Association of brain amyloid-β with cerebral perfusion and structure in Alzheimer’s disease and mild cognitive impairment

Patients with Alzheimer’s disease show reduced cerebral blood flow, but it is unclear how this relates to β-amyloid pathology. By comparing patients with Alzheimer’s dementia, mild cognitive impairment, and controls, Mattsson et al. show that high β-amyloid load is associated with increased atrophy...

Full description

Saved in:
Bibliographic Details
Published inBrain (London, England : 1878) Vol. 137; no. 5; pp. 1550 - 1561
Main Authors Mattsson, Niklas, Tosun, Duygu, Insel, Philip S., Simonson, Alix, Jack, Clifford R, Beckett, Laurel A., Donohue, Michael, Jagust, William, Schuff, Norbert, Weiner, Michael W.
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.05.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Patients with Alzheimer’s disease show reduced cerebral blood flow, but it is unclear how this relates to β-amyloid pathology. By comparing patients with Alzheimer’s dementia, mild cognitive impairment, and controls, Mattsson et al. show that high β-amyloid load is associated with increased atrophy and reduced perfusion, independent of diagnosis. Patients with Alzheimer’s disease have reduced cerebral blood flow measured by arterial spin labelling magnetic resonance imaging, but it is unclear how this is related to amyloid-β pathology. Using 182 subjects from the Alzheimer’s Disease Neuroimaging Initiative we tested associations of amyloid-β with regional cerebral blood flow in healthy controls (n = 51), early (n = 66) and late (n = 41) mild cognitive impairment, and Alzheimer’s disease with dementia (n = 24). Based on the theory that Alzheimer’s disease starts with amyloid-β accumulation and progresses with symptoms and secondary pathologies in different trajectories, we tested if cerebral blood flow differed between amyloid-β-negative controls and -positive subjects in different diagnostic groups, and if amyloid-β had different associations with cerebral blood flow and grey matter volume. Global amyloid-β load was measured by florbetapir positron emission tomography, and regional blood flow and volume were measured in eight a priori defined regions of interest. Cerebral blood flow was reduced in patients with dementia in most brain regions. Higher amyloid-β load was related to lower cerebral blood flow in several regions, independent of diagnostic group. When comparing amyloid-β-positive subjects with -negative controls, we found reductions of cerebral blood flow in several diagnostic groups, including in precuneus, entorhinal cortex and hippocampus (dementia), inferior parietal cortex (late mild cognitive impairment and dementia), and inferior temporal cortex (early and late mild cognitive impairment and dementia). The associations of amyloid-β with cerebral blood flow and volume differed across the disease spectrum, with high amyloid-β being associated with greater cerebral blood flow reduction in controls and greater volume reduction in late mild cognitive impairment and dementia. In addition to disease stage, amyloid-β pathology affects cerebral blood flow across the span from controls to dementia patients. Amyloid-β pathology has different associations with cerebral blood flow and volume, and may cause more loss of blood flow in early stages, whereas volume loss dominates in late disease stages.
AbstractList Patients with Alzheimer's disease have reduced cerebral blood flow measured by arterial spin labelling magnetic resonance imaging, but it is unclear how this is related to amyloid-beta pathology. Using 182 subjects from the Alzheimer's Disease Neuroimaging Initiative we tested associations of amyloid-beta with regional cerebral blood flow in healthy controls (n = 51), early (n = 66) and late (n = 41) mild cognitive impairment, and Alzheimer's disease with dementia (n = 24). Based on the theory that Alzheimer's disease starts with amyloid-beta accumulation and progresses with symptoms and secondary pathologies in different trajectories, we tested if cerebral blood flow differed between amyloid-beta-negative controls and -positive subjects in different diagnostic groups, and if amyloid-beta had different associations with cerebral blood flow and grey matter volume. Global amyloid-beta load was measured by florbetapir positron emission tomography, and regional blood flow and volume were measured in eight a priori defined regions of interest. Cerebral blood flow was reduced in patients with dementia in most brain regions. Higher amyloid-beta load was related to lower cerebral blood flow in several regions, independent of diagnostic group. When comparing amyloid-beta-positive subjects with -negative controls, we found reductions of cerebral blood flow in several diagnostic groups, including in precuneus, entorhinal cortex and hippocampus (dementia), inferior parietal cortex (late mild cognitive impairment and dementia), and inferior temporal cortex (early and late mild cognitive impairment and dementia). The associations of amyloid-beta with cerebral blood flow and volume differed across the disease spectrum, with high amyloid-beta being associated with greater cerebral blood flow reduction in controls and greater volume reduction in late mild cognitive impairment and dementia. In addition to disease stage, amyloid-beta pathology affects cerebral blood flow across the span from controls to dementia patients. Amyloid-beta pathology has different associations with cerebral blood flow and volume, and may cause more loss of blood flow in early stages, whereas volume loss dominates in late disease stages.
Patients with Alzheimer's disease show reduced cerebral blood flow, but it is unclear how this relates to beta -amyloid pathology. By comparing patients with Alzheimer's dementia, mild cognitive impairment, and controls, Mattsson et al. show that high beta -amyloid load is associated with increased atrophy and reduced perfusion, independent of diagnosis.Patients with Alzheimer's disease have reduced cerebral blood flow measured by arterial spin labelling magnetic resonance imaging, but it is unclear how this is related to amyloid- beta pathology. Using 182 subjects from the Alzheimer's Disease Neuroimaging Initiative we tested associations of amyloid- beta with regional cerebral blood flow in healthy controls (n = 51), early (n = 66) and late (n = 41) mild cognitive impairment, and Alzheimer's disease with dementia (n = 24). Based on the theory that Alzheimer's disease starts with amyloid- beta accumulation and progresses with symptoms and secondary pathologies in different trajectories, we tested if cerebral blood flow differed between amyloid- beta -negative controls and -positive subjects in different diagnostic groups, and if amyloid- beta had different associations with cerebral blood flow and grey matter volume. Global amyloid- beta load was measured by florbetapir positron emission tomography, and regional blood flow and volume were measured in eight a priori defined regions of interest. Cerebral blood flow was reduced in patients with dementia in most brain regions. Higher amyloid- beta load was related to lower cerebral blood flow in several regions, independent of diagnostic group. When comparing amyloid- beta -positive subjects with -negative controls, we found reductions of cerebral blood flow in several diagnostic groups, including in precuneus, entorhinal cortex and hippocampus (dementia), inferior parietal cortex (late mild cognitive impairment and dementia), and inferior temporal cortex (early and late mild cognitive impairment and dementia). The associations of amyloid- beta with cerebral blood flow and volume differed across the disease spectrum, with high amyloid- beta being associated with greater cerebral blood flow reduction in controls and greater volume reduction in late mild cognitive impairment and dementia. In addition to disease stage, amyloid- beta pathology affects cerebral blood flow across the span from controls to dementia patients. Amyloid- beta pathology has different associations with cerebral blood flow and volume, and may cause more loss of blood flow in early stages, whereas volume loss dominates in late disease stages.
Patients with Alzheimer’s disease show reduced cerebral blood flow, but it is unclear how this relates to β-amyloid pathology. By comparing patients with Alzheimer’s dementia, mild cognitive impairment, and controls, Mattsson et al . show that high β-amyloid load is associated with increased atrophy and reduced perfusion, independent of diagnosis. Patients with Alzheimer’s disease have reduced cerebral blood flow measured by arterial spin labelling magnetic resonance imaging, but it is unclear how this is related to amyloid-β pathology. Using 182 subjects from the Alzheimer’s Disease Neuroimaging Initiative we tested associations of amyloid-β with regional cerebral blood flow in healthy controls ( n = 51), early ( n = 66) and late ( n = 41) mild cognitive impairment, and Alzheimer’s disease with dementia ( n = 24). Based on the theory that Alzheimer’s disease starts with amyloid-β accumulation and progresses with symptoms and secondary pathologies in different trajectories, we tested if cerebral blood flow differed between amyloid-β-negative controls and -positive subjects in different diagnostic groups, and if amyloid-β had different associations with cerebral blood flow and grey matter volume. Global amyloid-β load was measured by florbetapir positron emission tomography, and regional blood flow and volume were measured in eight a priori defined regions of interest. Cerebral blood flow was reduced in patients with dementia in most brain regions. Higher amyloid-β load was related to lower cerebral blood flow in several regions, independent of diagnostic group. When comparing amyloid-β-positive subjects with -negative controls, we found reductions of cerebral blood flow in several diagnostic groups, including in precuneus, entorhinal cortex and hippocampus (dementia), inferior parietal cortex (late mild cognitive impairment and dementia), and inferior temporal cortex (early and late mild cognitive impairment and dementia). The associations of amyloid-β with cerebral blood flow and volume differed across the disease spectrum, with high amyloid-β being associated with greater cerebral blood flow reduction in controls and greater volume reduction in late mild cognitive impairment and dementia. In addition to disease stage, amyloid-β pathology affects cerebral blood flow across the span from controls to dementia patients. Amyloid-β pathology has different associations with cerebral blood flow and volume, and may cause more loss of blood flow in early stages, whereas volume loss dominates in late disease stages.
Patients with Alzheimer's disease have reduced cerebral blood flow measured by arterial spin labelling magnetic resonance imaging, but it is unclear how this is related to amyloid-β pathology. Using 182 subjects from the Alzheimer's Disease Neuroimaging Initiative we tested associations of amyloid-β with regional cerebral blood flow in healthy controls (n = 51), early (n = 66) and late (n = 41) mild cognitive impairment, and Alzheimer's disease with dementia (n = 24). Based on the theory that Alzheimer's disease starts with amyloid-β accumulation and progresses with symptoms and secondary pathologies in different trajectories, we tested if cerebral blood flow differed between amyloid-β-negative controls and -positive subjects in different diagnostic groups, and if amyloid-β had different associations with cerebral blood flow and grey matter volume. Global amyloid-β load was measured by florbetapir positron emission tomography, and regional blood flow and volume were measured in eight a priori defined regions of interest. Cerebral blood flow was reduced in patients with dementia in most brain regions. Higher amyloid-β load was related to lower cerebral blood flow in several regions, independent of diagnostic group. When comparing amyloid-β-positive subjects with -negative controls, we found reductions of cerebral blood flow in several diagnostic groups, including in precuneus, entorhinal cortex and hippocampus (dementia), inferior parietal cortex (late mild cognitive impairment and dementia), and inferior temporal cortex (early and late mild cognitive impairment and dementia). The associations of amyloid-β with cerebral blood flow and volume differed across the disease spectrum, with high amyloid-β being associated with greater cerebral blood flow reduction in controls and greater volume reduction in late mild cognitive impairment and dementia. In addition to disease stage, amyloid-β pathology affects cerebral blood flow across the span from controls to dementia patients. Amyloid-β pathology has different associations with cerebral blood flow and volume, and may cause more loss of blood flow in early stages, whereas volume loss dominates in late disease stages.
Patients with Alzheimer’s disease show reduced cerebral blood flow, but it is unclear how this relates to β-amyloid pathology. By comparing patients with Alzheimer’s dementia, mild cognitive impairment, and controls, Mattsson et al. show that high β-amyloid load is associated with increased atrophy and reduced perfusion, independent of diagnosis. Patients with Alzheimer’s disease have reduced cerebral blood flow measured by arterial spin labelling magnetic resonance imaging, but it is unclear how this is related to amyloid-β pathology. Using 182 subjects from the Alzheimer’s Disease Neuroimaging Initiative we tested associations of amyloid-β with regional cerebral blood flow in healthy controls (n = 51), early (n = 66) and late (n = 41) mild cognitive impairment, and Alzheimer’s disease with dementia (n = 24). Based on the theory that Alzheimer’s disease starts with amyloid-β accumulation and progresses with symptoms and secondary pathologies in different trajectories, we tested if cerebral blood flow differed between amyloid-β-negative controls and -positive subjects in different diagnostic groups, and if amyloid-β had different associations with cerebral blood flow and grey matter volume. Global amyloid-β load was measured by florbetapir positron emission tomography, and regional blood flow and volume were measured in eight a priori defined regions of interest. Cerebral blood flow was reduced in patients with dementia in most brain regions. Higher amyloid-β load was related to lower cerebral blood flow in several regions, independent of diagnostic group. When comparing amyloid-β-positive subjects with -negative controls, we found reductions of cerebral blood flow in several diagnostic groups, including in precuneus, entorhinal cortex and hippocampus (dementia), inferior parietal cortex (late mild cognitive impairment and dementia), and inferior temporal cortex (early and late mild cognitive impairment and dementia). The associations of amyloid-β with cerebral blood flow and volume differed across the disease spectrum, with high amyloid-β being associated with greater cerebral blood flow reduction in controls and greater volume reduction in late mild cognitive impairment and dementia. In addition to disease stage, amyloid-β pathology affects cerebral blood flow across the span from controls to dementia patients. Amyloid-β pathology has different associations with cerebral blood flow and volume, and may cause more loss of blood flow in early stages, whereas volume loss dominates in late disease stages.
Patients with Alzheimer's disease have reduced cerebral blood flow measured by arterial spin labelling magnetic resonance imaging, but it is unclear how this is related to amyloid-β pathology. Using 182 subjects from the Alzheimer's Disease Neuroimaging Initiative we tested associations of amyloid-β with regional cerebral blood flow in healthy controls (n = 51), early (n = 66) and late (n = 41) mild cognitive impairment, and Alzheimer's disease with dementia (n = 24). Based on the theory that Alzheimer's disease starts with amyloid-β accumulation and progresses with symptoms and secondary pathologies in different trajectories, we tested if cerebral blood flow differed between amyloid-β-negative controls and -positive subjects in different diagnostic groups, and if amyloid-β had different associations with cerebral blood flow and grey matter volume. Global amyloid-β load was measured by florbetapir positron emission tomography, and regional blood flow and volume were measured in eight a priori defined regions of interest. Cerebral blood flow was reduced in patients with dementia in most brain regions. Higher amyloid-β load was related to lower cerebral blood flow in several regions, independent of diagnostic group. When comparing amyloid-β-positive subjects with -negative controls, we found reductions of cerebral blood flow in several diagnostic groups, including in precuneus, entorhinal cortex and hippocampus (dementia), inferior parietal cortex (late mild cognitive impairment and dementia), and inferior temporal cortex (early and late mild cognitive impairment and dementia). The associations of amyloid-β with cerebral blood flow and volume differed across the disease spectrum, with high amyloid-β being associated with greater cerebral blood flow reduction in controls and greater volume reduction in late mild cognitive impairment and dementia. In addition to disease stage, amyloid-β pathology affects cerebral blood flow across the span from controls to dementia patients. Amyloid-β pathology has different associations with cerebral blood flow and volume, and may cause more loss of blood flow in early stages, whereas volume loss dominates in late disease stages.Patients with Alzheimer's disease have reduced cerebral blood flow measured by arterial spin labelling magnetic resonance imaging, but it is unclear how this is related to amyloid-β pathology. Using 182 subjects from the Alzheimer's Disease Neuroimaging Initiative we tested associations of amyloid-β with regional cerebral blood flow in healthy controls (n = 51), early (n = 66) and late (n = 41) mild cognitive impairment, and Alzheimer's disease with dementia (n = 24). Based on the theory that Alzheimer's disease starts with amyloid-β accumulation and progresses with symptoms and secondary pathologies in different trajectories, we tested if cerebral blood flow differed between amyloid-β-negative controls and -positive subjects in different diagnostic groups, and if amyloid-β had different associations with cerebral blood flow and grey matter volume. Global amyloid-β load was measured by florbetapir positron emission tomography, and regional blood flow and volume were measured in eight a priori defined regions of interest. Cerebral blood flow was reduced in patients with dementia in most brain regions. Higher amyloid-β load was related to lower cerebral blood flow in several regions, independent of diagnostic group. When comparing amyloid-β-positive subjects with -negative controls, we found reductions of cerebral blood flow in several diagnostic groups, including in precuneus, entorhinal cortex and hippocampus (dementia), inferior parietal cortex (late mild cognitive impairment and dementia), and inferior temporal cortex (early and late mild cognitive impairment and dementia). The associations of amyloid-β with cerebral blood flow and volume differed across the disease spectrum, with high amyloid-β being associated with greater cerebral blood flow reduction in controls and greater volume reduction in late mild cognitive impairment and dementia. In addition to disease stage, amyloid-β pathology affects cerebral blood flow across the span from controls to dementia patients. Amyloid-β pathology has different associations with cerebral blood flow and volume, and may cause more loss of blood flow in early stages, whereas volume loss dominates in late disease stages.
Author Insel, Philip S.
Jagust, William
Jack, Clifford R
Donohue, Michael
Schuff, Norbert
Beckett, Laurel A.
Mattsson, Niklas
Simonson, Alix
Weiner, Michael W.
Tosun, Duygu
AuthorAffiliation 7 Helen Wills Neuroscience Institute and School of Public Health, University of California, Berkeley, CA, USA
2 Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
5 Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of California, Davis, USA
6 Division of Biostatistics and Bioinformatics, Department of Family and Preventive Medicine, University of California, San Diego, La Jolla, CA, USA
4 Department of Radiology, Mayo Clinic, Rochester, MN, USA
1 Department of Veterans Affairs Medical Centre, Centre for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA
3 Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
AuthorAffiliation_xml – name: 3 Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
– name: 7 Helen Wills Neuroscience Institute and School of Public Health, University of California, Berkeley, CA, USA
– name: 4 Department of Radiology, Mayo Clinic, Rochester, MN, USA
– name: 2 Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
– name: 1 Department of Veterans Affairs Medical Centre, Centre for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA
– name: 5 Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of California, Davis, USA
– name: 6 Division of Biostatistics and Bioinformatics, Department of Family and Preventive Medicine, University of California, San Diego, La Jolla, CA, USA
Author_xml – sequence: 1
  givenname: Niklas
  surname: Mattsson
  fullname: Mattsson, Niklas
  email: niklas.mattsson@neuro.gu.se
  organization: Department of Veterans Affairs Medical Centre, Centre for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA
– sequence: 2
  givenname: Duygu
  surname: Tosun
  fullname: Tosun, Duygu
  organization: Department of Veterans Affairs Medical Centre, Centre for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA
– sequence: 3
  givenname: Philip S.
  surname: Insel
  fullname: Insel, Philip S.
  organization: Department of Veterans Affairs Medical Centre, Centre for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA
– sequence: 4
  givenname: Alix
  surname: Simonson
  fullname: Simonson, Alix
  organization: Department of Veterans Affairs Medical Centre, Centre for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA
– sequence: 5
  givenname: Clifford R
  surname: Jack
  fullname: Jack, Clifford R
  organization: Department of Radiology, Mayo Clinic, Rochester, MN, USA
– sequence: 6
  givenname: Laurel A.
  surname: Beckett
  fullname: Beckett, Laurel A.
  organization: Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of California, Davis, USA
– sequence: 7
  givenname: Michael
  surname: Donohue
  fullname: Donohue, Michael
  organization: Division of Biostatistics and Bioinformatics, Department of Family and Preventive Medicine, University of California, San Diego, La Jolla, CA, USA
– sequence: 8
  givenname: William
  surname: Jagust
  fullname: Jagust, William
  organization: Helen Wills Neuroscience Institute and School of Public Health, University of California, Berkeley, CA, USA
– sequence: 9
  givenname: Norbert
  surname: Schuff
  fullname: Schuff, Norbert
  organization: Department of Veterans Affairs Medical Centre, Centre for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA
– sequence: 10
  givenname: Michael W.
  surname: Weiner
  fullname: Weiner, Michael W.
  organization: Department of Veterans Affairs Medical Centre, Centre for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28440742$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24625697$$D View this record in MEDLINE/PubMed
https://gup.ub.gu.se/publication/199611$$DView record from Swedish Publication Index
BookMark eNqNks2KFDEUhYOMOD2jO9eSjejCcpLK_0ZoBv9gwI2uQyqV6o5UJW1SNc2IC1_D1_BBfAifxHRXjzqC4iqQ-53Duck5AUchBgfAfYyeYqTIWZOMD2dmOyFKboEFphxVNWb8CCwQQrySiqFjcJLze4QwJTW_A45rymvGlViAT8uco_Vm9DHA2MG9GzTDVR99W337Crd-XEPrkiuTHm5c6qa8Y01oYR7TZMcpOVg0y_7j2vnBpe-fv2TY-uxMdnts8H0LbVwFP_rLwg4b49PgwngX3O5Mn929w3kK3r14_vb8VXXx5uXr8-VFZRkWYyWZ7UjXMaQawoRirTGSN5IY0XKBpULYWinqshHtak4lJpLgprZUqsY2TUtOQTX75q3bTI3eJD-YdKWj8Xo1bXS5Wk06O42V4hgX_tnMF3hwrS1Ry_I3ZDcnwa_1Kl5qopQSWBSDxweDFD9MLo968Nm6vjfBxSlrzAiVjBKC_gPFShIl2C7Wg99j_cxz_ZsFeHgATLam75IJ1udfnKQUCVoXrp45m2LOyXXa-nFfgbKN7zVGelctvS-DnqtVRE_-EF37_gV_NOOxPPA_yR-xpeRA
CitedBy_id crossref_primary_10_1038_s41582_021_00565_x
crossref_primary_10_1038_s41398_024_03220_3
crossref_primary_10_1016_j_nbas_2022_100035
crossref_primary_10_1016_j_nicl_2016_03_002
crossref_primary_10_1177_0271678X17732449
crossref_primary_10_3389_fnagi_2017_00181
crossref_primary_10_1177_0271678X231178993
crossref_primary_10_3233_JAD_200473
crossref_primary_10_1002_trc2_12285
crossref_primary_10_3233_JAD_220910
crossref_primary_10_1002_alz_14233
crossref_primary_10_1016_j_brainres_2024_149312
crossref_primary_10_1177_13872877251321118
crossref_primary_10_1016_j_neurobiolaging_2024_03_007
crossref_primary_10_1016_j_neurobiolaging_2025_03_007
crossref_primary_10_1093_brain_awx112
crossref_primary_10_1038_s41593_024_01753_w
crossref_primary_10_1093_brain_awu367
crossref_primary_10_3233_BPL_180075
crossref_primary_10_1038_s41419_023_06316_8
crossref_primary_10_1002_jmri_26810
crossref_primary_10_1016_j_neurobiolaging_2014_12_036
crossref_primary_10_1016_j_mcn_2018_06_005
crossref_primary_10_1038_s41467_023_37840_y
crossref_primary_10_3389_fcvm_2022_831730
crossref_primary_10_3389_fnins_2019_00037
crossref_primary_10_1002_jnr_23777
crossref_primary_10_1016_j_arr_2021_101450
crossref_primary_10_1016_j_jalz_2015_05_002
crossref_primary_10_1016_j_neurobiolaging_2019_10_023
crossref_primary_10_1681_ASN_0000000000000185
crossref_primary_10_1007_s10741_015_9488_5
crossref_primary_10_3233_JAD_200490
crossref_primary_10_1162_imag_a_00506
crossref_primary_10_1016_j_dadm_2015_09_002
crossref_primary_10_1016_j_arr_2020_101108
crossref_primary_10_1002_trc2_12070
crossref_primary_10_3233_JPD_212596
crossref_primary_10_1002_alz_14059
crossref_primary_10_1016_j_trci_2019_04_006
crossref_primary_10_1016_j_arr_2022_101661
crossref_primary_10_3233_JAD_180232
crossref_primary_10_3389_fnagi_2022_859873
crossref_primary_10_1016_j_neures_2015_04_002
crossref_primary_10_3389_fnins_2022_993767
crossref_primary_10_3389_fnagi_2021_749026
crossref_primary_10_1016_j_celrep_2024_113970
crossref_primary_10_1523_JNEUROSCI_1230_20_2020
crossref_primary_10_1007_s00415_015_7711_x
crossref_primary_10_1016_j_ijbiomac_2022_07_158
crossref_primary_10_1016_j_pscychresns_2015_05_014
crossref_primary_10_2139_ssrn_4182791
crossref_primary_10_3389_fnins_2021_781722
crossref_primary_10_1007_s11357_024_01361_3
crossref_primary_10_3233_JAD_231249
crossref_primary_10_1016_j_bbr_2016_05_030
crossref_primary_10_1007_s11682_022_00750_6
crossref_primary_10_1038_nrneurol_2017_111
crossref_primary_10_1002_alz_12958
crossref_primary_10_1002_jnr_23634
crossref_primary_10_1007_s00259_022_05958_8
crossref_primary_10_1016_j_neubiorev_2016_11_023
crossref_primary_10_3233_JAD_201474
crossref_primary_10_1007_s00330_016_4450_z
crossref_primary_10_1016_j_neurobiolaging_2024_11_008
crossref_primary_10_1017_S0007114521002567
crossref_primary_10_3389_fneur_2018_00618
crossref_primary_10_1016_j_neurobiolaging_2019_06_003
crossref_primary_10_1016_j_neurobiolaging_2021_02_003
crossref_primary_10_1161_JAHA_123_029797
crossref_primary_10_3233_BPL_220146
crossref_primary_10_1016_j_neuroimage_2019_05_033
crossref_primary_10_3389_fgene_2022_942203
crossref_primary_10_3233_JAD_150487
crossref_primary_10_1016_j_neurobiolaging_2021_04_009
crossref_primary_10_1016_j_neurobiolaging_2017_03_029
crossref_primary_10_3233_JAD_200034
crossref_primary_10_1177_0271678X17722436
crossref_primary_10_1016_j_nicl_2017_12_003
crossref_primary_10_1186_s13063_021_05336_z
crossref_primary_10_1002_alz_14310
crossref_primary_10_3233_JAD_160201
crossref_primary_10_3389_fnagi_2024_1345251
crossref_primary_10_1007_s00401_019_01967_4
crossref_primary_10_1177_0271678X20935171
crossref_primary_10_1007_s40263_016_0374_z
crossref_primary_10_1016_j_neurobiolaging_2022_12_006
crossref_primary_10_1016_j_nicl_2018_04_016
crossref_primary_10_1002_alz_13461
crossref_primary_10_1016_j_ynirp_2022_100080
crossref_primary_10_1007_s13311_022_01192_0
crossref_primary_10_1016_j_neurobiolaging_2023_06_014
crossref_primary_10_1016_j_athoracsur_2018_07_056
crossref_primary_10_1016_j_jalz_2016_08_010
crossref_primary_10_1021_acsptsci_4c00614
crossref_primary_10_1007_s00401_020_02215_w
crossref_primary_10_1212_WNL_0000000000006355
crossref_primary_10_1016_j_nbd_2025_106877
crossref_primary_10_3390_antiox10020143
crossref_primary_10_1177_0271678X16641128
crossref_primary_10_1210_clinem_dgad764
crossref_primary_10_1161_STROKEAHA_120_031073
crossref_primary_10_3390_biom13050830
crossref_primary_10_1002_alz_12666
crossref_primary_10_1017_S1355617722000649
crossref_primary_10_1016_j_ebiom_2024_105355
crossref_primary_10_3892_mmr_2019_9950
crossref_primary_10_1016_j_neurobiolaging_2016_06_006
crossref_primary_10_1002_jnr_24075
crossref_primary_10_1038_jcbfm_2015_157
crossref_primary_10_3389_fendo_2022_1014287
crossref_primary_10_1016_j_mri_2022_12_011
crossref_primary_10_3174_ajnr_A5902
crossref_primary_10_3233_JAD_190645
crossref_primary_10_3171_2015_6_JNS15639
crossref_primary_10_1007_s13311_016_0481_z
crossref_primary_10_1177_0271678X20982383
crossref_primary_10_3389_fncel_2015_00017
crossref_primary_10_1177_0271678X15605847
crossref_primary_10_1016_j_jalz_2016_11_007
crossref_primary_10_1161_CIRCULATIONAHA_117_027448
crossref_primary_10_1016_j_neuroimage_2020_117482
crossref_primary_10_1007_s11682_021_00495_8
crossref_primary_10_1186_s13024_025_00798_0
crossref_primary_10_1186_s13195_017_0300_8
crossref_primary_10_1186_s41232_022_00216_8
crossref_primary_10_1016_j_cccb_2020_100001
crossref_primary_10_3233_JAD_180958
crossref_primary_10_3233_JAD_170402
crossref_primary_10_1177_0271678X221141139
crossref_primary_10_3233_JAD_221023
crossref_primary_10_3390_ijms24119272
crossref_primary_10_1177_0271678X211020863
crossref_primary_10_2139_ssrn_4138281
crossref_primary_10_1016_j_ab_2021_114387
crossref_primary_10_1007_s10571_015_0261_z
crossref_primary_10_3233_JAD_220601
crossref_primary_10_1016_j_jpsychires_2021_01_053
crossref_primary_10_1007_s13365_020_00859_8
crossref_primary_10_1002_jmri_29462
crossref_primary_10_1038_s41398_021_01374_y
crossref_primary_10_3390_jcm8050651
crossref_primary_10_5665_sleep_4658
crossref_primary_10_1002_hbm_23732
crossref_primary_10_3233_JAD_210531
crossref_primary_10_1016_j_cccb_2022_100153
crossref_primary_10_1016_j_neuint_2019_04_005
crossref_primary_10_1515_revneuro_2024_0046
Cites_doi 10.1001/archneur.1987.00520140035014
10.1523/JNEUROSCI.3669-09.2009
10.3233/JAD-2011-0010
10.1001/jama.286.17.2120
10.1016/S0140-6736(06)69113-7
10.1148/radiol.12120928
10.1126/science.1072994
10.1002/ana.410300410
10.3174/ajnr.A1562
10.1212/WNL.39.11.1427
10.1007/s00406-011-0226-2
10.1002/1531-8249(200001)47:1<93::AID-ANA15>3.0.CO;2-8
10.1007/978-3-642-02498-6_55
10.1097/WAD.0b013e3181b4f736
10.1016/j.neuroimage.2008.06.006
10.1007/s00234-012-1077-x
10.1002/ana.23650
10.1016/j.tics.2011.09.004
10.1016/0022-510X(95)00323-T
10.1212/01.WNL.0000163856.13524.08
10.3174/ajnr.A1955
10.1002/(SICI)1522-2594(199906)41:6<1246::AID-MRM22>3.0.CO;2-N
10.2967/jnumed.108.051946
10.1073/pnas.91.1.33
10.2967/jnumed.106.037218
10.1016/S0197-4580(01)00230-5
10.1016/j.acra.2011.07.015
10.1212/01.wnl.0000296941.06685.22
10.1016/j.jalz.2009.04.1233
10.1002/ana.21955
10.1002/ana.20889
10.1056/NEJMoa1202753
10.3233/JAD-2012-120292
10.3233/JAD-2010-091699
10.1148/radiol.2503080751
10.1097/WAD.0b013e318199ff46
10.1001/archneurol.2011.183
10.1016/j.neurobiolaging.2008.01.012
10.1097/WCO.0b013e328354ff0a
10.1056/NEJM199603213341202
10.1097/00019442-200411000-00002
10.1212/01.WNL.0000055847.17752.E6
10.1016/S1474-4422(12)70291-0
10.1002/mrm.1910230106
10.1002/hbm.22173
10.1016/j.neuroimage.2011.12.077
10.1097/00004728-198308000-00003
10.1148/radiol.2343040197
10.2967/jnumed.107.045385
ContentType Journal Article
Contributor Jack, Jr, Clifford R
Khachaturian, Zaven
Vemuri, Prashanthi
Figurski, Michal
Schuff, Norbert
Snyder, Peter
Schwartz, Adam
Frank, Richard
Chen, Kewei
Jagust, William
Jiminez, Gus
Green, Robert C
Mesulam, M Marcel
Beccera, Mauricio
Pawluczyk, Sonia
Weiner, Michael
Borowski, Bret
Hefti, Franz
Montine, Tom
Dolen, Sara
Gunter, Jeff
Thompson, Paul
DeCArli, Charles
Trojanowki, John Q
Fox, Nick
Thal, Lean
Faber, Kelley
Lind, Betty
Korecka, Magdalena
Walter, Sarah
Quinn, Joseph
Fillit, Howard
Neu, Scott
Sather, Tamie
Jones, David
Landau, Susan
Paul, Steven
Kantarci, Kejal
Aisen, Paul
Morris, John
Holtzman, Davie
Reiman, Eric M
Buckholtz, Neil
Morris, John C
Foster, Norm
Mathis, Chet
Foroud, Tatiana M
Kaye, Jeffrey
Saykin, Andrew J
Harvey, Danielle
Koeppe, Robert A
Weiner, Michael W
Nho, Kwangsik
Potkin, Steven
Potter, William
Gessert, Devon
Petersen, Ronald
Shaw, Leslie M
Donohue, Michael
Schneider, Lon S
Sorensen, Greg
Thomas, Ronald G
Raichle, Marc
Davies, Peter
Ward, Chad
Hsiao, John
Shen, Li
Senjem, Matt
Albert, Marylyn
Kim, Sungeun
Carter, Raina
Carrillo, Mar
Contributor_xml – sequence: 1
  givenname: Michael W
  surname: Weiner
  fullname: Weiner, Michael W
– sequence: 2
  givenname: Paul
  surname: Aisen
  fullname: Aisen, Paul
– sequence: 3
  givenname: Michael
  surname: Weiner
  fullname: Weiner, Michael
– sequence: 4
  givenname: Ronald
  surname: Petersen
  fullname: Petersen, Ronald
– sequence: 5
  givenname: Clifford R
  surname: Jack, Jr
  fullname: Jack, Jr, Clifford R
– sequence: 6
  givenname: William
  surname: Jagust
  fullname: Jagust, William
– sequence: 7
  givenname: John Q
  surname: Trojanowki
  fullname: Trojanowki, John Q
– sequence: 8
  givenname: Arthur W
  surname: Toga
  fullname: Toga, Arthur W
– sequence: 9
  givenname: Laurel
  surname: Beckett
  fullname: Beckett, Laurel
– sequence: 10
  givenname: Robert C
  surname: Green
  fullname: Green, Robert C
– sequence: 11
  givenname: Andrew J
  surname: Saykin
  fullname: Saykin, Andrew J
– sequence: 12
  givenname: John
  surname: Morris
  fullname: Morris, John
– sequence: 13
  givenname: Leslie M
  surname: Shaw
  fullname: Shaw, Leslie M
– sequence: 14
  givenname: Zaven
  surname: Khachaturian
  fullname: Khachaturian, Zaven
– sequence: 15
  givenname: Greg
  surname: Sorensen
  fullname: Sorensen, Greg
– sequence: 16
  givenname: Maria
  surname: Carrillo
  fullname: Carrillo, Maria
– sequence: 17
  givenname: Lew
  surname: Kuller
  fullname: Kuller, Lew
– sequence: 18
  givenname: Marc
  surname: Raichle
  fullname: Raichle, Marc
– sequence: 19
  givenname: Steven
  surname: Paul
  fullname: Paul, Steven
– sequence: 20
  givenname: Peter
  surname: Davies
  fullname: Davies, Peter
– sequence: 21
  givenname: Howard
  surname: Fillit
  fullname: Fillit, Howard
– sequence: 22
  givenname: Franz
  surname: Hefti
  fullname: Hefti, Franz
– sequence: 23
  givenname: Davie
  surname: Holtzman
  fullname: Holtzman, Davie
– sequence: 24
  givenname: M Marcel
  surname: Mesulam
  fullname: Mesulam, M Marcel
– sequence: 25
  givenname: William
  surname: Potter
  fullname: Potter, William
– sequence: 26
  givenname: Peter
  surname: Snyder
  fullname: Snyder, Peter
– sequence: 27
  givenname: Adam
  surname: Schwartz
  fullname: Schwartz, Adam
– sequence: 28
  givenname: Tom
  surname: Montine
  fullname: Montine, Tom
– sequence: 29
  givenname: Ronald G
  surname: Thomas
  fullname: Thomas, Ronald G
– sequence: 30
  givenname: Michael
  surname: Donohue
  fullname: Donohue, Michael
– sequence: 31
  givenname: Sarah
  surname: Walter
  fullname: Walter, Sarah
– sequence: 32
  givenname: Devon
  surname: Gessert
  fullname: Gessert, Devon
– sequence: 33
  givenname: Tamie
  surname: Sather
  fullname: Sather, Tamie
– sequence: 34
  givenname: Gus
  surname: Jiminez
  fullname: Jiminez, Gus
– sequence: 35
  givenname: Danielle
  surname: Harvey
  fullname: Harvey, Danielle
– sequence: 36
  givenname: Matthew
  surname: Bernstein
  fullname: Bernstein, Matthew
– sequence: 37
  givenname: Nick
  surname: Fox
  fullname: Fox, Nick
– sequence: 38
  givenname: Paul
  surname: Thompson
  fullname: Thompson, Paul
– sequence: 39
  givenname: Norbert
  surname: Schuff
  fullname: Schuff, Norbert
– sequence: 40
  givenname: Charles
  surname: DeCArli
  fullname: DeCArli, Charles
– sequence: 41
  givenname: Bret
  surname: Borowski
  fullname: Borowski, Bret
– sequence: 42
  givenname: Jeff
  surname: Gunter
  fullname: Gunter, Jeff
– sequence: 43
  givenname: Matt
  surname: Senjem
  fullname: Senjem, Matt
– sequence: 44
  givenname: Prashanthi
  surname: Vemuri
  fullname: Vemuri, Prashanthi
– sequence: 45
  givenname: David
  surname: Jones
  fullname: Jones, David
– sequence: 46
  givenname: Kejal
  surname: Kantarci
  fullname: Kantarci, Kejal
– sequence: 47
  givenname: Chad
  surname: Ward
  fullname: Ward, Chad
– sequence: 48
  givenname: Robert A
  surname: Koeppe
  fullname: Koeppe, Robert A
– sequence: 49
  givenname: Norm
  surname: Foster
  fullname: Foster, Norm
– sequence: 50
  givenname: Eric M
  surname: Reiman
  fullname: Reiman, Eric M
– sequence: 51
  givenname: Kewei
  surname: Chen
  fullname: Chen, Kewei
– sequence: 52
  givenname: Chet
  surname: Mathis
  fullname: Mathis, Chet
– sequence: 53
  givenname: Susan
  surname: Landau
  fullname: Landau, Susan
– sequence: 54
  givenname: John C
  surname: Morris
  fullname: Morris, John C
– sequence: 55
  givenname: Nigel J
  surname: Cairns
  fullname: Cairns, Nigel J
– sequence: 56
  givenname: Lisa
  surname: Taylor-Reinwald
  fullname: Taylor-Reinwald, Lisa
– sequence: 57
  givenname: Virginia
  surname: Lee
  fullname: Lee, Virginia
– sequence: 58
  givenname: Magdalena
  surname: Korecka
  fullname: Korecka, Magdalena
– sequence: 59
  givenname: Michal
  surname: Figurski
  fullname: Figurski, Michal
– sequence: 60
  givenname: Karen
  surname: Crawford
  fullname: Crawford, Karen
– sequence: 61
  givenname: Scott
  surname: Neu
  fullname: Neu, Scott
– sequence: 62
  givenname: Tatiana M
  surname: Foroud
  fullname: Foroud, Tatiana M
– sequence: 63
  givenname: Steven
  surname: Potkin
  fullname: Potkin, Steven
– sequence: 64
  givenname: Li
  surname: Shen
  fullname: Shen, Li
– sequence: 65
  givenname: Kelley
  surname: Faber
  fullname: Faber, Kelley
– sequence: 66
  givenname: Sungeun
  surname: Kim
  fullname: Kim, Sungeun
– sequence: 67
  givenname: Kwangsik
  surname: Nho
  fullname: Nho, Kwangsik
– sequence: 68
  givenname: Lean
  surname: Thal
  fullname: Thal, Lean
– sequence: 69
  givenname: Leon
  surname: Thal
  fullname: Thal, Leon
– sequence: 70
  givenname: Neil
  surname: Buckholtz
  fullname: Buckholtz, Neil
– sequence: 71
  givenname: Peter J
  surname: Snyder
  fullname: Snyder, Peter J
– sequence: 72
  givenname: Marylyn
  surname: Albert
  fullname: Albert, Marylyn
– sequence: 73
  givenname: Richard
  surname: Frank
  fullname: Frank, Richard
– sequence: 74
  givenname: John
  surname: Hsiao
  fullname: Hsiao, John
– sequence: 75
  givenname: Jeffrey
  surname: Kaye
  fullname: Kaye, Jeffrey
– sequence: 76
  givenname: Joseph
  surname: Quinn
  fullname: Quinn, Joseph
– sequence: 77
  givenname: Betty
  surname: Lind
  fullname: Lind, Betty
– sequence: 78
  givenname: Raina
  surname: Carter
  fullname: Carter, Raina
– sequence: 79
  givenname: Sara
  surname: Dolen
  fullname: Dolen, Sara
– sequence: 80
  givenname: Lon S
  surname: Schneider
  fullname: Schneider, Lon S
– sequence: 81
  givenname: Sonia
  surname: Pawluczyk
  fullname: Pawluczyk, Sonia
– sequence: 82
  givenname: Mauricio
  surname: Beccera
  fullname: Beccera, Mauricio
Copyright The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2014
2015 INIST-CNRS
Copyright_xml – notice: The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2014
– notice: 2015 INIST-CNRS
CorporateAuthor Alzheimer's Disease Neuroimaging Initiative
CorporateAuthor_xml – name: Alzheimer's Disease Neuroimaging Initiative
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
ADTPV
AOWAS
F1U
DOI 10.1093/brain/awu043
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Göteborgs universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList
Neurosciences Abstracts

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1460-2156
EndPage 1561
ExternalDocumentID oai_gup_ub_gu_se_199611
PMC3999717
24625697
28440742
10_1093_brain_awu043
10.1093/brain/awu043
Genre Multicenter Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Canadian Institutes of Health Research
– fundername: NCATS NIH HHS
  grantid: UL1 TR001108
– fundername: NIA NIH HHS
  grantid: U24 AG021886
– fundername: NIA NIH HHS
  grantid: P30 AG013846
– fundername: NIA NIH HHS
  grantid: P30 AG010129
– fundername: NIBIB NIH HHS
  grantid: P41 EB015922
– fundername: NIA NIH HHS
  grantid: U01 AG024904
– fundername: NCATS NIH HHS
  grantid: UL1 TR002529
– fundername: NIA NIH HHS
  grantid: K01 AG030514
GroupedDBID ---
-E4
-~X
.2P
.55
.GJ
.I3
.XZ
.ZR
0R~
1CY
1TH
23N
2WC
354
3O-
4.4
41~
482
48X
53G
5GY
5RE
5VS
5WA
5WD
6.Y
6PF
70D
AABZA
AACZT
AAGKA
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPGJ
AAPNW
AAPQZ
AAPXW
AAQQT
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
AAWTL
AAYJJ
ABEUO
ABIVO
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNHQ
ABNKS
ABPTD
ABQLI
ABQNK
ABQTQ
ABSAR
ABSMQ
ABWST
ABXVV
ABZBJ
ACBNA
ACFRR
ACGFS
ACIWK
ACPQN
ACPRK
ACUFI
ACUTJ
ACUTO
ACYHN
ACZBC
ADBBV
ADEYI
ADEZT
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADOCK
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFSHK
AFXAL
AFXEN
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGQXC
AGSYK
AGUTN
AHMBA
AHXPO
AI.
AIJHB
AJEEA
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ANFBD
APIBT
APJGH
APWMN
AQDSO
AQKUS
ARIXL
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVNTJ
AVWKF
AXUDD
AYOIW
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BR6
BSWAC
BTRTY
BVRKM
BZKNY
C1A
C45
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EIHJH
EJD
ELUNK
EMOBN
ENERS
F20
F5P
F9B
FECEO
FEDTE
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
G8K
GAUVT
GJXCC
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
J5H
JXSIZ
KAQDR
KBUDW
KC5
KOP
KQ8
KSI
KSN
L7B
M-Z
M49
MBLQV
MBTAY
MHKGH
ML0
MVM
N4W
N9A
NGC
NLBLG
NOMLY
NOYVH
NTWIH
NU-
NVLIB
O0~
O9-
OAUYM
OAWHX
OBOKY
OCZFY
ODMLO
OHH
OHT
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
TCN
TCURE
TEORI
TJX
TLC
TMA
TR2
VH1
VVN
W8F
WH7
WOQ
X7H
X7M
XJT
XOL
YAYTL
YKOAZ
YQJ
YSK
YXANX
ZCG
ZGI
ZKB
ZKX
ZXP
~91
AAYXX
ABDFA
ABDPE
ABEJV
ABGNP
ABIME
ABNGD
ABPIB
ABPQP
ABVGC
ABXZS
ABZEO
ACUKT
ACVCV
ADMTO
ADNBA
AEHUL
AEMQT
AFFQV
AGORE
AGQPQ
AHGBF
AHMMS
AJBYB
AJDVS
AJNCP
ALXQX
CITATION
OBFPC
08R
AABJS
AABMN
AAESY
AAIYJ
AANRK
AAPBV
ABFLS
ABPTK
ACIMA
ADEIU
ADGIM
ADORX
ADQLU
AELNO
AGVJH
AHGVY
AIKOY
AIMBJ
ASMCH
AWCFO
AZQFJ
B4K
BGYMP
BYORX
DPORF
DPPUQ
IPNFZ
IQODW
K78
PQEST
UMP
ZA5
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
ADTPV
AOWAS
F1U
ID FETCH-LOGICAL-c517t-85cf3ff509b35795daa86b83a7d6718901cc8722564f264813831b2c489bcbbd3
ISSN 0006-8950
1460-2156
IngestDate Thu Aug 21 07:15:28 EDT 2025
Thu Aug 21 18:26:06 EDT 2025
Fri Jul 11 11:18:36 EDT 2025
Fri Jul 11 08:09:22 EDT 2025
Thu Apr 03 07:05:24 EDT 2025
Thu Nov 24 18:35:09 EST 2022
Tue Jul 01 00:46:06 EDT 2025
Thu Apr 24 23:02:47 EDT 2025
Wed Aug 28 03:22:51 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords beta-amyloid
perfusion imaging
magnetic resonance imaging
Alzheimer’s disease
PET imaging
Radionuclide study
Nervous system diseases
Cognitive disorder
Alzheimer disease
Central nervous system
Nuclear magnetic resonance imaging
Cerebral disorder
Encephalon
Perfusion imaging
Central nervous system disease
Medical imagery
Degenerative disease
Amyloid
mild cognitive impairment
Positron emission tomography
Alzheimer's disease
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c517t-85cf3ff509b35795daa86b83a7d6718901cc8722564f264813831b2c489bcbbd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
For details see Appendix 1
OpenAccessLink https://academic.oup.com/brain/article-pdf/137/5/1550/13797305/awu043.pdf
PMID 24625697
PQID 1519839751
PQPubID 23479
PageCount 12
ParticipantIDs swepub_primary_oai_gup_ub_gu_se_199611
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3999717
proquest_miscellaneous_1534854330
proquest_miscellaneous_1519839751
pubmed_primary_24625697
pascalfrancis_primary_28440742
crossref_citationtrail_10_1093_brain_awu043
crossref_primary_10_1093_brain_awu043
oup_primary_10_1093_brain_awu043
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-05-01
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Brain (London, England : 1878)
PublicationTitleAlternate Brain
PublicationYear 2014
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Bateman ( key 20170425182013_awu043-B8) 2012; 367
Jack ( key 20170425182013_awu043-B27) 2011; 68
Reiman ( key 20170425182013_awu043-B41) 1996; 334
Xu ( key 20170425182013_awu043-B50) 2007; 69
Fleisher ( key 20170425182013_awu043-B21) 2009; 30
Tao ( key 20170425182013_awu043-B47) 2009; 21
Archer ( key 20170425182013_awu043-B5) 2006; 60
Roberts ( key 20170425182013_awu043-B42) 1994; 91
key 20170425182013_awu043-B52
Yoshiura ( key 20170425182013_awu043-B51) 2009; 30
Johnson ( key 20170425182013_awu043-B29) 1987; 44
Dai ( key 20170425182013_awu043-B16) 2009; 250
Jagust ( key 20170425182013_awu043-B28) 2011; 15
Mosconi ( key 20170425182013_awu043-B37) 2008; 49
Alsop ( key 20170425182013_awu043-B2) 2000; 47
Mosconi ( key 20170425182013_awu043-B36) 2005; 64
Terry ( key 20170425182013_awu043-B48) 1991; 30
Chételat ( key 20170425182013_awu043-B13) 2003; 60
Hardy ( key 20170425182013_awu043-B24) 2002; 297
Johnson ( key 20170425182013_awu043-B30) 2005; 234
Raji ( key 20170425182013_awu043-B40) 2010; 31
Chételat ( key 20170425182013_awu043-B14) 2010; 67
Chao ( key 20170425182013_awu043-B11) 2009; 23
Alexopoulos ( key 20170425182013_awu043-B1) 2012; 262
Cohen ( key 20170425182013_awu043-B15) 2009; 29
Oh ( key 20170425182013_awu043-B38) 2014; 35
Chao ( key 20170425182013_awu043-B12) 2010; 24
Silverman ( key 20170425182013_awu043-B45) 2001; 286
Binnewijzend ( key 20170425182013_awu043-B9) 2013; 267
Landau ( key 20170425182013_awu043-B32) 2012; 72
Sojkova ( key 20170425182013_awu043-B46) 2008; 49
Alsop ( key 20170425182013_awu043-B4) 2010; 20
Schuff ( key 20170425182013_awu043-B44) 2009; 5
Wolk ( key 20170425182013_awu043-B49) 2012; 25
Detre ( key 20170425182013_awu043-B18) 1992; 23
Luh ( key 20170425182013_awu043-B34) 1999; 41
Alsop ( key 20170425182013_awu043-B3) 2008; 42
Dougall ( key 20170425182013_awu043-B19) 2004; 12
Ishii ( key 20170425182013_awu043-B25) 1997; 24
Bangen ( key 20170425182013_awu043-B7) 2012; 31
Kim ( key 20170425182013_awu043-B31) 2013; 55
Blennow ( key 20170425182013_awu043-B10) 2006; 368
Fink ( key 20170425182013_awu043-B20) 1996; 137
Matsuda ( key 20170425182013_awu043-B35) 2007; 48
Dashjamts ( key 20170425182013_awu043-B17) 2011; 18
Jack ( key 20170425182013_awu043-B26) 2013; 12
Austin ( key 20170425182013_awu043-B6) 2011; 26
Friedland ( key 20170425182013_awu043-B23) 1989; 39
Li ( key 20170425182013_awu043-B33) 2012; 60
Ossenkoppele ( key 20170425182013_awu043-B39) 2013
De Santi ( key 20170425182013_awu043-B43) 2001; 22
Friedland ( key 20170425182013_awu043-B22) 1983; 7
References_xml – volume: 44
  start-page: 165
  year: 1987
  ident: key 20170425182013_awu043-B29
  article-title: Cerebral perfusion imaging in Alzheimer’s disease. Use of single photon emission computed tomography and iofetamine hydrochloride I 123
  publication-title: Arch Neurol
  doi: 10.1001/archneur.1987.00520140035014
– volume: 29
  start-page: 14770
  year: 2009
  ident: key 20170425182013_awu043-B15
  article-title: Basal cerebral metabolism may modulate the cognitive effects of Abeta in mild cognitive impairment: an example of brain reserve
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3669-09.2009
– volume: 26
  start-page: 123
  year: 2011
  ident: key 20170425182013_awu043-B6
  article-title: Effects of hypoperfusion in Alzheimer’s disease
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-2011-0010
– volume: 286
  start-page: 2120
  year: 2001
  ident: key 20170425182013_awu043-B45
  article-title: Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome
  publication-title: JAMA
  doi: 10.1001/jama.286.17.2120
– volume: 368
  start-page: 387
  year: 2006
  ident: key 20170425182013_awu043-B10
  article-title: Alzheimer’s disease
  publication-title: Lancet
  doi: 10.1016/S0140-6736(06)69113-7
– volume: 267
  start-page: 221
  year: 2013
  ident: key 20170425182013_awu043-B9
  article-title: Cerebral blood flow measured with 3D pseudocontinuous arterial spin-labeling MR imaging in Alzheimer disease and mild cognitive impairment: a marker for disease severity
  publication-title: Radiology
  doi: 10.1148/radiol.12120928
– volume: 297
  start-page: 353
  year: 2002
  ident: key 20170425182013_awu043-B24
  article-title: The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics
  publication-title: Science
  doi: 10.1126/science.1072994
– volume: 30
  start-page: 572
  year: 1991
  ident: key 20170425182013_awu043-B48
  article-title: Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment
  publication-title: Ann Neurol
  doi: 10.1002/ana.410300410
– volume: 30
  start-page: 1388
  year: 2009
  ident: key 20170425182013_awu043-B51
  article-title: Simultaneous measurement of arterial transit time, arterial bloodvolume, and cerebral blood flow using arterial spin-labeling in patients with Alzheimer disease
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A1562
– year: 2013
  ident: key 20170425182013_awu043-B39
  article-title: Is verbal episodic memory in elderly with amyloid deposits preserved through altered neuronal function?
  publication-title: Cereb Cortex
– volume: 39
  start-page: 1427
  year: 1989
  ident: key 20170425182013_awu043-B23
  article-title: Regional cerebral glucose transport and utilization in Alzheimer’s disease
  publication-title: Neurology
  doi: 10.1212/WNL.39.11.1427
– volume: 262
  start-page: 69
  year: 2012
  ident: key 20170425182013_awu043-B1
  article-title: Perfusion abnormalities in mild cognitive impairment and mild dementia in Alzheimer’s disease measured by pulsed arterial spin labeling MRI
  publication-title: Eur Arch Psychiatry Clin Neurosci
  doi: 10.1007/s00406-011-0226-2
– volume: 47
  start-page: 93
  year: 2000
  ident: key 20170425182013_awu043-B2
  article-title: Assessment of cerebral blood flow in Alzheimer’s disease by spin-labeled magnetic resonance imaging
  publication-title: Ann Neurol
  doi: 10.1002/1531-8249(200001)47:1<93::AID-ANA15>3.0.CO;2-8
– volume: 21
  start-page: 664
  year: 2009
  ident: key 20170425182013_awu043-B47
  article-title: A variational image-based approach to the correction of susceptibility artifacts in the alignment of diffusion weighted and structural MRI
  publication-title: Inf Process Med Imaging
  doi: 10.1007/978-3-642-02498-6_55
– volume: 24
  start-page: 19
  year: 2010
  ident: key 20170425182013_awu043-B12
  article-title: ASL perfusion MRI predicts cognitive decline and conversion from MCI to dementia
  publication-title: Alzheimer Dis Assoc Disord
  doi: 10.1097/WAD.0b013e3181b4f736
– volume: 42
  start-page: 1267
  year: 2008
  ident: key 20170425182013_awu043-B3
  article-title: Hippocampal hyperperfusion in Alzheimer’s disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.06.006
– volume: 24
  start-page: 670
  year: 1997
  ident: key 20170425182013_awu043-B25
  article-title: Demonstration of decreased posterior cingulate perfusion in mild Alzheimer’s disease by means of H215O positron emission tomography
  publication-title: Eur J Nucleic Med
– volume: 55
  start-page: 25
  year: 2013
  ident: key 20170425182013_awu043-B31
  article-title: Regional cerebral perfusion in patients with Alzheimer’s disease and mild cognitive impairment: effect of APOE epsilon4 allele
  publication-title: Neuroradiology
  doi: 10.1007/s00234-012-1077-x
– volume: 72
  start-page: 578
  year: 2012
  ident: key 20170425182013_awu043-B32
  article-title: Amyloid deposition, hypometabolism, and longitudinal cognitive decline
  publication-title: Ann Neurol
  doi: 10.1002/ana.23650
– volume: 15
  start-page: 520
  year: 2011
  ident: key 20170425182013_awu043-B28
  article-title: Lifespan brain activity, β-amyloid, and Alzheimer’s disease
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2011.09.004
– volume: 137
  start-page: 28
  year: 1996
  ident: key 20170425182013_awu043-B20
  article-title: Temporal lobe epilepsy: evidence for interictal uncoupling of blood flow and glucose metabolism in temporomesial structures
  publication-title: J Neurol Sci
  doi: 10.1016/0022-510X(95)00323-T
– volume: 64
  start-page: 1860
  year: 2005
  ident: key 20170425182013_awu043-B36
  article-title: Reduced hippocampal metabolism in MCI and AD: automated FDG-PET image analysis
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000163856.13524.08
– volume: 31
  start-page: 847
  year: 2010
  ident: key 20170425182013_awu043-B40
  article-title: Initial experience in using continuous arterial spin-labeled MR imaging for early detection of Alzheimer disease
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A1955
– volume: 41
  start-page: 1246
  year: 1999
  ident: key 20170425182013_awu043-B34
  article-title: QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling
  publication-title: Magn Reson Med
  doi: 10.1002/(SICI)1522-2594(199906)41:6<1246::AID-MRM22>3.0.CO;2-N
– volume: 49
  start-page: 1465
  year: 2008
  ident: key 20170425182013_awu043-B46
  article-title: Longitudinal cerebral blood flow and amyloid deposition: an emerging pattern?
  publication-title: J Nucleic Med
  doi: 10.2967/jnumed.108.051946
– volume: 91
  start-page: 33
  year: 1994
  ident: key 20170425182013_awu043-B42
  article-title: Quantitative magnetic resonance imaging of human brain perfusion at 1.5 T using steady-state inversion of arterial water
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.91.1.33
– volume: 48
  start-page: 1289
  year: 2007
  ident: key 20170425182013_awu043-B35
  article-title: Role of Neuroimaging in Alzheimer’s Disease, with Emphasis on Brain Perfusion SPECT
  publication-title: J Nucleic Med
  doi: 10.2967/jnumed.106.037218
– ident: key 20170425182013_awu043-B52
– volume: 22
  start-page: 529
  year: 2001
  ident: key 20170425182013_awu043-B43
  article-title: Hippocampal formation glucose metabolism and volume losses in MCI and AD
  publication-title: Neurobiol Aging
  doi: 10.1016/S0197-4580(01)00230-5
– volume: 18
  start-page: 1492
  year: 2011
  ident: key 20170425182013_awu043-B17
  article-title: Simultaneous arterial spin labeling cerebral blood flow and morphological assessments for detection of Alzheimer’s disease
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2011.07.015
– volume: 69
  start-page: 1650
  year: 2007
  ident: key 20170425182013_awu043-B50
  article-title: Perfusion fMRI detects deficits in regional CBF during memory-encoding tasks in MCI subjects
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000296941.06685.22
– volume: 5
  start-page: 454
  year: 2009
  ident: key 20170425182013_awu043-B44
  article-title: Cerebral blood flow in ischemic vascular dementia and Alzheimer’s disease, measured by arterial spin-labeling magnetic resonance imaging
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2009.04.1233
– volume: 67
  start-page: 317
  year: 2010
  ident: key 20170425182013_awu043-B14
  article-title: Relationship between atrophy and β-amyloid deposition in Alzheimer disease
  publication-title: Ann Neurol
  doi: 10.1002/ana.21955
– volume: 60
  start-page: 145
  year: 2006
  ident: key 20170425182013_awu043-B5
  article-title: Amyloid load and cerebral atrophy in Alzheimer’s disease: an 11C-PIB positron emission tomography study
  publication-title: Ann Neurol
  doi: 10.1002/ana.20889
– volume: 367
  start-page: 795
  year: 2012
  ident: key 20170425182013_awu043-B8
  article-title: Clinical and biomarker changes in dominantly inherited Alzheimer’s disease
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1202753
– volume: 31
  start-page: S59
  year: 2012
  ident: key 20170425182013_awu043-B7
  article-title: Assessment of Alzheimer’s disease risk with functional magnetic resonance imaging: an arterial spin labeling study
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-2012-120292
– volume: 20
  start-page: 871
  year: 2010
  ident: key 20170425182013_awu043-B4
  article-title: Arterial spin labeling blood flow MRI: its role in the early characterization of Alzheimer’s disease
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-2010-091699
– volume: 250
  start-page: 856
  year: 2009
  ident: key 20170425182013_awu043-B16
  article-title: Mild cognitive impairment and alzheimer disease: patterns of altered cerebral blood flow at MR imaging
  publication-title: Radiology
  doi: 10.1148/radiol.2503080751
– volume: 23
  start-page: 245
  year: 2009
  ident: key 20170425182013_awu043-B11
  article-title: Patterns of cerebral hypoperfusion in amnestic and dysexecutive MCI
  publication-title: Alzheimer Dis Assoc Disord
  doi: 10.1097/WAD.0b013e318199ff46
– volume: 68
  start-page: 1526
  year: 2011
  ident: key 20170425182013_awu043-B27
  article-title: Evidence for ordering of Alzheimer disease biomarkers
  publication-title: Arch Neurol
  doi: 10.1001/archneurol.2011.183
– volume: 30
  start-page: 1737
  year: 2009
  ident: key 20170425182013_awu043-B21
  article-title: Cerebral perfusion and oxygenation differences in Alzheimer’s disease risk
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2008.01.012
– volume: 25
  start-page: 421
  year: 2012
  ident: key 20170425182013_awu043-B49
  article-title: Arterial spin labeling MRI: an emerging biomarker for Alzheimer’s disease and other neurodegenerative conditions
  publication-title: Curr Opin Neurol
  doi: 10.1097/WCO.0b013e328354ff0a
– volume: 334
  start-page: 752
  year: 1996
  ident: key 20170425182013_awu043-B41
  article-title: Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199603213341202
– volume: 12
  start-page: 554
  year: 2004
  ident: key 20170425182013_awu043-B19
  article-title: Systematic review of the diagnostic accuracy of 99mTc-HMPAO-SPECT in dementia
  publication-title: Am J Geriatr Psychiatry
  doi: 10.1097/00019442-200411000-00002
– volume: 60
  start-page: 1374
  year: 2003
  ident: key 20170425182013_awu043-B13
  article-title: Mild cognitive impairment: Can FDG-PET predict who is to rapidly convert to Alzheimer’s disease?
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000055847.17752.E6
– volume: 12
  start-page: 207
  year: 2013
  ident: key 20170425182013_awu043-B26
  article-title: Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(12)70291-0
– volume: 23
  start-page: 37
  year: 1992
  ident: key 20170425182013_awu043-B18
  article-title: Perfusion imaging
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910230106
– volume: 35
  start-page: 297
  year: 2014
  ident: key 20170425182013_awu043-B38
  article-title: Covarying alterations in Aβ deposition, glucose metabolism, and gray matter volume in cognitively normal elderly
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.22173
– volume: 60
  start-page: 1083
  year: 2012
  ident: key 20170425182013_awu043-B33
  article-title: Changes in regional cerebral blood flow and functional connectivity in the cholinergic pathway associated with cognitive performance in subjects with mild Alzheimer’s disease after 12-week donepezil treatment
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.12.077
– volume: 7
  start-page: 590
  year: 1983
  ident: key 20170425182013_awu043-B22
  article-title: Regional cerebral metabolic alterations in dementia of the Alzheimer type: positron emission tomography with [18F]fluorodeoxyglucose
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/00004728-198308000-00003
– volume: 234
  start-page: 851
  year: 2005
  ident: key 20170425182013_awu043-B30
  article-title: Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience
  publication-title: Radiology
  doi: 10.1148/radiol.2343040197
– volume: 49
  start-page: 390
  year: 2008
  ident: key 20170425182013_awu043-B37
  article-title: Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer’s disease, and other dementias
  publication-title: J Nucleic Med
  doi: 10.2967/jnumed.107.045385
SSID ssj0014326
Score 2.5280821
Snippet Patients with Alzheimer’s disease show reduced cerebral blood flow, but it is unclear how this relates to β-amyloid pathology. By comparing patients with...
Patients with Alzheimer's disease have reduced cerebral blood flow measured by arterial spin labelling magnetic resonance imaging, but it is unclear how this...
Patients with Alzheimer's disease show reduced cerebral blood flow, but it is unclear how this relates to beta -amyloid pathology. By comparing patients with...
SourceID swepub
pubmedcentral
proquest
pubmed
pascalfrancis
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1550
SubjectTerms Adult and adolescent clinical studies
Aged
Aged, 80 and over
Alzheimer Disease - diagnostic imaging
Alzheimer Disease - pathology
Amyloid beta-Peptides - metabolism
Aniline Compounds
Biological and medical sciences
Brain - diagnostic imaging
Brain - metabolism
Canada
Cerebrovascular Circulation - physiology
Cognitive Dysfunction - diagnostic imaging
Cognitive Dysfunction - pathology
Databases, Factual - statistics & numerical data
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
Ethylene Glycols
Female
Geriatrics
Humans
Male
Medical sciences
Mental Status Schedule
Middle Aged
Neurologi
Neurology
Organic mental disorders. Neuropsychology
Original
Positron-Emission Tomography
Psychology. Psychoanalysis. Psychiatry
Psychopathology. Psychiatry
Regional Blood Flow
Spin Labels
United States
Vascular diseases and vascular malformations of the nervous system
Title Association of brain amyloid-β with cerebral perfusion and structure in Alzheimer’s disease and mild cognitive impairment
URI https://www.ncbi.nlm.nih.gov/pubmed/24625697
https://www.proquest.com/docview/1519839751
https://www.proquest.com/docview/1534854330
https://pubmed.ncbi.nlm.nih.gov/PMC3999717
https://gup.ub.gu.se/publication/199611
Volume 137
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwELfKkBASQjxHeUxG4vFhylbXzuvjBJsGbOMDrdRvUezEXUTWTksjYBL_CX8sd3HiJKLA4EtVpWcn9f18uTvfg5AXOk6TUCTodAf1TcB2cgKVKMcfg7KttI4Vw0Th4xPvcCrez9zZYPCjE7VUruSOulybV_I_XIVrwFfMkv0HztpJ4QJ8B_7CJ3AYPq_E487aotInsd3DdnwGNniWOBiCFdeh5ekFng_nWKRYl0UTgWxqx-IJAjo98svTNKt6qfhFc25TkZ1lOaa-NWFGmFeZXdiAGVscCe-9rj-IcToEftBxOmCX8aLJ9co-57HV7CfLojSCsPw2Ly1wMW--9f-0_tpPALUmfW0vz752nRhMtCGDVjB7ThCaGrQ7qZHFwhs5oJF4PWFtSsTUqHQ7ohdtrc5rHMaxta8IUz6r4gi-B7-UI1Mnql-L--RjdDA9Ooom-7PJNXJ9DEYI9sd4--6DPaMSvGrmZx-9TquA-Xer2XfN3D2FxyRR3jqPC9iB2rROWWfb_Bqi2ytkWyk_kzvkdm210D0DwbtkkC7ukRvHdVzGffK9g0S61LR6MtogkSISKSKRNkikFokUIEItEikMs0h8XdAahxUR4pBaHNIWhw_I9GB_8ubQqRt7OMpl_soJQApwrUFXldz1QzeJ48CTAY_9xANdCVRUpQJYcNcTGiMwGQ84k2MlglAqKRP-kGwslov0EaFjJpXPmBYuV2KsORiMmgNz9DiRgYzTIdluVj9SddV7bL6SRyb6gkfVikSGV0Py0lKfm2ovv6GjwMi_kGz1uGyJQR8U6JAakucN2yMQ6XhOFy_SZVlEoISHYLf4LvsTDReBKzgfDcmmgUp7BwFy1gv9IfF7ILIEWFK-_8siO61Ky4O5EvoMRr4ycOsNmcNfhkvzMirSCLMXGHt8hQd8Qm62W_4p2QBEpc9Ak1_JrWpD_QSvlPyf
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Association+of+brain+amyloid-+beta+with+cerebral+perfusion+and+structure+in+Alzheimer%27s+disease+and+mild+cognitive+impairment&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Mattsson%2C+Niklas&rft.au=Tosun%2C+Duygu&rft.au=Insel%2C+Philip+S&rft.au=Simonson%2C+Alix&rft.date=2014-05-01&rft.issn=0006-8950&rft.eissn=1460-2156&rft.volume=137&rft.issue=5&rft.spage=1550&rft.epage=1561&rft_id=info:doi/10.1093%2Fbrain%2Fawu043&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon