or lipid suppression. The sparsity of the deuterium spectra in combination with the low resonance frequency provides relative immunity to magnetic field inhomogeneity. Taken together, these features combine into a highly robust metabolic imaging method that has strong potential to become a dominant MR research tool and a viable clinical imaging modality. This perspective reviews the history of deuterium as a metabolic tracer, the use of NMR as a detection method for deuterium in vitro and in vivo and the recent development of DMS and DMI. Following a review of the NMR characteristics and the biological effects of deuterium, the promising future of DMI is outlined.
Deuterium metabolic spectroscopy (DMS) and imaging (DMI) have recently been described as simple and robust MR-based methods to map metabolism with high temporal and/or spatial resolution. The metabolic fate of a wide range of suitable deuterated substrates, including glucose and acetate, can be monitored with deuterium MR methods in which the favorable MR characteristics of deuterium prevent many of the complications that hamper other techniques. The short T relaxation times lead to good MR sensitivity, while the low natural abundance prevents the need for water or lipid suppression. The sparsity of the deuterium spectra in combination with the low resonance frequency provides relative immunity to magnetic field inhomogeneity. Taken together, these features combine into a highly robust metabolic imaging method that has strong potential to become a dominant MR research tool and a viable clinical imaging modality. This perspective reviews the history of deuterium as a metabolic tracer, the use of NMR as a detection method for deuterium in vitro and in vivo and the recent development of DMS and DMI. Following a review of the NMR characteristics and the biological effects of deuterium, the promising future of DMI is outlined.
ArticleNumber 106932
Author De Feyter, Henk M.
de Graaf, Robin A.
Author_xml – sequence: 1
  givenname: Henk M.
  surname: De Feyter
  fullname: De Feyter, Henk M.
  email: henk.defeyter@yale.edu
– sequence: 2
  givenname: Robin A.
  surname: de Graaf
  fullname: de Graaf, Robin A.
  email: robin.degraaf@yale.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33902815$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9u1DAQxq1qEe0WHqAXlCOXLGM7TmwhIcGWP5Uq9QJny3EmWy9JvNhOJW68A2_YJ8HbLVXh0Ivtkb_fN6P5lmQx-QkJOaOwokDrN9vVdgwrBozmulacHZETCqouQYp6cfeGspHQHJNljFsASkUDz8kx5wqYpOKEsHOcEwY3j8WIybR-cLZwo9m4aVPc_vpdfDD2e5F8ka6x6Oc0B3xBnvVmiPjy_j4l3z59_Lr-Ul5efb5Yv78sraBNKmWLXFVdjwKkygfHjhlqKlmBaW0vGyZEDZJVjHdKmU7xCqFqaVNLQeum4qfk3cF3N7cjdhanFMygdyGPF35qb5z-92dy13rjb7QEyZUS2eD1vUHwP2aMSY8uWhwGM6Gfo2aCSiWVonWWvnrc66HJ30VlAT0IbPAxBuwfJBT0Pgy91TkMvQ9DH8LITPMfY10yyfn9uG54knx7IDHv98Zh0NE6nCx2LqBNuvPuCfoPBmWjBQ
CitedBy_id crossref_primary_10_1016_j_neuroimage_2022_119284
crossref_primary_10_3389_fimmu_2023_1258027
crossref_primary_10_1126_sciadv_adm8600
crossref_primary_10_1093_bjro_tzae019
crossref_primary_10_1038_s41598_023_41163_9
crossref_primary_10_1097_RLI_0000000000001170
crossref_primary_10_1016_j_ab_2021_114479
crossref_primary_10_1038_s44303_023_00004_0
crossref_primary_10_1136_bmjopen_2024_083980
crossref_primary_10_3390_metabo13040577
crossref_primary_10_1002_nbm_4890
crossref_primary_10_1246_bcsj_20220202
crossref_primary_10_1002_nbm_4817
crossref_primary_10_1021_acs_analchem_4c01999
crossref_primary_10_1002_mrm_29439
crossref_primary_10_1002_nbm_5309
crossref_primary_10_1002_mrm_29830
crossref_primary_10_1002_jmri_29532
crossref_primary_10_1002_mrc_5374
crossref_primary_10_1177_0271678X221148970
crossref_primary_10_1038_s41467_025_56600_8
crossref_primary_10_1002_mrm_30292
crossref_primary_10_1038_s41598_023_47301_7
crossref_primary_10_1093_pnasnexus_pgaf072
crossref_primary_10_1158_0008_5472_CAN_23_2552
crossref_primary_10_1631_jzus_B2300587
crossref_primary_10_1016_j_pnmrs_2023_02_002
crossref_primary_10_1158_1078_0432_CCR_23_1635
crossref_primary_10_1002_jmri_28833
crossref_primary_10_1016_j_neuroimage_2021_118639
crossref_primary_10_1002_nbm_4926
crossref_primary_10_1002_nbm_4603
crossref_primary_10_1002_nbm_70013
crossref_primary_10_31083_j_fbl2905182
crossref_primary_10_1186_s41747_024_00464_y
crossref_primary_10_1016_j_tics_2024_11_010
crossref_primary_10_3390_magnetochemistry9010006
crossref_primary_10_1016_j_neuroimage_2023_120250
crossref_primary_10_3389_fonc_2023_1285209
crossref_primary_10_1002_mrm_30002
crossref_primary_10_1007_s00117_024_01390_1
crossref_primary_10_1002_mrm_29696
crossref_primary_10_1002_nbm_4995
crossref_primary_10_3389_fcimb_2023_1281155
crossref_primary_10_1002_jmri_29512
crossref_primary_10_1002_nbm_5325
crossref_primary_10_3389_fonc_2022_885480
crossref_primary_10_3390_ijms25031725
crossref_primary_10_1002_jmri_29437
crossref_primary_10_1038_s41387_024_00343_w
crossref_primary_10_1016_j_saa_2023_123262
crossref_primary_10_1002_mrm_29539
crossref_primary_10_3390_metabo12121223
crossref_primary_10_1038_s41571_024_00891_1
crossref_primary_10_1016_j_ijhydene_2024_07_055
crossref_primary_10_1002_mrm_30395
crossref_primary_10_3389_fphys_2023_1198578
crossref_primary_10_3390_cancers13164034
crossref_primary_10_24835_1607_0763_1249
crossref_primary_10_1002_jmri_29546
crossref_primary_10_1002_nbm_5311
crossref_primary_10_3390_diagnostics13132311
crossref_primary_10_1158_1078_0432_CCR_21_4418
crossref_primary_10_1002_mrm_29888
crossref_primary_10_1002_nbm_4989
crossref_primary_10_3390_metabo11090570
crossref_primary_10_1097_RLI_0000000000000820
crossref_primary_10_1186_s41747_024_00426_4
Cites_doi 10.1021/bi00396a044
10.1038/s41366-020-0533-7
10.1038/s41551-019-0499-8
10.1002/nbm.4235
10.1002/nbm.1940020203
10.1103/PhysRev.69.127
10.1351/pac199870010217
10.1016/j.jmr.2017.09.007
10.1177/0271678X17706444
10.1038/s41598-020-65839-8
10.1103/PhysRev.69.37
10.1126/science.87.2254.221
10.1351/pac200173111795
10.1111/j.1432-1033.1986.tb09656.x
10.1016/0006-291X(89)90024-7
10.1016/S0021-9258(19)77671-6
10.1172/JCI117635
10.1016/0006-291X(87)90282-8
10.1021/acschemneuro.0c00711
10.1126/scitranslmed.3006070
10.1103/PhysRev.40.1
10.1007/BF02662511
10.1016/0014-4835(88)90016-4
10.1002/nbm.1940030405
10.1126/science.82.2120.156
10.1148/radiol.2019191242
10.1007/s00421-011-2194-7
10.1038/nprot.2007.420
10.1002/mrm.1073
10.1021/cr50004a004
10.33224/rrch/2020.65.1.03
10.1021/bi00850a030
10.1002/hlca.19640470221
10.1002/nbm.4172
10.1103/PhysRev.56.728
10.1002/mrm.1910320317
10.1002/9781119382461
10.1126/sciadv.aat7314
10.1007/978-1-4419-7756-4_26
10.1021/cr60211a004
10.1038/nprot.2009.117
10.1007/PL00014267
10.1016/0079-6565(77)80010-1
10.1103/PhysRev.73.679
10.2337/diab.26.11.1016
10.1016/S1385-299X(02)00217-9
10.1002/nbm.4309
10.1002/j.1552-4604.1986.tb03544.x
10.1016/0009-2614(76)80264-3
10.1002/mrm.1910080105
10.1021/bi00420a042
10.1002/mrm.1910040111
10.1073/pnas.84.12.4099
10.1042/cs0800277
10.1046/j.1471-4159.1995.64052325.x
10.1038/s41430-020-0580-0
10.1002/mrm.22761
10.1016/S0021-9258(18)75075-8
10.1007/978-1-4757-9477-9_6
10.1016/j.neuroscience.2021.01.023
10.1002/hep.28860
10.1021/ja069103t
10.1002/1522-2594(200101)45:1<156::AID-MRM1020>3.0.CO;2-Z
10.1016/0006-291X(86)91250-7
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.jmr.2021.106932
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1096-0856
EndPage 106932
ExternalDocumentID PMC8083995
33902815
10_1016_j_jmr_2021_106932
S1090780721000215
Genre Journal Article
Review
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB025840
– fundername: NCATS NIH HHS
  grantid: UL1 TR001863
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABBQC
ABFNM
ABGSF
ABJNI
ABLJU
ABLVK
ABMAC
ABMZM
ABNEU
ABUDA
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADFGL
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGRDE
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJRQY
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
D-I
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSK
SSQ
SSU
SSZ
T5K
UPT
UQL
XPP
YQT
ZA5
ZCG
ZGI
ZXP
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c517t-8be394dfe5089e503ed2a1a4840abcf872556082423d99ad934e04b1768516743
IEDL.DBID .~1
ISSN 1090-7807
1096-0856
IngestDate Thu Aug 21 18:13:41 EDT 2025
Thu Sep 04 23:22:43 EDT 2025
Mon Jul 21 05:56:57 EDT 2025
Thu Apr 24 23:03:01 EDT 2025
Tue Jul 01 02:06:31 EDT 2025
Fri Feb 23 02:44:43 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deuterium
Relaxation
Metabolic imaging
Label loss
Glucose
Language English
License Copyright © 2021 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-8be394dfe5089e503ed2a1a4840abcf872556082423d99ad934e04b1768516743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8083995
PMID 33902815
PQID 2518989916
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8083995
proquest_miscellaneous_2518989916
pubmed_primary_33902815
crossref_primary_10_1016_j_jmr_2021_106932
crossref_citationtrail_10_1016_j_jmr_2021_106932
elsevier_sciencedirect_doi_10_1016_j_jmr_2021_106932
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2021
2021-05-00
20210501
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of magnetic resonance (1997)
PublicationTitleAlternate J Magn Reson
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References De Feyter, Behar, Corbin, Fulbright, Brown, McIntyre, Nixon, Rothman, de Graaf (b0025) 2018; 4
Koletzko, Sauerwald, Demmelmair (b0290) 1997; 156
J.F. Thomson, Biological effects of deuterium, in: P. Alexander, Z.M. Bacq, editors. The Macmillan Company, New York, 1963.
Aguayo, Gamcsik, Dick (b0135) 1988; 263
Busch, Neese, Awada, Hayes, Hellerstein (b0300) 2007; 2
Landau, Wahren, Chandramouli, Schumann, Ekberg, Kalhan (b0310) 1995; 95
London, Gabel, Funk (b0105) 1987; 26
Zhu, Merkle, Kwag, Ugurbil, Chen (b0225) 2001; 45
Eng, Berkowitz, Balaban (b0115) 1990; 3
Mahar, Donabedian, Merritt (b0195) 2020; 10
London, Gabel (b0110) 1988; 27
Ben-Yoseph, Kingsley, Ross (b0165) 1994; 32
A.A. Maudsley, O.C. Andronesi, P.B. Barker, A. Bizzi, W. Bogner, A. Henning, S.J. Nelson, S. Posse, D.C. Shungu, B.J. Soher, Advanced magnetic resonance spectroscopic neuroimaging: Experts' consensus recommendations, NMR Biomed. 2020: e4309.
Bloch, Hansen, Packard (b0055) 1946; 69
Perrin, Dong (b0240) 2007; 129
Brereton, Doddrell, Oakenfull, Moss, Irving (b0080) 1989; 2
Klein, Klein (b0280) 1986; 26
Ackerman, Ewy, Becker, Shalwitz (b0085) 1987; 84
Funk, Anderson, Wen, Hever, Khemtong, Kovacs, Sherry, Malloy (b0325) 2017; 284
Muller, Seelig (b0095) 1987; 72
Mantsch, Saito, Smith (b0070) 1977; 11
Schoenheimer, Rittenberg (b0045) 1938; 87
Purcell, Torrey, Pound (b0060) 1946; 69
Péronnet, Mignault, du Souich, Vergne, Le Bellego, Jimenez, Rabasa-Lhoret (b0265) 2012; 112
Macallan, Asquith, Zhang, de Lara, Ghattas, Defoiche, Beverley (b0335) 2009; 4
Berkowitz, Garner, Wilson, Corbett (b0150) 1995; 64
S.J. Nelson, J. Kurhanewicz, D.B. Vigneron, P.E. Larson, A.L. Harzstark, M. Ferrone, M. van Criekinge, J.W. Chang, R. Bok, I. Park, G. Reed, L. Carvajal, E.J. Small, P. Munster, V.K. Weinberg, J.H. Ardenkjaer-Larsen, A.P. Chen, R.E. Hurd, L.I. Odegardstuen, F.J. Robb, J. Tropp, J.A. Murray, Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C]pyruvate, Sci. Transl. Med. 5(2013)198ra108.
Rich, Bagga, Wilson, Schnall, Detre, Haris, Reddy (b0200) 2020; 4
de Graaf, Thomas, Behar, De Feyter (b0330) 2021; 12
Katz-Brull, Margalit, Bendel, Degani (b0120) 1998; 6
Hotchkiss, Song, Ling, Ackerman, Karl (b0160) 1990; 258
Kellogg, Rabi, Ramsey, Zacharias (b0050) 1939; 56
Riis-Vestergaard, Laustsen, Mariager, Schulte, Pedersen, Richelsen (b0185) 2020; 44
van Zijl, Yadav (b0270) 2011; 65
Straathof, Meerwaldt, De Feyter, de Graaf, Dijkhuizen (b0210) 2021
Saur, Crespi, Halevi, Katz (b0345) 1968; 7
Westheimer (b0320) 1961; 61
Mason, Falk Petersen, de Graaf, Kanamatsu, Otsuki, Rothman (b0350) 2003; 10
Goodman, Masuoka, deRopp, Jones (b0155) 1989; 159
R.A. de Graaf, In Vivo NMR Spectroscopy. Principles and Techniques. John Wiley, Chichester, 2019.
Irving, Brereton, Field, Doddrell (b0100) 1987; 4
Aguayo, McLennan, Graham, Cheng (b0145) 1988; 47
Harris, Becker, Cabral de Menezes, Goodfellow, Granger (b0255) 2001; 73
Jones, Leatherdale (b0285) 1991; 80
Rothman, de Graaf, Hyder, Mason, Behar, De Feyter (b0010) 2019; 32
Hagemann, Nief, Roth (b0245) 1970; 22
Brereton, Irving, Field, Doddrell (b0075) 1986; 137
Mateescu, Ye, Flask, Erokwu, Duerk (b0170) 2011; 701
Bier, Leake, Haymond, Arnold, Gruenke, Sperling, Kipnis (b0340) 1977; 26
R.E. London, In vivo 2H NMR studies of cellular metabolism, in: L.J. Berliner, J. Reuben, editors. Biological Magnetic Resonance, Volume 11: In Vivo Spectroscopy. Plenum Press, New York, 1992, p 277–306.
Diehl, Leipert (b0230) 1964; 47
Gunnarsson, Wennerstrom, Egan, Forsen (b0235) 1976; 38
Schoenheimer, Rittenberg (b0040) 1935; 111
Decaris, Li, Emson, Gatmaitan, Liu, Wang, Nyangau, Colangelo, Angel, Beysen, Cui, Hernandez, Lazaro, Brenner, Turner, Hellerstein, Loomba (b0305) 2017; 65
von Morze, Engelbach, Blazey, Quirk, Reed, Ippolito, Garbow (b0205) 2020
Schoenheimer, Rittenberg (b0035) 1935; 82
Aguayo, McLennan, Aguiar, Cheng (b0140) 1987; 142
Barrow, Rogers, Smith (b0130) 1986; 157
Ye, Erokwu, Twieg, Flask, Mateescu (b0190) 2020; 65
Bloembergen, Purcell, Pound (b0065) 1948; 73
Urey, Brickwedde, Murphy (b0030) 1932; 40
Jones, Merritt, Malloy (b0260) 2001; 45
Davies (b0295) 2020; 74
Lu, Zhu, Zhang, Mateescu, Chen (b0020) 2017; 37
Ewy, Ackerman, Balaban (b0090) 1988; 8
Abragam (b0215) 1961
Wiberg (b0315) 1955; 55
Rosman, Taylor (b0250) 1998; 70
de Graaf, Hendriks, Klomp, Kumaragamage, Welting, Arteaga de Castro, Brown, McIntyre, Nixon, Prompers, De Feyter (b0175) 2020; 33
Kreis, Wright, Hesse, Fala, Hu, Brindle (b0180) 2020; 294
Davies (10.1016/j.jmr.2021.106932_b0295) 2020; 74
Busch (10.1016/j.jmr.2021.106932_b0300) 2007; 2
de Graaf (10.1016/j.jmr.2021.106932_b0175) 2020; 33
10.1016/j.jmr.2021.106932_b0015
Ben-Yoseph (10.1016/j.jmr.2021.106932_b0165) 1994; 32
Landau (10.1016/j.jmr.2021.106932_b0310) 1995; 95
Abragam (10.1016/j.jmr.2021.106932_b0215) 1961
Hotchkiss (10.1016/j.jmr.2021.106932_b0160) 1990; 258
Schoenheimer (10.1016/j.jmr.2021.106932_b0040) 1935; 111
Mahar (10.1016/j.jmr.2021.106932_b0195) 2020; 10
van Zijl (10.1016/j.jmr.2021.106932_b0270) 2011; 65
Hagemann (10.1016/j.jmr.2021.106932_b0245) 1970; 22
Gunnarsson (10.1016/j.jmr.2021.106932_b0235) 1976; 38
Ye (10.1016/j.jmr.2021.106932_b0190) 2020; 65
Lu (10.1016/j.jmr.2021.106932_b0020) 2017; 37
Brereton (10.1016/j.jmr.2021.106932_b0075) 1986; 137
Barrow (10.1016/j.jmr.2021.106932_b0130) 1986; 157
Macallan (10.1016/j.jmr.2021.106932_b0335) 2009; 4
Aguayo (10.1016/j.jmr.2021.106932_b0135) 1988; 263
Irving (10.1016/j.jmr.2021.106932_b0100) 1987; 4
Koletzko (10.1016/j.jmr.2021.106932_b0290) 1997; 156
Kellogg (10.1016/j.jmr.2021.106932_b0050) 1939; 56
Muller (10.1016/j.jmr.2021.106932_b0095) 1987; 72
Ackerman (10.1016/j.jmr.2021.106932_b0085) 1987; 84
Aguayo (10.1016/j.jmr.2021.106932_b0140) 1987; 142
De Feyter (10.1016/j.jmr.2021.106932_b0025) 2018; 4
Bier (10.1016/j.jmr.2021.106932_b0340) 1977; 26
10.1016/j.jmr.2021.106932_b0220
Eng (10.1016/j.jmr.2021.106932_b0115) 1990; 3
Rothman (10.1016/j.jmr.2021.106932_b0010) 2019; 32
Harris (10.1016/j.jmr.2021.106932_b0255) 2001; 73
Purcell (10.1016/j.jmr.2021.106932_b0060) 1946; 69
Bloembergen (10.1016/j.jmr.2021.106932_b0065) 1948; 73
Katz-Brull (10.1016/j.jmr.2021.106932_b0120) 1998; 6
Saur (10.1016/j.jmr.2021.106932_b0345) 1968; 7
Aguayo (10.1016/j.jmr.2021.106932_b0145) 1988; 47
Westheimer (10.1016/j.jmr.2021.106932_b0320) 1961; 61
von Morze (10.1016/j.jmr.2021.106932_b0205) 2020
Berkowitz (10.1016/j.jmr.2021.106932_b0150) 1995; 64
Rich (10.1016/j.jmr.2021.106932_b0200) 2020; 4
Schoenheimer (10.1016/j.jmr.2021.106932_b0035) 1935; 82
10.1016/j.jmr.2021.106932_b0275
Schoenheimer (10.1016/j.jmr.2021.106932_b0045) 1938; 87
Klein (10.1016/j.jmr.2021.106932_b0280) 1986; 26
Jones (10.1016/j.jmr.2021.106932_b0285) 1991; 80
Decaris (10.1016/j.jmr.2021.106932_b0305) 2017; 65
Urey (10.1016/j.jmr.2021.106932_b0030) 1932; 40
Perrin (10.1016/j.jmr.2021.106932_b0240) 2007; 129
Diehl (10.1016/j.jmr.2021.106932_b0230) 1964; 47
Jones (10.1016/j.jmr.2021.106932_b0260) 2001; 45
Mantsch (10.1016/j.jmr.2021.106932_b0070) 1977; 11
Kreis (10.1016/j.jmr.2021.106932_b0180) 2020; 294
Péronnet (10.1016/j.jmr.2021.106932_b0265) 2012; 112
Bloch (10.1016/j.jmr.2021.106932_b0055) 1946; 69
London (10.1016/j.jmr.2021.106932_b0110) 1988; 27
Mateescu (10.1016/j.jmr.2021.106932_b0170) 2011; 701
Mason (10.1016/j.jmr.2021.106932_b0350) 2003; 10
Goodman (10.1016/j.jmr.2021.106932_b0155) 1989; 159
10.1016/j.jmr.2021.106932_b0005
Rosman (10.1016/j.jmr.2021.106932_b0250) 1998; 70
10.1016/j.jmr.2021.106932_b0125
Wiberg (10.1016/j.jmr.2021.106932_b0315) 1955; 55
Straathof (10.1016/j.jmr.2021.106932_b0210) 2021
Zhu (10.1016/j.jmr.2021.106932_b0225) 2001; 45
Brereton (10.1016/j.jmr.2021.106932_b0080) 1989; 2
de Graaf (10.1016/j.jmr.2021.106932_b0330) 2021; 12
Funk (10.1016/j.jmr.2021.106932_b0325) 2017; 284
London (10.1016/j.jmr.2021.106932_b0105) 1987; 26
Ewy (10.1016/j.jmr.2021.106932_b0090) 1988; 8
Riis-Vestergaard (10.1016/j.jmr.2021.106932_b0185) 2020; 44
References_xml – volume: 87
  start-page: 221
  year: 1938
  end-page: 226
  ident: b0045
  article-title: The application of isotopes to the study of intermediary metabolism
  publication-title: Science
– volume: 70
  start-page: 217
  year: 1998
  end-page: 235
  ident: b0250
  article-title: Isotopic compositions of the elements 1997
  publication-title: Pure Appl. Chem.
– reference: S.J. Nelson, J. Kurhanewicz, D.B. Vigneron, P.E. Larson, A.L. Harzstark, M. Ferrone, M. van Criekinge, J.W. Chang, R. Bok, I. Park, G. Reed, L. Carvajal, E.J. Small, P. Munster, V.K. Weinberg, J.H. Ardenkjaer-Larsen, A.P. Chen, R.E. Hurd, L.I. Odegardstuen, F.J. Robb, J. Tropp, J.A. Murray, Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C]pyruvate, Sci. Transl. Med. 5(2013)198ra108.
– volume: 32
  start-page: 405
  year: 1994
  end-page: 409
  ident: b0165
  article-title: Metabolic loss of deuterium from isotopically labeled glucose
  publication-title: Magn. Reson. Med.
– volume: 61
  start-page: 265
  year: 1961
  end-page: 273
  ident: b0320
  article-title: The magnitude of the primary kinetic isotope effect for compounds of hydrogen and deuterium
  publication-title: Chem. Rev.
– volume: 701
  start-page: 193
  year: 2011
  end-page: 199
  ident: b0170
  article-title: assessment of oxygen consumption via Deuterium Magnetic Resonance
  publication-title: Adv. Exp. Med. Biol.
– volume: 7
  start-page: 3529
  year: 1968
  end-page: 3536
  ident: b0345
  article-title: Deuterium isotope effects in the fermentation of hexoses to ethanol by Saccharomyces cerevisiae. I. Hydrogen exchange in the glycolytic pathway
  publication-title: Biochemistry
– volume: 142
  start-page: 359
  year: 1987
  end-page: 366
  ident: b0140
  article-title: The study of diabetic cataractogenesis in the intact rabbit lens by deuterium NMR spectroscopy
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 45
  start-page: 156
  year: 2001
  end-page: 158
  ident: b0260
  article-title: Quantifying tracer levels of
  publication-title: Magn. Reson. Med.
– volume: 159
  start-page: 522
  year: 1989
  end-page: 527
  ident: b0155
  article-title: Use of deuterium labelled glucose in evaluating the pathway of hepatic glycogen synthesis
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 82
  start-page: 156
  year: 1935
  end-page: 157
  ident: b0035
  article-title: Deuterium as an indicator in the study of intermediary metabolism
  publication-title: Science
– volume: 73
  start-page: 1795
  year: 2001
  end-page: 1818
  ident: b0255
  article-title: NMR nomenclature: nuclear spin properties and conventions for chemical shifts. IUPAC recommendations 2001
  publication-title: Pure Appl. Chem.
– volume: 156
  start-page: S12
  year: 1997
  end-page: S17
  ident: b0290
  article-title: Safety of stable isotope use
  publication-title: Eur. J. Pediatr.
– volume: 55
  start-page: 713
  year: 1955
  end-page: 743
  ident: b0315
  article-title: The deuterium isotope effect
  publication-title: Chem. Rev.
– volume: 12
  start-page: 234
  year: 2021
  end-page: 243
  ident: b0330
  article-title: Characterization of kinetic isotope effects and label loss in deuterium-based isotopic labeling studies
  publication-title: ACS Chem. Neurosci.
– volume: 112
  start-page: 2213
  year: 2012
  end-page: 2222
  ident: b0265
  article-title: Pharmacokinetic analysis of absorption, distribution and disappearance of ingested water labeled with D₂O in humans
  publication-title: Eur. J. Appl. Physiol.
– volume: 129
  start-page: 4490
  year: 2007
  end-page: 4497
  ident: b0240
  article-title: Secondary deuterium isotope effects on the acidity of carboxylic acids and phenols
  publication-title: J. Am. Chem. Soc.
– volume: 65
  start-page: 78
  year: 2017
  end-page: 88
  ident: b0305
  article-title: Identifying nonalcoholic fatty liver disease patients with active fibrosis by measuring extracellular matrix remodeling rates in tissue and blood
  publication-title: Hepatology
– volume: 10
  start-page: 8885
  year: 2020
  ident: b0195
  article-title: HDO production from [
  publication-title: Sci. Rep.
– volume: 294
  start-page: 289
  year: 2020
  end-page: 296
  ident: b0180
  article-title: Measuring tumor glycolytic flux
  publication-title: Radiology
– volume: 95
  start-page: 172
  year: 1995
  end-page: 178
  ident: b0310
  article-title: Use of
  publication-title: J. Clin. Invest.
– volume: 32
  year: 2019
  ident: b0010
  article-title: C and
  publication-title: NMR Biomed..
– reference: J.F. Thomson, Biological effects of deuterium, in: P. Alexander, Z.M. Bacq, editors. The Macmillan Company, New York, 1963.
– volume: 2
  start-page: 3045
  year: 2007
  end-page: 3057
  ident: b0300
  article-title: Measurement of cell proliferation by heavy water labeling
  publication-title: Nat. Protoc.
– volume: 284
  start-page: 86
  year: 2017
  end-page: 93
  ident: b0325
  article-title: The rate of lactate production from glucose in hearts is not altered by per-deuteration of glucose
  publication-title: J. Magn. Reson.
– volume: 47
  start-page: 545
  year: 1964
  end-page: 557
  ident: b0230
  article-title: Deuteronen-KernResonanzspektroskopie
  publication-title: Helv. Chim. Acta
– volume: 10
  start-page: 181
  year: 2003
  end-page: 190
  ident: b0350
  article-title: A comparison of
  publication-title: Brain Res. Brain Res. Protocol.
– volume: 44
  start-page: 1417
  year: 2020
  end-page: 1427
  ident: b0185
  article-title: Glucose metabolism in brown adipose tissue determined by deuterium metabolic imaging in rats
  publication-title: Int. J. Obes. (Lond)
– volume: 73
  start-page: 679
  year: 1948
  end-page: 712
  ident: b0065
  article-title: Relaxation effects in nuclear magnetic resonance absorption
  publication-title: Phys. Rev.
– reference: A.A. Maudsley, O.C. Andronesi, P.B. Barker, A. Bizzi, W. Bogner, A. Henning, S.J. Nelson, S. Posse, D.C. Shungu, B.J. Soher, Advanced magnetic resonance spectroscopic neuroimaging: Experts' consensus recommendations, NMR Biomed. 2020: e4309.
– volume: 2
  start-page: 55
  year: 1989
  end-page: 60
  ident: b0080
  article-title: The use of
  publication-title: NMR Biomed.
– volume: 8
  start-page: 35
  year: 1988
  end-page: 44
  ident: b0090
  article-title: Deuterium NMR cerebral imaging
  publication-title: Magn. Reson. Med.
– volume: 4
  start-page: 1313
  year: 2009
  end-page: 1327
  ident: b0335
  article-title: Measurement of proliferation and disappearance of rapid turnover cell populations in human studies using deuterium-labeled glucose
  publication-title: Nat. Protoc.
– volume: 3
  start-page: 173
  year: 1990
  end-page: 177
  ident: b0115
  article-title: Renal distribution and metabolism of [
  publication-title: NMR Biomed.
– volume: 65
  start-page: 927
  year: 2011
  end-page: 948
  ident: b0270
  article-title: Chemical exchange saturation transfer (CEST): what is in a name and what isn't?
  publication-title: Magn. Reson. Med.
– volume: 4
  start-page: 88
  year: 1987
  end-page: 92
  ident: b0100
  article-title: determination of body iron stores by natural-abundance deuterium magnetic resonance spectroscopy
  publication-title: Magn. Reson. Med.
– volume: 4
  year: 2018
  ident: b0025
  article-title: Deuterium metabolic imaging (DMI) for MRI-based 3D mapping of metabolism
  publication-title: Sci. Adv.
– volume: 26
  start-page: 378
  year: 1986
  end-page: 382
  ident: b0280
  article-title: Stable isotopes: origins and safety
  publication-title: J. Clin. Pharmacol.
– volume: 6
  start-page: 44
  year: 1998
  end-page: 52
  ident: b0120
  article-title: Choline metabolism in breast cancer;
  publication-title: MAGMA
– volume: 263
  start-page: 19552
  year: 1988
  end-page: 19557
  ident: b0135
  article-title: High resolution deuterium NMR studies of bacterial metabolism
  publication-title: J. Biol. Chem.
– volume: 33
  year: 2020
  ident: b0175
  article-title: On the magnetic field dependence of deuterium metabolic imaging
  publication-title: NMR Biomed.
– year: 2021
  ident: b0210
  article-title: Deuterium metabolic imaging of the healthy and diseased brain
  publication-title: Neuroscience
– volume: 64
  start-page: 2325
  year: 1995
  end-page: 2331
  ident: b0150
  article-title: Nondestructive measurement of retinal glucose transport and consumption
  publication-title: J. Neurochem.
– year: 2020
  ident: b0205
  article-title: Comparison of hyperpolarized
  publication-title: Magn. Reson. Med.
– volume: 65
  start-page: 39
  year: 2020
  end-page: 42
  ident: b0190
  article-title: New
  publication-title: Rev. Roum. Chim.
– volume: 69
  start-page: 127
  year: 1946
  ident: b0055
  article-title: Nuclear induction
  publication-title: Phys. Rev.
– volume: 56
  start-page: 728
  year: 1939
  end-page: 743
  ident: b0050
  article-title: The magnetic moments of the proton and the deuteron. The radiofrequency spectrum of H
  publication-title: Phys. Rev.
– volume: 157
  start-page: 195
  year: 1986
  end-page: 202
  ident: b0130
  article-title: NMR studies of [1-
  publication-title: Eur. J. Biochem.
– volume: 38
  start-page: 96
  year: 1976
  end-page: 99
  ident: b0235
  article-title: Proton and deuterium NMR of hydrogen bonds: relationship between isotope effects and the hydrogen bond potential
  publication-title: Chem. Phys. Lett.
– volume: 80
  start-page: 277
  year: 1991
  end-page: 280
  ident: b0285
  article-title: Stable isotopes in clinical research: safety reaffirmed
  publication-title: Clin. Sci. (Lond)
– volume: 111
  start-page: 163
  year: 1935
  end-page: 168
  ident: b0040
  article-title: Deuterium as an indicator in the study of intermediary metabolism I-XI
  publication-title: J. Biol. Chem.
– volume: 4
  start-page: 335
  year: 2020
  end-page: 342
  ident: b0200
  article-title: H magnetic resonance spectroscopy of
  publication-title: Nat. Biomed. Eng.
– volume: 26
  start-page: 1016
  year: 1977
  end-page: 1023
  ident: b0340
  article-title: Measurement of “true” glucose production rates in infancy and childhood with 6,6-dideuteroglucose
  publication-title: Diabetes
– volume: 40
  start-page: 1
  year: 1932
  end-page: 15
  ident: b0030
  article-title: A hydrogen isotope of mass 2 and its concentration
  publication-title: Phys. Rev.
– volume: 69
  start-page: 37
  year: 1946
  end-page: 38
  ident: b0060
  article-title: Resonance absorption by nuclear magnetic moments in a solid
  publication-title: Phys. Rev.
– volume: 37
  start-page: 3518
  year: 2017
  end-page: 3530
  ident: b0020
  article-title: Quantitative assessment of brain glucose metabolic rates using
  publication-title: J. Cereb. Blood Flow Metab.
– reference: R.A. de Graaf, In Vivo NMR Spectroscopy. Principles and Techniques. John Wiley, Chichester, 2019.
– volume: 26
  start-page: 7166
  year: 1987
  end-page: 7172
  ident: b0105
  article-title: Metabolism of excess methionine in the liver of intact rat: an
  publication-title: Biochemistry
– volume: 258
  start-page: R21
  year: 1990
  end-page: R31
  ident: b0160
  article-title: Sepsis does not alter red blood cell glucose metabolism or Na
  publication-title: Am. J. Physiol.
– volume: 45
  start-page: 543
  year: 2001
  end-page: 549
  ident: b0225
  article-title: O relaxation time and NMR sensitivity of cerebral water and their field dependence
  publication-title: Magn. Reson. Med.
– volume: 72
  start-page: 456
  year: 1987
  end-page: 466
  ident: b0095
  article-title: NMR imaging of deuterium
  publication-title: J. Magn. Reson.
– volume: 47
  start-page: 337
  year: 1988
  end-page: 343
  ident: b0145
  article-title: Dynamic monitoring of corneal carbohydrate metabolism using high-resolution deuterium NMR spectroscopy
  publication-title: Exp. Eye Res.
– volume: 74
  start-page: 362
  year: 2020
  end-page: 365
  ident: b0295
  article-title: Stable isotopes: their use and safety in human nutrition studies
  publication-title: Eur. J. Clin. Nutr.
– reference: R.E. London, In vivo 2H NMR studies of cellular metabolism, in: L.J. Berliner, J. Reuben, editors. Biological Magnetic Resonance, Volume 11: In Vivo Spectroscopy. Plenum Press, New York, 1992, p 277–306.
– volume: 137
  start-page: 579
  year: 1986
  end-page: 584
  ident: b0075
  article-title: Preliminary studies on the potential of
  publication-title: Biochem. Biophys. Res. Commun.
– year: 1961
  ident: b0215
  article-title: The Principles of Nuclear Magnetism
– volume: 84
  start-page: 4099
  year: 1987
  end-page: 4102
  ident: b0085
  article-title: Deuterium nuclear magnetic resonance measurements of blood flow and tissue perfusion employing
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 27
  start-page: 7864
  year: 1988
  end-page: 7869
  ident: b0110
  article-title: A deuterium surface coil NMR study of the metabolism of D-methionine in the liver of the anesthetized rat
  publication-title: Biochemistry
– volume: 22
  start-page: 712
  year: 1970
  end-page: 715
  ident: b0245
  article-title: Absolute isotopic scale for deuterium analysis of natural waters. Absolute D/H ratio for SMOW
  publication-title: Tellus
– volume: 11
  start-page: 211
  year: 1977
  end-page: 271
  ident: b0070
  article-title: Deuterium magnetic resonance, applications in chemistry, physics and biology
  publication-title: Prog. NMR Spectrosc.
– volume: 26
  start-page: 7166
  year: 1987
  ident: 10.1016/j.jmr.2021.106932_b0105
  article-title: Metabolism of excess methionine in the liver of intact rat: an in vivo 2H NMR study
  publication-title: Biochemistry
  doi: 10.1021/bi00396a044
– volume: 44
  start-page: 1417
  year: 2020
  ident: 10.1016/j.jmr.2021.106932_b0185
  article-title: Glucose metabolism in brown adipose tissue determined by deuterium metabolic imaging in rats
  publication-title: Int. J. Obes. (Lond)
  doi: 10.1038/s41366-020-0533-7
– volume: 4
  start-page: 335
  year: 2020
  ident: 10.1016/j.jmr.2021.106932_b0200
  article-title: 1H magnetic resonance spectroscopy of 2H-to-1H exchange quantifies the dynamics of cellular metabolism in vivo
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-019-0499-8
– volume: 33
  year: 2020
  ident: 10.1016/j.jmr.2021.106932_b0175
  article-title: On the magnetic field dependence of deuterium metabolic imaging
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.4235
– volume: 2
  start-page: 55
  year: 1989
  ident: 10.1016/j.jmr.2021.106932_b0080
  article-title: The use of in vivo 2H NMR spectroscopy to investigate the effects of obesity and diabetes mellitus upon lipid metabolism in mice
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.1940020203
– year: 2020
  ident: 10.1016/j.jmr.2021.106932_b0205
  article-title: Comparison of hyperpolarized 13C and non-hyperpolarized deuterium MRI approaches for imaging cerebral glucose metabolism at 4.7 T
  publication-title: Magn. Reson. Med.
– volume: 69
  start-page: 127
  year: 1946
  ident: 10.1016/j.jmr.2021.106932_b0055
  article-title: Nuclear induction
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.69.127
– volume: 70
  start-page: 217
  year: 1998
  ident: 10.1016/j.jmr.2021.106932_b0250
  article-title: Isotopic compositions of the elements 1997
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac199870010217
– volume: 284
  start-page: 86
  year: 2017
  ident: 10.1016/j.jmr.2021.106932_b0325
  article-title: The rate of lactate production from glucose in hearts is not altered by per-deuteration of glucose
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2017.09.007
– volume: 37
  start-page: 3518
  year: 2017
  ident: 10.1016/j.jmr.2021.106932_b0020
  article-title: Quantitative assessment of brain glucose metabolic rates using in vivo deuterium magnetic resonance spectroscopy
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1177/0271678X17706444
– volume: 10
  start-page: 8885
  year: 2020
  ident: 10.1016/j.jmr.2021.106932_b0195
  article-title: HDO production from [2H7]glucose quantitatively identifies Warburg metabolism
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-65839-8
– volume: 69
  start-page: 37
  year: 1946
  ident: 10.1016/j.jmr.2021.106932_b0060
  article-title: Resonance absorption by nuclear magnetic moments in a solid
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.69.37
– volume: 258
  start-page: R21
  year: 1990
  ident: 10.1016/j.jmr.2021.106932_b0160
  article-title: Sepsis does not alter red blood cell glucose metabolism or Na+ concentration: a 2H-, 23Na-NMR study
  publication-title: Am. J. Physiol.
– volume: 87
  start-page: 221
  year: 1938
  ident: 10.1016/j.jmr.2021.106932_b0045
  article-title: The application of isotopes to the study of intermediary metabolism
  publication-title: Science
  doi: 10.1126/science.87.2254.221
– volume: 73
  start-page: 1795
  year: 2001
  ident: 10.1016/j.jmr.2021.106932_b0255
  article-title: NMR nomenclature: nuclear spin properties and conventions for chemical shifts. IUPAC recommendations 2001
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac200173111795
– volume: 157
  start-page: 195
  year: 1986
  ident: 10.1016/j.jmr.2021.106932_b0130
  article-title: NMR studies of [1-2H]glucose metabolism in Zymomonas mobilis
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1986.tb09656.x
– volume: 159
  start-page: 522
  year: 1989
  ident: 10.1016/j.jmr.2021.106932_b0155
  article-title: Use of deuterium labelled glucose in evaluating the pathway of hepatic glycogen synthesis
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/0006-291X(89)90024-7
– volume: 263
  start-page: 19552
  year: 1988
  ident: 10.1016/j.jmr.2021.106932_b0135
  article-title: High resolution deuterium NMR studies of bacterial metabolism
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)77671-6
– volume: 95
  start-page: 172
  issue: 1
  year: 1995
  ident: 10.1016/j.jmr.2021.106932_b0310
  article-title: Use of 2H2O for estimating rates of gluconeogenesis. Application to the fasted state
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI117635
– volume: 142
  start-page: 359
  year: 1987
  ident: 10.1016/j.jmr.2021.106932_b0140
  article-title: The study of diabetic cataractogenesis in the intact rabbit lens by deuterium NMR spectroscopy
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/0006-291X(87)90282-8
– volume: 12
  start-page: 234
  year: 2021
  ident: 10.1016/j.jmr.2021.106932_b0330
  article-title: Characterization of kinetic isotope effects and label loss in deuterium-based isotopic labeling studies
  publication-title: ACS Chem. Neurosci.
  doi: 10.1021/acschemneuro.0c00711
– ident: 10.1016/j.jmr.2021.106932_b0015
  doi: 10.1126/scitranslmed.3006070
– volume: 40
  start-page: 1
  year: 1932
  ident: 10.1016/j.jmr.2021.106932_b0030
  article-title: A hydrogen isotope of mass 2 and its concentration
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.40.1
– volume: 6
  start-page: 44
  year: 1998
  ident: 10.1016/j.jmr.2021.106932_b0120
  article-title: Choline metabolism in breast cancer; 2H-, 13C- and 31P-NMR studies of cells and tumors
  publication-title: MAGMA
  doi: 10.1007/BF02662511
– volume: 47
  start-page: 337
  year: 1988
  ident: 10.1016/j.jmr.2021.106932_b0145
  article-title: Dynamic monitoring of corneal carbohydrate metabolism using high-resolution deuterium NMR spectroscopy
  publication-title: Exp. Eye Res.
  doi: 10.1016/0014-4835(88)90016-4
– volume: 3
  start-page: 173
  year: 1990
  ident: 10.1016/j.jmr.2021.106932_b0115
  article-title: Renal distribution and metabolism of [2H9]choline. A 2H NMR and MRI study
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.1940030405
– volume: 82
  start-page: 156
  year: 1935
  ident: 10.1016/j.jmr.2021.106932_b0035
  article-title: Deuterium as an indicator in the study of intermediary metabolism
  publication-title: Science
  doi: 10.1126/science.82.2120.156
– volume: 294
  start-page: 289
  year: 2020
  ident: 10.1016/j.jmr.2021.106932_b0180
  article-title: Measuring tumor glycolytic flux in vivo by using fast deuterium MRI
  publication-title: Radiology
  doi: 10.1148/radiol.2019191242
– volume: 112
  start-page: 2213
  year: 2012
  ident: 10.1016/j.jmr.2021.106932_b0265
  article-title: Pharmacokinetic analysis of absorption, distribution and disappearance of ingested water labeled with D₂O in humans
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-011-2194-7
– volume: 2
  start-page: 3045
  year: 2007
  ident: 10.1016/j.jmr.2021.106932_b0300
  article-title: Measurement of cell proliferation by heavy water labeling
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2007.420
– volume: 45
  start-page: 543
  year: 2001
  ident: 10.1016/j.jmr.2021.106932_b0225
  article-title: 17O relaxation time and NMR sensitivity of cerebral water and their field dependence
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1073
– volume: 55
  start-page: 713
  year: 1955
  ident: 10.1016/j.jmr.2021.106932_b0315
  article-title: The deuterium isotope effect
  publication-title: Chem. Rev.
  doi: 10.1021/cr50004a004
– volume: 65
  start-page: 39
  year: 2020
  ident: 10.1016/j.jmr.2021.106932_b0190
  article-title: New in vivo glucose test by localized dynamic deuterium nuclear magnetic resonance
  publication-title: Rev. Roum. Chim.
  doi: 10.33224/rrch/2020.65.1.03
– ident: 10.1016/j.jmr.2021.106932_b0275
– volume: 7
  start-page: 3529
  year: 1968
  ident: 10.1016/j.jmr.2021.106932_b0345
  article-title: Deuterium isotope effects in the fermentation of hexoses to ethanol by Saccharomyces cerevisiae. I. Hydrogen exchange in the glycolytic pathway
  publication-title: Biochemistry
  doi: 10.1021/bi00850a030
– volume: 47
  start-page: 545
  year: 1964
  ident: 10.1016/j.jmr.2021.106932_b0230
  article-title: Deuteronen-KernResonanzspektroskopie
  publication-title: Helv. Chim. Acta
  doi: 10.1002/hlca.19640470221
– volume: 32
  issue: 10
  year: 2019
  ident: 10.1016/j.jmr.2021.106932_b0010
  article-title: In vivo 13C and 1H-[13C] MRS studies of neuroenergetics and neurotransmitter cycling, applications to neurological and psychiatric disease and brain cancer
  publication-title: NMR Biomed..
  doi: 10.1002/nbm.4172
– volume: 56
  start-page: 728
  year: 1939
  ident: 10.1016/j.jmr.2021.106932_b0050
  article-title: The magnetic moments of the proton and the deuteron. The radiofrequency spectrum of H2 in various magnetic fields
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.56.728
– volume: 32
  start-page: 405
  year: 1994
  ident: 10.1016/j.jmr.2021.106932_b0165
  article-title: Metabolic loss of deuterium from isotopically labeled glucose
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910320317
– ident: 10.1016/j.jmr.2021.106932_b0220
  doi: 10.1002/9781119382461
– volume: 4
  issue: 8
  year: 2018
  ident: 10.1016/j.jmr.2021.106932_b0025
  article-title: Deuterium metabolic imaging (DMI) for MRI-based 3D mapping of metabolism in vivo
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat7314
– volume: 701
  start-page: 193
  year: 2011
  ident: 10.1016/j.jmr.2021.106932_b0170
  article-title: In vivo assessment of oxygen consumption via Deuterium Magnetic Resonance
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-1-4419-7756-4_26
– volume: 61
  start-page: 265
  year: 1961
  ident: 10.1016/j.jmr.2021.106932_b0320
  article-title: The magnitude of the primary kinetic isotope effect for compounds of hydrogen and deuterium
  publication-title: Chem. Rev.
  doi: 10.1021/cr60211a004
– volume: 4
  start-page: 1313
  year: 2009
  ident: 10.1016/j.jmr.2021.106932_b0335
  article-title: Measurement of proliferation and disappearance of rapid turnover cell populations in human studies using deuterium-labeled glucose
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2009.117
– volume: 156
  start-page: S12
  issue: Suppl 1
  year: 1997
  ident: 10.1016/j.jmr.2021.106932_b0290
  article-title: Safety of stable isotope use
  publication-title: Eur. J. Pediatr.
  doi: 10.1007/PL00014267
– volume: 11
  start-page: 211
  year: 1977
  ident: 10.1016/j.jmr.2021.106932_b0070
  article-title: Deuterium magnetic resonance, applications in chemistry, physics and biology
  publication-title: Prog. NMR Spectrosc.
  doi: 10.1016/0079-6565(77)80010-1
– volume: 73
  start-page: 679
  year: 1948
  ident: 10.1016/j.jmr.2021.106932_b0065
  article-title: Relaxation effects in nuclear magnetic resonance absorption
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.73.679
– volume: 22
  start-page: 712
  year: 1970
  ident: 10.1016/j.jmr.2021.106932_b0245
  article-title: Absolute isotopic scale for deuterium analysis of natural waters. Absolute D/H ratio for SMOW
  publication-title: Tellus
– volume: 26
  start-page: 1016
  year: 1977
  ident: 10.1016/j.jmr.2021.106932_b0340
  article-title: Measurement of “true” glucose production rates in infancy and childhood with 6,6-dideuteroglucose
  publication-title: Diabetes
  doi: 10.2337/diab.26.11.1016
– volume: 10
  start-page: 181
  year: 2003
  ident: 10.1016/j.jmr.2021.106932_b0350
  article-title: A comparison of 13C NMR measurements of the rates of glutamine synthesis and the tricarboxylic acid cycle during oral and intravenous administration of [1-13C]glucose
  publication-title: Brain Res. Brain Res. Protocol.
  doi: 10.1016/S1385-299X(02)00217-9
– ident: 10.1016/j.jmr.2021.106932_b0005
  doi: 10.1002/nbm.4309
– volume: 26
  start-page: 378
  year: 1986
  ident: 10.1016/j.jmr.2021.106932_b0280
  article-title: Stable isotopes: origins and safety
  publication-title: J. Clin. Pharmacol.
  doi: 10.1002/j.1552-4604.1986.tb03544.x
– volume: 38
  start-page: 96
  year: 1976
  ident: 10.1016/j.jmr.2021.106932_b0235
  article-title: Proton and deuterium NMR of hydrogen bonds: relationship between isotope effects and the hydrogen bond potential
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(76)80264-3
– volume: 8
  start-page: 35
  year: 1988
  ident: 10.1016/j.jmr.2021.106932_b0090
  article-title: Deuterium NMR cerebral imaging in situ
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910080105
– volume: 27
  start-page: 7864
  year: 1988
  ident: 10.1016/j.jmr.2021.106932_b0110
  article-title: A deuterium surface coil NMR study of the metabolism of D-methionine in the liver of the anesthetized rat
  publication-title: Biochemistry
  doi: 10.1021/bi00420a042
– volume: 4
  start-page: 88
  year: 1987
  ident: 10.1016/j.jmr.2021.106932_b0100
  article-title: In vivo determination of body iron stores by natural-abundance deuterium magnetic resonance spectroscopy
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910040111
– volume: 84
  start-page: 4099
  year: 1987
  ident: 10.1016/j.jmr.2021.106932_b0085
  article-title: Deuterium nuclear magnetic resonance measurements of blood flow and tissue perfusion employing 2H2O as a freely diffusible tracer
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.84.12.4099
– volume: 80
  start-page: 277
  year: 1991
  ident: 10.1016/j.jmr.2021.106932_b0285
  article-title: Stable isotopes in clinical research: safety reaffirmed
  publication-title: Clin. Sci. (Lond)
  doi: 10.1042/cs0800277
– volume: 72
  start-page: 456
  year: 1987
  ident: 10.1016/j.jmr.2021.106932_b0095
  article-title: In vivo NMR imaging of deuterium
  publication-title: J. Magn. Reson.
– volume: 64
  start-page: 2325
  year: 1995
  ident: 10.1016/j.jmr.2021.106932_b0150
  article-title: Nondestructive measurement of retinal glucose transport and consumption in vivo using NMR spectroscopy
  publication-title: J. Neurochem.
  doi: 10.1046/j.1471-4159.1995.64052325.x
– volume: 74
  start-page: 362
  year: 2020
  ident: 10.1016/j.jmr.2021.106932_b0295
  article-title: Stable isotopes: their use and safety in human nutrition studies
  publication-title: Eur. J. Clin. Nutr.
  doi: 10.1038/s41430-020-0580-0
– volume: 65
  start-page: 927
  year: 2011
  ident: 10.1016/j.jmr.2021.106932_b0270
  article-title: Chemical exchange saturation transfer (CEST): what is in a name and what isn't?
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22761
– volume: 111
  start-page: 163
  year: 1935
  ident: 10.1016/j.jmr.2021.106932_b0040
  article-title: Deuterium as an indicator in the study of intermediary metabolism I-XI
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)75075-8
– ident: 10.1016/j.jmr.2021.106932_b0125
  doi: 10.1007/978-1-4757-9477-9_6
– year: 2021
  ident: 10.1016/j.jmr.2021.106932_b0210
  article-title: Deuterium metabolic imaging of the healthy and diseased brain
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2021.01.023
– year: 1961
  ident: 10.1016/j.jmr.2021.106932_b0215
– volume: 65
  start-page: 78
  year: 2017
  ident: 10.1016/j.jmr.2021.106932_b0305
  article-title: Identifying nonalcoholic fatty liver disease patients with active fibrosis by measuring extracellular matrix remodeling rates in tissue and blood
  publication-title: Hepatology
  doi: 10.1002/hep.28860
– volume: 129
  start-page: 4490
  year: 2007
  ident: 10.1016/j.jmr.2021.106932_b0240
  article-title: Secondary deuterium isotope effects on the acidity of carboxylic acids and phenols
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja069103t
– volume: 45
  start-page: 156
  year: 2001
  ident: 10.1016/j.jmr.2021.106932_b0260
  article-title: Quantifying tracer levels of 2H2O enrichment from microliter amounts of plasma and urine by 2H NMR
  publication-title: Magn. Reson. Med.
  doi: 10.1002/1522-2594(200101)45:1<156::AID-MRM1020>3.0.CO;2-Z
– volume: 137
  start-page: 579
  year: 1986
  ident: 10.1016/j.jmr.2021.106932_b0075
  article-title: Preliminary studies on the potential of in vivo deuterium NMR spectroscopy
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/0006-291X(86)91250-7
SSID ssj0011570
Score 2.5608268
SecondaryResourceType review_article
Snippet [Display omitted] •The promise of deuterium as a metabolic tracer was recognized soon after the discovery of chemical isotopes.•Deuterium NMR has only seen...
Deuterium metabolic spectroscopy (DMS) and imaging (DMI) have recently been described as simple and robust MR-based methods to map metabolism with high...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106932
SubjectTerms Acetates
Deuterium
Glucose
Glucose - metabolism
Label loss
Magnetic Resonance Spectroscopy - methods
Metabolic imaging
Relaxation
Water
Title Deuterium metabolic imaging – Back to the future
URI https://dx.doi.org/10.1016/j.jmr.2021.106932
https://www.ncbi.nlm.nih.gov/pubmed/33902815
https://www.proquest.com/docview/2518989916
https://pubmed.ncbi.nlm.nih.gov/PMC8083995
Volume 326
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB2tFlXtBfFZlhZkJE5I6Sax8-HjsmW1LYJLi7Q3y0kcEWCzCLJX1P_Qf9hfwoyTrFgQe-glkhMnsmac8Rv5-Q3AcSCiME8Dz8linjvC17mDPbmjvTBN_DAOjC3nc3EZjq_Ez0kw6cCwPQtDtMom9tcx3Ubr5k6_sWb_vij6v4hSGMWk7-XalYtOsIuI9PO_PS1oHqQlUysSSGLOuVG7s2k5XjdTkgT1PWyHkvvvrU1vsedrCuWLNWm0AesNmGSDeryb0DHlFnwctjXctuCDJXimj9vgfzdUvKGYT9nUVOj5uyJlxdTWKGL__vxlpzq9ZdWMISBktdDIDlyNzn4Px05TL8FBY0eVEyeGS5HlBkGXxAs3ma89LTCH00maxxHJjeGSjwgqk1JnkgvjisTDjCOwhxF2oVvOSrMHDPMgHWf4u9PGW5rj9zhCLUwFc1dEeZj1wG0tpdJGTJxqWtypljV2o9C4ioyrauP24GTxyn2tpLGqs2jNr5amg8JIv-q1o9ZVCi1Nex-6NLP5o0IYR4UyEQz34HPtusUoOCcJGy_oQbTk1EUHkuBeflIW11aKO0YEK2Ww_3_D_QKfqFXzJ79Ct3qYmwPEOFVyaCfxIawNfpyPL58BKnr42A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xCMEFsVNWI3FCiprEzuIjFFChpRdaqTfLSRyR0qYI0jv_wB_yJYyzVBRED1wiJXYia8aZeaMZvwE4d5jnxqFjGZFPY4PZMjZwJjWk5YaB7fqOytv5PHTcZo_d953-AjSqszC6rLK0_YVNz611-aReSrP-kiT1R11S6Pma38vMPdciLGt2Ktzsy5d3rWZnmkywHK8gJeC6eM70quRmXuY1GGlWUNvCe5dT-y_39Bt-_qyi_OaWbjdgvcST5LJY8iYsqHQLVhtVG7ctWMlrPMO3bbCvle7fkExGZKQyVP4wCUkyytsUkc_3D3Ilw2eSjQliQlJwjexA7_am22gaZcsEA-XtZYYfKMpZFCvEXRwvVEW2tCTDME4GYex7mnEMvT6CqIhzGXHKlMkCC4MOJz-PsAtL6ThV-0AwFJJ-hH-8zr2FMX6PItrCaDA2mRe7UQ3MSlIiLPnEdVuLoagKxwYChSu0cEUh3BpcTF95Kcg05k1mlfjFzI4QaOznvXZWqUqgpHX6Q6ZqPHkTiOR0r0zEwzXYK1Q3XQWlmsXGcmrgzSh1OkGzcM-OpMlTzsbtI4jl3Dn433JPYbXZfWiL9l2ndQhreqQopzyCpex1oo4R8mTBSbmlvwC2N_uJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deuterium+metabolic+imaging+-+Back+to+the+future&rft.jtitle=Journal+of+magnetic+resonance+%281997%29&rft.au=De+Feyter%2C+Henk+M&rft.au=de+Graaf%2C+Robin+A&rft.date=2021-05-01&rft.eissn=1096-0856&rft.volume=326&rft.spage=106932&rft_id=info:doi/10.1016%2Fj.jmr.2021.106932&rft_id=info%3Apmid%2F33902815&rft.externalDocID=33902815
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1090-7807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1090-7807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1090-7807&client=summon