Application of artificial neural networks and multiple linear regression on local bond stress equation of UHPC and reinforcing steel bars

We investigated the use of an Artificial Neural Network (ANN) to predict the Local Bond Stress (LBS) between Ultra-High-Performance Concrete (UHPC) and steel bars, in order to evaluate the accuracy of our LBS equation, proposed by Multiple Linear Regression (MLR). The experimental and numerical LBS...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; pp. 15061 - 20
Main Authors Amini Pishro, Ahad, Zhang, Shiquan, Huang, Dengshi, Xiong, Feng, Li, WeiYu, Yang, Qihong
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 23.07.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We investigated the use of an Artificial Neural Network (ANN) to predict the Local Bond Stress (LBS) between Ultra-High-Performance Concrete (UHPC) and steel bars, in order to evaluate the accuracy of our LBS equation, proposed by Multiple Linear Regression (MLR). The experimental and numerical LBS results of specimens, based on RILEM standards and using pullout tests, were assessed by the ANN algorithm using the TensorFlow platform. For each specimen, steel bar diameters ( d b ) of 12, 14, 16, 18, and 20, concrete compressive strength ( f c ′ ), bond lengths ( L ), and concrete covers ( C ) of d b , 2 d b , 3 d b and 4 d b were used as input parameters for our ANN. To obtain an accurate LBS equation, we first modified the existing formula, then used MLR to establish a new LBS equation. Finally, we applied ANN to verify our new proposed equation. The numerical pullout test values from ABAQUS and experimental results from our laboratory were compared with the proposed LBS equation and ANN algorithm results. The results confirmed that our LBS equation is logically accurate and that there is a strong agreement between the experimental, numerical, theoretical, and the predicted LBS values. Moreover, the ANN algorithm proved the precision of our proposed LBS equation.
AbstractList We investigated the use of an Artificial Neural Network (ANN) to predict the Local Bond Stress (LBS) between Ultra-High-Performance Concrete (UHPC) and steel bars, in order to evaluate the accuracy of our LBS equation, proposed by Multiple Linear Regression (MLR). The experimental and numerical LBS results of specimens, based on RILEM standards and using pullout tests, were assessed by the ANN algorithm using the TensorFlow platform. For each specimen, steel bar diameters ( $$d_{b} )$$ d b ) of 12, 14, 16, 18, and 20, concrete compressive strength ( $$f_{c}^{\prime }$$ f c ′ ), bond lengths ( $$L$$ L ), and concrete covers ( $$C$$ C ) of $$d_{b}$$ d b , $$2d_{b}$$ 2 d b , $$3d_{b}$$ 3 d b and $$4d_{b}$$ 4 d b were used as input parameters for our ANN. To obtain an accurate LBS equation, we first modified the existing formula, then used MLR to establish a new LBS equation. Finally, we applied ANN to verify our new proposed equation. The numerical pullout test values from ABAQUS and experimental results from our laboratory were compared with the proposed LBS equation and ANN algorithm results. The results confirmed that our LBS equation is logically accurate and that there is a strong agreement between the experimental, numerical, theoretical, and the predicted LBS values. Moreover, the ANN algorithm proved the precision of our proposed LBS equation.
We investigated the use of an Artificial Neural Network (ANN) to predict the Local Bond Stress (LBS) between Ultra-High-Performance Concrete (UHPC) and steel bars, in order to evaluate the accuracy of our LBS equation, proposed by Multiple Linear Regression (MLR). The experimental and numerical LBS results of specimens, based on RILEM standards and using pullout tests, were assessed by the ANN algorithm using the TensorFlow platform. For each specimen, steel bar diameters ( d b ) of 12, 14, 16, 18, and 20, concrete compressive strength ( f c ′ ), bond lengths ( L ), and concrete covers ( C ) of d b , 2 d b , 3 d b and 4 d b were used as input parameters for our ANN. To obtain an accurate LBS equation, we first modified the existing formula, then used MLR to establish a new LBS equation. Finally, we applied ANN to verify our new proposed equation. The numerical pullout test values from ABAQUS and experimental results from our laboratory were compared with the proposed LBS equation and ANN algorithm results. The results confirmed that our LBS equation is logically accurate and that there is a strong agreement between the experimental, numerical, theoretical, and the predicted LBS values. Moreover, the ANN algorithm proved the precision of our proposed LBS equation.
We investigated the use of an Artificial Neural Network (ANN) to predict the Local Bond Stress (LBS) between Ultra-High-Performance Concrete (UHPC) and steel bars, in order to evaluate the accuracy of our LBS equation, proposed by Multiple Linear Regression (MLR). The experimental and numerical LBS results of specimens, based on RILEM standards and using pullout tests, were assessed by the ANN algorithm using the TensorFlow platform. For each specimen, steel bar diameters ([Formula: see text] of 12, 14, 16, 18, and 20, concrete compressive strength ([Formula: see text]), bond lengths ([Formula: see text]), and concrete covers ([Formula: see text]) of [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] were used as input parameters for our ANN. To obtain an accurate LBS equation, we first modified the existing formula, then used MLR to establish a new LBS equation. Finally, we applied ANN to verify our new proposed equation. The numerical pullout test values from ABAQUS and experimental results from our laboratory were compared with the proposed LBS equation and ANN algorithm results. The results confirmed that our LBS equation is logically accurate and that there is a strong agreement between the experimental, numerical, theoretical, and the predicted LBS values. Moreover, the ANN algorithm proved the precision of our proposed LBS equation.We investigated the use of an Artificial Neural Network (ANN) to predict the Local Bond Stress (LBS) between Ultra-High-Performance Concrete (UHPC) and steel bars, in order to evaluate the accuracy of our LBS equation, proposed by Multiple Linear Regression (MLR). The experimental and numerical LBS results of specimens, based on RILEM standards and using pullout tests, were assessed by the ANN algorithm using the TensorFlow platform. For each specimen, steel bar diameters ([Formula: see text] of 12, 14, 16, 18, and 20, concrete compressive strength ([Formula: see text]), bond lengths ([Formula: see text]), and concrete covers ([Formula: see text]) of [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] were used as input parameters for our ANN. To obtain an accurate LBS equation, we first modified the existing formula, then used MLR to establish a new LBS equation. Finally, we applied ANN to verify our new proposed equation. The numerical pullout test values from ABAQUS and experimental results from our laboratory were compared with the proposed LBS equation and ANN algorithm results. The results confirmed that our LBS equation is logically accurate and that there is a strong agreement between the experimental, numerical, theoretical, and the predicted LBS values. Moreover, the ANN algorithm proved the precision of our proposed LBS equation.
We investigated the use of an Artificial Neural Network (ANN) to predict the Local Bond Stress (LBS) between Ultra-High-Performance Concrete (UHPC) and steel bars, in order to evaluate the accuracy of our LBS equation, proposed by Multiple Linear Regression (MLR). The experimental and numerical LBS results of specimens, based on RILEM standards and using pullout tests, were assessed by the ANN algorithm using the TensorFlow platform. For each specimen, steel bar diameters (db) of 12, 14, 16, 18, and 20, concrete compressive strength (fc′), bond lengths (L), and concrete covers (C) of db, 2db, 3db and 4db were used as input parameters for our ANN. To obtain an accurate LBS equation, we first modified the existing formula, then used MLR to establish a new LBS equation. Finally, we applied ANN to verify our new proposed equation. The numerical pullout test values from ABAQUS and experimental results from our laboratory were compared with the proposed LBS equation and ANN algorithm results. The results confirmed that our LBS equation is logically accurate and that there is a strong agreement between the experimental, numerical, theoretical, and the predicted LBS values. Moreover, the ANN algorithm proved the precision of our proposed LBS equation.
We investigated the use of an Artificial Neural Network (ANN) to predict the Local Bond Stress (LBS) between Ultra-High-Performance Concrete (UHPC) and steel bars, in order to evaluate the accuracy of our LBS equation, proposed by Multiple Linear Regression (MLR). The experimental and numerical LBS results of specimens, based on RILEM standards and using pullout tests, were assessed by the ANN algorithm using the TensorFlow platform. For each specimen, steel bar diameters ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{b} )$$\end{document} d b ) of 12, 14, 16, 18, and 20, concrete compressive strength ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{c}^{\prime }$$\end{document} f c ′ ), bond lengths ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document} L ), and concrete covers ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C$$\end{document} C ) of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{b}$$\end{document} d b , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2d_{b}$$\end{document} 2 d b , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3d_{b}$$\end{document} 3 d b and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4d_{b}$$\end{document} 4 d b were used as input parameters for our ANN. To obtain an accurate LBS equation, we first modified the existing formula, then used MLR to establish a new LBS equation. Finally, we applied ANN to verify our new proposed equation. The numerical pullout test values from ABAQUS and experimental results from our laboratory were compared with the proposed LBS equation and ANN algorithm results. The results confirmed that our LBS equation is logically accurate and that there is a strong agreement between the experimental, numerical, theoretical, and the predicted LBS values. Moreover, the ANN algorithm proved the precision of our proposed LBS equation.
Abstract We investigated the use of an Artificial Neural Network (ANN) to predict the Local Bond Stress (LBS) between Ultra-High-Performance Concrete (UHPC) and steel bars, in order to evaluate the accuracy of our LBS equation, proposed by Multiple Linear Regression (MLR). The experimental and numerical LBS results of specimens, based on RILEM standards and using pullout tests, were assessed by the ANN algorithm using the TensorFlow platform. For each specimen, steel bar diameters ( $$d_{b} )$$ d b ) of 12, 14, 16, 18, and 20, concrete compressive strength ( $$f_{c}^{\prime }$$ f c ′ ), bond lengths ( $$L$$ L ), and concrete covers ( $$C$$ C ) of $$d_{b}$$ d b , $$2d_{b}$$ 2 d b , $$3d_{b}$$ 3 d b and $$4d_{b}$$ 4 d b were used as input parameters for our ANN. To obtain an accurate LBS equation, we first modified the existing formula, then used MLR to establish a new LBS equation. Finally, we applied ANN to verify our new proposed equation. The numerical pullout test values from ABAQUS and experimental results from our laboratory were compared with the proposed LBS equation and ANN algorithm results. The results confirmed that our LBS equation is logically accurate and that there is a strong agreement between the experimental, numerical, theoretical, and the predicted LBS values. Moreover, the ANN algorithm proved the precision of our proposed LBS equation.
ArticleNumber 15061
Author Yang, Qihong
Zhang, Shiquan
Huang, Dengshi
Li, WeiYu
Xiong, Feng
Amini Pishro, Ahad
Author_xml – sequence: 1
  givenname: Ahad
  surname: Amini Pishro
  fullname: Amini Pishro, Ahad
  organization: Department of Civil Engineering, Sichuan University of Science and Engineering
– sequence: 2
  givenname: Shiquan
  surname: Zhang
  fullname: Zhang, Shiquan
  organization: Sichuan University
– sequence: 3
  givenname: Dengshi
  surname: Huang
  fullname: Huang, Dengshi
  organization: Southwest Jiaotong University
– sequence: 4
  givenname: Feng
  surname: Xiong
  fullname: Xiong, Feng
  organization: Sichuan University
– sequence: 5
  givenname: WeiYu
  surname: Li
  fullname: Li, WeiYu
  organization: Southwest Jiaotong University
– sequence: 6
  givenname: Qihong
  surname: Yang
  fullname: Yang, Qihong
  email: yangqh@stu.scu.edu.cn
  organization: Sichuan University
BookMark eNp9Uk1v3CAUtKpUTZrmD_RkqZde3AIGG18qRas2iRSpPTRnhJ8fW7YsOGC36k_ovw72ph_JIXAAvTczwDAviyMfPBbFa0reUVLL94lT0cmKMFp1nEtSsWfFCSNcVKxm7Oi__XFxltKO5CFYx2n3ojiueU1YnifF7_NxdBb0ZIMvgyl1nKyxYLUrPc5xXaafIX5PpfZDuZ_dZEeHpbMedSwjbiOmtJJ96QJkQh8yME1LvcTb-a_0zeWXzSoS0XoTIli_zTjETNExvSqeG-0Snt2vp8XNp49fN5fV9eeLq835dQWCtlMlZUMNB9EDSgltJzh0jTYNUtI3rNccZd8NrREDIALXdd2YrtekHgQQAFGfFlcH3SHonRqj3ev4SwVt1VoIcasWE8ChIqZvOGpsO6g5ZNdxAGg4QaLBtASy1oeD1jj3-9xEP2XLHog-7Hj7TW3DDyWz_y2jWeDtvUAMtzOmSe1tAnROewxzUkwIQYlsyAJ98wi6C3P02aoFxXnXSNpklDygIIaUIhoFdlq_IJ9vnaJELfFRh_ioHB-1xkexTGWPqH_e8SSpPpBSBvstxn-3eoJ1B8Pe3CU
CitedBy_id crossref_primary_10_1002_suco_202400188
crossref_primary_10_1016_j_advengsoft_2024_103630
crossref_primary_10_1016_j_conbuildmat_2022_129124
crossref_primary_10_1038_s41598_022_10406_6
crossref_primary_10_1038_s41598_023_30037_9
crossref_primary_10_1016_j_biortech_2022_128503
crossref_primary_10_1016_j_istruc_2022_10_053
crossref_primary_10_1016_j_istruc_2022_02_003
crossref_primary_10_1016_j_cscm_2023_e02627
crossref_primary_10_3390_buildings13081944
crossref_primary_10_1111_pbr_13024
crossref_primary_10_1038_s41598_022_20209_4
crossref_primary_10_1038_s41598_024_75541_8
crossref_primary_10_3390_buildings13123056
crossref_primary_10_1016_j_istruc_2024_106162
crossref_primary_10_1038_s41598_024_54358_5
crossref_primary_10_1016_j_fuel_2024_133096
crossref_primary_10_3390_buildings13092316
crossref_primary_10_1016_j_jobe_2022_104878
crossref_primary_10_3390_ma15144852
crossref_primary_10_3390_sym16030275
Cites_doi 10.13189/cea.2013.010306
10.1007/s00366-013-0334-x
10.1080/19648189.2020.1762749
10.4028/www.scientific.net/KEM.744.131
10.1007/s40069-016-0157-4
10.1016/j.conbuildmat.2018.06.046
10.1016/S0008-8846(98)00165-3
10.17159/2413-3051/2012/v23i3a3171
10.1016/S0169-7439(97)00061-0
10.14359/51720292
10.1007/s11356-016-6456-0
10.1016/j.conbuildmat.2016.06.047
10.1109/2.485891
10.1007/BF02478259
10.1007/s11263-015-0822-0
10.1016/S0958-9465(02)00081-1
10.1016/j.buildenv.2006.03.013
10.3390/ma12142291
10.28991/cej-2019-03091243
10.1007/s00521-014-1645-6
10.1109/IJCNN.2004.1380068
10.1016/j.conbuildmat.2016.03.148
10.1016/j.conbuildmat.2020.119465
10.1371/journal.pone.0194151
10.1061/(ASCE)0899-1561(2007)19:10(848)
10.28991/cej-030953
10.1108/03321640510571057
10.1109/ICASSP.2013.6639345
10.1155/2017/3418145
10.28991/cej-030962
10.1109/BigData.2017.8257992
10.1016/j.jclepro.2018.05.158
10.1109/ICASSP.2013.6638947
10.1155/2015/849126
10.5772/intechopen.73530
10.1016/j.conbuildmat.2020.119942
10.1109/ICCET.2010.5486314
10.22115/SCCE.2018.112140.1041
10.1007/978-3-030-00536-8_13
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021. The Author(s).
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-021-94480-2
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 20
ExternalDocumentID oai_doaj_org_article_0fb64eae79c34c038edcc640e0acf70c
PMC8302721
10_1038_s41598_021_94480_2
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c517t-8861f4c5bce88c7954c96af6e10b62ba4e8b9d7f5dceec4a336f9ba03d5c0cc53
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:22:54 EDT 2025
Thu Aug 21 18:19:20 EDT 2025
Sun Aug 24 04:08:19 EDT 2025
Wed Aug 13 06:44:02 EDT 2025
Thu Apr 24 23:03:59 EDT 2025
Tue Jul 01 03:48:56 EDT 2025
Fri Feb 21 02:39:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-8861f4c5bce88c7954c96af6e10b62ba4e8b9d7f5dceec4a336f9ba03d5c0cc53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-021-94480-2
PMID 34302020
PQID 2554496816
PQPubID 2041939
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_0fb64eae79c34c038edcc640e0acf70c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8302721
proquest_miscellaneous_2555108601
proquest_journals_2554496816
crossref_citationtrail_10_1038_s41598_021_94480_2
crossref_primary_10_1038_s41598_021_94480_2
springer_journals_10_1038_s41598_021_94480_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-23
PublicationDateYYYYMMDD 2021-07-23
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-23
  day: 23
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Rezaifar, Hasanzadeh, Gholhaki (CR50) 2016; 123
Zuo, Darwin (CR60) 2000; 97
CR38
CR37
Bestgen, Cetin, Tanyu (CR49) 2016; 23
Feng, Faisal, Zahid (CR48) 2019; 5
CR35
CR33
He, Lau, Liu, Huang, Yang (CR9) 2015; 115
Foroughi-Asl, Dilmaghani, Famili (CR55) 2008; 6
CR31
Jain, Mao, Mohiuddin (CR1) 1996; 3
Abellán-García, Fernández-Gómez, Torres-Castellanos (CR34) 2020
Khademi, Behfarnia (CR36) 2016; 6
Zahid, Shafiq, Jalal (CR43) 2018; 181
CR2
CR6
CR5
CR8
Abellán, Fernández, Torres, Núñez (CR32) 2020; 117
CR7
CR47
CR45
Abbas, Nehdi, Saleem (CR41) 2016
Nikoo, Zarfam, Sayahpour (CR25) 2015; 31
Sadowski, Nikoo (CR24) 2014; 25
Svozil, Kvasnicka, Pospichal (CR20) 1997; 39
Yazici (CR40) 2007; 42
Shafiq, Kumar, Zahid, Tufail (CR42) 2019; 12
Yeh (CR26) 1998; 28
Aitcin (CR39) 2003; 25
CR19
CR18
CR17
CR16
CR15
CR14
CR58
CR13
CR57
CR12
CR56
CR11
CR10
CR54
Zahid, Shafiq, Nuruddin, Nikbakht, Jalal (CR44) 2017; 744
CR53
CR52
CR51
Esfahani, Rangan (CR61) 1998; 95
McCulloch, Pitts (CR4) 1943; 5
Oludolapo, Jimoh, Kholopane (CR3) 2012; 23
CR29
CR27
CR23
CR67
CR22
Gupta (CR28) 2013; 1
CR66
CR21
CR65
CR64
CR63
CR62
Muthupriya, Subramanian, Vishnuram (CR30) 2011; 1
Isfahani, Redaelli, Lollini, Li, Bertolini (CR46) 2016; 2016
Darwin, Zuo, Tholen, Idun (CR59) 1996; 93
94480_CR11
94480_CR10
94480_CR54
94480_CR13
94480_CR57
94480_CR12
94480_CR56
94480_CR6
94480_CR51
94480_CR5
94480_CR8
94480_CR53
94480_CR7
94480_CR52
94480_CR2
J Zuo (94480_CR60) 2000; 97
D Darwin (94480_CR59) 1996; 93
S Gupta (94480_CR28) 2013; 1
WS McCulloch (94480_CR4) 1943; 5
IC Yeh (94480_CR26) 1998; 28
94480_CR47
94480_CR22
94480_CR66
94480_CR21
94480_CR65
94480_CR23
94480_CR67
94480_CR62
94480_CR64
H Yazici (94480_CR40) 2007; 42
X Feng (94480_CR48) 2019; 5
94480_CR63
S Abbas (94480_CR41) 2016
N Shafiq (94480_CR42) 2019; 12
A Foroughi-Asl (94480_CR55) 2008; 6
L Sadowski (94480_CR24) 2014; 25
M Zahid (94480_CR43) 2018; 181
94480_CR19
94480_CR18
94480_CR15
94480_CR14
PC Aitcin (94480_CR39) 2003; 25
94480_CR58
94480_CR17
94480_CR16
94480_CR33
94480_CR35
94480_CR31
M Zahid (94480_CR44) 2017; 744
F Khademi (94480_CR36) 2016; 6
JO Bestgen (94480_CR49) 2016; 23
S He (94480_CR9) 2015; 115
94480_CR29
AK Jain (94480_CR1) 1996; 3
94480_CR27
94480_CR45
OA Oludolapo (94480_CR3) 2012; 23
O Rezaifar (94480_CR50) 2016; 123
MR Esfahani (94480_CR61) 1998; 95
P Muthupriya (94480_CR30) 2011; 1
J Abellán-García (94480_CR34) 2020
J Abellán (94480_CR32) 2020; 117
D Svozil (94480_CR20) 1997; 39
FT Isfahani (94480_CR46) 2016; 2016
M Nikoo (94480_CR25) 2015; 31
94480_CR37
94480_CR38
References_xml – volume: 1
  start-page: 96
  issue: 3
  year: 2013
  end-page: 102
  ident: CR28
  article-title: Using artificial neural network to predict the compressive strength of concrete containing nano-silica
  publication-title: Civ. Eng. Architect.
  doi: 10.13189/cea.2013.010306
– ident: CR45
– ident: CR22
– volume: 31
  start-page: 113
  issue: 1
  year: 2015
  end-page: 121
  ident: CR25
  article-title: Determination of compressive strength of concrete using Self Organization Feature Map (SOFM)
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-013-0334-x
– ident: CR16
– ident: CR51
– ident: CR12
– volume: 2016
  start-page: 16
  year: 2016
  ident: CR46
  article-title: Effects of nano-silica on compressive strength and durability properties of concrete with different water to binder ratios
  publication-title: Adv. Mater. Sci. Eng.
– volume: 6
  start-page: 24
  issue: 1
  year: 2008
  end-page: 33
  ident: CR55
  article-title: Bond strength of reinforcement steel in self-compacting concrete
  publication-title: Int. J. Civ. Eng.
– year: 2020
  ident: CR34
  article-title: Properties prediction of environmentally friendly ultra-high-performance concrete using artificial neural networks
  publication-title: Eur. J. Environ. Civ. Eng.
  doi: 10.1080/19648189.2020.1762749
– ident: CR35
– ident: CR29
– ident: CR54
– ident: CR8
– ident: CR58
– volume: 744
  start-page: 131
  year: 2017
  end-page: 135
  ident: CR44
  article-title: Effect of partial replacement of fly ash by metakaolin on strength development of fly ash based geopolymer mortar
  publication-title: Key Eng. Mater.
  doi: 10.4028/www.scientific.net/KEM.744.131
– ident: CR21
– year: 2016
  ident: CR41
  article-title: Ultra-high performance concrete: Mechanical performance, durability, sustainability and implementation challenges
  publication-title: Int. J. Concr. Struct. Mater.
  doi: 10.1007/s40069-016-0157-4
– ident: CR19
– volume: 181
  start-page: 227
  year: 2018
  end-page: 237
  ident: CR43
  article-title: Investigating the effects of solarcure curing method on the compressive strength, microstructure, and polymeric reaction of fly ash based geopolymer
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.06.046
– volume: 28
  start-page: 1797
  issue: 12
  year: 1998
  end-page: 1808
  ident: CR26
  article-title: Modeling of strength of high performance concrete using artificial neural networks
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(98)00165-3
– volume: 23
  start-page: 40
  issue: 3
  year: 2012
  end-page: 46
  ident: CR3
  article-title: Comparing performance of MLP and RBF neural network models for predicting South Africa's energy consumption
  publication-title: J. Energy S. Afr.
  doi: 10.17159/2413-3051/2012/v23i3a3171
– ident: CR67
– ident: CR15
– volume: 39
  start-page: 43
  issue: 1
  year: 1997
  end-page: 62
  ident: CR20
  article-title: Introduction to multi-layer feed-forward neural networks
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(97)00061-0
– ident: CR11
– ident: CR57
– ident: CR5
– ident: CR64
– volume: 117
  start-page: 243
  year: 2020
  end-page: 254
  ident: CR32
  article-title: Statistical optimization of ultra-high-performance glass concrete
  publication-title: ACI Mater. J.
  doi: 10.14359/51720292
– volume: 23
  start-page: 12983
  year: 2016
  end-page: 13002
  ident: CR49
  article-title: Effects of extraction methods and factors on leaching of metals from recycled concrete aggregates
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-016-6456-0
– volume: 6
  start-page: 423
  issue: 3
  year: 2016
  end-page: 432
  ident: CR36
  article-title: Evaluation of concrete compressive strength using artificial neural network and multiple linear regression models
  publication-title: Int. J. Optim. Civ. Eng.
– volume: 123
  start-page: 59
  year: 2016
  end-page: 68
  ident: CR50
  article-title: Concrete made with hybrid blends of crumb rubber and metakaolin: Optimization using response surface method
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.06.047
– ident: CR18
– ident: CR66
– ident: CR47
– ident: CR14
– ident: CR2
– ident: CR37
– ident: CR53
– ident: CR10
– ident: CR33
– ident: CR6
– ident: CR56
– volume: 3
  start-page: 31
  year: 1996
  end-page: 44
  ident: CR1
  article-title: Artificial neural networks: A tutorial
  publication-title: Computer
  doi: 10.1109/2.485891
– volume: 5
  start-page: 115
  year: 1943
  end-page: 133
  ident: CR4
  article-title: A logical calculus of ideas immanent in nervous activity
  publication-title: Bull. Math. Biophys.
  doi: 10.1007/BF02478259
– ident: CR63
– volume: 93
  start-page: 347
  issue: 3
  year: 1996
  end-page: 359
  ident: CR59
  article-title: Development length criteria for conventional and high relative rib area reinforcing bars
  publication-title: ACI Struct. J.
– ident: CR27
– ident: CR23
– volume: 115
  start-page: 330
  issue: 3
  year: 2015
  end-page: 344
  ident: CR9
  article-title: Super cnn: A super pixelwise convolutional neural network for salient object detection
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0822-0
– volume: 95
  start-page: 96
  issue: 2
  year: 1998
  end-page: 106
  ident: CR61
  article-title: Local bond strength of reinforcing bars in normal strength and high-strength concrete (HSC)
  publication-title: ACI Struct. J.
– volume: 25
  start-page: 409
  issue: 4–5
  year: 2003
  end-page: 420
  ident: CR39
  article-title: The durability characteristics of high performance concrete: a review
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/S0958-9465(02)00081-1
– ident: CR65
– volume: 42
  start-page: 2083
  issue: 5
  year: 2007
  end-page: 2089
  ident: CR40
  article-title: The effect of curing conditions on compressive strength of ultra high strength concrete with high volume mineral admixtures
  publication-title: Build Environ.
  doi: 10.1016/j.buildenv.2006.03.013
– ident: CR38
– ident: CR52
– ident: CR17
– ident: CR31
– volume: 97
  start-page: 630
  issue: 65
  year: 2000
  end-page: 641
  ident: CR60
  article-title: Splice strength of conventional and high relative rib area bars in normal and high-strength concrete
  publication-title: ACI Struct. J.
– ident: CR13
– volume: 12
  start-page: 2291
  year: 2019
  ident: CR42
  article-title: Effects of modified metakaolin using nano-silica on the mechanical properties and durability of concrete
  publication-title: Materials
  doi: 10.3390/ma12142291
– volume: 5
  start-page: 268
  year: 2019
  end-page: 283
  ident: CR48
  article-title: Experimental investigation and statistical modeling of frp confined ruc using response surface methodology
  publication-title: Civ. Eng. J.
  doi: 10.28991/cej-2019-03091243
– ident: CR7
– volume: 25
  start-page: 1627
  issue: 7–8
  year: 2014
  end-page: 1638
  ident: CR24
  article-title: Corrosion current density prediction in reinforced concrete by imperialist competitive algorithm
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-014-1645-6
– ident: CR62
– volume: 1
  start-page: 189
  year: 2011
  end-page: 209
  ident: CR30
  article-title: Prediction of compressive strength and durability of high performance concrete by artificial neural network
  publication-title: Int. J. Optim. Civ. Eng.
– ident: 94480_CR22
  doi: 10.1109/IJCNN.2004.1380068
– ident: 94480_CR38
  doi: 10.1016/j.conbuildmat.2016.03.148
– ident: 94480_CR12
– ident: 94480_CR33
  doi: 10.1016/j.conbuildmat.2020.119465
– volume: 3
  start-page: 31
  year: 1996
  ident: 94480_CR1
  publication-title: Computer
  doi: 10.1109/2.485891
– ident: 94480_CR16
  doi: 10.1371/journal.pone.0194151
– volume: 744
  start-page: 131
  year: 2017
  ident: 94480_CR44
  publication-title: Key Eng. Mater.
  doi: 10.4028/www.scientific.net/KEM.744.131
– ident: 94480_CR64
– ident: 94480_CR7
– ident: 94480_CR37
  doi: 10.1061/(ASCE)0899-1561(2007)19:10(848)
– volume: 25
  start-page: 1627
  issue: 7–8
  year: 2014
  ident: 94480_CR24
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-014-1645-6
– ident: 94480_CR52
– ident: 94480_CR19
– volume: 5
  start-page: 115
  year: 1943
  ident: 94480_CR4
  publication-title: Bull. Math. Biophys.
  doi: 10.1007/BF02478259
– ident: 94480_CR11
– ident: 94480_CR47
  doi: 10.28991/cej-030953
– ident: 94480_CR56
– ident: 94480_CR2
  doi: 10.1108/03321640510571057
– volume: 181
  start-page: 227
  year: 2018
  ident: 94480_CR43
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.06.046
– ident: 94480_CR29
– volume: 6
  start-page: 24
  issue: 1
  year: 2008
  ident: 94480_CR55
  publication-title: Int. J. Civ. Eng.
– volume: 97
  start-page: 630
  issue: 65
  year: 2000
  ident: 94480_CR60
  publication-title: ACI Struct. J.
– ident: 94480_CR63
– ident: 94480_CR21
– volume: 93
  start-page: 347
  issue: 3
  year: 1996
  ident: 94480_CR59
  publication-title: ACI Struct. J.
– volume: 6
  start-page: 423
  issue: 3
  year: 2016
  ident: 94480_CR36
  publication-title: Int. J. Optim. Civ. Eng.
– ident: 94480_CR67
  doi: 10.1109/ICASSP.2013.6639345
– volume: 42
  start-page: 2083
  issue: 5
  year: 2007
  ident: 94480_CR40
  publication-title: Build Environ.
  doi: 10.1016/j.buildenv.2006.03.013
– ident: 94480_CR53
– ident: 94480_CR23
  doi: 10.1155/2017/3418145
– ident: 94480_CR31
  doi: 10.28991/cej-030962
– ident: 94480_CR14
– volume: 31
  start-page: 113
  issue: 1
  year: 2015
  ident: 94480_CR25
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-013-0334-x
– ident: 94480_CR10
– ident: 94480_CR6
  doi: 10.1109/BigData.2017.8257992
– ident: 94480_CR57
– ident: 94480_CR45
  doi: 10.1016/j.jclepro.2018.05.158
– volume: 95
  start-page: 96
  issue: 2
  year: 1998
  ident: 94480_CR61
  publication-title: ACI Struct. J.
– ident: 94480_CR66
  doi: 10.1109/ICASSP.2013.6638947
– volume: 115
  start-page: 330
  issue: 3
  year: 2015
  ident: 94480_CR9
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0822-0
– volume: 5
  start-page: 268
  year: 2019
  ident: 94480_CR48
  publication-title: Civ. Eng. J.
  doi: 10.28991/cej-2019-03091243
– ident: 94480_CR62
– ident: 94480_CR5
– ident: 94480_CR27
  doi: 10.1155/2015/849126
– volume: 39
  start-page: 43
  issue: 1
  year: 1997
  ident: 94480_CR20
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(97)00061-0
– volume: 123
  start-page: 59
  year: 2016
  ident: 94480_CR50
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.06.047
– volume: 23
  start-page: 40
  issue: 3
  year: 2012
  ident: 94480_CR3
  publication-title: J. Energy S. Afr.
  doi: 10.17159/2413-3051/2012/v23i3a3171
– ident: 94480_CR18
  doi: 10.5772/intechopen.73530
– ident: 94480_CR51
  doi: 10.1016/j.conbuildmat.2020.119942
– year: 2020
  ident: 94480_CR34
  publication-title: Eur. J. Environ. Civ. Eng.
  doi: 10.1080/19648189.2020.1762749
– volume: 28
  start-page: 1797
  issue: 12
  year: 1998
  ident: 94480_CR26
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(98)00165-3
– ident: 94480_CR54
– ident: 94480_CR13
– volume: 1
  start-page: 96
  issue: 3
  year: 2013
  ident: 94480_CR28
  publication-title: Civ. Eng. Architect.
  doi: 10.13189/cea.2013.010306
– volume: 12
  start-page: 2291
  year: 2019
  ident: 94480_CR42
  publication-title: Materials
  doi: 10.3390/ma12142291
– ident: 94480_CR58
– ident: 94480_CR15
  doi: 10.1109/ICCET.2010.5486314
– volume: 1
  start-page: 189
  year: 2011
  ident: 94480_CR30
  publication-title: Int. J. Optim. Civ. Eng.
– volume: 25
  start-page: 409
  issue: 4–5
  year: 2003
  ident: 94480_CR39
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/S0958-9465(02)00081-1
– volume: 23
  start-page: 12983
  year: 2016
  ident: 94480_CR49
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-016-6456-0
– year: 2016
  ident: 94480_CR41
  publication-title: Int. J. Concr. Struct. Mater.
  doi: 10.1007/s40069-016-0157-4
– ident: 94480_CR65
– ident: 94480_CR35
  doi: 10.22115/SCCE.2018.112140.1041
– volume: 117
  start-page: 243
  year: 2020
  ident: 94480_CR32
  publication-title: ACI Mater. J.
  doi: 10.14359/51720292
– volume: 2016
  start-page: 16
  year: 2016
  ident: 94480_CR46
  publication-title: Adv. Mater. Sci. Eng.
– ident: 94480_CR17
  doi: 10.1007/978-3-030-00536-8_13
– ident: 94480_CR8
SSID ssj0000529419
Score 2.4698987
Snippet We investigated the use of an Artificial Neural Network (ANN) to predict the Local Bond Stress (LBS) between Ultra-High-Performance Concrete (UHPC) and steel...
Abstract We investigated the use of an Artificial Neural Network (ANN) to predict the Local Bond Stress (LBS) between Ultra-High-Performance Concrete (UHPC)...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15061
SubjectTerms 639/166/986
639/705/1041
639/705/1042
Algorithms
Humanities and Social Sciences
multidisciplinary
Neural networks
Regression analysis
Science
Science (multidisciplinary)
Steel
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yIHgRn9i6SgRv2my68-zjurgMguLBgb2FPCoqSI87j4M_wX9tJemZ3V5QL54aOpV0HlVdVVTlK0JeddFJiCiASXN0UAJ0rYsutTxxIyCy1Kt8G_nDR7VYivcX8uJaqa-cE1bhgevGnbDklQAHeghcBMYNxBCUYMBcSJqF_PdFnXfNmaqo3v0gumG6JYO9TjaoqfJtspyRgC4Ja_uZJiqA_TMr82aO5I1AadE_5_fI3clwpKd1wvfJLRgfkNu1lOTPh-TX6VUkmq4SzQur4BA0Q1aWR0n43lA3RrrPI6TZynRruoYvNSEWO4-0KDjqV0hY75JQuNwdhl4uPp2VQdZQYFcDzhfpALALusmPyPL83eezRTuVWWiD7PS2NUZ1SQTpAxgT9CBFGJRLCjrmVe-dAOOHqJPEvYAgHOcqDd4xHmVgIUj-mByNqxGeECqN90IktAoVCBWdC55r4xR6RVEkxRrS7bfchgmDPJfC-G5LLJwbW4_J4jHZcky2b8jrQ58fFYHjr9Rv80keKDN6dnmBPGUnnrL_4qmGHO_5wE4ivbHoewkxKNOphrw8NKMw5giLG2G1KzQyl65iXUP0jH9mE5q3jN--FljvjMSG_nhD3uw57erjf17w0_-x4GfkTp8lg-m258fkaLvewXM0trb-RZGr3xwuK44
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9UwEA66IvgiXrHuKhF807Jpc-2TrIvLQVB88MB5C7mugrS7Pec8-BP81ztJL4cuuE-FdpKmmZlmJjP5BqH3lTc8eFDAKCk4KC5UpfEmljRSxYInsRbpNPK372K1Zl83fDNuuG3HtMrpn5h_1L5zaY_8FExfxhqhKvHp6rpMVaNSdHUsoXEfPUjQZUmq5UbOeywpisWqZjwrQ6g63cJ6lc6UpbwEcExIWS_Wowzbv7A1b2dK3gqX5lXo4gl6PJqP-Gzg91N0L7TP0MOhoOTf5-jf2SEejbuIk1wMEBE4AVfmS0773mLTejxlE-Jka5oe9-FySIuFxi3Oyxy2HRAOJ0pwuN7PXa9XP85zJ33I4KsOxgt0IUATcJZfoPXFl5_nq3IstlA6XsldqZSoInPcuqCUkw1nrhEmilARK2prWFC28TJymIvgmKFUxMYaQj13xDlOX6KjtmvDK4S5spaxCLahCEx4Y5ylUhkBvpFnUZACVdOUazcikaeCGH90johTpQc2aWCTzmzSdYE-zG2uBhyOO6k_J07OlAlDO9_o-ks9qqQm0QoWTJCNo8xBR8BmJxgJxLgoiSvQySQHelTsrT6IYYHezY9BJVOcxbSh22cangpYkapAciE_iwEtn7S_f2Vw74THBl55gT5OknZ4-f8_-PXdYz1Gj-ok80SWNT1BR7t-H96AMbWzb7PG3AAdAyGg
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_HHYIv4idWT4ngmxbT5qPp43p4LAuKoAv3FpJ0cgrSanf3wT_h_uubpB9HDxV8KjSTNO3MJDOdmV8IeV00VkKDChgqjg6KhyK3jQ05D1wLaFgoVaxG_vhJrbdicyEvjkg51cKkpP0EaZmW6Sk77N0ON5pYDBYTCtCjYDkuuycRqh1l-2S12nzZzH9WYuxKFPVYIcO4_kPnxS6UwPoXFubt_MhbQdK095zfJ_dGo5Guhmk-IEfQPiR3hmMkfz8iV6ubKDTtAo2vMwBD0AhXmS4p2XtHbdvQKYeQRgvT9rSHyyEZFju3NG1u1HVIONSRUPh1mIferj-fpUF6SJCrHueLdADYBV3kx2R7_uHr2Tofj1jIvSyqfa61KoLw0nnQ2le1FL5WNigomFOlswK0q5sqSPwW4IXlXIXaWcYb6Zn3kj8hx23XwlNCpXZOiIAWoQKhGmu945W2Cj2iRgTFMlJMn9z4EX88HoPxw6Q4ONdmYJNBNpnEJlNm5M3c5-eAvvFP6veRkzNlRM5ON7r-0oySZFhwSoCFqvZceBwI2eyVYMCsDxXzGTmd5MCM6rwz6HcJUStdqIy8mptREWN0xbbQHRKNjMdWsSIj1UJ-FhNatrTfvyVI74jChr54Rt5Oknbz8L-_8LP_I39O7pZRB1iVl_yUHO_7A7xAk2rvXo46dA1MlCC9
  priority: 102
  providerName: Springer Nature
Title Application of artificial neural networks and multiple linear regression on local bond stress equation of UHPC and reinforcing steel bars
URI https://link.springer.com/article/10.1038/s41598-021-94480-2
https://www.proquest.com/docview/2554496816
https://www.proquest.com/docview/2555108601
https://pubmed.ncbi.nlm.nih.gov/PMC8302721
https://doaj.org/article/0fb64eae79c34c038edcc640e0acf70c
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBddy2AvY5_MWxc02NvmTbb15Ycx0tASAi1lWyBvQpKlblDs1Ulg_RP2X-8k2yku3WBPBvukOPeRu4vufofQ26zSzFVggF4UkKBYl6W60j4tfCGpq4jPeehGPj3j8yVdrNhqDw3jjnoGru9M7cI8qWV7-eHX1fVnMPhPXcu4_LgGJxQaxUKxAWQbJIWf5APwTCJMNDjtw_0O6zsvaZz1EUDYUwgm8r6P5u5tRr4qQvqP4tDbVZS3jlKjhzp5hB72oSWedrrwGO25-gm63w2bvH6Kfk9vzqpx43HQmQ4-AgdQy3iJJeFrrOsKD5WGOMShusWtu-hKZmFxjaMLxKYBwq7bBLur7W7r5fx8FjdpXQRmtfC-QOccLAFuP0PLk-Nvs3naD2JILcvEJpWSZ55aZqyT0oqSUVty7bnLiOG50dRJU1bCM-CFs1QXBfel0aSomCXWsuI52q-b2r1AmEljKPUQN3JHeaW1NYWQmkPeVFHPSYKygeXK9ijlYVjGpYqn5YVUnZgUiElFMak8Qe92a352GB3_pD4KktxRBnzteKNpL1Rvrop4w6nTTpS2oBY2AjFbTokj2npBbIIOBz1Qg84qyM4oLbnMeILe7B6DuYYzGF27ZhtpWBhuRbIEiZH-jF5o_KT-8T0CfwesNsjYE_R-0LSbD__7F375X-x5hR7kwQSIAPs4RPubduteQ9y1MRN0T6zEBB1Mp4uvC7geHZ-df4G7Mz6bxP8yJtHc_gBdwjBB
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw1KqKEFwqVhFawEhwgqhO7NjOAaFSqKZ0EYeONDfjtSChpJ1FqJ_Az_CNPDvJjKYSvfUUKXl2nLznt_htCL0pnK68gw0YBAUDxfoi106HnAYqmXcklDxmI5-c8tGYfZ1Ukw30d8iFiWGVA09MjNq1Np6R74Lqy1jNZcE_XlzmsWtU9K4OLTQ6sjjyV7_BZJt9OPwM-H1blgdfzvZHed9VILdVIea5lLwIzFbGeimtqCtma64D9wUxvDSaeWlqJ0LlQH5YpinloTaaUFdZYm3sEgEs_w4IXhKNPTERyzOd6DVjRd3n5hAqd2cgH2MOW4yDAEOI5OWa_EttAtZ02-uRmdfcs0nqHTxAW726ivc6-nqINnzzCN3tGlhePUZ_9lb-b9wGHOmwK0mBY6HMdElh5jOsG4eH6EUcdVs9xVN_3oXhwuAGJ7GKTQuAXQYL9peL5dTj0bf9NMnUp2KvFtYLcN7DEDDOn6DxraDhKdps2sY_Q7iSxjAWQBflnnGntTVUSM3BFnMscJKhYvjlyvaVz2MDjl8qeeCpVB2aFKBJJTSpMkPvlmMuurofN0J_iphcQsaa3elGOz1XPQtQJBjOvPaitpRZmAjQbDkjnmgbBLEZ2hnoQPWMZKZWZJ-h18vHwAKiX0c3vl0kmCo2zCJFhsQa_awtaP1J8_NHKiYe67-JEka-Hyht9fL_f_Dzm9f6Ct0bnZ0cq-PD06NtdL-M9E9EXtIdtDmfLvwLUOTm5mXaPRh9v-3t-g9DWWCf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1Jo6gXhBXEVhDCPBE0R1Ysd2HtC0W9UxqCpEpb0FXzcklGy9CO0T-CW-jmMnadVJ7G1PlZJj18m559wQepdalTsLDOgFBQfFuDRRVvmEeiqZs8RnPFQjfx3z0ZR9PsvPttDfrhYmpFV2MjEKalub8I18AKYvYwWXKR_4Ni1icjTcu7xKwgSpEGntxmk0JHLqrn-D-zb_dHIEuH6fZcPj74ejpJ0wkJg8FYtESp56ZnJtnJRGFDkzBVeeu5RonmnFnNSFFT63oEsMU5RyX2hFqM0NMSZMjADxvy2CV9RD2wfH48m31ReeEENjadFW6hAqB3PQlqGiLWRFgFtEkmxDG8ahARuW7s08zRvB2qgDh4_Qw9Z4xfsNtT1GW656gu414yyvn6I_--toOK49DlTZNKjAoW1m_IlJ53OsKou7XEYcLF01wzN33iTlwuIKRyWLdQ2ATT0LdlfL1dbT0eQwbjJzsfWrgfMCnHOwBFz1Z2h6J4h4jnpVXbkXCOdSa8Y8WKbcMW6VMpoKqTh4ZpZ5Tvoo7V55ado-6GEcx68yxuOpLBs0lYCmMqKpzProw2rNZdMF5Fbog4DJFWTo4B0v1LPzshUIJfGaM6ecKAxlBjYCNBvOiCPKeEFMH-10dFC2YmVerpmgj96uboNACFEeVbl6GWHyMD6LpH0kNuhn40Cbd6qfF7G1eOgGJzJY-bGjtPWf__-BX95-1jfoPrBq-eVkfPoKPcgC-RORZHQH9RazpXsNVt1C77bsg9GPu-bYf2q7Zjo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+artificial+neural+networks+and+multiple+linear+regression+on+local+bond+stress+equation+of+UHPC+and+reinforcing+steel+bars&rft.jtitle=Scientific+reports&rft.au=Amini+Pishro%2C+Ahad&rft.au=Zhang%2C+Shiquan&rft.au=Huang%2C+Dengshi&rft.au=Xiong%2C+Feng&rft.date=2021-07-23&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-94480-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_021_94480_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon