Lysophospholipids Facilitate COPII Vesicle Formation
Coat protein complex II (COPII) proteins form vesicles from the endoplasmic reticulum to export cargo molecules to the Golgi apparatus. Among the many proteins involved in this process, Sec12 is a key regulator, functioning as the guanosine diphosphate (GDP) exchange factor for Sar1p, the small guan...
Saved in:
Published in | Current biology Vol. 28; no. 12; pp. 1950 - 1958.e6 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Inc
18.06.2018
Cell Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Coat protein complex II (COPII) proteins form vesicles from the endoplasmic reticulum to export cargo molecules to the Golgi apparatus. Among the many proteins involved in this process, Sec12 is a key regulator, functioning as the guanosine diphosphate (GDP) exchange factor for Sar1p, the small guanosine triphosphatase (GTPase) that initiates COPII assembly. Here we show that overexpression of phospholipase B3 in the thermosensitive sec12-4 mutant partially restores growth and protein transport at non-permissive temperatures. Lipidomics analyses of these cells show a higher content of lysophosphatidylinositol (lysoPI), consistent with the lipid specificity of PLB3. Furthermore, we show that lysoPI is specifically enriched in COPII vesicles isolated from in vitro budding assays. As these results suggested that lysophospholipids could facilitate budding under conditions of defective COPII coat dynamics, we reconstituted COPII binding onto giant liposomes with purified proteins and showed that lysoPI decreases membrane rigidity and enhances COPII recruitment to liposomes. Our results support a mechanical facilitation of COPII budding by lysophospholipids.
[Display omitted]
•COPII mutant sec12-4 is rescued by the overexpression of an ER resident phospholipase•Lipidomic analysis of COPII vesicles shows enrichment in lysophospholipids•Recruitment of COPII proteins to liposomes increases in presence of lysophospholipids•Lysophosphatidylinositol lowers the rigidity of membranes in vitro
Melero et al. show that lysophospholipids are enriched in COPII vesicles and facilitate their formation. These highly conical lipids can lower the energy required to deform membranes and increase the recruitment of COPII coats to giant liposomes in vitro. Their results show that lysophosphatidylinositol strongly facilitates COPII vesicle formation. |
---|---|
AbstractList | Coat protein complex II (COPII) proteins form vesicles from the endoplasmic reticulum to export cargo molecules to the Golgi apparatus. Among the many proteins involved in this process, Sec12 is a key regulator, functioning as the guanosine diphosphate (GDP) exchange factor for Sar1p, the small guanosine triphosphatase (GTPase) that initiates COPII assembly. Here we show that overexpression of phospholipase B3 in the thermosensitive
sec12-4
mutant partially restores growth and protein transport at non-permissive temperatures. Lipidomics analyses of these cells show a higher content of lysophosphatidylinositol (lysoPI), consistent with the lipid specificity of
PLB3
. Furthermore, we show that lysoPI is specifically enriched in COPII vesicles isolated from
in vitro
budding assays. As these results suggested that lysophospholipids could facilitate budding under conditions of defective COPII coat dynamics, we reconstituted COPII binding onto giant liposomes with purified proteins and showed that lysoPI decreases membrane rigidity and enhances COPII recruitment to liposomes. Our results support a mechanical facilitation of COPII budding by lysophospholipids.
•
COPII mutant
sec12-4
is rescued by the overexpression of an ER resident phospholipase
•
Lipidomic analysis of COPII vesicles shows enrichment in lysophospholipids
•
Recruitment of COPII proteins to liposomes increases in presence of lysophospholipids
•
Lysophosphatidylinositol lowers the rigidity of membranes
in vitro
Melero et al. show that lysophospholipids are enriched in COPII vesicles and facilitate their formation. These highly conical lipids can lower the energy required to deform membranes and increase the recruitment of COPII coats to giant liposomes
in vitro
. Their results show that lysophosphatidylinositol strongly facilitates COPII vesicle formation. Coat protein complex II (COPII) proteins form vesicles from the endoplasmic reticulum to export cargo molecules to the Golgi apparatus. Among the many proteins involved in this process, Sec12 is a key regulator, functioning as the guanosine diphosphate (GDP) exchange factor for Sar1p, the small guanosine triphosphatase (GTPase) that initiates COPII assembly. Here we show that overexpression of phospholipase B3 in the thermosensitive sec12-4 mutant partially restores growth and protein transport at non-permissive temperatures. Lipidomics analyses of these cells show a higher content of lysophosphatidylinositol (lysoPI), consistent with the lipid specificity of PLB3. Furthermore, we show that lysoPI is specifically enriched in COPII vesicles isolated from in vitro budding assays. As these results suggested that lysophospholipids could facilitate budding under conditions of defective COPII coat dynamics, we reconstituted COPII binding onto giant liposomes with purified proteins and showed that lysoPI decreases membrane rigidity and enhances COPII recruitment to liposomes. Our results support a mechanical facilitation of COPII budding by lysophospholipids. [Display omitted] •COPII mutant sec12-4 is rescued by the overexpression of an ER resident phospholipase•Lipidomic analysis of COPII vesicles shows enrichment in lysophospholipids•Recruitment of COPII proteins to liposomes increases in presence of lysophospholipids•Lysophosphatidylinositol lowers the rigidity of membranes in vitro Melero et al. show that lysophospholipids are enriched in COPII vesicles and facilitate their formation. These highly conical lipids can lower the energy required to deform membranes and increase the recruitment of COPII coats to giant liposomes in vitro. Their results show that lysophosphatidylinositol strongly facilitates COPII vesicle formation. Coat protein complex II (COPII) proteins form vesicles from the endoplasmic reticulum to export cargo molecules to the Golgi apparatus. Among the many proteins involved in this process, Sec12 is a key regulator, functioning as the guanosine diphosphate (GDP) exchange factor for Sar1p, the small guanosine triphosphatase (GTPase) that initiates COPII assembly. Here we show that overexpression of phospholipase B3 in the thermosensitive sec12-4 mutant partially restores growth and protein transport at non-permissive temperatures. Lipidomics analyses of these cells show a higher content of lysophosphatidylinositol (lysoPI), consistent with the lipid specificity of PLB3. Furthermore, we show that lysoPI is specifically enriched in COPII vesicles isolated from in vitro budding assays. As these results suggested that lysophospholipids could facilitate budding under conditions of defective COPII coat dynamics, we reconstituted COPII binding onto giant liposomes with purified proteins and showed that lysoPI decreases membrane rigidity and enhances COPII recruitment to liposomes. Our results support a mechanical facilitation of COPII budding by lysophospholipids.Coat protein complex II (COPII) proteins form vesicles from the endoplasmic reticulum to export cargo molecules to the Golgi apparatus. Among the many proteins involved in this process, Sec12 is a key regulator, functioning as the guanosine diphosphate (GDP) exchange factor for Sar1p, the small guanosine triphosphatase (GTPase) that initiates COPII assembly. Here we show that overexpression of phospholipase B3 in the thermosensitive sec12-4 mutant partially restores growth and protein transport at non-permissive temperatures. Lipidomics analyses of these cells show a higher content of lysophosphatidylinositol (lysoPI), consistent with the lipid specificity of PLB3. Furthermore, we show that lysoPI is specifically enriched in COPII vesicles isolated from in vitro budding assays. As these results suggested that lysophospholipids could facilitate budding under conditions of defective COPII coat dynamics, we reconstituted COPII binding onto giant liposomes with purified proteins and showed that lysoPI decreases membrane rigidity and enhances COPII recruitment to liposomes. Our results support a mechanical facilitation of COPII budding by lysophospholipids. Coat protein complex II (COPII) proteins form vesicles from the endoplasmic reticulum to export cargo molecules to the Golgi apparatus. Among the many proteins involved in this process, Sec12 is a key regulator, functioning as the guanosine diphosphate (GDP) exchange factor for Sar1p, the small guanosine triphosphatase (GTPase) that initiates COPII assembly. Here we show that overexpression of phospholipase B3 in the thermosensitive sec12-4 mutant partially restores growth and protein transport at non-permissive temperatures. Lipidomics analyses of these cells show a higher content of lysophosphatidylinositol (lysoPI), consistent with the lipid specificity of PLB3. Furthermore, we show that lysoPI is specifically enriched in COPII vesicles isolated from in vitro budding assays. As these results suggested that lysophospholipids could facilitate budding under conditions of defective COPII coat dynamics, we reconstituted COPII binding onto giant liposomes with purified proteins and showed that lysoPI decreases membrane rigidity and enhances COPII recruitment to liposomes. Our results support a mechanical facilitation of COPII budding by lysophospholipids. |
Author | Melero, Alejandro Funato, Kouichi Riezman, Howard Riezman, Isabelle Roux, Aurélien Karashima, Takefumi Barlowe, Charles Chiaruttini, Nicolas |
AuthorAffiliation | 4 Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844, USA 2 Swiss National Centre for Competence in Research in Chemical Biology, 1211 Geneva, Switzerland 3 Department of Bioresource Science and Technology, Hiroshima University, Hiroshima 739-8528, Japan 1 Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland |
AuthorAffiliation_xml | – name: 2 Swiss National Centre for Competence in Research in Chemical Biology, 1211 Geneva, Switzerland – name: 4 Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844, USA – name: 1 Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland – name: 3 Department of Bioresource Science and Technology, Hiroshima University, Hiroshima 739-8528, Japan |
Author_xml | – sequence: 1 givenname: Alejandro surname: Melero fullname: Melero, Alejandro organization: Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland – sequence: 2 givenname: Nicolas surname: Chiaruttini fullname: Chiaruttini, Nicolas organization: Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland – sequence: 3 givenname: Takefumi surname: Karashima fullname: Karashima, Takefumi organization: Department of Bioresource Science and Technology, Hiroshima University, Hiroshima 739-8528, Japan – sequence: 4 givenname: Isabelle surname: Riezman fullname: Riezman, Isabelle organization: Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland – sequence: 5 givenname: Kouichi surname: Funato fullname: Funato, Kouichi organization: Department of Bioresource Science and Technology, Hiroshima University, Hiroshima 739-8528, Japan – sequence: 6 givenname: Charles surname: Barlowe fullname: Barlowe, Charles organization: Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844, USA – sequence: 7 givenname: Howard surname: Riezman fullname: Riezman, Howard email: howard.riezman@unige.ch organization: Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland – sequence: 8 givenname: Aurélien surname: Roux fullname: Roux, Aurélien email: aurelien.roux@unige.ch organization: Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29887313$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFrGzEQhUVJSZy0P6CX4GMvux1JuystgUAxdWswpIcmVyHNzjYy65UjrQP595VxEtoeghA66H1vhvfO2ckYRmLsE4eSA2--bErcu1IA1yVUJajmHZtxrdoCqqo-YTNoGyhaLcQZO09pA8CFbptTdiZarZXkcsaq9VMKu_uQ8h38zndpvrToBz_ZieaLm5-r1fyOkseB5ssQt3byYfzA3vd2SPTx-b1gt8tvvxY_ivXN99Xi67rAmqupUKpWjXQWOTnRC64qZZ1Q2vXCNW3tBOQjdQ3OAnbQc1S2Juxdg06glfKCXR99d3u3pQ5pnKIdzC76rY1PJlhv_v0Z_b35HR5NA1yKVmWDz88GMTzsKU1m6xPSMNiRwj4ZAbUUqpZaZ-nl37Neh7xElQX8KMAYUorUv0o4mEMdZmNyHeZQh4HK5Doyo_5j8BBsjjCv64c3yasjSTnfR0_RJPQ0InU-Ek6mC_4N-g97c6UB |
CitedBy_id | crossref_primary_10_1016_j_bbagen_2019_129486 crossref_primary_10_1083_jcb_202109162 crossref_primary_10_1007_s00418_023_02218_0 crossref_primary_10_3389_fcell_2019_00291 crossref_primary_10_1042_BST20190376 crossref_primary_10_1111_tpj_16389 crossref_primary_10_1016_j_bbalip_2019_05_005 crossref_primary_10_1155_2022_4347466 crossref_primary_10_2337_db23_0205 crossref_primary_10_1016_j_cub_2020_07_059 crossref_primary_10_1091_mbc_E22_03_0103 crossref_primary_10_1038_s44318_024_00063_y crossref_primary_10_3390_toxins13060377 crossref_primary_10_3389_fendo_2023_1155779 crossref_primary_10_1002_1873_3468_14595 crossref_primary_10_1146_annurev_biophys_011422_100054 crossref_primary_10_3390_membranes13020190 crossref_primary_10_1016_j_ceb_2019_03_012 crossref_primary_10_1128_msphere_00031_23 crossref_primary_10_2533_chimia_2021_1026 crossref_primary_10_1093_jxb_erab504 crossref_primary_10_1016_j_cub_2020_08_067 crossref_primary_10_3389_fnut_2021_706067 crossref_primary_10_1016_j_cub_2018_04_068 crossref_primary_10_1007_s44154_023_00114_0 crossref_primary_10_7554_eLife_57822 crossref_primary_10_1016_j_bbamcr_2019_118551 crossref_primary_10_1016_j_ymben_2019_06_010 crossref_primary_10_1016_j_bbalip_2019_04_013 crossref_primary_10_1126_sciadv_aba8237 crossref_primary_10_1111_tra_12603 crossref_primary_10_1016_j_isci_2020_101603 crossref_primary_10_1080_08982104_2020_1850776 crossref_primary_10_1016_j_plipres_2020_101063 crossref_primary_10_1038_s41598_020_61655_2 crossref_primary_10_1016_j_celrep_2021_110258 crossref_primary_10_1016_j_tig_2022_02_012 crossref_primary_10_1002_jimd_12781 |
Cites_doi | 10.1016/S0006-3495(98)77948-2 10.1529/biophysj.104.056473 10.1074/jbc.M115.672287 10.1093/emboj/cdf605 10.1242/jcs.189423 10.7554/eLife.00951 10.1038/nrm1784 10.1103/PhysRevLett.88.238101 10.1016/j.cell.2005.07.025 10.1126/science.1215909 10.1042/BJ20041272 10.1038/sj.emboj.7600631 10.1016/S0076-6879(02)51852-8 10.1083/jcb.200509095 10.1074/jbc.M409673200 10.1242/jcs.100065 10.1073/pnas.0811243106 10.1038/35078500 10.1073/pnas.0807102105 10.1091/mbc.e14-03-0851 10.1083/jcb.146.4.741 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2 10.1038/ncb2832 10.1016/j.bpj.2010.01.037 10.1194/jlr.D700041-JLR200 10.1038/srep00017 10.1074/jbc.274.40.28121 10.1093/emboj/cdg390 10.1016/j.ceb.2014.03.006 10.1128/JB.142.2.414-423.1980 10.1242/jcs.132001 10.1016/0092-8674(94)90138-4 10.1126/science.8451644 10.1016/j.cell.2007.05.036 10.1038/227680a0 10.1007/BF02684228 10.1091/mbc.7.7.1043 10.1091/mbc.10.6.1923 10.1016/j.cell.2012.09.017 10.1016/j.devcel.2007.10.006 10.1016/S0006-3495(00)76295-3 10.1111/j.1600-0854.2010.01115.x 10.1016/S0005-2736(99)00103-0 10.1016/S0009-3084(01)00195-5 10.1194/jlr.M025692 10.1016/S0006-3495(01)75695-0 10.1111/j.1600-0854.2008.00857.x 10.1515/hsz-2014-0117 10.1101/cshperspect.a004648 10.1016/S0092-8674(00)81577-9 10.1016/j.chemphyslip.2006.08.004 10.1016/j.bpj.2010.06.059 10.1091/mbc.e09-07-0605 10.1038/ncomms7249 |
ContentType | Journal Article |
Copyright | 2018 The Authors Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved. 2018 The Authors 2018 |
Copyright_xml | – notice: 2018 The Authors – notice: Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved. – notice: 2018 The Authors 2018 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.cub.2018.04.076 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1879-0445 |
EndPage | 1958.e6 |
ExternalDocumentID | PMC6013297 29887313 10_1016_j_cub_2018_04_076 S0960982218305487 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM052549 |
GroupedDBID | --- --K -DZ -~X 0R~ 1RT 1~5 2WC 4.4 457 4G. 53G 5GY 62- 6I. 6J9 7-5 AACTN AAEDW AAFTH AAFWJ AAIAV AAKRW AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHSJ AGKMS AGUBO AHHHB AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID IHE IXB J1W JIG LX5 M3Z M41 NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SCP SDG SES SSZ TR2 WQ6 ZA5 29F 5VS AAEDT AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP ASPBG AVWKF CAG CITATION COF FEDTE FGOYB G-2 HVGLF HZ~ OZT R2- SEW UHS XIH XPP Y6R ZGI CGR CUY CVF ECM EIF NPM 7X8 EFKBS 5PM |
ID | FETCH-LOGICAL-c517t-775763bac1eb2f21747ab278bf2b695b202023850ba0cd0f1c7a5ecfb6cb2ca33 |
IEDL.DBID | IXB |
ISSN | 0960-9822 1879-0445 |
IngestDate | Thu Aug 21 14:16:03 EDT 2025 Mon Jul 21 11:18:21 EDT 2025 Thu Apr 03 07:02:34 EDT 2025 Tue Jul 01 01:57:06 EDT 2025 Thu Apr 24 23:11:18 EDT 2025 Fri Feb 23 02:45:18 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | budding assays phospholipase COPII membrane curvature membrane rigidity lysolipids vesicular transport |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-775763bac1eb2f21747ab278bf2b695b202023850ba0cd0f1c7a5ecfb6cb2ca33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact Present address: Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0960982218305487 |
PMID | 29887313 |
PQID | 2053275388 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6013297 proquest_miscellaneous_2053275388 pubmed_primary_29887313 crossref_primary_10_1016_j_cub_2018_04_076 crossref_citationtrail_10_1016_j_cub_2018_04_076 elsevier_sciencedirect_doi_10_1016_j_cub_2018_04_076 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-18 |
PublicationDateYYYYMMDD | 2018-06-18 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Current biology |
PublicationTitleAlternate | Curr Biol |
PublicationYear | 2018 |
Publisher | Elsevier Inc Cell Press |
Publisher_xml | – name: Elsevier Inc – name: Cell Press |
References | Elrod-Erickson, Kaiser (bib44) 1996; 7 Bacia, Futai, Prinz, Meister, Daum, Glatte, Briggs, Schekman (bib30) 2011; 1 Yoshihisa, Barlowe, Schekman (bib9) 1993; 259 Callan-Jones, Sorre, Bassereau (bib27) 2011; 3 Nielsen, Risbo, Callisen, Bjørnholm (bib39) 1999; 1420 Laemmli (bib51) 1970; 227 Saleem, Morlot, Hohendahl, Manzi, Lenz, Roux (bib15) 2015; 6 Zanetti, Prinz, Daum, Meister, Schekman, Bacia, Briggs (bib11) 2013 Barlowe, Orci, Yeung, Hosobuchi, Hamamoto, Salama, Rexach, Ravazzola, Amherdt, Schekman (bib1) 1994; 77 Morlot, Galli, Klein, Chiaruttini, Manzi, Humbert, Dinis, Lenz, Cappello, Roux (bib54) 2012; 151 Shimoi, Ezawa, Nakamoto, Uesaki, Gabreski, Aridor, Yamamoto, Nagahama, Tagaya, Tani (bib18) 2005; 280 Okamoto, Kurokawa, Matsuura-Tokita, Saito, Hirata, Nakano (bib23) 2012; 125 Castillon, Watanabe, Taylor, Schwabe, Riezman (bib6) 2009; 10 Henriksen, Andresen, Feldborg, Duelund, Ipsen (bib28) 2010; 98 Copic, Latham, Horlbeck, D’Arcangelo, Miller (bib12) 2012; 335 Heinrich, Waugh (bib53) 1996; 24 Loizides-Mangold, David, Nesatyy, Kinoshita, Riezman (bib25) 2012; 53 Antonny, Madden, Hamamoto, Orci, Schekman (bib13) 2001; 3 Schmidt, Kalkofen, Donovan, Brown (bib35) 2010; 11 Ruiz-Argüello, Veiga, Arrondo, Goñi, Alonso (bib40) 2002; 114 Schneiter, Brügger, Sandhoff, Zellnig, Leber, Lampl, Athenstaedt, Hrastnik, Eder, Daum (bib24) 1999; 146 Fuller, Rand (bib29) 2001; 81 Brachmann, Davies, Cost, Caputo, Li, Hieter, Boeke (bib48) 1998; 14 Shimoni, Schekman (bib49) 2002; 351 Sorre, Callan-Jones, Manneville, Nassoy, Joanny, Prost, Goud, Bassereau (bib37) 2009; 106 Cuvelier, Derényi, Bassereau, Nassoy (bib33) 2005; 88 Scott, Schekman (bib47) 1980; 142 Grandbois, Clausen-Schaumann, Gaub (bib38) 1998; 74 Manneville, Casella, Ambroggio, Gounon, Bertherat, Bassereau, Cartaud, Antonny, Goud (bib42) 2008; 105 Marsh (bib16) 2006; 144 Settles, Loftus, McKeown, Parthasarathy (bib5) 2010; 99 Fath, Mancias, Bi, Goldberg (bib10) 2007; 129 Hanna, Mela, Wang, Henderson, Chapman, Edwardson, Audhya (bib43) 2016; 291 Daum, Krüger, Meister, Auerswald, Prinz, Briggs, Bacia (bib31) 2014; 395 Matsuoka, Orci, Amherdt, Bednarek, Hamamoto, Schekman, Yeung (bib19) 1998; 93 da Silveira Dos Santos, Riezman, Aguilera-Romero, David, Piccolis, Loewith, Schaad, Riezman (bib50) 2014; 25 Shindiapina, Barlowe (bib7) 2010; 21 Lee, Orci, Hamamoto, Futai, Ravazzola, Schekman (bib2) 2005; 122 Zimmerberg, Kozlov (bib36) 2006; 7 Merkel, Oskolkova, Raab, El-Toukhy, Paltauf (bib22) 2005; 387 Miller, Antonny, Hamamoto, Schekman (bib8) 2002; 21 Bielli, Haney, Gabreski, Watkins, Bannykh, Aridor (bib3) 2005; 171 Kozlov, Campelo, Liska, Chernomordik, Marrink, McMahon (bib4) 2014; 29 Kurokawa, Suda, Nakano (bib41) 2016; 129 Marzioch, Henthorn, Herrmann, Wilson, Thomas, Bergeron, Solari, Rowley (bib45) 1999; 10 Stachowiak, Brodsky, Miller (bib46) 2013; 15 Pathre, Shome, Blumental-Perry, Bielli, Haney, Alber, Watkins, Romero, Aridor (bib17) 2003; 22 Roux, Cuvelier, Nassoy, Prost, Bassereau, Goud (bib32) 2005; 24 Kajiwara, Ikeda, Aguilera-Romero, Castillon, Kagiwada, Hanada, Riezman, Muñiz, Funato (bib20) 2014; 127 Bi, Mancias, Goldberg (bib14) 2007; 13 Rawicz, Olbrich, McIntosh, Needham, Evans (bib26) 2000; 79 Merkel, Fido, Mayr, Prüger, Raab, Zandonella, Kohlwein, Paltauf (bib21) 1999; 274 Derényi, Jülicher, Prost (bib34) 2002; 88 Matyash, Liebisch, Kurzchalia, Shevchenko, Schwudke (bib52) 2008; 49 Kozlov (10.1016/j.cub.2018.04.076_bib4) 2014; 29 Castillon (10.1016/j.cub.2018.04.076_bib6) 2009; 10 Yoshihisa (10.1016/j.cub.2018.04.076_bib9) 1993; 259 Loizides-Mangold (10.1016/j.cub.2018.04.076_bib25) 2012; 53 Barlowe (10.1016/j.cub.2018.04.076_bib1) 1994; 77 da Silveira Dos Santos (10.1016/j.cub.2018.04.076_bib50) 2014; 25 Ruiz-Argüello (10.1016/j.cub.2018.04.076_bib40) 2002; 114 Saleem (10.1016/j.cub.2018.04.076_bib15) 2015; 6 Merkel (10.1016/j.cub.2018.04.076_bib21) 1999; 274 Rawicz (10.1016/j.cub.2018.04.076_bib26) 2000; 79 Schneiter (10.1016/j.cub.2018.04.076_bib24) 1999; 146 Lee (10.1016/j.cub.2018.04.076_bib2) 2005; 122 Bacia (10.1016/j.cub.2018.04.076_bib30) 2011; 1 Shimoi (10.1016/j.cub.2018.04.076_bib18) 2005; 280 Kurokawa (10.1016/j.cub.2018.04.076_bib41) 2016; 129 Antonny (10.1016/j.cub.2018.04.076_bib13) 2001; 3 Fuller (10.1016/j.cub.2018.04.076_bib29) 2001; 81 Manneville (10.1016/j.cub.2018.04.076_bib42) 2008; 105 Pathre (10.1016/j.cub.2018.04.076_bib17) 2003; 22 Zanetti (10.1016/j.cub.2018.04.076_bib11) 2013; 2 Bi (10.1016/j.cub.2018.04.076_bib14) 2007; 13 Derényi (10.1016/j.cub.2018.04.076_bib34) 2002; 88 Miller (10.1016/j.cub.2018.04.076_bib8) 2002; 21 Matyash (10.1016/j.cub.2018.04.076_bib52) 2008; 49 Scott (10.1016/j.cub.2018.04.076_bib47) 1980; 142 Schmidt (10.1016/j.cub.2018.04.076_bib35) 2010; 11 Marsh (10.1016/j.cub.2018.04.076_bib16) 2006; 144 Kajiwara (10.1016/j.cub.2018.04.076_bib20) 2014; 127 Sorre (10.1016/j.cub.2018.04.076_bib37) 2009; 106 Cuvelier (10.1016/j.cub.2018.04.076_bib33) 2005; 88 Elrod-Erickson (10.1016/j.cub.2018.04.076_bib44) 1996; 7 Zimmerberg (10.1016/j.cub.2018.04.076_bib36) 2006; 7 Nielsen (10.1016/j.cub.2018.04.076_bib39) 1999; 1420 Matsuoka (10.1016/j.cub.2018.04.076_bib19) 1998; 93 Marzioch (10.1016/j.cub.2018.04.076_bib45) 1999; 10 Stachowiak (10.1016/j.cub.2018.04.076_bib46) 2013; 15 Bielli (10.1016/j.cub.2018.04.076_bib3) 2005; 171 Henriksen (10.1016/j.cub.2018.04.076_bib28) 2010; 98 Merkel (10.1016/j.cub.2018.04.076_bib22) 2005; 387 Copic (10.1016/j.cub.2018.04.076_bib12) 2012; 335 Okamoto (10.1016/j.cub.2018.04.076_bib23) 2012; 125 Callan-Jones (10.1016/j.cub.2018.04.076_bib27) 2011; 3 Shimoni (10.1016/j.cub.2018.04.076_bib49) 2002; 351 Hanna (10.1016/j.cub.2018.04.076_bib43) 2016; 291 Roux (10.1016/j.cub.2018.04.076_bib32) 2005; 24 Morlot (10.1016/j.cub.2018.04.076_bib54) 2012; 151 Laemmli (10.1016/j.cub.2018.04.076_bib51) 1970; 227 Brachmann (10.1016/j.cub.2018.04.076_bib48) 1998; 14 Heinrich (10.1016/j.cub.2018.04.076_bib53) 1996; 24 Settles (10.1016/j.cub.2018.04.076_bib5) 2010; 99 Grandbois (10.1016/j.cub.2018.04.076_bib38) 1998; 74 Shindiapina (10.1016/j.cub.2018.04.076_bib7) 2010; 21 Fath (10.1016/j.cub.2018.04.076_bib10) 2007; 129 Daum (10.1016/j.cub.2018.04.076_bib31) 2014; 395 29920265 - Curr Biol. 2018 Jun 18;28(12):R706-R709 |
References_xml | – start-page: e00951 year: 2013 ident: bib11 article-title: The structure of the COPII transport-vesicle coat assembled on membranes publication-title: eLife – volume: 7 start-page: 1043 year: 1996 end-page: 1058 ident: bib44 article-title: Genes that control the fidelity of endoplasmic reticulum to Golgi transport identified as suppressors of vesicle budding mutations publication-title: Mol. Biol. Cell – volume: 351 start-page: 258 year: 2002 end-page: 278 ident: bib49 article-title: Vesicle budding from endoplasmic reticulum publication-title: Methods Enzymol. – volume: 259 start-page: 1466 year: 1993 end-page: 1468 ident: bib9 article-title: Requirement for a GTPase-activating protein in vesicle budding from the endoplasmic reticulum publication-title: Science – volume: 122 start-page: 605 year: 2005 end-page: 617 ident: bib2 article-title: Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle publication-title: Cell – volume: 15 start-page: 1019 year: 2013 end-page: 1027 ident: bib46 article-title: A cost-benefit analysis of the physical mechanisms of membrane curvature publication-title: Nat. Cell Biol. – volume: 11 start-page: 1530 year: 2010 end-page: 1536 ident: bib35 article-title: A role for phospholipase A2 activity in membrane tubule formation and TGN trafficking publication-title: Traffic – volume: 129 start-page: 1325 year: 2007 end-page: 1336 ident: bib10 article-title: Structure and organization of coat proteins in the COPII cage publication-title: Cell – volume: 25 start-page: 3234 year: 2014 end-page: 3246 ident: bib50 article-title: Systematic lipidomic analysis of yeast protein kinase and phosphatase mutants reveals novel insights into regulation of lipid homeostasis publication-title: Mol. Biol. Cell – volume: 106 start-page: 5622 year: 2009 end-page: 5626 ident: bib37 article-title: Curvature-driven lipid sorting needs proximity to a demixing point and is aided by proteins publication-title: Proc. Natl. Acad. Sci. USA – volume: 99 start-page: 1539 year: 2010 end-page: 1545 ident: bib5 article-title: The vesicle trafficking protein Sar1 lowers lipid membrane rigidity publication-title: Biophys. J. – volume: 6 start-page: 6249 year: 2015 ident: bib15 article-title: A balance between membrane elasticity and polymerization energy sets the shape of spherical clathrin coats publication-title: Nat. Commun. – volume: 21 start-page: 6105 year: 2002 end-page: 6113 ident: bib8 article-title: Cargo selection into COPII vesicles is driven by the Sec24p subunit publication-title: EMBO J. – volume: 21 start-page: 1530 year: 2010 end-page: 1545 ident: bib7 article-title: Requirements for transitional endoplasmic reticulum site structure and function in Saccharomyces cerevisiae publication-title: Mol. Biol. Cell – volume: 53 start-page: 1522 year: 2012 end-page: 1534 ident: bib25 article-title: Glycosylphosphatidylinositol anchors regulate glycosphingolipid levels publication-title: J. Lipid Res. – volume: 395 start-page: 801 year: 2014 end-page: 812 ident: bib31 article-title: Insights from reconstitution reactions of COPII vesicle formation using pure components and low mechanical perturbation publication-title: Biol. Chem. – volume: 74 start-page: 2398 year: 1998 end-page: 2404 ident: bib38 article-title: Atomic force microscope imaging of phospholipid bilayer degradation by phospholipase A2 publication-title: Biophys. J. – volume: 151 start-page: 619 year: 2012 end-page: 629 ident: bib54 article-title: Membrane shape at the edge of the dynamin helix sets location and duration of the fission reaction publication-title: Cell – volume: 13 start-page: 635 year: 2007 end-page: 645 ident: bib14 article-title: Insights into COPII coat nucleation from the structure of Sec23.Sar1 complexed with the active fragment of Sec31 publication-title: Dev. Cell – volume: 1420 start-page: 266 year: 1999 end-page: 271 ident: bib39 article-title: Lag-burst kinetics in phospholipase A(2) hydrolysis of DPPC bilayers visualized by atomic force microscopy publication-title: Biochim. Biophys. Acta – volume: 171 start-page: 919 year: 2005 end-page: 924 ident: bib3 article-title: Regulation of Sar1 NH2 terminus by GTP binding and hydrolysis promotes membrane deformation to control COPII vesicle fission publication-title: J. Cell Biol. – volume: 291 start-page: 1014 year: 2016 end-page: 1027 ident: bib43 article-title: Sar1 GTPase activity is regulated by membrane curvature publication-title: J. Biol. Chem. – volume: 274 start-page: 28121 year: 1999 end-page: 28127 ident: bib21 article-title: Characterization and function in vivo of two novel phospholipases B/lysophospholipases from Saccharomyces cerevisiae publication-title: J. Biol. Chem. – volume: 24 start-page: 595 year: 1996 end-page: 605 ident: bib53 article-title: A piconewton force transducer and its application to measurement of the bending stiffness of phospholipid membranes publication-title: Ann. Biomed. Eng. – volume: 29 start-page: 53 year: 2014 end-page: 60 ident: bib4 article-title: Mechanisms shaping cell membranes publication-title: Curr. Opin. Cell Biol. – volume: 7 start-page: 9 year: 2006 end-page: 19 ident: bib36 article-title: How proteins produce cellular membrane curvature publication-title: Nat. Rev. Mol. Cell Biol. – volume: 280 start-page: 10141 year: 2005 end-page: 10148 ident: bib18 article-title: p125 is localized in endoplasmic reticulum exit sites and involved in their organization publication-title: J. Biol. Chem. – volume: 14 start-page: 115 year: 1998 end-page: 132 ident: bib48 article-title: Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications publication-title: Yeast – volume: 24 start-page: 1537 year: 2005 end-page: 1545 ident: bib32 article-title: Role of curvature and phase transition in lipid sorting and fission of membrane tubules publication-title: EMBO J. – volume: 22 start-page: 4059 year: 2003 end-page: 4069 ident: bib17 article-title: Activation of phospholipase D by the small GTPase Sar1p is required to support COPII assembly and ER export publication-title: EMBO J. – volume: 105 start-page: 16946 year: 2008 end-page: 16951 ident: bib42 article-title: COPI coat assembly occurs on liquid-disordered domains and the associated membrane deformations are limited by membrane tension publication-title: Proc. Natl. Acad. Sci. USA – volume: 98 start-page: 2199 year: 2010 end-page: 2205 ident: bib28 article-title: Understanding detergent effects on lipid membranes: a model study of lysolipids publication-title: Biophys. J. – volume: 125 start-page: 3412 year: 2012 end-page: 3420 ident: bib23 article-title: High-curvature domains of the ER are important for the organization of ER exit sites in Saccharomyces cerevisiae publication-title: J. Cell Sci. – volume: 93 start-page: 263 year: 1998 end-page: 275 ident: bib19 article-title: COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes publication-title: Cell – volume: 1 start-page: 17 year: 2011 ident: bib30 article-title: Multibudded tubules formed by COPII on artificial liposomes publication-title: Sci. Rep. – volume: 77 start-page: 895 year: 1994 end-page: 907 ident: bib1 article-title: COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum publication-title: Cell – volume: 3 start-page: 531 year: 2001 end-page: 537 ident: bib13 article-title: Dynamics of the COPII coat with GTP and stable analogues publication-title: Nat. Cell Biol. – volume: 127 start-page: 376 year: 2014 end-page: 387 ident: bib20 article-title: Osh proteins regulate COPII-mediated vesicular transport of ceramide from the endoplasmic reticulum in budding yeast publication-title: J. Cell Sci. – volume: 227 start-page: 680 year: 1970 end-page: 685 ident: bib51 article-title: Cleavage of structural proteins during the assembly of the head of bacteriophage T4 publication-title: Nature – volume: 88 start-page: 2714 year: 2005 end-page: 2726 ident: bib33 article-title: Coalescence of membrane tethers: experiments, theory, and applications publication-title: Biophys. J. – volume: 3 start-page: a004648 year: 2011 ident: bib27 article-title: Curvature-driven lipid sorting in biomembranes publication-title: Cold Spring Harb. Perspect. Biol. – volume: 81 start-page: 243 year: 2001 end-page: 254 ident: bib29 article-title: The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes publication-title: Biophys. J. – volume: 142 start-page: 414 year: 1980 end-page: 423 ident: bib47 article-title: Lyticase: endoglucanase and protease activities that act together in yeast cell lysis publication-title: J. Bacteriol. – volume: 387 start-page: 489 year: 2005 end-page: 496 ident: bib22 article-title: Regulation of activity in vitro and in vivo of three phospholipases B from Saccharomyces cerevisiae publication-title: Biochem. J. – volume: 144 start-page: 146 year: 2006 end-page: 159 ident: bib16 article-title: Elastic curvature constants of lipid monolayers and bilayers publication-title: Chem. Phys. Lipids – volume: 79 start-page: 328 year: 2000 end-page: 339 ident: bib26 article-title: Effect of chain length and unsaturation on elasticity of lipid bilayers publication-title: Biophys. J. – volume: 146 start-page: 741 year: 1999 end-page: 754 ident: bib24 article-title: Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane publication-title: J. Cell Biol. – volume: 10 start-page: 1923 year: 1999 end-page: 1938 ident: bib45 article-title: Erp1p and Erp2p, partners for Emp24p and Erv25p in a yeast p24 complex publication-title: Mol. Biol. Cell – volume: 49 start-page: 1137 year: 2008 end-page: 1146 ident: bib52 article-title: Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics publication-title: J. Lipid Res. – volume: 10 start-page: 186 year: 2009 end-page: 200 ident: bib6 article-title: Concentration of GPI-anchored proteins upon ER exit in yeast publication-title: Traffic – volume: 88 start-page: 238101 year: 2002 ident: bib34 article-title: Formation and interaction of membrane tubes publication-title: Phys. Rev. Lett. – volume: 335 start-page: 1359 year: 2012 end-page: 1362 ident: bib12 article-title: ER cargo properties specify a requirement for COPII coat rigidity mediated by Sec13p publication-title: Science – volume: 114 start-page: 11 year: 2002 end-page: 20 ident: bib40 article-title: Sphingomyelinase cleavage of sphingomyelin in pure and mixed lipid membranes. Influence of the physical state of the sphingolipid publication-title: Chem. Phys. Lipids – volume: 129 start-page: 3231 year: 2016 end-page: 3237 ident: bib41 article-title: Sar1 localizes at the rims of COPII-coated membranes in vivo publication-title: J. Cell Sci. – volume: 74 start-page: 2398 year: 1998 ident: 10.1016/j.cub.2018.04.076_bib38 article-title: Atomic force microscope imaging of phospholipid bilayer degradation by phospholipase A2 publication-title: Biophys. J. doi: 10.1016/S0006-3495(98)77948-2 – volume: 88 start-page: 2714 year: 2005 ident: 10.1016/j.cub.2018.04.076_bib33 article-title: Coalescence of membrane tethers: experiments, theory, and applications publication-title: Biophys. J. doi: 10.1529/biophysj.104.056473 – volume: 291 start-page: 1014 year: 2016 ident: 10.1016/j.cub.2018.04.076_bib43 article-title: Sar1 GTPase activity is regulated by membrane curvature publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.672287 – volume: 21 start-page: 6105 year: 2002 ident: 10.1016/j.cub.2018.04.076_bib8 article-title: Cargo selection into COPII vesicles is driven by the Sec24p subunit publication-title: EMBO J. doi: 10.1093/emboj/cdf605 – volume: 129 start-page: 3231 year: 2016 ident: 10.1016/j.cub.2018.04.076_bib41 article-title: Sar1 localizes at the rims of COPII-coated membranes in vivo publication-title: J. Cell Sci. doi: 10.1242/jcs.189423 – volume: 2 start-page: e00951 year: 2013 ident: 10.1016/j.cub.2018.04.076_bib11 article-title: The structure of the COPII transport-vesicle coat assembled on membranes publication-title: eLife doi: 10.7554/eLife.00951 – volume: 7 start-page: 9 year: 2006 ident: 10.1016/j.cub.2018.04.076_bib36 article-title: How proteins produce cellular membrane curvature publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1784 – volume: 88 start-page: 238101 year: 2002 ident: 10.1016/j.cub.2018.04.076_bib34 article-title: Formation and interaction of membrane tubes publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.238101 – volume: 122 start-page: 605 year: 2005 ident: 10.1016/j.cub.2018.04.076_bib2 article-title: Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle publication-title: Cell doi: 10.1016/j.cell.2005.07.025 – volume: 335 start-page: 1359 year: 2012 ident: 10.1016/j.cub.2018.04.076_bib12 article-title: ER cargo properties specify a requirement for COPII coat rigidity mediated by Sec13p publication-title: Science doi: 10.1126/science.1215909 – volume: 387 start-page: 489 year: 2005 ident: 10.1016/j.cub.2018.04.076_bib22 article-title: Regulation of activity in vitro and in vivo of three phospholipases B from Saccharomyces cerevisiae publication-title: Biochem. J. doi: 10.1042/BJ20041272 – volume: 24 start-page: 1537 year: 2005 ident: 10.1016/j.cub.2018.04.076_bib32 article-title: Role of curvature and phase transition in lipid sorting and fission of membrane tubules publication-title: EMBO J. doi: 10.1038/sj.emboj.7600631 – volume: 351 start-page: 258 year: 2002 ident: 10.1016/j.cub.2018.04.076_bib49 article-title: Vesicle budding from endoplasmic reticulum publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(02)51852-8 – volume: 171 start-page: 919 year: 2005 ident: 10.1016/j.cub.2018.04.076_bib3 article-title: Regulation of Sar1 NH2 terminus by GTP binding and hydrolysis promotes membrane deformation to control COPII vesicle fission publication-title: J. Cell Biol. doi: 10.1083/jcb.200509095 – volume: 280 start-page: 10141 year: 2005 ident: 10.1016/j.cub.2018.04.076_bib18 article-title: p125 is localized in endoplasmic reticulum exit sites and involved in their organization publication-title: J. Biol. Chem. doi: 10.1074/jbc.M409673200 – volume: 125 start-page: 3412 year: 2012 ident: 10.1016/j.cub.2018.04.076_bib23 article-title: High-curvature domains of the ER are important for the organization of ER exit sites in Saccharomyces cerevisiae publication-title: J. Cell Sci. doi: 10.1242/jcs.100065 – volume: 106 start-page: 5622 year: 2009 ident: 10.1016/j.cub.2018.04.076_bib37 article-title: Curvature-driven lipid sorting needs proximity to a demixing point and is aided by proteins publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0811243106 – volume: 3 start-page: 531 year: 2001 ident: 10.1016/j.cub.2018.04.076_bib13 article-title: Dynamics of the COPII coat with GTP and stable analogues publication-title: Nat. Cell Biol. doi: 10.1038/35078500 – volume: 105 start-page: 16946 year: 2008 ident: 10.1016/j.cub.2018.04.076_bib42 article-title: COPI coat assembly occurs on liquid-disordered domains and the associated membrane deformations are limited by membrane tension publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0807102105 – volume: 25 start-page: 3234 year: 2014 ident: 10.1016/j.cub.2018.04.076_bib50 article-title: Systematic lipidomic analysis of yeast protein kinase and phosphatase mutants reveals novel insights into regulation of lipid homeostasis publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e14-03-0851 – volume: 146 start-page: 741 year: 1999 ident: 10.1016/j.cub.2018.04.076_bib24 article-title: Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane publication-title: J. Cell Biol. doi: 10.1083/jcb.146.4.741 – volume: 14 start-page: 115 year: 1998 ident: 10.1016/j.cub.2018.04.076_bib48 article-title: Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications publication-title: Yeast doi: 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2 – volume: 15 start-page: 1019 year: 2013 ident: 10.1016/j.cub.2018.04.076_bib46 article-title: A cost-benefit analysis of the physical mechanisms of membrane curvature publication-title: Nat. Cell Biol. doi: 10.1038/ncb2832 – volume: 98 start-page: 2199 year: 2010 ident: 10.1016/j.cub.2018.04.076_bib28 article-title: Understanding detergent effects on lipid membranes: a model study of lysolipids publication-title: Biophys. J. doi: 10.1016/j.bpj.2010.01.037 – volume: 49 start-page: 1137 year: 2008 ident: 10.1016/j.cub.2018.04.076_bib52 article-title: Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics publication-title: J. Lipid Res. doi: 10.1194/jlr.D700041-JLR200 – volume: 1 start-page: 17 year: 2011 ident: 10.1016/j.cub.2018.04.076_bib30 article-title: Multibudded tubules formed by COPII on artificial liposomes publication-title: Sci. Rep. doi: 10.1038/srep00017 – volume: 274 start-page: 28121 year: 1999 ident: 10.1016/j.cub.2018.04.076_bib21 article-title: Characterization and function in vivo of two novel phospholipases B/lysophospholipases from Saccharomyces cerevisiae publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.40.28121 – volume: 22 start-page: 4059 year: 2003 ident: 10.1016/j.cub.2018.04.076_bib17 article-title: Activation of phospholipase D by the small GTPase Sar1p is required to support COPII assembly and ER export publication-title: EMBO J. doi: 10.1093/emboj/cdg390 – volume: 29 start-page: 53 year: 2014 ident: 10.1016/j.cub.2018.04.076_bib4 article-title: Mechanisms shaping cell membranes publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2014.03.006 – volume: 142 start-page: 414 year: 1980 ident: 10.1016/j.cub.2018.04.076_bib47 article-title: Lyticase: endoglucanase and protease activities that act together in yeast cell lysis publication-title: J. Bacteriol. doi: 10.1128/JB.142.2.414-423.1980 – volume: 127 start-page: 376 year: 2014 ident: 10.1016/j.cub.2018.04.076_bib20 article-title: Osh proteins regulate COPII-mediated vesicular transport of ceramide from the endoplasmic reticulum in budding yeast publication-title: J. Cell Sci. doi: 10.1242/jcs.132001 – volume: 77 start-page: 895 year: 1994 ident: 10.1016/j.cub.2018.04.076_bib1 article-title: COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum publication-title: Cell doi: 10.1016/0092-8674(94)90138-4 – volume: 259 start-page: 1466 year: 1993 ident: 10.1016/j.cub.2018.04.076_bib9 article-title: Requirement for a GTPase-activating protein in vesicle budding from the endoplasmic reticulum publication-title: Science doi: 10.1126/science.8451644 – volume: 129 start-page: 1325 year: 2007 ident: 10.1016/j.cub.2018.04.076_bib10 article-title: Structure and organization of coat proteins in the COPII cage publication-title: Cell doi: 10.1016/j.cell.2007.05.036 – volume: 227 start-page: 680 year: 1970 ident: 10.1016/j.cub.2018.04.076_bib51 article-title: Cleavage of structural proteins during the assembly of the head of bacteriophage T4 publication-title: Nature doi: 10.1038/227680a0 – volume: 24 start-page: 595 year: 1996 ident: 10.1016/j.cub.2018.04.076_bib53 article-title: A piconewton force transducer and its application to measurement of the bending stiffness of phospholipid membranes publication-title: Ann. Biomed. Eng. doi: 10.1007/BF02684228 – volume: 7 start-page: 1043 year: 1996 ident: 10.1016/j.cub.2018.04.076_bib44 article-title: Genes that control the fidelity of endoplasmic reticulum to Golgi transport identified as suppressors of vesicle budding mutations publication-title: Mol. Biol. Cell doi: 10.1091/mbc.7.7.1043 – volume: 10 start-page: 1923 year: 1999 ident: 10.1016/j.cub.2018.04.076_bib45 article-title: Erp1p and Erp2p, partners for Emp24p and Erv25p in a yeast p24 complex publication-title: Mol. Biol. Cell doi: 10.1091/mbc.10.6.1923 – volume: 151 start-page: 619 year: 2012 ident: 10.1016/j.cub.2018.04.076_bib54 article-title: Membrane shape at the edge of the dynamin helix sets location and duration of the fission reaction publication-title: Cell doi: 10.1016/j.cell.2012.09.017 – volume: 13 start-page: 635 year: 2007 ident: 10.1016/j.cub.2018.04.076_bib14 article-title: Insights into COPII coat nucleation from the structure of Sec23.Sar1 complexed with the active fragment of Sec31 publication-title: Dev. Cell doi: 10.1016/j.devcel.2007.10.006 – volume: 79 start-page: 328 year: 2000 ident: 10.1016/j.cub.2018.04.076_bib26 article-title: Effect of chain length and unsaturation on elasticity of lipid bilayers publication-title: Biophys. J. doi: 10.1016/S0006-3495(00)76295-3 – volume: 11 start-page: 1530 year: 2010 ident: 10.1016/j.cub.2018.04.076_bib35 article-title: A role for phospholipase A2 activity in membrane tubule formation and TGN trafficking publication-title: Traffic doi: 10.1111/j.1600-0854.2010.01115.x – volume: 1420 start-page: 266 year: 1999 ident: 10.1016/j.cub.2018.04.076_bib39 article-title: Lag-burst kinetics in phospholipase A(2) hydrolysis of DPPC bilayers visualized by atomic force microscopy publication-title: Biochim. Biophys. Acta doi: 10.1016/S0005-2736(99)00103-0 – volume: 114 start-page: 11 year: 2002 ident: 10.1016/j.cub.2018.04.076_bib40 article-title: Sphingomyelinase cleavage of sphingomyelin in pure and mixed lipid membranes. Influence of the physical state of the sphingolipid publication-title: Chem. Phys. Lipids doi: 10.1016/S0009-3084(01)00195-5 – volume: 53 start-page: 1522 year: 2012 ident: 10.1016/j.cub.2018.04.076_bib25 article-title: Glycosylphosphatidylinositol anchors regulate glycosphingolipid levels publication-title: J. Lipid Res. doi: 10.1194/jlr.M025692 – volume: 81 start-page: 243 year: 2001 ident: 10.1016/j.cub.2018.04.076_bib29 article-title: The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes publication-title: Biophys. J. doi: 10.1016/S0006-3495(01)75695-0 – volume: 10 start-page: 186 year: 2009 ident: 10.1016/j.cub.2018.04.076_bib6 article-title: Concentration of GPI-anchored proteins upon ER exit in yeast publication-title: Traffic doi: 10.1111/j.1600-0854.2008.00857.x – volume: 395 start-page: 801 year: 2014 ident: 10.1016/j.cub.2018.04.076_bib31 article-title: Insights from reconstitution reactions of COPII vesicle formation using pure components and low mechanical perturbation publication-title: Biol. Chem. doi: 10.1515/hsz-2014-0117 – volume: 3 start-page: a004648 year: 2011 ident: 10.1016/j.cub.2018.04.076_bib27 article-title: Curvature-driven lipid sorting in biomembranes publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a004648 – volume: 93 start-page: 263 year: 1998 ident: 10.1016/j.cub.2018.04.076_bib19 article-title: COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes publication-title: Cell doi: 10.1016/S0092-8674(00)81577-9 – volume: 144 start-page: 146 year: 2006 ident: 10.1016/j.cub.2018.04.076_bib16 article-title: Elastic curvature constants of lipid monolayers and bilayers publication-title: Chem. Phys. Lipids doi: 10.1016/j.chemphyslip.2006.08.004 – volume: 99 start-page: 1539 year: 2010 ident: 10.1016/j.cub.2018.04.076_bib5 article-title: The vesicle trafficking protein Sar1 lowers lipid membrane rigidity publication-title: Biophys. J. doi: 10.1016/j.bpj.2010.06.059 – volume: 21 start-page: 1530 year: 2010 ident: 10.1016/j.cub.2018.04.076_bib7 article-title: Requirements for transitional endoplasmic reticulum site structure and function in Saccharomyces cerevisiae publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e09-07-0605 – volume: 6 start-page: 6249 year: 2015 ident: 10.1016/j.cub.2018.04.076_bib15 article-title: A balance between membrane elasticity and polymerization energy sets the shape of spherical clathrin coats publication-title: Nat. Commun. doi: 10.1038/ncomms7249 – reference: 29920265 - Curr Biol. 2018 Jun 18;28(12):R706-R709 |
SSID | ssj0012896 |
Score | 2.4527504 |
Snippet | Coat protein complex II (COPII) proteins form vesicles from the endoplasmic reticulum to export cargo molecules to the Golgi apparatus. Among the many proteins... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1950 |
SubjectTerms | budding assays COP-Coated Vesicles - metabolism COPII lysolipids Lysophospholipids - genetics Lysophospholipids - metabolism membrane curvature membrane rigidity Microsomes - metabolism phospholipase Saccharomyces cerevisiae - metabolism vesicular transport |
Title | Lysophospholipids Facilitate COPII Vesicle Formation |
URI | https://dx.doi.org/10.1016/j.cub.2018.04.076 https://www.ncbi.nlm.nih.gov/pubmed/29887313 https://www.proquest.com/docview/2053275388 https://pubmed.ncbi.nlm.nih.gov/PMC6013297 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La-MwEB5KlsJelj72kb5woacFE9mSLfmYDRv6oi3dbTc3Icky6yU4oUkO-fc7ku3QtCWHHnywNQIxI49mmE_fAJwZpqkwhQ5JWrCQKcxZhU7zkFAubJIWPCk82uImPX9gl6NktAWD9i6Mg1U2vr_26d5bN196jTZ707Ls_fJkaXi-4aYkLu5GP0yZ8Jf4Rj9WlQRMKHy9EoVDJ91WNj3Gyyy0Q3cJz3bqaEfePptex54vIZTPzqThDnxqgsmgX693F7ZstQfbdXvJ5T6w66VrUjCZ4TMup2U-C4bK1LTcNhjc3l1cBI925uYGw_YS42d4GP78PTgPmy4JoUkiPsfwGFMGqpWJMEkuXIbBlY650EWs0yzRMXEd0kVCtCImJ0VkuEosmic1OjaK0i_QqSaV_QZBxE2cWcFsVuSMmVwbJYwRERcZt3Gku0Ba_UjTUIi7ThZj2WLF_klUqXQqlYRJVGkXvq-mTGv-jE3CrFW6XNsEEv37pmmnrYEk_hyu4qEqO1nMUCihMSZkQnTha22w1SriDP0rjWgX-JopVwKOeHt9pCr_egLu1BWoMn7wvuUewkf35vBmkTiCzvxpYY8xspnrE_jQv7r_c3Xit_B_3mj4fg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED_xIQQvaGx8FNjIpD0hRXUSJ3YeoVrVboVNGqC-WbbjiCCUVrR94L_nLh8VHRMPe8hLfJasO_t8p_v5dwDfLDeRtLnxWZJzn2vMWaVJMp9FQro4yUWcV2iL62Rwy3-M4_Ea9Nq3MASrbHx_7dMrb9386Tba7E6LovunIkvD-w03JaO4ex02MRoQ1L9hOL5clhIwo6gKlijtk3hb2qxAXnZhCN4lK7pT4h359-X0Nvj8G0P56lLqf4DdJpr0LuoF78GaKz_CVt1f8vkT8NEzdSmYzPB7LKZFNvP62ta83M7r_fo9HHp3bkZzvX77inEfbvvfb3oDv2mT4Ns4EHOMjzFniIy2AWbJOaUYQptQSJOHJkljEzJqkS5jZjSzGcsDK3Ts0D6JNaHVUXQAG-WkdEfgBcKGqZPcpXnGuc2M1dJaGQiZChcGpgOs1Y-yDYc4tbJ4VC1Y7EGhShWpVDGuUKUdOF9OmdYEGu8J81bpamUXKHTw70372hpI4emgkocu3WQxQ6E4CjEjk7IDh7XBlqsIU3SwURB1QKyYcilAzNurI2VxXzFwJ1ShSsXx_y33DLYHN1cjNRpe_zyBHRoh8FkgT2Fj_rRwnzHMmZsv1TZ-AYvJ-fo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lysophospholipids+Facilitate+COPII+Vesicle+Formation&rft.jtitle=Current+biology&rft.au=Melero%2C+Alejandro&rft.au=Chiaruttini%2C+Nicolas&rft.au=Karashima%2C+Takefumi&rft.au=Riezman%2C+Isabelle&rft.date=2018-06-18&rft.issn=1879-0445&rft.eissn=1879-0445&rft.volume=28&rft.issue=12&rft.spage=1950&rft_id=info:doi/10.1016%2Fj.cub.2018.04.076&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-9822&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-9822&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-9822&client=summon |