A new human-based metahurestic optimization method based on mimicking cooking training

Metaheuristic algorithms have a wide range of applications in handling optimization problems. In this study, a new metaheuristic algorithm, called the chef-based optimization algorithm (CBOA), is developed. The fundamental inspiration employed in CBOA design is the process of learning cooking skills...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; pp. 14861 - 24
Main Authors Trojovská, Eva, Dehghani, Mohammad
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.09.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metaheuristic algorithms have a wide range of applications in handling optimization problems. In this study, a new metaheuristic algorithm, called the chef-based optimization algorithm (CBOA), is developed. The fundamental inspiration employed in CBOA design is the process of learning cooking skills in training courses. The stages of the cooking training process in various phases are mathematically modeled with the aim of increasing the ability of global search in exploration and the ability of local search in exploitation. A collection of 52 standard objective functions is utilized to assess the CBOA’s performance in addressing optimization issues. The optimization results show that the CBOA is capable of providing acceptable solutions by creating a balance between exploration and exploitation and is highly efficient in the treatment of optimization problems. In addition, the CBOA’s effectiveness in dealing with real-world applications is tested on four engineering problems. Twelve well-known metaheuristic algorithms have been selected for comparison with the CBOA. The simulation results show that CBOA performs much better than competing algorithms and is more effective in solving optimization problems.
AbstractList Metaheuristic algorithms have a wide range of applications in handling optimization problems. In this study, a new metaheuristic algorithm, called the chef-based optimization algorithm (CBOA), is developed. The fundamental inspiration employed in CBOA design is the process of learning cooking skills in training courses. The stages of the cooking training process in various phases are mathematically modeled with the aim of increasing the ability of global search in exploration and the ability of local search in exploitation. A collection of 52 standard objective functions is utilized to assess the CBOA’s performance in addressing optimization issues. The optimization results show that the CBOA is capable of providing acceptable solutions by creating a balance between exploration and exploitation and is highly efficient in the treatment of optimization problems. In addition, the CBOA’s effectiveness in dealing with real-world applications is tested on four engineering problems. Twelve well-known metaheuristic algorithms have been selected for comparison with the CBOA. The simulation results show that CBOA performs much better than competing algorithms and is more effective in solving optimization problems.
Abstract Metaheuristic algorithms have a wide range of applications in handling optimization problems. In this study, a new metaheuristic algorithm, called the chef-based optimization algorithm (CBOA), is developed. The fundamental inspiration employed in CBOA design is the process of learning cooking skills in training courses. The stages of the cooking training process in various phases are mathematically modeled with the aim of increasing the ability of global search in exploration and the ability of local search in exploitation. A collection of 52 standard objective functions is utilized to assess the CBOA’s performance in addressing optimization issues. The optimization results show that the CBOA is capable of providing acceptable solutions by creating a balance between exploration and exploitation and is highly efficient in the treatment of optimization problems. In addition, the CBOA’s effectiveness in dealing with real-world applications is tested on four engineering problems. Twelve well-known metaheuristic algorithms have been selected for comparison with the CBOA. The simulation results show that CBOA performs much better than competing algorithms and is more effective in solving optimization problems.
Metaheuristic algorithms have a wide range of applications in handling optimization problems. In this study, a new metaheuristic algorithm, called the chef-based optimization algorithm (CBOA), is developed. The fundamental inspiration employed in CBOA design is the process of learning cooking skills in training courses. The stages of the cooking training process in various phases are mathematically modeled with the aim of increasing the ability of global search in exploration and the ability of local search in exploitation. A collection of 52 standard objective functions is utilized to assess the CBOA's performance in addressing optimization issues. The optimization results show that the CBOA is capable of providing acceptable solutions by creating a balance between exploration and exploitation and is highly efficient in the treatment of optimization problems. In addition, the CBOA's effectiveness in dealing with real-world applications is tested on four engineering problems. Twelve well-known metaheuristic algorithms have been selected for comparison with the CBOA. The simulation results show that CBOA performs much better than competing algorithms and is more effective in solving optimization problems.Metaheuristic algorithms have a wide range of applications in handling optimization problems. In this study, a new metaheuristic algorithm, called the chef-based optimization algorithm (CBOA), is developed. The fundamental inspiration employed in CBOA design is the process of learning cooking skills in training courses. The stages of the cooking training process in various phases are mathematically modeled with the aim of increasing the ability of global search in exploration and the ability of local search in exploitation. A collection of 52 standard objective functions is utilized to assess the CBOA's performance in addressing optimization issues. The optimization results show that the CBOA is capable of providing acceptable solutions by creating a balance between exploration and exploitation and is highly efficient in the treatment of optimization problems. In addition, the CBOA's effectiveness in dealing with real-world applications is tested on four engineering problems. Twelve well-known metaheuristic algorithms have been selected for comparison with the CBOA. The simulation results show that CBOA performs much better than competing algorithms and is more effective in solving optimization problems.
ArticleNumber 14861
Author Trojovská, Eva
Dehghani, Mohammad
Author_xml – sequence: 1
  givenname: Eva
  surname: Trojovská
  fullname: Trojovská, Eva
  email: eva.trojovska@uhk.cz
  organization: Department of Mathematics, Faculty of Science, University of Hradec Králové
– sequence: 2
  givenname: Mohammad
  surname: Dehghani
  fullname: Dehghani, Mohammad
  organization: Department of Mathematics, Faculty of Science, University of Hradec Králové
BookMark eNp9Uk1v1DAQtVARLaV_gFMkLlwCHn_E9gWpqvioVIkLcLUc29n1ktiLnRTBr8e7qYD2UB88Y897zzPjeY5OYooeoZeA3wCm8m1hwJVsMSEtKAq0JU_QGcGMt4QScvKff4ouStnhujhRDNQzdEo7zDHr5Bn6dtlE_7PZLpOJbW-Kd83kZ7Ndsi9zsE3az2EKv80cUjxEtsk1K-xwriH7PcRNY1M62jmbEKvzAj0dzFj8xZ09R18_vP9y9am9-fzx-uryprUcxNxK0RMwIIB3ynGOxeCcdaxTQLwjbOjwYAYMkvtBUW-6rm7S9IJUz3BF6Tm6XnVdMju9z2Ey-ZdOJujjRcobbXKtY_RaKquwkX0nOsKEcxKIAA89sbjvucBV692qtV_6yTvrY61mvCd6PxLDVm_SrVaMCtzJKvD6TiCnH0vtn55CsX4cTfRpKZoIrAQDwFChrx5Ad2nJsbbqgJJSYQGsosiKsjmVkv3wNxnA-jAFep0CXadAH6dAk0qSD0g2zMf_O3zO-DiVrtRS34kbn_9l9QjrDxjUxt0
CitedBy_id crossref_primary_10_1016_j_eswa_2023_121470
crossref_primary_10_1016_j_bspc_2024_106177
crossref_primary_10_1016_j_renene_2024_120480
crossref_primary_10_3390_su142013569
crossref_primary_10_1016_j_cie_2024_110114
crossref_primary_10_1016_j_jvcir_2023_103982
crossref_primary_10_1016_j_eswa_2024_123734
crossref_primary_10_1109_ACCESS_2024_3427632
crossref_primary_10_1007_s11831_023_09912_1
crossref_primary_10_3390_diagnostics12112892
crossref_primary_10_1007_s11709_024_1062_6
crossref_primary_10_1007_s11831_023_09975_0
crossref_primary_10_1016_j_chaos_2024_115636
crossref_primary_10_3390_biomimetics9010008
crossref_primary_10_1007_s11760_023_02732_7
crossref_primary_10_1109_ACCESS_2023_3327732
crossref_primary_10_1016_j_cma_2024_117251
crossref_primary_10_1007_s00477_025_02955_9
crossref_primary_10_1016_j_jhydrol_2024_131347
crossref_primary_10_1016_j_bspc_2024_106269
crossref_primary_10_3390_app15020603
crossref_primary_10_1016_j_jpowsour_2024_235615
crossref_primary_10_1038_s41598_023_37537_8
crossref_primary_10_1016_j_compbiomed_2023_107212
crossref_primary_10_3390_biomimetics8060470
crossref_primary_10_1007_s10462_024_10767_6
crossref_primary_10_1007_s10462_024_10747_w
crossref_primary_10_1007_s00262_024_03843_x
crossref_primary_10_1016_j_cma_2025_117825
crossref_primary_10_1016_j_advengsoft_2024_103665
crossref_primary_10_1016_j_bspc_2023_105185
crossref_primary_10_3390_biomimetics8060508
crossref_primary_10_1038_s41598_023_41545_z
crossref_primary_10_1007_s11227_023_05331_y
crossref_primary_10_3390_biomimetics8050386
crossref_primary_10_3390_biomimetics9020065
crossref_primary_10_1016_j_matcom_2023_04_027
crossref_primary_10_1038_s41598_024_54910_3
crossref_primary_10_3390_math12101506
crossref_primary_10_1007_s10462_023_10470_y
crossref_primary_10_1007_s13369_024_08825_w
crossref_primary_10_1080_15325008_2023_2239226
crossref_primary_10_1109_ACCESS_2024_3466170
crossref_primary_10_1016_j_eswa_2025_127206
crossref_primary_10_1007_s11042_024_18810_y
crossref_primary_10_3390_buildings14123753
crossref_primary_10_1007_s11220_024_00512_2
crossref_primary_10_1007_s10586_024_04545_w
crossref_primary_10_1038_s41598_023_48462_1
crossref_primary_10_32604_cmes_2023_025908
crossref_primary_10_1186_s40537_024_00917_6
crossref_primary_10_1016_j_knosys_2023_111081
crossref_primary_10_3390_en16031185
crossref_primary_10_3390_biomimetics9030137
Cites_doi 10.1016/j.eswa.2020.113377
10.1126/science.220.4598.671
10.1016/j.eswa.2022.116924
10.1109/3477.484436
10.1016/j.engappai.2020.103541
10.1023/A:1008202821328
10.1115/1.2919393
10.1016/j.ins.2009.03.004
10.1016/j.asoc.2017.11.043
10.7717/peerj-cs.828
10.1109/ACCESS.2022.3153493
10.1016/j.compstruc.2012.07.010
10.1016/j.cad.2010.12.015
10.3390/app10175791
10.1016/j.cie.2020.107050
10.1109/4235.585893
10.1016/j.eswa.2021.116158
10.1016/j.cie.2021.107408
10.1016/j.advengsoft.2016.01.008
10.32604/cmc.2022.023682
10.1007/s12652-022-03765-5
10.1016/j.knosys.2021.106926
10.2307/3001968
10.3390/app10186173
10.1109/TEVC.2003.814902
10.1023/A:1022602019183
10.1007/978-3-642-31187-1
10.1016/j.knosys.2022.108320
10.1016/j.advengsoft.2013.12.007
10.3390/s21134567
10.1007/978-3-540-72950-1_77
10.1007/11579427_66
10.1109/ICNN.1995.488968
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-022-19313-2
DatabaseName Open Access Journals from Springer Nature
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef

Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 24
ExternalDocumentID oai_doaj_org_article_89c90a8b676247dd81271e1b2c0bb570
PMC9437068
10_1038_s41598_022_19313_2
GrantInformation_xml – fundername: Univerzita Hradec Králové
  grantid: 2104/2022
  funderid: http://dx.doi.org/10.13039/100018512
– fundername: ;
  grantid: 2104/2022
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c517t-87b21a171569d5507fddcd46912ed24f60faf0185ef93ea663ea8ab72663a5933
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:25:32 EDT 2025
Thu Aug 21 14:07:52 EDT 2025
Fri Jul 11 16:40:41 EDT 2025
Wed Aug 13 04:44:49 EDT 2025
Tue Jul 01 00:54:57 EDT 2025
Thu Apr 24 22:50:45 EDT 2025
Fri Feb 21 02:39:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-87b21a171569d5507fddcd46912ed24f60faf0185ef93ea663ea8ab72663a5933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-022-19313-2
PMID 36050468
PQID 2708890714
PQPubID 2041939
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_89c90a8b676247dd81271e1b2c0bb570
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9437068
proquest_miscellaneous_2709741101
proquest_journals_2708890714
crossref_primary_10_1038_s41598_022_19313_2
crossref_citationtrail_10_1038_s41598_022_19313_2
springer_journals_10_1038_s41598_022_19313_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Gonzalez, López-Espín, Aparicio, Talbi (CR5) 2022; 8
Kirkpatrick, Gelatt, Vecchi (CR20) 1983; 220
Gandomi, Yang (CR35) 2011
Dehghani (CR28) 2020; 10
Abualigah, Elaziz, Sumari, Geem, Gandomi (CR17) 2022; 191
Rao, Savsani, Vakharia (CR27) 2011; 43
Goldberg, Holland (CR6) 1988; 3
CR36
Hashim, Hussien (CR13) 2022; 242
Zeidabadi, Dehghani (CR26) 2022; 15
Rashedi, Nezamabadi-Pour, Saryazdi (CR21) 2009; 179
Storn, Price (CR19) 1997; 11
Wilcoxon (CR32) 1945; 1
Abdollahzadeh, Gharehchopogh, Mirjalili (CR12) 2021; 158
Eskandar, Sadollah, Bahreininejad, Hamdi (CR23) 2012; 110
Dehghani, Trojovský (CR29) 2021; 21
Kaur, Awasthi, Sangal, Dhiman (CR11) 2020; 90
Pira (CR30) 2022
Moghdani, Salimifard (CR25) 2018; 64
Ayyarao (CR31) 2022; 10
Wolpert, Macready (CR10) 1997; 1
Ray, Liew (CR24) 2003; 7
Faramarzi, Heidarinejad, Mirjalili, Gandomi (CR18) 2020; 152
CR7
CR9
Kannan, Kramer (CR34) 1994; 116
Mirjalili, Lewis (CR16) 2016; 95
Cavazzuti (CR4) 2013
Dehghani (CR22) 2020; 10
Awad, Ali, Liang, Qu, Suganthan (CR33) 2016
Mohammadi-Balani, Nayeri, Azar, Taghizadeh-Yazdi (CR3) 2021; 152
Chopra, Ansari (CR15) 2022; 198
Zeidabadi (CR2) 2022; 71
Dorigo, Maniezzo, Colorni (CR8) 1996; 26
Dhiman (CR1) 2021; 222
Mirjalili, Mirjalili, Lewis (CR14) 2014; 69
F-A Zeidabadi (19313_CR2) 2022; 71
L Abualigah (19313_CR17) 2022; 191
S Mirjalili (19313_CR14) 2014; 69
A Mohammadi-Balani (19313_CR3) 2021; 152
S Mirjalili (19313_CR16) 2016; 95
G Dhiman (19313_CR1) 2021; 222
S Kaur (19313_CR11) 2020; 90
E Rashedi (19313_CR21) 2009; 179
T Ray (19313_CR24) 2003; 7
S Kirkpatrick (19313_CR20) 1983; 220
RV Rao (19313_CR27) 2011; 43
DH Wolpert (19313_CR10) 1997; 1
A Faramarzi (19313_CR18) 2020; 152
N Chopra (19313_CR15) 2022; 198
FA Zeidabadi (19313_CR26) 2022; 15
M Dehghani (19313_CR29) 2021; 21
M Dorigo (19313_CR8) 1996; 26
B Abdollahzadeh (19313_CR12) 2021; 158
M Gonzalez (19313_CR5) 2022; 8
19313_CR7
M Dehghani (19313_CR22) 2020; 10
DE Goldberg (19313_CR6) 1988; 3
R Storn (19313_CR19) 1997; 11
19313_CR9
E Pira (19313_CR30) 2022
B Kannan (19313_CR34) 1994; 116
M Cavazzuti (19313_CR4) 2013
TL Ayyarao (19313_CR31) 2022; 10
F Wilcoxon (19313_CR32) 1945; 1
FA Hashim (19313_CR13) 2022; 242
M Dehghani (19313_CR28) 2020; 10
N Awad (19313_CR33) 2016
H Eskandar (19313_CR23) 2012; 110
AH Gandomi (19313_CR35) 2011
R Moghdani (19313_CR25) 2018; 64
19313_CR36
References_xml – volume: 152
  start-page: 113377
  year: 2020
  ident: CR18
  article-title: Marine predators algorithm: A nature-inspired metaheuristic
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113377
– volume: 220
  start-page: 671
  year: 1983
  end-page: 680
  ident: CR20
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 198
  start-page: 116924
  year: 2022
  ident: CR15
  article-title: Golden jackal optimization: A novel nature-inspired optimizer for engineering applications
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116924
– volume: 26
  start-page: 29
  year: 1996
  end-page: 41
  ident: CR8
  article-title: Ant system: Optimization by a colony of cooperating agents
  publication-title: IEEE Trans. Syst. Man Cybern. B (Cybern.)
  doi: 10.1109/3477.484436
– volume: 90
  start-page: 103541
  year: 2020
  ident: CR11
  article-title: Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103541
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: CR19
  article-title: Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– volume: 116
  start-page: 405
  year: 1994
  end-page: 411
  ident: CR34
  article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design
  publication-title: J. Mech. Des.
  doi: 10.1115/1.2919393
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: CR21
  article-title: A gravitational search algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.03.004
– volume: 64
  start-page: 161
  year: 2018
  end-page: 185
  ident: CR25
  article-title: Volleyball premier league algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.11.043
– volume: 8
  start-page: e828
  year: 2022
  ident: CR5
  article-title: A hyper-matheuristic approach for solving mixed integer linear optimization models in the context of data envelopment analysis
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.828
– volume: 10
  start-page: 25073
  year: 2022
  end-page: 25105
  ident: CR31
  article-title: War strategy optimization algorithm: A new effective metaheuristic algorithm for global optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3153493
– volume: 110
  start-page: 151
  year: 2012
  end-page: 166
  ident: CR23
  article-title: Water cycle algorithm—A novel metaheuristic optimization method for solving constrained engineering optimization problems
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2012.07.010
– volume: 43
  start-page: 469
  year: 2011
  end-page: 492
  ident: CR27
  article-title: Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2010.12.015
– year: 2016
  ident: CR33
  publication-title: Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization
– volume: 15
  start-page: 273
  year: 2022
  end-page: 281
  ident: CR26
  article-title: POA: Puzzle optimization algorithm
  publication-title: Int. J. Intell. Eng. Syst.
– volume: 10
  start-page: 5791
  year: 2020
  ident: CR28
  article-title: A new doctor and patient optimization algorithm: An application to energy commitment problem
  publication-title: Appl. Sci.
  doi: 10.3390/app10175791
– volume: 152
  start-page: 107050
  year: 2021
  ident: CR3
  article-title: Golden eagle optimizer: A nature-inspired metaheuristic algorithm
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.107050
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: CR10
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume: 191
  start-page: 116158
  year: 2022
  ident: CR17
  article-title: Reptile search algorithm (rsa): A nature-inspired meta-heuristic optimizer
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116158
– volume: 158
  start-page: 107408
  year: 2021
  ident: CR12
  article-title: African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107408
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: CR16
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 71
  start-page: 4237
  year: 2022
  end-page: 4256
  ident: CR2
  article-title: SSABA: Search step adjustment based algorithm
  publication-title: Comput. Mater. Continua
  doi: 10.32604/cmc.2022.023682
– ident: CR9
– year: 2022
  ident: CR30
  article-title: City councils evolution: A socio-inspired metaheuristic optimization algorithm
  publication-title: J. Ambient Intell. Hum. Comput.
  doi: 10.1007/s12652-022-03765-5
– volume: 222
  start-page: 106926
  year: 2021
  ident: CR1
  article-title: SSC: A hybrid nature-inspired meta-heuristic optimization algorithm for engineering applications
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2021.106926
– volume: 1
  start-page: 80
  year: 1945
  end-page: 83
  ident: CR32
  article-title: Individual comparisons by ranking methods
  publication-title: Biometr. Bull.
  doi: 10.2307/3001968
– volume: 10
  start-page: 6173
  year: 2020
  ident: CR22
  article-title: A spring search algorithm applied to engineering optimization problems
  publication-title: Appl. Sci.
  doi: 10.3390/app10186173
– volume: 7
  start-page: 386
  year: 2003
  end-page: 396
  ident: CR24
  article-title: Society and civilization: An optimization algorithm based on the simulation of social behavior
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.814902
– ident: CR36
– volume: 3
  start-page: 95
  year: 1988
  end-page: 99
  ident: CR6
  article-title: Genetic algorithms and machine learning
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022602019183
– ident: CR7
– start-page: 77
  year: 2013
  end-page: 102
  ident: CR4
  publication-title: Optimization Methods: From Theory to Design Scientific and Technological Aspects in Mechanics, Chap. Deterministic Optimization
  doi: 10.1007/978-3-642-31187-1
– volume: 242
  start-page: 108320
  year: 2022
  ident: CR13
  article-title: Snake optimizer: A novel meta-heuristic optimization algorithm
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2022.108320
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: CR14
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 21
  start-page: 4567
  year: 2021
  ident: CR29
  article-title: Teamwork optimization algorithm: A new optimization approach for function minimization/maximization
  publication-title: Sensors
  doi: 10.3390/s21134567
– start-page: 259
  year: 2011
  end-page: 281
  ident: CR35
  publication-title: Computational Optimization, Methods and Algorithms. Studies in Computational Intelligence, Chap. Benchmark Problems in Structural Optimization
– volume: 26
  start-page: 29
  year: 1996
  ident: 19313_CR8
  publication-title: IEEE Trans. Syst. Man Cybern. B (Cybern.)
  doi: 10.1109/3477.484436
– volume: 152
  start-page: 107050
  year: 2021
  ident: 19313_CR3
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.107050
– volume: 71
  start-page: 4237
  year: 2022
  ident: 19313_CR2
  publication-title: Comput. Mater. Continua
  doi: 10.32604/cmc.2022.023682
– volume: 64
  start-page: 161
  year: 2018
  ident: 19313_CR25
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.11.043
– ident: 19313_CR9
  doi: 10.1007/978-3-540-72950-1_77
– volume: 15
  start-page: 273
  year: 2022
  ident: 19313_CR26
  publication-title: Int. J. Intell. Eng. Syst.
– volume: 220
  start-page: 671
  year: 1983
  ident: 19313_CR20
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 110
  start-page: 151
  year: 2012
  ident: 19313_CR23
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2012.07.010
– volume: 7
  start-page: 386
  year: 2003
  ident: 19313_CR24
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.814902
– volume: 90
  start-page: 103541
  year: 2020
  ident: 19313_CR11
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103541
– volume: 179
  start-page: 2232
  year: 2009
  ident: 19313_CR21
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.03.004
– volume: 21
  start-page: 4567
  year: 2021
  ident: 19313_CR29
  publication-title: Sensors
  doi: 10.3390/s21134567
– volume: 95
  start-page: 51
  year: 2016
  ident: 19313_CR16
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– year: 2022
  ident: 19313_CR30
  publication-title: J. Ambient Intell. Hum. Comput.
  doi: 10.1007/s12652-022-03765-5
– volume: 116
  start-page: 405
  year: 1994
  ident: 19313_CR34
  publication-title: J. Mech. Des.
  doi: 10.1115/1.2919393
– ident: 19313_CR36
  doi: 10.1007/11579427_66
– ident: 19313_CR7
  doi: 10.1109/ICNN.1995.488968
– volume: 1
  start-page: 80
  year: 1945
  ident: 19313_CR32
  publication-title: Biometr. Bull.
  doi: 10.2307/3001968
– volume: 158
  start-page: 107408
  year: 2021
  ident: 19313_CR12
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107408
– volume: 198
  start-page: 116924
  year: 2022
  ident: 19313_CR15
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116924
– volume-title: Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization
  year: 2016
  ident: 19313_CR33
– volume: 11
  start-page: 341
  year: 1997
  ident: 19313_CR19
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– volume: 8
  start-page: e828
  year: 2022
  ident: 19313_CR5
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.828
– volume: 10
  start-page: 6173
  year: 2020
  ident: 19313_CR22
  publication-title: Appl. Sci.
  doi: 10.3390/app10186173
– start-page: 259
  volume-title: Computational Optimization, Methods and Algorithms. Studies in Computational Intelligence, Chap. Benchmark Problems in Structural Optimization
  year: 2011
  ident: 19313_CR35
– volume: 10
  start-page: 5791
  year: 2020
  ident: 19313_CR28
  publication-title: Appl. Sci.
  doi: 10.3390/app10175791
– volume: 69
  start-page: 46
  year: 2014
  ident: 19313_CR14
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 1
  start-page: 67
  year: 1997
  ident: 19313_CR10
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume: 10
  start-page: 25073
  year: 2022
  ident: 19313_CR31
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3153493
– volume: 152
  start-page: 113377
  year: 2020
  ident: 19313_CR18
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113377
– start-page: 77
  volume-title: Optimization Methods: From Theory to Design Scientific and Technological Aspects in Mechanics, Chap. Deterministic Optimization
  year: 2013
  ident: 19313_CR4
  doi: 10.1007/978-3-642-31187-1
– volume: 222
  start-page: 106926
  year: 2021
  ident: 19313_CR1
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2021.106926
– volume: 3
  start-page: 95
  year: 1988
  ident: 19313_CR6
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022602019183
– volume: 43
  start-page: 469
  year: 2011
  ident: 19313_CR27
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2010.12.015
– volume: 242
  start-page: 108320
  year: 2022
  ident: 19313_CR13
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2022.108320
– volume: 191
  start-page: 116158
  year: 2022
  ident: 19313_CR17
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116158
SSID ssj0000529419
Score 2.6181328
Snippet Metaheuristic algorithms have a wide range of applications in handling optimization problems. In this study, a new metaheuristic algorithm, called the...
Abstract Metaheuristic algorithms have a wide range of applications in handling optimization problems. In this study, a new metaheuristic algorithm, called the...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 14861
SubjectTerms 639/166/987
639/166/988
639/705/1041
639/705/117
Algorithms
Cooking
Exploitation
Exploration
Humanities and Social Sciences
multidisciplinary
Optimization
Science
Science (multidisciplinary)
Training
SummonAdditionalLinks – databaseName: Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ9YXEbxpsUnTpDmqKOLBk4q3kCcK2hXdPfjvnSTd1QrqxVNpk9BkMsnMJDPfIHTAteWB86rUMriScUZK7SSJUSBeNF447RPa5zW_vGVX9839l1Rf0ScswwNnwh230spKt4bDqmXCORBIgnhiqK2MaUSy1kHmfTGmMqo3lYzIPkqmqtvjN5BUMZoMbC_QWUhd0oEkSoD9Ay3zu4_kt4vSJH8ultFSrzjik9zhFTTnu1W0kFNJvq-huxMMCjJOKffKKJocfvZj_TCJuTceLR7B1vDcx1zinDYa52rxHYpsPDPHNh7nwnOaOWId3V6c35xdln3OhNI2RIxhczOUaCLALJMuYpUF56wDG5hQ7ygLvAo6VCCkfZC116BveN1qI0BO17qRdb2B5rtR5zcR5qCqAcG1o65lTRUMs5wGw51oqKGeFohM6adsDygee_ek0sV23apMcwU0V4nmCtocztq8ZDiNX2ufxmmZ1YxQ2OkDMIjqGUT9xSAF2plOqurX55uiIrp3xeCtAu3PimFlxesS3fnRJNUBYwvUI1IgMWCGQYeGJd3jQ8LolqwWFW8LdDRlm8-f_zzgrf8Y8DZapJHNkyPcDpofv078LmhOY7OXFskH9woTpQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9UwDI9gCIkL4lOUDRQkblAtSdukOU0DMU0cODH0blE-2STWbnvvHfjvsdP0TZ3ETlWbVE0Tx_7Zjm1CPkrrZZKS1VanULey5bUNmmMUSFRdVMHGnO3zhzw9a7-vulUxuK3LscqZJ2ZGHUaPNvJDofBADobbHF1d11g1Cr2rpYTGQ_IIU5chVauV2tlY0IvVcl1iZVjTH65BXmFMGWhggFx4U4uFPMpp-xdY8-5JyTvu0iyFTp6RpwU-0uNpvZ-TB3F4QR5PBSX_viS_jinAZJoL79UooAK9jBt7vsUKHBeejsAgLkvkJZ2KR9OpG95Dk0fLOfVo1IXrXD_iFTk7-fbz62ldKifUvuNqAyzOCW65AuVMB8xYlkLwATRhLmIQbZIs2cRAVMekm2gBdUTbW6dAWje2003zmuwN4xDfECoBsKkQbBChbzuWXOulSE4G1QknoqgIn-fP-JJWHEf3x2T3dtObac4NzLnJc27gnU-7d66mpBr39v6Cy7LriQmx84Px5rcp-8v02mtmeyeBubcwXsAtikfuhGfOdYpV5GBeVFN26drc0lRFPuyaYX-h08QOcdzmPqByAUjiFVELYlgMaNkyXJznTN26bRSTfUU-z2Rz-_H___Db-8e6T54IJOB80O2A7G1utvEdIKONe5_J_x8gBwvd
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEB5KS8EXUWtxtZYIfdPFJJtNNo-nWMo9-KItfQv5aQt2T9q7B_97J9ndky214NNxlwmXzU5mviQz3wCcSOtlkpLWVqdQCylYbYNmOQskqjaqYGNh-_wqz87F8rK93AE-5cKUoP1CaVnM9BQd9vEOHU1OBsOtE0IO1tRodvcyVTvq9t5isfy23J6s5LsrwfSYIUOb7oHOMy9UyPpnCPN-fOS9S9Lie06fwdMRNJLFMMznsBP7F7A_lJH8fQAXC4LgmJRye3V2S4HcxLW92uS6G9eerNAs3Iz5lmQoGU0Gsfwdm3w-Lyc-H-Xi51Q14iWcn375_vmsHusl1L5lao2GzXFmmcItmQ6ZpyyF4APufxmPgYskabKJooOOSTfRItaItrNOoY9ubKub5hB2-1UfXwGRCNNUCDbw0ImWJie85MnJoFrueOQVsGn-jB_JxPPofppyqd10Zphzg3Nuypwb7PN-2-fXQKXxqPSn_Fq2kpkGu_ywuv1hRrUwnfaa2s5JNOkCx4toRbHIHPfUuVbRCo6ml2rGtXlnuMqhXTlxq4J322ZcVfmqxPZxtSkyuNFCaMQqUDNlmA1o3tJfXxV-bi0aRWVXwYdJbf7--b8f-PX_ib-BJzwrdAl3O4Ld9e0mvkV8tHbH44L4A-izCvQ
  priority: 102
  providerName: Springer Nature
Title A new human-based metahurestic optimization method based on mimicking cooking training
URI https://link.springer.com/article/10.1038/s41598-022-19313-2
https://www.proquest.com/docview/2708890714
https://www.proquest.com/docview/2709741101
https://pubmed.ncbi.nlm.nih.gov/PMC9437068
https://doaj.org/article/89c90a8b676247dd81271e1b2c0bb570
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-6lsFexj6Zty54sLfNmyXbkvUwRhpaSmBlbMvIm9BnW2idLU1g_e93ku0Ul7bQJ2NLtuXzSfc7SXc_gPdMGeYZyzMlvM1KVpJMWUFCFIjjleNWuZjt84gdzsrpvJpvQU931Anw4kbXLvBJzZZnn_79vfyKHf5LGzJef75AIxQCxdCtQjhCigyH5B20TDwwGnzr4H6b65uKMnJ9hCTsGYIJ2sXR3PyYga2KKf0HOPT6LsprS6nRQh08gccdtEzHrS48hS3XPIOHLdnk5XP4PU4RQqeRlC8Lxsum526lTtaBnePUpAscPM67qMy0JZZO22rhHItMmFVPTZjwxWPPLfECZgf7vyaHWceqkJmK8BUOf5oSRTg6bsKGbGbeWmPRSybUWVp6lnvlczTjzovCKUQkTtVKc7TkhapEUbyE7WbRuFeQMgRz3Fplqa3LKve6NIx6zSyvqKaOJkB6-UnTpRwPrTuTcem7qGUrc4kyl1HmEu_5sLnnT5tw487ae-G3bGqGZNnxwmJ5LLu-J2thRK5qzXDgL7G9iGk4cURTk2td8TyB3f6nyl4BJeVhA1gI70rg3aYY-15YUFGNW6xjHXTHEECRBPhAGQYNGpY0pycxi7coC56zOoGPvdpcvfz2D359L_G8gUc06HPcE7cL26vl2r1FELXSI3jA53wEO-Px9OcUj3v7R99_4NUJm4zixMQo9p3_HecaeA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1NT9VAcEMwRi9G_IhVxDXRkzbsbtvd9mAIqOQhyAnMu637VSCRFnnvxfCn_I3ObNtHSiI3Tk2723Q7O9-zM0PIO2mcrKVkqalqn-Yy56nxFccskKCKoLwJsdrnoZwc59-mxXSF_B1yYfBY5cATI6P2rUMf-aZQeCAH0222Ln6n2DUKo6tDC40OLfbD1R8w2Waf9r7A_r4XYvfr0edJ2ncVSF3B1RzI3wpuuALDpfJYzav23nmwErkIXuS1ZLWpGYixUFdZMCCRgymNVSDJMlNU6AAFln8PBC9DY09N1dKng1GznFd9bg7Lys0ZyEfMYQOLDzQlnqViJP9im4CRbnvzZOaN8GyUeruPyaNeXaXbHX6tkZXQPCH3uwaWV0_Jj20KajmNjf5SFIienoe5OV1gx48zR1tgSOd9piftmlXTbhrew5BDTz116ESG69Cv4hk5vhOYPierTduEF4RKUBCV98YLX-YFq23upKit9KoQVgSRED7AT7u-jDmu7peO4fSs1B3MNcBcR5hreOfD8p2LrojHrbN3cFuWM7EAd3zQXp7onp51WbmKmdJKECY5rBf0JMUDt8IxawvFErI-bKruucJMX-NwQt4uh4GeMUhjmtAu4hww8UAp4wlRI2QYLWg80pydxsrgVZ4pJsuEfBzQ5vrj___hl7ev9Q15MDn6fqAP9g73X5GHApE5HrJbJ6vzy0V4DVrZ3G5EUqDk513T3j8O20gy
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1Jo6gXhBXEVggJHgCaLGTmInDwhtbNXGUDUhhvZmfN0msWSsrdB-ja_jHCfp1EnsbU9Va0d1js_9Sshboa0IQmSproNLC1GwVLuaYRWIl6WXTvvY7XMqdg-LL0fl0Rr5O9TCYFrlwBMjo3atRR_5mEtMyMFym3Ho0yIOtiefzn-nOEEKI63DOI0ORfb95R8w32Yf97bhrt9xPtn5_nk37ScMpLZkcg6swHCmmQQjpnbY2Ss4Zx1YjIx7x4sgsqBDBiLNhzr3GqSz15U2EqRarssanaHA_tclWkUjsr61Mz34tvTwYAytYHVfqZPl1XgG0hIr2sD-A72J5SlfkYZxaMCKpns9T_NasDbKwMkDcr9XXulmh20PyZpvHpE73TjLy8fkxyYFJZ3GsX8pikdHz_xcnyxw_seppS2wp7O-7pN2o6tptw2_w5JFvz216FKGz2F6xRNyeCtQfUpGTdv4Z4QKUBelc9pxVxVlFkxhBQ9GOFlywz1PCBvgp2zf1BxP90vF4HpeqQ7mCmCuIswVPPN--cx519Ljxt1beC3LndiOO_7QXhyrnrpVVds605URIFoKOC9oTZJ5ZrjNjClllpCN4VJVzyNm6gqjE_JmuQzUjSEb3fh2EfeAwQcqGkuIXEGGlQOtrjSnJ7FPeF3kMhNVQj4MaHP15_9_4ec3n_U1uQt0p77uTfdfkHsccTlm3G2Q0fxi4V-CijY3r3paoOTnbZPfPwi1Tc0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+human-based+metahurestic+optimization+method+based+on+mimicking+cooking+training&rft.jtitle=Scientific+reports&rft.au=Trojovsk%C3%A1%2C+Eva&rft.au=Dehghani%2C+Mohammad&rft.date=2022-09-01&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-022-19313-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_022_19313_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon