Enzymatic Epoxidation of Long-Chain Terminal Alkenes by Fungal Peroxygenases

Terminal alkenes are among the most attractive starting materials for the synthesis of epoxides, which are essential and versatile intermediate building blocks for the pharmaceutical, flavoring, and polymer industries. Previous research on alkene epoxidation has focused on the use of several oxidizi...

Full description

Saved in:
Bibliographic Details
Published inAntioxidants Vol. 11; no. 3; p. 522
Main Authors Babot, Esteban D., Aranda, Carmen, Kiebist, Jan, Scheibner, Katrin, Ullrich, René, Hofrichter, Martin, Martínez, Angel T., Gutiérrez, Ana
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 08.03.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Terminal alkenes are among the most attractive starting materials for the synthesis of epoxides, which are essential and versatile intermediate building blocks for the pharmaceutical, flavoring, and polymer industries. Previous research on alkene epoxidation has focused on the use of several oxidizing agents and/or different enzymes, including cytochrome P450 monooxygenases, as well as microbial whole-cell catalysts that have several drawbacks. Alternatively, we explored the ability of unspecific peroxygenases (UPOs) to selectively epoxidize terminal alkenes. UPOs are attractive biocatalysts because they are robust extracellular enzymes and only require H2O2 as cosubstrate. Here, we show how several UPOs, such as those from Cyclocybe (Agrocybe) aegerita (AaeUPO), Marasmius rotula (MroUPO), Coprinopsis cinerea (rCciUPO), Humicola insolens (rHinUPO), and Daldinia caldariorum (rDcaUPO), are able to catalyze the epoxidation of long-chain terminal alkenes (from C12:1 to C20:1) after an initial optimization of several reaction parameters (cosolvent, cosubstrate, and pH). In addition to terminal epoxides, alkenols and other hydroxylated derivatives of the alkenes were formed. Although all UPOs were able to convert and epoxidize the alkenes, notable differences were observed between them, with rCciUPO being responsible for the highest substrate turnover and MroUPO being the most selective with respect to terminal epoxidation. The potential of peroxygenases for epoxidizing long-chain terminal alkenes represents an interesting and green alternative to the existing synthesis technologies.
AbstractList Terminal alkenes are among the most attractive starting materials for the synthesis of epoxides, which are essential and versatile intermediate building blocks for the pharmaceutical, flavoring, and polymer industries. Previous research on alkene epoxidation has focused on the use of several oxidizing agents and/or different enzymes, including cytochrome P450 monooxygenases, as well as microbial whole-cell catalysts that have several drawbacks. Alternatively, we explored the ability of unspecific peroxygenases (UPOs) to selectively epoxidize terminal alkenes. UPOs are attractive biocatalysts because they are robust extracellular enzymes and only require H₂O₂ as cosubstrate. Here, we show how several UPOs, such as those from Cyclocybe (Agrocybe) aegerita (AaeUPO), Marasmius rotula (MroUPO), Coprinopsis cinerea (rCciUPO), Humicola insolens (rHinUPO), and Daldinia caldariorum (rDcaUPO), are able to catalyze the epoxidation of long-chain terminal alkenes (from C₁₂:₁ to C₂₀:₁) after an initial optimization of several reaction parameters (cosolvent, cosubstrate, and pH). In addition to terminal epoxides, alkenols and other hydroxylated derivatives of the alkenes were formed. Although all UPOs were able to convert and epoxidize the alkenes, notable differences were observed between them, with rCciUPO being responsible for the highest substrate turnover and MroUPO being the most selective with respect to terminal epoxidation. The potential of peroxygenases for epoxidizing long-chain terminal alkenes represents an interesting and green alternative to the existing synthesis technologies.
Terminal alkenes are among the most attractive starting materials for the synthesis of epoxides, which are essential and versatile intermediate building blocks for the pharmaceutical, flavoring, and polymer industries. Previous research on alkene epoxidation has focused on the use of several oxidizing agents and/or different enzymes, including cytochrome P450 monooxygenases, as well as microbial whole-cell catalysts that have several drawbacks. Alternatively, we explored the ability of unspecific peroxygenases (UPOs) to selectively epoxidize terminal alkenes. UPOs are attractive biocatalysts because they are robust extracellular enzymes and only require H2O2 as cosubstrate. Here, we show how several UPOs, such as those from Cyclocybe (Agrocybe) aegerita (AaeUPO), Marasmius rotula (MroUPO), Coprinopsis cinerea (rCciUPO), Humicola insolens (rHinUPO), and Daldinia caldariorum (rDcaUPO), are able to catalyze the epoxidation of long-chain terminal alkenes (from C12:1 to C20:1) after an initial optimization of several reaction parameters (cosolvent, cosubstrate, and pH). In addition to terminal epoxides, alkenols and other hydroxylated derivatives of the alkenes were formed. Although all UPOs were able to convert and epoxidize the alkenes, notable differences were observed between them, with rCciUPO being responsible for the highest substrate turnover and MroUPO being the most selective with respect to terminal epoxidation. The potential of peroxygenases for epoxidizing long-chain terminal alkenes represents an interesting and green alternative to the existing synthesis technologies.Terminal alkenes are among the most attractive starting materials for the synthesis of epoxides, which are essential and versatile intermediate building blocks for the pharmaceutical, flavoring, and polymer industries. Previous research on alkene epoxidation has focused on the use of several oxidizing agents and/or different enzymes, including cytochrome P450 monooxygenases, as well as microbial whole-cell catalysts that have several drawbacks. Alternatively, we explored the ability of unspecific peroxygenases (UPOs) to selectively epoxidize terminal alkenes. UPOs are attractive biocatalysts because they are robust extracellular enzymes and only require H2O2 as cosubstrate. Here, we show how several UPOs, such as those from Cyclocybe (Agrocybe) aegerita (AaeUPO), Marasmius rotula (MroUPO), Coprinopsis cinerea (rCciUPO), Humicola insolens (rHinUPO), and Daldinia caldariorum (rDcaUPO), are able to catalyze the epoxidation of long-chain terminal alkenes (from C12:1 to C20:1) after an initial optimization of several reaction parameters (cosolvent, cosubstrate, and pH). In addition to terminal epoxides, alkenols and other hydroxylated derivatives of the alkenes were formed. Although all UPOs were able to convert and epoxidize the alkenes, notable differences were observed between them, with rCciUPO being responsible for the highest substrate turnover and MroUPO being the most selective with respect to terminal epoxidation. The potential of peroxygenases for epoxidizing long-chain terminal alkenes represents an interesting and green alternative to the existing synthesis technologies.
Terminal alkenes are among the most attractive starting materials for the synthesis of epoxides, which are essential and versatile intermediate building blocks for the pharmaceutical, flavoring, and polymer industries. Previous research on alkene epoxidation has focused on the use of several oxidizing agents and/or different enzymes, including cytochrome P450 monooxygenases, as well as microbial whole-cell catalysts that have several drawbacks. Alternatively, we explored the ability of unspecific peroxygenases (UPOs) to selectively epoxidize terminal alkenes. UPOs are attractive biocatalysts because they are robust extracellular enzymes and only require H 2 O 2 as cosubstrate. Here, we show how several UPOs, such as those from Cyclocybe ( Agrocybe ) aegerita ( Aae UPO), Marasmius rotula ( Mro UPO), Coprinopsis cinerea (r Cci UPO), Humicola insolens (r Hin UPO), and Daldinia caldariorum (r Dca UPO), are able to catalyze the epoxidation of long-chain terminal alkenes (from C 12:1 to C 20:1 ) after an initial optimization of several reaction parameters (cosolvent, cosubstrate, and pH). In addition to terminal epoxides, alkenols and other hydroxylated derivatives of the alkenes were formed. Although all UPOs were able to convert and epoxidize the alkenes, notable differences were observed between them, with r Cci UPO being responsible for the highest substrate turnover and Mro UPO being the most selective with respect to terminal epoxidation. The potential of peroxygenases for epoxidizing long-chain terminal alkenes represents an interesting and green alternative to the existing synthesis technologies.
Terminal alkenes are among the most attractive starting materials for the synthesis of epoxides, which are essential and versatile intermediate building blocks for the pharmaceutical, flavoring, and polymer industries. Previous research on alkene epoxidation has focused on the use of several oxidizing agents and/or different enzymes, including cytochrome P450 monooxygenases, as well as microbial whole-cell catalysts that have several drawbacks. Alternatively, we explored the ability of unspecific peroxygenases (UPOs) to selectively epoxidize terminal alkenes. UPOs are attractive biocatalysts because they are robust extracellular enzymes and only require H2O2 as cosubstrate. Here, we show how several UPOs, such as those from Cyclocybe (Agrocybe) aegerita (AaeUPO), Marasmius rotula (MroUPO), Coprinopsis cinerea (rCciUPO), Humicola insolens (rHinUPO), and Daldinia caldariorum (rDcaUPO), are able to catalyze the epoxidation of long-chain terminal alkenes (from C12:1 to C20:1) after an initial optimization of several reaction parameters (cosolvent, cosubstrate, and pH). In addition to terminal epoxides, alkenols and other hydroxylated derivatives of the alkenes were formed. Although all UPOs were able to convert and epoxidize the alkenes, notable differences were observed between them, with rCciUPO being responsible for the highest substrate turnover and MroUPO being the most selective with respect to terminal epoxidation. The potential of peroxygenases for epoxidizing long-chain terminal alkenes represents an interesting and green alternative to the existing synthesis technologies.
Terminal alkenes are among the most attractive starting materials for the synthesis of epoxides, which are essential and versatile intermediate building blocks for the pharmaceutical, flavoring, and polymer industries. Previous research on alkene epoxidation has focused on the use of several oxidizing agents and/or different enzymes, including cytochrome P450 monooxygenases, as well as microbial whole-cell catalysts that have several drawbacks. Alternatively, we explored the ability of unspecific peroxygenases (UPOs) to selectively epoxidize terminal alkenes. UPOs are attractive biocatalysts because they are robust extracellular enzymes and only require H O as cosubstrate. Here, we show how several UPOs, such as those from ( ) ( UPO), ( UPO), (r UPO), (r UPO), and (r UPO), are able to catalyze the epoxidation of long-chain terminal alkenes (from C to C ) after an initial optimization of several reaction parameters (cosolvent, cosubstrate, and pH). In addition to terminal epoxides, alkenols and other hydroxylated derivatives of the alkenes were formed. Although all UPOs were able to convert and epoxidize the alkenes, notable differences were observed between them, with r UPO being responsible for the highest substrate turnover and UPO being the most selective with respect to terminal epoxidation. The potential of peroxygenases for epoxidizing long-chain terminal alkenes represents an interesting and green alternative to the existing synthesis technologies.
Author Babot, Esteban D.
Hofrichter, Martin
Aranda, Carmen
Martínez, Angel T.
Scheibner, Katrin
Ullrich, René
Gutiérrez, Ana
Kiebist, Jan
AuthorAffiliation 5 Centro de Investigaciones Biológicas “Margarita Salas”, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; atmartinez@cib.csic.es
1 Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), 41012 Seville, Spain; edbabot@irnase.csic.es
2 Johnson Matthey, Cambridge Science Park U260, Cambridge CB4 0FP, UK; carmen.aranda@matthey.com
3 Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany; jan.kiebist@b-tu.de (J.K.); katrin.scheibner@b-tu.de (K.S.)
4 Unit of Bio- and Environmental Sciences, International Institute Zittau, TU Dresden, 02763 Zittau, Germany; ullrich@tu-dresden.de (R.U.); martin.hofrichter@tu-dresden.de (M.H.)
AuthorAffiliation_xml – name: 1 Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), 41012 Seville, Spain; edbabot@irnase.csic.es
– name: 3 Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany; jan.kiebist@b-tu.de (J.K.); katrin.scheibner@b-tu.de (K.S.)
– name: 2 Johnson Matthey, Cambridge Science Park U260, Cambridge CB4 0FP, UK; carmen.aranda@matthey.com
– name: 4 Unit of Bio- and Environmental Sciences, International Institute Zittau, TU Dresden, 02763 Zittau, Germany; ullrich@tu-dresden.de (R.U.); martin.hofrichter@tu-dresden.de (M.H.)
– name: 5 Centro de Investigaciones Biológicas “Margarita Salas”, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; atmartinez@cib.csic.es
Author_xml – sequence: 1
  givenname: Esteban D.
  orcidid: 0000-0001-5539-1721
  surname: Babot
  fullname: Babot, Esteban D.
– sequence: 2
  givenname: Carmen
  surname: Aranda
  fullname: Aranda, Carmen
– sequence: 3
  givenname: Jan
  surname: Kiebist
  fullname: Kiebist, Jan
– sequence: 4
  givenname: Katrin
  surname: Scheibner
  fullname: Scheibner, Katrin
– sequence: 5
  givenname: René
  surname: Ullrich
  fullname: Ullrich, René
– sequence: 6
  givenname: Martin
  orcidid: 0000-0001-5174-7604
  surname: Hofrichter
  fullname: Hofrichter, Martin
– sequence: 7
  givenname: Angel T.
  orcidid: 0000-0002-1584-2863
  surname: Martínez
  fullname: Martínez, Angel T.
– sequence: 8
  givenname: Ana
  surname: Gutiérrez
  fullname: Gutiérrez, Ana
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35326172$$D View this record in MEDLINE/PubMed
BookMark eNqNks9rFDEUx4NUbK29epQBL16m5vePi1CWrRYW9FDPIZPJTLPOJGsyU3b96427tXQLgrnk8d7nfXm_XoOTEIMD4C2Cl4Qo-NGEycctQpBAhvELcIah4DVRGJ08sU_BRc5rWJ5CREL1CpwSRjBHAp-B1TL82o1m8rZabuLWt8WMoYpdtYqhrxd3xofq1qXRBzNUV8MPF1yuml11PYe-eL65FLe73gWTXX4DXnZmyO7i4T8H36-Xt4sv9err55vF1aq2DImpFg1mkhpJG8Rl6whDnTXMtNYqxY2VjCqBhRCIC1oiCApCHMOIdFbBFhpyDm4Oum00a71JfjRpp6Pxeu-IqdcmlZYGpxFmXaO4JLiTVEnTUNE2ElpKZHFaW7Q-HbQ2czO61rowJTMciR5Hgr_TfbzXUlHKKSwCHx4EUvw5uzzp0WfrhsEEF-esMadSijJv_j8ohQhiLgr6_hm6jnMqO9hTmGABOS3Uu6fFP1b9d78FuDwANsWck-seEQT1nxvSxzdUEuizBOun_U2U5v3wr7TfKzDJ4w
CitedBy_id crossref_primary_10_1021_acs_jchemed_2c00352
crossref_primary_10_1016_j_biortech_2024_131557
crossref_primary_10_1016_j_jbiotec_2024_02_013
crossref_primary_10_3390_antiox11061044
crossref_primary_10_1016_j_emcon_2024_100424
crossref_primary_10_1002_cbic_202200719
crossref_primary_10_3389_fbioe_2022_964396
crossref_primary_10_1039_D4GC05781C
crossref_primary_10_1021_acs_orglett_3c01601
crossref_primary_10_1021_acscatal_4c00883
crossref_primary_10_1016_j_ecoenv_2024_117232
crossref_primary_10_1016_j_foodchem_2024_141786
crossref_primary_10_13005_ojc_400410
crossref_primary_10_3390_catal12070789
crossref_primary_10_5802_crchim_375
Cites_doi 10.3389/fbioe.2020.605854
10.1021/acs.chemrev.5b00355
10.1039/b913077b
10.1021/jo961287e
10.1128/AEM.00660-15
10.3390/catal11070765
10.1016/j.ces.2020.116206
10.3390/catal9010031
10.1021/jo030345a
10.1002/aic.15037
10.1128/AEM.70.8.4575-4581.2004
10.1021/ja971049g
10.3390/antiox11010163
10.1002/cbic.201600677
10.1016/j.molcatb.2016.10.014
10.1111/j.1742-4658.2011.08285.x
10.1021/acscatal.0c03165
10.1021/ja00164a021
10.1039/C8CY00272J
10.1128/AEM.00026-07
10.1002/anie.201605430
10.1002/kin.21208
10.1039/C8CY02114G
10.1016/j.abb.2011.08.001
10.1016/j.cej.2018.04.028
10.1002/anie.201507151
10.1002/aoc.1044
10.1002/bit.24904
10.3390/ma13204545
10.1039/C5CY01639H
10.1002/chem.200500584
10.1128/AEM.66.5.1877-1882.2000
10.1128/AEM.03405-14
10.1002/cctc.201402795
10.1016/0006-291X(86)90507-3
10.1039/C9CY02332A
10.1007/s00253-010-2633-0
10.1002/cctc.201800849
10.1002/aic.690180424
10.1002/chem.201704773
10.1002/ejlt.200800042
10.1002/1615-4169(200108)343:6/7<732::AID-ADSC732>3.0.CO;2-Q
10.1021/acscatal.9b01454
10.1039/C4PY00922C
10.1186/2191-0855-1-31
10.1128/AEM.02899-19
10.1039/C5CY00427F
10.1016/j.biotechadv.2021.107703
10.1039/b208925b
10.1021/acs.jafc.0c01019
10.1016/j.enzmictec.2013.02.013
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
7QR
7T5
7TO
8FD
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
H94
HCIFZ
LK8
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOA
DOI 10.3390/antiox11030522
DatabaseName CrossRef
PubMed
Chemoreception Abstracts
Immunology Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Immunology Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic


CrossRef
Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2076-3921
ExternalDocumentID oai_doaj_org_article_125fb96832f8498ab47db80c438683cc
PMC8944640
35326172
10_3390_antiox11030522
Genre Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: BioBased Industries Joint Undertaking -EU
  grantid: 792063
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
7QR
7T5
7TO
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
H94
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c517t-7b2584a84b168de351fca5adcc996ac8549727771674fca10733e5213fc90d0a3
IEDL.DBID M48
ISSN 2076-3921
IngestDate Wed Aug 27 01:23:43 EDT 2025
Thu Aug 21 14:06:37 EDT 2025
Fri Jul 11 16:39:42 EDT 2025
Fri Jul 11 00:39:13 EDT 2025
Fri Jul 25 11:58:43 EDT 2025
Thu Jan 02 22:55:35 EST 2025
Tue Jul 01 02:20:23 EDT 2025
Thu Apr 24 22:56:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords epoxidation
epoxides
oxyfunctionalization
peroxygenases
terminal alkenes
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-7b2584a84b168de351fca5adcc996ac8549727771674fca10733e5213fc90d0a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5174-7604
0000-0001-5539-1721
0000-0002-1584-2863
OpenAccessLink https://www.proquest.com/docview/2642327064?pq-origsite=%requestingapplication%
PMID 35326172
PQID 2642327064
PQPubID 2032435
ParticipantIDs doaj_primary_oai_doaj_org_article_125fb96832f8498ab47db80c438683cc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8944640
proquest_miscellaneous_2648873266
proquest_miscellaneous_2644010267
proquest_journals_2642327064
pubmed_primary_35326172
crossref_primary_10_3390_antiox11030522
crossref_citationtrail_10_3390_antiox11030522
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220308
PublicationDateYYYYMMDD 2022-03-08
PublicationDate_xml – month: 3
  year: 2022
  text: 20220308
  day: 8
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Antioxidants
PublicationTitleAlternate Antioxidants (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Olmedo (ref_34) 2016; 55
ref_50
Babot (ref_39) 2015; 81
Aranda (ref_29) 2018; 8
Palumbo (ref_5) 2016; 6
ref_14
Kubo (ref_22) 2006; 12
Peter (ref_31) 2011; 278
Otey (ref_53) 2003; 230
ref_54
Wentzel (ref_7) 2004; 69
ref_52
Olmedo (ref_38) 2017; 23
Kiebist (ref_40) 2017; 18
Ullrich (ref_47) 2011; 1
Carro (ref_36) 2020; 10
Tolvanen (ref_11) 2021; 230
ref_16
Ullrich (ref_45) 2004; 70
Peter (ref_33) 2013; 52
Carro (ref_25) 2019; 9
Schmid (ref_19) 2001; 343
Toda (ref_23) 2015; 81
Karich (ref_55) 2016; 134
Coombs (ref_4) 2016; 55
ref_24
Xu (ref_17) 2009; 11
Aranda (ref_27) 2021; 51
Cai (ref_10) 2018; 50
Hofrichter (ref_28) 2010; 87
Collman (ref_49) 1990; 112
Marques (ref_51) 2021; 8
Babot (ref_32) 2013; 110
Aranda (ref_35) 2018; 10
Cai (ref_2) 2018; 346
Geigert (ref_21) 1986; 136
Elliott (ref_20) 1997; 119
Grigoropoulou (ref_15) 2003; 5
McClay (ref_18) 2000; 66
Babot (ref_44) 2020; 68
Maisonneuve (ref_3) 2014; 5
Anh (ref_46) 2007; 73
Abraham (ref_9) 1972; 18
Municoy (ref_26) 2020; 10
Martin (ref_6) 2008; 110
Lucas (ref_42) 2016; 6
Babot (ref_41) 2015; 7
Maisonneuve (ref_1) 2015; 115
Zheng (ref_12) 2016; 62
Linde (ref_37) 2020; 86
ref_48
Aguirre (ref_8) 2006; 20
Sato (ref_13) 1996; 61
Babot (ref_30) 2011; 514
Aranda (ref_43) 2019; 9
References_xml – volume: 8
  start-page: 605854
  year: 2021
  ident: ref_51
  article-title: High epoxidation yields of vegetable oil hydrolyzates and methyl esters by selected fungal peroxygenases
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.605854
– volume: 115
  start-page: 12407
  year: 2015
  ident: ref_1
  article-title: Isocyanate-free routes to polyurethanes and poly(hydroxy urethane)s
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00355
– volume: 11
  start-page: 2047
  year: 2009
  ident: ref_17
  article-title: Efficient epoxidation of alkenes with hydrogen peroxide, lactone, and lipase
  publication-title: Green Chem.
  doi: 10.1039/b913077b
– volume: 61
  start-page: 8310
  year: 1996
  ident: ref_13
  article-title: A practical method for epoxidation of terminal olefins with 30% hydrogen peroxide under halide-free conditions
  publication-title: J. Org. Chem.
  doi: 10.1021/jo961287e
– volume: 81
  start-page: 4130
  year: 2015
  ident: ref_39
  article-title: Steroid hydroxylation by basidiomycete peroxygenases: A combined experimental and computational study
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00660-15
– ident: ref_54
  doi: 10.3390/catal11070765
– volume: 230
  start-page: 116206
  year: 2021
  ident: ref_11
  article-title: Use of semibatch reactor technology for the investigation of reaction mechanism and kinetics: Heterogeneously catalyzed epoxidation of fatty acid esters
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2020.116206
– ident: ref_14
  doi: 10.3390/catal9010031
– volume: 69
  start-page: 3453
  year: 2004
  ident: ref_7
  article-title: Mechanistic studies on the Mukaiyama epoxidation
  publication-title: J. Org. Chem.
  doi: 10.1021/jo030345a
– volume: 62
  start-page: 726
  year: 2016
  ident: ref_12
  article-title: Kinetic modeling strategy for an exothermic multiphase reactor system: Application to vegetable oils epoxidation using Prileschajew method
  publication-title: AIChE J.
  doi: 10.1002/aic.15037
– volume: 70
  start-page: 4575
  year: 2004
  ident: ref_45
  article-title: Novel haloperoxidase from the agaric basidiomycete Agrocybe aegerita oxidizes aryl alcohols and aldehydes
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.70.8.4575-4581.2004
– ident: ref_52
– volume: 119
  start-page: 9949
  year: 1997
  ident: ref_20
  article-title: Regio- and stereoselectivity of particulate methane monooxygenase from Methylococcus capsulatus (Bath)
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja971049g
– ident: ref_48
– ident: ref_24
  doi: 10.3390/antiox11010163
– volume: 18
  start-page: 563
  year: 2017
  ident: ref_40
  article-title: A peroxygenase from Chaetomium globosum catalyzes the selective oxygenation of testosterone
  publication-title: ChemBioChem
  doi: 10.1002/cbic.201600677
– volume: 134
  start-page: 238
  year: 2016
  ident: ref_55
  article-title: Exploring the catalase activity of unspecific peroxygenases and the mechanism of peroxide-dependent heme destruction
  publication-title: J. Mol. Catal. B Enzym.
  doi: 10.1016/j.molcatb.2016.10.014
– volume: 278
  start-page: 3667
  year: 2011
  ident: ref_31
  article-title: Selective hydroxylation of alkanes by an extracellular fungal peroxygenase
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2011.08285.x
– volume: 10
  start-page: 13584
  year: 2020
  ident: ref_26
  article-title: Fatty-acid oxygenation by fungal peroxygenases: From computational simulations to preparative regio- and stereo-selective epoxidation
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03165
– volume: 112
  start-page: 2977
  year: 1990
  ident: ref_49
  article-title: Suicide inactivation of cytochrome P-450 model compounds by terminal olefins. 1. A mechanistic study of heme N-alkylation and epoxidation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00164a021
– volume: 8
  start-page: 2394
  year: 2018
  ident: ref_29
  article-title: Selective synthesis of the resveratrol analogue 4,4′-dihydroxy-trans-stilbene and stilbenoids modification by fungal peroxygenases
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C8CY00272J
– volume: 73
  start-page: 5477
  year: 2007
  ident: ref_46
  article-title: The coprophilous mushroom Coprinus radians secretes a haloperoxidase that catalyzes aromatic peroxygenation
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00026-07
– volume: 55
  start-page: 12248
  year: 2016
  ident: ref_34
  article-title: From alkanes to carboxylic acids: Terminal oxygenation by a fungal peroxygenase
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201605430
– volume: 50
  start-page: 726
  year: 2018
  ident: ref_10
  article-title: Influence of ring-opening reactions on the kinetics of cottonseed oil epoxidation
  publication-title: Int. J. Chem. Kinet.
  doi: 10.1002/kin.21208
– volume: 9
  start-page: 1398
  year: 2019
  ident: ref_43
  article-title: Selective synthesis of 4-hydroxyisophorone and 4-ketoisophorone by fungal peroxygenases
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C8CY02114G
– volume: 514
  start-page: 33
  year: 2011
  ident: ref_30
  article-title: Regioselective oxygenation of fatty acids, fatty alcohols and other aliphatic compounds by a basidiomycete heme-thiolate peroxidase
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2011.08.001
– volume: 346
  start-page: 271
  year: 2018
  ident: ref_2
  article-title: Aminolysis of cyclic-carbonate vegetable oils as a non-isocyanate route for the synthesis of polyurethane: A kinetic and thermal study
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.04.028
– volume: 55
  start-page: 2636
  year: 2016
  ident: ref_4
  article-title: Catalytic enantioselective functionalization of unactivated terminal alkenes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201507151
– volume: 20
  start-page: 260
  year: 2006
  ident: ref_8
  article-title: Ruthenium carbonyl complexes in catalytic epoxidation of olefins co-catalyzed by isobutyl-aldehyde
  publication-title: Appl. Organometal. Chem.
  doi: 10.1002/aoc.1044
– volume: 110
  start-page: 2332
  year: 2013
  ident: ref_32
  article-title: Oxyfunctionalization of aliphatic compounds by a recombinant peroxygenase from Coprinopsis cinerea
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.24904
– ident: ref_16
  doi: 10.3390/ma13204545
– volume: 6
  start-page: 3832
  year: 2016
  ident: ref_5
  article-title: An efficient epoxidation of terminal aliphatic alkenes over heterogeneous catalysts: When solvent matters
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C5CY01639H
– volume: 12
  start-page: 1216
  year: 2006
  ident: ref_22
  article-title: Enantioselective epoxidation of terminal alkenes to (R)- and (S)-epoxides by engineered cytochromes P450 BM-3
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.200500584
– volume: 66
  start-page: 1877
  year: 2000
  ident: ref_18
  article-title: Toluene monooxygenase-catalyzed epoxidation of alkenes
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.66.5.1877-1882.2000
– volume: 81
  start-page: 1919
  year: 2015
  ident: ref_23
  article-title: Microbial production of aliphatic (S)-epoxyalkanes by using Rhodococcus sp. strain ST-10 styrene monooxygenase expressed in organic-solvent-tolerant Kocuria rhizophila DC2201
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.03405-14
– ident: ref_50
– volume: 7
  start-page: 283
  year: 2015
  ident: ref_41
  article-title: Regioselective hydroxylation in the production of 25-hydroxyvitamin D by Coprinopsis cinerea peroxygenase
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201402795
– volume: 136
  start-page: 778
  year: 1986
  ident: ref_21
  article-title: Epoxidation of alkenes by chloroperoxidase catalysis
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/0006-291X(86)90507-3
– volume: 10
  start-page: 717
  year: 2020
  ident: ref_36
  article-title: Fatty acid epoxidation by Collariella virescens peroxygenase and heme-channel variants
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C9CY02332A
– volume: 87
  start-page: 871
  year: 2010
  ident: ref_28
  article-title: New and classic families of secreted fungal heme peroxidases
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-010-2633-0
– volume: 10
  start-page: 3964
  year: 2018
  ident: ref_35
  article-title: Selective epoxidation of fatty acids and fatty acid methyl esters by fungal peroxygenases
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201800849
– volume: 18
  start-page: 807
  year: 1972
  ident: ref_9
  article-title: Kinetics and mechanism of the epoxidation of unsaturated fatty acids
  publication-title: AIChE J.
  doi: 10.1002/aic.690180424
– volume: 23
  start-page: 16985
  year: 2017
  ident: ref_38
  article-title: Fatty acid chain shortening by a fungal peroxygenase
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201704773
– volume: 110
  start-page: 812
  year: 2008
  ident: ref_6
  article-title: Oxidation of unsaturated fatty acid derivatives and vegetable oils
  publication-title: Eur. J. Lipid Sci. Technol.
  doi: 10.1002/ejlt.200800042
– volume: 343
  start-page: 732
  year: 2001
  ident: ref_19
  article-title: Integrated biocatalytic synthesis on gram scale: The highly enantioselective preparation of chiral oxiranes with styrene monooxygenase
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/1615-4169(200108)343:6/7<732::AID-ADSC732>3.0.CO;2-Q
– volume: 9
  start-page: 6234
  year: 2019
  ident: ref_25
  article-title: Modulating fatty acid epoxidation vs hydroxylation in a fungal peroxygenase
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b01454
– volume: 230
  start-page: 137
  year: 2003
  ident: ref_53
  article-title: High-throughput carbon monoxide binding assay for cytochromes P450
  publication-title: Methods Mol. Biol.
– volume: 5
  start-page: 6142
  year: 2014
  ident: ref_3
  article-title: Fatty acid-based (bis) 6-membered cyclic carbonates as efficient isocyanate free poly(hydroxyurethane) precursors
  publication-title: Polym. Chem.
  doi: 10.1039/C4PY00922C
– volume: 1
  start-page: 31
  year: 2011
  ident: ref_47
  article-title: High-yield production of aromatic peroxygenase by the agaric fungus Marasmius rotula
  publication-title: AMB Express
  doi: 10.1186/2191-0855-1-31
– volume: 86
  start-page: e02899-19
  year: 2020
  ident: ref_37
  article-title: Two new unspecific peroxygenases from heterologous expression of fungal genes in Escherichia coli
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02899-19
– volume: 6
  start-page: 288
  year: 2016
  ident: ref_42
  article-title: Molecular determinants for selective C25-hydroxylation of vitamins D2 and D3 by fungal peroxygenases
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C5CY00427F
– volume: 51
  start-page: 107703
  year: 2021
  ident: ref_27
  article-title: Advances in enzymatic oxyfunctionalization of aliphatic compounds
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2021.107703
– volume: 5
  start-page: 1
  year: 2003
  ident: ref_15
  article-title: Recent developments on the epoxidation of alkenes using hydrogen peroxide as an oxidant
  publication-title: Green Chem.
  doi: 10.1039/b208925b
– volume: 68
  start-page: 5375
  year: 2020
  ident: ref_44
  article-title: Selective oxygenation of ionones and damascones by fungal peroxygenases
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.0c01019
– volume: 52
  start-page: 370
  year: 2013
  ident: ref_33
  article-title: Epoxidation of linear, branched and cyclic alkenes catalyzed by unspecific peroxygenase
  publication-title: Enzym. Microb. Technol.
  doi: 10.1016/j.enzmictec.2013.02.013
SSID ssj0000913809
Score 2.2889524
Snippet Terminal alkenes are among the most attractive starting materials for the synthesis of epoxides, which are essential and versatile intermediate building blocks...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 522
SubjectTerms Agrocybe
alkenes
Biocatalysts
By products
Catalysts
Chromatography
Coprinopsis cinerea
cytochrome P-450
Cytochrome P450
Daldinia
enols
Enzymes
Epoxidation
epoxidation reactions
Epoxides
Extracellular enzymes
Flavors
fungi
Gene expression
Genomes
Humicola insolens
Hydrogen peroxide
hydroxylation
Marasmius
Oxidizing agents
oxyfunctionalization
peroxygenases
Polymers
Proteins
terminal alkenes
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_i2_qiguApbNOkbXJU2WURFQ-7sLeSpqkrSru4u7D6651pa9mKj4vXZCjJZCbzDZ18Q8i5ManymRZUCu5ToQyjWnJDjVa-1CYNopJi4-4-7A_FzSgYLbX6wpqwih64UlwHAnCWqBAML5NCSZ2IKE2kZwSXMGgM3r4Q85aSqfIOVoxLT1UsjRzy-o7G4sEFw65age-3olBJ1v8dwvxaKLkUeXqbZKOGjO5ltdQtsmLzbbK-RCS4Q267-ftbSb7qdifF4qlqlOQWmXtb5I_0egz5vzuo6l7gSy_PeMO5yZvbA1-HkQeL1SxgSxDTprtk2OsOrvu07pNATcCiGY0SH2CEliJhoUwtD1hmdKBTYyCZ0UZCCggoBZQeRgJmGPZptBC2eWaUl3qa75HVvMjtAXFhp4A4FP79CwS-cpUJQAChU5aG1mbaIfRTb7GpScSxl8VLDMkE6jlu69khF438pKLP-FHyCo-hkULa63IAjCGujSH-yxgccvx5iHHti9MYIB_Axgiwl0POmmnwIvw1onNbzEsZgex6YfSrDNzIAHdDh-xXdtGslgccqe1hF1HLYlrbac_kT-OSzVsqyMiFd_gf-z8iaz4-z8AaOXlMVmevc3sCoGmWnJb-8QHe5xUU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS-QwEB48fbl7kNP7VU-lBwf3FGybtE2ejlN2EVGRQ8G3kiapLkq7566g_vXOtNlq5fQ1GUqTTGa-SSbfAPw0xqok1oJJwRMmlImZltwwo1UitbFp3lJsHB1n-2fi4Dw99wduM59WubCJraG2jaEz8h103Oj8c_Sgv6f_GFWNottVX0LjHaygCZYYfK3sjo5P_vanLMR6KSPVsTVyjO93NCUR3sVUXStNkoE3akn7_4c0XyZMPvNA44-w6qFj-Kdb6zVYcvU6fHhGKPgJDkf1w31LwhqOps3dpCuYFDZVeNjUF2zvUk_q8LTLf8EvXV-RpQvL-3CMex5bThxltaBOoW-bfYaz8eh0b5_5egnMpHE-Z3mZIJzQUpRxJq3jaVwZnWprDAY12kgMBRGt4ORnucCemOo1OnTfvDIqspHmX2C5bmr3DUIcKSIPRbeAqaDXrrJEKCC0jW3mXKUDYIt5K4wnE6eaFtcFBhU0z8VwngP41ctPOxqNVyV3aRl6KaK_bhuam4vC76YCUVlVqgytUSWFkroUuS1lZASX2GhMAJuLRSz8npwVTxoUwI--G3cTXZHo2jW3rYwglr0sf1MGLTPC3iyAr51e9H_LU04U9ziKfKAxg-EMe-rJZcvqLRVG5iLaePvXv8P7hB5gUBac3ITl-c2t20JYNC-3ve4_AskHDnE
  priority: 102
  providerName: ProQuest
Title Enzymatic Epoxidation of Long-Chain Terminal Alkenes by Fungal Peroxygenases
URI https://www.ncbi.nlm.nih.gov/pubmed/35326172
https://www.proquest.com/docview/2642327064
https://www.proquest.com/docview/2644010267
https://www.proquest.com/docview/2648873266
https://pubmed.ncbi.nlm.nih.gov/PMC8944640
https://doaj.org/article/125fb96832f8498ab47db80c438683cc
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_B9gIPiG8CowoSEk-GOnZi-wEhNrWa0DZNaJX2FjmOs1WrktF1Ustfz52TlgUVxKt9SmL7Pn6XXH4H8N650iTcSqalSJg0jjOrhWPOmkRbV6YqUGwcn2SHE_ntPD3_Xf_UbeDN1tSO-klN5rOPyx-rL2jwnynjxJT9k6W6wCWnhlmIJu7DLkYlRUZ63EH94JUNFzpUfCSYujOEBbzlcNxyiV6MClT-2_Dnn2WUd-LS-DE86gBl_LXVgCdwz9dP4eEdmsFncDSqf64CNWs8um6W07aNUtxU8VFTX7CDSzut47O2KgavNLsi_xcXq3iMngBHTj3VuqCmYcS7eQ6T8ejs4JB1XRSYS7laMFUkCDKslgXPdOlFyitnU1s6h6mOdRoTRMQweCSZkjjDqYujx6AuKmeG5dCKF7BTN7V_BTGuFPGIoW-DqaR_YHWBAEHakpeZ95WNgK33LXcdxTh1upjlmGrQPuf9fY7gw0b-uiXX-KvkPh3DRopIscNAM7_IOxvLEatVhcnQR1VaGm0LqcpCD50UGgedi2BvfYj5WtFyBIQIKhUiswjebabRxujDia19cxtkJHHvZeqfMuivEQxnEbxs9WLztCIVRHyPq1A9jektpz9TTy8D17c2mK_L4ev_uO8beJDQvxlUIKf3YGcxv_VvETEtigHs7o9OTr8PwhuHQTCMX1KWFxU
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4VDzLlgJBAnGymsROYh8QomVXW7pdVWgr9RYcx2lXVMnS3YouP4rfyExeNAh669UeWX6M5xvb428A3hiTKt_TgknBfSaU8ZiW3DCjlS-1SYOopNg4nISjY_H5JDhZg1_NXxgKq2xsYmmo08LQHfkOAjeCf4QI-mH-nVHWKHpdbVJoVGpxYFc_8Mi2eL__Cdf3re8PB9O9EauzCjATeNGSRYmPoKulSLxQppYHXmZ0oFNj0PXXRuKBCTEduxhGAms8ympoEeR4ZpSbuppju3dgXXA8yvRgfXcwOfrS3uoQy6Z0VcUOyblydzQFLV55lM0r8P0O-pVJAv7l2f4doHkN8YYPYKN2VZ2PlW49hDWbP4L71wgMH8N4kP9claSvzmBeXM2qBE1OkTnjIj9le2d6ljvTKt4GWzr_RpbVSVbOEG0MlhxZiqJBHUYsXTyB41uZyafQy4vcPgMHR4qejqJXx0DQ71qZoOshdOqlobWZ7gNr5i02NXk55dA4j_EQQ_Mcd-e5D-9a-XlF2_FfyV1ahlaK6LbLguLiNK53b4xeYJaoEK1fJoWSOhFRmkjXCC6x0Jg-bDeLGNc2YBH_0dg-vG6rcffSk4zObXFZyghi9QujG2UQCdDNDvuwWelF21secKLUx1FEHY3pDKdbk8_OShZxqYQIhbt1c9dfwd3R9HAcj_cnB8_hnk-fPygCT25Db3lxaV-gS7ZMXtb7wIGvt731fgPv20pi
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwMPE5MgYECcST1SR2EvsBIba12lipKrRJewuO42wVU1LWTqz8afx13CVpWBDsba-2Ffnj7n538fl3AG-MyVTga8Gk4AETyvhMS26Y0SqQ2mRhXFFsfB5H-8fi00l4sga_Vm9hKK1yZRMrQ52Vhv6R9xG4EfxjRNB-3qRFTPaGH2bfGVWQopvWVTmNWkQO7fIHhm_z9wd7eNZvg2A4ONrdZ02FAWZCP16wOA0QgLUUqR_JzPLQz40OdWYMhgHaSAyeEN9xulEssMenCocWAY_nRnmZpzl-9w6sxxgVeT1Y3xmMJ1_aPzzEuCk9VTNFcq68vqYExiufKnuFQdBBwqpgwL-83L-TNa-h3_ABbDRuq_uxlrOHsGaLR3D_GpnhYxgNip_LigDWHczKq2ldrMktc3dUFqds90xPC_eozr3BL51_Iyvrpkt3iPYGWyaWMmpQnhFX50_g-FZ28in0irKwz8DFlaLXo-gGMhT00lam6IYInflZZG2uHWCrfUtMQ2RO9TTOEwxoaJ-T7j478K4dP6spPP47coeOoR1F1NtVQ3lxmjSanKBHmKcqQkuYS6GkTkWcpdIzgktsNMaB7dUhJo09mCd_pNeB1203ajJdz-jClpfVGEEMf1F84xhEBXS5Iwc2a7loZ8tDTvT6uIq4IzGd5XR7iulZxSgulRCR8LZunvoruIsql4wOxofP4V5A70AoGU9uQ29xcWlfoHe2SF82auDC19vWvN84wU6X
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enzymatic+Epoxidation+of+Long-Chain+Terminal+Alkenes+by+Fungal+Peroxygenases&rft.jtitle=Antioxidants&rft.au=Babot%2C+Esteban+D&rft.au=Aranda%2C+Carmen&rft.au=Kiebist%2C+Jan&rft.au=Scheibner%2C+Katrin&rft.date=2022-03-08&rft.issn=2076-3921&rft.eissn=2076-3921&rft.volume=11&rft.issue=3&rft_id=info:doi/10.3390%2Fantiox11030522&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3921&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3921&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3921&client=summon