Bandgap control in two-dimensional semiconductors via coherent doping of plasmonic hot electrons
Bandgap control is of central importance for semiconductor technologies. The traditional means of control is to dope the lattice chemically, electrically or optically with charge carriers. Here, we demonstrate a widely tunable bandgap (renormalisation up to 550 meV at room-temperature) in two-dimens...
Saved in:
Published in | Nature communications Vol. 12; no. 1; pp. 4332 - 8 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
15.07.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-021-24667-8 |
Cover
Abstract | Bandgap control is of central importance for semiconductor technologies. The traditional means of control is to dope the lattice chemically, electrically or optically with charge carriers. Here, we demonstrate a widely tunable bandgap (renormalisation up to 550 meV at room-temperature) in two-dimensional (2D) semiconductors by coherently doping the lattice with plasmonic hot electrons. In particular, we integrate tungsten-disulfide (WS
2
) monolayers into a self-assembled plasmonic crystal, which enables coherent coupling between semiconductor excitons and plasmon resonances. Accompanying this process, the plasmon-induced hot electrons can repeatedly fill the WS
2
conduction band, leading to population inversion and a significant reconstruction in band structures and exciton relaxations. Our findings provide an effective measure to engineer optical responses of 2D semiconductors, allowing flexibilities in design and optimisation of photonic and optoelectronic devices.
The established means of bandgap control in semiconductors are based on chemical, electrical or optical doping. Here, the authors report wide bandgap modulations in monolayer WS2 at room temperature by coupling the 2D semiconductor to a self-assembled plasmonic crystal inducing coherent hot electron doping. |
---|---|
AbstractList | Bandgap control is of central importance for semiconductor technologies. The traditional means of control is to dope the lattice chemically, electrically or optically with charge carriers. Here, we demonstrate a widely tunable bandgap (renormalisation up to 550 meV at room-temperature) in two-dimensional (2D) semiconductors by coherently doping the lattice with plasmonic hot electrons. In particular, we integrate tungsten-disulfide (WS
2
) monolayers into a self-assembled plasmonic crystal, which enables coherent coupling between semiconductor excitons and plasmon resonances. Accompanying this process, the plasmon-induced hot electrons can repeatedly fill the WS
2
conduction band, leading to population inversion and a significant reconstruction in band structures and exciton relaxations. Our findings provide an effective measure to engineer optical responses of 2D semiconductors, allowing flexibilities in design and optimisation of photonic and optoelectronic devices. Bandgap control is of central importance for semiconductor technologies. The traditional means of control is to dope the lattice chemically, electrically or optically with charge carriers. Here, we demonstrate a widely tunable bandgap (renormalisation up to 550 meV at room-temperature) in two-dimensional (2D) semiconductors by coherently doping the lattice with plasmonic hot electrons. In particular, we integrate tungsten-disulfide (WS2) monolayers into a self-assembled plasmonic crystal, which enables coherent coupling between semiconductor excitons and plasmon resonances. Accompanying this process, the plasmon-induced hot electrons can repeatedly fill the WS2 conduction band, leading to population inversion and a significant reconstruction in band structures and exciton relaxations. Our findings provide an effective measure to engineer optical responses of 2D semiconductors, allowing flexibilities in design and optimisation of photonic and optoelectronic devices.Bandgap control is of central importance for semiconductor technologies. The traditional means of control is to dope the lattice chemically, electrically or optically with charge carriers. Here, we demonstrate a widely tunable bandgap (renormalisation up to 550 meV at room-temperature) in two-dimensional (2D) semiconductors by coherently doping the lattice with plasmonic hot electrons. In particular, we integrate tungsten-disulfide (WS2) monolayers into a self-assembled plasmonic crystal, which enables coherent coupling between semiconductor excitons and plasmon resonances. Accompanying this process, the plasmon-induced hot electrons can repeatedly fill the WS2 conduction band, leading to population inversion and a significant reconstruction in band structures and exciton relaxations. Our findings provide an effective measure to engineer optical responses of 2D semiconductors, allowing flexibilities in design and optimisation of photonic and optoelectronic devices. Bandgap control is of central importance for semiconductor technologies. The traditional means of control is to dope the lattice chemically, electrically or optically with charge carriers. Here, we demonstrate a widely tunable bandgap (renormalisation up to 550 meV at room-temperature) in two-dimensional (2D) semiconductors by coherently doping the lattice with plasmonic hot electrons. In particular, we integrate tungsten-disulfide (WS 2 ) monolayers into a self-assembled plasmonic crystal, which enables coherent coupling between semiconductor excitons and plasmon resonances. Accompanying this process, the plasmon-induced hot electrons can repeatedly fill the WS 2 conduction band, leading to population inversion and a significant reconstruction in band structures and exciton relaxations. Our findings provide an effective measure to engineer optical responses of 2D semiconductors, allowing flexibilities in design and optimisation of photonic and optoelectronic devices. The established means of bandgap control in semiconductors are based on chemical, electrical or optical doping. Here, the authors report wide bandgap modulations in monolayer WS2 at room temperature by coupling the 2D semiconductor to a self-assembled plasmonic crystal inducing coherent hot electron doping. The established means of bandgap control in semiconductors are based on chemical, electrical or optical doping. Here, the authors report wide bandgap modulations in monolayer WS2 at room temperature by coupling the 2D semiconductor to a self-assembled plasmonic crystal inducing coherent hot electron doping. Bandgap control is of central importance for semiconductor technologies. The traditional means of control is to dope the lattice chemically, electrically or optically with charge carriers. Here, we demonstrate a widely tunable bandgap (renormalisation up to 550 meV at room-temperature) in two-dimensional (2D) semiconductors by coherently doping the lattice with plasmonic hot electrons. In particular, we integrate tungsten-disulfide (WS2) monolayers into a self-assembled plasmonic crystal, which enables coherent coupling between semiconductor excitons and plasmon resonances. Accompanying this process, the plasmon-induced hot electrons can repeatedly fill the WS2 conduction band, leading to population inversion and a significant reconstruction in band structures and exciton relaxations. Our findings provide an effective measure to engineer optical responses of 2D semiconductors, allowing flexibilities in design and optimisation of photonic and optoelectronic devices.The established means of bandgap control in semiconductors are based on chemical, electrical or optical doping. Here, the authors report wide bandgap modulations in monolayer WS2 at room temperature by coupling the 2D semiconductor to a self-assembled plasmonic crystal inducing coherent hot electron doping. |
ArticleNumber | 4332 |
Author | Liu, Fengjiang Hodgkiss, Justin M. Qiu, Min Blaikie, Richard J. Ding, Boyang Chen, Yu-Hui Zhang, Yanfeng Chen, Kai Zhang, Zhepeng Tamming, Ronnie R. |
Author_xml | – sequence: 1 givenname: Yu-Hui surname: Chen fullname: Chen, Yu-Hui organization: Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology – sequence: 2 givenname: Ronnie R. surname: Tamming fullname: Tamming, Ronnie R. organization: Dodd-Walls Centre for Photonic and Quantum Technologies, MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington – sequence: 3 givenname: Kai surname: Chen fullname: Chen, Kai organization: Dodd-Walls Centre for Photonic and Quantum Technologies, MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington – sequence: 4 givenname: Zhepeng surname: Zhang fullname: Zhang, Zhepeng organization: Department of Materials Science and Engineering, College of Engineering, Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Peking University – sequence: 5 givenname: Fengjiang orcidid: 0000-0002-0161-2290 surname: Liu fullname: Liu, Fengjiang organization: Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Institute of Advanced Technology, Westlake Institute for Advanced Study – sequence: 6 givenname: Yanfeng orcidid: 0000-0003-1319-3270 surname: Zhang fullname: Zhang, Yanfeng organization: Department of Materials Science and Engineering, College of Engineering, Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Peking University – sequence: 7 givenname: Justin M. surname: Hodgkiss fullname: Hodgkiss, Justin M. organization: Dodd-Walls Centre for Photonic and Quantum Technologies, MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington – sequence: 8 givenname: Richard J. orcidid: 0000-0002-6991-835X surname: Blaikie fullname: Blaikie, Richard J. organization: Dodd-Walls Centre for Photonic and Quantum Technologies, MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, University of Otago – sequence: 9 givenname: Boyang orcidid: 0000-0002-6299-5010 surname: Ding fullname: Ding, Boyang email: boyang.ding@otago.ac.nz organization: Dodd-Walls Centre for Photonic and Quantum Technologies, MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, University of Otago – sequence: 10 givenname: Min orcidid: 0000-0002-4613-5125 surname: Qiu fullname: Qiu, Min email: qiu_lab@westlake.edu.cn organization: Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Institute of Advanced Technology, Westlake Institute for Advanced Study |
BookMark | eNp9kk1vFSEUhiemxtbaP-BqEjduRvkaYDYm2vjRpIkbXSMXzszlhoERmBr_vfROjbaLsuGE874P58B53pyEGKBpXmL0BiMq32aGGRcdIrgjjNdIPmnOCGK4w4LQk__i0-Yi5wOqiw5YMvasOaWMcEGwPGt-fNDBTnppTQwlRd-60JZfsbNuhpBdDNq3GWZX03Y1Jabc3jhd1XtIEEpr4-LC1MaxXbzOcwzOtPtYWvBgKi_kF83TUfsMF3f7efP908dvl1-666-fry7fX3emx6J0QjArd7KnVGNpkWVCI8LJQDg1wnDLAQEDjdEABjjDI7OYUiIk5lIKy-h5c7VxbdQHtSQ36_RbRe3U8SCmSelUnPGg6l0DpVjCQHtG6DBQxBCIfgcw9ozqynq3sZZ1N4M1tdGk_T3o_UxwezXFGyWJrAX3FfD6DpDizxVyUbPLBrzXAeKaFel7MkiOCK3SVw-kh7im-uxHFRbDICmqKrmpTIo5JxiVcUUXd_tp2nmFkbqdCrVNhapToY5ToWS1kgfWv308aqKbKVdxmCD9q-oR1x-Vmcnx |
CitedBy_id | crossref_primary_10_1021_acs_chemrev_2c00078 crossref_primary_10_1002_ange_202414073 crossref_primary_10_1021_acsphotonics_2c00394 crossref_primary_10_1021_acs_jpcc_4c00516 crossref_primary_10_1063_5_0156783 crossref_primary_10_1039_D4NR04356A crossref_primary_10_1063_5_0134993 crossref_primary_10_3390_nano12030416 crossref_primary_10_3390_nano12111929 crossref_primary_10_1002_ldr_4949 crossref_primary_10_1103_PhysRevMaterials_7_054002 crossref_primary_10_3390_met13040792 crossref_primary_10_3390_chemosensors10030120 crossref_primary_10_1063_5_0088233 crossref_primary_10_1038_s41377_022_00754_3 crossref_primary_10_1002_anie_202414073 crossref_primary_10_1021_acs_jpcc_3c06393 crossref_primary_10_1080_23746149_2022_2065218 crossref_primary_10_1007_s11467_022_1190_1 crossref_primary_10_1039_D3QI00472D crossref_primary_10_1002_pssr_202400128 crossref_primary_10_1007_s11426_022_1521_1 crossref_primary_10_1007_s12274_024_6635_0 crossref_primary_10_1002_smll_202305009 crossref_primary_10_1007_s10971_023_06072_3 crossref_primary_10_1007_s11433_024_2376_9 |
Cites_doi | 10.1039/C8NR07812B 10.1038/nnano.2014.311 10.1021/nl903868w 10.1021/acs.nanolett.7b01034 10.1038/nnano.2013.100 10.1038/35570 10.1063/1.5017069 10.1039/C4CS00258J 10.1038/nphoton.2015.197 10.1002/adom.201600594 10.1103/PhysRevB.98.035434 10.1021/nn405981k 10.1038/s41467-017-01298-6 10.1088/2053-1583/aaa4ca 10.1021/acsphotonics.6b00618 10.1038/nmat3700 10.1126/science.aaa6486 10.1021/acs.nanolett.7b00858 10.1038/nature06762 10.1038/nature13734 10.1038/nphoton.2013.238 10.1038/nphoton.2015.282 10.1021/acs.nanolett.6b03513 10.1021/ja305603t 10.1103/PhysRevLett.115.126802 10.1021/nn304028b 10.1021/acsnano.7b06885 10.1126/sciadv.aaw2347 10.1038/nphys227 10.1021/nn400517w 10.1021/acs.nanolett.8b03729 10.1103/PhysRevLett.105.136805 10.1039/C6NR02516A 10.1038/nphoton.2012.340 10.1038/nphoton.2015.205 10.1038/nphoton.2015.104 10.1021/nl3035114 10.1038/nphys3143 10.1039/C5EE01713K 10.1186/s43074-020-00022-w 10.1186/s43074-020-0003-4 10.1038/nnano.2015.165 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021. The Author(s). |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-021-24667-8 |
DatabaseName | Springer Nature OA Free Journals (ODIN) CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_77493318e935423993040e75beef543a PMC8282635 10_1038_s41467_021_24667_8 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c517t-774d8b8533a18d0d47a02629263c7c6d6e0e4ea109ece641f4d13327816887d43 |
IEDL.DBID | 8FG |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:27:27 EDT 2025 Thu Aug 21 18:14:40 EDT 2025 Fri Sep 05 07:07:47 EDT 2025 Wed Aug 13 09:16:30 EDT 2025 Thu Apr 24 23:08:10 EDT 2025 Tue Jul 01 04:17:31 EDT 2025 Fri Feb 21 02:39:06 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-774d8b8533a18d0d47a02629263c7c6d6e0e4ea109ece641f4d13327816887d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6991-835X 0000-0002-6299-5010 0000-0002-4613-5125 0000-0002-0161-2290 0000-0003-1319-3270 |
OpenAccessLink | https://www.proquest.com/docview/2551799830?pq-origsite=%requestingapplication% |
PMID | 34267218 |
PQID | 2551799830 |
PQPubID | 546298 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_77493318e935423993040e75beef543a pubmedcentral_primary_oai_pubmedcentral_nih_gov_8282635 proquest_miscellaneous_2552986023 proquest_journals_2551799830 crossref_citationtrail_10_1038_s41467_021_24667_8 crossref_primary_10_1038_s41467_021_24667_8 springer_journals_10_1038_s41467_021_24667_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210715 |
PublicationDateYYYYMMDD | 2021-07-15 |
PublicationDate_xml | – month: 7 year: 2021 text: 20210715 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Park (CR28) 2018; 5 Chernikov (CR8) 2015; 115 Ding (CR15) 2019; 13 Byrnes, Kim, Yamamoto (CR40) 2014; 10 Meckbach, Stroucken, Koch (CR25) 2018; 112 Voiry (CR6) 2013; 12 Harutyunyan (CR35) 2015; 10 Kong, Wang, Govorov (CR31) 2017; 5 Chernikov, Ruppert, Hill, Rigosi, Heinz (CR9) 2015; 9 Sie (CR17) 2017; 17 Chen (CR37) 2017; 17 Zheng, Lu, Liu, Liu, Robertson (CR36) 2019; 11 Mak, Shan (CR4) 2016; 10 Cushing (CR32) 2012; 134 Ji, Zheng, Zhang, Liu (CR43) 2015; 44 Qiu (CR38) 2019; 5 Lopez-Sanchez, Lembke, Kayci, Radenovic, Kis (CR5) 2013; 8 Fang (CR33) 2012; 6 Jia, Zheng, Huang (CR41) 2020; 1 García De Arquer, Mihi, Kufer, Konstantatos (CR30) 2013; 7 Clavero (CR12) 2014; 8 Brongersma, Halas, Nordlander (CR13) 2015; 10 Peyghambarian, Koch, Mysyrowicz (CR27) 1993 Gallaher (CR44) 2015; 8 Ceballos, Cui, Bellus, Zhao (CR29) 2016; 8 Splendiani (CR2) 2010; 10 Ye (CR16) 2014; 513 Lohof (CR39) 2019; 19 Ebbesen, Lezec, Ghaemi, Thio, Wolf (CR10) 1998; 391 Ye (CR3) 2015; 9 Ruppert, Chernikov, Hill, Rigosi, Heinz (CR18) 2017; 17 Wang (CR22) 2014; 8 Darby, Auguié, Meyer, Pantoja, Ru (CR23) 2016; 10 Baier (CR42) 2020; 1 Erben (CR26) 2018; 98 Vasa (CR34) 2013; 7 Kim (CR7) 2015; 349 Cunningham, Hanbicki, McCreary, Jonker (CR19) 2017; 11 Steinhoff (CR20) 2017; 8 Boulesbaa (CR24) 2016; 3 Mak, Lee, Hone, Shan, Heinz (CR1) 2010; 105 Ding, Hrelescu, Arnold, Isic, Klar (CR14) 2013; 13 Liu, Lalanne (CR11) 2008; 452 Khitrova, Gibbs, Kira, Koch, Scherer (CR21) 2006; 2 W Wang (24667_CR22) 2014; 8 Q Ji (24667_CR43) 2015; 44 G Khitrova (24667_CR21) 2006; 2 P Vasa (24667_CR34) 2013; 7 C Clavero (24667_CR12) 2014; 8 F Ceballos (24667_CR29) 2016; 8 T Byrnes (24667_CR40) 2014; 10 A Boulesbaa (24667_CR24) 2016; 3 O Lopez-Sanchez (24667_CR5) 2013; 8 C Ruppert (24667_CR18) 2017; 17 FP García De Arquer (24667_CR30) 2013; 7 H Liu (24667_CR11) 2008; 452 L Meckbach (24667_CR25) 2018; 112 Y Ye (24667_CR3) 2015; 9 B Ding (24667_CR15) 2019; 13 A Steinhoff (24667_CR20) 2017; 8 JK Gallaher (24667_CR44) 2015; 8 Z Fang (24667_CR33) 2012; 6 X Chen (24667_CR37) 2017; 17 F Lohof (24667_CR39) 2019; 19 EJ Sie (24667_CR17) 2017; 17 SK Cushing (24667_CR32) 2012; 134 S Zheng (24667_CR36) 2019; 11 D Voiry (24667_CR6) 2013; 12 Z Ye (24667_CR16) 2014; 513 L Jia (24667_CR41) 2020; 1 J Kim (24667_CR7) 2015; 349 B Ding (24667_CR14) 2013; 13 PD Cunningham (24667_CR19) 2017; 11 ML Brongersma (24667_CR13) 2015; 10 Z Qiu (24667_CR38) 2019; 5 KF Mak (24667_CR1) 2010; 105 A Chernikov (24667_CR8) 2015; 115 XT Kong (24667_CR31) 2017; 5 M Baier (24667_CR42) 2020; 1 KF Mak (24667_CR4) 2016; 10 D Erben (24667_CR26) 2018; 98 A Chernikov (24667_CR9) 2015; 9 S Park (24667_CR28) 2018; 5 H Harutyunyan (24667_CR35) 2015; 10 N Peyghambarian (24667_CR27) 1993 BL Darby (24667_CR23) 2016; 10 A Splendiani (24667_CR2) 2010; 10 TW Ebbesen (24667_CR10) 1998; 391 |
References_xml | – volume: 11 start-page: 4811 year: 2019 end-page: 4821 ident: CR36 article-title: Insertion of an ultrathin Al2O3 interfacial layer for Schottky barrier height reduction in WS field-effect transistors publication-title: Nanoscale doi: 10.1039/C8NR07812B – volume: 10 start-page: 25 year: 2015 end-page: 34 ident: CR13 article-title: Plasmon-induced hot carrier science and technology publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.311 – volume: 10 start-page: 1271 year: 2010 end-page: 1275 ident: CR2 article-title: Emerging photoluminescence in monolayer MoS2 publication-title: Nano Lett. doi: 10.1021/nl903868w – volume: 17 start-page: 4210 year: 2017 end-page: 4216 ident: CR17 article-title: Observation of exciton redshif-blueshift crossover in monolayer WS2 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b01034 – volume: 8 start-page: 497 year: 2013 end-page: 501 ident: CR5 article-title: Ultrasensitive photodetectors based on monolayer MoS 2 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.100 – volume: 391 start-page: 667 year: 1998 end-page: 669 ident: CR10 article-title: Extraordinary optical transmission through sub-wavelength hole arrays publication-title: Nature doi: 10.1038/35570 – volume: 112 start-page: 061104 year: 2018 ident: CR25 article-title: Giant excitation induced bandgap renormalization in TMDC monolayers publication-title: Appl. Phys. Lett. doi: 10.1063/1.5017069 – volume: 44 start-page: 2587 year: 2015 end-page: 2602 ident: CR43 article-title: Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: engineered substrates from amorphous to single crystalline publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00258J – volume: 9 start-page: 733 year: 2015 end-page: 737 ident: CR3 article-title: Monolayer excitonic laser publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.197 – volume: 5 start-page: 1600594 year: 2017 ident: CR31 article-title: Plasmonic nanostars with hot spots for efficient generation of hot electrons under solar illumination publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201600594 – volume: 98 start-page: 035434 year: 2018 ident: CR26 article-title: Excitation-induced transition to indirect band gaps in atomically thin transition-metal dichalcogenide semiconductors publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.035434 – volume: 8 start-page: 1056 year: 2014 end-page: 1064 ident: CR22 article-title: Interplay between strong coupling and radiative damping of excitons and surface plasmon polaritons in hybrid nanostructures publication-title: ACS Nano doi: 10.1021/nn405981k – volume: 8 year: 2017 ident: CR20 article-title: Exciton fission in monolayer transition metal dichalcogenide semiconductors publication-title: Nat. Commun. doi: 10.1038/s41467-017-01298-6 – volume: 5 start-page: 025003 year: 2018 ident: CR28 article-title: Direct determination of monolayer MoS2 and WSe exciton binding energies on insulating and metallic substrates publication-title: 2D Mater. doi: 10.1088/2053-1583/aaa4ca – volume: 3 start-page: 2389 year: 2016 end-page: 2395 ident: CR24 article-title: Ultrafast dynamics of metal plasmons induced by 2D semiconductor excitons in hybrid nanostructure arrays publication-title: ACS Photonics doi: 10.1021/acsphotonics.6b00618 – volume: 12 start-page: 850 year: 2013 end-page: 855 ident: CR6 article-title: Enhanced catalytic activity in strained chemically exfoliated WS2nanosheets for hydrogen evolution publication-title: Nat. Mater. doi: 10.1038/nmat3700 – volume: 349 start-page: 723 year: 2015 end-page: 726 ident: CR7 article-title: Observation of yunable band gap and anisotropic dirac semimetal state in black phosphorus publication-title: Science doi: 10.1126/science.aaa6486 – volume: 17 start-page: 3246 year: 2017 end-page: 3251 ident: CR37 article-title: Mode modification of plasmonic gap resonances induced by strong coupling with molecular excitons publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00858 – volume: 452 start-page: 728 year: 2008 end-page: 731 ident: CR11 article-title: Microscopic theory of the extraordinary optical transmission publication-title: Nature doi: 10.1038/nature06762 – volume: 513 start-page: 214 year: 2014 end-page: 218 ident: CR16 article-title: Probing excitonic dark states in single-layer tungsten disulphide publication-title: Nature doi: 10.1038/nature13734 – volume: 8 start-page: 95 year: 2014 end-page: 103 ident: CR12 article-title: Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.238 – volume: 10 start-page: 216 year: 2016 end-page: 226 ident: CR4 article-title: Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.282 – volume: 17 start-page: 644 year: 2017 end-page: 651 ident: CR18 article-title: The role of electronic and phononic excitation in the optical response of monolayer WS after ultrafast excitation publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03513 – year: 1993 ident: CR27 publication-title: Introduction to Semiconductor Optics – volume: 134 start-page: 15033 year: 2012 end-page: 15041 ident: CR32 article-title: Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor publication-title: J. Am. Chem. Soc. doi: 10.1021/ja305603t – volume: 115 start-page: 126802 year: 2015 ident: CR8 article-title: Electrical tuning of exciton binding energies in monolayer WS2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.126802 – volume: 6 start-page: 10222 year: 2012 end-page: 10228 ident: CR33 article-title: Plasmon-induced doping of graphene publication-title: ACS Nano doi: 10.1021/nn304028b – volume: 11 start-page: 12601 year: 2017 end-page: 12608 ident: CR19 article-title: Photoinduced bandgap renormalization and exciton binding energy reduction in WS2 publication-title: ACS Nano doi: 10.1021/acsnano.7b06885 – volume: 5 start-page: eaaw2347 year: 2019 ident: CR38 article-title: Giant gate-tunable bandgap renormalization and excitonic effects in a 2D semiconductor publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw2347 – volume: 2 start-page: 81 year: 2006 end-page: 90 ident: CR21 article-title: Vacuum Rabi splitting in semiconductors publication-title: Nat. Phys. doi: 10.1038/nphys227 – volume: 13 start-page: 1333 year: 2019 end-page: 1341 ident: CR15 article-title: Tunable valley polarized plasmon-exciton polaritons in two-dimensional semiconductors publication-title: ACS Nano – volume: 7 start-page: 3581 year: 2013 end-page: 3588 ident: CR30 article-title: Photoelectric energy conversion of plasmon-generated hot carriers in metal-insulator-semiconductor structures publication-title: ACS Nano doi: 10.1021/nn400517w – volume: 19 start-page: 210 year: 2019 end-page: 217 ident: CR39 article-title: Prospects and limitations of transition metal dichalcogenide laser gain materials publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b03729 – volume: 105 start-page: 136805 year: 2010 ident: CR1 article-title: Atomically thin MoS2: a new direct-gap semiconductor publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.136805 – volume: 8 start-page: 11681 year: 2016 end-page: 11688 ident: CR29 article-title: Exciton formation in monolayer transition metal dichalcogenides publication-title: Nanoscale doi: 10.1039/C6NR02516A – volume: 7 start-page: 128 year: 2013 end-page: 132 ident: CR34 article-title: Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates publication-title: Nat. Photon. doi: 10.1038/nphoton.2012.340 – volume: 10 start-page: 40 year: 2016 end-page: 45 ident: CR23 article-title: Modified optical absorption of molecules on metallic nanoparticles at sub-monolayer coverage publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.205 – volume: 9 start-page: 466 year: 2015 end-page: 470 ident: CR9 article-title: Population inversion and giant bandgap renormalization in atomically thin WS layers publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.104 – volume: 13 start-page: 378 year: 2013 end-page: 386 ident: CR14 article-title: Spectral and directional reshaping of fluorescence in large area self-assembled plasmonic-photonic crystals publication-title: Nano Lett. doi: 10.1021/nl3035114 – volume: 10 start-page: 803 year: 2014 end-page: 813 ident: CR40 article-title: Exciton-polariton condensates publication-title: Nat. Phys. doi: 10.1038/nphys3143 – volume: 8 start-page: 2713 year: 2015 end-page: 2724 ident: CR44 article-title: Spectroscopically tracking charge separation in polymer : fullerene blends with a three-phase morphology publication-title: Energy Environ. Sci. doi: 10.1039/C5EE01713K – volume: 1 start-page: 22 year: 2020 ident: CR41 article-title: Vacuum-ultraviolet photodetectors publication-title: PhotoniX doi: 10.1186/s43074-020-00022-w – volume: 1 start-page: 4 year: 2020 ident: CR42 article-title: Integrated transmitter devices on InP exploiting electro-absorption modulation publication-title: PhotoniX doi: 10.1186/s43074-020-0003-4 – volume: 10 start-page: 770 year: 2015 end-page: 774 ident: CR35 article-title: Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.165 – volume: 44 start-page: 2587 year: 2015 ident: 24667_CR43 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00258J – volume: 8 start-page: 95 year: 2014 ident: 24667_CR12 publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.238 – volume: 8 year: 2017 ident: 24667_CR20 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01298-6 – volume: 10 start-page: 803 year: 2014 ident: 24667_CR40 publication-title: Nat. Phys. doi: 10.1038/nphys3143 – volume: 115 start-page: 126802 year: 2015 ident: 24667_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.126802 – volume: 98 start-page: 035434 year: 2018 ident: 24667_CR26 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.035434 – volume: 5 start-page: eaaw2347 year: 2019 ident: 24667_CR38 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw2347 – volume: 13 start-page: 1333 year: 2019 ident: 24667_CR15 publication-title: ACS Nano – volume: 134 start-page: 15033 year: 2012 ident: 24667_CR32 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja305603t – volume: 13 start-page: 378 year: 2013 ident: 24667_CR14 publication-title: Nano Lett. doi: 10.1021/nl3035114 – volume: 513 start-page: 214 year: 2014 ident: 24667_CR16 publication-title: Nature doi: 10.1038/nature13734 – volume: 349 start-page: 723 year: 2015 ident: 24667_CR7 publication-title: Science doi: 10.1126/science.aaa6486 – volume: 2 start-page: 81 year: 2006 ident: 24667_CR21 publication-title: Nat. Phys. doi: 10.1038/nphys227 – volume: 5 start-page: 025003 year: 2018 ident: 24667_CR28 publication-title: 2D Mater. doi: 10.1088/2053-1583/aaa4ca – volume: 17 start-page: 3246 year: 2017 ident: 24667_CR37 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00858 – volume: 8 start-page: 1056 year: 2014 ident: 24667_CR22 publication-title: ACS Nano doi: 10.1021/nn405981k – volume: 10 start-page: 40 year: 2016 ident: 24667_CR23 publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.205 – volume: 7 start-page: 128 year: 2013 ident: 24667_CR34 publication-title: Nat. Photon. doi: 10.1038/nphoton.2012.340 – volume: 9 start-page: 733 year: 2015 ident: 24667_CR3 publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.197 – volume: 452 start-page: 728 year: 2008 ident: 24667_CR11 publication-title: Nature doi: 10.1038/nature06762 – volume: 7 start-page: 3581 year: 2013 ident: 24667_CR30 publication-title: ACS Nano doi: 10.1021/nn400517w – volume: 105 start-page: 136805 year: 2010 ident: 24667_CR1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.136805 – volume: 8 start-page: 497 year: 2013 ident: 24667_CR5 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.100 – volume: 11 start-page: 12601 year: 2017 ident: 24667_CR19 publication-title: ACS Nano doi: 10.1021/acsnano.7b06885 – volume: 8 start-page: 2713 year: 2015 ident: 24667_CR44 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE01713K – volume: 12 start-page: 850 year: 2013 ident: 24667_CR6 publication-title: Nat. Mater. doi: 10.1038/nmat3700 – volume: 11 start-page: 4811 year: 2019 ident: 24667_CR36 publication-title: Nanoscale doi: 10.1039/C8NR07812B – volume: 17 start-page: 4210 year: 2017 ident: 24667_CR17 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b01034 – volume: 10 start-page: 216 year: 2016 ident: 24667_CR4 publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.282 – volume: 5 start-page: 1600594 year: 2017 ident: 24667_CR31 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201600594 – volume: 10 start-page: 770 year: 2015 ident: 24667_CR35 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.165 – volume: 1 start-page: 4 year: 2020 ident: 24667_CR42 publication-title: PhotoniX doi: 10.1186/s43074-020-0003-4 – volume: 10 start-page: 25 year: 2015 ident: 24667_CR13 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.311 – volume: 1 start-page: 22 year: 2020 ident: 24667_CR41 publication-title: PhotoniX doi: 10.1186/s43074-020-00022-w – volume-title: Introduction to Semiconductor Optics year: 1993 ident: 24667_CR27 – volume: 3 start-page: 2389 year: 2016 ident: 24667_CR24 publication-title: ACS Photonics doi: 10.1021/acsphotonics.6b00618 – volume: 10 start-page: 1271 year: 2010 ident: 24667_CR2 publication-title: Nano Lett. doi: 10.1021/nl903868w – volume: 391 start-page: 667 year: 1998 ident: 24667_CR10 publication-title: Nature doi: 10.1038/35570 – volume: 9 start-page: 466 year: 2015 ident: 24667_CR9 publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.104 – volume: 19 start-page: 210 year: 2019 ident: 24667_CR39 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b03729 – volume: 17 start-page: 644 year: 2017 ident: 24667_CR18 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03513 – volume: 112 start-page: 061104 year: 2018 ident: 24667_CR25 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5017069 – volume: 8 start-page: 11681 year: 2016 ident: 24667_CR29 publication-title: Nanoscale doi: 10.1039/C6NR02516A – volume: 6 start-page: 10222 year: 2012 ident: 24667_CR33 publication-title: ACS Nano doi: 10.1021/nn304028b |
SSID | ssj0000391844 |
Score | 2.5000398 |
Snippet | Bandgap control is of central importance for semiconductor technologies. The traditional means of control is to dope the lattice chemically, electrically or... The established means of bandgap control in semiconductors are based on chemical, electrical or optical doping. Here, the authors report wide bandgap... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4332 |
SubjectTerms | 639/301/357/1018 639/624/400/1021 639/624/400/2797 Coherence Conduction bands Coupling Current carriers Design optimization Doping Energy gap Excitons Hot electrons Humanities and Social Sciences Monolayers multidisciplinary Optoelectronic devices Plasmonics Population inversion Room temperature Science Science (multidisciplinary) Self-assembly Semiconductors Tungsten Tungsten disulfide |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS-UwEA4iCF7EVRerrkTwpsW0-dH0qIsigp4UvGXTJt33YLd92Krsf-9M2ve0wurFSyltSpvpJPN9ZPINIYdF4QFH2yqWJRwg4tkYwlAWl3mR-ATYm1C4G_n6Rl3eiat7ef-m1BfmhPXywL3hTgCeAOdOtM-5RLG6HPg385ksvK-k4AEasZy9IVNhDuY5UBcx7JJhXJ-0IswJmJGQCgVnehSJgmD_CGW-z5F8t1Aa4s_FOlkbgCM97T_4G1ny9QZZ6UtJ_tskv85s7X7bGR1yz-m0pt1zEztU7--VN2iLifBNjQqvzUNLn6YWWk9wv19HXdg4RZuKzgBP_0XBXDppOjovk9NukbuL89ufl_FQPSEuZZJ1AJuF0wVEY24T7ZgTmQW-leap4mVWKqc888LbhOW-9EoklXDAV9MMC3HozAn-nSzXTe23CXUKZqFKWVswKyDUWeuBeEkHWCJ1leQRSeaWNOUgLY4VLv6YsMTNtemtb8D6Jljf6IgcLZ6Z9cIaH7Y-wx-0aImi2OECuIoZXMV85ioR2Zv_XjOM1NYApUJRPM1ZRA4Wt2GM4cKJrX3zGNqkORbrgp5mI7cYfdD4Tj2dBLVuoLQo-BOR47kDvb78_x3e-YoO75LVFB0edUDlHlnuHh79D8BQXbEfhssLkMEV0w priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9UwFD7MieDLUKfYOSWCb7PaNj_aPohswzGE-eSFvcW0SXcvbO3dbTfdf-85aXtHx7aXUpqEJic5OecjOd8B-FQUDv1oU4WyxAdaPBOiGUrDMi9iFyN6E4qikU9-qeOZ-HkqTzdgTHc0CLC9F9pRPqnZ6vzLv8ub76jw3_qQ8exrK7y602WDRCh8y57AU7RMisDYyeDu-52Z5whoxBA7c3_TiX3yNP4T3_Puzck7x6feKh29gK3BnWT7_fy_hA1Xv4JnfYLJm234c2Bqe2aWbLiRzhY16_42oSVO_56Pg7V0Pb6pife1WbXsemGw9pyiADtmfTgVayq2RC_7gmh02bzp2Jg8p30Ns6Mfvw-PwyGnQljKOO3QmRY2K9BGcxNnNrIiNYjCkjxRvExLZZWLnHAmjnJXOiXiSlhEsUlK6Tmy1Ar-BjbrpnZvgVmFe1OljCkiI9AAGuMQjkmLHkZiK8kDiEdJ6nIgHKe8F-faH3zzTPfS1yh97aWvswD21m2WPd3Go7UPaILWNYkq239oVmd60DyNI8457lwu55LYDnOO-5ZLZeFcJQU3AeyO06vH5acRaBFVXsajAD6ui1Hz6DjF1K658nWSnFJ44UjTybKYdGhaUi_mnsMbgS7RAAXweVxAtz9_eMA7j_f1HTxPaCkT76fchc1udeXeo8_UFR-8IvwHxq4SOw priority: 102 providerName: Scholars Portal – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OPQRfxE-snkcE37TYJmmaPu6Jx7FwvujBvcW0SW8XtF22PcX_3pm0XenhCfdSSjOlyWSSmWlmfgPwtiw92tG2jrMKL6jxbIxqKI-rokx9it6bVJSNfP5ZnV3I1WV2eQB8yoUJQfsB0jJs01N02IdOhiVNAQVcKrzT9-BQo_rjCzhcLldfVvs_K4R5rqUcM2QSof_x8kwLBbD-mYV5Mz7yxiFp0D2nj-DhaDSy5dDNx3Dgmydwfygj-fspfDuxjbuyWzbGnbNNw_pfbewIuX9A3WAdBcG3DaG7truO_dxYpF5Trl_PXEiaYm3NtmhL_yCwXLZuezaVyOmewcXpp68fz-KxckJcZWneo8ksnS5REwubapc4mVv0tXjBlajySjnlEy-9TZPCV17JtJYOfVWeUxEOnTspnsOiaRv_AphTuAPVytoysRLVnLUena7MoR3BXZ2JCNKJk6YaYcWpusV3E463hTYD9w1y3wTuGx3Bu_072wFU47_UJzRBe0oCxA4P2t2VGQXE4IgLgfuTL0RGmIaFwN3J51npfZ1JYSM4mqbXjKu0M-hOESCeFkkEb_bNuL7o0MQ2vr0ONLygQl040nwmFrMOzVuazTogdaM7S2A_EbyfBOjvx28f8Mu7kb-CB5xEm9A-syNY9Ltr_xotpb48HpfGHxWkDiw priority: 102 providerName: Springer Nature |
Title | Bandgap control in two-dimensional semiconductors via coherent doping of plasmonic hot electrons |
URI | https://link.springer.com/article/10.1038/s41467-021-24667-8 https://www.proquest.com/docview/2551799830 https://www.proquest.com/docview/2552986023 https://pubmed.ncbi.nlm.nih.gov/PMC8282635 https://doaj.org/article/77493318e935423993040e75beef543a |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdry2AvY5_MWxc02NtmaluyLD-NJDQrgZaxrZA3TbbkJtDZWexu7L_fnSynuLC-yMaSsXU63Yd0-h0h74vCgh2tqzAtoQCNp0NQQ1lY5kVsY_DeuMDTyOcX4uySL1fpyi-4tT6scpCJTlCbpsQ18hMwfRG8TLLo0_ZXiFmjcHfVp9A4IEcxaBrkc7n4vF9jQfRzybk_KxMxedJyJxkwLiHhAu7kSB852P6RrXk3UvLOdqnTQosn5LE3H-m0H--n5IGtn5GHfULJv8_Jj5muzZXeUh-BTjc17f40oUEM_x5_g7YYDt_UiPPa7Fr6e6Oh9RpP_XXUuONTtKnoFqzqnwibS9dNR4dkOe0Lcrk4_T4_C30OhbAEenVgPHMjC9DJTMfSRIZnGryuJE8EK7NSGGEjy62Oo9yWVvC44ga81iTDdBwyM5y9JId1U9tXhBoBsqgSWheR5qDwtLbgfqUGLIrEVCkLSDxQUpUeYBzzXFwrt9HNpOqpr4D6ylFfyYB82L-z7eE17m09wwHat0RobPeg2V0pP9MU9DhnIKlszlJEN8wZyCmbpYW1VcqZDsjxMLzKz9dW3XJXQN7tq2Gm4faJrm1z49okOabsgp5mI7YY_dC4pt6sHWY3OLYI-xOQjwMD3X78_x1-ff-_viGPEmRlxPlMj8lht7uxb8FG6ooJOchW2cRNhwk5mk6X35ZwnZ1efPkKT-diPnGrD1Cec_kPEjgVvg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFMNLWAkOEHUJHbi5IAQBaotfZxaaW-uEzvdlSDZblKq_il-IzNOslUq0Vsvq9XGm8Tjedoz3wC8z3OLfrQu_bjAD7R42kczJP0iy0MbYvQmEqpGPjxKJifi5zSersHfoRaG0ioHnegUtakL2iPfRteXwMtSHnxZnPvUNYpOV4cWGh1b7NurSwzZms9733F9P0TR7o_jbxO_7yrgF3iHFt1JYdIcrRTXYWoCI6TGOCTKooQXskhMYgMrrA6DzBY2EWEpDMZxkaQGFak0guN978F9QTvjKD9yKld7OoS2ngrR1-YEPN1uhNNElAcRiQS_pSP759oEjHzbm5mZN45nndXbfQKPe3eVfe346yms2eoZPOgaWF49h9MdXZkzvWB9xjubV6y9rH1DPQM6vA_WUPp9XRGubL1s2J-5xtEzqjJsmXHlWqwu2QK9-N8E08tmdcuG5jzNCzi5E-q-hPWqruwGMJOg7isTrfNACzSwWlsM92KDHkxkyph7EA6UVEUPaE59NX4pd7DOU9VRXyH1laO-Sj34uPrPooPzuHX0Di3QaiRBcbsf6uWZ6iVb4YwzjprRZjwmNMWMo160Ms6tLWPBtQdbw_KqXj806pqbPXi3uoySTcc1urL1hRsTZdQiDGcqR2wxeqHxlWo-cxjhGEgTzJAHnwYGun74_yf86vZ3fQsPJ8eHB-pg72h_Ex5FxNaEMRpvwXq7vLCv0T9r8zdOKBic3rUU_gMWr0na |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxFOkFDASnCDaJHbi5IAQpaxaChUHKu3NdWKnuxIk201K1b_Gr2PGSbZKJXrrZRVtnIfH84xnvgF4k-cW_Whd-nGBP2jxtI9mSPpFloc2xOhNJFSN_P0w2TsSX2fxbAP-DrUwlFY56ESnqE1d0DfyCbq-BF6W8mBS9mkRP3anH5enPnWQop3WoZ1GxyIH9uIcw7fmw_4urvXbKJp--fl5z-87DPgF3q1F11KYNEeLxXWYmsAIqTEmibIo4YUsEpPYwAqrwyCzhU1EWAqDMV0kqVlFKo3geN9bcFty9KpQluRMrr_vEPJ6KkRfpxPwdNIIp5UoJyISCR6lI1voWgaM_NyrWZpXtmqdBZw-gPu968o-dbz2EDZs9QjudM0sLx7D8Y6uzIlesj77nS0q1p7XvqH-AR32B2soFb-uCGO2XjXsz0Lj6DlVHLbMuNItVpdsiR79b4LsZfO6ZUOjnuYJHN0IdZ_CZlVX9hkwk6AeLBOt80ALNLZaWwz9YoPeTGTKmHsQDpRURQ9uTj02fim3yc5T1VFfIfWVo75KPXi3vmbZQXtcO3qHFmg9kmC53R_16kT1Uq5wxhlHLWkzHhOyYsZRR1oZ59aWseDag-1heVWvKxp1ydkevF6fRimnrRtd2frMjYkyaheGM5Ujthi90PhMtZg7vHAMqglyyIP3AwNdPvz_E966_l1fwV2UP_Vt__DgOdyLiKsJbjTehs12dWZfoKvW5i-dTDA4vmkh_Ae8UE4Z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bandgap+control+in+two-dimensional+semiconductors+via+coherent+doping+of+plasmonic+hot+electrons&rft.jtitle=Nature+communications&rft.au=Yu-Hui%2C+Chen&rft.au=Tamming+Ronnie+R&rft.au=Chen%2C+Kai&rft.au=Zhang+Zhepeng&rft.date=2021-07-15&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-021-24667-8&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |