A new human-based metahurestic optimization method based on mimicking cooking training
Metaheuristic algorithms have a wide range of applications in handling optimization problems. In this study, a new metaheuristic algorithm, called the chef-based optimization algorithm (CBOA), is developed. The fundamental inspiration employed in CBOA design is the process of learning cooking skills...
Saved in:
Published in | Scientific reports Vol. 12; no. 1; pp. 14861 - 24 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.09.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metaheuristic algorithms have a wide range of applications in handling optimization problems. In this study, a new metaheuristic algorithm, called the chef-based optimization algorithm (CBOA), is developed. The fundamental inspiration employed in CBOA design is the process of learning cooking skills in training courses. The stages of the cooking training process in various phases are mathematically modeled with the aim of increasing the ability of global search in exploration and the ability of local search in exploitation. A collection of 52 standard objective functions is utilized to assess the CBOA’s performance in addressing optimization issues. The optimization results show that the CBOA is capable of providing acceptable solutions by creating a balance between exploration and exploitation and is highly efficient in the treatment of optimization problems. In addition, the CBOA’s effectiveness in dealing with real-world applications is tested on four engineering problems. Twelve well-known metaheuristic algorithms have been selected for comparison with the CBOA. The simulation results show that CBOA performs much better than competing algorithms and is more effective in solving optimization problems. |
---|---|
AbstractList | Metaheuristic algorithms have a wide range of applications in handling optimization problems. In this study, a new metaheuristic algorithm, called the chef-based optimization algorithm (CBOA), is developed. The fundamental inspiration employed in CBOA design is the process of learning cooking skills in training courses. The stages of the cooking training process in various phases are mathematically modeled with the aim of increasing the ability of global search in exploration and the ability of local search in exploitation. A collection of 52 standard objective functions is utilized to assess the CBOA’s performance in addressing optimization issues. The optimization results show that the CBOA is capable of providing acceptable solutions by creating a balance between exploration and exploitation and is highly efficient in the treatment of optimization problems. In addition, the CBOA’s effectiveness in dealing with real-world applications is tested on four engineering problems. Twelve well-known metaheuristic algorithms have been selected for comparison with the CBOA. The simulation results show that CBOA performs much better than competing algorithms and is more effective in solving optimization problems. Abstract Metaheuristic algorithms have a wide range of applications in handling optimization problems. In this study, a new metaheuristic algorithm, called the chef-based optimization algorithm (CBOA), is developed. The fundamental inspiration employed in CBOA design is the process of learning cooking skills in training courses. The stages of the cooking training process in various phases are mathematically modeled with the aim of increasing the ability of global search in exploration and the ability of local search in exploitation. A collection of 52 standard objective functions is utilized to assess the CBOA’s performance in addressing optimization issues. The optimization results show that the CBOA is capable of providing acceptable solutions by creating a balance between exploration and exploitation and is highly efficient in the treatment of optimization problems. In addition, the CBOA’s effectiveness in dealing with real-world applications is tested on four engineering problems. Twelve well-known metaheuristic algorithms have been selected for comparison with the CBOA. The simulation results show that CBOA performs much better than competing algorithms and is more effective in solving optimization problems. Metaheuristic algorithms have a wide range of applications in handling optimization problems. In this study, a new metaheuristic algorithm, called the chef-based optimization algorithm (CBOA), is developed. The fundamental inspiration employed in CBOA design is the process of learning cooking skills in training courses. The stages of the cooking training process in various phases are mathematically modeled with the aim of increasing the ability of global search in exploration and the ability of local search in exploitation. A collection of 52 standard objective functions is utilized to assess the CBOA's performance in addressing optimization issues. The optimization results show that the CBOA is capable of providing acceptable solutions by creating a balance between exploration and exploitation and is highly efficient in the treatment of optimization problems. In addition, the CBOA's effectiveness in dealing with real-world applications is tested on four engineering problems. Twelve well-known metaheuristic algorithms have been selected for comparison with the CBOA. The simulation results show that CBOA performs much better than competing algorithms and is more effective in solving optimization problems.Metaheuristic algorithms have a wide range of applications in handling optimization problems. In this study, a new metaheuristic algorithm, called the chef-based optimization algorithm (CBOA), is developed. The fundamental inspiration employed in CBOA design is the process of learning cooking skills in training courses. The stages of the cooking training process in various phases are mathematically modeled with the aim of increasing the ability of global search in exploration and the ability of local search in exploitation. A collection of 52 standard objective functions is utilized to assess the CBOA's performance in addressing optimization issues. The optimization results show that the CBOA is capable of providing acceptable solutions by creating a balance between exploration and exploitation and is highly efficient in the treatment of optimization problems. In addition, the CBOA's effectiveness in dealing with real-world applications is tested on four engineering problems. Twelve well-known metaheuristic algorithms have been selected for comparison with the CBOA. The simulation results show that CBOA performs much better than competing algorithms and is more effective in solving optimization problems. |
ArticleNumber | 14861 |
Author | Trojovská, Eva Dehghani, Mohammad |
Author_xml | – sequence: 1 givenname: Eva surname: Trojovská fullname: Trojovská, Eva email: eva.trojovska@uhk.cz organization: Department of Mathematics, Faculty of Science, University of Hradec Králové – sequence: 2 givenname: Mohammad surname: Dehghani fullname: Dehghani, Mohammad organization: Department of Mathematics, Faculty of Science, University of Hradec Králové |
BookMark | eNp9Uk1v1DAQtVARLaV_gFMkLlwCHn_E9gWpqvioVIkLcLUc29n1ktiLnRTBr8e7qYD2UB88Y897zzPjeY5OYooeoZeA3wCm8m1hwJVsMSEtKAq0JU_QGcGMt4QScvKff4ouStnhujhRDNQzdEo7zDHr5Bn6dtlE_7PZLpOJbW-Kd83kZ7Ndsi9zsE3az2EKv80cUjxEtsk1K-xwriH7PcRNY1M62jmbEKvzAj0dzFj8xZ09R18_vP9y9am9-fzx-uryprUcxNxK0RMwIIB3ynGOxeCcdaxTQLwjbOjwYAYMkvtBUW-6rm7S9IJUz3BF6Tm6XnVdMju9z2Ey-ZdOJujjRcobbXKtY_RaKquwkX0nOsKEcxKIAA89sbjvucBV692qtV_6yTvrY61mvCd6PxLDVm_SrVaMCtzJKvD6TiCnH0vtn55CsX4cTfRpKZoIrAQDwFChrx5Ad2nJsbbqgJJSYQGsosiKsjmVkv3wNxnA-jAFep0CXadAH6dAk0qSD0g2zMf_O3zO-DiVrtRS34kbn_9l9QjrDxjUxt0 |
CitedBy_id | crossref_primary_10_1016_j_eswa_2023_121470 crossref_primary_10_1016_j_bspc_2024_106177 crossref_primary_10_1016_j_renene_2024_120480 crossref_primary_10_3390_su142013569 crossref_primary_10_1016_j_cie_2024_110114 crossref_primary_10_1016_j_jvcir_2023_103982 crossref_primary_10_1016_j_eswa_2024_123734 crossref_primary_10_1109_ACCESS_2024_3427632 crossref_primary_10_1007_s11831_023_09912_1 crossref_primary_10_3390_diagnostics12112892 crossref_primary_10_1007_s11709_024_1062_6 crossref_primary_10_1007_s11831_023_09975_0 crossref_primary_10_1016_j_chaos_2024_115636 crossref_primary_10_3390_biomimetics9010008 crossref_primary_10_1007_s11760_023_02732_7 crossref_primary_10_1109_ACCESS_2023_3327732 crossref_primary_10_1016_j_cma_2024_117251 crossref_primary_10_1007_s00477_025_02955_9 crossref_primary_10_1016_j_jhydrol_2024_131347 crossref_primary_10_1016_j_bspc_2024_106269 crossref_primary_10_3390_app15020603 crossref_primary_10_1016_j_jpowsour_2024_235615 crossref_primary_10_1038_s41598_023_37537_8 crossref_primary_10_1016_j_compbiomed_2023_107212 crossref_primary_10_3390_biomimetics8060470 crossref_primary_10_1007_s10462_024_10767_6 crossref_primary_10_1007_s10462_024_10747_w crossref_primary_10_1007_s00262_024_03843_x crossref_primary_10_1016_j_cma_2025_117825 crossref_primary_10_1016_j_advengsoft_2024_103665 crossref_primary_10_1016_j_bspc_2023_105185 crossref_primary_10_3390_biomimetics8060508 crossref_primary_10_1038_s41598_023_41545_z crossref_primary_10_1007_s11227_023_05331_y crossref_primary_10_3390_biomimetics8050386 crossref_primary_10_3390_biomimetics9020065 crossref_primary_10_1016_j_matcom_2023_04_027 crossref_primary_10_1038_s41598_024_54910_3 crossref_primary_10_3390_math12101506 crossref_primary_10_1007_s10462_023_10470_y crossref_primary_10_1007_s13369_024_08825_w crossref_primary_10_1080_15325008_2023_2239226 crossref_primary_10_1109_ACCESS_2024_3466170 crossref_primary_10_1016_j_eswa_2025_127206 crossref_primary_10_1007_s11042_024_18810_y crossref_primary_10_3390_buildings14123753 crossref_primary_10_1007_s11220_024_00512_2 crossref_primary_10_1007_s10586_024_04545_w crossref_primary_10_1038_s41598_023_48462_1 crossref_primary_10_32604_cmes_2023_025908 crossref_primary_10_1186_s40537_024_00917_6 crossref_primary_10_1016_j_knosys_2023_111081 crossref_primary_10_3390_en16031185 crossref_primary_10_3390_biomimetics9030137 |
Cites_doi | 10.1016/j.eswa.2020.113377 10.1126/science.220.4598.671 10.1016/j.eswa.2022.116924 10.1109/3477.484436 10.1016/j.engappai.2020.103541 10.1023/A:1008202821328 10.1115/1.2919393 10.1016/j.ins.2009.03.004 10.1016/j.asoc.2017.11.043 10.7717/peerj-cs.828 10.1109/ACCESS.2022.3153493 10.1016/j.compstruc.2012.07.010 10.1016/j.cad.2010.12.015 10.3390/app10175791 10.1016/j.cie.2020.107050 10.1109/4235.585893 10.1016/j.eswa.2021.116158 10.1016/j.cie.2021.107408 10.1016/j.advengsoft.2016.01.008 10.32604/cmc.2022.023682 10.1007/s12652-022-03765-5 10.1016/j.knosys.2021.106926 10.2307/3001968 10.3390/app10186173 10.1109/TEVC.2003.814902 10.1023/A:1022602019183 10.1007/978-3-642-31187-1 10.1016/j.knosys.2022.108320 10.1016/j.advengsoft.2013.12.007 10.3390/s21134567 10.1007/978-3-540-72950-1_77 10.1007/11579427_66 10.1109/ICNN.1995.488968 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-022-19313-2 |
DatabaseName | Open Access Journals from Springer Nature CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 24 |
ExternalDocumentID | oai_doaj_org_article_89c90a8b676247dd81271e1b2c0bb570 PMC9437068 10_1038_s41598_022_19313_2 |
GrantInformation_xml | – fundername: Univerzita Hradec Králové grantid: 2104/2022 funderid: http://dx.doi.org/10.13039/100018512 – fundername: ; grantid: 2104/2022 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c517t-87b21a171569d5507fddcd46912ed24f60faf0185ef93ea663ea8ab72663a5933 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:25:32 EDT 2025 Thu Aug 21 14:07:52 EDT 2025 Fri Jul 11 16:40:41 EDT 2025 Wed Aug 13 04:44:49 EDT 2025 Tue Jul 01 00:54:57 EDT 2025 Thu Apr 24 22:50:45 EDT 2025 Fri Feb 21 02:39:01 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-87b21a171569d5507fddcd46912ed24f60faf0185ef93ea663ea8ab72663a5933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-022-19313-2 |
PMID | 36050468 |
PQID | 2708890714 |
PQPubID | 2041939 |
PageCount | 24 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_89c90a8b676247dd81271e1b2c0bb570 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9437068 proquest_miscellaneous_2709741101 proquest_journals_2708890714 crossref_primary_10_1038_s41598_022_19313_2 crossref_citationtrail_10_1038_s41598_022_19313_2 springer_journals_10_1038_s41598_022_19313_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Gonzalez, López-Espín, Aparicio, Talbi (CR5) 2022; 8 Kirkpatrick, Gelatt, Vecchi (CR20) 1983; 220 Gandomi, Yang (CR35) 2011 Dehghani (CR28) 2020; 10 Abualigah, Elaziz, Sumari, Geem, Gandomi (CR17) 2022; 191 Rao, Savsani, Vakharia (CR27) 2011; 43 Goldberg, Holland (CR6) 1988; 3 CR36 Hashim, Hussien (CR13) 2022; 242 Zeidabadi, Dehghani (CR26) 2022; 15 Rashedi, Nezamabadi-Pour, Saryazdi (CR21) 2009; 179 Storn, Price (CR19) 1997; 11 Wilcoxon (CR32) 1945; 1 Abdollahzadeh, Gharehchopogh, Mirjalili (CR12) 2021; 158 Eskandar, Sadollah, Bahreininejad, Hamdi (CR23) 2012; 110 Dehghani, Trojovský (CR29) 2021; 21 Kaur, Awasthi, Sangal, Dhiman (CR11) 2020; 90 Pira (CR30) 2022 Moghdani, Salimifard (CR25) 2018; 64 Ayyarao (CR31) 2022; 10 Wolpert, Macready (CR10) 1997; 1 Ray, Liew (CR24) 2003; 7 Faramarzi, Heidarinejad, Mirjalili, Gandomi (CR18) 2020; 152 CR7 CR9 Kannan, Kramer (CR34) 1994; 116 Mirjalili, Lewis (CR16) 2016; 95 Cavazzuti (CR4) 2013 Dehghani (CR22) 2020; 10 Awad, Ali, Liang, Qu, Suganthan (CR33) 2016 Mohammadi-Balani, Nayeri, Azar, Taghizadeh-Yazdi (CR3) 2021; 152 Chopra, Ansari (CR15) 2022; 198 Zeidabadi (CR2) 2022; 71 Dorigo, Maniezzo, Colorni (CR8) 1996; 26 Dhiman (CR1) 2021; 222 Mirjalili, Mirjalili, Lewis (CR14) 2014; 69 F-A Zeidabadi (19313_CR2) 2022; 71 L Abualigah (19313_CR17) 2022; 191 S Mirjalili (19313_CR14) 2014; 69 A Mohammadi-Balani (19313_CR3) 2021; 152 S Mirjalili (19313_CR16) 2016; 95 G Dhiman (19313_CR1) 2021; 222 S Kaur (19313_CR11) 2020; 90 E Rashedi (19313_CR21) 2009; 179 T Ray (19313_CR24) 2003; 7 S Kirkpatrick (19313_CR20) 1983; 220 RV Rao (19313_CR27) 2011; 43 DH Wolpert (19313_CR10) 1997; 1 A Faramarzi (19313_CR18) 2020; 152 N Chopra (19313_CR15) 2022; 198 FA Zeidabadi (19313_CR26) 2022; 15 M Dehghani (19313_CR29) 2021; 21 M Dorigo (19313_CR8) 1996; 26 B Abdollahzadeh (19313_CR12) 2021; 158 M Gonzalez (19313_CR5) 2022; 8 19313_CR7 M Dehghani (19313_CR22) 2020; 10 DE Goldberg (19313_CR6) 1988; 3 R Storn (19313_CR19) 1997; 11 19313_CR9 E Pira (19313_CR30) 2022 B Kannan (19313_CR34) 1994; 116 M Cavazzuti (19313_CR4) 2013 TL Ayyarao (19313_CR31) 2022; 10 F Wilcoxon (19313_CR32) 1945; 1 FA Hashim (19313_CR13) 2022; 242 M Dehghani (19313_CR28) 2020; 10 N Awad (19313_CR33) 2016 H Eskandar (19313_CR23) 2012; 110 AH Gandomi (19313_CR35) 2011 R Moghdani (19313_CR25) 2018; 64 19313_CR36 |
References_xml | – volume: 152 start-page: 113377 year: 2020 ident: CR18 article-title: Marine predators algorithm: A nature-inspired metaheuristic publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113377 – volume: 220 start-page: 671 year: 1983 end-page: 680 ident: CR20 article-title: Optimization by simulated annealing publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 198 start-page: 116924 year: 2022 ident: CR15 article-title: Golden jackal optimization: A novel nature-inspired optimizer for engineering applications publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.116924 – volume: 26 start-page: 29 year: 1996 end-page: 41 ident: CR8 article-title: Ant system: Optimization by a colony of cooperating agents publication-title: IEEE Trans. Syst. Man Cybern. B (Cybern.) doi: 10.1109/3477.484436 – volume: 90 start-page: 103541 year: 2020 ident: CR11 article-title: Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103541 – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: CR19 article-title: Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – volume: 116 start-page: 405 year: 1994 end-page: 411 ident: CR34 article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design publication-title: J. Mech. Des. doi: 10.1115/1.2919393 – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: CR21 article-title: A gravitational search algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.03.004 – volume: 64 start-page: 161 year: 2018 end-page: 185 ident: CR25 article-title: Volleyball premier league algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.11.043 – volume: 8 start-page: e828 year: 2022 ident: CR5 article-title: A hyper-matheuristic approach for solving mixed integer linear optimization models in the context of data envelopment analysis publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.828 – volume: 10 start-page: 25073 year: 2022 end-page: 25105 ident: CR31 article-title: War strategy optimization algorithm: A new effective metaheuristic algorithm for global optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3153493 – volume: 110 start-page: 151 year: 2012 end-page: 166 ident: CR23 article-title: Water cycle algorithm—A novel metaheuristic optimization method for solving constrained engineering optimization problems publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2012.07.010 – volume: 43 start-page: 469 year: 2011 end-page: 492 ident: CR27 article-title: Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2010.12.015 – year: 2016 ident: CR33 publication-title: Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization – volume: 15 start-page: 273 year: 2022 end-page: 281 ident: CR26 article-title: POA: Puzzle optimization algorithm publication-title: Int. J. Intell. Eng. Syst. – volume: 10 start-page: 5791 year: 2020 ident: CR28 article-title: A new doctor and patient optimization algorithm: An application to energy commitment problem publication-title: Appl. Sci. doi: 10.3390/app10175791 – volume: 152 start-page: 107050 year: 2021 ident: CR3 article-title: Golden eagle optimizer: A nature-inspired metaheuristic algorithm publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.107050 – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: CR10 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 191 start-page: 116158 year: 2022 ident: CR17 article-title: Reptile search algorithm (rsa): A nature-inspired meta-heuristic optimizer publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116158 – volume: 158 start-page: 107408 year: 2021 ident: CR12 article-title: African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107408 – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: CR16 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 71 start-page: 4237 year: 2022 end-page: 4256 ident: CR2 article-title: SSABA: Search step adjustment based algorithm publication-title: Comput. Mater. Continua doi: 10.32604/cmc.2022.023682 – ident: CR9 – year: 2022 ident: CR30 article-title: City councils evolution: A socio-inspired metaheuristic optimization algorithm publication-title: J. Ambient Intell. Hum. Comput. doi: 10.1007/s12652-022-03765-5 – volume: 222 start-page: 106926 year: 2021 ident: CR1 article-title: SSC: A hybrid nature-inspired meta-heuristic optimization algorithm for engineering applications publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2021.106926 – volume: 1 start-page: 80 year: 1945 end-page: 83 ident: CR32 article-title: Individual comparisons by ranking methods publication-title: Biometr. Bull. doi: 10.2307/3001968 – volume: 10 start-page: 6173 year: 2020 ident: CR22 article-title: A spring search algorithm applied to engineering optimization problems publication-title: Appl. Sci. doi: 10.3390/app10186173 – volume: 7 start-page: 386 year: 2003 end-page: 396 ident: CR24 article-title: Society and civilization: An optimization algorithm based on the simulation of social behavior publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2003.814902 – ident: CR36 – volume: 3 start-page: 95 year: 1988 end-page: 99 ident: CR6 article-title: Genetic algorithms and machine learning publication-title: Mach. Learn. doi: 10.1023/A:1022602019183 – ident: CR7 – start-page: 77 year: 2013 end-page: 102 ident: CR4 publication-title: Optimization Methods: From Theory to Design Scientific and Technological Aspects in Mechanics, Chap. Deterministic Optimization doi: 10.1007/978-3-642-31187-1 – volume: 242 start-page: 108320 year: 2022 ident: CR13 article-title: Snake optimizer: A novel meta-heuristic optimization algorithm publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2022.108320 – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: CR14 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 21 start-page: 4567 year: 2021 ident: CR29 article-title: Teamwork optimization algorithm: A new optimization approach for function minimization/maximization publication-title: Sensors doi: 10.3390/s21134567 – start-page: 259 year: 2011 end-page: 281 ident: CR35 publication-title: Computational Optimization, Methods and Algorithms. Studies in Computational Intelligence, Chap. Benchmark Problems in Structural Optimization – volume: 26 start-page: 29 year: 1996 ident: 19313_CR8 publication-title: IEEE Trans. Syst. Man Cybern. B (Cybern.) doi: 10.1109/3477.484436 – volume: 152 start-page: 107050 year: 2021 ident: 19313_CR3 publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.107050 – volume: 71 start-page: 4237 year: 2022 ident: 19313_CR2 publication-title: Comput. Mater. Continua doi: 10.32604/cmc.2022.023682 – volume: 64 start-page: 161 year: 2018 ident: 19313_CR25 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.11.043 – ident: 19313_CR9 doi: 10.1007/978-3-540-72950-1_77 – volume: 15 start-page: 273 year: 2022 ident: 19313_CR26 publication-title: Int. J. Intell. Eng. Syst. – volume: 220 start-page: 671 year: 1983 ident: 19313_CR20 publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 110 start-page: 151 year: 2012 ident: 19313_CR23 publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2012.07.010 – volume: 7 start-page: 386 year: 2003 ident: 19313_CR24 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2003.814902 – volume: 90 start-page: 103541 year: 2020 ident: 19313_CR11 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103541 – volume: 179 start-page: 2232 year: 2009 ident: 19313_CR21 publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.03.004 – volume: 21 start-page: 4567 year: 2021 ident: 19313_CR29 publication-title: Sensors doi: 10.3390/s21134567 – volume: 95 start-page: 51 year: 2016 ident: 19313_CR16 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – year: 2022 ident: 19313_CR30 publication-title: J. Ambient Intell. Hum. Comput. doi: 10.1007/s12652-022-03765-5 – volume: 116 start-page: 405 year: 1994 ident: 19313_CR34 publication-title: J. Mech. Des. doi: 10.1115/1.2919393 – ident: 19313_CR36 doi: 10.1007/11579427_66 – ident: 19313_CR7 doi: 10.1109/ICNN.1995.488968 – volume: 1 start-page: 80 year: 1945 ident: 19313_CR32 publication-title: Biometr. Bull. doi: 10.2307/3001968 – volume: 158 start-page: 107408 year: 2021 ident: 19313_CR12 publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107408 – volume: 198 start-page: 116924 year: 2022 ident: 19313_CR15 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.116924 – volume-title: Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization year: 2016 ident: 19313_CR33 – volume: 11 start-page: 341 year: 1997 ident: 19313_CR19 publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – volume: 8 start-page: e828 year: 2022 ident: 19313_CR5 publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.828 – volume: 10 start-page: 6173 year: 2020 ident: 19313_CR22 publication-title: Appl. Sci. doi: 10.3390/app10186173 – start-page: 259 volume-title: Computational Optimization, Methods and Algorithms. Studies in Computational Intelligence, Chap. Benchmark Problems in Structural Optimization year: 2011 ident: 19313_CR35 – volume: 10 start-page: 5791 year: 2020 ident: 19313_CR28 publication-title: Appl. Sci. doi: 10.3390/app10175791 – volume: 69 start-page: 46 year: 2014 ident: 19313_CR14 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 1 start-page: 67 year: 1997 ident: 19313_CR10 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 10 start-page: 25073 year: 2022 ident: 19313_CR31 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3153493 – volume: 152 start-page: 113377 year: 2020 ident: 19313_CR18 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113377 – start-page: 77 volume-title: Optimization Methods: From Theory to Design Scientific and Technological Aspects in Mechanics, Chap. Deterministic Optimization year: 2013 ident: 19313_CR4 doi: 10.1007/978-3-642-31187-1 – volume: 222 start-page: 106926 year: 2021 ident: 19313_CR1 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2021.106926 – volume: 3 start-page: 95 year: 1988 ident: 19313_CR6 publication-title: Mach. Learn. doi: 10.1023/A:1022602019183 – volume: 43 start-page: 469 year: 2011 ident: 19313_CR27 publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2010.12.015 – volume: 242 start-page: 108320 year: 2022 ident: 19313_CR13 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2022.108320 – volume: 191 start-page: 116158 year: 2022 ident: 19313_CR17 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116158 |
SSID | ssj0000529419 |
Score | 2.6181328 |
Snippet | Metaheuristic algorithms have a wide range of applications in handling optimization problems. In this study, a new metaheuristic algorithm, called the... Abstract Metaheuristic algorithms have a wide range of applications in handling optimization problems. In this study, a new metaheuristic algorithm, called the... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 14861 |
SubjectTerms | 639/166/987 639/166/988 639/705/1041 639/705/117 Algorithms Cooking Exploitation Exploration Humanities and Social Sciences multidisciplinary Optimization Science Science (multidisciplinary) Training |
SummonAdditionalLinks | – databaseName: Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ9YXEbxpsUnTpDmqKOLBk4q3kCcK2hXdPfjvnSTd1QrqxVNpk9BkMsnMJDPfIHTAteWB86rUMriScUZK7SSJUSBeNF447RPa5zW_vGVX9839l1Rf0ScswwNnwh230spKt4bDqmXCORBIgnhiqK2MaUSy1kHmfTGmMqo3lYzIPkqmqtvjN5BUMZoMbC_QWUhd0oEkSoD9Ay3zu4_kt4vSJH8ultFSrzjik9zhFTTnu1W0kFNJvq-huxMMCjJOKffKKJocfvZj_TCJuTceLR7B1vDcx1zinDYa52rxHYpsPDPHNh7nwnOaOWId3V6c35xdln3OhNI2RIxhczOUaCLALJMuYpUF56wDG5hQ7ygLvAo6VCCkfZC116BveN1qI0BO17qRdb2B5rtR5zcR5qCqAcG1o65lTRUMs5wGw51oqKGeFohM6adsDygee_ek0sV23apMcwU0V4nmCtocztq8ZDiNX2ufxmmZ1YxQ2OkDMIjqGUT9xSAF2plOqurX55uiIrp3xeCtAu3PimFlxesS3fnRJNUBYwvUI1IgMWCGQYeGJd3jQ8LolqwWFW8LdDRlm8-f_zzgrf8Y8DZapJHNkyPcDpofv078LmhOY7OXFskH9woTpQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9UwDI9gCIkL4lOUDRQkblAtSdukOU0DMU0cODH0blE-2STWbnvvHfjvsdP0TZ3ETlWbVE0Tx_7Zjm1CPkrrZZKS1VanULey5bUNmmMUSFRdVMHGnO3zhzw9a7-vulUxuK3LscqZJ2ZGHUaPNvJDofBADobbHF1d11g1Cr2rpYTGQ_IIU5chVauV2tlY0IvVcl1iZVjTH65BXmFMGWhggFx4U4uFPMpp-xdY8-5JyTvu0iyFTp6RpwU-0uNpvZ-TB3F4QR5PBSX_viS_jinAZJoL79UooAK9jBt7vsUKHBeejsAgLkvkJZ2KR9OpG95Dk0fLOfVo1IXrXD_iFTk7-fbz62ldKifUvuNqAyzOCW65AuVMB8xYlkLwATRhLmIQbZIs2cRAVMekm2gBdUTbW6dAWje2003zmuwN4xDfECoBsKkQbBChbzuWXOulSE4G1QknoqgIn-fP-JJWHEf3x2T3dtObac4NzLnJc27gnU-7d66mpBr39v6Cy7LriQmx84Px5rcp-8v02mtmeyeBubcwXsAtikfuhGfOdYpV5GBeVFN26drc0lRFPuyaYX-h08QOcdzmPqByAUjiFVELYlgMaNkyXJznTN26bRSTfUU-z2Rz-_H___Db-8e6T54IJOB80O2A7G1utvEdIKONe5_J_x8gBwvd priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEB5KS8EXUWtxtZYIfdPFJJtNNo-nWMo9-KItfQv5aQt2T9q7B_97J9ndky214NNxlwmXzU5mviQz3wCcSOtlkpLWVqdQCylYbYNmOQskqjaqYGNh-_wqz87F8rK93AE-5cKUoP1CaVnM9BQd9vEOHU1OBsOtE0IO1tRodvcyVTvq9t5isfy23J6s5LsrwfSYIUOb7oHOMy9UyPpnCPN-fOS9S9Lie06fwdMRNJLFMMznsBP7F7A_lJH8fQAXC4LgmJRye3V2S4HcxLW92uS6G9eerNAs3Iz5lmQoGU0Gsfwdm3w-Lyc-H-Xi51Q14iWcn375_vmsHusl1L5lao2GzXFmmcItmQ6ZpyyF4APufxmPgYskabKJooOOSTfRItaItrNOoY9ubKub5hB2-1UfXwGRCNNUCDbw0ImWJie85MnJoFrueOQVsGn-jB_JxPPofppyqd10Zphzg3Nuypwb7PN-2-fXQKXxqPSn_Fq2kpkGu_ywuv1hRrUwnfaa2s5JNOkCx4toRbHIHPfUuVbRCo6ml2rGtXlnuMqhXTlxq4J322ZcVfmqxPZxtSkyuNFCaMQqUDNlmA1o3tJfXxV-bi0aRWVXwYdJbf7--b8f-PX_ib-BJzwrdAl3O4Ld9e0mvkV8tHbH44L4A-izCvQ priority: 102 providerName: Springer Nature |
Title | A new human-based metahurestic optimization method based on mimicking cooking training |
URI | https://link.springer.com/article/10.1038/s41598-022-19313-2 https://www.proquest.com/docview/2708890714 https://www.proquest.com/docview/2709741101 https://pubmed.ncbi.nlm.nih.gov/PMC9437068 https://doaj.org/article/89c90a8b676247dd81271e1b2c0bb570 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-6lsFexj6Zty54sLfNmyXbkvUwRhpaSmBlbMvIm9BnW2idLU1g_e93ku0Ul7bQJ2NLtuXzSfc7SXc_gPdMGeYZyzMlvM1KVpJMWUFCFIjjleNWuZjt84gdzsrpvJpvQU931Anw4kbXLvBJzZZnn_79vfyKHf5LGzJef75AIxQCxdCtQjhCigyH5B20TDwwGnzr4H6b65uKMnJ9hCTsGYIJ2sXR3PyYga2KKf0HOPT6LsprS6nRQh08gccdtEzHrS48hS3XPIOHLdnk5XP4PU4RQqeRlC8Lxsum526lTtaBnePUpAscPM67qMy0JZZO22rhHItMmFVPTZjwxWPPLfECZgf7vyaHWceqkJmK8BUOf5oSRTg6bsKGbGbeWmPRSybUWVp6lnvlczTjzovCKUQkTtVKc7TkhapEUbyE7WbRuFeQMgRz3Fplqa3LKve6NIx6zSyvqKaOJkB6-UnTpRwPrTuTcem7qGUrc4kyl1HmEu_5sLnnT5tw487ae-G3bGqGZNnxwmJ5LLu-J2thRK5qzXDgL7G9iGk4cURTk2td8TyB3f6nyl4BJeVhA1gI70rg3aYY-15YUFGNW6xjHXTHEECRBPhAGQYNGpY0pycxi7coC56zOoGPvdpcvfz2D359L_G8gUc06HPcE7cL26vl2r1FELXSI3jA53wEO-Px9OcUj3v7R99_4NUJm4zixMQo9p3_HecaeA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1NT9VAcEMwRi9G_IhVxDXRkzbsbtvd9mAIqOQhyAnMu637VSCRFnnvxfCn_I3ObNtHSiI3Tk2723Q7O9-zM0PIO2mcrKVkqalqn-Yy56nxFccskKCKoLwJsdrnoZwc59-mxXSF_B1yYfBY5cATI6P2rUMf-aZQeCAH0222Ln6n2DUKo6tDC40OLfbD1R8w2Waf9r7A_r4XYvfr0edJ2ncVSF3B1RzI3wpuuALDpfJYzav23nmwErkIXuS1ZLWpGYixUFdZMCCRgymNVSDJMlNU6AAFln8PBC9DY09N1dKng1GznFd9bg7Lys0ZyEfMYQOLDzQlnqViJP9im4CRbnvzZOaN8GyUeruPyaNeXaXbHX6tkZXQPCH3uwaWV0_Jj20KajmNjf5SFIienoe5OV1gx48zR1tgSOd9piftmlXTbhrew5BDTz116ESG69Cv4hk5vhOYPierTduEF4RKUBCV98YLX-YFq23upKit9KoQVgSRED7AT7u-jDmu7peO4fSs1B3MNcBcR5hreOfD8p2LrojHrbN3cFuWM7EAd3zQXp7onp51WbmKmdJKECY5rBf0JMUDt8IxawvFErI-bKruucJMX-NwQt4uh4GeMUhjmtAu4hww8UAp4wlRI2QYLWg80pydxsrgVZ4pJsuEfBzQ5vrj___hl7ev9Q15MDn6fqAP9g73X5GHApE5HrJbJ6vzy0V4DVrZ3G5EUqDk513T3j8O20gy |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1Jo6gXhBXEVggJHgCaLGTmInDwhtbNXGUDUhhvZmfN0msWSsrdB-ja_jHCfp1EnsbU9Va0d1js_9Sshboa0IQmSproNLC1GwVLuaYRWIl6WXTvvY7XMqdg-LL0fl0Rr5O9TCYFrlwBMjo3atRR_5mEtMyMFym3Ho0yIOtiefzn-nOEEKI63DOI0ORfb95R8w32Yf97bhrt9xPtn5_nk37ScMpLZkcg6swHCmmQQjpnbY2Ss4Zx1YjIx7x4sgsqBDBiLNhzr3GqSz15U2EqRarssanaHA_tclWkUjsr61Mz34tvTwYAytYHVfqZPl1XgG0hIr2sD-A72J5SlfkYZxaMCKpns9T_NasDbKwMkDcr9XXulmh20PyZpvHpE73TjLy8fkxyYFJZ3GsX8pikdHz_xcnyxw_seppS2wp7O-7pN2o6tptw2_w5JFvz216FKGz2F6xRNyeCtQfUpGTdv4Z4QKUBelc9pxVxVlFkxhBQ9GOFlywz1PCBvgp2zf1BxP90vF4HpeqQ7mCmCuIswVPPN--cx519Ljxt1beC3LndiOO_7QXhyrnrpVVds605URIFoKOC9oTZJ5ZrjNjClllpCN4VJVzyNm6gqjE_JmuQzUjSEb3fh2EfeAwQcqGkuIXEGGlQOtrjSnJ7FPeF3kMhNVQj4MaHP15_9_4ec3n_U1uQt0p77uTfdfkHsccTlm3G2Q0fxi4V-CijY3r3paoOTnbZPfPwi1Tc0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+human-based+metahurestic+optimization+method+based+on+mimicking+cooking+training&rft.jtitle=Scientific+reports&rft.au=Trojovsk%C3%A1%2C+Eva&rft.au=Dehghani%2C+Mohammad&rft.date=2022-09-01&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-022-19313-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_022_19313_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |