Bandgap control in two-dimensional semiconductors via coherent doping of plasmonic hot electrons

Bandgap control is of central importance for semiconductor technologies. The traditional means of control is to dope the lattice chemically, electrically or optically with charge carriers. Here, we demonstrate a widely tunable bandgap (renormalisation up to 550 meV at room-temperature) in two-dimens...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; pp. 4332 - 8
Main Authors Chen, Yu-Hui, Tamming, Ronnie R., Chen, Kai, Zhang, Zhepeng, Liu, Fengjiang, Zhang, Yanfeng, Hodgkiss, Justin M., Blaikie, Richard J., Ding, Boyang, Qiu, Min
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 15.07.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-021-24667-8

Cover

Abstract Bandgap control is of central importance for semiconductor technologies. The traditional means of control is to dope the lattice chemically, electrically or optically with charge carriers. Here, we demonstrate a widely tunable bandgap (renormalisation up to 550 meV at room-temperature) in two-dimensional (2D) semiconductors by coherently doping the lattice with plasmonic hot electrons. In particular, we integrate tungsten-disulfide (WS 2 ) monolayers into a self-assembled plasmonic crystal, which enables coherent coupling between semiconductor excitons and plasmon resonances. Accompanying this process, the plasmon-induced hot electrons can repeatedly fill the WS 2 conduction band, leading to population inversion and a significant reconstruction in band structures and exciton relaxations. Our findings provide an effective measure to engineer optical responses of 2D semiconductors, allowing flexibilities in design and optimisation of photonic and optoelectronic devices. The established means of bandgap control in semiconductors are based on chemical, electrical or optical doping. Here, the authors report wide bandgap modulations in monolayer WS2 at room temperature by coupling the 2D semiconductor to a self-assembled plasmonic crystal inducing coherent hot electron doping.
AbstractList Bandgap control is of central importance for semiconductor technologies. The traditional means of control is to dope the lattice chemically, electrically or optically with charge carriers. Here, we demonstrate a widely tunable bandgap (renormalisation up to 550 meV at room-temperature) in two-dimensional (2D) semiconductors by coherently doping the lattice with plasmonic hot electrons. In particular, we integrate tungsten-disulfide (WS 2 ) monolayers into a self-assembled plasmonic crystal, which enables coherent coupling between semiconductor excitons and plasmon resonances. Accompanying this process, the plasmon-induced hot electrons can repeatedly fill the WS 2 conduction band, leading to population inversion and a significant reconstruction in band structures and exciton relaxations. Our findings provide an effective measure to engineer optical responses of 2D semiconductors, allowing flexibilities in design and optimisation of photonic and optoelectronic devices.
Bandgap control is of central importance for semiconductor technologies. The traditional means of control is to dope the lattice chemically, electrically or optically with charge carriers. Here, we demonstrate a widely tunable bandgap (renormalisation up to 550 meV at room-temperature) in two-dimensional (2D) semiconductors by coherently doping the lattice with plasmonic hot electrons. In particular, we integrate tungsten-disulfide (WS2) monolayers into a self-assembled plasmonic crystal, which enables coherent coupling between semiconductor excitons and plasmon resonances. Accompanying this process, the plasmon-induced hot electrons can repeatedly fill the WS2 conduction band, leading to population inversion and a significant reconstruction in band structures and exciton relaxations. Our findings provide an effective measure to engineer optical responses of 2D semiconductors, allowing flexibilities in design and optimisation of photonic and optoelectronic devices.Bandgap control is of central importance for semiconductor technologies. The traditional means of control is to dope the lattice chemically, electrically or optically with charge carriers. Here, we demonstrate a widely tunable bandgap (renormalisation up to 550 meV at room-temperature) in two-dimensional (2D) semiconductors by coherently doping the lattice with plasmonic hot electrons. In particular, we integrate tungsten-disulfide (WS2) monolayers into a self-assembled plasmonic crystal, which enables coherent coupling between semiconductor excitons and plasmon resonances. Accompanying this process, the plasmon-induced hot electrons can repeatedly fill the WS2 conduction band, leading to population inversion and a significant reconstruction in band structures and exciton relaxations. Our findings provide an effective measure to engineer optical responses of 2D semiconductors, allowing flexibilities in design and optimisation of photonic and optoelectronic devices.
Bandgap control is of central importance for semiconductor technologies. The traditional means of control is to dope the lattice chemically, electrically or optically with charge carriers. Here, we demonstrate a widely tunable bandgap (renormalisation up to 550 meV at room-temperature) in two-dimensional (2D) semiconductors by coherently doping the lattice with plasmonic hot electrons. In particular, we integrate tungsten-disulfide (WS 2 ) monolayers into a self-assembled plasmonic crystal, which enables coherent coupling between semiconductor excitons and plasmon resonances. Accompanying this process, the plasmon-induced hot electrons can repeatedly fill the WS 2 conduction band, leading to population inversion and a significant reconstruction in band structures and exciton relaxations. Our findings provide an effective measure to engineer optical responses of 2D semiconductors, allowing flexibilities in design and optimisation of photonic and optoelectronic devices. The established means of bandgap control in semiconductors are based on chemical, electrical or optical doping. Here, the authors report wide bandgap modulations in monolayer WS2 at room temperature by coupling the 2D semiconductor to a self-assembled plasmonic crystal inducing coherent hot electron doping.
The established means of bandgap control in semiconductors are based on chemical, electrical or optical doping. Here, the authors report wide bandgap modulations in monolayer WS2 at room temperature by coupling the 2D semiconductor to a self-assembled plasmonic crystal inducing coherent hot electron doping.
Bandgap control is of central importance for semiconductor technologies. The traditional means of control is to dope the lattice chemically, electrically or optically with charge carriers. Here, we demonstrate a widely tunable bandgap (renormalisation up to 550 meV at room-temperature) in two-dimensional (2D) semiconductors by coherently doping the lattice with plasmonic hot electrons. In particular, we integrate tungsten-disulfide (WS2) monolayers into a self-assembled plasmonic crystal, which enables coherent coupling between semiconductor excitons and plasmon resonances. Accompanying this process, the plasmon-induced hot electrons can repeatedly fill the WS2 conduction band, leading to population inversion and a significant reconstruction in band structures and exciton relaxations. Our findings provide an effective measure to engineer optical responses of 2D semiconductors, allowing flexibilities in design and optimisation of photonic and optoelectronic devices.The established means of bandgap control in semiconductors are based on chemical, electrical or optical doping. Here, the authors report wide bandgap modulations in monolayer WS2 at room temperature by coupling the 2D semiconductor to a self-assembled plasmonic crystal inducing coherent hot electron doping.
ArticleNumber 4332
Author Liu, Fengjiang
Hodgkiss, Justin M.
Qiu, Min
Blaikie, Richard J.
Ding, Boyang
Chen, Yu-Hui
Zhang, Yanfeng
Chen, Kai
Zhang, Zhepeng
Tamming, Ronnie R.
Author_xml – sequence: 1
  givenname: Yu-Hui
  surname: Chen
  fullname: Chen, Yu-Hui
  organization: Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology
– sequence: 2
  givenname: Ronnie R.
  surname: Tamming
  fullname: Tamming, Ronnie R.
  organization: Dodd-Walls Centre for Photonic and Quantum Technologies, MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington
– sequence: 3
  givenname: Kai
  surname: Chen
  fullname: Chen, Kai
  organization: Dodd-Walls Centre for Photonic and Quantum Technologies, MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington
– sequence: 4
  givenname: Zhepeng
  surname: Zhang
  fullname: Zhang, Zhepeng
  organization: Department of Materials Science and Engineering, College of Engineering, Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Peking University
– sequence: 5
  givenname: Fengjiang
  orcidid: 0000-0002-0161-2290
  surname: Liu
  fullname: Liu, Fengjiang
  organization: Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Institute of Advanced Technology, Westlake Institute for Advanced Study
– sequence: 6
  givenname: Yanfeng
  orcidid: 0000-0003-1319-3270
  surname: Zhang
  fullname: Zhang, Yanfeng
  organization: Department of Materials Science and Engineering, College of Engineering, Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Peking University
– sequence: 7
  givenname: Justin M.
  surname: Hodgkiss
  fullname: Hodgkiss, Justin M.
  organization: Dodd-Walls Centre for Photonic and Quantum Technologies, MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington
– sequence: 8
  givenname: Richard J.
  orcidid: 0000-0002-6991-835X
  surname: Blaikie
  fullname: Blaikie, Richard J.
  organization: Dodd-Walls Centre for Photonic and Quantum Technologies, MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, University of Otago
– sequence: 9
  givenname: Boyang
  orcidid: 0000-0002-6299-5010
  surname: Ding
  fullname: Ding, Boyang
  email: boyang.ding@otago.ac.nz
  organization: Dodd-Walls Centre for Photonic and Quantum Technologies, MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, University of Otago
– sequence: 10
  givenname: Min
  orcidid: 0000-0002-4613-5125
  surname: Qiu
  fullname: Qiu, Min
  email: qiu_lab@westlake.edu.cn
  organization: Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Institute of Advanced Technology, Westlake Institute for Advanced Study
BookMark eNp9kk1vFSEUhiemxtbaP-BqEjduRvkaYDYm2vjRpIkbXSMXzszlhoERmBr_vfROjbaLsuGE874P58B53pyEGKBpXmL0BiMq32aGGRcdIrgjjNdIPmnOCGK4w4LQk__i0-Yi5wOqiw5YMvasOaWMcEGwPGt-fNDBTnppTQwlRd-60JZfsbNuhpBdDNq3GWZX03Y1Jabc3jhd1XtIEEpr4-LC1MaxXbzOcwzOtPtYWvBgKi_kF83TUfsMF3f7efP908dvl1-666-fry7fX3emx6J0QjArd7KnVGNpkWVCI8LJQDg1wnDLAQEDjdEABjjDI7OYUiIk5lIKy-h5c7VxbdQHtSQ36_RbRe3U8SCmSelUnPGg6l0DpVjCQHtG6DBQxBCIfgcw9ozqynq3sZZ1N4M1tdGk_T3o_UxwezXFGyWJrAX3FfD6DpDizxVyUbPLBrzXAeKaFel7MkiOCK3SVw-kh7im-uxHFRbDICmqKrmpTIo5JxiVcUUXd_tp2nmFkbqdCrVNhapToY5ToWS1kgfWv308aqKbKVdxmCD9q-oR1x-Vmcnx
CitedBy_id crossref_primary_10_1021_acs_chemrev_2c00078
crossref_primary_10_1002_ange_202414073
crossref_primary_10_1021_acsphotonics_2c00394
crossref_primary_10_1021_acs_jpcc_4c00516
crossref_primary_10_1063_5_0156783
crossref_primary_10_1039_D4NR04356A
crossref_primary_10_1063_5_0134993
crossref_primary_10_3390_nano12030416
crossref_primary_10_3390_nano12111929
crossref_primary_10_1002_ldr_4949
crossref_primary_10_1103_PhysRevMaterials_7_054002
crossref_primary_10_3390_met13040792
crossref_primary_10_3390_chemosensors10030120
crossref_primary_10_1063_5_0088233
crossref_primary_10_1038_s41377_022_00754_3
crossref_primary_10_1002_anie_202414073
crossref_primary_10_1021_acs_jpcc_3c06393
crossref_primary_10_1080_23746149_2022_2065218
crossref_primary_10_1007_s11467_022_1190_1
crossref_primary_10_1039_D3QI00472D
crossref_primary_10_1002_pssr_202400128
crossref_primary_10_1007_s11426_022_1521_1
crossref_primary_10_1007_s12274_024_6635_0
crossref_primary_10_1002_smll_202305009
crossref_primary_10_1007_s10971_023_06072_3
crossref_primary_10_1007_s11433_024_2376_9
Cites_doi 10.1039/C8NR07812B
10.1038/nnano.2014.311
10.1021/nl903868w
10.1021/acs.nanolett.7b01034
10.1038/nnano.2013.100
10.1038/35570
10.1063/1.5017069
10.1039/C4CS00258J
10.1038/nphoton.2015.197
10.1002/adom.201600594
10.1103/PhysRevB.98.035434
10.1021/nn405981k
10.1038/s41467-017-01298-6
10.1088/2053-1583/aaa4ca
10.1021/acsphotonics.6b00618
10.1038/nmat3700
10.1126/science.aaa6486
10.1021/acs.nanolett.7b00858
10.1038/nature06762
10.1038/nature13734
10.1038/nphoton.2013.238
10.1038/nphoton.2015.282
10.1021/acs.nanolett.6b03513
10.1021/ja305603t
10.1103/PhysRevLett.115.126802
10.1021/nn304028b
10.1021/acsnano.7b06885
10.1126/sciadv.aaw2347
10.1038/nphys227
10.1021/nn400517w
10.1021/acs.nanolett.8b03729
10.1103/PhysRevLett.105.136805
10.1039/C6NR02516A
10.1038/nphoton.2012.340
10.1038/nphoton.2015.205
10.1038/nphoton.2015.104
10.1021/nl3035114
10.1038/nphys3143
10.1039/C5EE01713K
10.1186/s43074-020-00022-w
10.1186/s43074-020-0003-4
10.1038/nnano.2015.165
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021. The Author(s).
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-021-24667-8
DatabaseName Springer Nature OA Free Journals (ODIN)
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic



Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 8
ExternalDocumentID oai_doaj_org_article_77493318e935423993040e75beef543a
PMC8282635
10_1038_s41467_021_24667_8
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c517t-774d8b8533a18d0d47a02629263c7c6d6e0e4ea109ece641f4d13327816887d43
IEDL.DBID 8FG
ISSN 2041-1723
IngestDate Wed Aug 27 01:27:27 EDT 2025
Thu Aug 21 18:14:40 EDT 2025
Fri Sep 05 07:07:47 EDT 2025
Wed Aug 13 09:16:30 EDT 2025
Thu Apr 24 23:08:10 EDT 2025
Tue Jul 01 04:17:31 EDT 2025
Fri Feb 21 02:39:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-774d8b8533a18d0d47a02629263c7c6d6e0e4ea109ece641f4d13327816887d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6991-835X
0000-0002-6299-5010
0000-0002-4613-5125
0000-0002-0161-2290
0000-0003-1319-3270
OpenAccessLink https://www.proquest.com/docview/2551799830?pq-origsite=%requestingapplication%
PMID 34267218
PQID 2551799830
PQPubID 546298
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_77493318e935423993040e75beef543a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8282635
proquest_miscellaneous_2552986023
proquest_journals_2551799830
crossref_citationtrail_10_1038_s41467_021_24667_8
crossref_primary_10_1038_s41467_021_24667_8
springer_journals_10_1038_s41467_021_24667_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210715
PublicationDateYYYYMMDD 2021-07-15
PublicationDate_xml – month: 7
  year: 2021
  text: 20210715
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Park (CR28) 2018; 5
Chernikov (CR8) 2015; 115
Ding (CR15) 2019; 13
Byrnes, Kim, Yamamoto (CR40) 2014; 10
Meckbach, Stroucken, Koch (CR25) 2018; 112
Voiry (CR6) 2013; 12
Harutyunyan (CR35) 2015; 10
Kong, Wang, Govorov (CR31) 2017; 5
Chernikov, Ruppert, Hill, Rigosi, Heinz (CR9) 2015; 9
Sie (CR17) 2017; 17
Chen (CR37) 2017; 17
Zheng, Lu, Liu, Liu, Robertson (CR36) 2019; 11
Mak, Shan (CR4) 2016; 10
Cushing (CR32) 2012; 134
Ji, Zheng, Zhang, Liu (CR43) 2015; 44
Qiu (CR38) 2019; 5
Lopez-Sanchez, Lembke, Kayci, Radenovic, Kis (CR5) 2013; 8
Fang (CR33) 2012; 6
Jia, Zheng, Huang (CR41) 2020; 1
García De Arquer, Mihi, Kufer, Konstantatos (CR30) 2013; 7
Clavero (CR12) 2014; 8
Brongersma, Halas, Nordlander (CR13) 2015; 10
Peyghambarian, Koch, Mysyrowicz (CR27) 1993
Gallaher (CR44) 2015; 8
Ceballos, Cui, Bellus, Zhao (CR29) 2016; 8
Splendiani (CR2) 2010; 10
Ye (CR16) 2014; 513
Lohof (CR39) 2019; 19
Ebbesen, Lezec, Ghaemi, Thio, Wolf (CR10) 1998; 391
Ye (CR3) 2015; 9
Ruppert, Chernikov, Hill, Rigosi, Heinz (CR18) 2017; 17
Wang (CR22) 2014; 8
Darby, Auguié, Meyer, Pantoja, Ru (CR23) 2016; 10
Baier (CR42) 2020; 1
Erben (CR26) 2018; 98
Vasa (CR34) 2013; 7
Kim (CR7) 2015; 349
Cunningham, Hanbicki, McCreary, Jonker (CR19) 2017; 11
Steinhoff (CR20) 2017; 8
Boulesbaa (CR24) 2016; 3
Mak, Lee, Hone, Shan, Heinz (CR1) 2010; 105
Ding, Hrelescu, Arnold, Isic, Klar (CR14) 2013; 13
Liu, Lalanne (CR11) 2008; 452
Khitrova, Gibbs, Kira, Koch, Scherer (CR21) 2006; 2
W Wang (24667_CR22) 2014; 8
Q Ji (24667_CR43) 2015; 44
G Khitrova (24667_CR21) 2006; 2
P Vasa (24667_CR34) 2013; 7
C Clavero (24667_CR12) 2014; 8
F Ceballos (24667_CR29) 2016; 8
T Byrnes (24667_CR40) 2014; 10
A Boulesbaa (24667_CR24) 2016; 3
O Lopez-Sanchez (24667_CR5) 2013; 8
C Ruppert (24667_CR18) 2017; 17
FP García De Arquer (24667_CR30) 2013; 7
H Liu (24667_CR11) 2008; 452
L Meckbach (24667_CR25) 2018; 112
Y Ye (24667_CR3) 2015; 9
B Ding (24667_CR15) 2019; 13
A Steinhoff (24667_CR20) 2017; 8
JK Gallaher (24667_CR44) 2015; 8
Z Fang (24667_CR33) 2012; 6
X Chen (24667_CR37) 2017; 17
F Lohof (24667_CR39) 2019; 19
EJ Sie (24667_CR17) 2017; 17
SK Cushing (24667_CR32) 2012; 134
S Zheng (24667_CR36) 2019; 11
D Voiry (24667_CR6) 2013; 12
Z Ye (24667_CR16) 2014; 513
L Jia (24667_CR41) 2020; 1
J Kim (24667_CR7) 2015; 349
B Ding (24667_CR14) 2013; 13
PD Cunningham (24667_CR19) 2017; 11
ML Brongersma (24667_CR13) 2015; 10
Z Qiu (24667_CR38) 2019; 5
KF Mak (24667_CR1) 2010; 105
A Chernikov (24667_CR8) 2015; 115
XT Kong (24667_CR31) 2017; 5
M Baier (24667_CR42) 2020; 1
KF Mak (24667_CR4) 2016; 10
D Erben (24667_CR26) 2018; 98
A Chernikov (24667_CR9) 2015; 9
S Park (24667_CR28) 2018; 5
H Harutyunyan (24667_CR35) 2015; 10
N Peyghambarian (24667_CR27) 1993
BL Darby (24667_CR23) 2016; 10
A Splendiani (24667_CR2) 2010; 10
TW Ebbesen (24667_CR10) 1998; 391
References_xml – volume: 11
  start-page: 4811
  year: 2019
  end-page: 4821
  ident: CR36
  article-title: Insertion of an ultrathin Al2O3 interfacial layer for Schottky barrier height reduction in WS field-effect transistors
  publication-title: Nanoscale
  doi: 10.1039/C8NR07812B
– volume: 10
  start-page: 25
  year: 2015
  end-page: 34
  ident: CR13
  article-title: Plasmon-induced hot carrier science and technology
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.311
– volume: 10
  start-page: 1271
  year: 2010
  end-page: 1275
  ident: CR2
  article-title: Emerging photoluminescence in monolayer MoS2
  publication-title: Nano Lett.
  doi: 10.1021/nl903868w
– volume: 17
  start-page: 4210
  year: 2017
  end-page: 4216
  ident: CR17
  article-title: Observation of exciton redshif-blueshift crossover in monolayer WS2
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b01034
– volume: 8
  start-page: 497
  year: 2013
  end-page: 501
  ident: CR5
  article-title: Ultrasensitive photodetectors based on monolayer MoS 2
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.100
– volume: 391
  start-page: 667
  year: 1998
  end-page: 669
  ident: CR10
  article-title: Extraordinary optical transmission through sub-wavelength hole arrays
  publication-title: Nature
  doi: 10.1038/35570
– volume: 112
  start-page: 061104
  year: 2018
  ident: CR25
  article-title: Giant excitation induced bandgap renormalization in TMDC monolayers
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5017069
– volume: 44
  start-page: 2587
  year: 2015
  end-page: 2602
  ident: CR43
  article-title: Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: engineered substrates from amorphous to single crystalline
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00258J
– volume: 9
  start-page: 733
  year: 2015
  end-page: 737
  ident: CR3
  article-title: Monolayer excitonic laser
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2015.197
– volume: 5
  start-page: 1600594
  year: 2017
  ident: CR31
  article-title: Plasmonic nanostars with hot spots for efficient generation of hot electrons under solar illumination
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201600594
– volume: 98
  start-page: 035434
  year: 2018
  ident: CR26
  article-title: Excitation-induced transition to indirect band gaps in atomically thin transition-metal dichalcogenide semiconductors
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.035434
– volume: 8
  start-page: 1056
  year: 2014
  end-page: 1064
  ident: CR22
  article-title: Interplay between strong coupling and radiative damping of excitons and surface plasmon polaritons in hybrid nanostructures
  publication-title: ACS Nano
  doi: 10.1021/nn405981k
– volume: 8
  year: 2017
  ident: CR20
  article-title: Exciton fission in monolayer transition metal dichalcogenide semiconductors
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01298-6
– volume: 5
  start-page: 025003
  year: 2018
  ident: CR28
  article-title: Direct determination of monolayer MoS2 and WSe exciton binding energies on insulating and metallic substrates
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/aaa4ca
– volume: 3
  start-page: 2389
  year: 2016
  end-page: 2395
  ident: CR24
  article-title: Ultrafast dynamics of metal plasmons induced by 2D semiconductor excitons in hybrid nanostructure arrays
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.6b00618
– volume: 12
  start-page: 850
  year: 2013
  end-page: 855
  ident: CR6
  article-title: Enhanced catalytic activity in strained chemically exfoliated WS2nanosheets for hydrogen evolution
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3700
– volume: 349
  start-page: 723
  year: 2015
  end-page: 726
  ident: CR7
  article-title: Observation of yunable band gap and anisotropic dirac semimetal state in black phosphorus
  publication-title: Science
  doi: 10.1126/science.aaa6486
– volume: 17
  start-page: 3246
  year: 2017
  end-page: 3251
  ident: CR37
  article-title: Mode modification of plasmonic gap resonances induced by strong coupling with molecular excitons
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00858
– volume: 452
  start-page: 728
  year: 2008
  end-page: 731
  ident: CR11
  article-title: Microscopic theory of the extraordinary optical transmission
  publication-title: Nature
  doi: 10.1038/nature06762
– volume: 513
  start-page: 214
  year: 2014
  end-page: 218
  ident: CR16
  article-title: Probing excitonic dark states in single-layer tungsten disulphide
  publication-title: Nature
  doi: 10.1038/nature13734
– volume: 8
  start-page: 95
  year: 2014
  end-page: 103
  ident: CR12
  article-title: Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.238
– volume: 10
  start-page: 216
  year: 2016
  end-page: 226
  ident: CR4
  article-title: Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2015.282
– volume: 17
  start-page: 644
  year: 2017
  end-page: 651
  ident: CR18
  article-title: The role of electronic and phononic excitation in the optical response of monolayer WS after ultrafast excitation
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03513
– year: 1993
  ident: CR27
  publication-title: Introduction to Semiconductor Optics
– volume: 134
  start-page: 15033
  year: 2012
  end-page: 15041
  ident: CR32
  article-title: Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja305603t
– volume: 115
  start-page: 126802
  year: 2015
  ident: CR8
  article-title: Electrical tuning of exciton binding energies in monolayer WS2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.126802
– volume: 6
  start-page: 10222
  year: 2012
  end-page: 10228
  ident: CR33
  article-title: Plasmon-induced doping of graphene
  publication-title: ACS Nano
  doi: 10.1021/nn304028b
– volume: 11
  start-page: 12601
  year: 2017
  end-page: 12608
  ident: CR19
  article-title: Photoinduced bandgap renormalization and exciton binding energy reduction in WS2
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b06885
– volume: 5
  start-page: eaaw2347
  year: 2019
  ident: CR38
  article-title: Giant gate-tunable bandgap renormalization and excitonic effects in a 2D semiconductor
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw2347
– volume: 2
  start-page: 81
  year: 2006
  end-page: 90
  ident: CR21
  article-title: Vacuum Rabi splitting in semiconductors
  publication-title: Nat. Phys.
  doi: 10.1038/nphys227
– volume: 13
  start-page: 1333
  year: 2019
  end-page: 1341
  ident: CR15
  article-title: Tunable valley polarized plasmon-exciton polaritons in two-dimensional semiconductors
  publication-title: ACS Nano
– volume: 7
  start-page: 3581
  year: 2013
  end-page: 3588
  ident: CR30
  article-title: Photoelectric energy conversion of plasmon-generated hot carriers in metal-insulator-semiconductor structures
  publication-title: ACS Nano
  doi: 10.1021/nn400517w
– volume: 19
  start-page: 210
  year: 2019
  end-page: 217
  ident: CR39
  article-title: Prospects and limitations of transition metal dichalcogenide laser gain materials
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b03729
– volume: 105
  start-page: 136805
  year: 2010
  ident: CR1
  article-title: Atomically thin MoS2: a new direct-gap semiconductor
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.136805
– volume: 8
  start-page: 11681
  year: 2016
  end-page: 11688
  ident: CR29
  article-title: Exciton formation in monolayer transition metal dichalcogenides
  publication-title: Nanoscale
  doi: 10.1039/C6NR02516A
– volume: 7
  start-page: 128
  year: 2013
  end-page: 132
  ident: CR34
  article-title: Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2012.340
– volume: 10
  start-page: 40
  year: 2016
  end-page: 45
  ident: CR23
  article-title: Modified optical absorption of molecules on metallic nanoparticles at sub-monolayer coverage
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2015.205
– volume: 9
  start-page: 466
  year: 2015
  end-page: 470
  ident: CR9
  article-title: Population inversion and giant bandgap renormalization in atomically thin WS layers
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2015.104
– volume: 13
  start-page: 378
  year: 2013
  end-page: 386
  ident: CR14
  article-title: Spectral and directional reshaping of fluorescence in large area self-assembled plasmonic-photonic crystals
  publication-title: Nano Lett.
  doi: 10.1021/nl3035114
– volume: 10
  start-page: 803
  year: 2014
  end-page: 813
  ident: CR40
  article-title: Exciton-polariton condensates
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3143
– volume: 8
  start-page: 2713
  year: 2015
  end-page: 2724
  ident: CR44
  article-title: Spectroscopically tracking charge separation in polymer : fullerene blends with a three-phase morphology
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE01713K
– volume: 1
  start-page: 22
  year: 2020
  ident: CR41
  article-title: Vacuum-ultraviolet photodetectors
  publication-title: PhotoniX
  doi: 10.1186/s43074-020-00022-w
– volume: 1
  start-page: 4
  year: 2020
  ident: CR42
  article-title: Integrated transmitter devices on InP exploiting electro-absorption modulation
  publication-title: PhotoniX
  doi: 10.1186/s43074-020-0003-4
– volume: 10
  start-page: 770
  year: 2015
  end-page: 774
  ident: CR35
  article-title: Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.165
– volume: 44
  start-page: 2587
  year: 2015
  ident: 24667_CR43
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00258J
– volume: 8
  start-page: 95
  year: 2014
  ident: 24667_CR12
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.238
– volume: 8
  year: 2017
  ident: 24667_CR20
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01298-6
– volume: 10
  start-page: 803
  year: 2014
  ident: 24667_CR40
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3143
– volume: 115
  start-page: 126802
  year: 2015
  ident: 24667_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.126802
– volume: 98
  start-page: 035434
  year: 2018
  ident: 24667_CR26
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.035434
– volume: 5
  start-page: eaaw2347
  year: 2019
  ident: 24667_CR38
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw2347
– volume: 13
  start-page: 1333
  year: 2019
  ident: 24667_CR15
  publication-title: ACS Nano
– volume: 134
  start-page: 15033
  year: 2012
  ident: 24667_CR32
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja305603t
– volume: 13
  start-page: 378
  year: 2013
  ident: 24667_CR14
  publication-title: Nano Lett.
  doi: 10.1021/nl3035114
– volume: 513
  start-page: 214
  year: 2014
  ident: 24667_CR16
  publication-title: Nature
  doi: 10.1038/nature13734
– volume: 349
  start-page: 723
  year: 2015
  ident: 24667_CR7
  publication-title: Science
  doi: 10.1126/science.aaa6486
– volume: 2
  start-page: 81
  year: 2006
  ident: 24667_CR21
  publication-title: Nat. Phys.
  doi: 10.1038/nphys227
– volume: 5
  start-page: 025003
  year: 2018
  ident: 24667_CR28
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/aaa4ca
– volume: 17
  start-page: 3246
  year: 2017
  ident: 24667_CR37
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00858
– volume: 8
  start-page: 1056
  year: 2014
  ident: 24667_CR22
  publication-title: ACS Nano
  doi: 10.1021/nn405981k
– volume: 10
  start-page: 40
  year: 2016
  ident: 24667_CR23
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2015.205
– volume: 7
  start-page: 128
  year: 2013
  ident: 24667_CR34
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2012.340
– volume: 9
  start-page: 733
  year: 2015
  ident: 24667_CR3
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2015.197
– volume: 452
  start-page: 728
  year: 2008
  ident: 24667_CR11
  publication-title: Nature
  doi: 10.1038/nature06762
– volume: 7
  start-page: 3581
  year: 2013
  ident: 24667_CR30
  publication-title: ACS Nano
  doi: 10.1021/nn400517w
– volume: 105
  start-page: 136805
  year: 2010
  ident: 24667_CR1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.136805
– volume: 8
  start-page: 497
  year: 2013
  ident: 24667_CR5
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.100
– volume: 11
  start-page: 12601
  year: 2017
  ident: 24667_CR19
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b06885
– volume: 8
  start-page: 2713
  year: 2015
  ident: 24667_CR44
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE01713K
– volume: 12
  start-page: 850
  year: 2013
  ident: 24667_CR6
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3700
– volume: 11
  start-page: 4811
  year: 2019
  ident: 24667_CR36
  publication-title: Nanoscale
  doi: 10.1039/C8NR07812B
– volume: 17
  start-page: 4210
  year: 2017
  ident: 24667_CR17
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b01034
– volume: 10
  start-page: 216
  year: 2016
  ident: 24667_CR4
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2015.282
– volume: 5
  start-page: 1600594
  year: 2017
  ident: 24667_CR31
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201600594
– volume: 10
  start-page: 770
  year: 2015
  ident: 24667_CR35
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.165
– volume: 1
  start-page: 4
  year: 2020
  ident: 24667_CR42
  publication-title: PhotoniX
  doi: 10.1186/s43074-020-0003-4
– volume: 10
  start-page: 25
  year: 2015
  ident: 24667_CR13
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.311
– volume: 1
  start-page: 22
  year: 2020
  ident: 24667_CR41
  publication-title: PhotoniX
  doi: 10.1186/s43074-020-00022-w
– volume-title: Introduction to Semiconductor Optics
  year: 1993
  ident: 24667_CR27
– volume: 3
  start-page: 2389
  year: 2016
  ident: 24667_CR24
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.6b00618
– volume: 10
  start-page: 1271
  year: 2010
  ident: 24667_CR2
  publication-title: Nano Lett.
  doi: 10.1021/nl903868w
– volume: 391
  start-page: 667
  year: 1998
  ident: 24667_CR10
  publication-title: Nature
  doi: 10.1038/35570
– volume: 9
  start-page: 466
  year: 2015
  ident: 24667_CR9
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2015.104
– volume: 19
  start-page: 210
  year: 2019
  ident: 24667_CR39
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b03729
– volume: 17
  start-page: 644
  year: 2017
  ident: 24667_CR18
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03513
– volume: 112
  start-page: 061104
  year: 2018
  ident: 24667_CR25
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5017069
– volume: 8
  start-page: 11681
  year: 2016
  ident: 24667_CR29
  publication-title: Nanoscale
  doi: 10.1039/C6NR02516A
– volume: 6
  start-page: 10222
  year: 2012
  ident: 24667_CR33
  publication-title: ACS Nano
  doi: 10.1021/nn304028b
SSID ssj0000391844
Score 2.5000398
Snippet Bandgap control is of central importance for semiconductor technologies. The traditional means of control is to dope the lattice chemically, electrically or...
The established means of bandgap control in semiconductors are based on chemical, electrical or optical doping. Here, the authors report wide bandgap...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4332
SubjectTerms 639/301/357/1018
639/624/400/1021
639/624/400/2797
Coherence
Conduction bands
Coupling
Current carriers
Design optimization
Doping
Energy gap
Excitons
Hot electrons
Humanities and Social Sciences
Monolayers
multidisciplinary
Optoelectronic devices
Plasmonics
Population inversion
Room temperature
Science
Science (multidisciplinary)
Self-assembly
Semiconductors
Tungsten
Tungsten disulfide
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS-UwEA4iCF7EVRerrkTwpsW0-dH0qIsigp4UvGXTJt33YLd92Krsf-9M2ve0wurFSyltSpvpJPN9ZPINIYdF4QFH2yqWJRwg4tkYwlAWl3mR-ATYm1C4G_n6Rl3eiat7ef-m1BfmhPXywL3hTgCeAOdOtM-5RLG6HPg385ksvK-k4AEasZy9IVNhDuY5UBcx7JJhXJ-0IswJmJGQCgVnehSJgmD_CGW-z5F8t1Aa4s_FOlkbgCM97T_4G1ny9QZZ6UtJ_tskv85s7X7bGR1yz-m0pt1zEztU7--VN2iLifBNjQqvzUNLn6YWWk9wv19HXdg4RZuKzgBP_0XBXDppOjovk9NukbuL89ufl_FQPSEuZZJ1AJuF0wVEY24T7ZgTmQW-leap4mVWKqc888LbhOW-9EoklXDAV9MMC3HozAn-nSzXTe23CXUKZqFKWVswKyDUWeuBeEkHWCJ1leQRSeaWNOUgLY4VLv6YsMTNtemtb8D6Jljf6IgcLZ6Z9cIaH7Y-wx-0aImi2OECuIoZXMV85ioR2Zv_XjOM1NYApUJRPM1ZRA4Wt2GM4cKJrX3zGNqkORbrgp5mI7cYfdD4Tj2dBLVuoLQo-BOR47kDvb78_x3e-YoO75LVFB0edUDlHlnuHh79D8BQXbEfhssLkMEV0w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9UwFD7MieDLUKfYOSWCb7PaNj_aPohswzGE-eSFvcW0SXcvbO3dbTfdf-85aXtHx7aXUpqEJic5OecjOd8B-FQUDv1oU4WyxAdaPBOiGUrDMi9iFyN6E4qikU9-qeOZ-HkqTzdgTHc0CLC9F9pRPqnZ6vzLv8ub76jw3_qQ8exrK7y602WDRCh8y57AU7RMisDYyeDu-52Z5whoxBA7c3_TiX3yNP4T3_Puzck7x6feKh29gK3BnWT7_fy_hA1Xv4JnfYLJm234c2Bqe2aWbLiRzhY16_42oSVO_56Pg7V0Pb6pife1WbXsemGw9pyiADtmfTgVayq2RC_7gmh02bzp2Jg8p30Ns6Mfvw-PwyGnQljKOO3QmRY2K9BGcxNnNrIiNYjCkjxRvExLZZWLnHAmjnJXOiXiSlhEsUlK6Tmy1Ar-BjbrpnZvgVmFe1OljCkiI9AAGuMQjkmLHkZiK8kDiEdJ6nIgHKe8F-faH3zzTPfS1yh97aWvswD21m2WPd3Go7UPaILWNYkq239oVmd60DyNI8457lwu55LYDnOO-5ZLZeFcJQU3AeyO06vH5acRaBFVXsajAD6ui1Hz6DjF1K658nWSnFJ44UjTybKYdGhaUi_mnsMbgS7RAAXweVxAtz9_eMA7j_f1HTxPaCkT76fchc1udeXeo8_UFR-8IvwHxq4SOw
  priority: 102
  providerName: Scholars Portal
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OPQRfxE-snkcE37TYJmmaPu6Jx7FwvujBvcW0SW8XtF22PcX_3pm0XenhCfdSSjOlyWSSmWlmfgPwtiw92tG2jrMKL6jxbIxqKI-rokx9it6bVJSNfP5ZnV3I1WV2eQB8yoUJQfsB0jJs01N02IdOhiVNAQVcKrzT9-BQo_rjCzhcLldfVvs_K4R5rqUcM2QSof_x8kwLBbD-mYV5Mz7yxiFp0D2nj-DhaDSy5dDNx3Dgmydwfygj-fspfDuxjbuyWzbGnbNNw_pfbewIuX9A3WAdBcG3DaG7truO_dxYpF5Trl_PXEiaYm3NtmhL_yCwXLZuezaVyOmewcXpp68fz-KxckJcZWneo8ksnS5REwubapc4mVv0tXjBlajySjnlEy-9TZPCV17JtJYOfVWeUxEOnTspnsOiaRv_AphTuAPVytoysRLVnLUena7MoR3BXZ2JCNKJk6YaYcWpusV3E463hTYD9w1y3wTuGx3Bu_072wFU47_UJzRBe0oCxA4P2t2VGQXE4IgLgfuTL0RGmIaFwN3J51npfZ1JYSM4mqbXjKu0M-hOESCeFkkEb_bNuL7o0MQ2vr0ONLygQl040nwmFrMOzVuazTogdaM7S2A_EbyfBOjvx28f8Mu7kb-CB5xEm9A-syNY9Ltr_xotpb48HpfGHxWkDiw
  priority: 102
  providerName: Springer Nature
Title Bandgap control in two-dimensional semiconductors via coherent doping of plasmonic hot electrons
URI https://link.springer.com/article/10.1038/s41467-021-24667-8
https://www.proquest.com/docview/2551799830
https://www.proquest.com/docview/2552986023
https://pubmed.ncbi.nlm.nih.gov/PMC8282635
https://doaj.org/article/77493318e935423993040e75beef543a
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdry2AvY5_MWxc02NtmaluyLD-NJDQrgZaxrZA3TbbkJtDZWexu7L_fnSynuLC-yMaSsXU63Yd0-h0h74vCgh2tqzAtoQCNp0NQQ1lY5kVsY_DeuMDTyOcX4uySL1fpyi-4tT6scpCJTlCbpsQ18hMwfRG8TLLo0_ZXiFmjcHfVp9A4IEcxaBrkc7n4vF9jQfRzybk_KxMxedJyJxkwLiHhAu7kSB852P6RrXk3UvLOdqnTQosn5LE3H-m0H--n5IGtn5GHfULJv8_Jj5muzZXeUh-BTjc17f40oUEM_x5_g7YYDt_UiPPa7Fr6e6Oh9RpP_XXUuONTtKnoFqzqnwibS9dNR4dkOe0Lcrk4_T4_C30OhbAEenVgPHMjC9DJTMfSRIZnGryuJE8EK7NSGGEjy62Oo9yWVvC44ga81iTDdBwyM5y9JId1U9tXhBoBsqgSWheR5qDwtLbgfqUGLIrEVCkLSDxQUpUeYBzzXFwrt9HNpOqpr4D6ylFfyYB82L-z7eE17m09wwHat0RobPeg2V0pP9MU9DhnIKlszlJEN8wZyCmbpYW1VcqZDsjxMLzKz9dW3XJXQN7tq2Gm4faJrm1z49okOabsgp5mI7YY_dC4pt6sHWY3OLYI-xOQjwMD3X78_x1-ff-_viGPEmRlxPlMj8lht7uxb8FG6ooJOchW2cRNhwk5mk6X35ZwnZ1efPkKT-diPnGrD1Cec_kPEjgVvg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFMNLWAkOEHUJHbi5IAQBaotfZxaaW-uEzvdlSDZblKq_il-IzNOslUq0Vsvq9XGm8Tjedoz3wC8z3OLfrQu_bjAD7R42kczJP0iy0MbYvQmEqpGPjxKJifi5zSersHfoRaG0ioHnegUtakL2iPfRteXwMtSHnxZnPvUNYpOV4cWGh1b7NurSwzZms9733F9P0TR7o_jbxO_7yrgF3iHFt1JYdIcrRTXYWoCI6TGOCTKooQXskhMYgMrrA6DzBY2EWEpDMZxkaQGFak0guN978F9QTvjKD9yKld7OoS2ngrR1-YEPN1uhNNElAcRiQS_pSP759oEjHzbm5mZN45nndXbfQKPe3eVfe346yms2eoZPOgaWF49h9MdXZkzvWB9xjubV6y9rH1DPQM6vA_WUPp9XRGubL1s2J-5xtEzqjJsmXHlWqwu2QK9-N8E08tmdcuG5jzNCzi5E-q-hPWqruwGMJOg7isTrfNACzSwWlsM92KDHkxkyph7EA6UVEUPaE59NX4pd7DOU9VRXyH1laO-Sj34uPrPooPzuHX0Di3QaiRBcbsf6uWZ6iVb4YwzjprRZjwmNMWMo160Ms6tLWPBtQdbw_KqXj806pqbPXi3uoySTcc1urL1hRsTZdQiDGcqR2wxeqHxlWo-cxjhGEgTzJAHnwYGun74_yf86vZ3fQsPJ8eHB-pg72h_Ex5FxNaEMRpvwXq7vLCv0T9r8zdOKBic3rUU_gMWr0na
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxFOkFDASnCDaJHbi5IAQpaxaChUHKu3NdWKnuxIk201K1b_Gr2PGSbZKJXrrZRVtnIfH84xnvgF4k-cW_Whd-nGBP2jxtI9mSPpFloc2xOhNJFSN_P0w2TsSX2fxbAP-DrUwlFY56ESnqE1d0DfyCbq-BF6W8mBS9mkRP3anH5enPnWQop3WoZ1GxyIH9uIcw7fmw_4urvXbKJp--fl5z-87DPgF3q1F11KYNEeLxXWYmsAIqTEmibIo4YUsEpPYwAqrwyCzhU1EWAqDMV0kqVlFKo3geN9bcFty9KpQluRMrr_vEPJ6KkRfpxPwdNIIp5UoJyISCR6lI1voWgaM_NyrWZpXtmqdBZw-gPu968o-dbz2EDZs9QjudM0sLx7D8Y6uzIlesj77nS0q1p7XvqH-AR32B2soFb-uCGO2XjXsz0Lj6DlVHLbMuNItVpdsiR79b4LsZfO6ZUOjnuYJHN0IdZ_CZlVX9hkwk6AeLBOt80ALNLZaWwz9YoPeTGTKmHsQDpRURQ9uTj02fim3yc5T1VFfIfWVo75KPXi3vmbZQXtcO3qHFmg9kmC53R_16kT1Uq5wxhlHLWkzHhOyYsZRR1oZ59aWseDag-1heVWvKxp1ydkevF6fRimnrRtd2frMjYkyaheGM5Ujthi90PhMtZg7vHAMqglyyIP3AwNdPvz_E966_l1fwV2UP_Vt__DgOdyLiKsJbjTehs12dWZfoKvW5i-dTDA4vmkh_Ae8UE4Z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bandgap+control+in+two-dimensional+semiconductors+via+coherent+doping+of+plasmonic+hot+electrons&rft.jtitle=Nature+communications&rft.au=Yu-Hui%2C+Chen&rft.au=Tamming+Ronnie+R&rft.au=Chen%2C+Kai&rft.au=Zhang+Zhepeng&rft.date=2021-07-15&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-021-24667-8&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon