Enzymatic Epoxidation of Long-Chain Terminal Alkenes by Fungal Peroxygenases
Terminal alkenes are among the most attractive starting materials for the synthesis of epoxides, which are essential and versatile intermediate building blocks for the pharmaceutical, flavoring, and polymer industries. Previous research on alkene epoxidation has focused on the use of several oxidizi...
Saved in:
Published in | Antioxidants Vol. 11; no. 3; p. 522 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
08.03.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Terminal alkenes are among the most attractive starting materials for the synthesis of epoxides, which are essential and versatile intermediate building blocks for the pharmaceutical, flavoring, and polymer industries. Previous research on alkene epoxidation has focused on the use of several oxidizing agents and/or different enzymes, including cytochrome P450 monooxygenases, as well as microbial whole-cell catalysts that have several drawbacks. Alternatively, we explored the ability of unspecific peroxygenases (UPOs) to selectively epoxidize terminal alkenes. UPOs are attractive biocatalysts because they are robust extracellular enzymes and only require H2O2 as cosubstrate. Here, we show how several UPOs, such as those from Cyclocybe (Agrocybe) aegerita (AaeUPO), Marasmius rotula (MroUPO), Coprinopsis cinerea (rCciUPO), Humicola insolens (rHinUPO), and Daldinia caldariorum (rDcaUPO), are able to catalyze the epoxidation of long-chain terminal alkenes (from C12:1 to C20:1) after an initial optimization of several reaction parameters (cosolvent, cosubstrate, and pH). In addition to terminal epoxides, alkenols and other hydroxylated derivatives of the alkenes were formed. Although all UPOs were able to convert and epoxidize the alkenes, notable differences were observed between them, with rCciUPO being responsible for the highest substrate turnover and MroUPO being the most selective with respect to terminal epoxidation. The potential of peroxygenases for epoxidizing long-chain terminal alkenes represents an interesting and green alternative to the existing synthesis technologies. |
---|---|
AbstractList | Terminal alkenes are among the most attractive starting materials for the synthesis of epoxides, which are essential and versatile intermediate building blocks for the pharmaceutical, flavoring, and polymer industries. Previous research on alkene epoxidation has focused on the use of several oxidizing agents and/or different enzymes, including cytochrome P450 monooxygenases, as well as microbial whole-cell catalysts that have several drawbacks. Alternatively, we explored the ability of unspecific peroxygenases (UPOs) to selectively epoxidize terminal alkenes. UPOs are attractive biocatalysts because they are robust extracellular enzymes and only require H₂O₂ as cosubstrate. Here, we show how several UPOs, such as those from Cyclocybe (Agrocybe) aegerita (AaeUPO), Marasmius rotula (MroUPO), Coprinopsis cinerea (rCciUPO), Humicola insolens (rHinUPO), and Daldinia caldariorum (rDcaUPO), are able to catalyze the epoxidation of long-chain terminal alkenes (from C₁₂:₁ to C₂₀:₁) after an initial optimization of several reaction parameters (cosolvent, cosubstrate, and pH). In addition to terminal epoxides, alkenols and other hydroxylated derivatives of the alkenes were formed. Although all UPOs were able to convert and epoxidize the alkenes, notable differences were observed between them, with rCciUPO being responsible for the highest substrate turnover and MroUPO being the most selective with respect to terminal epoxidation. The potential of peroxygenases for epoxidizing long-chain terminal alkenes represents an interesting and green alternative to the existing synthesis technologies. Terminal alkenes are among the most attractive starting materials for the synthesis of epoxides, which are essential and versatile intermediate building blocks for the pharmaceutical, flavoring, and polymer industries. Previous research on alkene epoxidation has focused on the use of several oxidizing agents and/or different enzymes, including cytochrome P450 monooxygenases, as well as microbial whole-cell catalysts that have several drawbacks. Alternatively, we explored the ability of unspecific peroxygenases (UPOs) to selectively epoxidize terminal alkenes. UPOs are attractive biocatalysts because they are robust extracellular enzymes and only require H2O2 as cosubstrate. Here, we show how several UPOs, such as those from Cyclocybe (Agrocybe) aegerita (AaeUPO), Marasmius rotula (MroUPO), Coprinopsis cinerea (rCciUPO), Humicola insolens (rHinUPO), and Daldinia caldariorum (rDcaUPO), are able to catalyze the epoxidation of long-chain terminal alkenes (from C12:1 to C20:1) after an initial optimization of several reaction parameters (cosolvent, cosubstrate, and pH). In addition to terminal epoxides, alkenols and other hydroxylated derivatives of the alkenes were formed. Although all UPOs were able to convert and epoxidize the alkenes, notable differences were observed between them, with rCciUPO being responsible for the highest substrate turnover and MroUPO being the most selective with respect to terminal epoxidation. The potential of peroxygenases for epoxidizing long-chain terminal alkenes represents an interesting and green alternative to the existing synthesis technologies.Terminal alkenes are among the most attractive starting materials for the synthesis of epoxides, which are essential and versatile intermediate building blocks for the pharmaceutical, flavoring, and polymer industries. Previous research on alkene epoxidation has focused on the use of several oxidizing agents and/or different enzymes, including cytochrome P450 monooxygenases, as well as microbial whole-cell catalysts that have several drawbacks. Alternatively, we explored the ability of unspecific peroxygenases (UPOs) to selectively epoxidize terminal alkenes. UPOs are attractive biocatalysts because they are robust extracellular enzymes and only require H2O2 as cosubstrate. Here, we show how several UPOs, such as those from Cyclocybe (Agrocybe) aegerita (AaeUPO), Marasmius rotula (MroUPO), Coprinopsis cinerea (rCciUPO), Humicola insolens (rHinUPO), and Daldinia caldariorum (rDcaUPO), are able to catalyze the epoxidation of long-chain terminal alkenes (from C12:1 to C20:1) after an initial optimization of several reaction parameters (cosolvent, cosubstrate, and pH). In addition to terminal epoxides, alkenols and other hydroxylated derivatives of the alkenes were formed. Although all UPOs were able to convert and epoxidize the alkenes, notable differences were observed between them, with rCciUPO being responsible for the highest substrate turnover and MroUPO being the most selective with respect to terminal epoxidation. The potential of peroxygenases for epoxidizing long-chain terminal alkenes represents an interesting and green alternative to the existing synthesis technologies. Terminal alkenes are among the most attractive starting materials for the synthesis of epoxides, which are essential and versatile intermediate building blocks for the pharmaceutical, flavoring, and polymer industries. Previous research on alkene epoxidation has focused on the use of several oxidizing agents and/or different enzymes, including cytochrome P450 monooxygenases, as well as microbial whole-cell catalysts that have several drawbacks. Alternatively, we explored the ability of unspecific peroxygenases (UPOs) to selectively epoxidize terminal alkenes. UPOs are attractive biocatalysts because they are robust extracellular enzymes and only require H 2 O 2 as cosubstrate. Here, we show how several UPOs, such as those from Cyclocybe ( Agrocybe ) aegerita ( Aae UPO), Marasmius rotula ( Mro UPO), Coprinopsis cinerea (r Cci UPO), Humicola insolens (r Hin UPO), and Daldinia caldariorum (r Dca UPO), are able to catalyze the epoxidation of long-chain terminal alkenes (from C 12:1 to C 20:1 ) after an initial optimization of several reaction parameters (cosolvent, cosubstrate, and pH). In addition to terminal epoxides, alkenols and other hydroxylated derivatives of the alkenes were formed. Although all UPOs were able to convert and epoxidize the alkenes, notable differences were observed between them, with r Cci UPO being responsible for the highest substrate turnover and Mro UPO being the most selective with respect to terminal epoxidation. The potential of peroxygenases for epoxidizing long-chain terminal alkenes represents an interesting and green alternative to the existing synthesis technologies. Terminal alkenes are among the most attractive starting materials for the synthesis of epoxides, which are essential and versatile intermediate building blocks for the pharmaceutical, flavoring, and polymer industries. Previous research on alkene epoxidation has focused on the use of several oxidizing agents and/or different enzymes, including cytochrome P450 monooxygenases, as well as microbial whole-cell catalysts that have several drawbacks. Alternatively, we explored the ability of unspecific peroxygenases (UPOs) to selectively epoxidize terminal alkenes. UPOs are attractive biocatalysts because they are robust extracellular enzymes and only require H2O2 as cosubstrate. Here, we show how several UPOs, such as those from Cyclocybe (Agrocybe) aegerita (AaeUPO), Marasmius rotula (MroUPO), Coprinopsis cinerea (rCciUPO), Humicola insolens (rHinUPO), and Daldinia caldariorum (rDcaUPO), are able to catalyze the epoxidation of long-chain terminal alkenes (from C12:1 to C20:1) after an initial optimization of several reaction parameters (cosolvent, cosubstrate, and pH). In addition to terminal epoxides, alkenols and other hydroxylated derivatives of the alkenes were formed. Although all UPOs were able to convert and epoxidize the alkenes, notable differences were observed between them, with rCciUPO being responsible for the highest substrate turnover and MroUPO being the most selective with respect to terminal epoxidation. The potential of peroxygenases for epoxidizing long-chain terminal alkenes represents an interesting and green alternative to the existing synthesis technologies. Terminal alkenes are among the most attractive starting materials for the synthesis of epoxides, which are essential and versatile intermediate building blocks for the pharmaceutical, flavoring, and polymer industries. Previous research on alkene epoxidation has focused on the use of several oxidizing agents and/or different enzymes, including cytochrome P450 monooxygenases, as well as microbial whole-cell catalysts that have several drawbacks. Alternatively, we explored the ability of unspecific peroxygenases (UPOs) to selectively epoxidize terminal alkenes. UPOs are attractive biocatalysts because they are robust extracellular enzymes and only require H O as cosubstrate. Here, we show how several UPOs, such as those from ( ) ( UPO), ( UPO), (r UPO), (r UPO), and (r UPO), are able to catalyze the epoxidation of long-chain terminal alkenes (from C to C ) after an initial optimization of several reaction parameters (cosolvent, cosubstrate, and pH). In addition to terminal epoxides, alkenols and other hydroxylated derivatives of the alkenes were formed. Although all UPOs were able to convert and epoxidize the alkenes, notable differences were observed between them, with r UPO being responsible for the highest substrate turnover and UPO being the most selective with respect to terminal epoxidation. The potential of peroxygenases for epoxidizing long-chain terminal alkenes represents an interesting and green alternative to the existing synthesis technologies. |
Author | Babot, Esteban D. Hofrichter, Martin Aranda, Carmen Martínez, Angel T. Scheibner, Katrin Ullrich, René Gutiérrez, Ana Kiebist, Jan |
AuthorAffiliation | 5 Centro de Investigaciones Biológicas “Margarita Salas”, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; atmartinez@cib.csic.es 1 Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), 41012 Seville, Spain; edbabot@irnase.csic.es 2 Johnson Matthey, Cambridge Science Park U260, Cambridge CB4 0FP, UK; carmen.aranda@matthey.com 3 Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany; jan.kiebist@b-tu.de (J.K.); katrin.scheibner@b-tu.de (K.S.) 4 Unit of Bio- and Environmental Sciences, International Institute Zittau, TU Dresden, 02763 Zittau, Germany; ullrich@tu-dresden.de (R.U.); martin.hofrichter@tu-dresden.de (M.H.) |
AuthorAffiliation_xml | – name: 1 Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), 41012 Seville, Spain; edbabot@irnase.csic.es – name: 3 Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany; jan.kiebist@b-tu.de (J.K.); katrin.scheibner@b-tu.de (K.S.) – name: 2 Johnson Matthey, Cambridge Science Park U260, Cambridge CB4 0FP, UK; carmen.aranda@matthey.com – name: 4 Unit of Bio- and Environmental Sciences, International Institute Zittau, TU Dresden, 02763 Zittau, Germany; ullrich@tu-dresden.de (R.U.); martin.hofrichter@tu-dresden.de (M.H.) – name: 5 Centro de Investigaciones Biológicas “Margarita Salas”, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; atmartinez@cib.csic.es |
Author_xml | – sequence: 1 givenname: Esteban D. orcidid: 0000-0001-5539-1721 surname: Babot fullname: Babot, Esteban D. – sequence: 2 givenname: Carmen surname: Aranda fullname: Aranda, Carmen – sequence: 3 givenname: Jan surname: Kiebist fullname: Kiebist, Jan – sequence: 4 givenname: Katrin surname: Scheibner fullname: Scheibner, Katrin – sequence: 5 givenname: René surname: Ullrich fullname: Ullrich, René – sequence: 6 givenname: Martin orcidid: 0000-0001-5174-7604 surname: Hofrichter fullname: Hofrichter, Martin – sequence: 7 givenname: Angel T. orcidid: 0000-0002-1584-2863 surname: Martínez fullname: Martínez, Angel T. – sequence: 8 givenname: Ana surname: Gutiérrez fullname: Gutiérrez, Ana |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35326172$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks9rFDEUx4NUbK29epQBL16m5vePi1CWrRYW9FDPIZPJTLPOJGsyU3b96427tXQLgrnk8d7nfXm_XoOTEIMD4C2Cl4Qo-NGEycctQpBAhvELcIah4DVRGJ08sU_BRc5rWJ5CREL1CpwSRjBHAp-B1TL82o1m8rZabuLWt8WMoYpdtYqhrxd3xofq1qXRBzNUV8MPF1yuml11PYe-eL65FLe73gWTXX4DXnZmyO7i4T8H36-Xt4sv9err55vF1aq2DImpFg1mkhpJG8Rl6whDnTXMtNYqxY2VjCqBhRCIC1oiCApCHMOIdFbBFhpyDm4Oum00a71JfjRpp6Pxeu-IqdcmlZYGpxFmXaO4JLiTVEnTUNE2ElpKZHFaW7Q-HbQ2czO61rowJTMciR5Hgr_TfbzXUlHKKSwCHx4EUvw5uzzp0WfrhsEEF-esMadSijJv_j8ohQhiLgr6_hm6jnMqO9hTmGABOS3Uu6fFP1b9d78FuDwANsWck-seEQT1nxvSxzdUEuizBOun_U2U5v3wr7TfKzDJ4w |
CitedBy_id | crossref_primary_10_1021_acs_jchemed_2c00352 crossref_primary_10_1016_j_biortech_2024_131557 crossref_primary_10_1016_j_jbiotec_2024_02_013 crossref_primary_10_3390_antiox11061044 crossref_primary_10_1016_j_emcon_2024_100424 crossref_primary_10_1002_cbic_202200719 crossref_primary_10_3389_fbioe_2022_964396 crossref_primary_10_1039_D4GC05781C crossref_primary_10_1021_acs_orglett_3c01601 crossref_primary_10_1021_acscatal_4c00883 crossref_primary_10_1016_j_ecoenv_2024_117232 crossref_primary_10_1016_j_foodchem_2024_141786 crossref_primary_10_13005_ojc_400410 crossref_primary_10_3390_catal12070789 crossref_primary_10_5802_crchim_375 |
Cites_doi | 10.3389/fbioe.2020.605854 10.1021/acs.chemrev.5b00355 10.1039/b913077b 10.1021/jo961287e 10.1128/AEM.00660-15 10.3390/catal11070765 10.1016/j.ces.2020.116206 10.3390/catal9010031 10.1021/jo030345a 10.1002/aic.15037 10.1128/AEM.70.8.4575-4581.2004 10.1021/ja971049g 10.3390/antiox11010163 10.1002/cbic.201600677 10.1016/j.molcatb.2016.10.014 10.1111/j.1742-4658.2011.08285.x 10.1021/acscatal.0c03165 10.1021/ja00164a021 10.1039/C8CY00272J 10.1128/AEM.00026-07 10.1002/anie.201605430 10.1002/kin.21208 10.1039/C8CY02114G 10.1016/j.abb.2011.08.001 10.1016/j.cej.2018.04.028 10.1002/anie.201507151 10.1002/aoc.1044 10.1002/bit.24904 10.3390/ma13204545 10.1039/C5CY01639H 10.1002/chem.200500584 10.1128/AEM.66.5.1877-1882.2000 10.1128/AEM.03405-14 10.1002/cctc.201402795 10.1016/0006-291X(86)90507-3 10.1039/C9CY02332A 10.1007/s00253-010-2633-0 10.1002/cctc.201800849 10.1002/aic.690180424 10.1002/chem.201704773 10.1002/ejlt.200800042 10.1002/1615-4169(200108)343:6/7<732::AID-ADSC732>3.0.CO;2-Q 10.1021/acscatal.9b01454 10.1039/C4PY00922C 10.1186/2191-0855-1-31 10.1128/AEM.02899-19 10.1039/C5CY00427F 10.1016/j.biotechadv.2021.107703 10.1039/b208925b 10.1021/acs.jafc.0c01019 10.1016/j.enzmictec.2013.02.013 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION NPM 7QR 7T5 7TO 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ H94 HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM DOA |
DOI | 10.3390/antiox11030522 |
DatabaseName | CrossRef PubMed Chemoreception Abstracts Immunology Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection AIDS and Cancer Research Abstracts Chemoreception Abstracts ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Immunology Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic CrossRef Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2076-3921 |
ExternalDocumentID | oai_doaj_org_article_125fb96832f8498ab47db80c438683cc PMC8944640 35326172 10_3390_antiox11030522 |
Genre | Journal Article |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GrantInformation_xml | – fundername: BioBased Industries Joint Undertaking -EU grantid: 792063 |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAHBH AAYXX ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO IHR ITC KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM 7QR 7T5 7TO 8FD ABUWG AZQEC DWQXO FR3 GNUQQ H94 P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c517t-7b2584a84b168de351fca5adcc996ac8549727771674fca10733e5213fc90d0a3 |
IEDL.DBID | M48 |
ISSN | 2076-3921 |
IngestDate | Wed Aug 27 01:23:43 EDT 2025 Thu Aug 21 14:06:37 EDT 2025 Fri Jul 11 16:39:42 EDT 2025 Fri Jul 11 00:39:13 EDT 2025 Fri Jul 25 11:58:43 EDT 2025 Thu Jan 02 22:55:35 EST 2025 Tue Jul 01 02:20:23 EDT 2025 Thu Apr 24 22:56:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | epoxidation epoxides oxyfunctionalization peroxygenases terminal alkenes |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-7b2584a84b168de351fca5adcc996ac8549727771674fca10733e5213fc90d0a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5174-7604 0000-0001-5539-1721 0000-0002-1584-2863 |
OpenAccessLink | https://www.proquest.com/docview/2642327064?pq-origsite=%requestingapplication% |
PMID | 35326172 |
PQID | 2642327064 |
PQPubID | 2032435 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_125fb96832f8498ab47db80c438683cc pubmedcentral_primary_oai_pubmedcentral_nih_gov_8944640 proquest_miscellaneous_2648873266 proquest_miscellaneous_2644010267 proquest_journals_2642327064 pubmed_primary_35326172 crossref_primary_10_3390_antiox11030522 crossref_citationtrail_10_3390_antiox11030522 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220308 |
PublicationDateYYYYMMDD | 2022-03-08 |
PublicationDate_xml | – month: 3 year: 2022 text: 20220308 day: 8 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Antioxidants |
PublicationTitleAlternate | Antioxidants (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Olmedo (ref_34) 2016; 55 ref_50 Babot (ref_39) 2015; 81 Aranda (ref_29) 2018; 8 Palumbo (ref_5) 2016; 6 ref_14 Kubo (ref_22) 2006; 12 Peter (ref_31) 2011; 278 Otey (ref_53) 2003; 230 ref_54 Wentzel (ref_7) 2004; 69 ref_52 Olmedo (ref_38) 2017; 23 Kiebist (ref_40) 2017; 18 Ullrich (ref_47) 2011; 1 Carro (ref_36) 2020; 10 Tolvanen (ref_11) 2021; 230 ref_16 Ullrich (ref_45) 2004; 70 Peter (ref_33) 2013; 52 Carro (ref_25) 2019; 9 Schmid (ref_19) 2001; 343 Toda (ref_23) 2015; 81 Karich (ref_55) 2016; 134 Coombs (ref_4) 2016; 55 ref_24 Xu (ref_17) 2009; 11 Aranda (ref_27) 2021; 51 Cai (ref_10) 2018; 50 Hofrichter (ref_28) 2010; 87 Collman (ref_49) 1990; 112 Marques (ref_51) 2021; 8 Babot (ref_32) 2013; 110 Aranda (ref_35) 2018; 10 Cai (ref_2) 2018; 346 Geigert (ref_21) 1986; 136 Elliott (ref_20) 1997; 119 Grigoropoulou (ref_15) 2003; 5 McClay (ref_18) 2000; 66 Babot (ref_44) 2020; 68 Maisonneuve (ref_3) 2014; 5 Anh (ref_46) 2007; 73 Abraham (ref_9) 1972; 18 Municoy (ref_26) 2020; 10 Martin (ref_6) 2008; 110 Lucas (ref_42) 2016; 6 Babot (ref_41) 2015; 7 Maisonneuve (ref_1) 2015; 115 Zheng (ref_12) 2016; 62 Linde (ref_37) 2020; 86 ref_48 Aguirre (ref_8) 2006; 20 Sato (ref_13) 1996; 61 Babot (ref_30) 2011; 514 Aranda (ref_43) 2019; 9 |
References_xml | – volume: 8 start-page: 605854 year: 2021 ident: ref_51 article-title: High epoxidation yields of vegetable oil hydrolyzates and methyl esters by selected fungal peroxygenases publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.605854 – volume: 115 start-page: 12407 year: 2015 ident: ref_1 article-title: Isocyanate-free routes to polyurethanes and poly(hydroxy urethane)s publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00355 – volume: 11 start-page: 2047 year: 2009 ident: ref_17 article-title: Efficient epoxidation of alkenes with hydrogen peroxide, lactone, and lipase publication-title: Green Chem. doi: 10.1039/b913077b – volume: 61 start-page: 8310 year: 1996 ident: ref_13 article-title: A practical method for epoxidation of terminal olefins with 30% hydrogen peroxide under halide-free conditions publication-title: J. Org. Chem. doi: 10.1021/jo961287e – volume: 81 start-page: 4130 year: 2015 ident: ref_39 article-title: Steroid hydroxylation by basidiomycete peroxygenases: A combined experimental and computational study publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00660-15 – ident: ref_54 doi: 10.3390/catal11070765 – volume: 230 start-page: 116206 year: 2021 ident: ref_11 article-title: Use of semibatch reactor technology for the investigation of reaction mechanism and kinetics: Heterogeneously catalyzed epoxidation of fatty acid esters publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2020.116206 – ident: ref_14 doi: 10.3390/catal9010031 – volume: 69 start-page: 3453 year: 2004 ident: ref_7 article-title: Mechanistic studies on the Mukaiyama epoxidation publication-title: J. Org. Chem. doi: 10.1021/jo030345a – volume: 62 start-page: 726 year: 2016 ident: ref_12 article-title: Kinetic modeling strategy for an exothermic multiphase reactor system: Application to vegetable oils epoxidation using Prileschajew method publication-title: AIChE J. doi: 10.1002/aic.15037 – volume: 70 start-page: 4575 year: 2004 ident: ref_45 article-title: Novel haloperoxidase from the agaric basidiomycete Agrocybe aegerita oxidizes aryl alcohols and aldehydes publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.70.8.4575-4581.2004 – ident: ref_52 – volume: 119 start-page: 9949 year: 1997 ident: ref_20 article-title: Regio- and stereoselectivity of particulate methane monooxygenase from Methylococcus capsulatus (Bath) publication-title: J. Am. Chem. Soc. doi: 10.1021/ja971049g – ident: ref_48 – ident: ref_24 doi: 10.3390/antiox11010163 – volume: 18 start-page: 563 year: 2017 ident: ref_40 article-title: A peroxygenase from Chaetomium globosum catalyzes the selective oxygenation of testosterone publication-title: ChemBioChem doi: 10.1002/cbic.201600677 – volume: 134 start-page: 238 year: 2016 ident: ref_55 article-title: Exploring the catalase activity of unspecific peroxygenases and the mechanism of peroxide-dependent heme destruction publication-title: J. Mol. Catal. B Enzym. doi: 10.1016/j.molcatb.2016.10.014 – volume: 278 start-page: 3667 year: 2011 ident: ref_31 article-title: Selective hydroxylation of alkanes by an extracellular fungal peroxygenase publication-title: FEBS J. doi: 10.1111/j.1742-4658.2011.08285.x – volume: 10 start-page: 13584 year: 2020 ident: ref_26 article-title: Fatty-acid oxygenation by fungal peroxygenases: From computational simulations to preparative regio- and stereo-selective epoxidation publication-title: ACS Catal. doi: 10.1021/acscatal.0c03165 – volume: 112 start-page: 2977 year: 1990 ident: ref_49 article-title: Suicide inactivation of cytochrome P-450 model compounds by terminal olefins. 1. A mechanistic study of heme N-alkylation and epoxidation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00164a021 – volume: 8 start-page: 2394 year: 2018 ident: ref_29 article-title: Selective synthesis of the resveratrol analogue 4,4′-dihydroxy-trans-stilbene and stilbenoids modification by fungal peroxygenases publication-title: Catal. Sci. Technol. doi: 10.1039/C8CY00272J – volume: 73 start-page: 5477 year: 2007 ident: ref_46 article-title: The coprophilous mushroom Coprinus radians secretes a haloperoxidase that catalyzes aromatic peroxygenation publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00026-07 – volume: 55 start-page: 12248 year: 2016 ident: ref_34 article-title: From alkanes to carboxylic acids: Terminal oxygenation by a fungal peroxygenase publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201605430 – volume: 50 start-page: 726 year: 2018 ident: ref_10 article-title: Influence of ring-opening reactions on the kinetics of cottonseed oil epoxidation publication-title: Int. J. Chem. Kinet. doi: 10.1002/kin.21208 – volume: 9 start-page: 1398 year: 2019 ident: ref_43 article-title: Selective synthesis of 4-hydroxyisophorone and 4-ketoisophorone by fungal peroxygenases publication-title: Catal. Sci. Technol. doi: 10.1039/C8CY02114G – volume: 514 start-page: 33 year: 2011 ident: ref_30 article-title: Regioselective oxygenation of fatty acids, fatty alcohols and other aliphatic compounds by a basidiomycete heme-thiolate peroxidase publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2011.08.001 – volume: 346 start-page: 271 year: 2018 ident: ref_2 article-title: Aminolysis of cyclic-carbonate vegetable oils as a non-isocyanate route for the synthesis of polyurethane: A kinetic and thermal study publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.04.028 – volume: 55 start-page: 2636 year: 2016 ident: ref_4 article-title: Catalytic enantioselective functionalization of unactivated terminal alkenes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201507151 – volume: 20 start-page: 260 year: 2006 ident: ref_8 article-title: Ruthenium carbonyl complexes in catalytic epoxidation of olefins co-catalyzed by isobutyl-aldehyde publication-title: Appl. Organometal. Chem. doi: 10.1002/aoc.1044 – volume: 110 start-page: 2332 year: 2013 ident: ref_32 article-title: Oxyfunctionalization of aliphatic compounds by a recombinant peroxygenase from Coprinopsis cinerea publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.24904 – ident: ref_16 doi: 10.3390/ma13204545 – volume: 6 start-page: 3832 year: 2016 ident: ref_5 article-title: An efficient epoxidation of terminal aliphatic alkenes over heterogeneous catalysts: When solvent matters publication-title: Catal. Sci. Technol. doi: 10.1039/C5CY01639H – volume: 12 start-page: 1216 year: 2006 ident: ref_22 article-title: Enantioselective epoxidation of terminal alkenes to (R)- and (S)-epoxides by engineered cytochromes P450 BM-3 publication-title: Chem. Eur. J. doi: 10.1002/chem.200500584 – volume: 66 start-page: 1877 year: 2000 ident: ref_18 article-title: Toluene monooxygenase-catalyzed epoxidation of alkenes publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.66.5.1877-1882.2000 – volume: 81 start-page: 1919 year: 2015 ident: ref_23 article-title: Microbial production of aliphatic (S)-epoxyalkanes by using Rhodococcus sp. strain ST-10 styrene monooxygenase expressed in organic-solvent-tolerant Kocuria rhizophila DC2201 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.03405-14 – ident: ref_50 – volume: 7 start-page: 283 year: 2015 ident: ref_41 article-title: Regioselective hydroxylation in the production of 25-hydroxyvitamin D by Coprinopsis cinerea peroxygenase publication-title: ChemCatChem doi: 10.1002/cctc.201402795 – volume: 136 start-page: 778 year: 1986 ident: ref_21 article-title: Epoxidation of alkenes by chloroperoxidase catalysis publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(86)90507-3 – volume: 10 start-page: 717 year: 2020 ident: ref_36 article-title: Fatty acid epoxidation by Collariella virescens peroxygenase and heme-channel variants publication-title: Catal. Sci. Technol. doi: 10.1039/C9CY02332A – volume: 87 start-page: 871 year: 2010 ident: ref_28 article-title: New and classic families of secreted fungal heme peroxidases publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-010-2633-0 – volume: 10 start-page: 3964 year: 2018 ident: ref_35 article-title: Selective epoxidation of fatty acids and fatty acid methyl esters by fungal peroxygenases publication-title: ChemCatChem doi: 10.1002/cctc.201800849 – volume: 18 start-page: 807 year: 1972 ident: ref_9 article-title: Kinetics and mechanism of the epoxidation of unsaturated fatty acids publication-title: AIChE J. doi: 10.1002/aic.690180424 – volume: 23 start-page: 16985 year: 2017 ident: ref_38 article-title: Fatty acid chain shortening by a fungal peroxygenase publication-title: Chem. Eur. J. doi: 10.1002/chem.201704773 – volume: 110 start-page: 812 year: 2008 ident: ref_6 article-title: Oxidation of unsaturated fatty acid derivatives and vegetable oils publication-title: Eur. J. Lipid Sci. Technol. doi: 10.1002/ejlt.200800042 – volume: 343 start-page: 732 year: 2001 ident: ref_19 article-title: Integrated biocatalytic synthesis on gram scale: The highly enantioselective preparation of chiral oxiranes with styrene monooxygenase publication-title: Adv. Synth. Catal. doi: 10.1002/1615-4169(200108)343:6/7<732::AID-ADSC732>3.0.CO;2-Q – volume: 9 start-page: 6234 year: 2019 ident: ref_25 article-title: Modulating fatty acid epoxidation vs hydroxylation in a fungal peroxygenase publication-title: ACS Catal. doi: 10.1021/acscatal.9b01454 – volume: 230 start-page: 137 year: 2003 ident: ref_53 article-title: High-throughput carbon monoxide binding assay for cytochromes P450 publication-title: Methods Mol. Biol. – volume: 5 start-page: 6142 year: 2014 ident: ref_3 article-title: Fatty acid-based (bis) 6-membered cyclic carbonates as efficient isocyanate free poly(hydroxyurethane) precursors publication-title: Polym. Chem. doi: 10.1039/C4PY00922C – volume: 1 start-page: 31 year: 2011 ident: ref_47 article-title: High-yield production of aromatic peroxygenase by the agaric fungus Marasmius rotula publication-title: AMB Express doi: 10.1186/2191-0855-1-31 – volume: 86 start-page: e02899-19 year: 2020 ident: ref_37 article-title: Two new unspecific peroxygenases from heterologous expression of fungal genes in Escherichia coli publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02899-19 – volume: 6 start-page: 288 year: 2016 ident: ref_42 article-title: Molecular determinants for selective C25-hydroxylation of vitamins D2 and D3 by fungal peroxygenases publication-title: Catal. Sci. Technol. doi: 10.1039/C5CY00427F – volume: 51 start-page: 107703 year: 2021 ident: ref_27 article-title: Advances in enzymatic oxyfunctionalization of aliphatic compounds publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2021.107703 – volume: 5 start-page: 1 year: 2003 ident: ref_15 article-title: Recent developments on the epoxidation of alkenes using hydrogen peroxide as an oxidant publication-title: Green Chem. doi: 10.1039/b208925b – volume: 68 start-page: 5375 year: 2020 ident: ref_44 article-title: Selective oxygenation of ionones and damascones by fungal peroxygenases publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.0c01019 – volume: 52 start-page: 370 year: 2013 ident: ref_33 article-title: Epoxidation of linear, branched and cyclic alkenes catalyzed by unspecific peroxygenase publication-title: Enzym. Microb. Technol. doi: 10.1016/j.enzmictec.2013.02.013 |
SSID | ssj0000913809 |
Score | 2.2889524 |
Snippet | Terminal alkenes are among the most attractive starting materials for the synthesis of epoxides, which are essential and versatile intermediate building blocks... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 522 |
SubjectTerms | Agrocybe alkenes Biocatalysts By products Catalysts Chromatography Coprinopsis cinerea cytochrome P-450 Cytochrome P450 Daldinia enols Enzymes Epoxidation epoxidation reactions Epoxides Extracellular enzymes Flavors fungi Gene expression Genomes Humicola insolens Hydrogen peroxide hydroxylation Marasmius Oxidizing agents oxyfunctionalization peroxygenases Polymers Proteins terminal alkenes |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_i2_qiguApbNOkbXJU2WURFQ-7sLeSpqkrSru4u7D6651pa9mKj4vXZCjJZCbzDZ18Q8i5ManymRZUCu5ToQyjWnJDjVa-1CYNopJi4-4-7A_FzSgYLbX6wpqwih64UlwHAnCWqBAML5NCSZ2IKE2kZwSXMGgM3r4Q85aSqfIOVoxLT1UsjRzy-o7G4sEFw65age-3olBJ1v8dwvxaKLkUeXqbZKOGjO5ltdQtsmLzbbK-RCS4Q267-ftbSb7qdifF4qlqlOQWmXtb5I_0egz5vzuo6l7gSy_PeMO5yZvbA1-HkQeL1SxgSxDTprtk2OsOrvu07pNATcCiGY0SH2CEliJhoUwtD1hmdKBTYyCZ0UZCCggoBZQeRgJmGPZptBC2eWaUl3qa75HVvMjtAXFhp4A4FP79CwS-cpUJQAChU5aG1mbaIfRTb7GpScSxl8VLDMkE6jlu69khF438pKLP-FHyCo-hkULa63IAjCGujSH-yxgccvx5iHHti9MYIB_Axgiwl0POmmnwIvw1onNbzEsZgex6YfSrDNzIAHdDh-xXdtGslgccqe1hF1HLYlrbac_kT-OSzVsqyMiFd_gf-z8iaz4-z8AaOXlMVmevc3sCoGmWnJb-8QHe5xUU priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS-QwEB48fbl7kNP7VU-lBwf3FGybtE2ejlN2EVGRQ8G3kiapLkq7566g_vXOtNlq5fQ1GUqTTGa-SSbfAPw0xqok1oJJwRMmlImZltwwo1UitbFp3lJsHB1n-2fi4Dw99wduM59WubCJraG2jaEz8h103Oj8c_Sgv6f_GFWNottVX0LjHaygCZYYfK3sjo5P_vanLMR6KSPVsTVyjO93NCUR3sVUXStNkoE3akn7_4c0XyZMPvNA44-w6qFj-Kdb6zVYcvU6fHhGKPgJDkf1w31LwhqOps3dpCuYFDZVeNjUF2zvUk_q8LTLf8EvXV-RpQvL-3CMex5bThxltaBOoW-bfYaz8eh0b5_5egnMpHE-Z3mZIJzQUpRxJq3jaVwZnWprDAY12kgMBRGt4ORnucCemOo1OnTfvDIqspHmX2C5bmr3DUIcKSIPRbeAqaDXrrJEKCC0jW3mXKUDYIt5K4wnE6eaFtcFBhU0z8VwngP41ctPOxqNVyV3aRl6KaK_bhuam4vC76YCUVlVqgytUSWFkroUuS1lZASX2GhMAJuLRSz8npwVTxoUwI--G3cTXZHo2jW3rYwglr0sf1MGLTPC3iyAr51e9H_LU04U9ziKfKAxg-EMe-rJZcvqLRVG5iLaePvXv8P7hB5gUBac3ITl-c2t20JYNC-3ve4_AskHDnE priority: 102 providerName: ProQuest |
Title | Enzymatic Epoxidation of Long-Chain Terminal Alkenes by Fungal Peroxygenases |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35326172 https://www.proquest.com/docview/2642327064 https://www.proquest.com/docview/2644010267 https://www.proquest.com/docview/2648873266 https://pubmed.ncbi.nlm.nih.gov/PMC8944640 https://doaj.org/article/125fb96832f8498ab47db80c438683cc |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_B9gIPiG8CowoSEk-GOnZi-wEhNrWa0DZNaJX2FjmOs1WrktF1Ustfz52TlgUVxKt9SmL7Pn6XXH4H8N650iTcSqalSJg0jjOrhWPOmkRbV6YqUGwcn2SHE_ntPD3_Xf_UbeDN1tSO-klN5rOPyx-rL2jwnynjxJT9k6W6wCWnhlmIJu7DLkYlRUZ63EH94JUNFzpUfCSYujOEBbzlcNxyiV6MClT-2_Dnn2WUd-LS-DE86gBl_LXVgCdwz9dP4eEdmsFncDSqf64CNWs8um6W07aNUtxU8VFTX7CDSzut47O2KgavNLsi_xcXq3iMngBHTj3VuqCmYcS7eQ6T8ejs4JB1XRSYS7laMFUkCDKslgXPdOlFyitnU1s6h6mOdRoTRMQweCSZkjjDqYujx6AuKmeG5dCKF7BTN7V_BTGuFPGIoW-DqaR_YHWBAEHakpeZ95WNgK33LXcdxTh1upjlmGrQPuf9fY7gw0b-uiXX-KvkPh3DRopIscNAM7_IOxvLEatVhcnQR1VaGm0LqcpCD50UGgedi2BvfYj5WtFyBIQIKhUiswjebabRxujDia19cxtkJHHvZeqfMuivEQxnEbxs9WLztCIVRHyPq1A9jektpz9TTy8D17c2mK_L4ev_uO8beJDQvxlUIKf3YGcxv_VvETEtigHs7o9OTr8PwhuHQTCMX1KWFxU |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4VDzLlgJBAnGymsROYh8QomVXW7pdVWgr9RYcx2lXVMnS3YouP4rfyExeNAh669UeWX6M5xvb428A3hiTKt_TgknBfSaU8ZiW3DCjlS-1SYOopNg4nISjY_H5JDhZg1_NXxgKq2xsYmmo08LQHfkOAjeCf4QI-mH-nVHWKHpdbVJoVGpxYFc_8Mi2eL__Cdf3re8PB9O9EauzCjATeNGSRYmPoKulSLxQppYHXmZ0oFNj0PXXRuKBCTEduxhGAms8ympoEeR4ZpSbuppju3dgXXA8yvRgfXcwOfrS3uoQy6Z0VcUOyblydzQFLV55lM0r8P0O-pVJAv7l2f4doHkN8YYPYKN2VZ2PlW49hDWbP4L71wgMH8N4kP9claSvzmBeXM2qBE1OkTnjIj9le2d6ljvTKt4GWzr_RpbVSVbOEG0MlhxZiqJBHUYsXTyB41uZyafQy4vcPgMHR4qejqJXx0DQ71qZoOshdOqlobWZ7gNr5i02NXk55dA4j_EQQ_Mcd-e5D-9a-XlF2_FfyV1ahlaK6LbLguLiNK53b4xeYJaoEK1fJoWSOhFRmkjXCC6x0Jg-bDeLGNc2YBH_0dg-vG6rcffSk4zObXFZyghi9QujG2UQCdDNDvuwWelF21secKLUx1FEHY3pDKdbk8_OShZxqYQIhbt1c9dfwd3R9HAcj_cnB8_hnk-fPygCT25Db3lxaV-gS7ZMXtb7wIGvt731fgPv20pi |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwMPE5MgYECcST1SR2EvsBIba12lipKrRJewuO42wVU1LWTqz8afx13CVpWBDsba-2Ffnj7n538fl3AG-MyVTga8Gk4AETyvhMS26Y0SqQ2mRhXFFsfB5H-8fi00l4sga_Vm9hKK1yZRMrQ52Vhv6R9xG4EfxjRNB-3qRFTPaGH2bfGVWQopvWVTmNWkQO7fIHhm_z9wd7eNZvg2A4ONrdZ02FAWZCP16wOA0QgLUUqR_JzPLQz40OdWYMhgHaSAyeEN9xulEssMenCocWAY_nRnmZpzl-9w6sxxgVeT1Y3xmMJ1_aPzzEuCk9VTNFcq68vqYExiufKnuFQdBBwqpgwL-83L-TNa-h3_ABbDRuq_uxlrOHsGaLR3D_GpnhYxgNip_LigDWHczKq2ldrMktc3dUFqds90xPC_eozr3BL51_Iyvrpkt3iPYGWyaWMmpQnhFX50_g-FZ28in0irKwz8DFlaLXo-gGMhT00lam6IYInflZZG2uHWCrfUtMQ2RO9TTOEwxoaJ-T7j478K4dP6spPP47coeOoR1F1NtVQ3lxmjSanKBHmKcqQkuYS6GkTkWcpdIzgktsNMaB7dUhJo09mCd_pNeB1203ajJdz-jClpfVGEEMf1F84xhEBXS5Iwc2a7loZ8tDTvT6uIq4IzGd5XR7iulZxSgulRCR8LZunvoruIsql4wOxofP4V5A70AoGU9uQ29xcWlfoHe2SF82auDC19vWvN84wU6X |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enzymatic+Epoxidation+of+Long-Chain+Terminal+Alkenes+by+Fungal+Peroxygenases&rft.jtitle=Antioxidants&rft.au=Babot%2C+Esteban+D&rft.au=Aranda%2C+Carmen&rft.au=Kiebist%2C+Jan&rft.au=Scheibner%2C+Katrin&rft.date=2022-03-08&rft.issn=2076-3921&rft.eissn=2076-3921&rft.volume=11&rft.issue=3&rft_id=info:doi/10.3390%2Fantiox11030522&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3921&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3921&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3921&client=summon |