Deuterium metabolic imaging – Back to the future
[Display omitted] •The promise of deuterium as a metabolic tracer was recognized soon after the discovery of chemical isotopes.•Deuterium NMR has only seen sporadic applications due to apparent downsides related to relaxation and resolution.•The short relaxation times, low natural abundance and spar...
Saved in:
Published in | Journal of magnetic resonance (1997) Vol. 326; p. 106932 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.05.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1090-7807 1096-0856 1096-0856 |
DOI | 10.1016/j.jmr.2021.106932 |
Cover
Loading…
Abstract | [Display omitted]
•The promise of deuterium as a metabolic tracer was recognized soon after the discovery of chemical isotopes.•Deuterium NMR has only seen sporadic applications due to apparent downsides related to relaxation and resolution.•The short relaxation times, low natural abundance and sparsity of the spectra are advantages for in vivo deuterium NMR.•Deuterium metabolic imaging (DMI) is a robust method to map metabolism of deuterated substrates non-invasively in 3D.
Deuterium metabolic spectroscopy (DMS) and imaging (DMI) have recently been described as simple and robust MR-based methods to map metabolism with high temporal and/or spatial resolution. The metabolic fate of a wide range of suitable deuterated substrates, including glucose and acetate, can be monitored with deuterium MR methods in which the favorable MR characteristics of deuterium prevent many of the complications that hamper other techniques. The short T1 relaxation times lead to good MR sensitivity, while the low natural abundance prevents the need for water or lipid suppression. The sparsity of the deuterium spectra in combination with the low resonance frequency provides relative immunity to magnetic field inhomogeneity. Taken together, these features combine into a highly robust metabolic imaging method that has strong potential to become a dominant MR research tool and a viable clinical imaging modality. This perspective reviews the history of deuterium as a metabolic tracer, the use of NMR as a detection method for deuterium in vitro and in vivo and the recent development of DMS and DMI. Following a review of the NMR characteristics and the biological effects of deuterium, the promising future of DMI is outlined. |
---|---|
AbstractList | Deuterium metabolic spectroscopy (DMS) and imaging (DMI) have recently been described as simple and robust MR-based methods to map metabolism with high temporal and/or spatial resolution. The metabolic fate of a wide range of suitable deuterated substrates, including glucose and acetate, can be monitored with deuterium MR methods in which the favorable MR characteristics of deuterium prevent many of the complications that hamper other techniques. The short T1 relaxation times lead to good MR sensitivity, while the low natural abundance prevents the need for water or lipid suppression. The sparsity of the deuterium spectra in combination with the low resonance frequency provides relative immunity to magnetic field inhomogeneity. Taken together, these features combine into a highly robust metabolic imaging method that has strong potential to become a dominant MR research tool and a viable clinical imaging modality. This perspective reviews the history of deuterium as a metabolic tracer, the use of NMR as a detection method for deuterium in vitro and in vivo and the recent development of DMS and DMI. Following a review of the NMR characteristics and the biological effects of deuterium, the promising future of DMI is outlined.Deuterium metabolic spectroscopy (DMS) and imaging (DMI) have recently been described as simple and robust MR-based methods to map metabolism with high temporal and/or spatial resolution. The metabolic fate of a wide range of suitable deuterated substrates, including glucose and acetate, can be monitored with deuterium MR methods in which the favorable MR characteristics of deuterium prevent many of the complications that hamper other techniques. The short T1 relaxation times lead to good MR sensitivity, while the low natural abundance prevents the need for water or lipid suppression. The sparsity of the deuterium spectra in combination with the low resonance frequency provides relative immunity to magnetic field inhomogeneity. Taken together, these features combine into a highly robust metabolic imaging method that has strong potential to become a dominant MR research tool and a viable clinical imaging modality. This perspective reviews the history of deuterium as a metabolic tracer, the use of NMR as a detection method for deuterium in vitro and in vivo and the recent development of DMS and DMI. Following a review of the NMR characteristics and the biological effects of deuterium, the promising future of DMI is outlined. [Display omitted] •The promise of deuterium as a metabolic tracer was recognized soon after the discovery of chemical isotopes.•Deuterium NMR has only seen sporadic applications due to apparent downsides related to relaxation and resolution.•The short relaxation times, low natural abundance and sparsity of the spectra are advantages for in vivo deuterium NMR.•Deuterium metabolic imaging (DMI) is a robust method to map metabolism of deuterated substrates non-invasively in 3D. Deuterium metabolic spectroscopy (DMS) and imaging (DMI) have recently been described as simple and robust MR-based methods to map metabolism with high temporal and/or spatial resolution. The metabolic fate of a wide range of suitable deuterated substrates, including glucose and acetate, can be monitored with deuterium MR methods in which the favorable MR characteristics of deuterium prevent many of the complications that hamper other techniques. The short T1 relaxation times lead to good MR sensitivity, while the low natural abundance prevents the need for water or lipid suppression. The sparsity of the deuterium spectra in combination with the low resonance frequency provides relative immunity to magnetic field inhomogeneity. Taken together, these features combine into a highly robust metabolic imaging method that has strong potential to become a dominant MR research tool and a viable clinical imaging modality. This perspective reviews the history of deuterium as a metabolic tracer, the use of NMR as a detection method for deuterium in vitro and in vivo and the recent development of DMS and DMI. Following a review of the NMR characteristics and the biological effects of deuterium, the promising future of DMI is outlined. Deuterium metabolic spectroscopy (DMS) and imaging (DMI) have recently been described as simple and robust MR-based methods to map metabolism with high temporal and/or spatial resolution. The metabolic fate of a wide range of suitable deuterated substrates, including glucose and acetate, can be monitored with deuterium MR methods in which the favorable MR characteristics of deuterium prevent many of the complications that hamper other techniques. The short T 1 relaxation times lead to good MR sensitivity, while the low natural abundance prevents the need for water or lipid suppression. The sparsity of the deuterium spectra in combination with the low resonance frequency provides relative immunity to magnetic field inhomogeneity. Taken together, these features combine into a highly robust metabolic imaging method that has strong potential to become a dominant MR research tool and a viable clinical imaging modality. This perspective reviews the history of deuterium as a metabolic tracer, the use of NMR as a detection method for deuterium in vitro and in vivo and the recent development of DMS and DMI. Following a review of the NMR characteristics and the biological effects of deuterium, the promising future of DMI is outlined. Deuterium metabolic spectroscopy (DMS) and imaging (DMI) have recently been described as simple and robust MR-based methods to map metabolism with high temporal and/or spatial resolution. The metabolic fate of a wide range of suitable deuterated substrates, including glucose and acetate, can be monitored with deuterium MR methods in which the favorable MR characteristics of deuterium prevent many of the complications that hamper other techniques. The short T relaxation times lead to good MR sensitivity, while the low natural abundance prevents the need for water or lipid suppression. The sparsity of the deuterium spectra in combination with the low resonance frequency provides relative immunity to magnetic field inhomogeneity. Taken together, these features combine into a highly robust metabolic imaging method that has strong potential to become a dominant MR research tool and a viable clinical imaging modality. This perspective reviews the history of deuterium as a metabolic tracer, the use of NMR as a detection method for deuterium in vitro and in vivo and the recent development of DMS and DMI. Following a review of the NMR characteristics and the biological effects of deuterium, the promising future of DMI is outlined. |
ArticleNumber | 106932 |
Author | De Feyter, Henk M. de Graaf, Robin A. |
Author_xml | – sequence: 1 givenname: Henk M. surname: De Feyter fullname: De Feyter, Henk M. email: henk.defeyter@yale.edu – sequence: 2 givenname: Robin A. surname: de Graaf fullname: de Graaf, Robin A. email: robin.degraaf@yale.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33902815$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9u1DAQxq1qEe0WHqAXlCOXLGM7TmwhIcGWP5Uq9QJny3EmWy9JvNhOJW68A2_YJ8HbLVXh0Ivtkb_fN6P5lmQx-QkJOaOwokDrN9vVdgwrBozmulacHZETCqouQYp6cfeGspHQHJNljFsASkUDz8kx5wqYpOKEsHOcEwY3j8WIybR-cLZwo9m4aVPc_vpdfDD2e5F8ka6x6Oc0B3xBnvVmiPjy_j4l3z59_Lr-Ul5efb5Yv78sraBNKmWLXFVdjwKkygfHjhlqKlmBaW0vGyZEDZJVjHdKmU7xCqFqaVNLQeum4qfk3cF3N7cjdhanFMygdyGPF35qb5z-92dy13rjb7QEyZUS2eD1vUHwP2aMSY8uWhwGM6Gfo2aCSiWVonWWvnrc66HJ30VlAT0IbPAxBuwfJBT0Pgy91TkMvQ9DH8LITPMfY10yyfn9uG54knx7IDHv98Zh0NE6nCx2LqBNuvPuCfoPBmWjBQ |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2022_119284 crossref_primary_10_3389_fimmu_2023_1258027 crossref_primary_10_1126_sciadv_adm8600 crossref_primary_10_1093_bjro_tzae019 crossref_primary_10_1038_s41598_023_41163_9 crossref_primary_10_1097_RLI_0000000000001170 crossref_primary_10_1016_j_ab_2021_114479 crossref_primary_10_1038_s44303_023_00004_0 crossref_primary_10_1136_bmjopen_2024_083980 crossref_primary_10_3390_metabo13040577 crossref_primary_10_1002_nbm_4890 crossref_primary_10_1246_bcsj_20220202 crossref_primary_10_1002_nbm_4817 crossref_primary_10_1021_acs_analchem_4c01999 crossref_primary_10_1002_mrm_29439 crossref_primary_10_1002_nbm_5309 crossref_primary_10_1002_mrm_29830 crossref_primary_10_1002_jmri_29532 crossref_primary_10_1002_mrc_5374 crossref_primary_10_1177_0271678X221148970 crossref_primary_10_1038_s41467_025_56600_8 crossref_primary_10_1002_mrm_30292 crossref_primary_10_1038_s41598_023_47301_7 crossref_primary_10_1093_pnasnexus_pgaf072 crossref_primary_10_1158_0008_5472_CAN_23_2552 crossref_primary_10_1631_jzus_B2300587 crossref_primary_10_1016_j_pnmrs_2023_02_002 crossref_primary_10_1158_1078_0432_CCR_23_1635 crossref_primary_10_1002_jmri_28833 crossref_primary_10_1016_j_neuroimage_2021_118639 crossref_primary_10_1002_nbm_4926 crossref_primary_10_1002_nbm_4603 crossref_primary_10_1002_nbm_70013 crossref_primary_10_31083_j_fbl2905182 crossref_primary_10_1186_s41747_024_00464_y crossref_primary_10_1016_j_tics_2024_11_010 crossref_primary_10_3390_magnetochemistry9010006 crossref_primary_10_1016_j_neuroimage_2023_120250 crossref_primary_10_3389_fonc_2023_1285209 crossref_primary_10_1002_mrm_30002 crossref_primary_10_1007_s00117_024_01390_1 crossref_primary_10_1002_mrm_29696 crossref_primary_10_1002_nbm_4995 crossref_primary_10_3389_fcimb_2023_1281155 crossref_primary_10_1002_jmri_29512 crossref_primary_10_1002_nbm_5325 crossref_primary_10_3389_fonc_2022_885480 crossref_primary_10_3390_ijms25031725 crossref_primary_10_1002_jmri_29437 crossref_primary_10_1038_s41387_024_00343_w crossref_primary_10_1016_j_saa_2023_123262 crossref_primary_10_1002_mrm_29539 crossref_primary_10_3390_metabo12121223 crossref_primary_10_1038_s41571_024_00891_1 crossref_primary_10_1016_j_ijhydene_2024_07_055 crossref_primary_10_1002_mrm_30395 crossref_primary_10_3389_fphys_2023_1198578 crossref_primary_10_3390_cancers13164034 crossref_primary_10_24835_1607_0763_1249 crossref_primary_10_1002_jmri_29546 crossref_primary_10_1002_nbm_5311 crossref_primary_10_3390_diagnostics13132311 crossref_primary_10_1158_1078_0432_CCR_21_4418 crossref_primary_10_1002_mrm_29888 crossref_primary_10_1002_nbm_4989 crossref_primary_10_3390_metabo11090570 crossref_primary_10_1097_RLI_0000000000000820 crossref_primary_10_1186_s41747_024_00426_4 |
Cites_doi | 10.1021/bi00396a044 10.1038/s41366-020-0533-7 10.1038/s41551-019-0499-8 10.1002/nbm.4235 10.1002/nbm.1940020203 10.1103/PhysRev.69.127 10.1351/pac199870010217 10.1016/j.jmr.2017.09.007 10.1177/0271678X17706444 10.1038/s41598-020-65839-8 10.1103/PhysRev.69.37 10.1126/science.87.2254.221 10.1351/pac200173111795 10.1111/j.1432-1033.1986.tb09656.x 10.1016/0006-291X(89)90024-7 10.1016/S0021-9258(19)77671-6 10.1172/JCI117635 10.1016/0006-291X(87)90282-8 10.1021/acschemneuro.0c00711 10.1126/scitranslmed.3006070 10.1103/PhysRev.40.1 10.1007/BF02662511 10.1016/0014-4835(88)90016-4 10.1002/nbm.1940030405 10.1126/science.82.2120.156 10.1148/radiol.2019191242 10.1007/s00421-011-2194-7 10.1038/nprot.2007.420 10.1002/mrm.1073 10.1021/cr50004a004 10.33224/rrch/2020.65.1.03 10.1021/bi00850a030 10.1002/hlca.19640470221 10.1002/nbm.4172 10.1103/PhysRev.56.728 10.1002/mrm.1910320317 10.1002/9781119382461 10.1126/sciadv.aat7314 10.1007/978-1-4419-7756-4_26 10.1021/cr60211a004 10.1038/nprot.2009.117 10.1007/PL00014267 10.1016/0079-6565(77)80010-1 10.1103/PhysRev.73.679 10.2337/diab.26.11.1016 10.1016/S1385-299X(02)00217-9 10.1002/nbm.4309 10.1002/j.1552-4604.1986.tb03544.x 10.1016/0009-2614(76)80264-3 10.1002/mrm.1910080105 10.1021/bi00420a042 10.1002/mrm.1910040111 10.1073/pnas.84.12.4099 10.1042/cs0800277 10.1046/j.1471-4159.1995.64052325.x 10.1038/s41430-020-0580-0 10.1002/mrm.22761 10.1016/S0021-9258(18)75075-8 10.1007/978-1-4757-9477-9_6 10.1016/j.neuroscience.2021.01.023 10.1002/hep.28860 10.1021/ja069103t 10.1002/1522-2594(200101)45:1<156::AID-MRM1020>3.0.CO;2-Z 10.1016/0006-291X(86)91250-7 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.jmr.2021.106932 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1096-0856 |
EndPage | 106932 |
ExternalDocumentID | PMC8083995 33902815 10_1016_j_jmr_2021_106932 S1090780721000215 |
Genre | Journal Article Review Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01 EB025840 – fundername: NCATS NIH HHS grantid: UL1 TR001863 |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABBQC ABFNM ABGSF ABJNI ABLJU ABLVK ABMAC ABMZM ABNEU ABUDA ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNCT ACNNM ACRLP ADBBV ADECG ADEZE ADFGL ADMUD ADUVX AEBSH AEHWI AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AFZHZ AGHFR AGRDE AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJRQY AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 D-I DM4 DOVZS DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q G8K GBLVA HVGLF HZ~ IHE J1W KOM LCYCR LG5 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SDF SDG SDP SES SEW SPC SPCBC SSH SSK SSQ SSU SSZ T5K UPT UQL XPP YQT ZA5 ZCG ZGI ZXP ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c517t-8be394dfe5089e503ed2a1a4840abcf872556082423d99ad934e04b1768516743 |
IEDL.DBID | .~1 |
ISSN | 1090-7807 1096-0856 |
IngestDate | Thu Aug 21 18:13:41 EDT 2025 Thu Sep 04 23:22:43 EDT 2025 Mon Jul 21 05:56:57 EDT 2025 Thu Apr 24 23:03:01 EDT 2025 Tue Jul 01 02:06:31 EDT 2025 Fri Feb 23 02:44:43 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deuterium Relaxation Metabolic imaging Label loss Glucose |
Language | English |
License | Copyright © 2021 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-8be394dfe5089e503ed2a1a4840abcf872556082423d99ad934e04b1768516743 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8083995 |
PMID | 33902815 |
PQID | 2518989916 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8083995 proquest_miscellaneous_2518989916 pubmed_primary_33902815 crossref_primary_10_1016_j_jmr_2021_106932 crossref_citationtrail_10_1016_j_jmr_2021_106932 elsevier_sciencedirect_doi_10_1016_j_jmr_2021_106932 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2021 2021-05-00 20210501 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: May 2021 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of magnetic resonance (1997) |
PublicationTitleAlternate | J Magn Reson |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | De Feyter, Behar, Corbin, Fulbright, Brown, McIntyre, Nixon, Rothman, de Graaf (b0025) 2018; 4 Koletzko, Sauerwald, Demmelmair (b0290) 1997; 156 J.F. Thomson, Biological effects of deuterium, in: P. Alexander, Z.M. Bacq, editors. The Macmillan Company, New York, 1963. Aguayo, Gamcsik, Dick (b0135) 1988; 263 Busch, Neese, Awada, Hayes, Hellerstein (b0300) 2007; 2 Landau, Wahren, Chandramouli, Schumann, Ekberg, Kalhan (b0310) 1995; 95 London, Gabel, Funk (b0105) 1987; 26 Zhu, Merkle, Kwag, Ugurbil, Chen (b0225) 2001; 45 Eng, Berkowitz, Balaban (b0115) 1990; 3 Mahar, Donabedian, Merritt (b0195) 2020; 10 London, Gabel (b0110) 1988; 27 Ben-Yoseph, Kingsley, Ross (b0165) 1994; 32 A.A. Maudsley, O.C. Andronesi, P.B. Barker, A. Bizzi, W. Bogner, A. Henning, S.J. Nelson, S. Posse, D.C. Shungu, B.J. Soher, Advanced magnetic resonance spectroscopic neuroimaging: Experts' consensus recommendations, NMR Biomed. 2020: e4309. Bloch, Hansen, Packard (b0055) 1946; 69 Perrin, Dong (b0240) 2007; 129 Brereton, Doddrell, Oakenfull, Moss, Irving (b0080) 1989; 2 Klein, Klein (b0280) 1986; 26 Ackerman, Ewy, Becker, Shalwitz (b0085) 1987; 84 Funk, Anderson, Wen, Hever, Khemtong, Kovacs, Sherry, Malloy (b0325) 2017; 284 Muller, Seelig (b0095) 1987; 72 Mantsch, Saito, Smith (b0070) 1977; 11 Schoenheimer, Rittenberg (b0045) 1938; 87 Purcell, Torrey, Pound (b0060) 1946; 69 Péronnet, Mignault, du Souich, Vergne, Le Bellego, Jimenez, Rabasa-Lhoret (b0265) 2012; 112 Macallan, Asquith, Zhang, de Lara, Ghattas, Defoiche, Beverley (b0335) 2009; 4 Berkowitz, Garner, Wilson, Corbett (b0150) 1995; 64 S.J. Nelson, J. Kurhanewicz, D.B. Vigneron, P.E. Larson, A.L. Harzstark, M. Ferrone, M. van Criekinge, J.W. Chang, R. Bok, I. Park, G. Reed, L. Carvajal, E.J. Small, P. Munster, V.K. Weinberg, J.H. Ardenkjaer-Larsen, A.P. Chen, R.E. Hurd, L.I. Odegardstuen, F.J. Robb, J. Tropp, J.A. Murray, Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C]pyruvate, Sci. Transl. Med. 5(2013)198ra108. Rich, Bagga, Wilson, Schnall, Detre, Haris, Reddy (b0200) 2020; 4 de Graaf, Thomas, Behar, De Feyter (b0330) 2021; 12 Katz-Brull, Margalit, Bendel, Degani (b0120) 1998; 6 Hotchkiss, Song, Ling, Ackerman, Karl (b0160) 1990; 258 Kellogg, Rabi, Ramsey, Zacharias (b0050) 1939; 56 Riis-Vestergaard, Laustsen, Mariager, Schulte, Pedersen, Richelsen (b0185) 2020; 44 van Zijl, Yadav (b0270) 2011; 65 Straathof, Meerwaldt, De Feyter, de Graaf, Dijkhuizen (b0210) 2021 Saur, Crespi, Halevi, Katz (b0345) 1968; 7 Westheimer (b0320) 1961; 61 Mason, Falk Petersen, de Graaf, Kanamatsu, Otsuki, Rothman (b0350) 2003; 10 Goodman, Masuoka, deRopp, Jones (b0155) 1989; 159 R.A. de Graaf, In Vivo NMR Spectroscopy. Principles and Techniques. John Wiley, Chichester, 2019. Irving, Brereton, Field, Doddrell (b0100) 1987; 4 Aguayo, McLennan, Graham, Cheng (b0145) 1988; 47 Harris, Becker, Cabral de Menezes, Goodfellow, Granger (b0255) 2001; 73 Jones, Leatherdale (b0285) 1991; 80 Rothman, de Graaf, Hyder, Mason, Behar, De Feyter (b0010) 2019; 32 Hagemann, Nief, Roth (b0245) 1970; 22 Brereton, Irving, Field, Doddrell (b0075) 1986; 137 Mateescu, Ye, Flask, Erokwu, Duerk (b0170) 2011; 701 Bier, Leake, Haymond, Arnold, Gruenke, Sperling, Kipnis (b0340) 1977; 26 R.E. London, In vivo 2H NMR studies of cellular metabolism, in: L.J. Berliner, J. Reuben, editors. Biological Magnetic Resonance, Volume 11: In Vivo Spectroscopy. Plenum Press, New York, 1992, p 277–306. Diehl, Leipert (b0230) 1964; 47 Gunnarsson, Wennerstrom, Egan, Forsen (b0235) 1976; 38 Schoenheimer, Rittenberg (b0040) 1935; 111 Decaris, Li, Emson, Gatmaitan, Liu, Wang, Nyangau, Colangelo, Angel, Beysen, Cui, Hernandez, Lazaro, Brenner, Turner, Hellerstein, Loomba (b0305) 2017; 65 von Morze, Engelbach, Blazey, Quirk, Reed, Ippolito, Garbow (b0205) 2020 Schoenheimer, Rittenberg (b0035) 1935; 82 Aguayo, McLennan, Aguiar, Cheng (b0140) 1987; 142 Barrow, Rogers, Smith (b0130) 1986; 157 Ye, Erokwu, Twieg, Flask, Mateescu (b0190) 2020; 65 Bloembergen, Purcell, Pound (b0065) 1948; 73 Urey, Brickwedde, Murphy (b0030) 1932; 40 Jones, Merritt, Malloy (b0260) 2001; 45 Davies (b0295) 2020; 74 Lu, Zhu, Zhang, Mateescu, Chen (b0020) 2017; 37 Ewy, Ackerman, Balaban (b0090) 1988; 8 Abragam (b0215) 1961 Wiberg (b0315) 1955; 55 Rosman, Taylor (b0250) 1998; 70 de Graaf, Hendriks, Klomp, Kumaragamage, Welting, Arteaga de Castro, Brown, McIntyre, Nixon, Prompers, De Feyter (b0175) 2020; 33 Kreis, Wright, Hesse, Fala, Hu, Brindle (b0180) 2020; 294 Davies (10.1016/j.jmr.2021.106932_b0295) 2020; 74 Busch (10.1016/j.jmr.2021.106932_b0300) 2007; 2 de Graaf (10.1016/j.jmr.2021.106932_b0175) 2020; 33 10.1016/j.jmr.2021.106932_b0015 Ben-Yoseph (10.1016/j.jmr.2021.106932_b0165) 1994; 32 Landau (10.1016/j.jmr.2021.106932_b0310) 1995; 95 Abragam (10.1016/j.jmr.2021.106932_b0215) 1961 Hotchkiss (10.1016/j.jmr.2021.106932_b0160) 1990; 258 Schoenheimer (10.1016/j.jmr.2021.106932_b0040) 1935; 111 Mahar (10.1016/j.jmr.2021.106932_b0195) 2020; 10 van Zijl (10.1016/j.jmr.2021.106932_b0270) 2011; 65 Hagemann (10.1016/j.jmr.2021.106932_b0245) 1970; 22 Gunnarsson (10.1016/j.jmr.2021.106932_b0235) 1976; 38 Ye (10.1016/j.jmr.2021.106932_b0190) 2020; 65 Lu (10.1016/j.jmr.2021.106932_b0020) 2017; 37 Brereton (10.1016/j.jmr.2021.106932_b0075) 1986; 137 Barrow (10.1016/j.jmr.2021.106932_b0130) 1986; 157 Macallan (10.1016/j.jmr.2021.106932_b0335) 2009; 4 Aguayo (10.1016/j.jmr.2021.106932_b0135) 1988; 263 Irving (10.1016/j.jmr.2021.106932_b0100) 1987; 4 Koletzko (10.1016/j.jmr.2021.106932_b0290) 1997; 156 Kellogg (10.1016/j.jmr.2021.106932_b0050) 1939; 56 Muller (10.1016/j.jmr.2021.106932_b0095) 1987; 72 Ackerman (10.1016/j.jmr.2021.106932_b0085) 1987; 84 Aguayo (10.1016/j.jmr.2021.106932_b0140) 1987; 142 De Feyter (10.1016/j.jmr.2021.106932_b0025) 2018; 4 Bier (10.1016/j.jmr.2021.106932_b0340) 1977; 26 10.1016/j.jmr.2021.106932_b0220 Eng (10.1016/j.jmr.2021.106932_b0115) 1990; 3 Rothman (10.1016/j.jmr.2021.106932_b0010) 2019; 32 Harris (10.1016/j.jmr.2021.106932_b0255) 2001; 73 Purcell (10.1016/j.jmr.2021.106932_b0060) 1946; 69 Bloembergen (10.1016/j.jmr.2021.106932_b0065) 1948; 73 Katz-Brull (10.1016/j.jmr.2021.106932_b0120) 1998; 6 Saur (10.1016/j.jmr.2021.106932_b0345) 1968; 7 Aguayo (10.1016/j.jmr.2021.106932_b0145) 1988; 47 Westheimer (10.1016/j.jmr.2021.106932_b0320) 1961; 61 von Morze (10.1016/j.jmr.2021.106932_b0205) 2020 Berkowitz (10.1016/j.jmr.2021.106932_b0150) 1995; 64 Rich (10.1016/j.jmr.2021.106932_b0200) 2020; 4 Schoenheimer (10.1016/j.jmr.2021.106932_b0035) 1935; 82 10.1016/j.jmr.2021.106932_b0275 Schoenheimer (10.1016/j.jmr.2021.106932_b0045) 1938; 87 Klein (10.1016/j.jmr.2021.106932_b0280) 1986; 26 Jones (10.1016/j.jmr.2021.106932_b0285) 1991; 80 Decaris (10.1016/j.jmr.2021.106932_b0305) 2017; 65 Urey (10.1016/j.jmr.2021.106932_b0030) 1932; 40 Perrin (10.1016/j.jmr.2021.106932_b0240) 2007; 129 Diehl (10.1016/j.jmr.2021.106932_b0230) 1964; 47 Jones (10.1016/j.jmr.2021.106932_b0260) 2001; 45 Mantsch (10.1016/j.jmr.2021.106932_b0070) 1977; 11 Kreis (10.1016/j.jmr.2021.106932_b0180) 2020; 294 Péronnet (10.1016/j.jmr.2021.106932_b0265) 2012; 112 Bloch (10.1016/j.jmr.2021.106932_b0055) 1946; 69 London (10.1016/j.jmr.2021.106932_b0110) 1988; 27 Mateescu (10.1016/j.jmr.2021.106932_b0170) 2011; 701 Mason (10.1016/j.jmr.2021.106932_b0350) 2003; 10 Goodman (10.1016/j.jmr.2021.106932_b0155) 1989; 159 10.1016/j.jmr.2021.106932_b0005 Rosman (10.1016/j.jmr.2021.106932_b0250) 1998; 70 10.1016/j.jmr.2021.106932_b0125 Wiberg (10.1016/j.jmr.2021.106932_b0315) 1955; 55 Straathof (10.1016/j.jmr.2021.106932_b0210) 2021 Zhu (10.1016/j.jmr.2021.106932_b0225) 2001; 45 Brereton (10.1016/j.jmr.2021.106932_b0080) 1989; 2 de Graaf (10.1016/j.jmr.2021.106932_b0330) 2021; 12 Funk (10.1016/j.jmr.2021.106932_b0325) 2017; 284 London (10.1016/j.jmr.2021.106932_b0105) 1987; 26 Ewy (10.1016/j.jmr.2021.106932_b0090) 1988; 8 Riis-Vestergaard (10.1016/j.jmr.2021.106932_b0185) 2020; 44 |
References_xml | – volume: 87 start-page: 221 year: 1938 end-page: 226 ident: b0045 article-title: The application of isotopes to the study of intermediary metabolism publication-title: Science – volume: 70 start-page: 217 year: 1998 end-page: 235 ident: b0250 article-title: Isotopic compositions of the elements 1997 publication-title: Pure Appl. Chem. – reference: S.J. Nelson, J. Kurhanewicz, D.B. Vigneron, P.E. Larson, A.L. Harzstark, M. Ferrone, M. van Criekinge, J.W. Chang, R. Bok, I. Park, G. Reed, L. Carvajal, E.J. Small, P. Munster, V.K. Weinberg, J.H. Ardenkjaer-Larsen, A.P. Chen, R.E. Hurd, L.I. Odegardstuen, F.J. Robb, J. Tropp, J.A. Murray, Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C]pyruvate, Sci. Transl. Med. 5(2013)198ra108. – volume: 32 start-page: 405 year: 1994 end-page: 409 ident: b0165 article-title: Metabolic loss of deuterium from isotopically labeled glucose publication-title: Magn. Reson. Med. – volume: 61 start-page: 265 year: 1961 end-page: 273 ident: b0320 article-title: The magnitude of the primary kinetic isotope effect for compounds of hydrogen and deuterium publication-title: Chem. Rev. – volume: 701 start-page: 193 year: 2011 end-page: 199 ident: b0170 article-title: assessment of oxygen consumption via Deuterium Magnetic Resonance publication-title: Adv. Exp. Med. Biol. – volume: 7 start-page: 3529 year: 1968 end-page: 3536 ident: b0345 article-title: Deuterium isotope effects in the fermentation of hexoses to ethanol by Saccharomyces cerevisiae. I. Hydrogen exchange in the glycolytic pathway publication-title: Biochemistry – volume: 142 start-page: 359 year: 1987 end-page: 366 ident: b0140 article-title: The study of diabetic cataractogenesis in the intact rabbit lens by deuterium NMR spectroscopy publication-title: Biochem. Biophys. Res. Commun. – volume: 45 start-page: 156 year: 2001 end-page: 158 ident: b0260 article-title: Quantifying tracer levels of publication-title: Magn. Reson. Med. – volume: 159 start-page: 522 year: 1989 end-page: 527 ident: b0155 article-title: Use of deuterium labelled glucose in evaluating the pathway of hepatic glycogen synthesis publication-title: Biochem. Biophys. Res. Commun. – volume: 82 start-page: 156 year: 1935 end-page: 157 ident: b0035 article-title: Deuterium as an indicator in the study of intermediary metabolism publication-title: Science – volume: 73 start-page: 1795 year: 2001 end-page: 1818 ident: b0255 article-title: NMR nomenclature: nuclear spin properties and conventions for chemical shifts. IUPAC recommendations 2001 publication-title: Pure Appl. Chem. – volume: 156 start-page: S12 year: 1997 end-page: S17 ident: b0290 article-title: Safety of stable isotope use publication-title: Eur. J. Pediatr. – volume: 55 start-page: 713 year: 1955 end-page: 743 ident: b0315 article-title: The deuterium isotope effect publication-title: Chem. Rev. – volume: 12 start-page: 234 year: 2021 end-page: 243 ident: b0330 article-title: Characterization of kinetic isotope effects and label loss in deuterium-based isotopic labeling studies publication-title: ACS Chem. Neurosci. – volume: 112 start-page: 2213 year: 2012 end-page: 2222 ident: b0265 article-title: Pharmacokinetic analysis of absorption, distribution and disappearance of ingested water labeled with D₂O in humans publication-title: Eur. J. Appl. Physiol. – volume: 129 start-page: 4490 year: 2007 end-page: 4497 ident: b0240 article-title: Secondary deuterium isotope effects on the acidity of carboxylic acids and phenols publication-title: J. Am. Chem. Soc. – volume: 65 start-page: 78 year: 2017 end-page: 88 ident: b0305 article-title: Identifying nonalcoholic fatty liver disease patients with active fibrosis by measuring extracellular matrix remodeling rates in tissue and blood publication-title: Hepatology – volume: 10 start-page: 8885 year: 2020 ident: b0195 article-title: HDO production from [ publication-title: Sci. Rep. – volume: 294 start-page: 289 year: 2020 end-page: 296 ident: b0180 article-title: Measuring tumor glycolytic flux publication-title: Radiology – volume: 95 start-page: 172 year: 1995 end-page: 178 ident: b0310 article-title: Use of publication-title: J. Clin. Invest. – volume: 32 year: 2019 ident: b0010 article-title: C and publication-title: NMR Biomed.. – reference: J.F. Thomson, Biological effects of deuterium, in: P. Alexander, Z.M. Bacq, editors. The Macmillan Company, New York, 1963. – volume: 2 start-page: 3045 year: 2007 end-page: 3057 ident: b0300 article-title: Measurement of cell proliferation by heavy water labeling publication-title: Nat. Protoc. – volume: 284 start-page: 86 year: 2017 end-page: 93 ident: b0325 article-title: The rate of lactate production from glucose in hearts is not altered by per-deuteration of glucose publication-title: J. Magn. Reson. – volume: 47 start-page: 545 year: 1964 end-page: 557 ident: b0230 article-title: Deuteronen-KernResonanzspektroskopie publication-title: Helv. Chim. Acta – volume: 10 start-page: 181 year: 2003 end-page: 190 ident: b0350 article-title: A comparison of publication-title: Brain Res. Brain Res. Protocol. – volume: 44 start-page: 1417 year: 2020 end-page: 1427 ident: b0185 article-title: Glucose metabolism in brown adipose tissue determined by deuterium metabolic imaging in rats publication-title: Int. J. Obes. (Lond) – volume: 73 start-page: 679 year: 1948 end-page: 712 ident: b0065 article-title: Relaxation effects in nuclear magnetic resonance absorption publication-title: Phys. Rev. – reference: A.A. Maudsley, O.C. Andronesi, P.B. Barker, A. Bizzi, W. Bogner, A. Henning, S.J. Nelson, S. Posse, D.C. Shungu, B.J. Soher, Advanced magnetic resonance spectroscopic neuroimaging: Experts' consensus recommendations, NMR Biomed. 2020: e4309. – volume: 2 start-page: 55 year: 1989 end-page: 60 ident: b0080 article-title: The use of publication-title: NMR Biomed. – volume: 8 start-page: 35 year: 1988 end-page: 44 ident: b0090 article-title: Deuterium NMR cerebral imaging publication-title: Magn. Reson. Med. – volume: 4 start-page: 1313 year: 2009 end-page: 1327 ident: b0335 article-title: Measurement of proliferation and disappearance of rapid turnover cell populations in human studies using deuterium-labeled glucose publication-title: Nat. Protoc. – volume: 3 start-page: 173 year: 1990 end-page: 177 ident: b0115 article-title: Renal distribution and metabolism of [ publication-title: NMR Biomed. – volume: 65 start-page: 927 year: 2011 end-page: 948 ident: b0270 article-title: Chemical exchange saturation transfer (CEST): what is in a name and what isn't? publication-title: Magn. Reson. Med. – volume: 4 start-page: 88 year: 1987 end-page: 92 ident: b0100 article-title: determination of body iron stores by natural-abundance deuterium magnetic resonance spectroscopy publication-title: Magn. Reson. Med. – volume: 4 year: 2018 ident: b0025 article-title: Deuterium metabolic imaging (DMI) for MRI-based 3D mapping of metabolism publication-title: Sci. Adv. – volume: 26 start-page: 378 year: 1986 end-page: 382 ident: b0280 article-title: Stable isotopes: origins and safety publication-title: J. Clin. Pharmacol. – volume: 6 start-page: 44 year: 1998 end-page: 52 ident: b0120 article-title: Choline metabolism in breast cancer; publication-title: MAGMA – volume: 263 start-page: 19552 year: 1988 end-page: 19557 ident: b0135 article-title: High resolution deuterium NMR studies of bacterial metabolism publication-title: J. Biol. Chem. – volume: 33 year: 2020 ident: b0175 article-title: On the magnetic field dependence of deuterium metabolic imaging publication-title: NMR Biomed. – year: 2021 ident: b0210 article-title: Deuterium metabolic imaging of the healthy and diseased brain publication-title: Neuroscience – volume: 64 start-page: 2325 year: 1995 end-page: 2331 ident: b0150 article-title: Nondestructive measurement of retinal glucose transport and consumption publication-title: J. Neurochem. – year: 2020 ident: b0205 article-title: Comparison of hyperpolarized publication-title: Magn. Reson. Med. – volume: 65 start-page: 39 year: 2020 end-page: 42 ident: b0190 article-title: New publication-title: Rev. Roum. Chim. – volume: 69 start-page: 127 year: 1946 ident: b0055 article-title: Nuclear induction publication-title: Phys. Rev. – volume: 56 start-page: 728 year: 1939 end-page: 743 ident: b0050 article-title: The magnetic moments of the proton and the deuteron. The radiofrequency spectrum of H publication-title: Phys. Rev. – volume: 157 start-page: 195 year: 1986 end-page: 202 ident: b0130 article-title: NMR studies of [1- publication-title: Eur. J. Biochem. – volume: 38 start-page: 96 year: 1976 end-page: 99 ident: b0235 article-title: Proton and deuterium NMR of hydrogen bonds: relationship between isotope effects and the hydrogen bond potential publication-title: Chem. Phys. Lett. – volume: 80 start-page: 277 year: 1991 end-page: 280 ident: b0285 article-title: Stable isotopes in clinical research: safety reaffirmed publication-title: Clin. Sci. (Lond) – volume: 111 start-page: 163 year: 1935 end-page: 168 ident: b0040 article-title: Deuterium as an indicator in the study of intermediary metabolism I-XI publication-title: J. Biol. Chem. – volume: 4 start-page: 335 year: 2020 end-page: 342 ident: b0200 article-title: H magnetic resonance spectroscopy of publication-title: Nat. Biomed. Eng. – volume: 26 start-page: 1016 year: 1977 end-page: 1023 ident: b0340 article-title: Measurement of “true” glucose production rates in infancy and childhood with 6,6-dideuteroglucose publication-title: Diabetes – volume: 40 start-page: 1 year: 1932 end-page: 15 ident: b0030 article-title: A hydrogen isotope of mass 2 and its concentration publication-title: Phys. Rev. – volume: 69 start-page: 37 year: 1946 end-page: 38 ident: b0060 article-title: Resonance absorption by nuclear magnetic moments in a solid publication-title: Phys. Rev. – volume: 37 start-page: 3518 year: 2017 end-page: 3530 ident: b0020 article-title: Quantitative assessment of brain glucose metabolic rates using publication-title: J. Cereb. Blood Flow Metab. – reference: R.A. de Graaf, In Vivo NMR Spectroscopy. Principles and Techniques. John Wiley, Chichester, 2019. – volume: 26 start-page: 7166 year: 1987 end-page: 7172 ident: b0105 article-title: Metabolism of excess methionine in the liver of intact rat: an publication-title: Biochemistry – volume: 258 start-page: R21 year: 1990 end-page: R31 ident: b0160 article-title: Sepsis does not alter red blood cell glucose metabolism or Na publication-title: Am. J. Physiol. – volume: 45 start-page: 543 year: 2001 end-page: 549 ident: b0225 article-title: O relaxation time and NMR sensitivity of cerebral water and their field dependence publication-title: Magn. Reson. Med. – volume: 72 start-page: 456 year: 1987 end-page: 466 ident: b0095 article-title: NMR imaging of deuterium publication-title: J. Magn. Reson. – volume: 47 start-page: 337 year: 1988 end-page: 343 ident: b0145 article-title: Dynamic monitoring of corneal carbohydrate metabolism using high-resolution deuterium NMR spectroscopy publication-title: Exp. Eye Res. – volume: 74 start-page: 362 year: 2020 end-page: 365 ident: b0295 article-title: Stable isotopes: their use and safety in human nutrition studies publication-title: Eur. J. Clin. Nutr. – reference: R.E. London, In vivo 2H NMR studies of cellular metabolism, in: L.J. Berliner, J. Reuben, editors. Biological Magnetic Resonance, Volume 11: In Vivo Spectroscopy. Plenum Press, New York, 1992, p 277–306. – volume: 137 start-page: 579 year: 1986 end-page: 584 ident: b0075 article-title: Preliminary studies on the potential of publication-title: Biochem. Biophys. Res. Commun. – year: 1961 ident: b0215 article-title: The Principles of Nuclear Magnetism – volume: 84 start-page: 4099 year: 1987 end-page: 4102 ident: b0085 article-title: Deuterium nuclear magnetic resonance measurements of blood flow and tissue perfusion employing publication-title: Proc. Natl. Acad. Sci. U S A – volume: 27 start-page: 7864 year: 1988 end-page: 7869 ident: b0110 article-title: A deuterium surface coil NMR study of the metabolism of D-methionine in the liver of the anesthetized rat publication-title: Biochemistry – volume: 22 start-page: 712 year: 1970 end-page: 715 ident: b0245 article-title: Absolute isotopic scale for deuterium analysis of natural waters. Absolute D/H ratio for SMOW publication-title: Tellus – volume: 11 start-page: 211 year: 1977 end-page: 271 ident: b0070 article-title: Deuterium magnetic resonance, applications in chemistry, physics and biology publication-title: Prog. NMR Spectrosc. – volume: 26 start-page: 7166 year: 1987 ident: 10.1016/j.jmr.2021.106932_b0105 article-title: Metabolism of excess methionine in the liver of intact rat: an in vivo 2H NMR study publication-title: Biochemistry doi: 10.1021/bi00396a044 – volume: 44 start-page: 1417 year: 2020 ident: 10.1016/j.jmr.2021.106932_b0185 article-title: Glucose metabolism in brown adipose tissue determined by deuterium metabolic imaging in rats publication-title: Int. J. Obes. (Lond) doi: 10.1038/s41366-020-0533-7 – volume: 4 start-page: 335 year: 2020 ident: 10.1016/j.jmr.2021.106932_b0200 article-title: 1H magnetic resonance spectroscopy of 2H-to-1H exchange quantifies the dynamics of cellular metabolism in vivo publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-019-0499-8 – volume: 33 year: 2020 ident: 10.1016/j.jmr.2021.106932_b0175 article-title: On the magnetic field dependence of deuterium metabolic imaging publication-title: NMR Biomed. doi: 10.1002/nbm.4235 – volume: 2 start-page: 55 year: 1989 ident: 10.1016/j.jmr.2021.106932_b0080 article-title: The use of in vivo 2H NMR spectroscopy to investigate the effects of obesity and diabetes mellitus upon lipid metabolism in mice publication-title: NMR Biomed. doi: 10.1002/nbm.1940020203 – year: 2020 ident: 10.1016/j.jmr.2021.106932_b0205 article-title: Comparison of hyperpolarized 13C and non-hyperpolarized deuterium MRI approaches for imaging cerebral glucose metabolism at 4.7 T publication-title: Magn. Reson. Med. – volume: 69 start-page: 127 year: 1946 ident: 10.1016/j.jmr.2021.106932_b0055 article-title: Nuclear induction publication-title: Phys. Rev. doi: 10.1103/PhysRev.69.127 – volume: 70 start-page: 217 year: 1998 ident: 10.1016/j.jmr.2021.106932_b0250 article-title: Isotopic compositions of the elements 1997 publication-title: Pure Appl. Chem. doi: 10.1351/pac199870010217 – volume: 284 start-page: 86 year: 2017 ident: 10.1016/j.jmr.2021.106932_b0325 article-title: The rate of lactate production from glucose in hearts is not altered by per-deuteration of glucose publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2017.09.007 – volume: 37 start-page: 3518 year: 2017 ident: 10.1016/j.jmr.2021.106932_b0020 article-title: Quantitative assessment of brain glucose metabolic rates using in vivo deuterium magnetic resonance spectroscopy publication-title: J. Cereb. Blood Flow Metab. doi: 10.1177/0271678X17706444 – volume: 10 start-page: 8885 year: 2020 ident: 10.1016/j.jmr.2021.106932_b0195 article-title: HDO production from [2H7]glucose quantitatively identifies Warburg metabolism publication-title: Sci. Rep. doi: 10.1038/s41598-020-65839-8 – volume: 69 start-page: 37 year: 1946 ident: 10.1016/j.jmr.2021.106932_b0060 article-title: Resonance absorption by nuclear magnetic moments in a solid publication-title: Phys. Rev. doi: 10.1103/PhysRev.69.37 – volume: 258 start-page: R21 year: 1990 ident: 10.1016/j.jmr.2021.106932_b0160 article-title: Sepsis does not alter red blood cell glucose metabolism or Na+ concentration: a 2H-, 23Na-NMR study publication-title: Am. J. Physiol. – volume: 87 start-page: 221 year: 1938 ident: 10.1016/j.jmr.2021.106932_b0045 article-title: The application of isotopes to the study of intermediary metabolism publication-title: Science doi: 10.1126/science.87.2254.221 – volume: 73 start-page: 1795 year: 2001 ident: 10.1016/j.jmr.2021.106932_b0255 article-title: NMR nomenclature: nuclear spin properties and conventions for chemical shifts. IUPAC recommendations 2001 publication-title: Pure Appl. Chem. doi: 10.1351/pac200173111795 – volume: 157 start-page: 195 year: 1986 ident: 10.1016/j.jmr.2021.106932_b0130 article-title: NMR studies of [1-2H]glucose metabolism in Zymomonas mobilis publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1986.tb09656.x – volume: 159 start-page: 522 year: 1989 ident: 10.1016/j.jmr.2021.106932_b0155 article-title: Use of deuterium labelled glucose in evaluating the pathway of hepatic glycogen synthesis publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(89)90024-7 – volume: 263 start-page: 19552 year: 1988 ident: 10.1016/j.jmr.2021.106932_b0135 article-title: High resolution deuterium NMR studies of bacterial metabolism publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)77671-6 – volume: 95 start-page: 172 issue: 1 year: 1995 ident: 10.1016/j.jmr.2021.106932_b0310 article-title: Use of 2H2O for estimating rates of gluconeogenesis. Application to the fasted state publication-title: J. Clin. Invest. doi: 10.1172/JCI117635 – volume: 142 start-page: 359 year: 1987 ident: 10.1016/j.jmr.2021.106932_b0140 article-title: The study of diabetic cataractogenesis in the intact rabbit lens by deuterium NMR spectroscopy publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(87)90282-8 – volume: 12 start-page: 234 year: 2021 ident: 10.1016/j.jmr.2021.106932_b0330 article-title: Characterization of kinetic isotope effects and label loss in deuterium-based isotopic labeling studies publication-title: ACS Chem. Neurosci. doi: 10.1021/acschemneuro.0c00711 – ident: 10.1016/j.jmr.2021.106932_b0015 doi: 10.1126/scitranslmed.3006070 – volume: 40 start-page: 1 year: 1932 ident: 10.1016/j.jmr.2021.106932_b0030 article-title: A hydrogen isotope of mass 2 and its concentration publication-title: Phys. Rev. doi: 10.1103/PhysRev.40.1 – volume: 6 start-page: 44 year: 1998 ident: 10.1016/j.jmr.2021.106932_b0120 article-title: Choline metabolism in breast cancer; 2H-, 13C- and 31P-NMR studies of cells and tumors publication-title: MAGMA doi: 10.1007/BF02662511 – volume: 47 start-page: 337 year: 1988 ident: 10.1016/j.jmr.2021.106932_b0145 article-title: Dynamic monitoring of corneal carbohydrate metabolism using high-resolution deuterium NMR spectroscopy publication-title: Exp. Eye Res. doi: 10.1016/0014-4835(88)90016-4 – volume: 3 start-page: 173 year: 1990 ident: 10.1016/j.jmr.2021.106932_b0115 article-title: Renal distribution and metabolism of [2H9]choline. A 2H NMR and MRI study publication-title: NMR Biomed. doi: 10.1002/nbm.1940030405 – volume: 82 start-page: 156 year: 1935 ident: 10.1016/j.jmr.2021.106932_b0035 article-title: Deuterium as an indicator in the study of intermediary metabolism publication-title: Science doi: 10.1126/science.82.2120.156 – volume: 294 start-page: 289 year: 2020 ident: 10.1016/j.jmr.2021.106932_b0180 article-title: Measuring tumor glycolytic flux in vivo by using fast deuterium MRI publication-title: Radiology doi: 10.1148/radiol.2019191242 – volume: 112 start-page: 2213 year: 2012 ident: 10.1016/j.jmr.2021.106932_b0265 article-title: Pharmacokinetic analysis of absorption, distribution and disappearance of ingested water labeled with D₂O in humans publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-011-2194-7 – volume: 2 start-page: 3045 year: 2007 ident: 10.1016/j.jmr.2021.106932_b0300 article-title: Measurement of cell proliferation by heavy water labeling publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.420 – volume: 45 start-page: 543 year: 2001 ident: 10.1016/j.jmr.2021.106932_b0225 article-title: 17O relaxation time and NMR sensitivity of cerebral water and their field dependence publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1073 – volume: 55 start-page: 713 year: 1955 ident: 10.1016/j.jmr.2021.106932_b0315 article-title: The deuterium isotope effect publication-title: Chem. Rev. doi: 10.1021/cr50004a004 – volume: 65 start-page: 39 year: 2020 ident: 10.1016/j.jmr.2021.106932_b0190 article-title: New in vivo glucose test by localized dynamic deuterium nuclear magnetic resonance publication-title: Rev. Roum. Chim. doi: 10.33224/rrch/2020.65.1.03 – ident: 10.1016/j.jmr.2021.106932_b0275 – volume: 7 start-page: 3529 year: 1968 ident: 10.1016/j.jmr.2021.106932_b0345 article-title: Deuterium isotope effects in the fermentation of hexoses to ethanol by Saccharomyces cerevisiae. I. Hydrogen exchange in the glycolytic pathway publication-title: Biochemistry doi: 10.1021/bi00850a030 – volume: 47 start-page: 545 year: 1964 ident: 10.1016/j.jmr.2021.106932_b0230 article-title: Deuteronen-KernResonanzspektroskopie publication-title: Helv. Chim. Acta doi: 10.1002/hlca.19640470221 – volume: 32 issue: 10 year: 2019 ident: 10.1016/j.jmr.2021.106932_b0010 article-title: In vivo 13C and 1H-[13C] MRS studies of neuroenergetics and neurotransmitter cycling, applications to neurological and psychiatric disease and brain cancer publication-title: NMR Biomed.. doi: 10.1002/nbm.4172 – volume: 56 start-page: 728 year: 1939 ident: 10.1016/j.jmr.2021.106932_b0050 article-title: The magnetic moments of the proton and the deuteron. The radiofrequency spectrum of H2 in various magnetic fields publication-title: Phys. Rev. doi: 10.1103/PhysRev.56.728 – volume: 32 start-page: 405 year: 1994 ident: 10.1016/j.jmr.2021.106932_b0165 article-title: Metabolic loss of deuterium from isotopically labeled glucose publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910320317 – ident: 10.1016/j.jmr.2021.106932_b0220 doi: 10.1002/9781119382461 – volume: 4 issue: 8 year: 2018 ident: 10.1016/j.jmr.2021.106932_b0025 article-title: Deuterium metabolic imaging (DMI) for MRI-based 3D mapping of metabolism in vivo publication-title: Sci. Adv. doi: 10.1126/sciadv.aat7314 – volume: 701 start-page: 193 year: 2011 ident: 10.1016/j.jmr.2021.106932_b0170 article-title: In vivo assessment of oxygen consumption via Deuterium Magnetic Resonance publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-1-4419-7756-4_26 – volume: 61 start-page: 265 year: 1961 ident: 10.1016/j.jmr.2021.106932_b0320 article-title: The magnitude of the primary kinetic isotope effect for compounds of hydrogen and deuterium publication-title: Chem. Rev. doi: 10.1021/cr60211a004 – volume: 4 start-page: 1313 year: 2009 ident: 10.1016/j.jmr.2021.106932_b0335 article-title: Measurement of proliferation and disappearance of rapid turnover cell populations in human studies using deuterium-labeled glucose publication-title: Nat. Protoc. doi: 10.1038/nprot.2009.117 – volume: 156 start-page: S12 issue: Suppl 1 year: 1997 ident: 10.1016/j.jmr.2021.106932_b0290 article-title: Safety of stable isotope use publication-title: Eur. J. Pediatr. doi: 10.1007/PL00014267 – volume: 11 start-page: 211 year: 1977 ident: 10.1016/j.jmr.2021.106932_b0070 article-title: Deuterium magnetic resonance, applications in chemistry, physics and biology publication-title: Prog. NMR Spectrosc. doi: 10.1016/0079-6565(77)80010-1 – volume: 73 start-page: 679 year: 1948 ident: 10.1016/j.jmr.2021.106932_b0065 article-title: Relaxation effects in nuclear magnetic resonance absorption publication-title: Phys. Rev. doi: 10.1103/PhysRev.73.679 – volume: 22 start-page: 712 year: 1970 ident: 10.1016/j.jmr.2021.106932_b0245 article-title: Absolute isotopic scale for deuterium analysis of natural waters. Absolute D/H ratio for SMOW publication-title: Tellus – volume: 26 start-page: 1016 year: 1977 ident: 10.1016/j.jmr.2021.106932_b0340 article-title: Measurement of “true” glucose production rates in infancy and childhood with 6,6-dideuteroglucose publication-title: Diabetes doi: 10.2337/diab.26.11.1016 – volume: 10 start-page: 181 year: 2003 ident: 10.1016/j.jmr.2021.106932_b0350 article-title: A comparison of 13C NMR measurements of the rates of glutamine synthesis and the tricarboxylic acid cycle during oral and intravenous administration of [1-13C]glucose publication-title: Brain Res. Brain Res. Protocol. doi: 10.1016/S1385-299X(02)00217-9 – ident: 10.1016/j.jmr.2021.106932_b0005 doi: 10.1002/nbm.4309 – volume: 26 start-page: 378 year: 1986 ident: 10.1016/j.jmr.2021.106932_b0280 article-title: Stable isotopes: origins and safety publication-title: J. Clin. Pharmacol. doi: 10.1002/j.1552-4604.1986.tb03544.x – volume: 38 start-page: 96 year: 1976 ident: 10.1016/j.jmr.2021.106932_b0235 article-title: Proton and deuterium NMR of hydrogen bonds: relationship between isotope effects and the hydrogen bond potential publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(76)80264-3 – volume: 8 start-page: 35 year: 1988 ident: 10.1016/j.jmr.2021.106932_b0090 article-title: Deuterium NMR cerebral imaging in situ publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910080105 – volume: 27 start-page: 7864 year: 1988 ident: 10.1016/j.jmr.2021.106932_b0110 article-title: A deuterium surface coil NMR study of the metabolism of D-methionine in the liver of the anesthetized rat publication-title: Biochemistry doi: 10.1021/bi00420a042 – volume: 4 start-page: 88 year: 1987 ident: 10.1016/j.jmr.2021.106932_b0100 article-title: In vivo determination of body iron stores by natural-abundance deuterium magnetic resonance spectroscopy publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910040111 – volume: 84 start-page: 4099 year: 1987 ident: 10.1016/j.jmr.2021.106932_b0085 article-title: Deuterium nuclear magnetic resonance measurements of blood flow and tissue perfusion employing 2H2O as a freely diffusible tracer publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.84.12.4099 – volume: 80 start-page: 277 year: 1991 ident: 10.1016/j.jmr.2021.106932_b0285 article-title: Stable isotopes in clinical research: safety reaffirmed publication-title: Clin. Sci. (Lond) doi: 10.1042/cs0800277 – volume: 72 start-page: 456 year: 1987 ident: 10.1016/j.jmr.2021.106932_b0095 article-title: In vivo NMR imaging of deuterium publication-title: J. Magn. Reson. – volume: 64 start-page: 2325 year: 1995 ident: 10.1016/j.jmr.2021.106932_b0150 article-title: Nondestructive measurement of retinal glucose transport and consumption in vivo using NMR spectroscopy publication-title: J. Neurochem. doi: 10.1046/j.1471-4159.1995.64052325.x – volume: 74 start-page: 362 year: 2020 ident: 10.1016/j.jmr.2021.106932_b0295 article-title: Stable isotopes: their use and safety in human nutrition studies publication-title: Eur. J. Clin. Nutr. doi: 10.1038/s41430-020-0580-0 – volume: 65 start-page: 927 year: 2011 ident: 10.1016/j.jmr.2021.106932_b0270 article-title: Chemical exchange saturation transfer (CEST): what is in a name and what isn't? publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22761 – volume: 111 start-page: 163 year: 1935 ident: 10.1016/j.jmr.2021.106932_b0040 article-title: Deuterium as an indicator in the study of intermediary metabolism I-XI publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)75075-8 – ident: 10.1016/j.jmr.2021.106932_b0125 doi: 10.1007/978-1-4757-9477-9_6 – year: 2021 ident: 10.1016/j.jmr.2021.106932_b0210 article-title: Deuterium metabolic imaging of the healthy and diseased brain publication-title: Neuroscience doi: 10.1016/j.neuroscience.2021.01.023 – year: 1961 ident: 10.1016/j.jmr.2021.106932_b0215 – volume: 65 start-page: 78 year: 2017 ident: 10.1016/j.jmr.2021.106932_b0305 article-title: Identifying nonalcoholic fatty liver disease patients with active fibrosis by measuring extracellular matrix remodeling rates in tissue and blood publication-title: Hepatology doi: 10.1002/hep.28860 – volume: 129 start-page: 4490 year: 2007 ident: 10.1016/j.jmr.2021.106932_b0240 article-title: Secondary deuterium isotope effects on the acidity of carboxylic acids and phenols publication-title: J. Am. Chem. Soc. doi: 10.1021/ja069103t – volume: 45 start-page: 156 year: 2001 ident: 10.1016/j.jmr.2021.106932_b0260 article-title: Quantifying tracer levels of 2H2O enrichment from microliter amounts of plasma and urine by 2H NMR publication-title: Magn. Reson. Med. doi: 10.1002/1522-2594(200101)45:1<156::AID-MRM1020>3.0.CO;2-Z – volume: 137 start-page: 579 year: 1986 ident: 10.1016/j.jmr.2021.106932_b0075 article-title: Preliminary studies on the potential of in vivo deuterium NMR spectroscopy publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(86)91250-7 |
SSID | ssj0011570 |
Score | 2.5608268 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•The promise of deuterium as a metabolic tracer was recognized soon after the discovery of chemical isotopes.•Deuterium NMR has only seen... Deuterium metabolic spectroscopy (DMS) and imaging (DMI) have recently been described as simple and robust MR-based methods to map metabolism with high... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 106932 |
SubjectTerms | Acetates Deuterium Glucose Glucose - metabolism Label loss Magnetic Resonance Spectroscopy - methods Metabolic imaging Relaxation Water |
Title | Deuterium metabolic imaging – Back to the future |
URI | https://dx.doi.org/10.1016/j.jmr.2021.106932 https://www.ncbi.nlm.nih.gov/pubmed/33902815 https://www.proquest.com/docview/2518989916 https://pubmed.ncbi.nlm.nih.gov/PMC8083995 |
Volume | 326 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB2tFlXtBfFZlhZkJE5I6Sax8-HjsmW1LYJLi7Q3y0kcEWCzCLJX1P_Qf9hfwoyTrFgQe-glkhMnsmac8Rv5-Q3AcSCiME8Dz8linjvC17mDPbmjvTBN_DAOjC3nc3EZjq_Ez0kw6cCwPQtDtMom9tcx3Ubr5k6_sWb_vij6v4hSGMWk7-XalYtOsIuI9PO_PS1oHqQlUysSSGLOuVG7s2k5XjdTkgT1PWyHkvvvrU1vsedrCuWLNWm0AesNmGSDeryb0DHlFnwctjXctuCDJXimj9vgfzdUvKGYT9nUVOj5uyJlxdTWKGL__vxlpzq9ZdWMISBktdDIDlyNzn4Px05TL8FBY0eVEyeGS5HlBkGXxAs3ma89LTCH00maxxHJjeGSjwgqk1JnkgvjisTDjCOwhxF2oVvOSrMHDPMgHWf4u9PGW5rj9zhCLUwFc1dEeZj1wG0tpdJGTJxqWtypljV2o9C4ioyrauP24GTxyn2tpLGqs2jNr5amg8JIv-q1o9ZVCi1Nex-6NLP5o0IYR4UyEQz34HPtusUoOCcJGy_oQbTk1EUHkuBeflIW11aKO0YEK2Ww_3_D_QKfqFXzJ79Ct3qYmwPEOFVyaCfxIawNfpyPL58BKnr42A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xCMEFsVNWI3FCiprEzuIjFFChpRdaqTfLSRyR0qYI0jv_wB_yJYyzVBRED1wiJXYia8aZeaMZvwE4d5jnxqFjGZFPY4PZMjZwJjWk5YaB7fqOytv5PHTcZo_d953-AjSqszC6rLK0_YVNz611-aReSrP-kiT1R11S6Pma38vMPdciLGt2Ktzsy5d3rWZnmkywHK8gJeC6eM70quRmXuY1GGlWUNvCe5dT-y_39Bt-_qyi_OaWbjdgvcST5LJY8iYsqHQLVhtVG7ctWMlrPMO3bbCvle7fkExGZKQyVP4wCUkyytsUkc_3D3Ilw2eSjQliQlJwjexA7_am22gaZcsEA-XtZYYfKMpZFCvEXRwvVEW2tCTDME4GYex7mnEMvT6CqIhzGXHKlMkCC4MOJz-PsAtL6ThV-0AwFJJ-hH-8zr2FMX6PItrCaDA2mRe7UQ3MSlIiLPnEdVuLoagKxwYChSu0cEUh3BpcTF95Kcg05k1mlfjFzI4QaOznvXZWqUqgpHX6Q6ZqPHkTiOR0r0zEwzXYK1Q3XQWlmsXGcmrgzSh1OkGzcM-OpMlTzsbtI4jl3Dn433JPYbXZfWiL9l2ndQhreqQopzyCpex1oo4R8mTBSbmlvwC2N_uJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deuterium+metabolic+imaging+-+Back+to+the+future&rft.jtitle=Journal+of+magnetic+resonance+%281997%29&rft.au=De+Feyter%2C+Henk+M&rft.au=de+Graaf%2C+Robin+A&rft.date=2021-05-01&rft.eissn=1096-0856&rft.volume=326&rft.spage=106932&rft_id=info:doi/10.1016%2Fj.jmr.2021.106932&rft_id=info%3Apmid%2F33902815&rft.externalDocID=33902815 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1090-7807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1090-7807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1090-7807&client=summon |