Ultra-compact MXene fibers by continuous and controllable synergy of interfacial interactions and thermal drawing-induced stresses

Recent advances in MXene (Ti 3 C 2 T x ) fibers, prepared from electrically conductive and mechanically strong MXene nanosheets, address the increasing demand of emerging yet promising electrode materials for the development of textile-based devices and beyond. However, to reveal the full potential...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 4564 - 13
Main Authors Zhou, Tianzhu, Yu, Yangzhe, He, Bing, Wang, Zhe, Xiong, Ting, Wang, Zhixun, Liu, Yanting, Xin, Jiwu, Qi, Miao, Zhang, Haozhe, Zhou, Xuhui, Gao, Liheng, Cheng, Qunfeng, Wei, Lei
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.08.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent advances in MXene (Ti 3 C 2 T x ) fibers, prepared from electrically conductive and mechanically strong MXene nanosheets, address the increasing demand of emerging yet promising electrode materials for the development of textile-based devices and beyond. However, to reveal the full potential of MXene fibers, reaching a balance between electrical conductivity and mechanical property is still the fundamental challenge, mainly due to the difficulties to further compact the loose MXene nanosheets. In this work, we demonstrate a continuous and controllable route to fabricate ultra-compact MXene fibers with an in-situ generated protective layer via the synergy of interfacial interactions and thermal drawing-induced stresses. The resulting ultra-compact MXene fibers with high orientation and low porosity exhibit not only excellent tensile strength and ultra-high toughness, but also high electrical conductivity. Then, we construct meter-scale MXene textiles using these ultra-compact fibers to achieve high-performance electromagnetic interference shielding and personal thermal management, accompanied by the high mechanical durability and stability even after multiple washing cycles. The demonstrated generic strategy can be applied to a broad range of nanostructured materials to construct functional fibers for large-scale applications in both space and daily lives. Forming compact layered nanostructures is key to achieving continuous MXene fibers with electrical and mechanical properties. Here, authors demonstrate ultra-compact high-performance MXene fibers via a controllable synergy of interfacial interactions and thermal drawing-induced stresses.
AbstractList Recent advances in MXene (Ti3C2Tx) fibers, prepared from electrically conductive and mechanically strong MXene nanosheets, address the increasing demand of emerging yet promising electrode materials for the development of textile-based devices and beyond. However, to reveal the full potential of MXene fibers, reaching a balance between electrical conductivity and mechanical property is still the fundamental challenge, mainly due to the difficulties to further compact the loose MXene nanosheets. In this work, we demonstrate a continuous and controllable route to fabricate ultra-compact MXene fibers with an in-situ generated protective layer via the synergy of interfacial interactions and thermal drawing-induced stresses. The resulting ultra-compact MXene fibers with high orientation and low porosity exhibit not only excellent tensile strength and ultra-high toughness, but also high electrical conductivity. Then, we construct meter-scale MXene textiles using these ultra-compact fibers to achieve high-performance electromagnetic interference shielding and personal thermal management, accompanied by the high mechanical durability and stability even after multiple washing cycles. The demonstrated generic strategy can be applied to a broad range of nanostructured materials to construct functional fibers for large-scale applications in both space and daily lives.Forming compact layered nanostructures is key to achieving continuous MXene fibers with electrical and mechanical properties. Here, authors demonstrate ultra-compact high-performance MXene fibers via a controllable synergy of interfacial interactions and thermal drawing-induced stresses.
Recent advances in MXene (Ti 3 C 2 T x ) fibers, prepared from electrically conductive and mechanically strong MXene nanosheets, address the increasing demand of emerging yet promising electrode materials for the development of textile-based devices and beyond. However, to reveal the full potential of MXene fibers, reaching a balance between electrical conductivity and mechanical property is still the fundamental challenge, mainly due to the difficulties to further compact the loose MXene nanosheets. In this work, we demonstrate a continuous and controllable route to fabricate ultra-compact MXene fibers with an in-situ generated protective layer via the synergy of interfacial interactions and thermal drawing-induced stresses. The resulting ultra-compact MXene fibers with high orientation and low porosity exhibit not only excellent tensile strength and ultra-high toughness, but also high electrical conductivity. Then, we construct meter-scale MXene textiles using these ultra-compact fibers to achieve high-performance electromagnetic interference shielding and personal thermal management, accompanied by the high mechanical durability and stability even after multiple washing cycles. The demonstrated generic strategy can be applied to a broad range of nanostructured materials to construct functional fibers for large-scale applications in both space and daily lives. Forming compact layered nanostructures is key to achieving continuous MXene fibers with electrical and mechanical properties. Here, authors demonstrate ultra-compact high-performance MXene fibers via a controllable synergy of interfacial interactions and thermal drawing-induced stresses.
Forming compact layered nanostructures is key to achieving continuous MXene fibers with electrical and mechanical properties. Here, authors demonstrate ultra-compact high-performance MXene fibers via a controllable synergy of interfacial interactions and thermal drawing-induced stresses.
Recent advances in MXene (Ti3C2Tx) fibers, prepared from electrically conductive and mechanically strong MXene nanosheets, address the increasing demand of emerging yet promising electrode materials for the development of textile-based devices and beyond. However, to reveal the full potential of MXene fibers, reaching a balance between electrical conductivity and mechanical property is still the fundamental challenge, mainly due to the difficulties to further compact the loose MXene nanosheets. In this work, we demonstrate a continuous and controllable route to fabricate ultra-compact MXene fibers with an in-situ generated protective layer via the synergy of interfacial interactions and thermal drawing-induced stresses. The resulting ultra-compact MXene fibers with high orientation and low porosity exhibit not only excellent tensile strength and ultra-high toughness, but also high electrical conductivity. Then, we construct meter-scale MXene textiles using these ultra-compact fibers to achieve high-performance electromagnetic interference shielding and personal thermal management, accompanied by the high mechanical durability and stability even after multiple washing cycles. The demonstrated generic strategy can be applied to a broad range of nanostructured materials to construct functional fibers for large-scale applications in both space and daily lives.Recent advances in MXene (Ti3C2Tx) fibers, prepared from electrically conductive and mechanically strong MXene nanosheets, address the increasing demand of emerging yet promising electrode materials for the development of textile-based devices and beyond. However, to reveal the full potential of MXene fibers, reaching a balance between electrical conductivity and mechanical property is still the fundamental challenge, mainly due to the difficulties to further compact the loose MXene nanosheets. In this work, we demonstrate a continuous and controllable route to fabricate ultra-compact MXene fibers with an in-situ generated protective layer via the synergy of interfacial interactions and thermal drawing-induced stresses. The resulting ultra-compact MXene fibers with high orientation and low porosity exhibit not only excellent tensile strength and ultra-high toughness, but also high electrical conductivity. Then, we construct meter-scale MXene textiles using these ultra-compact fibers to achieve high-performance electromagnetic interference shielding and personal thermal management, accompanied by the high mechanical durability and stability even after multiple washing cycles. The demonstrated generic strategy can be applied to a broad range of nanostructured materials to construct functional fibers for large-scale applications in both space and daily lives.
Recent advances in MXene (Ti 3 C 2 T x ) fibers, prepared from electrically conductive and mechanically strong MXene nanosheets, address the increasing demand of emerging yet promising electrode materials for the development of textile-based devices and beyond. However, to reveal the full potential of MXene fibers, reaching a balance between electrical conductivity and mechanical property is still the fundamental challenge, mainly due to the difficulties to further compact the loose MXene nanosheets. In this work, we demonstrate a continuous and controllable route to fabricate ultra-compact MXene fibers with an in-situ generated protective layer via the synergy of interfacial interactions and thermal drawing-induced stresses. The resulting ultra-compact MXene fibers with high orientation and low porosity exhibit not only excellent tensile strength and ultra-high toughness, but also high electrical conductivity. Then, we construct meter-scale MXene textiles using these ultra-compact fibers to achieve high-performance electromagnetic interference shielding and personal thermal management, accompanied by the high mechanical durability and stability even after multiple washing cycles. The demonstrated generic strategy can be applied to a broad range of nanostructured materials to construct functional fibers for large-scale applications in both space and daily lives.
ArticleNumber 4564
Author Wang, Zhe
Cheng, Qunfeng
Xin, Jiwu
Wei, Lei
Yu, Yangzhe
Gao, Liheng
He, Bing
Liu, Yanting
Xiong, Ting
Wang, Zhixun
Zhou, Xuhui
Zhou, Tianzhu
Qi, Miao
Zhang, Haozhe
Author_xml – sequence: 1
  givenname: Tianzhu
  surname: Zhou
  fullname: Zhou, Tianzhu
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University
– sequence: 2
  givenname: Yangzhe
  surname: Yu
  fullname: Yu, Yangzhe
  organization: School of Transportation Science and Engineering, Beihang University
– sequence: 3
  givenname: Bing
  surname: He
  fullname: He, Bing
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University
– sequence: 4
  givenname: Zhe
  surname: Wang
  fullname: Wang, Zhe
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University
– sequence: 5
  givenname: Ting
  surname: Xiong
  fullname: Xiong, Ting
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University
– sequence: 6
  givenname: Zhixun
  orcidid: 0000-0001-9918-9939
  surname: Wang
  fullname: Wang, Zhixun
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University
– sequence: 7
  givenname: Yanting
  surname: Liu
  fullname: Liu, Yanting
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University
– sequence: 8
  givenname: Jiwu
  surname: Xin
  fullname: Xin, Jiwu
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University
– sequence: 9
  givenname: Miao
  surname: Qi
  fullname: Qi, Miao
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University
– sequence: 10
  givenname: Haozhe
  surname: Zhang
  fullname: Zhang, Haozhe
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University
– sequence: 11
  givenname: Xuhui
  surname: Zhou
  fullname: Zhou, Xuhui
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University
– sequence: 12
  givenname: Liheng
  surname: Gao
  fullname: Gao, Liheng
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University
– sequence: 13
  givenname: Qunfeng
  orcidid: 0000-0001-7753-4877
  surname: Cheng
  fullname: Cheng, Qunfeng
  email: cheng@buaa.edu.cn
  organization: School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, School of Materials Science and Engineering, Zhengzhou University
– sequence: 14
  givenname: Lei
  orcidid: 0000-0003-0819-8325
  surname: Wei
  fullname: Wei, Lei
  email: wei.lei@ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University
BookMark eNp9Ustu1DAUjVARLaU_wCoSGzYBP2N7g4QqHpWK2FCJneXHzdSjjD3YCWi2fDnOpAjaRe2Fr33POb4-vs-bk5giNM1LjN5gROXbwjDrRYcI6SihPe76J80ZQQx3WBB68l982lyUskV1UIUlY8-aU8oVxQKrs-b3zThl07m02xs3tV--Q4R2CBZyae2hdSlOIc5pLq2J_rjNaRyNHaEthwh5c2jT0IY4QR6MC2Zc46oVUlxJ0y3kXU34bH6FuOlC9LMD35YpQylQXjRPBzMWuLhbz5ubjx--XX7urr9-urp8f905jsXUSQPKgOeWD8KrXjDlBJdWCpDg1UAl4xgj5AZkiVdIgiCI9tQ7zqtRCtHz5mrV9cls9T6HnckHnUzQx4OUN9rkKbgRtLWq2qsQ55YxhYWVbiDOWO8xGYa-r1rvVq39bHfgHVRfzHhP9H4mhlu9ST-1orxHZCnm9Z1ATj9mKJPeheKgWhuhuq1Jr5RAmDFcoa8eQLdpzrFataBknYgvFckV5XIqJcOgXZjM8gv1_jBqjPTSN3rtG137Rh_7Ri9U8oD69x2PkuhKKhUcN5D_VfUI6w-4zthl
CitedBy_id crossref_primary_10_1002_adfm_202212776
crossref_primary_10_1002_adma_202406353
crossref_primary_10_1016_j_xcrp_2024_101903
crossref_primary_10_1039_D4NR04560B
crossref_primary_10_1126_sciadv_adt1560
crossref_primary_10_1039_D4EE02979H
crossref_primary_10_1002_adfm_202409146
crossref_primary_10_1016_j_jcis_2023_10_061
crossref_primary_10_1002_adfm_202312654
crossref_primary_10_1016_j_jclepro_2024_140606
crossref_primary_10_1002_adma_202307689
crossref_primary_10_1016_j_carbon_2024_119655
crossref_primary_10_1021_acsnano_3c01836
crossref_primary_10_1002_adma_202311135
crossref_primary_10_1016_j_cej_2025_161526
crossref_primary_10_1002_adfm_202314425
crossref_primary_10_1039_D3TC02393A
crossref_primary_10_1002_sus2_205
crossref_primary_10_1016_j_cej_2024_149630
crossref_primary_10_1002_sus2_207
crossref_primary_10_15541_jim20230306
crossref_primary_10_1002_advs_202304874
crossref_primary_10_1002_smtd_202300518
crossref_primary_10_1007_s42114_024_00842_5
crossref_primary_10_1007_s42765_022_00246_4
crossref_primary_10_1039_D3MH01636F
crossref_primary_10_1021_acsnano_4c10111
crossref_primary_10_1002_smll_202304483
crossref_primary_10_1016_j_jmst_2024_01_045
crossref_primary_10_1007_s10853_024_09897_7
crossref_primary_10_1016_j_cej_2024_158320
crossref_primary_10_1021_accountsmr_3c00255
crossref_primary_10_1002_adfm_202408508
crossref_primary_10_1016_j_seppur_2024_130687
crossref_primary_10_1002_adfm_202418824
crossref_primary_10_1002_smtd_202201515
crossref_primary_10_3390_fib11030029
crossref_primary_10_1002_adfm_202316657
crossref_primary_10_1016_j_cplett_2024_141289
crossref_primary_10_1002_adfm_202308136
crossref_primary_10_1002_adfm_202404538
crossref_primary_10_1002_smtd_202201527
crossref_primary_10_1016_j_compscitech_2024_110988
crossref_primary_10_1016_j_isci_2024_110948
crossref_primary_10_1016_j_mtcomm_2023_107251
crossref_primary_10_1016_j_carbon_2024_118996
crossref_primary_10_1016_j_energy_2024_131864
crossref_primary_10_1002_adfm_202307301
crossref_primary_10_1016_j_asems_2024_100091
crossref_primary_10_1007_s40820_023_01017_5
crossref_primary_10_1016_j_cej_2024_155959
crossref_primary_10_1002_admt_202402052
crossref_primary_10_1021_acsami_4c22118
crossref_primary_10_1002_smll_202412378
crossref_primary_10_1007_s42765_023_00346_9
crossref_primary_10_1126_sciadv_adt8262
crossref_primary_10_1016_j_cej_2023_147116
crossref_primary_10_1007_s40820_023_01236_w
crossref_primary_10_1016_j_carbon_2024_119179
crossref_primary_10_1016_j_jece_2024_112123
crossref_primary_10_1088_0256_307X_40_11_118101
crossref_primary_10_1002_smtd_202400199
crossref_primary_10_1016_j_mtphys_2023_101100
crossref_primary_10_1021_acsapm_3c01308
crossref_primary_10_3390_nano14010062
crossref_primary_10_1016_j_jpowsour_2025_236491
crossref_primary_10_1016_j_jcis_2024_12_027
crossref_primary_10_1038_s41467_024_49011_8
crossref_primary_10_1002_lpor_202301125
crossref_primary_10_1002_adfm_202419923
crossref_primary_10_1002_adma_202209527
crossref_primary_10_1016_j_scib_2024_07_009
crossref_primary_10_3390_micro4040050
crossref_primary_10_1080_19475411_2024_2441323
crossref_primary_10_1021_acsanm_2c05169
crossref_primary_10_1080_00405000_2024_2416100
crossref_primary_10_1002_adfm_202212032
crossref_primary_10_1039_D4RA01820F
crossref_primary_10_1002_admt_202300553
crossref_primary_10_1021_acs_nanolett_4c01920
crossref_primary_10_1021_acs_nanolett_3c01307
crossref_primary_10_1016_j_cej_2024_154723
crossref_primary_10_3390_bios12111057
crossref_primary_10_1039_D4CS00286E
crossref_primary_10_1039_D4TA08094G
crossref_primary_10_1007_s00604_023_06163_6
crossref_primary_10_1016_j_compscitech_2024_110543
crossref_primary_10_1002_adfm_202300329
crossref_primary_10_1016_j_cej_2023_144500
crossref_primary_10_1016_j_compscitech_2024_110665
crossref_primary_10_1021_acsphotonics_4c01718
crossref_primary_10_1016_j_carbon_2024_118948
crossref_primary_10_1002_adma_202305807
crossref_primary_10_1002_smll_202411735
crossref_primary_10_1021_acsami_4c09426
crossref_primary_10_1039_D3TA02862C
crossref_primary_10_1038_s41467_024_47665_y
crossref_primary_10_1002_adma_202207969
crossref_primary_10_1007_s12200_023_00058_3
crossref_primary_10_1021_acsnano_3c07283
crossref_primary_10_1002_smll_202304278
crossref_primary_10_1002_asia_202300474
Cites_doi 10.1002/smll.201802225
10.1021/acsnano.8b00997
10.1002/adma.201802348
10.1038/s41467-021-21729-9
10.1038/s41586-018-0109-z
10.1021/acsnano.1c00749
10.1002/adfm.201905898
10.1126/science.aaa6502
10.1126/sciadv.aat0491
10.1021/acsnano.0c10255
10.1038/s41467-020-16671-1
10.1126/science.aag2421
10.1038/s41565-018-0330-9
10.1126/science.1104276
10.1126/science.aba7977
10.1126/science.1246906
10.1021/acsaem.0c00024
10.1038/s41467-020-17345-8
10.1021/acsnano.7b08889
10.1002/adfm.202000739
10.1038/s41586-018-0390-x
10.1126/science.1143176
10.1002/smll.201804732
10.1038/s41467-017-01136-9
10.1126/science.abi5484
10.1016/j.jpowsour.2018.06.084
10.1038/s41467-020-15991-6
10.1002/smll.202101392
10.1002/adfm.202107767
10.1002/smll.201801203
10.1039/C7TA07999K
10.1039/C7TA08355F
10.1126/science.abl3771
10.1002/adma.201704229
10.1038/s41467-017-02529-6
10.1126/science.aba5504
10.1021/acsnano.1c02271
10.1038/s41586-021-03295-8
10.1002/aenm.201703043
10.1002/adfm.202010944
10.1021/acscentsci.9b01217
10.1002/adma.201902549
10.1002/adfm.201910504
10.1002/adma.201702367
10.1002/adma.201506426
10.1021/acsami.7b19699
10.1002/adma.201902301
10.1038/s41467-022-29859-4
10.1002/adma.201102306
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-022-32361-6
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals - May need to register for free articles
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database



MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 13
ExternalDocumentID oai_doaj_org_article_bb94149055b44917b8cf2cabdd12ff66
PMC9356020
10_1038_s41467_022_32361_6
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c517t-8ae9aed5b5f7d96749c758b87e8ed9f38451100cf0b2d908e720363dc55467903
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:31:05 EDT 2025
Thu Aug 21 14:00:49 EDT 2025
Fri Jul 11 02:14:26 EDT 2025
Wed Aug 13 04:53:50 EDT 2025
Thu Apr 24 23:08:46 EDT 2025
Tue Jul 01 00:58:21 EDT 2025
Fri Feb 21 02:38:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-8ae9aed5b5f7d96749c758b87e8ed9f38451100cf0b2d908e720363dc55467903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7753-4877
0000-0001-9918-9939
0000-0003-0819-8325
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-32361-6
PMID 35931719
PQID 2698989056
PQPubID 546298
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_bb94149055b44917b8cf2cabdd12ff66
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9356020
proquest_miscellaneous_2699701441
proquest_journals_2698989056
crossref_citationtrail_10_1038_s41467_022_32361_6
crossref_primary_10_1038_s41467_022_32361_6
springer_journals_10_1038_s41467_022_32361_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-05
PublicationDateYYYYMMDD 2022-08-05
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Lipatov (CR11) 2018; 4
Naguib (CR14) 2011; 23
Xu (CR24) 2016; 28
Liu (CR32) 2018; 30
Cao (CR47) 2018; 12
Xia (CR12) 2018; 557
Yan (CR27) 2019; 31
Eom (CR7) 2020; 11
Shao (CR22) 2018; 396
Chen (CR31) 2021; 12
Shi (CR2) 2021; 591
Cheng, Wu (CR21) 2021; 15
Li (CR26) 2021; 15
Haines (CR4) 2014; 343
Stellinga (CR5) 2021; 374
Xin (CR6) 2015; 349
Li, Zhang (CR45) 2022; 32
Yu (CR46) 2018; 14
Zhang, Atkinson, Baughman (CR8) 2004; 306
Cao (CR9) 2018; 10
Jiang (CR16) 2018; 8
Richard (CR41) 2021; 18
Zeng (CR1) 2021; 373
Shin (CR25) 2021; 15
Podsiadlo (CR37) 2007; 318
Weng (CR29) 2019; 32
Lin (CR50) 2022; 13
Liu (CR36) 2021; 31
Dong (CR30) 2020; 11
Wang (CR18) 2018; 14
Seyedin (CR44) 2020; 30
Levitt (CR17) 2020; 30
Zhang (CR42) 2019; 15
Ma (CR33) 2017; 8
Liu (CR48) 2017; 29
Akuzum (CR35) 2018; 12
Iqbal (CR40) 2020; 369
Rein (CR28) 2018; 560
Seyedin, Yanza, Razal (CR23) 2017; 5
Shahzad (CR13) 2016; 353
Cao (CR20) 2019; 29
Bai (CR3) 2020; 370
Tontini (CR49) 2020; 3
Dong, Peng, Wang (CR10) 2020; 32
Yang (CR19) 2017; 5
He (CR43) 2020; 3
Ding (CR34) 2018; 9
Xin (CR39) 2019; 14
Zhang (CR15) 2020; 6
Zhou (CR38) 2020; 11
M Naguib (32361_CR14) 2011; 23
J Zhang (32361_CR42) 2019; 15
W Cao (32361_CR20) 2019; 29
W Shao (32361_CR22) 2018; 396
M Chen (32361_CR31) 2021; 12
J Zhang (32361_CR15) 2020; 6
Y Li (32361_CR45) 2022; 32
W Yan (32361_CR27) 2019; 31
Z Cao (32361_CR9) 2018; 10
CS Haines (32361_CR4) 2014; 343
Z Wang (32361_CR18) 2018; 14
X Shi (32361_CR2) 2021; 591
Q Yang (32361_CR19) 2017; 5
P Podsiadlo (32361_CR37) 2007; 318
Y Xia (32361_CR12) 2018; 557
J Liu (32361_CR48) 2017; 29
B Cheng (32361_CR21) 2021; 15
H Shin (32361_CR25) 2021; 15
Q Jiang (32361_CR16) 2018; 8
D Stellinga (32361_CR5) 2021; 374
W Cao (32361_CR47) 2018; 12
G Tontini (32361_CR49) 2020; 3
Y Ma (32361_CR33) 2017; 8
T Zhou (32361_CR38) 2020; 11
H Bai (32361_CR3) 2020; 370
W Eom (32361_CR7) 2020; 11
K Dong (32361_CR10) 2020; 32
G Xin (32361_CR39) 2019; 14
S Zeng (32361_CR1) 2021; 373
F Shahzad (32361_CR13) 2016; 353
M Zhang (32361_CR8) 2004; 306
Q Liu (32361_CR36) 2021; 31
R Lin (32361_CR50) 2022; 13
Iqbal (32361_CR40) 2020; 369
S Seyedin (32361_CR23) 2017; 5
S Li (32361_CR26) 2021; 15
I Richard (32361_CR41) 2021; 18
Z Xu (32361_CR24) 2016; 28
C Dong (32361_CR30) 2020; 11
G Xin (32361_CR6) 2015; 349
Z Liu (32361_CR32) 2018; 30
A Lipatov (32361_CR11) 2018; 4
W Weng (32361_CR29) 2019; 32
B Akuzum (32361_CR35) 2018; 12
M Rein (32361_CR28) 2018; 560
L Ding (32361_CR34) 2018; 9
S Seyedin (32361_CR44) 2020; 30
A Levitt (32361_CR17) 2020; 30
N He (32361_CR43) 2020; 3
C Yu (32361_CR46) 2018; 14
References_xml – volume: 14
  start-page: 1802225
  year: 2018
  ident: CR18
  article-title: High-performance biscrolled MXene/carbon nanotube yarn supercapacitors
  publication-title: Small
  doi: 10.1002/smll.201802225
– volume: 12
  start-page: 4583
  year: 2018
  end-page: 4593
  ident: CR47
  article-title: Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00997
– volume: 31
  start-page: 1802348
  year: 2019
  ident: CR27
  article-title: Advanced multimaterial electronic and optoelectronic fibers and textiles
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802348
– volume: 12
  year: 2021
  ident: CR31
  article-title: Self-powered multifunctional sensing based on super-elastic fibers by soluble-core thermal drawing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21729-9
– volume: 557
  start-page: 409
  year: 2018
  end-page: 412
  ident: CR12
  article-title: Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes
  publication-title: Nature
  doi: 10.1038/s41586-018-0109-z
– volume: 15
  start-page: 8676
  year: 2021
  end-page: 8685
  ident: CR21
  article-title: Scalable fabrication of Kevlar/Ti C T MXene intelligent wearable fabrics with multiple sensory capabilities
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c00749
– volume: 29
  start-page: 1905898
  year: 2019
  ident: CR20
  article-title: MXene-reinforced cellulose nanofibril inks for 3D-printed smart fibres and textiles
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201905898
– volume: 349
  start-page: 1083
  year: 2015
  end-page: 1087
  ident: CR6
  article-title: Highly thermally conductive and mechanically strong graphene fibers
  publication-title: Science
  doi: 10.1126/science.aaa6502
– volume: 4
  start-page: eaat0491
  year: 2018
  ident: CR11
  article-title: Elastic properties of 2D Ti C T MXene monolayers and bilayers
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat0491
– volume: 15
  start-page: 3320
  year: 2021
  end-page: 3329
  ident: CR25
  article-title: Highly electroconductive and mechanically strong Ti C T MXene fibers using a deformable MXene gel
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c10255
– volume: 11
  year: 2020
  ident: CR7
  article-title: Large-scale wet-spinning of highly electroconductive MXene fibers
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16671-1
– volume: 353
  start-page: 1137
  year: 2016
  end-page: 1140
  ident: CR13
  article-title: Electromagnetic interference shielding with 2D transition metal carbides (MXenes)
  publication-title: Science
  doi: 10.1126/science.aag2421
– volume: 14
  start-page: 168
  year: 2019
  end-page: 175
  ident: CR39
  article-title: Microfluidics-enabled orientation and microstructure control of macroscopic graphene fibres
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0330-9
– volume: 306
  start-page: 1358
  year: 2004
  end-page: 1361
  ident: CR8
  article-title: Multifunctional carbon nanotube yarns by downsizing an ancient technology
  publication-title: Science
  doi: 10.1126/science.1104276
– volume: 369
  start-page: 446
  year: 2020
  end-page: 450
  ident: CR40
  article-title: Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti CNT (MXene)
  publication-title: Science
  doi: 10.1126/science.aba7977
– volume: 343
  start-page: 868
  year: 2014
  end-page: 872
  ident: CR4
  article-title: Artificial muscles from fishing line and sewing thread
  publication-title: Science
  doi: 10.1126/science.1246906
– volume: 3
  start-page: 2949
  year: 2020
  end-page: 2958
  ident: CR43
  article-title: Effects of electrolyte mediation and MXene size in fiber-shaped supercapacitors
  publication-title: ACS Appl. Energy Mater
  doi: 10.1021/acsaem.0c00024
– volume: 11
  year: 2020
  ident: CR30
  article-title: High-efficiency super-elastic liquid metal based triboelectric fibers and textiles
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17345-8
– volume: 12
  start-page: 2685
  year: 2018
  end-page: 2694
  ident: CR35
  article-title: Rheological characteristics of 2D titanium carbide (MXene) dispersions: A guide for processing MXenes
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08889
– volume: 30
  start-page: 2000739
  year: 2020
  ident: CR17
  article-title: MXene-Based fibers, yarns, and fabrics for wearable energy storage devices
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000739
– volume: 560
  start-page: 214
  year: 2018
  end-page: 218
  ident: CR28
  article-title: Diode fibres for fabric-based optical communications
  publication-title: Nature
  doi: 10.1038/s41586-018-0390-x
– volume: 318
  start-page: 80
  year: 2007
  end-page: 83
  ident: CR37
  article-title: Ultrastrong and stiff layered polymer nanocomposites
  publication-title: Science
  doi: 10.1126/science.1143176
– volume: 15
  start-page: 1804732
  year: 2019
  ident: CR42
  article-title: Highly conductive Ti C T MXene hybrid fibers for flexible and elastic fiber-shaped supercapacitors
  publication-title: Small
  doi: 10.1002/smll.201804732
– volume: 8
  year: 2017
  ident: CR33
  article-title: A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01136-9
– volume: 373
  start-page: 692
  year: 2021
  end-page: 696
  ident: CR1
  article-title: Hierarchical-morphology metafabric for scalable passive daytime radiative cooling
  publication-title: Science
  doi: 10.1126/science.abi5484
– volume: 396
  start-page: 683
  year: 2018
  end-page: 690
  ident: CR22
  article-title: Polyester@MXene nanofibers-based yarn electrodes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.06.084
– volume: 11
  year: 2020
  ident: CR38
  article-title: Super-tough MXene-functionalized graphene sheets
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15991-6
– volume: 18
  start-page: 2101392
  year: 2021
  ident: CR41
  article-title: Unraveling the influence of thermal drawing parameters on the microstructure and thermo-mechanical properties of multimaterial fibers
  publication-title: Small
  doi: 10.1002/smll.202101392
– volume: 32
  start-page: 2107767
  year: 2022
  ident: CR45
  article-title: Electrically conductive, optically responsive, and highly orientated Ti C T MXene aerogel fibers
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202107767
– volume: 14
  start-page: 1801203
  year: 2018
  ident: CR46
  article-title: A solid-state fibriform supercapacitor boosted by host-guest hybridization between the carbon nanotube scaffold and MXene nanosheets
  publication-title: Small
  doi: 10.1002/smll.201801203
– volume: 5
  start-page: 22113
  year: 2017
  end-page: 22119
  ident: CR19
  article-title: MXene/graphene hybrid fibers for high performance flexible supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA07999K
– volume: 5
  start-page: 24076
  year: 2017
  end-page: 24082
  ident: CR23
  article-title: Knittable energy storing fiber with high volumetric performance made from predominantly MXene nanosheets
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA08355F
– volume: 374
  start-page: 1395
  year: 2021
  end-page: 1399
  ident: CR5
  article-title: Time-of-flight 3D imaging through multimode optical fibers
  publication-title: Science
  doi: 10.1126/science.abl3771
– volume: 30
  start-page: 1704229
  year: 2018
  ident: CR32
  article-title: Surface strain redistribution on structured microfibers to enhance sensitivity of fiber-shaped stretchable strain sensors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704229
– volume: 9
  year: 2018
  ident: CR34
  article-title: MXene molecular sieving membranes for highly efficient gas separation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02529-6
– volume: 370
  start-page: 848
  year: 2020
  end-page: 852
  ident: CR3
  article-title: Stretchable distributed fiber-optic sensors
  publication-title: Science
  doi: 10.1126/science.aba5504
– volume: 15
  start-page: 7821
  year: 2021
  end-page: 7832
  ident: CR26
  article-title: Assembly of nanofluidic MXene fibers with enhanced ionic transport and capacitive charge storage by flake orientation
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c02271
– volume: 591
  start-page: 240
  year: 2021
  end-page: 245
  ident: CR2
  article-title: Large-area display textiles integrated with functional systems
  publication-title: Nature
  doi: 10.1038/s41586-021-03295-8
– volume: 8
  start-page: 1703043
  year: 2018
  ident: CR16
  article-title: All pseudocapacitive MXene-RuO asymmetric supercapacitors
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703043
– volume: 31
  start-page: 2010944
  year: 2021
  ident: CR36
  article-title: Full-temperature all-solid-state Ti C T /aramid fiber supercapacitor with optimal balance of capacitive performance and flexibility
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202010944
– volume: 6
  start-page: 254
  year: 2020
  end-page: 265
  ident: CR15
  article-title: Additive-free MXene liquid crystals and fibers
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.9b01217
– volume: 32
  start-page: 1902549
  year: 2020
  ident: CR10
  article-title: Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902549
– volume: 30
  start-page: 1910504
  year: 2020
  ident: CR44
  article-title: MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201910504
– volume: 29
  start-page: 1702367
  year: 2017
  end-page: 1702372
  ident: CR48
  article-title: Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702367
– volume: 28
  start-page: 6449
  year: 2016
  end-page: 6456
  ident: CR24
  article-title: Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201506426
– volume: 10
  start-page: 14087
  year: 2018
  end-page: 14096
  ident: CR9
  article-title: Interface-controlled conductive fibers for wearable strain sensors and stretchable conducting wires
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b19699
– volume: 32
  start-page: 1902301
  year: 2019
  ident: CR29
  article-title: A route toward smart system integration: From fiber design to device construction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902301
– volume: 13
  start-page: 2190
  year: 2022
  end-page: 2199
  ident: CR50
  article-title: Digitally-embroidered liquid metal electronic textiles for wearable wireless systems
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29859-4
– volume: 23
  start-page: 4248
  year: 2011
  end-page: 4253
  ident: CR14
  article-title: Two-dimensional nanocrystals produced by exfoliation of Ti AlC
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102306
– volume: 3
  start-page: 022001
  year: 2020
  ident: CR49
  article-title: MXene-based 3D porous macrostructures for electrochemical energy storage
  publication-title: J. Phys.: Mater.
– volume: 4
  start-page: eaat0491
  year: 2018
  ident: 32361_CR11
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat0491
– volume: 28
  start-page: 6449
  year: 2016
  ident: 32361_CR24
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201506426
– volume: 12
  start-page: 4583
  year: 2018
  ident: 32361_CR47
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00997
– volume: 32
  start-page: 1902549
  year: 2020
  ident: 32361_CR10
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902549
– volume: 13
  start-page: 2190
  year: 2022
  ident: 32361_CR50
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29859-4
– volume: 560
  start-page: 214
  year: 2018
  ident: 32361_CR28
  publication-title: Nature
  doi: 10.1038/s41586-018-0390-x
– volume: 29
  start-page: 1905898
  year: 2019
  ident: 32361_CR20
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201905898
– volume: 30
  start-page: 1910504
  year: 2020
  ident: 32361_CR44
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201910504
– volume: 11
  year: 2020
  ident: 32361_CR30
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17345-8
– volume: 11
  year: 2020
  ident: 32361_CR38
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15991-6
– volume: 11
  year: 2020
  ident: 32361_CR7
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16671-1
– volume: 306
  start-page: 1358
  year: 2004
  ident: 32361_CR8
  publication-title: Science
  doi: 10.1126/science.1104276
– volume: 318
  start-page: 80
  year: 2007
  ident: 32361_CR37
  publication-title: Science
  doi: 10.1126/science.1143176
– volume: 32
  start-page: 2107767
  year: 2022
  ident: 32361_CR45
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202107767
– volume: 10
  start-page: 14087
  year: 2018
  ident: 32361_CR9
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b19699
– volume: 8
  year: 2017
  ident: 32361_CR33
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01136-9
– volume: 343
  start-page: 868
  year: 2014
  ident: 32361_CR4
  publication-title: Science
  doi: 10.1126/science.1246906
– volume: 32
  start-page: 1902301
  year: 2019
  ident: 32361_CR29
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902301
– volume: 31
  start-page: 1802348
  year: 2019
  ident: 32361_CR27
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802348
– volume: 15
  start-page: 8676
  year: 2021
  ident: 32361_CR21
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c00749
– volume: 9
  year: 2018
  ident: 32361_CR34
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02529-6
– volume: 370
  start-page: 848
  year: 2020
  ident: 32361_CR3
  publication-title: Science
  doi: 10.1126/science.aba5504
– volume: 29
  start-page: 1702367
  year: 2017
  ident: 32361_CR48
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702367
– volume: 8
  start-page: 1703043
  year: 2018
  ident: 32361_CR16
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703043
– volume: 31
  start-page: 2010944
  year: 2021
  ident: 32361_CR36
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202010944
– volume: 14
  start-page: 1801203
  year: 2018
  ident: 32361_CR46
  publication-title: Small
  doi: 10.1002/smll.201801203
– volume: 3
  start-page: 022001
  year: 2020
  ident: 32361_CR49
  publication-title: J. Phys.: Mater.
– volume: 23
  start-page: 4248
  year: 2011
  ident: 32361_CR14
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102306
– volume: 5
  start-page: 24076
  year: 2017
  ident: 32361_CR23
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA08355F
– volume: 353
  start-page: 1137
  year: 2016
  ident: 32361_CR13
  publication-title: Science
  doi: 10.1126/science.aag2421
– volume: 369
  start-page: 446
  year: 2020
  ident: 32361_CR40
  publication-title: Science
  doi: 10.1126/science.aba7977
– volume: 12
  start-page: 2685
  year: 2018
  ident: 32361_CR35
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08889
– volume: 18
  start-page: 2101392
  year: 2021
  ident: 32361_CR41
  publication-title: Small
  doi: 10.1002/smll.202101392
– volume: 557
  start-page: 409
  year: 2018
  ident: 32361_CR12
  publication-title: Nature
  doi: 10.1038/s41586-018-0109-z
– volume: 15
  start-page: 1804732
  year: 2019
  ident: 32361_CR42
  publication-title: Small
  doi: 10.1002/smll.201804732
– volume: 373
  start-page: 692
  year: 2021
  ident: 32361_CR1
  publication-title: Science
  doi: 10.1126/science.abi5484
– volume: 14
  start-page: 168
  year: 2019
  ident: 32361_CR39
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0330-9
– volume: 3
  start-page: 2949
  year: 2020
  ident: 32361_CR43
  publication-title: ACS Appl. Energy Mater
  doi: 10.1021/acsaem.0c00024
– volume: 14
  start-page: 1802225
  year: 2018
  ident: 32361_CR18
  publication-title: Small
  doi: 10.1002/smll.201802225
– volume: 6
  start-page: 254
  year: 2020
  ident: 32361_CR15
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.9b01217
– volume: 30
  start-page: 2000739
  year: 2020
  ident: 32361_CR17
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000739
– volume: 15
  start-page: 3320
  year: 2021
  ident: 32361_CR25
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c10255
– volume: 12
  year: 2021
  ident: 32361_CR31
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21729-9
– volume: 396
  start-page: 683
  year: 2018
  ident: 32361_CR22
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.06.084
– volume: 591
  start-page: 240
  year: 2021
  ident: 32361_CR2
  publication-title: Nature
  doi: 10.1038/s41586-021-03295-8
– volume: 349
  start-page: 1083
  year: 2015
  ident: 32361_CR6
  publication-title: Science
  doi: 10.1126/science.aaa6502
– volume: 15
  start-page: 7821
  year: 2021
  ident: 32361_CR26
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c02271
– volume: 30
  start-page: 1704229
  year: 2018
  ident: 32361_CR32
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704229
– volume: 5
  start-page: 22113
  year: 2017
  ident: 32361_CR19
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA07999K
– volume: 374
  start-page: 1395
  year: 2021
  ident: 32361_CR5
  publication-title: Science
  doi: 10.1126/science.abl3771
SSID ssj0000391844
Score 2.6562026
Snippet Recent advances in MXene (Ti 3 C 2 T x ) fibers, prepared from electrically conductive and mechanically strong MXene nanosheets, address the increasing demand...
Recent advances in MXene (Ti3C2Tx) fibers, prepared from electrically conductive and mechanically strong MXene nanosheets, address the increasing demand of...
Forming compact layered nanostructures is key to achieving continuous MXene fibers with electrical and mechanical properties. Here, authors demonstrate...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4564
SubjectTerms 639/166/988
639/301/1005/1007
639/301/1023/303
639/301/357/1018
639/301/930/1032
Continuous fibers
Electrical conductivity
Electrical conductivity meters
Electrical resistivity
Electrode materials
Electromagnetic interference
Electromagnetic shielding
Fibers
Humanities and Social Sciences
Mechanical properties
multidisciplinary
MXenes
Nanostructure
Nanostructured materials
Porosity
Science
Science (multidisciplinary)
Stresses
Tensile strength
Textiles
Thermal management
SummonAdditionalLinks – databaseName: Directory of Open Access Journals - May need to register for free articles
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOil9EndpkWF3loR2ZZs6diWhFBIT13Ym9CTBrZOWW8Ie-0v74zk3caBpJfelpW8K3tmpBnPN98Q8l7KNoagIxOus0ykxjFXu5Yl57lPiTsb8dXA-bfubCG-LuXyRqsvxIQVeuDy4I6d0wK8eC6lEwJiC6d8arx1IdRNSl0m24Yz70YwlffgVkPoIqYqGd6q41HkPSGD15FwhHWzkygT9s-8zNsYyVuJ0nz-nD4mjybHkX4qC35CHsThKTksrSS3z8jvxQp-gGVIud_Q8yXsYTQhHGSkbksRkX4xXEGYT-0Q6ARQX2HdFB23uf6PXiaK5BHrZPE1evlcyh7KRegq_oSBsLbXsEQG0TzoRaCl3CSOz8ni9OT7lzM29VdgXtb9hikbtY1BOpn6oLteaA_Rg1N9VDHo1CrkLuMgMu6aoLmKmLLt2uAR2dZr3r4gB8PlEF8SCpZteayVDZjWhKDF61AnGRqrQl9HXZF696yNn8jHsQfGyuQkeKtMkY8B-ZgsH9NV5MP-ml-FeuPe2Z9RhPuZSJudvwBlMpMymX8pU0WOdgpgJlseTVN6bIKnWJF3-2GwQkyt2CGC6HCO7nNwWpF-pjizBc1Hhosfmc9bt-B2NrwiH3cq9vfP777hV__jhl-Thw2aBGJg5BE52Kyv4hvwsjbubTaoP7DKJu8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagCIlLRXmILQUZiRtY3Yd31z4hQKQVUjkRKTfLT6gUNiWbCuXKL2fGdlJtJXqLYnvjzczY8_hmhpC3bdt456Rn3HSa8VAbZirTsGBsaUMojfboGrj41p3P-ddFu8gOtzHDKndnYjyo3cqij_y0Tp0O4b7-cPWbYdcojK7mFhr3yYMKbhqEdInZ2d7HgtXPBec5V6ZsxOnI48kQIexYdoR1k_solu2f6Jq3kZK3wqXxFpo9JodZfaQfE72PyD0_PCEPU0PJ7VPyd76EB7AILLcberGAk4wGBIWM1Gwp4tIvh2sw9qkeHM0w9SVmT9FxG7MA6SpQLCGxDhqd6elzSn5Ii1Bh_AUDbq3_wBYZ2PTAHY6mpBM_PiPz2Zfvn89Z7rLAbFv1Gya0l9q71rShd7LrubRgQxjRe-GdDI3ACmYlEK40tZOl8Bi47RpnEd_Wy7J5Tg6G1eBfEAryrUtfCe0wuAmmi5WuCq2rtXB95WVBqt1_rWwuQY6dMJYqhsIboRJ9FNBHRfqoriDv9muuUgGOO2d_QhLuZ2Lx7PjFav1DZVlUxkhYCKzUGs7BXDXChtpq41xVh9DBQ052DKCyRI_qhv8K8mY_DLKIARY9eCAdzpF9NFEL0k8YZ7Kh6chw-TNW9ZYNKJ91WZD3Oxa7-fH_v_Dx3Xt9SR7VyOyIcWlPyMFmfe1fgRa1Ma-jqPwDL5IeHw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuFeUhUgoyEjewcB5O7OOCqKqVygVW2pvlJ1RasmizFdprf3lnnGRRKkDqLYrtxMnMJDOebz4T8laIMnivAqtsbVgVC8tsbksWreMuRm5NwKWByy_1xaKaL8XygBRjLUwC7SdKy_SZHtFhH7oqmXTCniNfCKsfkCOkagfdPprN5l_n-5UV5DyXVTVUyPBS_mXw5C-UyPonHuZdfOSdJGn695w_JseD00hn_TRPyEFon5CH_TaSu6fkZrGCC7AEJ3dbermE7xeNCAXpqN1RRKNftdcQ4lPTejqA01dYM0W7Xar9o-tIkThiEw0uoffHfclDPwjdxJ_Q4DfmN0yRQSQPOuFpX2oSumdkcf7526cLNuytwJzImy2TJigTvLAiNl7VTaUcRA5WNkEGr2IpkbeMg7i4LbziMmC6ti69Q1Rbo3j5nBy26za8IBSs2vCQS-MxpQkBi1M-j8IXRvomDyoj-fiutRuIx3H_i5VOCfBS6l4-GuSjk3x0nZF3-zG_etqN__b-iCLc90TK7HRivfmuBxXS1ioYqLgQtqogSLXSxcIZ631exFjDRc5GBdCDHXe66PfXBC8xI2_2zWCBmFYxbQDRYR_VpMA0I81EcSYTmra0Vz8Sl7cqweUseEbejyr25-b_fuDT-3V_SR4VqPyIdBFn5HC7uQ6vwJfa2teD8dwC_kAdFA
  priority: 102
  providerName: Springer Nature
Title Ultra-compact MXene fibers by continuous and controllable synergy of interfacial interactions and thermal drawing-induced stresses
URI https://link.springer.com/article/10.1038/s41467-022-32361-6
https://www.proquest.com/docview/2698989056
https://www.proquest.com/docview/2699701441
https://pubmed.ncbi.nlm.nih.gov/PMC9356020
https://doaj.org/article/bb94149055b44917b8cf2cabdd12ff66
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1di9QwMNwHgi_iJ1bPJYJvWu13kgeRveXWY2EPURf2rSRNch6s3bt2D91Xf7kzSbvS4xR8aUu-mnZmkpnMFyGv8jw1WgsTZqqQYWYTFapYpaFVVVRZGylp8GhgflacLrLZMl_ukT7dUfcD21tFO8wntWhWb39ebT8Awb_3LuP8XZs5cnd26RhLJCz2ySHsTAwzGsw7dt-tzKkAgSbrfGdu7zrYn1wY_wHvedNy8ob61O1K0_vkXsdO0rGH_wOyZ-qH5I5PMLl9RH4tVjBA6AzNqw2dL2FloxaNRFqqthTt1C_qaxD-qaw17czWV-hNRdut8wqka0sxpERjJR6u-2fvDOE7IQP5HSp0I3_AFEOQ8QFbNPVOKKZ9TBbTk6-T07DLuhBWecw2IZdGSKNzlVumRcEyUYFMoTgz3GhhU44RzSIAZKQSLSJuUJFbpLpCezcmovQJOajXtXlKKNC7jEzMpUZlJ4gyldCxzXUiuWaxEQGJ-39dVl1IcsyMsSqdajzlpYdPCfApHXzKIiCvd30ufUCOf7Y-RhDuWmIwbVewbs7LjjZLpQR0FFGeqywD8VXxyiaVVFrHibUFDHLUI0DZI2iZ-MybwD8G5OWuGmgTFS6yNgA6bCOYE1kDwgaIM5jQsKa--OaifIsUmNEkCsibHsX-vPzvH_zs_5o_J3cTRH60gcmPyMGmuTYvgMvaqBHZZ0sGVz79OCKH4_Hsywzuxydnnz5D6aSYjNz5xciR2G-M1ywc
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEYIL4qkGChgJTmB132sfEOIVUtr01Ei5GT8hUtgt2URVrvwgfiMz3t1UqURvva3Wj_V6xuOx55sZQl7leeqsFY5lulAs84lmOtYp89pExvtIK4dXA-OTYjTJvk3z6Q752_vCIKyyl4lBUNva4B35QdJmOoT9-v3Zb4ZZo9C62qfQaNniyK3P4cjWvDv8DPR9nSTDL6efRqzLKsBMHpdLxpUTytlc5760oigzYUBn1rx03FnhU44RuyIYaKQTKyLu0FBZpNYgnqsUUQr93iA3sxR2cvRMH37d3OlgtHWeZZ1vTpTygyYLkihA5jHMCSu29r-QJmBLt72MzLxkng273vAeudupq_RDy1_3yY6rHpBbbQLL9UPyZzKHDlgAspslHU9BclKPIJSG6jVFHPysWtWrhqrK0g4WP0dvLdqsg9chrT3FkBULr_Dyvn1unS3aRqig_oICu1DnMEQ2qyxwo6Wtk4trHpHJtcz_Y7Jb1ZXbIxTkiYpczJVFYyoclYywsc9torgtYycGJO7nWpou5Dlm3pjLYHpPuWzpI4E-MtBHFgPyZtPmrA34cWXtj0jCTU0M1h1e1Isfslv7UmsBDYF1c51lcDzW3PjEKG1tnHhfQCf7PQPIToI08oLfB-TlphjWPhp0VOWAdFhHlOFIPCDlFuNsDWi7pJr9DFHERQrKbhINyNuexS4-_v8ffnL1WF-Q26PT8bE8Pjw5ekruJMj4iK_J98nucrFyz0CDW-rnYdlQ8v261-k_XGVZ-Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKhAXxFMNFDASnMDqvtc-IERpo5bSqEJEys34CZHCpmQTVbnys_h1zHh3U6USvfW2ih_rzYzHM55vZgh5neeps1Y4lulCscwnmulYp8xrExnvI60cXg2cDoujUfZ5nI-3yN8uFgZhlZ1MDILazgzeke8lTaVDOK_3fAuLODsYfDj_zbCCFHpau3IaDYucuNUFmG_1--MDoPWbJBkcfvt0xNoKA8zkcblgXDmhnM117ksrijITBvRnzUvHnRU-5Zi9K4JFRzqxIuIOnZZFag1iu0oRpTDvLbJdolXUI9v7h8Ozr-sbHsy9zrOsjdSJUr5XZ0EuBQA9Jj1hxcZpGIoGbGi6V3GaV5y14Qwc3Cf3WuWVfmy47QHZctVDcrspZ7l6RP6MpjABC7B2s6CnY5Cj1CMkpaZ6RREVP6mWs2VNVWVpC5KfYuwWrVchBpHOPMUEFnOv8Cq_eW5CL5pBqK7-ggY7VxewRDapLPCmpU3Ii6sfk9GNUOAJ6VWzyu0QCtJFRS7myqJrFQwnI2zsc5sobsvYiT6Ju_9amjYBOtbhmMrgiE-5bOgjgT4y0EcWffJ2Pea8Sf9xbe99JOG6J6buDj_M5j9kKwmk1gIGAiPnOsvAWNbc-MQobW2ceF_AJLsdA8hWntTykvv75NW6GSQBundU5YB02EeUwUDuk3KDcTYWtNlSTX6GnOIiBdU3ifrkXcdily___wc_vX6tL8kd2KPyy_Hw5Bm5myDfI9gm3yW9xXzpnoM6t9Av2n1Dyfeb3qr_ADqsX4s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-compact+MXene+fibers+by+continuous+and+controllable+synergy+of+interfacial+interactions+and+thermal+drawing-induced+stresses&rft.jtitle=Nature+communications&rft.au=Zhou%2C+Tianzhu&rft.au=Yu%2C+Yangzhe&rft.au=He%2C+Bing&rft.au=Wang%2C+Zhe&rft.date=2022-08-05&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-022-32361-6&rft.externalDocID=10_1038_s41467_022_32361_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon