A Clean and Facile Synthesis Strategy of MoS2 Nanosheets Grown on Multi-Wall CNTs for Enhanced Hydrogen Evolution Reaction Performance
Unique hybrid nanostructure, which consists of multi-wall carbon nanotube (MWCNT) stems and MoS 2 nanosheet (NS) leaves, are prepared by a hydrothermal method. The fabricated material can be potentially used as an electrocatalyst for the hydrogen evolution reaction (HER). To our knowledge, as the re...
Saved in:
Published in | Scientific reports Vol. 7; no. 1; pp. 1 - 8 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
18.08.2017
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Unique hybrid nanostructure, which consists of multi-wall carbon nanotube (MWCNT) stems and MoS
2
nanosheet (NS) leaves, are prepared by a hydrothermal method. The fabricated material can be potentially used as an electrocatalyst for the hydrogen evolution reaction (HER). To our knowledge, as the reaction medium, water is firstly utilized to the synthesis of the 1T phase MoS
2
NSs which uniformly grow on the carbon-based materials. As a result, a nanohybrid catalyst with excellent HER electrocatalytic properties, which included an onset potential of as low as 50 mV, a Tafel slope of 43 mV dec
−1
, and remarkable cycling stability, is produced. The observed outstanding catalytic performance can be attributed to the uniform distribution of the metallic 1T phase of the MoS
2
NSs, which are characterized by the presence of multiple active edges as well as the effective electron transport route provided by the conductive MWCNT substrate. This work demonstrates the high potential of the synthesized HER catalyst and proposes a novel, efficient, environmentally friendly, and inexpensive method for its fabrication. |
---|---|
AbstractList | Unique hybrid nanostructure, which consists of multi-wall carbon nanotube (MWCNT) stems and MoS
2
nanosheet (NS) leaves, are prepared by a hydrothermal method. The fabricated material can be potentially used as an electrocatalyst for the hydrogen evolution reaction (HER). To our knowledge, as the reaction medium, water is firstly utilized to the synthesis of the 1T phase MoS
2
NSs which uniformly grow on the carbon-based materials. As a result, a nanohybrid catalyst with excellent HER electrocatalytic properties, which included an onset potential of as low as 50 mV, a Tafel slope of 43 mV dec
−1
, and remarkable cycling stability, is produced. The observed outstanding catalytic performance can be attributed to the uniform distribution of the metallic 1T phase of the MoS
2
NSs, which are characterized by the presence of multiple active edges as well as the effective electron transport route provided by the conductive MWCNT substrate. This work demonstrates the high potential of the synthesized HER catalyst and proposes a novel, efficient, environmentally friendly, and inexpensive method for its fabrication. Unique hybrid nanostructure, which consists of multi-wall carbon nanotube (MWCNT) stems and MoS2 nanosheet (NS) leaves, are prepared by a hydrothermal method. The fabricated material can be potentially used as an electrocatalyst for the hydrogen evolution reaction (HER). To our knowledge, as the reaction medium, water is firstly utilized to the synthesis of the 1T phase MoS2 NSs which uniformly grow on the carbon-based materials. As a result, a nanohybrid catalyst with excellent HER electrocatalytic properties, which included an onset potential of as low as 50 mV, a Tafel slope of 43 mV dec−1, and remarkable cycling stability, is produced. The observed outstanding catalytic performance can be attributed to the uniform distribution of the metallic 1T phase of the MoS2 NSs, which are characterized by the presence of multiple active edges as well as the effective electron transport route provided by the conductive MWCNT substrate. This work demonstrates the high potential of the synthesized HER catalyst and proposes a novel, efficient, environmentally friendly, and inexpensive method for its fabrication. Abstract Unique hybrid nanostructure, which consists of multi-wall carbon nanotube (MWCNT) stems and MoS2 nanosheet (NS) leaves, are prepared by a hydrothermal method. The fabricated material can be potentially used as an electrocatalyst for the hydrogen evolution reaction (HER). To our knowledge, as the reaction medium, water is firstly utilized to the synthesis of the 1T phase MoS2 NSs which uniformly grow on the carbon-based materials. As a result, a nanohybrid catalyst with excellent HER electrocatalytic properties, which included an onset potential of as low as 50 mV, a Tafel slope of 43 mV dec−1, and remarkable cycling stability, is produced. The observed outstanding catalytic performance can be attributed to the uniform distribution of the metallic 1T phase of the MoS2 NSs, which are characterized by the presence of multiple active edges as well as the effective electron transport route provided by the conductive MWCNT substrate. This work demonstrates the high potential of the synthesized HER catalyst and proposes a novel, efficient, environmentally friendly, and inexpensive method for its fabrication. Unique hybrid nanostructure, which consists of multi-wall carbon nanotube (MWCNT) stems and MoS2 nanosheet (NS) leaves, are prepared by a hydrothermal method. The fabricated material can be potentially used as an electrocatalyst for the hydrogen evolution reaction (HER). To our knowledge, as the reaction medium, water is firstly utilized to the synthesis of the 1T phase MoS2 NSs which uniformly grow on the carbon-based materials. As a result, a nanohybrid catalyst with excellent HER electrocatalytic properties, which included an onset potential of as low as 50 mV, a Tafel slope of 43 mV dec-1, and remarkable cycling stability, is produced. The observed outstanding catalytic performance can be attributed to the uniform distribution of the metallic 1T phase of the MoS2 NSs, which are characterized by the presence of multiple active edges as well as the effective electron transport route provided by the conductive MWCNT substrate. This work demonstrates the high potential of the synthesized HER catalyst and proposes a novel, efficient, environmentally friendly, and inexpensive method for its fabrication.Unique hybrid nanostructure, which consists of multi-wall carbon nanotube (MWCNT) stems and MoS2 nanosheet (NS) leaves, are prepared by a hydrothermal method. The fabricated material can be potentially used as an electrocatalyst for the hydrogen evolution reaction (HER). To our knowledge, as the reaction medium, water is firstly utilized to the synthesis of the 1T phase MoS2 NSs which uniformly grow on the carbon-based materials. As a result, a nanohybrid catalyst with excellent HER electrocatalytic properties, which included an onset potential of as low as 50 mV, a Tafel slope of 43 mV dec-1, and remarkable cycling stability, is produced. The observed outstanding catalytic performance can be attributed to the uniform distribution of the metallic 1T phase of the MoS2 NSs, which are characterized by the presence of multiple active edges as well as the effective electron transport route provided by the conductive MWCNT substrate. This work demonstrates the high potential of the synthesized HER catalyst and proposes a novel, efficient, environmentally friendly, and inexpensive method for its fabrication. |
ArticleNumber | 8825 |
Author | Liu, Xiaowei Zhang, Yufeng Zhou, Jing Cao, Jiamu |
Author_xml | – sequence: 1 givenname: Jiamu surname: Cao fullname: Cao, Jiamu organization: MEMS Center, Harbin Institute of Technology – sequence: 2 givenname: Jing surname: Zhou fullname: Zhou, Jing organization: MEMS Center, Harbin Institute of Technology – sequence: 3 givenname: Yufeng surname: Zhang fullname: Zhang, Yufeng email: yufeng_zhang@hit.edu.cn organization: MEMS Center, Harbin Institute of Technology, Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education – sequence: 4 givenname: Xiaowei surname: Liu fullname: Liu, Xiaowei organization: MEMS Center, Harbin Institute of Technology, Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education |
BookMark | eNp9ks1uGyEUhVGVqkndvEBXSN10My0wwwCbSpHl_EhJWtWpukQMc8ceC0MKM0n8An3uYjuqkkgtGxB853B173mLDnzwgNB7Sj5RUsrPqaJcyYJQURBFKlE8vEJHjFS8YCVjB0_Oh-g4pRXJizNVUfUGHTIpGRVCHaHfJ3jqwHhsfItPje0d4PnGD0tIfcLzIZoBFhscOnwV5gxfGx_SEmBI-CyGe4-Dx1ejG_rip3EOT69vEu5CxDO_NN5Ci883bQwL8Hh2F9w49Jn_DsbuDt8gZna9Bd-h151xCY4f9wn6cTq7mZ4Xl1_PLqYnl4XlVAyFMIY1DTHEUkqohK6UvOZKtJ0Cai1pVCVVQ4XpoGxoowhXhrYta5SgVpWynKCLvW8bzErfxn5t4kYH0-vdRYgLbeLQWwe67mRVyiytSlq1lVDGVrRWRMga6qrpsteXvdft2KyhteBzt9wz0-cvvl_qRbjTnNdMEJoNPj4axPBrhDTodZ8sOGc8hDFpqso82FrmeU_QhxfoKozR51ZligvGmRR1ptiesjGkFKH7WwwlepsavU-NzqnRu9TohyySL0S2H8x2QLno3v1fWu6lKf_jFxCfVPVv1R_W79fv |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2020_06_114 crossref_primary_10_1016_j_diamond_2023_110342 crossref_primary_10_1021_acsaem_9b00928 crossref_primary_10_1007_s42452_020_2800_6 crossref_primary_10_1016_j_apsusc_2020_148529 crossref_primary_10_1016_j_synthmet_2020_116529 crossref_primary_10_1016_j_ijhydene_2018_05_175 crossref_primary_10_1016_j_jallcom_2024_173765 crossref_primary_10_3390_nano10061012 crossref_primary_10_1016_j_cej_2023_146074 crossref_primary_10_1016_j_apsusc_2022_156309 crossref_primary_10_19053_uptc_01217488_v1_nE_2024_18417 crossref_primary_10_1016_j_jpowsour_2019_227277 crossref_primary_10_1016_j_surfin_2023_103161 crossref_primary_10_1039_D0NR01664K crossref_primary_10_1002_celc_202200420 crossref_primary_10_1021_acsaem_0c00856 crossref_primary_10_1021_acsanm_2c05311 crossref_primary_10_1016_j_seppur_2021_119569 crossref_primary_10_1002_adfm_202105287 crossref_primary_10_1016_j_apcatb_2020_119213 crossref_primary_10_1021_acsaem_8b01670 crossref_primary_10_1021_acsaem_0c02874 crossref_primary_10_1016_j_ijhydene_2023_12_122 crossref_primary_10_1007_s41918_020_00087_y crossref_primary_10_1039_C8TA08834A crossref_primary_10_1039_C7RA13303K crossref_primary_10_1002_slct_202401073 crossref_primary_10_1016_j_jelechem_2019_05_041 crossref_primary_10_1039_D4RA00697F crossref_primary_10_3390_s20041124 crossref_primary_10_1016_j_apcatb_2021_120617 crossref_primary_10_1016_j_jiec_2022_11_054 crossref_primary_10_1007_s40820_018_0215_3 crossref_primary_10_1142_S1793604723510025 crossref_primary_10_1021_acsami_7b16407 crossref_primary_10_1002_chem_201804140 crossref_primary_10_1021_acsami_1c21421 crossref_primary_10_1021_acssuschemeng_8b04335 crossref_primary_10_1002_elan_202060351 crossref_primary_10_1016_j_ijhydene_2024_08_354 crossref_primary_10_1021_acsami_9b17713 crossref_primary_10_1088_1361_6528_ab9476 crossref_primary_10_1016_j_diamond_2024_111720 crossref_primary_10_1007_s11814_020_0705_0 crossref_primary_10_1016_j_apsusc_2022_155354 crossref_primary_10_1016_j_mee_2018_01_012 crossref_primary_10_1039_D3YA00219E crossref_primary_10_1039_D1NJ00432H crossref_primary_10_1021_acsaem_1c02203 crossref_primary_10_1002_celc_202300614 crossref_primary_10_20964_2019_10_29 crossref_primary_10_1002_cctc_202100504 crossref_primary_10_1021_acsaem_1c01638 crossref_primary_10_1021_acs_jpcc_9b02010 crossref_primary_10_1021_acsanm_0c02762 crossref_primary_10_1016_j_jallcom_2019_02_192 |
Cites_doi | 10.1039/C5TA05793K 10.1016/j.nanoen.2015.05.025 10.1016/j.nanoen.2015.07.008 10.1016/j.nanoen.2016.08.065 10.1039/C5RA05220C 10.1038/nnano.2012.193 10.1038/srep02169 10.1016/j.nanoen.2015.04.033 10.1039/B803857K 10.1039/C2DT32137H 10.1126/science.1249061 10.1002/anie.201605551 10.1016/j.carbon.2011.03.028 10.1039/c3nr02994h 10.1021/nl403661s 10.1002/adma.201202920 10.1021/ja0504690 10.1002/aenm.201600116 10.1002/anie.201103745 10.1021/acsnano.5b00786 10.1021/cr1002326 10.1021/nl201874w 10.1016/j.nanoen.2015.10.014 10.1038/nature08969 10.1016/j.nanoen.2016.04.024 10.1039/C5EE03456F 10.1039/C2TA00598K 10.1021/acsnano.5b05907 10.1021/am300451b 10.1039/C5RA27180K 10.1039/C5TA09322H 10.1016/S0013-4686(02)00329-8 10.1126/science.1258307 10.1016/j.nanoen.2016.08.027 10.1016/j.carbon.2013.11.042 10.1126/science.1103197 10.1038/srep01866 10.1039/c2ee03309g 10.1021/jacs.5b01732 10.1007/s12274-015-0963-z 10.1021/acs.chemmater.7b00114 10.1021/ja201269b 10.1021/am503995s 10.1038/nature13792 10.1016/j.nanoen.2016.07.014 10.1016/j.ijhydene.2015.05.062 10.1103/PhysRevLett.25.362 10.1021/ja511572q 10.1126/science.1141483 10.1039/c3nr04975b |
ContentType | Journal Article |
Copyright | The Author(s) 2017 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2017 – notice: 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-017-09047-x |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_6f84382b94314d479ac41690786e64bf PMC5562701 10_1038_s41598_017_09047_x |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c517t-7aa2bb0a0c11018ef3856597df9e1cc0b9489b17afe3b1b9059a1dd2b971c9383 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:20:45 EDT 2025 Thu Aug 21 18:19:34 EDT 2025 Mon Jul 21 09:58:08 EDT 2025 Wed Aug 13 04:03:53 EDT 2025 Tue Jul 01 01:33:39 EDT 2025 Thu Apr 24 22:59:34 EDT 2025 Fri Feb 21 02:40:02 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-7aa2bb0a0c11018ef3856597df9e1cc0b9489b17afe3b1b9059a1dd2b971c9383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-017-09047-x |
PMID | 28821779 |
PQID | 1957252876 |
PQPubID | 2041939 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6f84382b94314d479ac41690786e64bf pubmedcentral_primary_oai_pubmedcentral_nih_gov_5562701 proquest_miscellaneous_1930476810 proquest_journals_1957252876 crossref_primary_10_1038_s41598_017_09047_x crossref_citationtrail_10_1038_s41598_017_09047_x springer_journals_10_1038_s41598_017_09047_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-08-18 |
PublicationDateYYYYMMDD | 2017-08-18 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Voiry (CR46) 2013; 13 Li (CR29) 2015; 16 Karunadasa, Chang, Long (CR1) 2010; 464 Gu (CR35) 2016; 6 Wang, Zadeh, Kis, Coleman, Strano (CR22) 2012; 7 Shi (CR33) 2013; 3 Khan (CR45) 2016; 9 Ma (CR9) 2016; 24 Bonde, Moses, Jaramillo, Nørskovb, Chorkendorff (CR17) 2008; 140 Tiwari, Kim, Kim, Prakash, Lee (CR19) 2016; 28 Shi (CR7) 2015; 137 Lehman, Terrones, Mansfield, Hurst, Meunier (CR27) 2011; 49 Ma (CR8) 2016; 27 Hinnemann (CR18) 2005; 127 McAteer (CR47) 2016; 10 Deng (CR43) 2016; 4 Tang (CR11) 2016; 6 Eda (CR44) 2011; 11 Yoon (CR13) 2016; 9 Luo (CR3) 2014; 345 Jin (CR15) 2016; 55 Verble, Wieting (CR39) 1970; 25 Jaramillo (CR16) 2007; 317 Li (CR36) 2015; 5 Li (CR28) 2011; 133 Kingston (CR26) 2014; 68 Chatti (CR38) 2017; 29 Chen (CR5) 2014; 343 Roy-Mayhew, Boschloo, Hagfeldt, Aksay (CR23) 2012; 4 Zhou (CR25) 2016; 28 Zhang (CR21) 2015; 18 Dai (CR34) 2015; 40 Yan (CR31) 2013; 5 Hu, Ren, Yang, Xu (CR32) 2014; 6 Wu (CR14) 2014; 514 Seo (CR48) 2015; 9 Conway, Tilak (CR50) 2002; 47 Zhang (CR24) 2015; 3 Hansen (CR41) 2011; 50 Ye (CR6) 2015; 15 Zhou (CR12) 2016; 16 Ma (CR30) 2014; 6 Turner (CR2) 2004; 305 Wang (CR20) 2015; 137 Wang, Chen, Sun (CR10) 2012; 5 Chang (CR51) 2013; 25 Yu (CR42) 2013; 3 Walter (CR4) 2010; 110 Park (CR37) 2013; 42 Thomas (CR49) 1961; 57 Wang (CR40) 2013; 1 BW Jin (9047_CR15) 2016; 55 LR Hu (9047_CR32) 2014; 6 D Voiry (9047_CR46) 2013; 13 XP Dai (9047_CR34) 2015; 40 YH Chang (9047_CR51) 2013; 25 LP Hansen (9047_CR41) 2011; 50 C Chen (9047_CR5) 2014; 343 X Li (9047_CR36) 2015; 5 D McAteer (9047_CR47) 2016; 10 YG Li (9047_CR28) 2011; 133 JGN Thomas (9047_CR49) 1961; 57 M Khan (9047_CR45) 2016; 9 M Chatti (9047_CR38) 2017; 29 AP Tiwari (9047_CR19) 2016; 28 MG Walter (9047_CR4) 2010; 110 YM Shi (9047_CR33) 2013; 3 JS Luo (9047_CR3) 2014; 345 D Wang (9047_CR20) 2015; 137 M Wang (9047_CR10) 2012; 5 C Kingston (9047_CR26) 2014; 68 T Ye (9047_CR6) 2015; 15 TF Jaramillo (9047_CR16) 2007; 317 YC Zhou (9047_CR12) 2016; 16 HH Gu (9047_CR35) 2016; 6 Z Wang (9047_CR40) 2013; 1 J Bonde (9047_CR17) 2008; 140 JL Verble (9047_CR39) 1970; 25 HI Karunadasa (9047_CR1) 2010; 464 LB Ma (9047_CR9) 2016; 24 WZ Wu (9047_CR14) 2014; 514 X Zhang (9047_CR24) 2015; 3 H Deng (9047_CR43) 2016; 4 Y Shi (9047_CR7) 2015; 137 G Eda (9047_CR44) 2011; 11 FK Ma (9047_CR8) 2016; 27 Y Yan (9047_CR31) 2013; 5 Y Yu (9047_CR42) 2013; 3 D Yoon (9047_CR13) 2016; 9 JY Li (9047_CR29) 2015; 16 QH Wang (9047_CR22) 2012; 7 B Seo (9047_CR48) 2015; 9 BE Conway (9047_CR50) 2002; 47 YJ Tang (9047_CR11) 2016; 6 ZY Zhang (9047_CR21) 2015; 18 B Hinnemann (9047_CR18) 2005; 127 JD Roy-Mayhew (9047_CR23) 2012; 4 JH Lehman (9047_CR27) 2011; 49 S Park (9047_CR37) 2013; 42 JA Turner (9047_CR2) 2004; 305 WJ Zhou (9047_CR25) 2016; 28 CB Ma (9047_CR30) 2014; 6 |
References_xml | – volume: 3 start-page: 19277 year: 2015 end-page: 19281 ident: CR24 article-title: Physical vapor deposition of amorphous MoS nanosheet arrays on carbon cloth for highly reproducible large-area electrocatalysts for the hydrogen evolution reaction publication-title: J. Mater. Chem. A. doi: 10.1039/C5TA05793K – volume: 16 start-page: 10 year: 2015 end-page: 18 ident: CR29 article-title: A three-dimensionally interconnected carbon nanotube/layered MoS nanohybrid network for lithium ion battery anode with superior rate capacity and long-cycle-life publication-title: Nano Energy. doi: 10.1016/j.nanoen.2015.05.025 – volume: 16 start-page: 357 year: 2016 end-page: 366 ident: CR12 article-title: Sulfur and nitrogen self-doped carbon nanosheets derived from peanut root nodules as high-efficiency non-metal electrocatalyst for hydrogen evolution reaction publication-title: Nano Energy. doi: 10.1016/j.nanoen.2015.07.008 – volume: 28 start-page: 366 year: 2016 end-page: 372 ident: CR19 article-title: Highly active and stable layered ternary transition metal chalcogenide for hydrogen evolution reaction publication-title: Nano Energy. doi: 10.1016/j.nanoen.2016.08.065 – volume: 5 start-page: 55396 year: 2015 end-page: 55400 ident: CR36 article-title: Towards free-standing MoS nanosheet electrocatalysts supported and enhanced by N doped CNT-graphene foam for hydrogen evolution reaction publication-title: RSC Adv. doi: 10.1039/C5RA05220C – volume: 7 start-page: 699 year: 2012 end-page: 712 ident: CR22 article-title: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.193 – volume: 3 year: 2013 ident: CR33 article-title: Self-assembly of hierarchical MoS /CNT nanocomposites (2 < x < 3): towards high performance anode materials for lithium ion batteries publication-title: Sci. Rep. doi: 10.1038/srep02169 – volume: 15 start-page: 335 year: 2015 end-page: 342 ident: CR6 article-title: Hierarchical carbon nanopapers coupled with ultrathin MoS nanosheets: Highly efficient large-area electrodes for hydrogen evolution publication-title: Nano Energy. doi: 10.1016/j.nanoen.2015.04.033 – volume: 140 start-page: 219 year: 2008 end-page: 231 ident: CR17 article-title: Hydrogen evolution on nano-particulate transition metal sulfides publication-title: Faraday Discuss. doi: 10.1039/B803857K – volume: 42 start-page: 2399 year: 2013 end-page: 2405 ident: CR37 article-title: A simple L-cysteine-assisted method for the growth of MoS nanosheets on carbon nanotubes for high-performance lithium ion batteries publication-title: Dalton Trans. doi: 10.1039/C2DT32137H – volume: 343 start-page: 1339 year: 2014 end-page: 1343 ident: CR5 article-title: Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces publication-title: Science. doi: 10.1126/science.1249061 – volume: 55 start-page: 12252 year: 2016 end-page: 12256 ident: CR15 article-title: Aligned MoO /MoS core-shell nanotubular structures with a high density of reactive sites based on self-ordered anodic molybdenum oxide nanotubes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201605551 – volume: 49 start-page: 2581 year: 2011 end-page: 2602 ident: CR27 article-title: Evaluating the characteristics of multiwall carbon nanotubes publication-title: Carbon. doi: 10.1016/j.carbon.2011.03.028 – volume: 5 start-page: 7768 year: 2013 end-page: 7771 ident: CR31 article-title: Facile synthesis of low crystalline MoS nanosheet-coated CNTs for enhanced hydrogen evolution reaction publication-title: Nanoscale. doi: 10.1039/c3nr02994h – volume: 13 start-page: 6222 year: 2013 end-page: 6227 ident: CR46 article-title: Conducting MoS Nanosheets as Catalysts for Hydrogen Evolution Reaction publication-title: Nano Lett. doi: 10.1021/nl403661s – volume: 25 start-page: 756 year: 2013 end-page: 760 ident: CR51 article-title: Highly efficient electrocatalytic hydrogen production by MoS grown on graphene-protected 3d Ni foams publication-title: Adv. Mater. doi: 10.1002/adma.201202920 – volume: 127 start-page: 5308 year: 2005 end-page: 5309 ident: CR18 article-title: Biomimetic Hydrogen Evolution: MoS Nanoparticles as catalyst for hydrogen evolution publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0504690 – volume: 6 year: 2016 ident: CR11 article-title: Molybdenum disulfide/Nitrogen-doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600116 – volume: 50 start-page: 10153 year: 2011 end-page: 10156 ident: CR41 article-title: Atomic-Scale Edge Structures on Industrial-Style MoS Nanocatalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201103745 – volume: 9 start-page: 3728 year: 2015 end-page: 3739 ident: CR48 article-title: Monolayer-Precision Synthesis of Molybdenum Sulfide Nanoparticles and Their Nanoscale Size Effect in the Hydrogen Evolution Reaction publication-title: ACS Nano. doi: 10.1021/acsnano.5b00786 – volume: 110 start-page: 6446 year: 2010 end-page: 6473 ident: CR4 article-title: Solar water splitting cells publication-title: Chem. Rev. doi: 10.1021/cr1002326 – volume: 57 start-page: 1603 year: 1961 end-page: 1611 ident: CR49 article-title: Kinetics of electrolytic hydrogen evolution and the adsorption of hydrogen by metals publication-title: J. Electrochem. Soc. – volume: 11 start-page: 5111 year: 2011 end-page: 5116 ident: CR44 article-title: Photoluminescence from Chemically Exfoliated MoS publication-title: Nano Lett. doi: 10.1021/nl201874w – volume: 18 start-page: 196 year: 2015 end-page: 204 ident: CR21 article-title: Hierarchical composite structure of few-layers MoS nanosheets supported by vertical graphene on carbon cloth for high-performance hydrogen evolution reaction publication-title: Nano Energy. doi: 10.1016/j.nanoen.2015.10.014 – volume: 464 start-page: 1329 year: 2010 end-page: 1333 ident: CR1 article-title: A molecular molybdenum-oxo catalyst for generating hydrogen from water publication-title: Nature. doi: 10.1038/nature08969 – volume: 24 start-page: 139 year: 2016 end-page: 147 ident: CR9 article-title: Self-assembled ultrathin NiCo S nanoflakes grown on Ni foam as high-performance flexible electrodes for hydrogen evolution reaction in alkaline solution publication-title: Nano Energy. doi: 10.1016/j.nanoen.2016.04.024 – volume: 9 start-page: 850 year: 2016 end-page: 856 ident: CR13 article-title: Facet-controlled hollow Rh S hexagonal nanoprisms as highly active and structurally robust catalysts toward hydrogen evolution reaction publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03456F – volume: 1 start-page: 2202 year: 2013 end-page: 2210 ident: CR40 article-title: CTAB-assisted synthesis of single-layer MoS -graphene composites as anode materials of Li-ion batteries publication-title: J. Mater. Chem. A. doi: 10.1039/C2TA00598K – volume: 10 start-page: 672 year: 2016 end-page: 683 ident: CR47 article-title: Thickness Dependence and Percolation Scaling of Hydrogen Production Rate in MoS Nanosheet and Nanosheet−Carbon Nanotube Composite Catalytic Electrodes publication-title: ACS Nano. doi: 10.1021/acsnano.5b05907 – volume: 4 start-page: 2794 year: 2012 end-page: 2800 ident: CR23 article-title: Functionalized graphene sheets as a versatile replacement for platinum in dye-sensitized solar cells publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/am300451b – volume: 6 start-page: 13757 year: 2016 end-page: 13765 ident: CR35 article-title: Quasi-one-dimensional graphene nanoribbon supported MoS nanosheets for enhanced hydrogen evolution reaction publication-title: RSC Adv. doi: 10.1039/C5RA27180K – volume: 4 start-page: 6824 year: 2016 end-page: 6830 ident: CR43 article-title: Laser induced MoS /carbon hybrids for hydrogen evolution reaction catalysts publication-title: J. Mater. Chem. A. doi: 10.1039/C5TA09322H – volume: 47 start-page: 3571 year: 2002 end-page: 3594 ident: CR50 article-title: Interfacial processes involving electrocatalytic evolution and oxidation of H , and the role of chemisorbed H publication-title: Electrochim. Acta. doi: 10.1016/S0013-4686(02)00329-8 – volume: 345 start-page: 1593 year: 2014 end-page: 1596 ident: CR3 article-title: Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts publication-title: Science. doi: 10.1126/science.1258307 – volume: 28 start-page: 29 year: 2016 end-page: 43 ident: CR25 article-title: Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction publication-title: Nano Energy. doi: 10.1016/j.nanoen.2016.08.027 – volume: 68 start-page: 33 year: 2014 end-page: 57 ident: CR26 article-title: Release characteristics of selected carbon nanotube polymer composites publication-title: Carbon. doi: 10.1016/j.carbon.2013.11.042 – volume: 305 start-page: 972 year: 2004 end-page: 974 ident: CR2 article-title: Sustainable hydrogen production publication-title: Science. doi: 10.1126/science.1103197 – volume: 3 year: 2013 ident: CR42 article-title: Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-layer MoS Films publication-title: Sci. Rep. doi: 10.1038/srep01866 – volume: 5 start-page: 6763 year: 2012 end-page: 6778 ident: CR10 article-title: Recent progress in electrochemical hydrogen production with earth-abundant metal complexes as catalysts publication-title: Energy Environ. Sci. doi: 10.1039/c2ee03309g – volume: 137 start-page: 7365 year: 2015 end-page: 7370 ident: CR7 article-title: Hot electron of Au nanorods activates the electrocatalysis of hydrogen evolution on MoS nanosheets publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b01732 – volume: 9 start-page: 837 year: 2016 end-page: 848 ident: CR45 article-title: Molybdenum sulfide/graphene-carbon nanotube nanocomposite material for electrocatalytic applications in hydrogen evolution reactions publication-title: Nano Research. doi: 10.1007/s12274-015-0963-z – volume: 29 start-page: 3092 year: 2017 end-page: 3099 ident: CR38 article-title: Vertically Aligned Interlayer Expanded MoS Nanosheets on a Carbon Support for Hydrogen Evolution Electrocatalysis publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00114 – volume: 133 start-page: 7296 year: 2011 end-page: 7299 ident: CR28 article-title: MoS Nanoparticles Grown on Graphene: An advanced catalyst for the hydrogen evolution reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja201269b – volume: 6 start-page: 14644 year: 2014 end-page: 14652 ident: CR32 article-title: Fabrication of 3D hierarchical MoS /polyaniline and MoS /C architectures for lithium-ion battery applications publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/am503995s – volume: 514 start-page: 470 year: 2014 end-page: 474 ident: CR14 article-title: Piezoelectricity of single-atomic-layer MoS for energy conversion and piezotroncs publication-title: Nature. doi: 10.1038/nature13792 – volume: 27 start-page: 466 year: 2016 end-page: 474 ident: CR8 article-title: 0D/2D nanocomposite visible light photocatalyst for highly stable and efficient hydrogen generation via recrystallization of CdS on MoS nanosheets publication-title: Nano Energy. doi: 10.1016/j.nanoen.2016.07.014 – volume: 40 start-page: 8877 year: 2015 end-page: 8888 ident: CR34 article-title: Enhanced hydrogen evolution reaction on few-layer MoS nanosheets-coated functionalized carbon nanotubes publication-title: Hydrogen Energy. doi: 10.1016/j.ijhydene.2015.05.062 – volume: 25 start-page: 362 year: 1970 end-page: 365 ident: CR39 article-title: Lattice mode degeneracy in MoS and other layer compounds publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.25.362 – volume: 137 start-page: 1587 year: 2015 end-page: 1592 ident: CR20 article-title: Highly Active and Stable Hybrid Catalyst of Cobalt-Doped FeS Nanosheets−Carbon Nanotubes for Hydrogen Evolution Reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511572q – volume: 317 start-page: 100 year: 2007 end-page: 102 ident: CR16 article-title: Identification of active edge sites for electrochemical H evolution from MoS nanocatalysts publication-title: Science. doi: 10.1126/science.1141483 – volume: 6 start-page: 5624 year: 2014 end-page: 5629 ident: CR30 article-title: MoS nanoflower-decorated reduced graphene oxide paper for high-performance hydrogen evolution reaction publication-title: Nanoscale. doi: 10.1039/c3nr04975b – volume: 6 start-page: 5624 year: 2014 ident: 9047_CR30 publication-title: Nanoscale. doi: 10.1039/c3nr04975b – volume: 13 start-page: 6222 year: 2013 ident: 9047_CR46 publication-title: Nano Lett. doi: 10.1021/nl403661s – volume: 137 start-page: 1587 year: 2015 ident: 9047_CR20 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511572q – volume: 47 start-page: 3571 year: 2002 ident: 9047_CR50 publication-title: Electrochim. Acta. doi: 10.1016/S0013-4686(02)00329-8 – volume: 305 start-page: 972 year: 2004 ident: 9047_CR2 publication-title: Science. doi: 10.1126/science.1103197 – volume: 16 start-page: 357 year: 2016 ident: 9047_CR12 publication-title: Nano Energy. doi: 10.1016/j.nanoen.2015.07.008 – volume: 4 start-page: 2794 year: 2012 ident: 9047_CR23 publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/am300451b – volume: 49 start-page: 2581 year: 2011 ident: 9047_CR27 publication-title: Carbon. doi: 10.1016/j.carbon.2011.03.028 – volume: 7 start-page: 699 year: 2012 ident: 9047_CR22 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.193 – volume: 5 start-page: 7768 year: 2013 ident: 9047_CR31 publication-title: Nanoscale. doi: 10.1039/c3nr02994h – volume: 16 start-page: 10 year: 2015 ident: 9047_CR29 publication-title: Nano Energy. doi: 10.1016/j.nanoen.2015.05.025 – volume: 50 start-page: 10153 year: 2011 ident: 9047_CR41 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201103745 – volume: 25 start-page: 756 year: 2013 ident: 9047_CR51 publication-title: Adv. Mater. doi: 10.1002/adma.201202920 – volume: 24 start-page: 139 year: 2016 ident: 9047_CR9 publication-title: Nano Energy. doi: 10.1016/j.nanoen.2016.04.024 – volume: 9 start-page: 3728 year: 2015 ident: 9047_CR48 publication-title: ACS Nano. doi: 10.1021/acsnano.5b00786 – volume: 514 start-page: 470 year: 2014 ident: 9047_CR14 publication-title: Nature. doi: 10.1038/nature13792 – volume: 343 start-page: 1339 year: 2014 ident: 9047_CR5 publication-title: Science. doi: 10.1126/science.1249061 – volume: 127 start-page: 5308 year: 2005 ident: 9047_CR18 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0504690 – volume: 15 start-page: 335 year: 2015 ident: 9047_CR6 publication-title: Nano Energy. doi: 10.1016/j.nanoen.2015.04.033 – volume: 3 start-page: 19277 year: 2015 ident: 9047_CR24 publication-title: J. Mater. Chem. A. doi: 10.1039/C5TA05793K – volume: 3 year: 2013 ident: 9047_CR33 publication-title: Sci. Rep. doi: 10.1038/srep02169 – volume: 27 start-page: 466 year: 2016 ident: 9047_CR8 publication-title: Nano Energy. doi: 10.1016/j.nanoen.2016.07.014 – volume: 18 start-page: 196 year: 2015 ident: 9047_CR21 publication-title: Nano Energy. doi: 10.1016/j.nanoen.2015.10.014 – volume: 28 start-page: 29 year: 2016 ident: 9047_CR25 publication-title: Nano Energy. doi: 10.1016/j.nanoen.2016.08.027 – volume: 5 start-page: 55396 year: 2015 ident: 9047_CR36 publication-title: RSC Adv. doi: 10.1039/C5RA05220C – volume: 25 start-page: 362 year: 1970 ident: 9047_CR39 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.25.362 – volume: 3 year: 2013 ident: 9047_CR42 publication-title: Sci. Rep. doi: 10.1038/srep01866 – volume: 110 start-page: 6446 year: 2010 ident: 9047_CR4 publication-title: Chem. Rev. doi: 10.1021/cr1002326 – volume: 6 year: 2016 ident: 9047_CR11 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600116 – volume: 140 start-page: 219 year: 2008 ident: 9047_CR17 publication-title: Faraday Discuss. doi: 10.1039/B803857K – volume: 6 start-page: 14644 year: 2014 ident: 9047_CR32 publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/am503995s – volume: 55 start-page: 12252 year: 2016 ident: 9047_CR15 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201605551 – volume: 40 start-page: 8877 year: 2015 ident: 9047_CR34 publication-title: Hydrogen Energy. doi: 10.1016/j.ijhydene.2015.05.062 – volume: 29 start-page: 3092 year: 2017 ident: 9047_CR38 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00114 – volume: 464 start-page: 1329 year: 2010 ident: 9047_CR1 publication-title: Nature. doi: 10.1038/nature08969 – volume: 5 start-page: 6763 year: 2012 ident: 9047_CR10 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee03309g – volume: 1 start-page: 2202 year: 2013 ident: 9047_CR40 publication-title: J. Mater. Chem. A. doi: 10.1039/C2TA00598K – volume: 68 start-page: 33 year: 2014 ident: 9047_CR26 publication-title: Carbon. doi: 10.1016/j.carbon.2013.11.042 – volume: 9 start-page: 850 year: 2016 ident: 9047_CR13 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03456F – volume: 6 start-page: 13757 year: 2016 ident: 9047_CR35 publication-title: RSC Adv. doi: 10.1039/C5RA27180K – volume: 11 start-page: 5111 year: 2011 ident: 9047_CR44 publication-title: Nano Lett. doi: 10.1021/nl201874w – volume: 9 start-page: 837 year: 2016 ident: 9047_CR45 publication-title: Nano Research. doi: 10.1007/s12274-015-0963-z – volume: 137 start-page: 7365 year: 2015 ident: 9047_CR7 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b01732 – volume: 133 start-page: 7296 year: 2011 ident: 9047_CR28 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja201269b – volume: 345 start-page: 1593 year: 2014 ident: 9047_CR3 publication-title: Science. doi: 10.1126/science.1258307 – volume: 4 start-page: 6824 year: 2016 ident: 9047_CR43 publication-title: J. Mater. Chem. A. doi: 10.1039/C5TA09322H – volume: 57 start-page: 1603 year: 1961 ident: 9047_CR49 publication-title: J. Electrochem. Soc. – volume: 28 start-page: 366 year: 2016 ident: 9047_CR19 publication-title: Nano Energy. doi: 10.1016/j.nanoen.2016.08.065 – volume: 317 start-page: 100 year: 2007 ident: 9047_CR16 publication-title: Science. doi: 10.1126/science.1141483 – volume: 42 start-page: 2399 year: 2013 ident: 9047_CR37 publication-title: Dalton Trans. doi: 10.1039/C2DT32137H – volume: 10 start-page: 672 year: 2016 ident: 9047_CR47 publication-title: ACS Nano. doi: 10.1021/acsnano.5b05907 |
SSID | ssj0000529419 |
Score | 2.463582 |
Snippet | Unique hybrid nanostructure, which consists of multi-wall carbon nanotube (MWCNT) stems and MoS
2
nanosheet (NS) leaves, are prepared by a hydrothermal method.... Unique hybrid nanostructure, which consists of multi-wall carbon nanotube (MWCNT) stems and MoS2 nanosheet (NS) leaves, are prepared by a hydrothermal method.... Abstract Unique hybrid nanostructure, which consists of multi-wall carbon nanotube (MWCNT) stems and MoS2 nanosheet (NS) leaves, are prepared by a hydrothermal... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | 140/146 639/301/299 639/301/299/886 639/301/357 Alternative energy sources Aqueous solutions Atoms & subatomic particles Carbon Electrodes Electron transport Fabrication Humanities and Social Sciences Hydrogen Morphology multidisciplinary Science Science (multidisciplinary) Spectrum analysis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlUOil9JO6TcIUemtNLFu2pGOy7GYpJJQmgdyEZMlsIMgh3pTsH-jvzkj2btaBtpeeDLaMLM2M5o1H80TIl8wgxq4cTWVRupRxXqSS2RClCFZUTWUlC9XIJ6fV_IJ9vywvt476CnvCenrgfuIOqkaEXJWR6OmYZVzqmoXUDsceKmaasPqiz9sKpnpW71wyKocqmawQBx16qlBNhotyJgM9wf3IE0XC_hHKfLpH8kmiNPqf2SvycgCOcNh_8GvyzPk35Hl_lOTqLfl9CJNrpz1ob2GmazR2OFt5hHfdVQcDB-0K2gZO2rMccFFtu4Vzyw6OQyAOrYdYi5uGP-swOT3vAOEsTP0ibhGA-cretqhsMP01KCv8dH1RBPx4LD54Ry5m0_PJPB3OWEjrkvJlyrXOjcl0VtPA3eWaQiDEk9w20tG6znDehTSU68YVhhqJaExTa1EenNYSw9v3ZMe33n0gYBuEKlTWiGA0yyxG6a50RljnGF4KnRC6nm9VDwTk4RyMaxUT4YVQvYwUykhFGan7hHzdvHPT02_8tfVREOOmZaDOjjdQodSgUOpfCpWQ3bUSqMGeO0VlyfMSo8sqIZ83j9ESQ3pFe9fehTYhhRn43RLCR8oz-qDxE3-1iJzeJeJQntGEfFur2Vbnfxzwx_8x4E_kRR7NQqRU7JKd5e2d20OktTT70ageAFv2I6A priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9RAFB60IvgiXjFaZQTfNDSTTDKZJ6nLrovQIraFfQtzi1sok7rZSvcP-Ls9ZzK7NQX7FEgm5HK-M_PNnDnfIeRDpoFjV46lsihdyoUoUsktzlJqXlRtZSXHbOSj42p-xr8tykVccOvjtsptnxg6atsZXCM_YLIUeQn8vvp8-SvFqlEYXY0lNO6TByhdhqgWC7FbY8EoFmcy5spkRX3Qw3iFOWXQNWcSRQquR-NRkO0fcc3bOyVvhUvDKDR7Qh5H-kgPB3s_Jfecf0YeDgUlN8_Jn0M6uXDKU-UtnSkDLk9PNh5IXn_e06hEu6FdS4-6k5xC19r1S-fWPf2K03HaeRoyclNcX6eT49OeAqmlU78MGwXofGNXHUCOTn9HyNIfbkiNoN9vUhBekLPZ9HQyT2OlhdSUTKxToVSudaYyw1DBy7VFDURPCttKx4zJtOS11Eyo1hWaaQmcTDFrcy0FMxImuS_Jnu-8e0WobYGwMGmAxyieWZiru9Lp2jrH4VCohLDt_25MlCHHahgXTQiHF3Uz2KgBGzXBRs11Qj7u7rkcRDjubP0FzbhriQLa4US3-tlEf2yqtsYQKHxYwbjlQirDMWIoALgV121C9rcgaKJX980NBhPyfncZ_BGDLMq77grbYCATVd4SIkbgGb3Q-Io_XwZl7xLYqMhYQj5tYfbPw__7wa_vftc35FEeAF-nrN4ne-vVlXsLTGqt3wV3-QsX8hx0 priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swEBalZbCXsZ_MWzdusLfNzLJly3rMQrIQaBlLC30TkiUvhSKXOB3NP9C_eyfZzuayDfZksCQsWXfSd7q7T4S8TzRi7MLSWGS5jRnnWSyY8VZKybKiLoxgPhv55LRYnLPlRX5xQNIhFyYE7QdKy7BMD9Fhn1rcaHwyGK6pifDsAogbjzxVO8r20WSyXC33Jyved8Wo6DNkkqz8Q-PRLhTI-kcI83585D0nadh75o_Jox40wqTr5hNyYN1T8qC7RnL3jNxNYHpllQPlDMxVhYoOq51DaNdettDzz-6gqeGkWaWAC2rTrq3dtvDFG-HQOAh5uLE_VYfp6VkLCGVh5tYhPAAWO7NpUNBg9qMXVPhmu4QI-Por8eA5OZ_PzqaLuL9fIa5yyrcxVyrVOlFJRT1vl62zEuGd4KYWllZVogUrhaZc1TbTVAtEYooak2rBaSXQtH1BDl3j7EsCpkaYQkWF6EWxxKCFbnOrS2Mtw0emIkKH_y2rnnzc34FxJYMTPCtlN0cS50iGOZK3Efmwb3PdUW_8s_ZnP437mp42O7xoNt9lL0ayqEvv-MSBZZQZxoWqmPcTchTXguk6IseDEMhel1tJRc7THC3LIiLv9sWohd61opxtbnwd77703G4R4SPhGXVoXOIu14HPO0cMyhMakY-DmP328b8O-NX_VX9NHqZBAcqYlsfkcLu5sW8QT231216BfgL1yhwZ priority: 102 providerName: Springer Nature |
Title | A Clean and Facile Synthesis Strategy of MoS2 Nanosheets Grown on Multi-Wall CNTs for Enhanced Hydrogen Evolution Reaction Performance |
URI | https://link.springer.com/article/10.1038/s41598-017-09047-x https://www.proquest.com/docview/1957252876 https://www.proquest.com/docview/1930476810 https://pubmed.ncbi.nlm.nih.gov/PMC5562701 https://doaj.org/article/6f84382b94314d479ac41690786e64bf |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELbGJiReED9FYFRG4g0CceLE8QNCXdRSVWo1ravUt8iOHTqpcqDp0PIP8HdzdpJCp8ETT5ESR4l9d_Z3Pt93CL0NJGDsRBOfR7H2KWORz6myXkpKo6RMFKc2G3k2TyZLOl3FqyPUlzvqBrC-07Wz9aSW282Hm-_NZzD4T23KePqxhkXIJorBfBtwyzwAmPIEViZmKxrMOrjfcn2HnBLe5c7c_erB-uRo_A-w5-2Tk7fCp25VGj9CDzs4iYet_B-jI22eoPttgcnmKfo5xNlGC4OFUXgsCpgC8KIxAPrqqxp3zLQNrko8qxYhhqm2qtda72r8xbrnuDLYZej6dr8dZ_PLGgPIxSOzdgcH8KRR2wpUEI9-dCqML3SbKoHPf6ckPEPL8egym_hd5QW_iAnb-UyIUMpABAWxjF66jFIAfpypkmtSFIHkNOWSMFHqSBLJAaMJolQoOSMFB6f3OTo2ldEvEFYlABjCC8A1ggYKfHcda5kqrSlcIuEh0o93XnS05LY6xiZ34fEozVsZ5SCj3Mkov_HQu_0731pSjn-2PrNi3Le0hNruRrX9mnf2mSdlakOi0LGIUEUZFwW1EUQGipxQWXrotFeCvFfSnPCYhTH4nImH3uwfg33aoIswurq2bWxg07K-eYgdKM_BDx0-MVdrx_QdAzplAfHQ-17N_vj4Xzv88n90-BV6EDqzSH2SnqLj3fZavwb8tZMDdI-t2ACdDIfTxRSuZ6P5-QXczZJs4PY0Bs7sfgGIzzIY |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIIXxKcIDDASPEG0OHHi-AGhUVo6tlaIdVLfPDt26KQpGU0H6z_An8PfyF0-OjqJve0pUuIkTu7rdz7fHSGvAwMYO3HMl1HsfC5E5Etu0UtJeZTkiZUcs5FH42R4yL9M4-kG-dPlwuC2yk4n1oralhmukW8zGYswBnyffDj94WPXKIyudi00GrbYc8tf4LJV73c_AX3fhOGgP-kN_bargJ_FTCx8oXVoTKCDjGG1KpdHKYAaKWwuHcuywEieSsOEzl1kmJGAPzSzNjRSsEyCQwfPvUFuguEN0NkTU7Fa08GoGWeyzc0JonS7AvuIOWxgCgKJRRHO1-xf3SZgDdte3pl5KTxbW73BPXK3hat0p-Gv-2TDFQ_IraaB5fIh-b1DeydOF1QXlg50BiqGHiwLAJXVcUXbyrdLWuZ0VB6EFFR5Wc2cW1T0M7r_tCxonQHs43o-7Y0nFQUQTfvFrN6YQIdLOy-BxWn_Zysi9JtrUjHo14uUh0fk8Fpo8JhsFmXhnhBqcwBITGaAmzQPrDORi51JrXMcDpH2COv-t8rasufYfeNE1eH3KFUNjRTQSNU0Uuceebu657Qp-nHl6I9IxtVILNhdnyjn31Ur_yrJUwy5wodFjFsupM44RigFCErCTe6RrY4JVKtFKnXB8x55tboM8o9BHV248gzHYOAUq8p5RKwxz9qE1q8Ux7O6kngM6FcEzCPvOjb75-X__eCnV8_1Jbk9nIz21f7ueO8ZuRPWzJ_6LN0im4v5mXsOKG5hXtSiQ8nRdcvqX_4IWWc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE8RKGAkOEG0ceLE8QGhdrvLltLVqg-pt9SOHbZSlZTNFpo_wI_i1zHOY8tWoreeIsVOYmce_sbjmQF45ynE2JGhrghC4zLOA1cwba2UmAVRFmnBbDTy3iQaH7Gvx-HxGvzpYmHsscpOJ9aKWhep3SPvUxFyP0R8H_Wz9ljEdHv0-fyHaytIWU9rV06jYZFdU_1C8638tLONtH7v-6Ph4WDsthUG3DSkfOFyKX2lPOml1GauMlkQI8ARXGfC0DT1lGCxUJTLzASKKoFYRFKtfSU4TQUad_jeO7DOrVXUg_Wt4WS6v9zhsT40RkUbqeMFcb_E1dJGtOHC4AmbIuFyZTWsiwasIN3r5zSvOWvrNXD0EB604JVsNtz2CNZM_hjuNuUsqyfwe5MMzozMicw1GckUFQ45qHKEmOVpSdo8uBUpMrJXHPgEFXtRzoxZlOSL3QwgRU7qeGDX7u6TweSwJAipyTCf1ccUyLjS8wIZngx_tgJD9k0TmEGmVwEQT-HoVqjwDHp5kZvnQHSGcImKFFGUZJ42KjChUbE2huElkA7Q7n8naZsE3dbiOEtqZ3wQJw2NEqRRUtMouXTgw_KZ8yYFyI29tywZlz1t-u76RjH_nrTaIImy2DpgcWIBZZpxIVNm_ZUcxSZiKnNgo2OCpNUpZXIlAQ68XTajNrAuHpmb4sL2sW5Um2POAb7CPCsDWm3JT2d1XvEQsTD3qAMfOzb75-P_nfCLm8f6Bu6hnCbfdia7L-G-X_N-7NJ4A3qL-YV5hZBuoV63skPg5LbF9S_3Gl8C |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Clean+and+Facile+Synthesis+Strategy+of+MoS2+Nanosheets+Grown+on+Multi-Wall+CNTs+for+Enhanced+Hydrogen+Evolution+Reaction+Performance&rft.jtitle=Scientific+reports&rft.au=Jiamu+Cao&rft.au=Jing+Zhou&rft.au=Yufeng+Zhang&rft.au=Xiaowei+Liu&rft.date=2017-08-18&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=7&rft.issue=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1038%2Fs41598-017-09047-x&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6f84382b94314d479ac41690786e64bf |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |