Application of artificial neural networks and multiple linear regression on local bond stress equation of UHPC and reinforcing steel bars
We investigated the use of an Artificial Neural Network (ANN) to predict the Local Bond Stress (LBS) between Ultra-High-Performance Concrete (UHPC) and steel bars, in order to evaluate the accuracy of our LBS equation, proposed by Multiple Linear Regression (MLR). The experimental and numerical LBS...
Saved in:
Published in | Scientific reports Vol. 11; no. 1; pp. 15061 - 20 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
23.07.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We investigated the use of an Artificial Neural Network (ANN) to predict the Local Bond Stress (LBS) between Ultra-High-Performance Concrete (UHPC) and steel bars, in order to evaluate the accuracy of our LBS equation, proposed by Multiple Linear Regression (MLR). The experimental and numerical LBS results of specimens, based on RILEM standards and using pullout tests, were assessed by the ANN algorithm using the TensorFlow platform. For each specimen, steel bar diameters (
d
b
)
of 12, 14, 16, 18, and 20, concrete compressive strength (
f
c
′
), bond lengths (
L
), and concrete covers (
C
) of
d
b
,
2
d
b
,
3
d
b
and
4
d
b
were used as input parameters for our ANN. To obtain an accurate LBS equation, we first modified the existing formula, then used MLR to establish a new LBS equation. Finally, we applied ANN to verify our new proposed equation. The numerical pullout test values from ABAQUS and experimental results from our laboratory were compared with the proposed LBS equation and ANN algorithm results. The results confirmed that our LBS equation is logically accurate and that there is a strong agreement between the experimental, numerical, theoretical, and the predicted LBS values. Moreover, the ANN algorithm proved the precision of our proposed LBS equation. |
---|---|
AbstractList | We investigated the use of an Artificial Neural Network (ANN) to predict the Local Bond Stress (LBS) between Ultra-High-Performance Concrete (UHPC) and steel bars, in order to evaluate the accuracy of our LBS equation, proposed by Multiple Linear Regression (MLR). The experimental and numerical LBS results of specimens, based on RILEM standards and using pullout tests, were assessed by the ANN algorithm using the TensorFlow platform. For each specimen, steel bar diameters (
$$d_{b} )$$
d
b
)
of 12, 14, 16, 18, and 20, concrete compressive strength (
$$f_{c}^{\prime }$$
f
c
′
), bond lengths (
$$L$$
L
), and concrete covers (
$$C$$
C
) of
$$d_{b}$$
d
b
,
$$2d_{b}$$
2
d
b
,
$$3d_{b}$$
3
d
b
and
$$4d_{b}$$
4
d
b
were used as input parameters for our ANN. To obtain an accurate LBS equation, we first modified the existing formula, then used MLR to establish a new LBS equation. Finally, we applied ANN to verify our new proposed equation. The numerical pullout test values from ABAQUS and experimental results from our laboratory were compared with the proposed LBS equation and ANN algorithm results. The results confirmed that our LBS equation is logically accurate and that there is a strong agreement between the experimental, numerical, theoretical, and the predicted LBS values. Moreover, the ANN algorithm proved the precision of our proposed LBS equation. We investigated the use of an Artificial Neural Network (ANN) to predict the Local Bond Stress (LBS) between Ultra-High-Performance Concrete (UHPC) and steel bars, in order to evaluate the accuracy of our LBS equation, proposed by Multiple Linear Regression (MLR). The experimental and numerical LBS results of specimens, based on RILEM standards and using pullout tests, were assessed by the ANN algorithm using the TensorFlow platform. For each specimen, steel bar diameters ( d b ) of 12, 14, 16, 18, and 20, concrete compressive strength ( f c ′ ), bond lengths ( L ), and concrete covers ( C ) of d b , 2 d b , 3 d b and 4 d b were used as input parameters for our ANN. To obtain an accurate LBS equation, we first modified the existing formula, then used MLR to establish a new LBS equation. Finally, we applied ANN to verify our new proposed equation. The numerical pullout test values from ABAQUS and experimental results from our laboratory were compared with the proposed LBS equation and ANN algorithm results. The results confirmed that our LBS equation is logically accurate and that there is a strong agreement between the experimental, numerical, theoretical, and the predicted LBS values. Moreover, the ANN algorithm proved the precision of our proposed LBS equation. We investigated the use of an Artificial Neural Network (ANN) to predict the Local Bond Stress (LBS) between Ultra-High-Performance Concrete (UHPC) and steel bars, in order to evaluate the accuracy of our LBS equation, proposed by Multiple Linear Regression (MLR). The experimental and numerical LBS results of specimens, based on RILEM standards and using pullout tests, were assessed by the ANN algorithm using the TensorFlow platform. For each specimen, steel bar diameters ([Formula: see text] of 12, 14, 16, 18, and 20, concrete compressive strength ([Formula: see text]), bond lengths ([Formula: see text]), and concrete covers ([Formula: see text]) of [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] were used as input parameters for our ANN. To obtain an accurate LBS equation, we first modified the existing formula, then used MLR to establish a new LBS equation. Finally, we applied ANN to verify our new proposed equation. The numerical pullout test values from ABAQUS and experimental results from our laboratory were compared with the proposed LBS equation and ANN algorithm results. The results confirmed that our LBS equation is logically accurate and that there is a strong agreement between the experimental, numerical, theoretical, and the predicted LBS values. Moreover, the ANN algorithm proved the precision of our proposed LBS equation.We investigated the use of an Artificial Neural Network (ANN) to predict the Local Bond Stress (LBS) between Ultra-High-Performance Concrete (UHPC) and steel bars, in order to evaluate the accuracy of our LBS equation, proposed by Multiple Linear Regression (MLR). The experimental and numerical LBS results of specimens, based on RILEM standards and using pullout tests, were assessed by the ANN algorithm using the TensorFlow platform. For each specimen, steel bar diameters ([Formula: see text] of 12, 14, 16, 18, and 20, concrete compressive strength ([Formula: see text]), bond lengths ([Formula: see text]), and concrete covers ([Formula: see text]) of [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] were used as input parameters for our ANN. To obtain an accurate LBS equation, we first modified the existing formula, then used MLR to establish a new LBS equation. Finally, we applied ANN to verify our new proposed equation. The numerical pullout test values from ABAQUS and experimental results from our laboratory were compared with the proposed LBS equation and ANN algorithm results. The results confirmed that our LBS equation is logically accurate and that there is a strong agreement between the experimental, numerical, theoretical, and the predicted LBS values. Moreover, the ANN algorithm proved the precision of our proposed LBS equation. We investigated the use of an Artificial Neural Network (ANN) to predict the Local Bond Stress (LBS) between Ultra-High-Performance Concrete (UHPC) and steel bars, in order to evaluate the accuracy of our LBS equation, proposed by Multiple Linear Regression (MLR). The experimental and numerical LBS results of specimens, based on RILEM standards and using pullout tests, were assessed by the ANN algorithm using the TensorFlow platform. For each specimen, steel bar diameters (db) of 12, 14, 16, 18, and 20, concrete compressive strength (fc′), bond lengths (L), and concrete covers (C) of db, 2db, 3db and 4db were used as input parameters for our ANN. To obtain an accurate LBS equation, we first modified the existing formula, then used MLR to establish a new LBS equation. Finally, we applied ANN to verify our new proposed equation. The numerical pullout test values from ABAQUS and experimental results from our laboratory were compared with the proposed LBS equation and ANN algorithm results. The results confirmed that our LBS equation is logically accurate and that there is a strong agreement between the experimental, numerical, theoretical, and the predicted LBS values. Moreover, the ANN algorithm proved the precision of our proposed LBS equation. We investigated the use of an Artificial Neural Network (ANN) to predict the Local Bond Stress (LBS) between Ultra-High-Performance Concrete (UHPC) and steel bars, in order to evaluate the accuracy of our LBS equation, proposed by Multiple Linear Regression (MLR). The experimental and numerical LBS results of specimens, based on RILEM standards and using pullout tests, were assessed by the ANN algorithm using the TensorFlow platform. For each specimen, steel bar diameters ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{b} )$$\end{document} d b ) of 12, 14, 16, 18, and 20, concrete compressive strength ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{c}^{\prime }$$\end{document} f c ′ ), bond lengths ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document} L ), and concrete covers ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C$$\end{document} C ) of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{b}$$\end{document} d b , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2d_{b}$$\end{document} 2 d b , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3d_{b}$$\end{document} 3 d b and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4d_{b}$$\end{document} 4 d b were used as input parameters for our ANN. To obtain an accurate LBS equation, we first modified the existing formula, then used MLR to establish a new LBS equation. Finally, we applied ANN to verify our new proposed equation. The numerical pullout test values from ABAQUS and experimental results from our laboratory were compared with the proposed LBS equation and ANN algorithm results. The results confirmed that our LBS equation is logically accurate and that there is a strong agreement between the experimental, numerical, theoretical, and the predicted LBS values. Moreover, the ANN algorithm proved the precision of our proposed LBS equation. Abstract We investigated the use of an Artificial Neural Network (ANN) to predict the Local Bond Stress (LBS) between Ultra-High-Performance Concrete (UHPC) and steel bars, in order to evaluate the accuracy of our LBS equation, proposed by Multiple Linear Regression (MLR). The experimental and numerical LBS results of specimens, based on RILEM standards and using pullout tests, were assessed by the ANN algorithm using the TensorFlow platform. For each specimen, steel bar diameters ( $$d_{b} )$$ d b ) of 12, 14, 16, 18, and 20, concrete compressive strength ( $$f_{c}^{\prime }$$ f c ′ ), bond lengths ( $$L$$ L ), and concrete covers ( $$C$$ C ) of $$d_{b}$$ d b , $$2d_{b}$$ 2 d b , $$3d_{b}$$ 3 d b and $$4d_{b}$$ 4 d b were used as input parameters for our ANN. To obtain an accurate LBS equation, we first modified the existing formula, then used MLR to establish a new LBS equation. Finally, we applied ANN to verify our new proposed equation. The numerical pullout test values from ABAQUS and experimental results from our laboratory were compared with the proposed LBS equation and ANN algorithm results. The results confirmed that our LBS equation is logically accurate and that there is a strong agreement between the experimental, numerical, theoretical, and the predicted LBS values. Moreover, the ANN algorithm proved the precision of our proposed LBS equation. |
ArticleNumber | 15061 |
Author | Yang, Qihong Zhang, Shiquan Huang, Dengshi Li, WeiYu Xiong, Feng Amini Pishro, Ahad |
Author_xml | – sequence: 1 givenname: Ahad surname: Amini Pishro fullname: Amini Pishro, Ahad organization: Department of Civil Engineering, Sichuan University of Science and Engineering – sequence: 2 givenname: Shiquan surname: Zhang fullname: Zhang, Shiquan organization: Sichuan University – sequence: 3 givenname: Dengshi surname: Huang fullname: Huang, Dengshi organization: Southwest Jiaotong University – sequence: 4 givenname: Feng surname: Xiong fullname: Xiong, Feng organization: Sichuan University – sequence: 5 givenname: WeiYu surname: Li fullname: Li, WeiYu organization: Southwest Jiaotong University – sequence: 6 givenname: Qihong surname: Yang fullname: Yang, Qihong email: yangqh@stu.scu.edu.cn organization: Sichuan University |
BookMark | eNp9Uk1v3CAUtKpUTZrmD_RkqZde3AIGG18qRas2iRSpPTRnhJ8fW7YsOGC36k_ovw72ph_JIXAAvTczwDAviyMfPBbFa0reUVLL94lT0cmKMFp1nEtSsWfFCSNcVKxm7Oi__XFxltKO5CFYx2n3ojiueU1YnifF7_NxdBb0ZIMvgyl1nKyxYLUrPc5xXaafIX5PpfZDuZ_dZEeHpbMedSwjbiOmtJJ96QJkQh8yME1LvcTb-a_0zeWXzSoS0XoTIli_zTjETNExvSqeG-0Snt2vp8XNp49fN5fV9eeLq835dQWCtlMlZUMNB9EDSgltJzh0jTYNUtI3rNccZd8NrREDIALXdd2YrtekHgQQAFGfFlcH3SHonRqj3ev4SwVt1VoIcasWE8ChIqZvOGpsO6g5ZNdxAGg4QaLBtASy1oeD1jj3-9xEP2XLHog-7Hj7TW3DDyWz_y2jWeDtvUAMtzOmSe1tAnROewxzUkwIQYlsyAJ98wi6C3P02aoFxXnXSNpklDygIIaUIhoFdlq_IJ9vnaJELfFRh_ioHB-1xkexTGWPqH_e8SSpPpBSBvstxn-3eoJ1B8Pe3CU |
CitedBy_id | crossref_primary_10_1002_suco_202400188 crossref_primary_10_1016_j_advengsoft_2024_103630 crossref_primary_10_1016_j_conbuildmat_2022_129124 crossref_primary_10_1038_s41598_022_10406_6 crossref_primary_10_1038_s41598_023_30037_9 crossref_primary_10_1016_j_biortech_2022_128503 crossref_primary_10_1016_j_istruc_2022_10_053 crossref_primary_10_1016_j_istruc_2022_02_003 crossref_primary_10_1016_j_cscm_2023_e02627 crossref_primary_10_3390_buildings13081944 crossref_primary_10_1111_pbr_13024 crossref_primary_10_1038_s41598_022_20209_4 crossref_primary_10_1038_s41598_024_75541_8 crossref_primary_10_3390_buildings13123056 crossref_primary_10_1016_j_istruc_2024_106162 crossref_primary_10_1038_s41598_024_54358_5 crossref_primary_10_1016_j_fuel_2024_133096 crossref_primary_10_3390_buildings13092316 crossref_primary_10_1016_j_jobe_2022_104878 crossref_primary_10_3390_ma15144852 crossref_primary_10_3390_sym16030275 |
Cites_doi | 10.13189/cea.2013.010306 10.1007/s00366-013-0334-x 10.1080/19648189.2020.1762749 10.4028/www.scientific.net/KEM.744.131 10.1007/s40069-016-0157-4 10.1016/j.conbuildmat.2018.06.046 10.1016/S0008-8846(98)00165-3 10.17159/2413-3051/2012/v23i3a3171 10.1016/S0169-7439(97)00061-0 10.14359/51720292 10.1007/s11356-016-6456-0 10.1016/j.conbuildmat.2016.06.047 10.1109/2.485891 10.1007/BF02478259 10.1007/s11263-015-0822-0 10.1016/S0958-9465(02)00081-1 10.1016/j.buildenv.2006.03.013 10.3390/ma12142291 10.28991/cej-2019-03091243 10.1007/s00521-014-1645-6 10.1109/IJCNN.2004.1380068 10.1016/j.conbuildmat.2016.03.148 10.1016/j.conbuildmat.2020.119465 10.1371/journal.pone.0194151 10.1061/(ASCE)0899-1561(2007)19:10(848) 10.28991/cej-030953 10.1108/03321640510571057 10.1109/ICASSP.2013.6639345 10.1155/2017/3418145 10.28991/cej-030962 10.1109/BigData.2017.8257992 10.1016/j.jclepro.2018.05.158 10.1109/ICASSP.2013.6638947 10.1155/2015/849126 10.5772/intechopen.73530 10.1016/j.conbuildmat.2020.119942 10.1109/ICCET.2010.5486314 10.22115/SCCE.2018.112140.1041 10.1007/978-3-030-00536-8_13 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021. The Author(s). |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-021-94480-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 20 |
ExternalDocumentID | oai_doaj_org_article_0fb64eae79c34c038edcc640e0acf70c PMC8302721 10_1038_s41598_021_94480_2 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c517t-8861f4c5bce88c7954c96af6e10b62ba4e8b9d7f5dceec4a336f9ba03d5c0cc53 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:22:54 EDT 2025 Thu Aug 21 18:19:20 EDT 2025 Sun Aug 24 04:08:19 EDT 2025 Wed Aug 13 06:44:02 EDT 2025 Thu Apr 24 23:03:59 EDT 2025 Tue Jul 01 03:48:56 EDT 2025 Fri Feb 21 02:39:02 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-8861f4c5bce88c7954c96af6e10b62ba4e8b9d7f5dceec4a336f9ba03d5c0cc53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-021-94480-2 |
PMID | 34302020 |
PQID | 2554496816 |
PQPubID | 2041939 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0fb64eae79c34c038edcc640e0acf70c pubmedcentral_primary_oai_pubmedcentral_nih_gov_8302721 proquest_miscellaneous_2555108601 proquest_journals_2554496816 crossref_citationtrail_10_1038_s41598_021_94480_2 crossref_primary_10_1038_s41598_021_94480_2 springer_journals_10_1038_s41598_021_94480_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-23 |
PublicationDateYYYYMMDD | 2021-07-23 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Rezaifar, Hasanzadeh, Gholhaki (CR50) 2016; 123 Zuo, Darwin (CR60) 2000; 97 CR38 CR37 Bestgen, Cetin, Tanyu (CR49) 2016; 23 Feng, Faisal, Zahid (CR48) 2019; 5 CR35 CR33 He, Lau, Liu, Huang, Yang (CR9) 2015; 115 Foroughi-Asl, Dilmaghani, Famili (CR55) 2008; 6 CR31 Jain, Mao, Mohiuddin (CR1) 1996; 3 Abellán-García, Fernández-Gómez, Torres-Castellanos (CR34) 2020 Khademi, Behfarnia (CR36) 2016; 6 Zahid, Shafiq, Jalal (CR43) 2018; 181 CR2 CR6 CR5 CR8 Abellán, Fernández, Torres, Núñez (CR32) 2020; 117 CR7 CR47 CR45 Abbas, Nehdi, Saleem (CR41) 2016 Nikoo, Zarfam, Sayahpour (CR25) 2015; 31 Sadowski, Nikoo (CR24) 2014; 25 Svozil, Kvasnicka, Pospichal (CR20) 1997; 39 Yazici (CR40) 2007; 42 Shafiq, Kumar, Zahid, Tufail (CR42) 2019; 12 Yeh (CR26) 1998; 28 Aitcin (CR39) 2003; 25 CR19 CR18 CR17 CR16 CR15 CR14 CR58 CR13 CR57 CR12 CR56 CR11 CR10 CR54 Zahid, Shafiq, Nuruddin, Nikbakht, Jalal (CR44) 2017; 744 CR53 CR52 CR51 Esfahani, Rangan (CR61) 1998; 95 McCulloch, Pitts (CR4) 1943; 5 Oludolapo, Jimoh, Kholopane (CR3) 2012; 23 CR29 CR27 CR23 CR67 CR22 Gupta (CR28) 2013; 1 CR66 CR21 CR65 CR64 CR63 CR62 Muthupriya, Subramanian, Vishnuram (CR30) 2011; 1 Isfahani, Redaelli, Lollini, Li, Bertolini (CR46) 2016; 2016 Darwin, Zuo, Tholen, Idun (CR59) 1996; 93 94480_CR11 94480_CR10 94480_CR54 94480_CR13 94480_CR57 94480_CR12 94480_CR56 94480_CR6 94480_CR51 94480_CR5 94480_CR8 94480_CR53 94480_CR7 94480_CR52 94480_CR2 J Zuo (94480_CR60) 2000; 97 D Darwin (94480_CR59) 1996; 93 S Gupta (94480_CR28) 2013; 1 WS McCulloch (94480_CR4) 1943; 5 IC Yeh (94480_CR26) 1998; 28 94480_CR47 94480_CR22 94480_CR66 94480_CR21 94480_CR65 94480_CR23 94480_CR67 94480_CR62 94480_CR64 H Yazici (94480_CR40) 2007; 42 X Feng (94480_CR48) 2019; 5 94480_CR63 S Abbas (94480_CR41) 2016 N Shafiq (94480_CR42) 2019; 12 A Foroughi-Asl (94480_CR55) 2008; 6 L Sadowski (94480_CR24) 2014; 25 M Zahid (94480_CR43) 2018; 181 94480_CR19 94480_CR18 94480_CR15 94480_CR14 PC Aitcin (94480_CR39) 2003; 25 94480_CR58 94480_CR17 94480_CR16 94480_CR33 94480_CR35 94480_CR31 M Zahid (94480_CR44) 2017; 744 F Khademi (94480_CR36) 2016; 6 JO Bestgen (94480_CR49) 2016; 23 S He (94480_CR9) 2015; 115 94480_CR29 AK Jain (94480_CR1) 1996; 3 94480_CR27 94480_CR45 OA Oludolapo (94480_CR3) 2012; 23 O Rezaifar (94480_CR50) 2016; 123 MR Esfahani (94480_CR61) 1998; 95 P Muthupriya (94480_CR30) 2011; 1 J Abellán-García (94480_CR34) 2020 J Abellán (94480_CR32) 2020; 117 D Svozil (94480_CR20) 1997; 39 FT Isfahani (94480_CR46) 2016; 2016 M Nikoo (94480_CR25) 2015; 31 94480_CR37 94480_CR38 |
References_xml | – volume: 1 start-page: 96 issue: 3 year: 2013 end-page: 102 ident: CR28 article-title: Using artificial neural network to predict the compressive strength of concrete containing nano-silica publication-title: Civ. Eng. Architect. doi: 10.13189/cea.2013.010306 – ident: CR45 – ident: CR22 – volume: 31 start-page: 113 issue: 1 year: 2015 end-page: 121 ident: CR25 article-title: Determination of compressive strength of concrete using Self Organization Feature Map (SOFM) publication-title: Eng. Comput. doi: 10.1007/s00366-013-0334-x – ident: CR16 – ident: CR51 – ident: CR12 – volume: 2016 start-page: 16 year: 2016 ident: CR46 article-title: Effects of nano-silica on compressive strength and durability properties of concrete with different water to binder ratios publication-title: Adv. Mater. Sci. Eng. – volume: 6 start-page: 24 issue: 1 year: 2008 end-page: 33 ident: CR55 article-title: Bond strength of reinforcement steel in self-compacting concrete publication-title: Int. J. Civ. Eng. – year: 2020 ident: CR34 article-title: Properties prediction of environmentally friendly ultra-high-performance concrete using artificial neural networks publication-title: Eur. J. Environ. Civ. Eng. doi: 10.1080/19648189.2020.1762749 – ident: CR35 – ident: CR29 – ident: CR54 – ident: CR8 – ident: CR58 – volume: 744 start-page: 131 year: 2017 end-page: 135 ident: CR44 article-title: Effect of partial replacement of fly ash by metakaolin on strength development of fly ash based geopolymer mortar publication-title: Key Eng. Mater. doi: 10.4028/www.scientific.net/KEM.744.131 – ident: CR21 – year: 2016 ident: CR41 article-title: Ultra-high performance concrete: Mechanical performance, durability, sustainability and implementation challenges publication-title: Int. J. Concr. Struct. Mater. doi: 10.1007/s40069-016-0157-4 – ident: CR19 – volume: 181 start-page: 227 year: 2018 end-page: 237 ident: CR43 article-title: Investigating the effects of solarcure curing method on the compressive strength, microstructure, and polymeric reaction of fly ash based geopolymer publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.06.046 – volume: 28 start-page: 1797 issue: 12 year: 1998 end-page: 1808 ident: CR26 article-title: Modeling of strength of high performance concrete using artificial neural networks publication-title: Cem. Concr. Res. doi: 10.1016/S0008-8846(98)00165-3 – volume: 23 start-page: 40 issue: 3 year: 2012 end-page: 46 ident: CR3 article-title: Comparing performance of MLP and RBF neural network models for predicting South Africa's energy consumption publication-title: J. Energy S. Afr. doi: 10.17159/2413-3051/2012/v23i3a3171 – ident: CR67 – ident: CR15 – volume: 39 start-page: 43 issue: 1 year: 1997 end-page: 62 ident: CR20 article-title: Introduction to multi-layer feed-forward neural networks publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(97)00061-0 – ident: CR11 – ident: CR57 – ident: CR5 – ident: CR64 – volume: 117 start-page: 243 year: 2020 end-page: 254 ident: CR32 article-title: Statistical optimization of ultra-high-performance glass concrete publication-title: ACI Mater. J. doi: 10.14359/51720292 – volume: 23 start-page: 12983 year: 2016 end-page: 13002 ident: CR49 article-title: Effects of extraction methods and factors on leaching of metals from recycled concrete aggregates publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-016-6456-0 – volume: 6 start-page: 423 issue: 3 year: 2016 end-page: 432 ident: CR36 article-title: Evaluation of concrete compressive strength using artificial neural network and multiple linear regression models publication-title: Int. J. Optim. Civ. Eng. – volume: 123 start-page: 59 year: 2016 end-page: 68 ident: CR50 article-title: Concrete made with hybrid blends of crumb rubber and metakaolin: Optimization using response surface method publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.06.047 – ident: CR18 – ident: CR66 – ident: CR47 – ident: CR14 – ident: CR2 – ident: CR37 – ident: CR53 – ident: CR10 – ident: CR33 – ident: CR6 – ident: CR56 – volume: 3 start-page: 31 year: 1996 end-page: 44 ident: CR1 article-title: Artificial neural networks: A tutorial publication-title: Computer doi: 10.1109/2.485891 – volume: 5 start-page: 115 year: 1943 end-page: 133 ident: CR4 article-title: A logical calculus of ideas immanent in nervous activity publication-title: Bull. Math. Biophys. doi: 10.1007/BF02478259 – ident: CR63 – volume: 93 start-page: 347 issue: 3 year: 1996 end-page: 359 ident: CR59 article-title: Development length criteria for conventional and high relative rib area reinforcing bars publication-title: ACI Struct. J. – ident: CR27 – ident: CR23 – volume: 115 start-page: 330 issue: 3 year: 2015 end-page: 344 ident: CR9 article-title: Super cnn: A super pixelwise convolutional neural network for salient object detection publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0822-0 – volume: 95 start-page: 96 issue: 2 year: 1998 end-page: 106 ident: CR61 article-title: Local bond strength of reinforcing bars in normal strength and high-strength concrete (HSC) publication-title: ACI Struct. J. – volume: 25 start-page: 409 issue: 4–5 year: 2003 end-page: 420 ident: CR39 article-title: The durability characteristics of high performance concrete: a review publication-title: Cem. Concr. Compos. doi: 10.1016/S0958-9465(02)00081-1 – ident: CR65 – volume: 42 start-page: 2083 issue: 5 year: 2007 end-page: 2089 ident: CR40 article-title: The effect of curing conditions on compressive strength of ultra high strength concrete with high volume mineral admixtures publication-title: Build Environ. doi: 10.1016/j.buildenv.2006.03.013 – ident: CR38 – ident: CR52 – ident: CR17 – ident: CR31 – volume: 97 start-page: 630 issue: 65 year: 2000 end-page: 641 ident: CR60 article-title: Splice strength of conventional and high relative rib area bars in normal and high-strength concrete publication-title: ACI Struct. J. – ident: CR13 – volume: 12 start-page: 2291 year: 2019 ident: CR42 article-title: Effects of modified metakaolin using nano-silica on the mechanical properties and durability of concrete publication-title: Materials doi: 10.3390/ma12142291 – volume: 5 start-page: 268 year: 2019 end-page: 283 ident: CR48 article-title: Experimental investigation and statistical modeling of frp confined ruc using response surface methodology publication-title: Civ. Eng. J. doi: 10.28991/cej-2019-03091243 – ident: CR7 – volume: 25 start-page: 1627 issue: 7–8 year: 2014 end-page: 1638 ident: CR24 article-title: Corrosion current density prediction in reinforced concrete by imperialist competitive algorithm publication-title: Neural Comput. Appl. doi: 10.1007/s00521-014-1645-6 – ident: CR62 – volume: 1 start-page: 189 year: 2011 end-page: 209 ident: CR30 article-title: Prediction of compressive strength and durability of high performance concrete by artificial neural network publication-title: Int. J. Optim. Civ. Eng. – ident: 94480_CR22 doi: 10.1109/IJCNN.2004.1380068 – ident: 94480_CR38 doi: 10.1016/j.conbuildmat.2016.03.148 – ident: 94480_CR12 – ident: 94480_CR33 doi: 10.1016/j.conbuildmat.2020.119465 – volume: 3 start-page: 31 year: 1996 ident: 94480_CR1 publication-title: Computer doi: 10.1109/2.485891 – ident: 94480_CR16 doi: 10.1371/journal.pone.0194151 – volume: 744 start-page: 131 year: 2017 ident: 94480_CR44 publication-title: Key Eng. Mater. doi: 10.4028/www.scientific.net/KEM.744.131 – ident: 94480_CR64 – ident: 94480_CR7 – ident: 94480_CR37 doi: 10.1061/(ASCE)0899-1561(2007)19:10(848) – volume: 25 start-page: 1627 issue: 7–8 year: 2014 ident: 94480_CR24 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-014-1645-6 – ident: 94480_CR52 – ident: 94480_CR19 – volume: 5 start-page: 115 year: 1943 ident: 94480_CR4 publication-title: Bull. Math. Biophys. doi: 10.1007/BF02478259 – ident: 94480_CR11 – ident: 94480_CR47 doi: 10.28991/cej-030953 – ident: 94480_CR56 – ident: 94480_CR2 doi: 10.1108/03321640510571057 – volume: 181 start-page: 227 year: 2018 ident: 94480_CR43 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.06.046 – ident: 94480_CR29 – volume: 6 start-page: 24 issue: 1 year: 2008 ident: 94480_CR55 publication-title: Int. J. Civ. Eng. – volume: 97 start-page: 630 issue: 65 year: 2000 ident: 94480_CR60 publication-title: ACI Struct. J. – ident: 94480_CR63 – ident: 94480_CR21 – volume: 93 start-page: 347 issue: 3 year: 1996 ident: 94480_CR59 publication-title: ACI Struct. J. – volume: 6 start-page: 423 issue: 3 year: 2016 ident: 94480_CR36 publication-title: Int. J. Optim. Civ. Eng. – ident: 94480_CR67 doi: 10.1109/ICASSP.2013.6639345 – volume: 42 start-page: 2083 issue: 5 year: 2007 ident: 94480_CR40 publication-title: Build Environ. doi: 10.1016/j.buildenv.2006.03.013 – ident: 94480_CR53 – ident: 94480_CR23 doi: 10.1155/2017/3418145 – ident: 94480_CR31 doi: 10.28991/cej-030962 – ident: 94480_CR14 – volume: 31 start-page: 113 issue: 1 year: 2015 ident: 94480_CR25 publication-title: Eng. Comput. doi: 10.1007/s00366-013-0334-x – ident: 94480_CR10 – ident: 94480_CR6 doi: 10.1109/BigData.2017.8257992 – ident: 94480_CR57 – ident: 94480_CR45 doi: 10.1016/j.jclepro.2018.05.158 – volume: 95 start-page: 96 issue: 2 year: 1998 ident: 94480_CR61 publication-title: ACI Struct. J. – ident: 94480_CR66 doi: 10.1109/ICASSP.2013.6638947 – volume: 115 start-page: 330 issue: 3 year: 2015 ident: 94480_CR9 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0822-0 – volume: 5 start-page: 268 year: 2019 ident: 94480_CR48 publication-title: Civ. Eng. J. doi: 10.28991/cej-2019-03091243 – ident: 94480_CR62 – ident: 94480_CR5 – ident: 94480_CR27 doi: 10.1155/2015/849126 – volume: 39 start-page: 43 issue: 1 year: 1997 ident: 94480_CR20 publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(97)00061-0 – volume: 123 start-page: 59 year: 2016 ident: 94480_CR50 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.06.047 – volume: 23 start-page: 40 issue: 3 year: 2012 ident: 94480_CR3 publication-title: J. Energy S. Afr. doi: 10.17159/2413-3051/2012/v23i3a3171 – ident: 94480_CR18 doi: 10.5772/intechopen.73530 – ident: 94480_CR51 doi: 10.1016/j.conbuildmat.2020.119942 – year: 2020 ident: 94480_CR34 publication-title: Eur. J. Environ. Civ. Eng. doi: 10.1080/19648189.2020.1762749 – volume: 28 start-page: 1797 issue: 12 year: 1998 ident: 94480_CR26 publication-title: Cem. Concr. Res. doi: 10.1016/S0008-8846(98)00165-3 – ident: 94480_CR54 – ident: 94480_CR13 – volume: 1 start-page: 96 issue: 3 year: 2013 ident: 94480_CR28 publication-title: Civ. Eng. Architect. doi: 10.13189/cea.2013.010306 – volume: 12 start-page: 2291 year: 2019 ident: 94480_CR42 publication-title: Materials doi: 10.3390/ma12142291 – ident: 94480_CR58 – ident: 94480_CR15 doi: 10.1109/ICCET.2010.5486314 – volume: 1 start-page: 189 year: 2011 ident: 94480_CR30 publication-title: Int. J. Optim. Civ. Eng. – volume: 25 start-page: 409 issue: 4–5 year: 2003 ident: 94480_CR39 publication-title: Cem. Concr. Compos. doi: 10.1016/S0958-9465(02)00081-1 – volume: 23 start-page: 12983 year: 2016 ident: 94480_CR49 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-016-6456-0 – year: 2016 ident: 94480_CR41 publication-title: Int. J. Concr. Struct. Mater. doi: 10.1007/s40069-016-0157-4 – ident: 94480_CR65 – ident: 94480_CR35 doi: 10.22115/SCCE.2018.112140.1041 – volume: 117 start-page: 243 year: 2020 ident: 94480_CR32 publication-title: ACI Mater. J. doi: 10.14359/51720292 – volume: 2016 start-page: 16 year: 2016 ident: 94480_CR46 publication-title: Adv. Mater. Sci. Eng. – ident: 94480_CR17 doi: 10.1007/978-3-030-00536-8_13 – ident: 94480_CR8 |
SSID | ssj0000529419 |
Score | 2.4698987 |
Snippet | We investigated the use of an Artificial Neural Network (ANN) to predict the Local Bond Stress (LBS) between Ultra-High-Performance Concrete (UHPC) and steel... Abstract We investigated the use of an Artificial Neural Network (ANN) to predict the Local Bond Stress (LBS) between Ultra-High-Performance Concrete (UHPC)... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 15061 |
SubjectTerms | 639/166/986 639/705/1041 639/705/1042 Algorithms Humanities and Social Sciences multidisciplinary Neural networks Regression analysis Science Science (multidisciplinary) Steel |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yIHgRn9i6SgRv2my68-zjurgMguLBgb2FPCoqSI87j4M_wX9tJemZ3V5QL54aOpV0HlVdVVTlK0JeddFJiCiASXN0UAJ0rYsutTxxIyCy1Kt8G_nDR7VYivcX8uJaqa-cE1bhgevGnbDklQAHeghcBMYNxBCUYMBcSJqF_PdFnXfNmaqo3v0gumG6JYO9TjaoqfJtspyRgC4Ja_uZJiqA_TMr82aO5I1AadE_5_fI3clwpKd1wvfJLRgfkNu1lOTPh-TX6VUkmq4SzQur4BA0Q1aWR0n43lA3RrrPI6TZynRruoYvNSEWO4-0KDjqV0hY75JQuNwdhl4uPp2VQdZQYFcDzhfpALALusmPyPL83eezRTuVWWiD7PS2NUZ1SQTpAxgT9CBFGJRLCjrmVe-dAOOHqJPEvYAgHOcqDd4xHmVgIUj-mByNqxGeECqN90IktAoVCBWdC55r4xR6RVEkxRrS7bfchgmDPJfC-G5LLJwbW4_J4jHZcky2b8jrQ58fFYHjr9Rv80keKDN6dnmBPGUnnrL_4qmGHO_5wE4ivbHoewkxKNOphrw8NKMw5giLG2G1KzQyl65iXUP0jH9mE5q3jN--FljvjMSG_nhD3uw57erjf17w0_-x4GfkTp8lg-m258fkaLvewXM0trb-RZGr3xwuK44 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9UwEA66IvgiXrHuKhF807Jpc-2TrIvLQVB88MB5C7mugrS7Pec8-BP81ztJL4cuuE-FdpKmmZlmJjP5BqH3lTc8eFDAKCk4KC5UpfEmljRSxYInsRbpNPK372K1Zl83fDNuuG3HtMrpn5h_1L5zaY_8FExfxhqhKvHp6rpMVaNSdHUsoXEfPUjQZUmq5UbOeywpisWqZjwrQ6g63cJ6lc6UpbwEcExIWS_Wowzbv7A1b2dK3gqX5lXo4gl6PJqP-Gzg91N0L7TP0MOhoOTf5-jf2SEejbuIk1wMEBE4AVfmS0773mLTejxlE-Jka5oe9-FySIuFxi3Oyxy2HRAOJ0pwuN7PXa9XP85zJ33I4KsOxgt0IUATcJZfoPXFl5_nq3IstlA6XsldqZSoInPcuqCUkw1nrhEmilARK2prWFC28TJymIvgmKFUxMYaQj13xDlOX6KjtmvDK4S5spaxCLahCEx4Y5ylUhkBvpFnUZACVdOUazcikaeCGH90johTpQc2aWCTzmzSdYE-zG2uBhyOO6k_J07OlAlDO9_o-ks9qqQm0QoWTJCNo8xBR8BmJxgJxLgoiSvQySQHelTsrT6IYYHezY9BJVOcxbSh22cangpYkapAciE_iwEtn7S_f2Vw74THBl55gT5OknZ4-f8_-PXdYz1Gj-ok80SWNT1BR7t-H96AMbWzb7PG3AAdAyGg priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_HHYIv4idWT4ngmxbT5qPp43p4LAuKoAv3FpJ0cgrSanf3wT_h_uubpB9HDxV8KjSTNO3MJDOdmV8IeV00VkKDChgqjg6KhyK3jQ05D1wLaFgoVaxG_vhJrbdicyEvjkg51cKkpP0EaZmW6Sk77N0ON5pYDBYTCtCjYDkuuycRqh1l-2S12nzZzH9WYuxKFPVYIcO4_kPnxS6UwPoXFubt_MhbQdK095zfJ_dGo5Guhmk-IEfQPiR3hmMkfz8iV6ubKDTtAo2vMwBD0AhXmS4p2XtHbdvQKYeQRgvT9rSHyyEZFju3NG1u1HVIONSRUPh1mIferj-fpUF6SJCrHueLdADYBV3kx2R7_uHr2Tofj1jIvSyqfa61KoLw0nnQ2le1FL5WNigomFOlswK0q5sqSPwW4IXlXIXaWcYb6Zn3kj8hx23XwlNCpXZOiIAWoQKhGmu945W2Cj2iRgTFMlJMn9z4EX88HoPxw6Q4ONdmYJNBNpnEJlNm5M3c5-eAvvFP6veRkzNlRM5ON7r-0oySZFhwSoCFqvZceBwI2eyVYMCsDxXzGTmd5MCM6rwz6HcJUStdqIy8mptREWN0xbbQHRKNjMdWsSIj1UJ-FhNatrTfvyVI74jChr54Rt5Oknbz8L-_8LP_I39O7pZRB1iVl_yUHO_7A7xAk2rvXo46dA1MlCC9 priority: 102 providerName: Springer Nature |
Title | Application of artificial neural networks and multiple linear regression on local bond stress equation of UHPC and reinforcing steel bars |
URI | https://link.springer.com/article/10.1038/s41598-021-94480-2 https://www.proquest.com/docview/2554496816 https://www.proquest.com/docview/2555108601 https://pubmed.ncbi.nlm.nih.gov/PMC8302721 https://doaj.org/article/0fb64eae79c34c038edcc640e0acf70c |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBddy2AvY5_MWxc02NvmTbb15Ycx0tASAi1lWyBvQpKlblDs1Ulg_RP2X-8k2yku3WBPBvukOPeRu4vufofQ26zSzFVggF4UkKBYl6W60j4tfCGpq4jPeehGPj3j8yVdrNhqDw3jjnoGru9M7cI8qWV7-eHX1fVnMPhPXcu4_LgGJxQaxUKxAWQbJIWf5APwTCJMNDjtw_0O6zsvaZz1EUDYUwgm8r6P5u5tRr4qQvqP4tDbVZS3jlKjhzp5hB72oSWedrrwGO25-gm63w2bvH6Kfk9vzqpx43HQmQ4-AgdQy3iJJeFrrOsKD5WGOMShusWtu-hKZmFxjaMLxKYBwq7bBLur7W7r5fx8FjdpXQRmtfC-QOccLAFuP0PLk-Nvs3naD2JILcvEJpWSZ55aZqyT0oqSUVty7bnLiOG50dRJU1bCM-CFs1QXBfel0aSomCXWsuI52q-b2r1AmEljKPUQN3JHeaW1NYWQmkPeVFHPSYKygeXK9ijlYVjGpYqn5YVUnZgUiElFMak8Qe92a352GB3_pD4KktxRBnzteKNpL1Rvrop4w6nTTpS2oBY2AjFbTokj2npBbIIOBz1Qg84qyM4oLbnMeILe7B6DuYYzGF27ZhtpWBhuRbIEiZH-jF5o_KT-8T0CfwesNsjYE_R-0LSbD__7F375X-x5hR7kwQSIAPs4RPubduteQ9y1MRN0T6zEBB1Mp4uvC7geHZ-df4G7Mz6bxP8yJtHc_gBdwjBB |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw1KqKEFwqVhFawEhwgqhO7NjOAaFSqKZ0EYeONDfjtSChpJ1FqJ_Az_CNPDvJjKYSvfUUKXl2nLznt_htCL0pnK68gw0YBAUDxfoi106HnAYqmXcklDxmI5-c8tGYfZ1Ukw30d8iFiWGVA09MjNq1Np6R74Lqy1jNZcE_XlzmsWtU9K4OLTQ6sjjyV7_BZJt9OPwM-H1blgdfzvZHed9VILdVIea5lLwIzFbGeimtqCtma64D9wUxvDSaeWlqJ0LlQH5YpinloTaaUFdZYm3sEgEs_w4IXhKNPTERyzOd6DVjRd3n5hAqd2cgH2MOW4yDAEOI5OWa_EttAtZ02-uRmdfcs0nqHTxAW726ivc6-nqINnzzCN3tGlhePUZ_9lb-b9wGHOmwK0mBY6HMdElh5jOsG4eH6EUcdVs9xVN_3oXhwuAGJ7GKTQuAXQYL9peL5dTj0bf9NMnUp2KvFtYLcN7DEDDOn6DxraDhKdps2sY_Q7iSxjAWQBflnnGntTVUSM3BFnMscJKhYvjlyvaVz2MDjl8qeeCpVB2aFKBJJTSpMkPvlmMuurofN0J_iphcQsaa3elGOz1XPQtQJBjOvPaitpRZmAjQbDkjnmgbBLEZ2hnoQPWMZKZWZJ-h18vHwAKiX0c3vl0kmCo2zCJFhsQa_awtaP1J8_NHKiYe67-JEka-Hyht9fL_f_Dzm9f6Ct0bnZ0cq-PD06NtdL-M9E9EXtIdtDmfLvwLUOTm5mXaPRh9v-3t-g9DWWCf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1Jo6gXhBXEVhDCPBE0R1Ysd2HtC0W9UxqCpEpb0FXzcklGy9CO0T-CW-jmMnadVJ7G1PlZJj18m559wQepdalTsLDOgFBQfFuDRRVvmEeiqZs8RnPFQjfx3z0ZR9PsvPttDfrhYmpFV2MjEKalub8I18AKYvYwWXKR_4Ni1icjTcu7xKwgSpEGntxmk0JHLqrn-D-zb_dHIEuH6fZcPj74ejpJ0wkJg8FYtESp56ZnJtnJRGFDkzBVeeu5RonmnFnNSFFT63oEsMU5RyX2hFqM0NMSZMjADxvy2CV9RD2wfH48m31ReeEENjadFW6hAqB3PQlqGiLWRFgFtEkmxDG8ahARuW7s08zRvB2qgDh4_Qw9Z4xfsNtT1GW656gu414yyvn6I_--toOK49DlTZNKjAoW1m_IlJ53OsKou7XEYcLF01wzN33iTlwuIKRyWLdQ2ATT0LdlfL1dbT0eQwbjJzsfWrgfMCnHOwBFz1Z2h6J4h4jnpVXbkXCOdSa8Y8WKbcMW6VMpoKqTh4ZpZ5Tvoo7V55ado-6GEcx68yxuOpLBs0lYCmMqKpzProw2rNZdMF5Fbog4DJFWTo4B0v1LPzshUIJfGaM6ecKAxlBjYCNBvOiCPKeEFMH-10dFC2YmVerpmgj96uboNACFEeVbl6GWHyMD6LpH0kNuhn40Cbd6qfF7G1eOgGJzJY-bGjtPWf__-BX95-1jfoPrBq-eVkfPoKPcgC-RORZHQH9RazpXsNVt1C77bsg9GPu-bYf2q7Zjo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+artificial+neural+networks+and+multiple+linear+regression+on+local+bond+stress+equation+of+UHPC+and+reinforcing+steel+bars&rft.jtitle=Scientific+reports&rft.au=Amini+Pishro%2C+Ahad&rft.au=Zhang%2C+Shiquan&rft.au=Huang%2C+Dengshi&rft.au=Xiong%2C+Feng&rft.date=2021-07-23&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-94480-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_021_94480_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |