Ultra-compact MXene fibers by continuous and controllable synergy of interfacial interactions and thermal drawing-induced stresses
Recent advances in MXene (Ti 3 C 2 T x ) fibers, prepared from electrically conductive and mechanically strong MXene nanosheets, address the increasing demand of emerging yet promising electrode materials for the development of textile-based devices and beyond. However, to reveal the full potential...
Saved in:
Published in | Nature communications Vol. 13; no. 1; pp. 4564 - 13 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
05.08.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent advances in MXene (Ti
3
C
2
T
x
) fibers, prepared from electrically conductive and mechanically strong MXene nanosheets, address the increasing demand of emerging yet promising electrode materials for the development of textile-based devices and beyond. However, to reveal the full potential of MXene fibers, reaching a balance between electrical conductivity and mechanical property is still the fundamental challenge, mainly due to the difficulties to further compact the loose MXene nanosheets. In this work, we demonstrate a continuous and controllable route to fabricate ultra-compact MXene fibers with an in-situ generated protective layer via the synergy of interfacial interactions and thermal drawing-induced stresses. The resulting ultra-compact MXene fibers with high orientation and low porosity exhibit not only excellent tensile strength and ultra-high toughness, but also high electrical conductivity. Then, we construct meter-scale MXene textiles using these ultra-compact fibers to achieve high-performance electromagnetic interference shielding and personal thermal management, accompanied by the high mechanical durability and stability even after multiple washing cycles. The demonstrated generic strategy can be applied to a broad range of nanostructured materials to construct functional fibers for large-scale applications in both space and daily lives.
Forming compact layered nanostructures is key to achieving continuous MXene fibers with electrical and mechanical properties. Here, authors demonstrate ultra-compact high-performance MXene fibers via a controllable synergy of interfacial interactions and thermal drawing-induced stresses. |
---|---|
AbstractList | Recent advances in MXene (Ti3C2Tx) fibers, prepared from electrically conductive and mechanically strong MXene nanosheets, address the increasing demand of emerging yet promising electrode materials for the development of textile-based devices and beyond. However, to reveal the full potential of MXene fibers, reaching a balance between electrical conductivity and mechanical property is still the fundamental challenge, mainly due to the difficulties to further compact the loose MXene nanosheets. In this work, we demonstrate a continuous and controllable route to fabricate ultra-compact MXene fibers with an in-situ generated protective layer via the synergy of interfacial interactions and thermal drawing-induced stresses. The resulting ultra-compact MXene fibers with high orientation and low porosity exhibit not only excellent tensile strength and ultra-high toughness, but also high electrical conductivity. Then, we construct meter-scale MXene textiles using these ultra-compact fibers to achieve high-performance electromagnetic interference shielding and personal thermal management, accompanied by the high mechanical durability and stability even after multiple washing cycles. The demonstrated generic strategy can be applied to a broad range of nanostructured materials to construct functional fibers for large-scale applications in both space and daily lives.Forming compact layered nanostructures is key to achieving continuous MXene fibers with electrical and mechanical properties. Here, authors demonstrate ultra-compact high-performance MXene fibers via a controllable synergy of interfacial interactions and thermal drawing-induced stresses. Recent advances in MXene (Ti 3 C 2 T x ) fibers, prepared from electrically conductive and mechanically strong MXene nanosheets, address the increasing demand of emerging yet promising electrode materials for the development of textile-based devices and beyond. However, to reveal the full potential of MXene fibers, reaching a balance between electrical conductivity and mechanical property is still the fundamental challenge, mainly due to the difficulties to further compact the loose MXene nanosheets. In this work, we demonstrate a continuous and controllable route to fabricate ultra-compact MXene fibers with an in-situ generated protective layer via the synergy of interfacial interactions and thermal drawing-induced stresses. The resulting ultra-compact MXene fibers with high orientation and low porosity exhibit not only excellent tensile strength and ultra-high toughness, but also high electrical conductivity. Then, we construct meter-scale MXene textiles using these ultra-compact fibers to achieve high-performance electromagnetic interference shielding and personal thermal management, accompanied by the high mechanical durability and stability even after multiple washing cycles. The demonstrated generic strategy can be applied to a broad range of nanostructured materials to construct functional fibers for large-scale applications in both space and daily lives. Forming compact layered nanostructures is key to achieving continuous MXene fibers with electrical and mechanical properties. Here, authors demonstrate ultra-compact high-performance MXene fibers via a controllable synergy of interfacial interactions and thermal drawing-induced stresses. Forming compact layered nanostructures is key to achieving continuous MXene fibers with electrical and mechanical properties. Here, authors demonstrate ultra-compact high-performance MXene fibers via a controllable synergy of interfacial interactions and thermal drawing-induced stresses. Recent advances in MXene (Ti3C2Tx) fibers, prepared from electrically conductive and mechanically strong MXene nanosheets, address the increasing demand of emerging yet promising electrode materials for the development of textile-based devices and beyond. However, to reveal the full potential of MXene fibers, reaching a balance between electrical conductivity and mechanical property is still the fundamental challenge, mainly due to the difficulties to further compact the loose MXene nanosheets. In this work, we demonstrate a continuous and controllable route to fabricate ultra-compact MXene fibers with an in-situ generated protective layer via the synergy of interfacial interactions and thermal drawing-induced stresses. The resulting ultra-compact MXene fibers with high orientation and low porosity exhibit not only excellent tensile strength and ultra-high toughness, but also high electrical conductivity. Then, we construct meter-scale MXene textiles using these ultra-compact fibers to achieve high-performance electromagnetic interference shielding and personal thermal management, accompanied by the high mechanical durability and stability even after multiple washing cycles. The demonstrated generic strategy can be applied to a broad range of nanostructured materials to construct functional fibers for large-scale applications in both space and daily lives.Recent advances in MXene (Ti3C2Tx) fibers, prepared from electrically conductive and mechanically strong MXene nanosheets, address the increasing demand of emerging yet promising electrode materials for the development of textile-based devices and beyond. However, to reveal the full potential of MXene fibers, reaching a balance between electrical conductivity and mechanical property is still the fundamental challenge, mainly due to the difficulties to further compact the loose MXene nanosheets. In this work, we demonstrate a continuous and controllable route to fabricate ultra-compact MXene fibers with an in-situ generated protective layer via the synergy of interfacial interactions and thermal drawing-induced stresses. The resulting ultra-compact MXene fibers with high orientation and low porosity exhibit not only excellent tensile strength and ultra-high toughness, but also high electrical conductivity. Then, we construct meter-scale MXene textiles using these ultra-compact fibers to achieve high-performance electromagnetic interference shielding and personal thermal management, accompanied by the high mechanical durability and stability even after multiple washing cycles. The demonstrated generic strategy can be applied to a broad range of nanostructured materials to construct functional fibers for large-scale applications in both space and daily lives. Recent advances in MXene (Ti 3 C 2 T x ) fibers, prepared from electrically conductive and mechanically strong MXene nanosheets, address the increasing demand of emerging yet promising electrode materials for the development of textile-based devices and beyond. However, to reveal the full potential of MXene fibers, reaching a balance between electrical conductivity and mechanical property is still the fundamental challenge, mainly due to the difficulties to further compact the loose MXene nanosheets. In this work, we demonstrate a continuous and controllable route to fabricate ultra-compact MXene fibers with an in-situ generated protective layer via the synergy of interfacial interactions and thermal drawing-induced stresses. The resulting ultra-compact MXene fibers with high orientation and low porosity exhibit not only excellent tensile strength and ultra-high toughness, but also high electrical conductivity. Then, we construct meter-scale MXene textiles using these ultra-compact fibers to achieve high-performance electromagnetic interference shielding and personal thermal management, accompanied by the high mechanical durability and stability even after multiple washing cycles. The demonstrated generic strategy can be applied to a broad range of nanostructured materials to construct functional fibers for large-scale applications in both space and daily lives. |
ArticleNumber | 4564 |
Author | Wang, Zhe Cheng, Qunfeng Xin, Jiwu Wei, Lei Yu, Yangzhe Gao, Liheng He, Bing Liu, Yanting Xiong, Ting Wang, Zhixun Zhou, Xuhui Zhou, Tianzhu Qi, Miao Zhang, Haozhe |
Author_xml | – sequence: 1 givenname: Tianzhu surname: Zhou fullname: Zhou, Tianzhu organization: School of Electrical and Electronic Engineering, Nanyang Technological University, School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University – sequence: 2 givenname: Yangzhe surname: Yu fullname: Yu, Yangzhe organization: School of Transportation Science and Engineering, Beihang University – sequence: 3 givenname: Bing surname: He fullname: He, Bing organization: School of Electrical and Electronic Engineering, Nanyang Technological University – sequence: 4 givenname: Zhe surname: Wang fullname: Wang, Zhe organization: School of Electrical and Electronic Engineering, Nanyang Technological University – sequence: 5 givenname: Ting surname: Xiong fullname: Xiong, Ting organization: School of Electrical and Electronic Engineering, Nanyang Technological University – sequence: 6 givenname: Zhixun orcidid: 0000-0001-9918-9939 surname: Wang fullname: Wang, Zhixun organization: School of Electrical and Electronic Engineering, Nanyang Technological University – sequence: 7 givenname: Yanting surname: Liu fullname: Liu, Yanting organization: School of Electrical and Electronic Engineering, Nanyang Technological University – sequence: 8 givenname: Jiwu surname: Xin fullname: Xin, Jiwu organization: School of Electrical and Electronic Engineering, Nanyang Technological University – sequence: 9 givenname: Miao surname: Qi fullname: Qi, Miao organization: School of Electrical and Electronic Engineering, Nanyang Technological University – sequence: 10 givenname: Haozhe surname: Zhang fullname: Zhang, Haozhe organization: School of Electrical and Electronic Engineering, Nanyang Technological University – sequence: 11 givenname: Xuhui surname: Zhou fullname: Zhou, Xuhui organization: School of Electrical and Electronic Engineering, Nanyang Technological University – sequence: 12 givenname: Liheng surname: Gao fullname: Gao, Liheng organization: School of Electrical and Electronic Engineering, Nanyang Technological University – sequence: 13 givenname: Qunfeng orcidid: 0000-0001-7753-4877 surname: Cheng fullname: Cheng, Qunfeng email: cheng@buaa.edu.cn organization: School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, School of Materials Science and Engineering, Zhengzhou University – sequence: 14 givenname: Lei orcidid: 0000-0003-0819-8325 surname: Wei fullname: Wei, Lei email: wei.lei@ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University |
BookMark | eNp9Ustu1DAUjVARLaU_wCoSGzYBP2N7g4QqHpWK2FCJneXHzdSjjD3YCWi2fDnOpAjaRe2Fr33POb4-vs-bk5giNM1LjN5gROXbwjDrRYcI6SihPe76J80ZQQx3WBB68l982lyUskV1UIUlY8-aU8oVxQKrs-b3zThl07m02xs3tV--Q4R2CBZyae2hdSlOIc5pLq2J_rjNaRyNHaEthwh5c2jT0IY4QR6MC2Zc46oVUlxJ0y3kXU34bH6FuOlC9LMD35YpQylQXjRPBzMWuLhbz5ubjx--XX7urr9-urp8f905jsXUSQPKgOeWD8KrXjDlBJdWCpDg1UAl4xgj5AZkiVdIgiCI9tQ7zqtRCtHz5mrV9cls9T6HnckHnUzQx4OUN9rkKbgRtLWq2qsQ55YxhYWVbiDOWO8xGYa-r1rvVq39bHfgHVRfzHhP9H4mhlu9ST-1orxHZCnm9Z1ATj9mKJPeheKgWhuhuq1Jr5RAmDFcoa8eQLdpzrFataBknYgvFckV5XIqJcOgXZjM8gv1_jBqjPTSN3rtG137Rh_7Ri9U8oD69x2PkuhKKhUcN5D_VfUI6w-4zthl |
CitedBy_id | crossref_primary_10_1002_adfm_202212776 crossref_primary_10_1002_adma_202406353 crossref_primary_10_1016_j_xcrp_2024_101903 crossref_primary_10_1039_D4NR04560B crossref_primary_10_1126_sciadv_adt1560 crossref_primary_10_1039_D4EE02979H crossref_primary_10_1002_adfm_202409146 crossref_primary_10_1016_j_jcis_2023_10_061 crossref_primary_10_1002_adfm_202312654 crossref_primary_10_1016_j_jclepro_2024_140606 crossref_primary_10_1002_adma_202307689 crossref_primary_10_1016_j_carbon_2024_119655 crossref_primary_10_1021_acsnano_3c01836 crossref_primary_10_1002_adma_202311135 crossref_primary_10_1016_j_cej_2025_161526 crossref_primary_10_1002_adfm_202314425 crossref_primary_10_1039_D3TC02393A crossref_primary_10_1002_sus2_205 crossref_primary_10_1016_j_cej_2024_149630 crossref_primary_10_1002_sus2_207 crossref_primary_10_15541_jim20230306 crossref_primary_10_1002_advs_202304874 crossref_primary_10_1002_smtd_202300518 crossref_primary_10_1007_s42114_024_00842_5 crossref_primary_10_1007_s42765_022_00246_4 crossref_primary_10_1039_D3MH01636F crossref_primary_10_1021_acsnano_4c10111 crossref_primary_10_1002_smll_202304483 crossref_primary_10_1016_j_jmst_2024_01_045 crossref_primary_10_1007_s10853_024_09897_7 crossref_primary_10_1016_j_cej_2024_158320 crossref_primary_10_1021_accountsmr_3c00255 crossref_primary_10_1002_adfm_202408508 crossref_primary_10_1016_j_seppur_2024_130687 crossref_primary_10_1002_adfm_202418824 crossref_primary_10_1002_smtd_202201515 crossref_primary_10_3390_fib11030029 crossref_primary_10_1002_adfm_202316657 crossref_primary_10_1016_j_cplett_2024_141289 crossref_primary_10_1002_adfm_202308136 crossref_primary_10_1002_adfm_202404538 crossref_primary_10_1002_smtd_202201527 crossref_primary_10_1016_j_compscitech_2024_110988 crossref_primary_10_1016_j_isci_2024_110948 crossref_primary_10_1016_j_mtcomm_2023_107251 crossref_primary_10_1016_j_carbon_2024_118996 crossref_primary_10_1016_j_energy_2024_131864 crossref_primary_10_1002_adfm_202307301 crossref_primary_10_1016_j_asems_2024_100091 crossref_primary_10_1007_s40820_023_01017_5 crossref_primary_10_1016_j_cej_2024_155959 crossref_primary_10_1002_admt_202402052 crossref_primary_10_1021_acsami_4c22118 crossref_primary_10_1002_smll_202412378 crossref_primary_10_1007_s42765_023_00346_9 crossref_primary_10_1126_sciadv_adt8262 crossref_primary_10_1016_j_cej_2023_147116 crossref_primary_10_1007_s40820_023_01236_w crossref_primary_10_1016_j_carbon_2024_119179 crossref_primary_10_1016_j_jece_2024_112123 crossref_primary_10_1088_0256_307X_40_11_118101 crossref_primary_10_1002_smtd_202400199 crossref_primary_10_1016_j_mtphys_2023_101100 crossref_primary_10_1021_acsapm_3c01308 crossref_primary_10_3390_nano14010062 crossref_primary_10_1016_j_jpowsour_2025_236491 crossref_primary_10_1016_j_jcis_2024_12_027 crossref_primary_10_1038_s41467_024_49011_8 crossref_primary_10_1002_lpor_202301125 crossref_primary_10_1002_adfm_202419923 crossref_primary_10_1002_adma_202209527 crossref_primary_10_1016_j_scib_2024_07_009 crossref_primary_10_3390_micro4040050 crossref_primary_10_1080_19475411_2024_2441323 crossref_primary_10_1021_acsanm_2c05169 crossref_primary_10_1080_00405000_2024_2416100 crossref_primary_10_1002_adfm_202212032 crossref_primary_10_1039_D4RA01820F crossref_primary_10_1002_admt_202300553 crossref_primary_10_1021_acs_nanolett_4c01920 crossref_primary_10_1021_acs_nanolett_3c01307 crossref_primary_10_1016_j_cej_2024_154723 crossref_primary_10_3390_bios12111057 crossref_primary_10_1039_D4CS00286E crossref_primary_10_1039_D4TA08094G crossref_primary_10_1007_s00604_023_06163_6 crossref_primary_10_1016_j_compscitech_2024_110543 crossref_primary_10_1002_adfm_202300329 crossref_primary_10_1016_j_cej_2023_144500 crossref_primary_10_1016_j_compscitech_2024_110665 crossref_primary_10_1021_acsphotonics_4c01718 crossref_primary_10_1016_j_carbon_2024_118948 crossref_primary_10_1002_adma_202305807 crossref_primary_10_1002_smll_202411735 crossref_primary_10_1021_acsami_4c09426 crossref_primary_10_1039_D3TA02862C crossref_primary_10_1038_s41467_024_47665_y crossref_primary_10_1002_adma_202207969 crossref_primary_10_1007_s12200_023_00058_3 crossref_primary_10_1021_acsnano_3c07283 crossref_primary_10_1002_smll_202304278 crossref_primary_10_1002_asia_202300474 |
Cites_doi | 10.1002/smll.201802225 10.1021/acsnano.8b00997 10.1002/adma.201802348 10.1038/s41467-021-21729-9 10.1038/s41586-018-0109-z 10.1021/acsnano.1c00749 10.1002/adfm.201905898 10.1126/science.aaa6502 10.1126/sciadv.aat0491 10.1021/acsnano.0c10255 10.1038/s41467-020-16671-1 10.1126/science.aag2421 10.1038/s41565-018-0330-9 10.1126/science.1104276 10.1126/science.aba7977 10.1126/science.1246906 10.1021/acsaem.0c00024 10.1038/s41467-020-17345-8 10.1021/acsnano.7b08889 10.1002/adfm.202000739 10.1038/s41586-018-0390-x 10.1126/science.1143176 10.1002/smll.201804732 10.1038/s41467-017-01136-9 10.1126/science.abi5484 10.1016/j.jpowsour.2018.06.084 10.1038/s41467-020-15991-6 10.1002/smll.202101392 10.1002/adfm.202107767 10.1002/smll.201801203 10.1039/C7TA07999K 10.1039/C7TA08355F 10.1126/science.abl3771 10.1002/adma.201704229 10.1038/s41467-017-02529-6 10.1126/science.aba5504 10.1021/acsnano.1c02271 10.1038/s41586-021-03295-8 10.1002/aenm.201703043 10.1002/adfm.202010944 10.1021/acscentsci.9b01217 10.1002/adma.201902549 10.1002/adfm.201910504 10.1002/adma.201702367 10.1002/adma.201506426 10.1021/acsami.7b19699 10.1002/adma.201902301 10.1038/s41467-022-29859-4 10.1002/adma.201102306 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-022-32361-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_bb94149055b44917b8cf2cabdd12ff66 PMC9356020 10_1038_s41467_022_32361_6 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c517t-8ae9aed5b5f7d96749c758b87e8ed9f38451100cf0b2d908e720363dc55467903 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:31:05 EDT 2025 Thu Aug 21 14:00:49 EDT 2025 Fri Jul 11 02:14:26 EDT 2025 Wed Aug 13 04:53:50 EDT 2025 Thu Apr 24 23:08:46 EDT 2025 Tue Jul 01 00:58:21 EDT 2025 Fri Feb 21 02:38:53 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-8ae9aed5b5f7d96749c758b87e8ed9f38451100cf0b2d908e720363dc55467903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7753-4877 0000-0001-9918-9939 0000-0003-0819-8325 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-32361-6 |
PMID | 35931719 |
PQID | 2698989056 |
PQPubID | 546298 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bb94149055b44917b8cf2cabdd12ff66 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9356020 proquest_miscellaneous_2699701441 proquest_journals_2698989056 crossref_citationtrail_10_1038_s41467_022_32361_6 crossref_primary_10_1038_s41467_022_32361_6 springer_journals_10_1038_s41467_022_32361_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-05 |
PublicationDateYYYYMMDD | 2022-08-05 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Lipatov (CR11) 2018; 4 Naguib (CR14) 2011; 23 Xu (CR24) 2016; 28 Liu (CR32) 2018; 30 Cao (CR47) 2018; 12 Xia (CR12) 2018; 557 Yan (CR27) 2019; 31 Eom (CR7) 2020; 11 Shao (CR22) 2018; 396 Chen (CR31) 2021; 12 Shi (CR2) 2021; 591 Cheng, Wu (CR21) 2021; 15 Li (CR26) 2021; 15 Haines (CR4) 2014; 343 Stellinga (CR5) 2021; 374 Xin (CR6) 2015; 349 Li, Zhang (CR45) 2022; 32 Yu (CR46) 2018; 14 Zhang, Atkinson, Baughman (CR8) 2004; 306 Cao (CR9) 2018; 10 Jiang (CR16) 2018; 8 Richard (CR41) 2021; 18 Zeng (CR1) 2021; 373 Shin (CR25) 2021; 15 Podsiadlo (CR37) 2007; 318 Weng (CR29) 2019; 32 Lin (CR50) 2022; 13 Liu (CR36) 2021; 31 Dong (CR30) 2020; 11 Wang (CR18) 2018; 14 Seyedin (CR44) 2020; 30 Levitt (CR17) 2020; 30 Zhang (CR42) 2019; 15 Ma (CR33) 2017; 8 Liu (CR48) 2017; 29 Akuzum (CR35) 2018; 12 Iqbal (CR40) 2020; 369 Rein (CR28) 2018; 560 Seyedin, Yanza, Razal (CR23) 2017; 5 Shahzad (CR13) 2016; 353 Cao (CR20) 2019; 29 Bai (CR3) 2020; 370 Tontini (CR49) 2020; 3 Dong, Peng, Wang (CR10) 2020; 32 Yang (CR19) 2017; 5 He (CR43) 2020; 3 Ding (CR34) 2018; 9 Xin (CR39) 2019; 14 Zhang (CR15) 2020; 6 Zhou (CR38) 2020; 11 M Naguib (32361_CR14) 2011; 23 J Zhang (32361_CR42) 2019; 15 W Cao (32361_CR20) 2019; 29 W Shao (32361_CR22) 2018; 396 M Chen (32361_CR31) 2021; 12 J Zhang (32361_CR15) 2020; 6 Y Li (32361_CR45) 2022; 32 W Yan (32361_CR27) 2019; 31 Z Cao (32361_CR9) 2018; 10 CS Haines (32361_CR4) 2014; 343 Z Wang (32361_CR18) 2018; 14 X Shi (32361_CR2) 2021; 591 Q Yang (32361_CR19) 2017; 5 P Podsiadlo (32361_CR37) 2007; 318 Y Xia (32361_CR12) 2018; 557 J Liu (32361_CR48) 2017; 29 B Cheng (32361_CR21) 2021; 15 H Shin (32361_CR25) 2021; 15 Q Jiang (32361_CR16) 2018; 8 D Stellinga (32361_CR5) 2021; 374 W Cao (32361_CR47) 2018; 12 G Tontini (32361_CR49) 2020; 3 Y Ma (32361_CR33) 2017; 8 T Zhou (32361_CR38) 2020; 11 H Bai (32361_CR3) 2020; 370 W Eom (32361_CR7) 2020; 11 K Dong (32361_CR10) 2020; 32 G Xin (32361_CR39) 2019; 14 S Zeng (32361_CR1) 2021; 373 F Shahzad (32361_CR13) 2016; 353 M Zhang (32361_CR8) 2004; 306 Q Liu (32361_CR36) 2021; 31 R Lin (32361_CR50) 2022; 13 Iqbal (32361_CR40) 2020; 369 S Seyedin (32361_CR23) 2017; 5 S Li (32361_CR26) 2021; 15 I Richard (32361_CR41) 2021; 18 Z Xu (32361_CR24) 2016; 28 C Dong (32361_CR30) 2020; 11 G Xin (32361_CR6) 2015; 349 Z Liu (32361_CR32) 2018; 30 A Lipatov (32361_CR11) 2018; 4 W Weng (32361_CR29) 2019; 32 B Akuzum (32361_CR35) 2018; 12 M Rein (32361_CR28) 2018; 560 L Ding (32361_CR34) 2018; 9 S Seyedin (32361_CR44) 2020; 30 A Levitt (32361_CR17) 2020; 30 N He (32361_CR43) 2020; 3 C Yu (32361_CR46) 2018; 14 |
References_xml | – volume: 14 start-page: 1802225 year: 2018 ident: CR18 article-title: High-performance biscrolled MXene/carbon nanotube yarn supercapacitors publication-title: Small doi: 10.1002/smll.201802225 – volume: 12 start-page: 4583 year: 2018 end-page: 4593 ident: CR47 article-title: Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties publication-title: ACS Nano doi: 10.1021/acsnano.8b00997 – volume: 31 start-page: 1802348 year: 2019 ident: CR27 article-title: Advanced multimaterial electronic and optoelectronic fibers and textiles publication-title: Adv. Mater. doi: 10.1002/adma.201802348 – volume: 12 year: 2021 ident: CR31 article-title: Self-powered multifunctional sensing based on super-elastic fibers by soluble-core thermal drawing publication-title: Nat. Commun. doi: 10.1038/s41467-021-21729-9 – volume: 557 start-page: 409 year: 2018 end-page: 412 ident: CR12 article-title: Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes publication-title: Nature doi: 10.1038/s41586-018-0109-z – volume: 15 start-page: 8676 year: 2021 end-page: 8685 ident: CR21 article-title: Scalable fabrication of Kevlar/Ti C T MXene intelligent wearable fabrics with multiple sensory capabilities publication-title: ACS Nano doi: 10.1021/acsnano.1c00749 – volume: 29 start-page: 1905898 year: 2019 ident: CR20 article-title: MXene-reinforced cellulose nanofibril inks for 3D-printed smart fibres and textiles publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201905898 – volume: 349 start-page: 1083 year: 2015 end-page: 1087 ident: CR6 article-title: Highly thermally conductive and mechanically strong graphene fibers publication-title: Science doi: 10.1126/science.aaa6502 – volume: 4 start-page: eaat0491 year: 2018 ident: CR11 article-title: Elastic properties of 2D Ti C T MXene monolayers and bilayers publication-title: Sci. Adv. doi: 10.1126/sciadv.aat0491 – volume: 15 start-page: 3320 year: 2021 end-page: 3329 ident: CR25 article-title: Highly electroconductive and mechanically strong Ti C T MXene fibers using a deformable MXene gel publication-title: ACS Nano doi: 10.1021/acsnano.0c10255 – volume: 11 year: 2020 ident: CR7 article-title: Large-scale wet-spinning of highly electroconductive MXene fibers publication-title: Nat. Commun. doi: 10.1038/s41467-020-16671-1 – volume: 353 start-page: 1137 year: 2016 end-page: 1140 ident: CR13 article-title: Electromagnetic interference shielding with 2D transition metal carbides (MXenes) publication-title: Science doi: 10.1126/science.aag2421 – volume: 14 start-page: 168 year: 2019 end-page: 175 ident: CR39 article-title: Microfluidics-enabled orientation and microstructure control of macroscopic graphene fibres publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0330-9 – volume: 306 start-page: 1358 year: 2004 end-page: 1361 ident: CR8 article-title: Multifunctional carbon nanotube yarns by downsizing an ancient technology publication-title: Science doi: 10.1126/science.1104276 – volume: 369 start-page: 446 year: 2020 end-page: 450 ident: CR40 article-title: Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti CNT (MXene) publication-title: Science doi: 10.1126/science.aba7977 – volume: 343 start-page: 868 year: 2014 end-page: 872 ident: CR4 article-title: Artificial muscles from fishing line and sewing thread publication-title: Science doi: 10.1126/science.1246906 – volume: 3 start-page: 2949 year: 2020 end-page: 2958 ident: CR43 article-title: Effects of electrolyte mediation and MXene size in fiber-shaped supercapacitors publication-title: ACS Appl. Energy Mater doi: 10.1021/acsaem.0c00024 – volume: 11 year: 2020 ident: CR30 article-title: High-efficiency super-elastic liquid metal based triboelectric fibers and textiles publication-title: Nat. Commun. doi: 10.1038/s41467-020-17345-8 – volume: 12 start-page: 2685 year: 2018 end-page: 2694 ident: CR35 article-title: Rheological characteristics of 2D titanium carbide (MXene) dispersions: A guide for processing MXenes publication-title: ACS Nano doi: 10.1021/acsnano.7b08889 – volume: 30 start-page: 2000739 year: 2020 ident: CR17 article-title: MXene-Based fibers, yarns, and fabrics for wearable energy storage devices publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000739 – volume: 560 start-page: 214 year: 2018 end-page: 218 ident: CR28 article-title: Diode fibres for fabric-based optical communications publication-title: Nature doi: 10.1038/s41586-018-0390-x – volume: 318 start-page: 80 year: 2007 end-page: 83 ident: CR37 article-title: Ultrastrong and stiff layered polymer nanocomposites publication-title: Science doi: 10.1126/science.1143176 – volume: 15 start-page: 1804732 year: 2019 ident: CR42 article-title: Highly conductive Ti C T MXene hybrid fibers for flexible and elastic fiber-shaped supercapacitors publication-title: Small doi: 10.1002/smll.201804732 – volume: 8 year: 2017 ident: CR33 article-title: A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances publication-title: Nat. Commun. doi: 10.1038/s41467-017-01136-9 – volume: 373 start-page: 692 year: 2021 end-page: 696 ident: CR1 article-title: Hierarchical-morphology metafabric for scalable passive daytime radiative cooling publication-title: Science doi: 10.1126/science.abi5484 – volume: 396 start-page: 683 year: 2018 end-page: 690 ident: CR22 article-title: Polyester@MXene nanofibers-based yarn electrodes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.06.084 – volume: 11 year: 2020 ident: CR38 article-title: Super-tough MXene-functionalized graphene sheets publication-title: Nat. Commun. doi: 10.1038/s41467-020-15991-6 – volume: 18 start-page: 2101392 year: 2021 ident: CR41 article-title: Unraveling the influence of thermal drawing parameters on the microstructure and thermo-mechanical properties of multimaterial fibers publication-title: Small doi: 10.1002/smll.202101392 – volume: 32 start-page: 2107767 year: 2022 ident: CR45 article-title: Electrically conductive, optically responsive, and highly orientated Ti C T MXene aerogel fibers publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202107767 – volume: 14 start-page: 1801203 year: 2018 ident: CR46 article-title: A solid-state fibriform supercapacitor boosted by host-guest hybridization between the carbon nanotube scaffold and MXene nanosheets publication-title: Small doi: 10.1002/smll.201801203 – volume: 5 start-page: 22113 year: 2017 end-page: 22119 ident: CR19 article-title: MXene/graphene hybrid fibers for high performance flexible supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C7TA07999K – volume: 5 start-page: 24076 year: 2017 end-page: 24082 ident: CR23 article-title: Knittable energy storing fiber with high volumetric performance made from predominantly MXene nanosheets publication-title: J. Mater. Chem. A doi: 10.1039/C7TA08355F – volume: 374 start-page: 1395 year: 2021 end-page: 1399 ident: CR5 article-title: Time-of-flight 3D imaging through multimode optical fibers publication-title: Science doi: 10.1126/science.abl3771 – volume: 30 start-page: 1704229 year: 2018 ident: CR32 article-title: Surface strain redistribution on structured microfibers to enhance sensitivity of fiber-shaped stretchable strain sensors publication-title: Adv. Mater. doi: 10.1002/adma.201704229 – volume: 9 year: 2018 ident: CR34 article-title: MXene molecular sieving membranes for highly efficient gas separation publication-title: Nat. Commun. doi: 10.1038/s41467-017-02529-6 – volume: 370 start-page: 848 year: 2020 end-page: 852 ident: CR3 article-title: Stretchable distributed fiber-optic sensors publication-title: Science doi: 10.1126/science.aba5504 – volume: 15 start-page: 7821 year: 2021 end-page: 7832 ident: CR26 article-title: Assembly of nanofluidic MXene fibers with enhanced ionic transport and capacitive charge storage by flake orientation publication-title: ACS Nano doi: 10.1021/acsnano.1c02271 – volume: 591 start-page: 240 year: 2021 end-page: 245 ident: CR2 article-title: Large-area display textiles integrated with functional systems publication-title: Nature doi: 10.1038/s41586-021-03295-8 – volume: 8 start-page: 1703043 year: 2018 ident: CR16 article-title: All pseudocapacitive MXene-RuO asymmetric supercapacitors publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703043 – volume: 31 start-page: 2010944 year: 2021 ident: CR36 article-title: Full-temperature all-solid-state Ti C T /aramid fiber supercapacitor with optimal balance of capacitive performance and flexibility publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202010944 – volume: 6 start-page: 254 year: 2020 end-page: 265 ident: CR15 article-title: Additive-free MXene liquid crystals and fibers publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.9b01217 – volume: 32 start-page: 1902549 year: 2020 ident: CR10 article-title: Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence publication-title: Adv. Mater. doi: 10.1002/adma.201902549 – volume: 30 start-page: 1910504 year: 2020 ident: CR44 article-title: MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201910504 – volume: 29 start-page: 1702367 year: 2017 end-page: 1702372 ident: CR48 article-title: Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding publication-title: Adv. Mater. doi: 10.1002/adma.201702367 – volume: 28 start-page: 6449 year: 2016 end-page: 6456 ident: CR24 article-title: Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering publication-title: Adv. Mater. doi: 10.1002/adma.201506426 – volume: 10 start-page: 14087 year: 2018 end-page: 14096 ident: CR9 article-title: Interface-controlled conductive fibers for wearable strain sensors and stretchable conducting wires publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b19699 – volume: 32 start-page: 1902301 year: 2019 ident: CR29 article-title: A route toward smart system integration: From fiber design to device construction publication-title: Adv. Mater. doi: 10.1002/adma.201902301 – volume: 13 start-page: 2190 year: 2022 end-page: 2199 ident: CR50 article-title: Digitally-embroidered liquid metal electronic textiles for wearable wireless systems publication-title: Nat. Commun. doi: 10.1038/s41467-022-29859-4 – volume: 23 start-page: 4248 year: 2011 end-page: 4253 ident: CR14 article-title: Two-dimensional nanocrystals produced by exfoliation of Ti AlC publication-title: Adv. Mater. doi: 10.1002/adma.201102306 – volume: 3 start-page: 022001 year: 2020 ident: CR49 article-title: MXene-based 3D porous macrostructures for electrochemical energy storage publication-title: J. Phys.: Mater. – volume: 4 start-page: eaat0491 year: 2018 ident: 32361_CR11 publication-title: Sci. Adv. doi: 10.1126/sciadv.aat0491 – volume: 28 start-page: 6449 year: 2016 ident: 32361_CR24 publication-title: Adv. Mater. doi: 10.1002/adma.201506426 – volume: 12 start-page: 4583 year: 2018 ident: 32361_CR47 publication-title: ACS Nano doi: 10.1021/acsnano.8b00997 – volume: 32 start-page: 1902549 year: 2020 ident: 32361_CR10 publication-title: Adv. Mater. doi: 10.1002/adma.201902549 – volume: 13 start-page: 2190 year: 2022 ident: 32361_CR50 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29859-4 – volume: 560 start-page: 214 year: 2018 ident: 32361_CR28 publication-title: Nature doi: 10.1038/s41586-018-0390-x – volume: 29 start-page: 1905898 year: 2019 ident: 32361_CR20 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201905898 – volume: 30 start-page: 1910504 year: 2020 ident: 32361_CR44 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201910504 – volume: 11 year: 2020 ident: 32361_CR30 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17345-8 – volume: 11 year: 2020 ident: 32361_CR38 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15991-6 – volume: 11 year: 2020 ident: 32361_CR7 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16671-1 – volume: 306 start-page: 1358 year: 2004 ident: 32361_CR8 publication-title: Science doi: 10.1126/science.1104276 – volume: 318 start-page: 80 year: 2007 ident: 32361_CR37 publication-title: Science doi: 10.1126/science.1143176 – volume: 32 start-page: 2107767 year: 2022 ident: 32361_CR45 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202107767 – volume: 10 start-page: 14087 year: 2018 ident: 32361_CR9 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b19699 – volume: 8 year: 2017 ident: 32361_CR33 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01136-9 – volume: 343 start-page: 868 year: 2014 ident: 32361_CR4 publication-title: Science doi: 10.1126/science.1246906 – volume: 32 start-page: 1902301 year: 2019 ident: 32361_CR29 publication-title: Adv. Mater. doi: 10.1002/adma.201902301 – volume: 31 start-page: 1802348 year: 2019 ident: 32361_CR27 publication-title: Adv. Mater. doi: 10.1002/adma.201802348 – volume: 15 start-page: 8676 year: 2021 ident: 32361_CR21 publication-title: ACS Nano doi: 10.1021/acsnano.1c00749 – volume: 9 year: 2018 ident: 32361_CR34 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02529-6 – volume: 370 start-page: 848 year: 2020 ident: 32361_CR3 publication-title: Science doi: 10.1126/science.aba5504 – volume: 29 start-page: 1702367 year: 2017 ident: 32361_CR48 publication-title: Adv. Mater. doi: 10.1002/adma.201702367 – volume: 8 start-page: 1703043 year: 2018 ident: 32361_CR16 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703043 – volume: 31 start-page: 2010944 year: 2021 ident: 32361_CR36 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202010944 – volume: 14 start-page: 1801203 year: 2018 ident: 32361_CR46 publication-title: Small doi: 10.1002/smll.201801203 – volume: 3 start-page: 022001 year: 2020 ident: 32361_CR49 publication-title: J. Phys.: Mater. – volume: 23 start-page: 4248 year: 2011 ident: 32361_CR14 publication-title: Adv. Mater. doi: 10.1002/adma.201102306 – volume: 5 start-page: 24076 year: 2017 ident: 32361_CR23 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA08355F – volume: 353 start-page: 1137 year: 2016 ident: 32361_CR13 publication-title: Science doi: 10.1126/science.aag2421 – volume: 369 start-page: 446 year: 2020 ident: 32361_CR40 publication-title: Science doi: 10.1126/science.aba7977 – volume: 12 start-page: 2685 year: 2018 ident: 32361_CR35 publication-title: ACS Nano doi: 10.1021/acsnano.7b08889 – volume: 18 start-page: 2101392 year: 2021 ident: 32361_CR41 publication-title: Small doi: 10.1002/smll.202101392 – volume: 557 start-page: 409 year: 2018 ident: 32361_CR12 publication-title: Nature doi: 10.1038/s41586-018-0109-z – volume: 15 start-page: 1804732 year: 2019 ident: 32361_CR42 publication-title: Small doi: 10.1002/smll.201804732 – volume: 373 start-page: 692 year: 2021 ident: 32361_CR1 publication-title: Science doi: 10.1126/science.abi5484 – volume: 14 start-page: 168 year: 2019 ident: 32361_CR39 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0330-9 – volume: 3 start-page: 2949 year: 2020 ident: 32361_CR43 publication-title: ACS Appl. Energy Mater doi: 10.1021/acsaem.0c00024 – volume: 14 start-page: 1802225 year: 2018 ident: 32361_CR18 publication-title: Small doi: 10.1002/smll.201802225 – volume: 6 start-page: 254 year: 2020 ident: 32361_CR15 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.9b01217 – volume: 30 start-page: 2000739 year: 2020 ident: 32361_CR17 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000739 – volume: 15 start-page: 3320 year: 2021 ident: 32361_CR25 publication-title: ACS Nano doi: 10.1021/acsnano.0c10255 – volume: 12 year: 2021 ident: 32361_CR31 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21729-9 – volume: 396 start-page: 683 year: 2018 ident: 32361_CR22 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.06.084 – volume: 591 start-page: 240 year: 2021 ident: 32361_CR2 publication-title: Nature doi: 10.1038/s41586-021-03295-8 – volume: 349 start-page: 1083 year: 2015 ident: 32361_CR6 publication-title: Science doi: 10.1126/science.aaa6502 – volume: 15 start-page: 7821 year: 2021 ident: 32361_CR26 publication-title: ACS Nano doi: 10.1021/acsnano.1c02271 – volume: 30 start-page: 1704229 year: 2018 ident: 32361_CR32 publication-title: Adv. Mater. doi: 10.1002/adma.201704229 – volume: 5 start-page: 22113 year: 2017 ident: 32361_CR19 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA07999K – volume: 374 start-page: 1395 year: 2021 ident: 32361_CR5 publication-title: Science doi: 10.1126/science.abl3771 |
SSID | ssj0000391844 |
Score | 2.6562026 |
Snippet | Recent advances in MXene (Ti
3
C
2
T
x
) fibers, prepared from electrically conductive and mechanically strong MXene nanosheets, address the increasing demand... Recent advances in MXene (Ti3C2Tx) fibers, prepared from electrically conductive and mechanically strong MXene nanosheets, address the increasing demand of... Forming compact layered nanostructures is key to achieving continuous MXene fibers with electrical and mechanical properties. Here, authors demonstrate... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4564 |
SubjectTerms | 639/166/988 639/301/1005/1007 639/301/1023/303 639/301/357/1018 639/301/930/1032 Continuous fibers Electrical conductivity Electrical conductivity meters Electrical resistivity Electrode materials Electromagnetic interference Electromagnetic shielding Fibers Humanities and Social Sciences Mechanical properties multidisciplinary MXenes Nanostructure Nanostructured materials Porosity Science Science (multidisciplinary) Stresses Tensile strength Textiles Thermal management |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals - May need to register for free articles dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOil9EndpkWF3loR2ZZs6diWhFBIT13Ym9CTBrZOWW8Ie-0v74zk3caBpJfelpW8K3tmpBnPN98Q8l7KNoagIxOus0ykxjFXu5Yl57lPiTsb8dXA-bfubCG-LuXyRqsvxIQVeuDy4I6d0wK8eC6lEwJiC6d8arx1IdRNSl0m24Yz70YwlffgVkPoIqYqGd6q41HkPSGD15FwhHWzkygT9s-8zNsYyVuJ0nz-nD4mjybHkX4qC35CHsThKTksrSS3z8jvxQp-gGVIud_Q8yXsYTQhHGSkbksRkX4xXEGYT-0Q6ARQX2HdFB23uf6PXiaK5BHrZPE1evlcyh7KRegq_oSBsLbXsEQG0TzoRaCl3CSOz8ni9OT7lzM29VdgXtb9hikbtY1BOpn6oLteaA_Rg1N9VDHo1CrkLuMgMu6aoLmKmLLt2uAR2dZr3r4gB8PlEF8SCpZteayVDZjWhKDF61AnGRqrQl9HXZF696yNn8jHsQfGyuQkeKtMkY8B-ZgsH9NV5MP-ml-FeuPe2Z9RhPuZSJudvwBlMpMymX8pU0WOdgpgJlseTVN6bIKnWJF3-2GwQkyt2CGC6HCO7nNwWpF-pjizBc1Hhosfmc9bt-B2NrwiH3cq9vfP777hV__jhl-Thw2aBGJg5BE52Kyv4hvwsjbubTaoP7DKJu8 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagCIlLRXmILQUZiRtY3Yd31z4hQKQVUjkRKTfLT6gUNiWbCuXKL2fGdlJtJXqLYnvjzczY8_hmhpC3bdt456Rn3HSa8VAbZirTsGBsaUMojfboGrj41p3P-ddFu8gOtzHDKndnYjyo3cqij_y0Tp0O4b7-cPWbYdcojK7mFhr3yYMKbhqEdInZ2d7HgtXPBec5V6ZsxOnI48kQIexYdoR1k_solu2f6Jq3kZK3wqXxFpo9JodZfaQfE72PyD0_PCEPU0PJ7VPyd76EB7AILLcberGAk4wGBIWM1Gwp4tIvh2sw9qkeHM0w9SVmT9FxG7MA6SpQLCGxDhqd6elzSn5Ii1Bh_AUDbq3_wBYZ2PTAHY6mpBM_PiPz2Zfvn89Z7rLAbFv1Gya0l9q71rShd7LrubRgQxjRe-GdDI3ACmYlEK40tZOl8Bi47RpnEd_Wy7J5Tg6G1eBfEAryrUtfCe0wuAmmi5WuCq2rtXB95WVBqt1_rWwuQY6dMJYqhsIboRJ9FNBHRfqoriDv9muuUgGOO2d_QhLuZ2Lx7PjFav1DZVlUxkhYCKzUGs7BXDXChtpq41xVh9DBQ052DKCyRI_qhv8K8mY_DLKIARY9eCAdzpF9NFEL0k8YZ7Kh6chw-TNW9ZYNKJ91WZD3Oxa7-fH_v_Dx3Xt9SR7VyOyIcWlPyMFmfe1fgRa1Ma-jqPwDL5IeHw priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuFeUhUgoyEjewcB5O7OOCqKqVygVW2pvlJ1RasmizFdprf3lnnGRRKkDqLYrtxMnMJDOebz4T8laIMnivAqtsbVgVC8tsbksWreMuRm5NwKWByy_1xaKaL8XygBRjLUwC7SdKy_SZHtFhH7oqmXTCniNfCKsfkCOkagfdPprN5l_n-5UV5DyXVTVUyPBS_mXw5C-UyPonHuZdfOSdJGn695w_JseD00hn_TRPyEFon5CH_TaSu6fkZrGCC7AEJ3dbermE7xeNCAXpqN1RRKNftdcQ4lPTejqA01dYM0W7Xar9o-tIkThiEw0uoffHfclDPwjdxJ_Q4DfmN0yRQSQPOuFpX2oSumdkcf7526cLNuytwJzImy2TJigTvLAiNl7VTaUcRA5WNkEGr2IpkbeMg7i4LbziMmC6ti69Q1Rbo3j5nBy26za8IBSs2vCQS-MxpQkBi1M-j8IXRvomDyoj-fiutRuIx3H_i5VOCfBS6l4-GuSjk3x0nZF3-zG_etqN__b-iCLc90TK7HRivfmuBxXS1ioYqLgQtqogSLXSxcIZ631exFjDRc5GBdCDHXe66PfXBC8xI2_2zWCBmFYxbQDRYR_VpMA0I81EcSYTmra0Vz8Sl7cqweUseEbejyr25-b_fuDT-3V_SR4VqPyIdBFn5HC7uQ6vwJfa2teD8dwC_kAdFA priority: 102 providerName: Springer Nature |
Title | Ultra-compact MXene fibers by continuous and controllable synergy of interfacial interactions and thermal drawing-induced stresses |
URI | https://link.springer.com/article/10.1038/s41467-022-32361-6 https://www.proquest.com/docview/2698989056 https://www.proquest.com/docview/2699701441 https://pubmed.ncbi.nlm.nih.gov/PMC9356020 https://doaj.org/article/bb94149055b44917b8cf2cabdd12ff66 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1di9QwMNwHgi_iJ1bPJYJvWu13kgeRveXWY2EPURf2rSRNch6s3bt2D91Xf7kzSbvS4xR8aUu-mnZmkpnMFyGv8jw1WgsTZqqQYWYTFapYpaFVVVRZGylp8GhgflacLrLZMl_ukT7dUfcD21tFO8wntWhWb39ebT8Awb_3LuP8XZs5cnd26RhLJCz2ySHsTAwzGsw7dt-tzKkAgSbrfGdu7zrYn1wY_wHvedNy8ob61O1K0_vkXsdO0rGH_wOyZ-qH5I5PMLl9RH4tVjBA6AzNqw2dL2FloxaNRFqqthTt1C_qaxD-qaw17czWV-hNRdut8wqka0sxpERjJR6u-2fvDOE7IQP5HSp0I3_AFEOQ8QFbNPVOKKZ9TBbTk6-T07DLuhBWecw2IZdGSKNzlVumRcEyUYFMoTgz3GhhU44RzSIAZKQSLSJuUJFbpLpCezcmovQJOajXtXlKKNC7jEzMpUZlJ4gyldCxzXUiuWaxEQGJ-39dVl1IcsyMsSqdajzlpYdPCfApHXzKIiCvd30ufUCOf7Y-RhDuWmIwbVewbs7LjjZLpQR0FFGeqywD8VXxyiaVVFrHibUFDHLUI0DZI2iZ-MybwD8G5OWuGmgTFS6yNgA6bCOYE1kDwgaIM5jQsKa--OaifIsUmNEkCsibHsX-vPzvH_zs_5o_J3cTRH60gcmPyMGmuTYvgMvaqBHZZ0sGVz79OCKH4_Hsywzuxydnnz5D6aSYjNz5xciR2G-M1ywc |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEYIL4qkGChgJTmB132sfEOIVUtr01Ei5GT8hUtgt2URVrvwgfiMz3t1UqURvva3Wj_V6xuOx55sZQl7leeqsFY5lulAs84lmOtYp89pExvtIK4dXA-OTYjTJvk3z6Q752_vCIKyyl4lBUNva4B35QdJmOoT9-v3Zb4ZZo9C62qfQaNniyK3P4cjWvDv8DPR9nSTDL6efRqzLKsBMHpdLxpUTytlc5760oigzYUBn1rx03FnhU44RuyIYaKQTKyLu0FBZpNYgnqsUUQr93iA3sxR2cvRMH37d3OlgtHWeZZ1vTpTygyYLkihA5jHMCSu29r-QJmBLt72MzLxkng273vAeudupq_RDy1_3yY6rHpBbbQLL9UPyZzKHDlgAspslHU9BclKPIJSG6jVFHPysWtWrhqrK0g4WP0dvLdqsg9chrT3FkBULr_Dyvn1unS3aRqig_oICu1DnMEQ2qyxwo6Wtk4trHpHJtcz_Y7Jb1ZXbIxTkiYpczJVFYyoclYywsc9torgtYycGJO7nWpou5Dlm3pjLYHpPuWzpI4E-MtBHFgPyZtPmrA34cWXtj0jCTU0M1h1e1Isfslv7UmsBDYF1c51lcDzW3PjEKG1tnHhfQCf7PQPIToI08oLfB-TlphjWPhp0VOWAdFhHlOFIPCDlFuNsDWi7pJr9DFHERQrKbhINyNuexS4-_v8ffnL1WF-Q26PT8bE8Pjw5ekruJMj4iK_J98nucrFyz0CDW-rnYdlQ8v261-k_XGVZ-Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKhAXxFMNFDASnMDqvtc-IERpo5bSqEJEys34CZHCpmQTVbnys_h1zHh3U6USvfW2ih_rzYzHM55vZgh5neeps1Y4lulCscwnmulYp8xrExnvI60cXg2cDoujUfZ5nI-3yN8uFgZhlZ1MDILazgzeke8lTaVDOK_3fAuLODsYfDj_zbCCFHpau3IaDYucuNUFmG_1--MDoPWbJBkcfvt0xNoKA8zkcblgXDmhnM117ksrijITBvRnzUvHnRU-5Zi9K4JFRzqxIuIOnZZFag1iu0oRpTDvLbJdolXUI9v7h8Ozr-sbHsy9zrOsjdSJUr5XZ0EuBQA9Jj1hxcZpGIoGbGi6V3GaV5y14Qwc3Cf3WuWVfmy47QHZctVDcrspZ7l6RP6MpjABC7B2s6CnY5Cj1CMkpaZ6RREVP6mWs2VNVWVpC5KfYuwWrVchBpHOPMUEFnOv8Cq_eW5CL5pBqK7-ggY7VxewRDapLPCmpU3Ii6sfk9GNUOAJ6VWzyu0QCtJFRS7myqJrFQwnI2zsc5sobsvYiT6Ju_9amjYBOtbhmMrgiE-5bOgjgT4y0EcWffJ2Pea8Sf9xbe99JOG6J6buDj_M5j9kKwmk1gIGAiPnOsvAWNbc-MQobW2ceF_AJLsdA8hWntTykvv75NW6GSQBundU5YB02EeUwUDuk3KDcTYWtNlSTX6GnOIiBdU3ifrkXcdily___wc_vX6tL8kd2KPyy_Hw5Bm5myDfI9gm3yW9xXzpnoM6t9Av2n1Dyfeb3qr_ADqsX4s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-compact+MXene+fibers+by+continuous+and+controllable+synergy+of+interfacial+interactions+and+thermal+drawing-induced+stresses&rft.jtitle=Nature+communications&rft.au=Zhou%2C+Tianzhu&rft.au=Yu%2C+Yangzhe&rft.au=He%2C+Bing&rft.au=Wang%2C+Zhe&rft.date=2022-08-05&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-022-32361-6&rft.externalDocID=10_1038_s41467_022_32361_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |