A Clean and Facile Synthesis Strategy of MoS2 Nanosheets Grown on Multi-Wall CNTs for Enhanced Hydrogen Evolution Reaction Performance

Unique hybrid nanostructure, which consists of multi-wall carbon nanotube (MWCNT) stems and MoS 2 nanosheet (NS) leaves, are prepared by a hydrothermal method. The fabricated material can be potentially used as an electrocatalyst for the hydrogen evolution reaction (HER). To our knowledge, as the re...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 7; no. 1; pp. 1 - 8
Main Authors Cao, Jiamu, Zhou, Jing, Zhang, Yufeng, Liu, Xiaowei
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 18.08.2017
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Unique hybrid nanostructure, which consists of multi-wall carbon nanotube (MWCNT) stems and MoS 2 nanosheet (NS) leaves, are prepared by a hydrothermal method. The fabricated material can be potentially used as an electrocatalyst for the hydrogen evolution reaction (HER). To our knowledge, as the reaction medium, water is firstly utilized to the synthesis of the 1T phase MoS 2 NSs which uniformly grow on the carbon-based materials. As a result, a nanohybrid catalyst with excellent HER electrocatalytic properties, which included an onset potential of as low as 50 mV, a Tafel slope of 43 mV dec −1 , and remarkable cycling stability, is produced. The observed outstanding catalytic performance can be attributed to the uniform distribution of the metallic 1T phase of the MoS 2 NSs, which are characterized by the presence of multiple active edges as well as the effective electron transport route provided by the conductive MWCNT substrate. This work demonstrates the high potential of the synthesized HER catalyst and proposes a novel, efficient, environmentally friendly, and inexpensive method for its fabrication.
AbstractList Unique hybrid nanostructure, which consists of multi-wall carbon nanotube (MWCNT) stems and MoS 2 nanosheet (NS) leaves, are prepared by a hydrothermal method. The fabricated material can be potentially used as an electrocatalyst for the hydrogen evolution reaction (HER). To our knowledge, as the reaction medium, water is firstly utilized to the synthesis of the 1T phase MoS 2 NSs which uniformly grow on the carbon-based materials. As a result, a nanohybrid catalyst with excellent HER electrocatalytic properties, which included an onset potential of as low as 50 mV, a Tafel slope of 43 mV dec −1 , and remarkable cycling stability, is produced. The observed outstanding catalytic performance can be attributed to the uniform distribution of the metallic 1T phase of the MoS 2 NSs, which are characterized by the presence of multiple active edges as well as the effective electron transport route provided by the conductive MWCNT substrate. This work demonstrates the high potential of the synthesized HER catalyst and proposes a novel, efficient, environmentally friendly, and inexpensive method for its fabrication.
Unique hybrid nanostructure, which consists of multi-wall carbon nanotube (MWCNT) stems and MoS2 nanosheet (NS) leaves, are prepared by a hydrothermal method. The fabricated material can be potentially used as an electrocatalyst for the hydrogen evolution reaction (HER). To our knowledge, as the reaction medium, water is firstly utilized to the synthesis of the 1T phase MoS2 NSs which uniformly grow on the carbon-based materials. As a result, a nanohybrid catalyst with excellent HER electrocatalytic properties, which included an onset potential of as low as 50 mV, a Tafel slope of 43 mV dec−1, and remarkable cycling stability, is produced. The observed outstanding catalytic performance can be attributed to the uniform distribution of the metallic 1T phase of the MoS2 NSs, which are characterized by the presence of multiple active edges as well as the effective electron transport route provided by the conductive MWCNT substrate. This work demonstrates the high potential of the synthesized HER catalyst and proposes a novel, efficient, environmentally friendly, and inexpensive method for its fabrication.
Abstract Unique hybrid nanostructure, which consists of multi-wall carbon nanotube (MWCNT) stems and MoS2 nanosheet (NS) leaves, are prepared by a hydrothermal method. The fabricated material can be potentially used as an electrocatalyst for the hydrogen evolution reaction (HER). To our knowledge, as the reaction medium, water is firstly utilized to the synthesis of the 1T phase MoS2 NSs which uniformly grow on the carbon-based materials. As a result, a nanohybrid catalyst with excellent HER electrocatalytic properties, which included an onset potential of as low as 50 mV, a Tafel slope of 43 mV dec−1, and remarkable cycling stability, is produced. The observed outstanding catalytic performance can be attributed to the uniform distribution of the metallic 1T phase of the MoS2 NSs, which are characterized by the presence of multiple active edges as well as the effective electron transport route provided by the conductive MWCNT substrate. This work demonstrates the high potential of the synthesized HER catalyst and proposes a novel, efficient, environmentally friendly, and inexpensive method for its fabrication.
Unique hybrid nanostructure, which consists of multi-wall carbon nanotube (MWCNT) stems and MoS2 nanosheet (NS) leaves, are prepared by a hydrothermal method. The fabricated material can be potentially used as an electrocatalyst for the hydrogen evolution reaction (HER). To our knowledge, as the reaction medium, water is firstly utilized to the synthesis of the 1T phase MoS2 NSs which uniformly grow on the carbon-based materials. As a result, a nanohybrid catalyst with excellent HER electrocatalytic properties, which included an onset potential of as low as 50 mV, a Tafel slope of 43 mV dec-1, and remarkable cycling stability, is produced. The observed outstanding catalytic performance can be attributed to the uniform distribution of the metallic 1T phase of the MoS2 NSs, which are characterized by the presence of multiple active edges as well as the effective electron transport route provided by the conductive MWCNT substrate. This work demonstrates the high potential of the synthesized HER catalyst and proposes a novel, efficient, environmentally friendly, and inexpensive method for its fabrication.Unique hybrid nanostructure, which consists of multi-wall carbon nanotube (MWCNT) stems and MoS2 nanosheet (NS) leaves, are prepared by a hydrothermal method. The fabricated material can be potentially used as an electrocatalyst for the hydrogen evolution reaction (HER). To our knowledge, as the reaction medium, water is firstly utilized to the synthesis of the 1T phase MoS2 NSs which uniformly grow on the carbon-based materials. As a result, a nanohybrid catalyst with excellent HER electrocatalytic properties, which included an onset potential of as low as 50 mV, a Tafel slope of 43 mV dec-1, and remarkable cycling stability, is produced. The observed outstanding catalytic performance can be attributed to the uniform distribution of the metallic 1T phase of the MoS2 NSs, which are characterized by the presence of multiple active edges as well as the effective electron transport route provided by the conductive MWCNT substrate. This work demonstrates the high potential of the synthesized HER catalyst and proposes a novel, efficient, environmentally friendly, and inexpensive method for its fabrication.
ArticleNumber 8825
Author Liu, Xiaowei
Zhang, Yufeng
Zhou, Jing
Cao, Jiamu
Author_xml – sequence: 1
  givenname: Jiamu
  surname: Cao
  fullname: Cao, Jiamu
  organization: MEMS Center, Harbin Institute of Technology
– sequence: 2
  givenname: Jing
  surname: Zhou
  fullname: Zhou, Jing
  organization: MEMS Center, Harbin Institute of Technology
– sequence: 3
  givenname: Yufeng
  surname: Zhang
  fullname: Zhang, Yufeng
  email: yufeng_zhang@hit.edu.cn
  organization: MEMS Center, Harbin Institute of Technology, Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education
– sequence: 4
  givenname: Xiaowei
  surname: Liu
  fullname: Liu, Xiaowei
  organization: MEMS Center, Harbin Institute of Technology, Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education
BookMark eNp9ks1uGyEUhVGVqkndvEBXSN10My0wwwCbSpHl_EhJWtWpukQMc8ceC0MKM0n8An3uYjuqkkgtGxB853B173mLDnzwgNB7Sj5RUsrPqaJcyYJQURBFKlE8vEJHjFS8YCVjB0_Oh-g4pRXJizNVUfUGHTIpGRVCHaHfJ3jqwHhsfItPje0d4PnGD0tIfcLzIZoBFhscOnwV5gxfGx_SEmBI-CyGe4-Dx1ejG_rip3EOT69vEu5CxDO_NN5Ci883bQwL8Hh2F9w49Jn_DsbuDt8gZna9Bd-h151xCY4f9wn6cTq7mZ4Xl1_PLqYnl4XlVAyFMIY1DTHEUkqohK6UvOZKtJ0Cai1pVCVVQ4XpoGxoowhXhrYta5SgVpWynKCLvW8bzErfxn5t4kYH0-vdRYgLbeLQWwe67mRVyiytSlq1lVDGVrRWRMga6qrpsteXvdft2KyhteBzt9wz0-cvvl_qRbjTnNdMEJoNPj4axPBrhDTodZ8sOGc8hDFpqso82FrmeU_QhxfoKozR51ZligvGmRR1ptiesjGkFKH7WwwlepsavU-NzqnRu9TohyySL0S2H8x2QLno3v1fWu6lKf_jFxCfVPVv1R_W79fv
CitedBy_id crossref_primary_10_1016_j_ijhydene_2020_06_114
crossref_primary_10_1016_j_diamond_2023_110342
crossref_primary_10_1021_acsaem_9b00928
crossref_primary_10_1007_s42452_020_2800_6
crossref_primary_10_1016_j_apsusc_2020_148529
crossref_primary_10_1016_j_synthmet_2020_116529
crossref_primary_10_1016_j_ijhydene_2018_05_175
crossref_primary_10_1016_j_jallcom_2024_173765
crossref_primary_10_3390_nano10061012
crossref_primary_10_1016_j_cej_2023_146074
crossref_primary_10_1016_j_apsusc_2022_156309
crossref_primary_10_19053_uptc_01217488_v1_nE_2024_18417
crossref_primary_10_1016_j_jpowsour_2019_227277
crossref_primary_10_1016_j_surfin_2023_103161
crossref_primary_10_1039_D0NR01664K
crossref_primary_10_1002_celc_202200420
crossref_primary_10_1021_acsaem_0c00856
crossref_primary_10_1021_acsanm_2c05311
crossref_primary_10_1016_j_seppur_2021_119569
crossref_primary_10_1002_adfm_202105287
crossref_primary_10_1016_j_apcatb_2020_119213
crossref_primary_10_1021_acsaem_8b01670
crossref_primary_10_1021_acsaem_0c02874
crossref_primary_10_1016_j_ijhydene_2023_12_122
crossref_primary_10_1007_s41918_020_00087_y
crossref_primary_10_1039_C8TA08834A
crossref_primary_10_1039_C7RA13303K
crossref_primary_10_1002_slct_202401073
crossref_primary_10_1016_j_jelechem_2019_05_041
crossref_primary_10_1039_D4RA00697F
crossref_primary_10_3390_s20041124
crossref_primary_10_1016_j_apcatb_2021_120617
crossref_primary_10_1016_j_jiec_2022_11_054
crossref_primary_10_1007_s40820_018_0215_3
crossref_primary_10_1142_S1793604723510025
crossref_primary_10_1021_acsami_7b16407
crossref_primary_10_1002_chem_201804140
crossref_primary_10_1021_acsami_1c21421
crossref_primary_10_1021_acssuschemeng_8b04335
crossref_primary_10_1002_elan_202060351
crossref_primary_10_1016_j_ijhydene_2024_08_354
crossref_primary_10_1021_acsami_9b17713
crossref_primary_10_1088_1361_6528_ab9476
crossref_primary_10_1016_j_diamond_2024_111720
crossref_primary_10_1007_s11814_020_0705_0
crossref_primary_10_1016_j_apsusc_2022_155354
crossref_primary_10_1016_j_mee_2018_01_012
crossref_primary_10_1039_D3YA00219E
crossref_primary_10_1039_D1NJ00432H
crossref_primary_10_1021_acsaem_1c02203
crossref_primary_10_1002_celc_202300614
crossref_primary_10_20964_2019_10_29
crossref_primary_10_1002_cctc_202100504
crossref_primary_10_1021_acsaem_1c01638
crossref_primary_10_1021_acs_jpcc_9b02010
crossref_primary_10_1021_acsanm_0c02762
crossref_primary_10_1016_j_jallcom_2019_02_192
Cites_doi 10.1039/C5TA05793K
10.1016/j.nanoen.2015.05.025
10.1016/j.nanoen.2015.07.008
10.1016/j.nanoen.2016.08.065
10.1039/C5RA05220C
10.1038/nnano.2012.193
10.1038/srep02169
10.1016/j.nanoen.2015.04.033
10.1039/B803857K
10.1039/C2DT32137H
10.1126/science.1249061
10.1002/anie.201605551
10.1016/j.carbon.2011.03.028
10.1039/c3nr02994h
10.1021/nl403661s
10.1002/adma.201202920
10.1021/ja0504690
10.1002/aenm.201600116
10.1002/anie.201103745
10.1021/acsnano.5b00786
10.1021/cr1002326
10.1021/nl201874w
10.1016/j.nanoen.2015.10.014
10.1038/nature08969
10.1016/j.nanoen.2016.04.024
10.1039/C5EE03456F
10.1039/C2TA00598K
10.1021/acsnano.5b05907
10.1021/am300451b
10.1039/C5RA27180K
10.1039/C5TA09322H
10.1016/S0013-4686(02)00329-8
10.1126/science.1258307
10.1016/j.nanoen.2016.08.027
10.1016/j.carbon.2013.11.042
10.1126/science.1103197
10.1038/srep01866
10.1039/c2ee03309g
10.1021/jacs.5b01732
10.1007/s12274-015-0963-z
10.1021/acs.chemmater.7b00114
10.1021/ja201269b
10.1021/am503995s
10.1038/nature13792
10.1016/j.nanoen.2016.07.014
10.1016/j.ijhydene.2015.05.062
10.1103/PhysRevLett.25.362
10.1021/ja511572q
10.1126/science.1141483
10.1039/c3nr04975b
ContentType Journal Article
Copyright The Author(s) 2017
2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2017
– notice: 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-017-09047-x
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 8
ExternalDocumentID oai_doaj_org_article_6f84382b94314d479ac41690786e64bf
PMC5562701
10_1038_s41598_017_09047_x
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c517t-7aa2bb0a0c11018ef3856597df9e1cc0b9489b17afe3b1b9059a1dd2b971c9383
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:20:45 EDT 2025
Thu Aug 21 18:19:34 EDT 2025
Mon Jul 21 09:58:08 EDT 2025
Wed Aug 13 04:03:53 EDT 2025
Tue Jul 01 01:33:39 EDT 2025
Thu Apr 24 22:59:34 EDT 2025
Fri Feb 21 02:40:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-7aa2bb0a0c11018ef3856597df9e1cc0b9489b17afe3b1b9059a1dd2b971c9383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-017-09047-x
PMID 28821779
PQID 1957252876
PQPubID 2041939
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_6f84382b94314d479ac41690786e64bf
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5562701
proquest_miscellaneous_1930476810
proquest_journals_1957252876
crossref_primary_10_1038_s41598_017_09047_x
crossref_citationtrail_10_1038_s41598_017_09047_x
springer_journals_10_1038_s41598_017_09047_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-18
PublicationDateYYYYMMDD 2017-08-18
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-18
  day: 18
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Voiry (CR46) 2013; 13
Li (CR29) 2015; 16
Karunadasa, Chang, Long (CR1) 2010; 464
Gu (CR35) 2016; 6
Wang, Zadeh, Kis, Coleman, Strano (CR22) 2012; 7
Shi (CR33) 2013; 3
Khan (CR45) 2016; 9
Ma (CR9) 2016; 24
Bonde, Moses, Jaramillo, Nørskovb, Chorkendorff (CR17) 2008; 140
Tiwari, Kim, Kim, Prakash, Lee (CR19) 2016; 28
Shi (CR7) 2015; 137
Lehman, Terrones, Mansfield, Hurst, Meunier (CR27) 2011; 49
Ma (CR8) 2016; 27
Hinnemann (CR18) 2005; 127
McAteer (CR47) 2016; 10
Deng (CR43) 2016; 4
Tang (CR11) 2016; 6
Eda (CR44) 2011; 11
Yoon (CR13) 2016; 9
Luo (CR3) 2014; 345
Jin (CR15) 2016; 55
Verble, Wieting (CR39) 1970; 25
Jaramillo (CR16) 2007; 317
Li (CR36) 2015; 5
Li (CR28) 2011; 133
Kingston (CR26) 2014; 68
Chatti (CR38) 2017; 29
Chen (CR5) 2014; 343
Roy-Mayhew, Boschloo, Hagfeldt, Aksay (CR23) 2012; 4
Zhou (CR25) 2016; 28
Zhang (CR21) 2015; 18
Dai (CR34) 2015; 40
Yan (CR31) 2013; 5
Hu, Ren, Yang, Xu (CR32) 2014; 6
Wu (CR14) 2014; 514
Seo (CR48) 2015; 9
Conway, Tilak (CR50) 2002; 47
Zhang (CR24) 2015; 3
Hansen (CR41) 2011; 50
Ye (CR6) 2015; 15
Zhou (CR12) 2016; 16
Ma (CR30) 2014; 6
Turner (CR2) 2004; 305
Wang (CR20) 2015; 137
Wang, Chen, Sun (CR10) 2012; 5
Chang (CR51) 2013; 25
Yu (CR42) 2013; 3
Walter (CR4) 2010; 110
Park (CR37) 2013; 42
Thomas (CR49) 1961; 57
Wang (CR40) 2013; 1
BW Jin (9047_CR15) 2016; 55
LR Hu (9047_CR32) 2014; 6
D Voiry (9047_CR46) 2013; 13
XP Dai (9047_CR34) 2015; 40
YH Chang (9047_CR51) 2013; 25
LP Hansen (9047_CR41) 2011; 50
C Chen (9047_CR5) 2014; 343
X Li (9047_CR36) 2015; 5
D McAteer (9047_CR47) 2016; 10
YG Li (9047_CR28) 2011; 133
JGN Thomas (9047_CR49) 1961; 57
M Khan (9047_CR45) 2016; 9
M Chatti (9047_CR38) 2017; 29
AP Tiwari (9047_CR19) 2016; 28
MG Walter (9047_CR4) 2010; 110
YM Shi (9047_CR33) 2013; 3
JS Luo (9047_CR3) 2014; 345
D Wang (9047_CR20) 2015; 137
M Wang (9047_CR10) 2012; 5
C Kingston (9047_CR26) 2014; 68
T Ye (9047_CR6) 2015; 15
TF Jaramillo (9047_CR16) 2007; 317
YC Zhou (9047_CR12) 2016; 16
HH Gu (9047_CR35) 2016; 6
Z Wang (9047_CR40) 2013; 1
J Bonde (9047_CR17) 2008; 140
JL Verble (9047_CR39) 1970; 25
HI Karunadasa (9047_CR1) 2010; 464
LB Ma (9047_CR9) 2016; 24
WZ Wu (9047_CR14) 2014; 514
X Zhang (9047_CR24) 2015; 3
H Deng (9047_CR43) 2016; 4
Y Shi (9047_CR7) 2015; 137
G Eda (9047_CR44) 2011; 11
FK Ma (9047_CR8) 2016; 27
Y Yan (9047_CR31) 2013; 5
Y Yu (9047_CR42) 2013; 3
D Yoon (9047_CR13) 2016; 9
JY Li (9047_CR29) 2015; 16
QH Wang (9047_CR22) 2012; 7
B Seo (9047_CR48) 2015; 9
BE Conway (9047_CR50) 2002; 47
YJ Tang (9047_CR11) 2016; 6
ZY Zhang (9047_CR21) 2015; 18
B Hinnemann (9047_CR18) 2005; 127
JD Roy-Mayhew (9047_CR23) 2012; 4
JH Lehman (9047_CR27) 2011; 49
S Park (9047_CR37) 2013; 42
JA Turner (9047_CR2) 2004; 305
WJ Zhou (9047_CR25) 2016; 28
CB Ma (9047_CR30) 2014; 6
References_xml – volume: 3
  start-page: 19277
  year: 2015
  end-page: 19281
  ident: CR24
  article-title: Physical vapor deposition of amorphous MoS nanosheet arrays on carbon cloth for highly reproducible large-area electrocatalysts for the hydrogen evolution reaction
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C5TA05793K
– volume: 16
  start-page: 10
  year: 2015
  end-page: 18
  ident: CR29
  article-title: A three-dimensionally interconnected carbon nanotube/layered MoS nanohybrid network for lithium ion battery anode with superior rate capacity and long-cycle-life
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2015.05.025
– volume: 16
  start-page: 357
  year: 2016
  end-page: 366
  ident: CR12
  article-title: Sulfur and nitrogen self-doped carbon nanosheets derived from peanut root nodules as high-efficiency non-metal electrocatalyst for hydrogen evolution reaction
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2015.07.008
– volume: 28
  start-page: 366
  year: 2016
  end-page: 372
  ident: CR19
  article-title: Highly active and stable layered ternary transition metal chalcogenide for hydrogen evolution reaction
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2016.08.065
– volume: 5
  start-page: 55396
  year: 2015
  end-page: 55400
  ident: CR36
  article-title: Towards free-standing MoS nanosheet electrocatalysts supported and enhanced by N doped CNT-graphene foam for hydrogen evolution reaction
  publication-title: RSC Adv.
  doi: 10.1039/C5RA05220C
– volume: 7
  start-page: 699
  year: 2012
  end-page: 712
  ident: CR22
  article-title: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.193
– volume: 3
  year: 2013
  ident: CR33
  article-title: Self-assembly of hierarchical MoS /CNT nanocomposites (2 < x < 3): towards high performance anode materials for lithium ion batteries
  publication-title: Sci. Rep.
  doi: 10.1038/srep02169
– volume: 15
  start-page: 335
  year: 2015
  end-page: 342
  ident: CR6
  article-title: Hierarchical carbon nanopapers coupled with ultrathin MoS nanosheets: Highly efficient large-area electrodes for hydrogen evolution
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2015.04.033
– volume: 140
  start-page: 219
  year: 2008
  end-page: 231
  ident: CR17
  article-title: Hydrogen evolution on nano-particulate transition metal sulfides
  publication-title: Faraday Discuss.
  doi: 10.1039/B803857K
– volume: 42
  start-page: 2399
  year: 2013
  end-page: 2405
  ident: CR37
  article-title: A simple L-cysteine-assisted method for the growth of MoS nanosheets on carbon nanotubes for high-performance lithium ion batteries
  publication-title: Dalton Trans.
  doi: 10.1039/C2DT32137H
– volume: 343
  start-page: 1339
  year: 2014
  end-page: 1343
  ident: CR5
  article-title: Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces
  publication-title: Science.
  doi: 10.1126/science.1249061
– volume: 55
  start-page: 12252
  year: 2016
  end-page: 12256
  ident: CR15
  article-title: Aligned MoO /MoS core-shell nanotubular structures with a high density of reactive sites based on self-ordered anodic molybdenum oxide nanotubes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201605551
– volume: 49
  start-page: 2581
  year: 2011
  end-page: 2602
  ident: CR27
  article-title: Evaluating the characteristics of multiwall carbon nanotubes
  publication-title: Carbon.
  doi: 10.1016/j.carbon.2011.03.028
– volume: 5
  start-page: 7768
  year: 2013
  end-page: 7771
  ident: CR31
  article-title: Facile synthesis of low crystalline MoS nanosheet-coated CNTs for enhanced hydrogen evolution reaction
  publication-title: Nanoscale.
  doi: 10.1039/c3nr02994h
– volume: 13
  start-page: 6222
  year: 2013
  end-page: 6227
  ident: CR46
  article-title: Conducting MoS Nanosheets as Catalysts for Hydrogen Evolution Reaction
  publication-title: Nano Lett.
  doi: 10.1021/nl403661s
– volume: 25
  start-page: 756
  year: 2013
  end-page: 760
  ident: CR51
  article-title: Highly efficient electrocatalytic hydrogen production by MoS grown on graphene-protected 3d Ni foams
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201202920
– volume: 127
  start-page: 5308
  year: 2005
  end-page: 5309
  ident: CR18
  article-title: Biomimetic Hydrogen Evolution: MoS Nanoparticles as catalyst for hydrogen evolution
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0504690
– volume: 6
  year: 2016
  ident: CR11
  article-title: Molybdenum disulfide/Nitrogen-doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600116
– volume: 50
  start-page: 10153
  year: 2011
  end-page: 10156
  ident: CR41
  article-title: Atomic-Scale Edge Structures on Industrial-Style MoS Nanocatalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201103745
– volume: 9
  start-page: 3728
  year: 2015
  end-page: 3739
  ident: CR48
  article-title: Monolayer-Precision Synthesis of Molybdenum Sulfide Nanoparticles and Their Nanoscale Size Effect in the Hydrogen Evolution Reaction
  publication-title: ACS Nano.
  doi: 10.1021/acsnano.5b00786
– volume: 110
  start-page: 6446
  year: 2010
  end-page: 6473
  ident: CR4
  article-title: Solar water splitting cells
  publication-title: Chem. Rev.
  doi: 10.1021/cr1002326
– volume: 57
  start-page: 1603
  year: 1961
  end-page: 1611
  ident: CR49
  article-title: Kinetics of electrolytic hydrogen evolution and the adsorption of hydrogen by metals
  publication-title: J. Electrochem. Soc.
– volume: 11
  start-page: 5111
  year: 2011
  end-page: 5116
  ident: CR44
  article-title: Photoluminescence from Chemically Exfoliated MoS
  publication-title: Nano Lett.
  doi: 10.1021/nl201874w
– volume: 18
  start-page: 196
  year: 2015
  end-page: 204
  ident: CR21
  article-title: Hierarchical composite structure of few-layers MoS nanosheets supported by vertical graphene on carbon cloth for high-performance hydrogen evolution reaction
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2015.10.014
– volume: 464
  start-page: 1329
  year: 2010
  end-page: 1333
  ident: CR1
  article-title: A molecular molybdenum-oxo catalyst for generating hydrogen from water
  publication-title: Nature.
  doi: 10.1038/nature08969
– volume: 24
  start-page: 139
  year: 2016
  end-page: 147
  ident: CR9
  article-title: Self-assembled ultrathin NiCo S nanoflakes grown on Ni foam as high-performance flexible electrodes for hydrogen evolution reaction in alkaline solution
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2016.04.024
– volume: 9
  start-page: 850
  year: 2016
  end-page: 856
  ident: CR13
  article-title: Facet-controlled hollow Rh S hexagonal nanoprisms as highly active and structurally robust catalysts toward hydrogen evolution reaction
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03456F
– volume: 1
  start-page: 2202
  year: 2013
  end-page: 2210
  ident: CR40
  article-title: CTAB-assisted synthesis of single-layer MoS -graphene composites as anode materials of Li-ion batteries
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C2TA00598K
– volume: 10
  start-page: 672
  year: 2016
  end-page: 683
  ident: CR47
  article-title: Thickness Dependence and Percolation Scaling of Hydrogen Production Rate in MoS Nanosheet and Nanosheet−Carbon Nanotube Composite Catalytic Electrodes
  publication-title: ACS Nano.
  doi: 10.1021/acsnano.5b05907
– volume: 4
  start-page: 2794
  year: 2012
  end-page: 2800
  ident: CR23
  article-title: Functionalized graphene sheets as a versatile replacement for platinum in dye-sensitized solar cells
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/am300451b
– volume: 6
  start-page: 13757
  year: 2016
  end-page: 13765
  ident: CR35
  article-title: Quasi-one-dimensional graphene nanoribbon supported MoS nanosheets for enhanced hydrogen evolution reaction
  publication-title: RSC Adv.
  doi: 10.1039/C5RA27180K
– volume: 4
  start-page: 6824
  year: 2016
  end-page: 6830
  ident: CR43
  article-title: Laser induced MoS /carbon hybrids for hydrogen evolution reaction catalysts
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C5TA09322H
– volume: 47
  start-page: 3571
  year: 2002
  end-page: 3594
  ident: CR50
  article-title: Interfacial processes involving electrocatalytic evolution and oxidation of H , and the role of chemisorbed H
  publication-title: Electrochim. Acta.
  doi: 10.1016/S0013-4686(02)00329-8
– volume: 345
  start-page: 1593
  year: 2014
  end-page: 1596
  ident: CR3
  article-title: Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts
  publication-title: Science.
  doi: 10.1126/science.1258307
– volume: 28
  start-page: 29
  year: 2016
  end-page: 43
  ident: CR25
  article-title: Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2016.08.027
– volume: 68
  start-page: 33
  year: 2014
  end-page: 57
  ident: CR26
  article-title: Release characteristics of selected carbon nanotube polymer composites
  publication-title: Carbon.
  doi: 10.1016/j.carbon.2013.11.042
– volume: 305
  start-page: 972
  year: 2004
  end-page: 974
  ident: CR2
  article-title: Sustainable hydrogen production
  publication-title: Science.
  doi: 10.1126/science.1103197
– volume: 3
  year: 2013
  ident: CR42
  article-title: Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-layer MoS Films
  publication-title: Sci. Rep.
  doi: 10.1038/srep01866
– volume: 5
  start-page: 6763
  year: 2012
  end-page: 6778
  ident: CR10
  article-title: Recent progress in electrochemical hydrogen production with earth-abundant metal complexes as catalysts
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee03309g
– volume: 137
  start-page: 7365
  year: 2015
  end-page: 7370
  ident: CR7
  article-title: Hot electron of Au nanorods activates the electrocatalysis of hydrogen evolution on MoS nanosheets
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b01732
– volume: 9
  start-page: 837
  year: 2016
  end-page: 848
  ident: CR45
  article-title: Molybdenum sulfide/graphene-carbon nanotube nanocomposite material for electrocatalytic applications in hydrogen evolution reactions
  publication-title: Nano Research.
  doi: 10.1007/s12274-015-0963-z
– volume: 29
  start-page: 3092
  year: 2017
  end-page: 3099
  ident: CR38
  article-title: Vertically Aligned Interlayer Expanded MoS Nanosheets on a Carbon Support for Hydrogen Evolution Electrocatalysis
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00114
– volume: 133
  start-page: 7296
  year: 2011
  end-page: 7299
  ident: CR28
  article-title: MoS Nanoparticles Grown on Graphene: An advanced catalyst for the hydrogen evolution reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja201269b
– volume: 6
  start-page: 14644
  year: 2014
  end-page: 14652
  ident: CR32
  article-title: Fabrication of 3D hierarchical MoS /polyaniline and MoS /C architectures for lithium-ion battery applications
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/am503995s
– volume: 514
  start-page: 470
  year: 2014
  end-page: 474
  ident: CR14
  article-title: Piezoelectricity of single-atomic-layer MoS for energy conversion and piezotroncs
  publication-title: Nature.
  doi: 10.1038/nature13792
– volume: 27
  start-page: 466
  year: 2016
  end-page: 474
  ident: CR8
  article-title: 0D/2D nanocomposite visible light photocatalyst for highly stable and efficient hydrogen generation via recrystallization of CdS on MoS nanosheets
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2016.07.014
– volume: 40
  start-page: 8877
  year: 2015
  end-page: 8888
  ident: CR34
  article-title: Enhanced hydrogen evolution reaction on few-layer MoS nanosheets-coated functionalized carbon nanotubes
  publication-title: Hydrogen Energy.
  doi: 10.1016/j.ijhydene.2015.05.062
– volume: 25
  start-page: 362
  year: 1970
  end-page: 365
  ident: CR39
  article-title: Lattice mode degeneracy in MoS and other layer compounds
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.25.362
– volume: 137
  start-page: 1587
  year: 2015
  end-page: 1592
  ident: CR20
  article-title: Highly Active and Stable Hybrid Catalyst of Cobalt-Doped FeS Nanosheets−Carbon Nanotubes for Hydrogen Evolution Reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511572q
– volume: 317
  start-page: 100
  year: 2007
  end-page: 102
  ident: CR16
  article-title: Identification of active edge sites for electrochemical H evolution from MoS nanocatalysts
  publication-title: Science.
  doi: 10.1126/science.1141483
– volume: 6
  start-page: 5624
  year: 2014
  end-page: 5629
  ident: CR30
  article-title: MoS nanoflower-decorated reduced graphene oxide paper for high-performance hydrogen evolution reaction
  publication-title: Nanoscale.
  doi: 10.1039/c3nr04975b
– volume: 6
  start-page: 5624
  year: 2014
  ident: 9047_CR30
  publication-title: Nanoscale.
  doi: 10.1039/c3nr04975b
– volume: 13
  start-page: 6222
  year: 2013
  ident: 9047_CR46
  publication-title: Nano Lett.
  doi: 10.1021/nl403661s
– volume: 137
  start-page: 1587
  year: 2015
  ident: 9047_CR20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511572q
– volume: 47
  start-page: 3571
  year: 2002
  ident: 9047_CR50
  publication-title: Electrochim. Acta.
  doi: 10.1016/S0013-4686(02)00329-8
– volume: 305
  start-page: 972
  year: 2004
  ident: 9047_CR2
  publication-title: Science.
  doi: 10.1126/science.1103197
– volume: 16
  start-page: 357
  year: 2016
  ident: 9047_CR12
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2015.07.008
– volume: 4
  start-page: 2794
  year: 2012
  ident: 9047_CR23
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/am300451b
– volume: 49
  start-page: 2581
  year: 2011
  ident: 9047_CR27
  publication-title: Carbon.
  doi: 10.1016/j.carbon.2011.03.028
– volume: 7
  start-page: 699
  year: 2012
  ident: 9047_CR22
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.193
– volume: 5
  start-page: 7768
  year: 2013
  ident: 9047_CR31
  publication-title: Nanoscale.
  doi: 10.1039/c3nr02994h
– volume: 16
  start-page: 10
  year: 2015
  ident: 9047_CR29
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2015.05.025
– volume: 50
  start-page: 10153
  year: 2011
  ident: 9047_CR41
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201103745
– volume: 25
  start-page: 756
  year: 2013
  ident: 9047_CR51
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201202920
– volume: 24
  start-page: 139
  year: 2016
  ident: 9047_CR9
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2016.04.024
– volume: 9
  start-page: 3728
  year: 2015
  ident: 9047_CR48
  publication-title: ACS Nano.
  doi: 10.1021/acsnano.5b00786
– volume: 514
  start-page: 470
  year: 2014
  ident: 9047_CR14
  publication-title: Nature.
  doi: 10.1038/nature13792
– volume: 343
  start-page: 1339
  year: 2014
  ident: 9047_CR5
  publication-title: Science.
  doi: 10.1126/science.1249061
– volume: 127
  start-page: 5308
  year: 2005
  ident: 9047_CR18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0504690
– volume: 15
  start-page: 335
  year: 2015
  ident: 9047_CR6
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2015.04.033
– volume: 3
  start-page: 19277
  year: 2015
  ident: 9047_CR24
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C5TA05793K
– volume: 3
  year: 2013
  ident: 9047_CR33
  publication-title: Sci. Rep.
  doi: 10.1038/srep02169
– volume: 27
  start-page: 466
  year: 2016
  ident: 9047_CR8
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2016.07.014
– volume: 18
  start-page: 196
  year: 2015
  ident: 9047_CR21
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2015.10.014
– volume: 28
  start-page: 29
  year: 2016
  ident: 9047_CR25
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2016.08.027
– volume: 5
  start-page: 55396
  year: 2015
  ident: 9047_CR36
  publication-title: RSC Adv.
  doi: 10.1039/C5RA05220C
– volume: 25
  start-page: 362
  year: 1970
  ident: 9047_CR39
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.25.362
– volume: 3
  year: 2013
  ident: 9047_CR42
  publication-title: Sci. Rep.
  doi: 10.1038/srep01866
– volume: 110
  start-page: 6446
  year: 2010
  ident: 9047_CR4
  publication-title: Chem. Rev.
  doi: 10.1021/cr1002326
– volume: 6
  year: 2016
  ident: 9047_CR11
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600116
– volume: 140
  start-page: 219
  year: 2008
  ident: 9047_CR17
  publication-title: Faraday Discuss.
  doi: 10.1039/B803857K
– volume: 6
  start-page: 14644
  year: 2014
  ident: 9047_CR32
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/am503995s
– volume: 55
  start-page: 12252
  year: 2016
  ident: 9047_CR15
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201605551
– volume: 40
  start-page: 8877
  year: 2015
  ident: 9047_CR34
  publication-title: Hydrogen Energy.
  doi: 10.1016/j.ijhydene.2015.05.062
– volume: 29
  start-page: 3092
  year: 2017
  ident: 9047_CR38
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00114
– volume: 464
  start-page: 1329
  year: 2010
  ident: 9047_CR1
  publication-title: Nature.
  doi: 10.1038/nature08969
– volume: 5
  start-page: 6763
  year: 2012
  ident: 9047_CR10
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee03309g
– volume: 1
  start-page: 2202
  year: 2013
  ident: 9047_CR40
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C2TA00598K
– volume: 68
  start-page: 33
  year: 2014
  ident: 9047_CR26
  publication-title: Carbon.
  doi: 10.1016/j.carbon.2013.11.042
– volume: 9
  start-page: 850
  year: 2016
  ident: 9047_CR13
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03456F
– volume: 6
  start-page: 13757
  year: 2016
  ident: 9047_CR35
  publication-title: RSC Adv.
  doi: 10.1039/C5RA27180K
– volume: 11
  start-page: 5111
  year: 2011
  ident: 9047_CR44
  publication-title: Nano Lett.
  doi: 10.1021/nl201874w
– volume: 9
  start-page: 837
  year: 2016
  ident: 9047_CR45
  publication-title: Nano Research.
  doi: 10.1007/s12274-015-0963-z
– volume: 137
  start-page: 7365
  year: 2015
  ident: 9047_CR7
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b01732
– volume: 133
  start-page: 7296
  year: 2011
  ident: 9047_CR28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja201269b
– volume: 345
  start-page: 1593
  year: 2014
  ident: 9047_CR3
  publication-title: Science.
  doi: 10.1126/science.1258307
– volume: 4
  start-page: 6824
  year: 2016
  ident: 9047_CR43
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C5TA09322H
– volume: 57
  start-page: 1603
  year: 1961
  ident: 9047_CR49
  publication-title: J. Electrochem. Soc.
– volume: 28
  start-page: 366
  year: 2016
  ident: 9047_CR19
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2016.08.065
– volume: 317
  start-page: 100
  year: 2007
  ident: 9047_CR16
  publication-title: Science.
  doi: 10.1126/science.1141483
– volume: 42
  start-page: 2399
  year: 2013
  ident: 9047_CR37
  publication-title: Dalton Trans.
  doi: 10.1039/C2DT32137H
– volume: 10
  start-page: 672
  year: 2016
  ident: 9047_CR47
  publication-title: ACS Nano.
  doi: 10.1021/acsnano.5b05907
SSID ssj0000529419
Score 2.463582
Snippet Unique hybrid nanostructure, which consists of multi-wall carbon nanotube (MWCNT) stems and MoS 2 nanosheet (NS) leaves, are prepared by a hydrothermal method....
Unique hybrid nanostructure, which consists of multi-wall carbon nanotube (MWCNT) stems and MoS2 nanosheet (NS) leaves, are prepared by a hydrothermal method....
Abstract Unique hybrid nanostructure, which consists of multi-wall carbon nanotube (MWCNT) stems and MoS2 nanosheet (NS) leaves, are prepared by a hydrothermal...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms 140/146
639/301/299
639/301/299/886
639/301/357
Alternative energy sources
Aqueous solutions
Atoms & subatomic particles
Carbon
Electrodes
Electron transport
Fabrication
Humanities and Social Sciences
Hydrogen
Morphology
multidisciplinary
Science
Science (multidisciplinary)
Spectrum analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlUOil9JO6TcIUemtNLFu2pGOy7GYpJJQmgdyEZMlsIMgh3pTsH-jvzkj2btaBtpeeDLaMLM2M5o1H80TIl8wgxq4cTWVRupRxXqSS2RClCFZUTWUlC9XIJ6fV_IJ9vywvt476CnvCenrgfuIOqkaEXJWR6OmYZVzqmoXUDsceKmaasPqiz9sKpnpW71wyKocqmawQBx16qlBNhotyJgM9wf3IE0XC_hHKfLpH8kmiNPqf2SvycgCOcNh_8GvyzPk35Hl_lOTqLfl9CJNrpz1ob2GmazR2OFt5hHfdVQcDB-0K2gZO2rMccFFtu4Vzyw6OQyAOrYdYi5uGP-swOT3vAOEsTP0ibhGA-cretqhsMP01KCv8dH1RBPx4LD54Ry5m0_PJPB3OWEjrkvJlyrXOjcl0VtPA3eWaQiDEk9w20tG6znDehTSU68YVhhqJaExTa1EenNYSw9v3ZMe33n0gYBuEKlTWiGA0yyxG6a50RljnGF4KnRC6nm9VDwTk4RyMaxUT4YVQvYwUykhFGan7hHzdvHPT02_8tfVREOOmZaDOjjdQodSgUOpfCpWQ3bUSqMGeO0VlyfMSo8sqIZ83j9ESQ3pFe9fehTYhhRn43RLCR8oz-qDxE3-1iJzeJeJQntGEfFur2Vbnfxzwx_8x4E_kRR7NQqRU7JKd5e2d20OktTT70ageAFv2I6A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9RAFB60IvgiXjFaZQTfNDSTTDKZJ6nLrovQIraFfQtzi1sok7rZSvcP-Ls9ZzK7NQX7FEgm5HK-M_PNnDnfIeRDpoFjV46lsihdyoUoUsktzlJqXlRtZSXHbOSj42p-xr8tykVccOvjtsptnxg6atsZXCM_YLIUeQn8vvp8-SvFqlEYXY0lNO6TByhdhqgWC7FbY8EoFmcy5spkRX3Qw3iFOWXQNWcSRQquR-NRkO0fcc3bOyVvhUvDKDR7Qh5H-kgPB3s_Jfecf0YeDgUlN8_Jn0M6uXDKU-UtnSkDLk9PNh5IXn_e06hEu6FdS4-6k5xC19r1S-fWPf2K03HaeRoyclNcX6eT49OeAqmlU78MGwXofGNXHUCOTn9HyNIfbkiNoN9vUhBekLPZ9HQyT2OlhdSUTKxToVSudaYyw1DBy7VFDURPCttKx4zJtOS11Eyo1hWaaQmcTDFrcy0FMxImuS_Jnu-8e0WobYGwMGmAxyieWZiru9Lp2jrH4VCohLDt_25MlCHHahgXTQiHF3Uz2KgBGzXBRs11Qj7u7rkcRDjubP0FzbhriQLa4US3-tlEf2yqtsYQKHxYwbjlQirDMWIoALgV121C9rcgaKJX980NBhPyfncZ_BGDLMq77grbYCATVd4SIkbgGb3Q-Io_XwZl7xLYqMhYQj5tYfbPw__7wa_vftc35FEeAF-nrN4ne-vVlXsLTGqt3wV3-QsX8hx0
  priority: 102
  providerName: ProQuest
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swEBalZbCXsZ_MWzdusLfNzLJly3rMQrIQaBlLC30TkiUvhSKXOB3NP9C_eyfZzuayDfZksCQsWXfSd7q7T4S8TzRi7MLSWGS5jRnnWSyY8VZKybKiLoxgPhv55LRYnLPlRX5xQNIhFyYE7QdKy7BMD9Fhn1rcaHwyGK6pifDsAogbjzxVO8r20WSyXC33Jyved8Wo6DNkkqz8Q-PRLhTI-kcI83585D0nadh75o_Jox40wqTr5hNyYN1T8qC7RnL3jNxNYHpllQPlDMxVhYoOq51DaNdettDzz-6gqeGkWaWAC2rTrq3dtvDFG-HQOAh5uLE_VYfp6VkLCGVh5tYhPAAWO7NpUNBg9qMXVPhmu4QI-Por8eA5OZ_PzqaLuL9fIa5yyrcxVyrVOlFJRT1vl62zEuGd4KYWllZVogUrhaZc1TbTVAtEYooak2rBaSXQtH1BDl3j7EsCpkaYQkWF6EWxxKCFbnOrS2Mtw0emIkKH_y2rnnzc34FxJYMTPCtlN0cS50iGOZK3Efmwb3PdUW_8s_ZnP437mp42O7xoNt9lL0ayqEvv-MSBZZQZxoWqmPcTchTXguk6IseDEMhel1tJRc7THC3LIiLv9sWohd61opxtbnwd77703G4R4SPhGXVoXOIu14HPO0cMyhMakY-DmP328b8O-NX_VX9NHqZBAcqYlsfkcLu5sW8QT231216BfgL1yhwZ
  priority: 102
  providerName: Springer Nature
Title A Clean and Facile Synthesis Strategy of MoS2 Nanosheets Grown on Multi-Wall CNTs for Enhanced Hydrogen Evolution Reaction Performance
URI https://link.springer.com/article/10.1038/s41598-017-09047-x
https://www.proquest.com/docview/1957252876
https://www.proquest.com/docview/1930476810
https://pubmed.ncbi.nlm.nih.gov/PMC5562701
https://doaj.org/article/6f84382b94314d479ac41690786e64bf
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELbGJiReED9FYFRG4g0CceLE8QNCXdRSVWo1ravUt8iOHTqpcqDp0PIP8HdzdpJCp8ETT5ESR4l9d_Z3Pt93CL0NJGDsRBOfR7H2KWORz6myXkpKo6RMFKc2G3k2TyZLOl3FqyPUlzvqBrC-07Wz9aSW282Hm-_NZzD4T23KePqxhkXIJorBfBtwyzwAmPIEViZmKxrMOrjfcn2HnBLe5c7c_erB-uRo_A-w5-2Tk7fCp25VGj9CDzs4iYet_B-jI22eoPttgcnmKfo5xNlGC4OFUXgsCpgC8KIxAPrqqxp3zLQNrko8qxYhhqm2qtda72r8xbrnuDLYZej6dr8dZ_PLGgPIxSOzdgcH8KRR2wpUEI9-dCqML3SbKoHPf6ckPEPL8egym_hd5QW_iAnb-UyIUMpABAWxjF66jFIAfpypkmtSFIHkNOWSMFHqSBLJAaMJolQoOSMFB6f3OTo2ldEvEFYlABjCC8A1ggYKfHcda5kqrSlcIuEh0o93XnS05LY6xiZ34fEozVsZ5SCj3Mkov_HQu_0731pSjn-2PrNi3Le0hNruRrX9mnf2mSdlakOi0LGIUEUZFwW1EUQGipxQWXrotFeCvFfSnPCYhTH4nImH3uwfg33aoIswurq2bWxg07K-eYgdKM_BDx0-MVdrx_QdAzplAfHQ-17N_vj4Xzv88n90-BV6EDqzSH2SnqLj3fZavwb8tZMDdI-t2ACdDIfTxRSuZ6P5-QXczZJs4PY0Bs7sfgGIzzIY
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIIXxKcIDDASPEG0OHHi-AGhUVo6tlaIdVLfPDt26KQpGU0H6z_An8PfyF0-OjqJve0pUuIkTu7rdz7fHSGvAwMYO3HMl1HsfC5E5Etu0UtJeZTkiZUcs5FH42R4yL9M4-kG-dPlwuC2yk4n1oralhmukW8zGYswBnyffDj94WPXKIyudi00GrbYc8tf4LJV73c_AX3fhOGgP-kN_bargJ_FTCx8oXVoTKCDjGG1KpdHKYAaKWwuHcuywEieSsOEzl1kmJGAPzSzNjRSsEyCQwfPvUFuguEN0NkTU7Fa08GoGWeyzc0JonS7AvuIOWxgCgKJRRHO1-xf3SZgDdte3pl5KTxbW73BPXK3hat0p-Gv-2TDFQ_IraaB5fIh-b1DeydOF1QXlg50BiqGHiwLAJXVcUXbyrdLWuZ0VB6EFFR5Wc2cW1T0M7r_tCxonQHs43o-7Y0nFQUQTfvFrN6YQIdLOy-BxWn_Zysi9JtrUjHo14uUh0fk8Fpo8JhsFmXhnhBqcwBITGaAmzQPrDORi51JrXMcDpH2COv-t8rasufYfeNE1eH3KFUNjRTQSNU0Uuceebu657Qp-nHl6I9IxtVILNhdnyjn31Ur_yrJUwy5wodFjFsupM44RigFCErCTe6RrY4JVKtFKnXB8x55tboM8o9BHV248gzHYOAUq8p5RKwxz9qE1q8Ux7O6kngM6FcEzCPvOjb75-X__eCnV8_1Jbk9nIz21f7ueO8ZuRPWzJ_6LN0im4v5mXsOKG5hXtSiQ8nRdcvqX_4IWWc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE8RKGAkOEG0ceLE8QGhdrvLltLVqg-pt9SOHbZSlZTNFpo_wI_i1zHOY8tWoreeIsVOYmce_sbjmQF45ynE2JGhrghC4zLOA1cwba2UmAVRFmnBbDTy3iQaH7Gvx-HxGvzpYmHsscpOJ9aKWhep3SPvUxFyP0R8H_Wz9ljEdHv0-fyHaytIWU9rV06jYZFdU_1C8638tLONtH7v-6Ph4WDsthUG3DSkfOFyKX2lPOml1GauMlkQI8ARXGfC0DT1lGCxUJTLzASKKoFYRFKtfSU4TQUad_jeO7DOrVXUg_Wt4WS6v9zhsT40RkUbqeMFcb_E1dJGtOHC4AmbIuFyZTWsiwasIN3r5zSvOWvrNXD0EB604JVsNtz2CNZM_hjuNuUsqyfwe5MMzozMicw1GckUFQ45qHKEmOVpSdo8uBUpMrJXHPgEFXtRzoxZlOSL3QwgRU7qeGDX7u6TweSwJAipyTCf1ccUyLjS8wIZngx_tgJD9k0TmEGmVwEQT-HoVqjwDHp5kZvnQHSGcImKFFGUZJ42KjChUbE2huElkA7Q7n8naZsE3dbiOEtqZ3wQJw2NEqRRUtMouXTgw_KZ8yYFyI29tywZlz1t-u76RjH_nrTaIImy2DpgcWIBZZpxIVNm_ZUcxSZiKnNgo2OCpNUpZXIlAQ68XTajNrAuHpmb4sL2sW5Um2POAb7CPCsDWm3JT2d1XvEQsTD3qAMfOzb75-P_nfCLm8f6Bu6hnCbfdia7L-G-X_N-7NJ4A3qL-YV5hZBuoV63skPg5LbF9S_3Gl8C
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Clean+and+Facile+Synthesis+Strategy+of+MoS2+Nanosheets+Grown+on+Multi-Wall+CNTs+for+Enhanced+Hydrogen+Evolution+Reaction+Performance&rft.jtitle=Scientific+reports&rft.au=Jiamu+Cao&rft.au=Jing+Zhou&rft.au=Yufeng+Zhang&rft.au=Xiaowei+Liu&rft.date=2017-08-18&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=7&rft.issue=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1038%2Fs41598-017-09047-x&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6f84382b94314d479ac41690786e64bf
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon