Vmp1, Vps13D, and Marf/Mfn2 function in a conserved pathway to regulate mitochondria and ER contact in development and disease

Mutations in Vps13D cause defects in autophagy, clearance of mitochondria, and human movement disorders. Here, we discover that Vps13D functions in a pathway downstream of Vmp1 and upstream of Marf/Mfn2. Like vps13d, vmp1 mutant cells exhibit defects in autophagy, mitochondrial size, and clearance....

Full description

Saved in:
Bibliographic Details
Published inCurrent biology Vol. 31; no. 14; pp. 3028 - 3039.e7
Main Authors Shen, James L., Fortier, Tina M., Zhao, Yan G., Wang, Ruoxi, Burmeister, Margit, Baehrecke, Eric H.
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 26.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mutations in Vps13D cause defects in autophagy, clearance of mitochondria, and human movement disorders. Here, we discover that Vps13D functions in a pathway downstream of Vmp1 and upstream of Marf/Mfn2. Like vps13d, vmp1 mutant cells exhibit defects in autophagy, mitochondrial size, and clearance. Through the relationship between vmp1 and vps13d, we reveal a novel role for Vps13D in the regulation of mitochondria and endoplasmic reticulum (ER) contact. Significantly, the function of Vps13D in mitochondria and ER contact is conserved between fly and human cells, including fibroblasts derived from patients suffering from VPS13D mutation-associated neurological symptoms. vps13d mutants have increased levels of Marf/MFN2, a regulator of mitochondrial fusion. Importantly, loss of marf/MFN2 suppresses vps13d mutant phenotypes, including mitochondria and ER contact. These findings indicate that Vps13d functions at a regulatory point between mitochondria and ER contact, mitochondrial fusion and autophagy, and help to explain how Vps13D contributes to disease. [Display omitted] •Vps13D and Vmp1 are linked as regulators of autophagy and mitochondrial morphology•Vps13D, like Vmp1, regulates mitochondria and ER contact sites•Vps13D regulates mitophagy and mitochondrial morphology downstream of Vmp1•Vps13D mitochondria and ER contact phenotypes depend on Marf/MFN2 The clearance of mitochondria by mitophagy is important for cell health. Shen et al. identify Vps13D as functioning in a pathway with Vmp1 and Marf/Mfn2 to regulate mitophagy. Loss of Vps13D in flies and cells derived from patients with movement disorders also impacts mitochondria and ER contact, and these cellular defects depend on Marf/MFN2.
AbstractList Mutations in Vps13D cause defects in autophagy, clearance of mitochondria and human movement disorders. Here we discover that Vps13D functions in a pathway downstream of Vmp1 and upstream of Marf/Mfn2. Like vps13d, vmp1 mutant cells exhibit defects in autophagy, mitochondrial size and clearance. Through the relationship between vmp1 and vps13d , we reveal a novel role for Vps13D in the regulation of mitochondria and endoplasmic reticulum (ER) contact. Significantly, the function of Vps13D in mitochondria and ER contact is conserved between fly and human cells, including fibroblasts derived from patients suffering from VPS13D mutation-associated neurological symptoms. vps13d mutants have increased levels of Marf/MFN2, a regulator of mitochondrial fusion. Importantly, loss of marf/MFN2 suppresses vps13d mutant phenotypes, including mitochondria and ER contact. These findings indicate that Vps13d functions at a regulatory point between mitochondria and ER contact, mitochondrial fusion and autophagy, and help to explain how Vps13D contributes to disease. The clearance of mitochondria by mitophagy is important for cell health. Shen et al. identify Vps13D as functioning in a pathway with Vmp1 and Marf/Mfn2 to regulate mitophagy. Loss of Vps13D in flies and cells derived from patients with movement disorders also impacts mitochondria and ER contact, and these cellular defects depend on Marf/MFN2.
Mutations in Vps13D cause defects in autophagy, clearance of mitochondria, and human movement disorders. Here, we discover that Vps13D functions in a pathway downstream of Vmp1 and upstream of Marf/Mfn2. Like vps13d, vmp1 mutant cells exhibit defects in autophagy, mitochondrial size, and clearance. Through the relationship between vmp1 and vps13d, we reveal a novel role for Vps13D in the regulation of mitochondria and endoplasmic reticulum (ER) contact. Significantly, the function of Vps13D in mitochondria and ER contact is conserved between fly and human cells, including fibroblasts derived from patients suffering from VPS13D mutation-associated neurological symptoms. vps13d mutants have increased levels of Marf/MFN2, a regulator of mitochondrial fusion. Importantly, loss of marf/MFN2 suppresses vps13d mutant phenotypes, including mitochondria and ER contact. These findings indicate that Vps13d functions at a regulatory point between mitochondria and ER contact, mitochondrial fusion and autophagy, and help to explain how Vps13D contributes to disease.
Mutations in Vps13D cause defects in autophagy, clearance of mitochondria, and human movement disorders. Here, we discover that Vps13D functions in a pathway downstream of Vmp1 and upstream of Marf/Mfn2. Like vps13d, vmp1 mutant cells exhibit defects in autophagy, mitochondrial size, and clearance. Through the relationship between vmp1 and vps13d, we reveal a novel role for Vps13D in the regulation of mitochondria and endoplasmic reticulum (ER) contact. Significantly, the function of Vps13D in mitochondria and ER contact is conserved between fly and human cells, including fibroblasts derived from patients suffering from VPS13D mutation-associated neurological symptoms. vps13d mutants have increased levels of Marf/MFN2, a regulator of mitochondrial fusion. Importantly, loss of marf/MFN2 suppresses vps13d mutant phenotypes, including mitochondria and ER contact. These findings indicate that Vps13d functions at a regulatory point between mitochondria and ER contact, mitochondrial fusion and autophagy, and help to explain how Vps13D contributes to disease.Mutations in Vps13D cause defects in autophagy, clearance of mitochondria, and human movement disorders. Here, we discover that Vps13D functions in a pathway downstream of Vmp1 and upstream of Marf/Mfn2. Like vps13d, vmp1 mutant cells exhibit defects in autophagy, mitochondrial size, and clearance. Through the relationship between vmp1 and vps13d, we reveal a novel role for Vps13D in the regulation of mitochondria and endoplasmic reticulum (ER) contact. Significantly, the function of Vps13D in mitochondria and ER contact is conserved between fly and human cells, including fibroblasts derived from patients suffering from VPS13D mutation-associated neurological symptoms. vps13d mutants have increased levels of Marf/MFN2, a regulator of mitochondrial fusion. Importantly, loss of marf/MFN2 suppresses vps13d mutant phenotypes, including mitochondria and ER contact. These findings indicate that Vps13d functions at a regulatory point between mitochondria and ER contact, mitochondrial fusion and autophagy, and help to explain how Vps13D contributes to disease.
Mutations in Vps13D cause defects in autophagy, clearance of mitochondria, and human movement disorders. Here, we discover that Vps13D functions in a pathway downstream of Vmp1 and upstream of Marf/Mfn2. Like vps13d, vmp1 mutant cells exhibit defects in autophagy, mitochondrial size, and clearance. Through the relationship between vmp1 and vps13d, we reveal a novel role for Vps13D in the regulation of mitochondria and endoplasmic reticulum (ER) contact. Significantly, the function of Vps13D in mitochondria and ER contact is conserved between fly and human cells, including fibroblasts derived from patients suffering from VPS13D mutation-associated neurological symptoms. vps13d mutants have increased levels of Marf/MFN2, a regulator of mitochondrial fusion. Importantly, loss of marf/MFN2 suppresses vps13d mutant phenotypes, including mitochondria and ER contact. These findings indicate that Vps13d functions at a regulatory point between mitochondria and ER contact, mitochondrial fusion and autophagy, and help to explain how Vps13D contributes to disease. [Display omitted] •Vps13D and Vmp1 are linked as regulators of autophagy and mitochondrial morphology•Vps13D, like Vmp1, regulates mitochondria and ER contact sites•Vps13D regulates mitophagy and mitochondrial morphology downstream of Vmp1•Vps13D mitochondria and ER contact phenotypes depend on Marf/MFN2 The clearance of mitochondria by mitophagy is important for cell health. Shen et al. identify Vps13D as functioning in a pathway with Vmp1 and Marf/Mfn2 to regulate mitophagy. Loss of Vps13D in flies and cells derived from patients with movement disorders also impacts mitochondria and ER contact, and these cellular defects depend on Marf/MFN2.
Author Zhao, Yan G.
Shen, James L.
Wang, Ruoxi
Burmeister, Margit
Fortier, Tina M.
Baehrecke, Eric H.
AuthorAffiliation 2 Michigan Neuroscience Institute and Dept of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
4 Twitter: @BaehreckeLab
3 Lead Contact
1 Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605 USA
AuthorAffiliation_xml – name: 4 Twitter: @BaehreckeLab
– name: 3 Lead Contact
– name: 2 Michigan Neuroscience Institute and Dept of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
– name: 1 Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605 USA
Author_xml – sequence: 1
  givenname: James L.
  surname: Shen
  fullname: Shen, James L.
  organization: Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
– sequence: 2
  givenname: Tina M.
  surname: Fortier
  fullname: Fortier, Tina M.
  organization: Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
– sequence: 3
  givenname: Yan G.
  surname: Zhao
  fullname: Zhao, Yan G.
  organization: Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
– sequence: 4
  givenname: Ruoxi
  orcidid: 0000-0002-3828-899X
  surname: Wang
  fullname: Wang, Ruoxi
  organization: Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
– sequence: 5
  givenname: Margit
  orcidid: 0000-0002-1914-2434
  surname: Burmeister
  fullname: Burmeister, Margit
  organization: Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
– sequence: 6
  givenname: Eric H.
  surname: Baehrecke
  fullname: Baehrecke, Eric H.
  email: eric.baehrecke@umassmed.edu
  organization: Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34019822$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxS1URLeFD8AF-cihST3OHydCQkKlBaRWSAh6tbz2pOtVYgfbWdQLn71Jt1TAoaeRZt7vzWjeETlw3iEhr4HlwKA-3eZ6WueccchZmbOaPyMraESbsbKsDsiKtTXL2obzQ3IU45Yx4E1bvyCHRclg6a_I7-thhBN6PUYoPp5Q5Qy9UqE7veocp93kdLLeUeuootq7iGGHho4qbX6pW5o8DXgz9SohHWzyeuOdCVbd25x_W4ikdFpwgzvs_TigS_dTYyOqiC_J8071EV891GPy4-L8-9nn7PLrpy9nHy4zXYFImeAgOm2w1lUhWmCqEIUQrFPGCCZAmFasedmVFTdGV0xwzkFBKYypWzBNWRyT93vfcVoPaPR8RlC9HIMdVLiVXln578TZjbzxO9kU0LIGZoO3DwbB_5wwJjnYqLHvlUM_RcmrAjhA2bJZ-ubvXY9L_jx9FsBeoIOPMWD3KAEml2DlVs7ByiVYyUo5Bzsz4j9G26SWcOZzbf8k-W5P4vzfncUgo7boNBobUCdpvH2CvgMSm707
CitedBy_id crossref_primary_10_1002_adbi_202200221
crossref_primary_10_1016_j_bbalip_2021_159003
crossref_primary_10_1016_j_cell_2023_08_008
crossref_primary_10_1111_febs_16280
crossref_primary_10_1016_j_jmb_2024_168473
crossref_primary_10_1083_jcb_202104073
crossref_primary_10_1146_annurev_cellbio_120420_014634
crossref_primary_10_14336_AD_2023_0201
crossref_primary_10_15252_embj_2021108863
crossref_primary_10_1016_j_cub_2022_01_040
crossref_primary_10_1101_cshperspect_a041257
crossref_primary_10_1016_j_arr_2023_101951
crossref_primary_10_1016_j_mitoco_2024_11_002
crossref_primary_10_3389_fnagi_2023_1166146
crossref_primary_10_1073_pnas_2203769119
crossref_primary_10_3390_cells10092273
crossref_primary_10_1080_27694127_2022_2055724
crossref_primary_10_1177_25152564221136388
crossref_primary_10_15252_embr_202153894
crossref_primary_10_1007_s12035_022_02916_1
crossref_primary_10_1111_febs_16241
crossref_primary_10_1038_s41418_022_01014_y
crossref_primary_10_1093_g3journal_jkaf023
crossref_primary_10_1177_20503121231221941
Cites_doi 10.1126/science.1207385
10.1073/pnas.0913485107
10.1159/000381265
10.1016/j.cub.2017.11.064
10.1016/j.ygeno.2004.04.012
10.1002/ana.25204
10.1126/science.aac7557
10.1083/jcb.201610055
10.1016/j.cmet.2017.12.008
10.1016/j.tins.2016.01.008
10.1016/j.molcel.2017.08.005
10.1111/cns.13140
10.1534/genetics.104.031930
10.1089/ars.2014.6223
10.7554/eLife.24463
10.1038/cdd.2012.43
10.1038/s41556-018-0176-2
10.1083/jcb.202010004
10.1371/journal.pone.0044214
10.7554/eLife.43561
10.1038/nature11910
10.1385/NMM:8:1-2:43
10.1083/jcb.139.1.23
10.1073/pnas.1606786113
10.1371/journal.pbio.1000298
10.1126/science.aac7041
10.1006/dbio.2002.0784
10.1093/annonc/mdw009
10.1083/jcb.201807019
10.1242/dev.124.22.4673
10.1038/ng.3984
10.1038/ncb2804
10.7554/eLife.32866
10.1016/j.devcel.2014.01.012
10.1016/j.cell.2010.04.009
10.1083/jcb.201801044
10.15252/embr.201744331
10.1016/j.mcn.2012.07.011
10.1038/nature07534
10.1016/j.cell.2010.04.034
10.1002/ana.25220
10.1534/genetics.113.160713
10.1083/jcb.201808151
10.1083/jcb.201709111
10.1002/gene.10137
10.1126/scitranslmed.3001065
10.1016/j.cmet.2020.07.017
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.cub.2021.04.062
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1879-0445
EndPage 3039.e7
ExternalDocumentID PMC8319081
34019822
10_1016_j_cub_2021_04_062
S0960982221006096
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: F30 CA239374
– fundername: NIGMS NIH HHS
  grantid: R35 GM131689
GroupedDBID ---
--K
-DZ
-~X
0R~
1RT
1~5
2WC
4.4
457
4G.
53G
5GY
62-
6J9
7-5
AACTN
AAEDW
AAFTH
AAFWJ
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHSJ
AGKMS
AGUBO
AHHHB
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FIRID
IHE
IXB
J1W
JIG
LX5
M3Z
M41
O-L
O9-
OK1
P2P
RCE
ROL
RPZ
SCP
SDG
SES
SSZ
TR2
WQ6
ZA5
29F
5VS
AAEDT
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
ASPBG
AVWKF
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
OZT
R2-
RIG
SEW
UHS
XIH
XPP
Y6R
ZGI
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c517t-7217fcde6c537910a373770fadd70717d97b24f452ddc5072221a147dd691d843
IEDL.DBID IXB
ISSN 0960-9822
1879-0445
IngestDate Thu Aug 21 14:11:37 EDT 2025
Fri Jul 11 07:45:29 EDT 2025
Mon Jul 21 05:23:53 EDT 2025
Tue Jul 01 01:57:15 EDT 2025
Thu Apr 24 22:52:37 EDT 2025
Fri Feb 23 02:41:24 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Vmp1
membrane contact
Vps13D
autophagy
mitochondria
Drosophila
Language English
License Copyright © 2021 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-7217fcde6c537910a373770fadd70717d97b24f452ddc5072221a147dd691d843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
J.L.S., Y.G.Z. and E.H.B. designed experiments, J.L.S. and T.M.F. performed experiments, R.W. and M.B. provided resources, J.L.S. and E.H.B. wrote the manuscript and all authors commented on it.
Author contributions
ORCID 0000-0002-1914-2434
0000-0002-3828-899X
OpenAccessLink http://www.cell.com/article/S0960982221006096/pdf
PMID 34019822
PQID 2531211490
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8319081
proquest_miscellaneous_2531211490
pubmed_primary_34019822
crossref_primary_10_1016_j_cub_2021_04_062
crossref_citationtrail_10_1016_j_cub_2021_04_062
elsevier_sciencedirect_doi_10_1016_j_cub_2021_04_062
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-26
PublicationDateYYYYMMDD 2021-07-26
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-26
  day: 26
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Current biology
PublicationTitleAlternate Curr Biol
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Paillusson, Stoica, Gomez-Suaga, Lau, Mueller, Miller, Miller (bib36) 2016; 39
Gao, Yang (bib32) 2018; 217
Nakada, Boyd, Russell, Aguirre-Hernández, Wilkinson, Thair, Nakada, McConechy, Fjell, Walley (bib18) 2015; 7
Hamasaki, Furuta, Matsuda, Nezu, Yamamoto, Fujita, Oomori, Noda, Haraguchi, Hiraoka (bib26) 2013; 495
Lee, Sanchez-Martinez, Martinez Zarate, Benincá, Mayor, Clague, Whitworth (bib5) 2018; 217
Velayos-Baeza, Vettori, Copley, Dobson-Stone, Monaco (bib13) 2004; 84
Meyers, Bryan, McFarland, Weir, Sizemore, Xu, Dharia, Montgomery, Cowley, Pantel (bib49) 2017; 49
Schon, Area-Gomez (bib40) 2013; 55
Insolera, Lőrincz, Wishnie, Juhász, Collins (bib41) 2020
Friedman, Lackner, West, DiBenedetto, Nunnari, Voeltz (bib28) 2011; 334
Hayashi, Ito, Sado, Taniguchi, Akimoto, Takeuchi, Aigaki, Matsuzaki, Nakagoshi, Tanimura (bib44) 2002; 34
Guillén-Samander, Leonzino, Hanna, Tang, Shen, De Camilli (bib37) 2021; 220
Tian, Li, Hu, Ren, Tian, Zhao, Lu, Huang, Yang, Li (bib21) 2010; 141
John Peter, Herrmann, Antunes, Rapaport, Dimmer, Kornmann (bib15) 2017; 216
Narendra, Jin, Tanaka, Suen, Gautier, Shen, Cookson, Youle (bib3) 2010; 8
Anding, Wang, Chang, Sliter, Powers, Hofmann, Youle, Baehrecke (bib7) 2018; 28
Ziviani, Tao, Whitworth (bib31) 2010; 107
Andersen, Sathyanarayanan, Di Bacco, Chi, Zhang, Chen, Dolinski, Kraus, Roberts, Arthur (bib20) 2010; 2
Hailey, Rambold, Satpute-Krishnan, Mitra, Sougrat, Kim, Lippincott-Schwartz (bib33) 2010; 141
Böckler, Westermann (bib27) 2014; 28
Giorgi, Missiroli, Patergnani, Duszynski, Wieckowski, Pinton (bib39) 2015; 22
Hung, Lam, Udeshi, Svinkina, Guzman, Mootha, Carr, Ting (bib30) 2017; 6
Chakrabarti, Ji, Stan, de Juan Sanz, Ryan, Higgs (bib38) 2018; 217
Pircs, Nagy, Varga, Venkei, Erdi, Hegedus, Juhasz (bib46) 2012; 7
McWilliams, Prescott, Montava-Garriga, Ball, Singh, Barini, Muqit, Brooks, Ganley (bib4) 2018; 27
Lee, Cooksey, Baehrecke (bib8) 2002; 250
Dempster, Rossen, Kazachkova, Pan, Kugener, Root, Tsherniak (bib48) 2019
de Brito, Scorrano (bib23) 2008; 456
Kumar, Leonzino, Hancock-Cerutti, Horenkamp, Li, Lees, Wheeler, Reinisch, De Camilli (bib14) 2018; 217
Brickner, Fuller (bib12) 1997; 139
Naon, Zaninello, Giacomello, Varanita, Grespi, Lakshminaranayan, Serafini, Semenzato, Herkenne, Hernández-Alvarez (bib24) 2016; 113
Bousquet, Noirot, Accadbled, Sales de Gauzy, Castex, Brousset, Gomez-Brouchet (bib19) 2016; 27
Antonicka, Lin, Janer, Aaltonen, Weraarpachai, Gingras, Shoubridge (bib29) 2020; 32
Yeshaw, van der Zwaag, Pinto, Lahaye, Faber, Gómez-Sánchez, Dolga, Poland, Monaco, van IJzendoorn (bib35) 2019; 8
Chang, Shravage, Hayes, Powers, Simin, Wade Harper, Baehrecke (bib6) 2013; 15
Jiang, Baehrecke, Thummel (bib9) 1997; 124
Gratz, Ukken, Rubinstein, Thiede, Donohue, Cummings, O’Connor-Giles (bib43) 2014; 196
Wang, Liu, Lu (bib2) 2019; 25
Blomen, Májek, Jae, Bigenzahn, Nieuwenhuis, Staring, Sacco, van Diemen, Olk, Stukalov (bib16) 2015; 350
Gauthier, Meijer, Lessel, Mencacci, Krainc, Hempel, Tsiakas, Prokisch, Rossignol, Helm (bib11) 2018; 83
Wang, Birsoy, Hughes, Krupczak, Post, Wei, Lander, Sabatini (bib17) 2015; 350
Denton, Chang, Nicolson, Shravage, Simin, Baehrecke, Kumar (bib45) 2012; 19
McLelland, Goiran, Yi, Dorval, Chen, Lauinger, Krahn, Valimehr, Rakovic, Rouiller (bib25) 2018; 7
Houlden, Reilly (bib42) 2006; 8
Sanyal, Consoulas, Kuromi, Basole, Mukai, Kidokoro, Krishnan, Ramaswami (bib47) 2005; 169
Seong, Insolera, Dulovic, Kamsteeg, Trinh, Brüggemann, Sandford, Li, Ozel, Li (bib10) 2018; 83
Palikaras, Lionaki, Tavernarakis (bib1) 2018; 20
Muallem, Chung, Jha, Ahuja (bib34) 2017; 18
Zhao, Chen, Miao, Zhao, Qu, Li, Wang, Liu, Li, Chen (bib22) 2017; 67
Schon (10.1016/j.cub.2021.04.062_bib40) 2013; 55
Nakada (10.1016/j.cub.2021.04.062_bib18) 2015; 7
Kumar (10.1016/j.cub.2021.04.062_bib14) 2018; 217
Muallem (10.1016/j.cub.2021.04.062_bib34) 2017; 18
Houlden (10.1016/j.cub.2021.04.062_bib42) 2006; 8
Tian (10.1016/j.cub.2021.04.062_bib21) 2010; 141
Pircs (10.1016/j.cub.2021.04.062_bib46) 2012; 7
Narendra (10.1016/j.cub.2021.04.062_bib3) 2010; 8
Friedman (10.1016/j.cub.2021.04.062_bib28) 2011; 334
Gauthier (10.1016/j.cub.2021.04.062_bib11) 2018; 83
Hamasaki (10.1016/j.cub.2021.04.062_bib26) 2013; 495
McLelland (10.1016/j.cub.2021.04.062_bib25) 2018; 7
Denton (10.1016/j.cub.2021.04.062_bib45) 2012; 19
Jiang (10.1016/j.cub.2021.04.062_bib9) 1997; 124
Sanyal (10.1016/j.cub.2021.04.062_bib47) 2005; 169
Blomen (10.1016/j.cub.2021.04.062_bib16) 2015; 350
Hailey (10.1016/j.cub.2021.04.062_bib33) 2010; 141
Velayos-Baeza (10.1016/j.cub.2021.04.062_bib13) 2004; 84
Böckler (10.1016/j.cub.2021.04.062_bib27) 2014; 28
Insolera (10.1016/j.cub.2021.04.062_bib41) 2020
Gratz (10.1016/j.cub.2021.04.062_bib43) 2014; 196
Palikaras (10.1016/j.cub.2021.04.062_bib1) 2018; 20
Hayashi (10.1016/j.cub.2021.04.062_bib44) 2002; 34
Hung (10.1016/j.cub.2021.04.062_bib30) 2017; 6
Brickner (10.1016/j.cub.2021.04.062_bib12) 1997; 139
Giorgi (10.1016/j.cub.2021.04.062_bib39) 2015; 22
Chakrabarti (10.1016/j.cub.2021.04.062_bib38) 2018; 217
Dempster (10.1016/j.cub.2021.04.062_bib48) 2019
McWilliams (10.1016/j.cub.2021.04.062_bib4) 2018; 27
Wang (10.1016/j.cub.2021.04.062_bib2) 2019; 25
Anding (10.1016/j.cub.2021.04.062_bib7) 2018; 28
Meyers (10.1016/j.cub.2021.04.062_bib49) 2017; 49
Lee (10.1016/j.cub.2021.04.062_bib5) 2018; 217
Wang (10.1016/j.cub.2021.04.062_bib17) 2015; 350
Gao (10.1016/j.cub.2021.04.062_bib32) 2018; 217
Seong (10.1016/j.cub.2021.04.062_bib10) 2018; 83
Yeshaw (10.1016/j.cub.2021.04.062_bib35) 2019; 8
Paillusson (10.1016/j.cub.2021.04.062_bib36) 2016; 39
Ziviani (10.1016/j.cub.2021.04.062_bib31) 2010; 107
Zhao (10.1016/j.cub.2021.04.062_bib22) 2017; 67
Bousquet (10.1016/j.cub.2021.04.062_bib19) 2016; 27
de Brito (10.1016/j.cub.2021.04.062_bib23) 2008; 456
Guillén-Samander (10.1016/j.cub.2021.04.062_bib37) 2021; 220
John Peter (10.1016/j.cub.2021.04.062_bib15) 2017; 216
Andersen (10.1016/j.cub.2021.04.062_bib20) 2010; 2
Naon (10.1016/j.cub.2021.04.062_bib24) 2016; 113
Chang (10.1016/j.cub.2021.04.062_bib6) 2013; 15
Antonicka (10.1016/j.cub.2021.04.062_bib29) 2020; 32
Lee (10.1016/j.cub.2021.04.062_bib8) 2002; 250
References_xml – volume: 350
  start-page: 1092
  year: 2015
  end-page: 1096
  ident: bib16
  article-title: Gene essentiality and synthetic lethality in haploid human cells
  publication-title: Science
– volume: 141
  start-page: 1042
  year: 2010
  end-page: 1055
  ident: bib21
  article-title: C. elegans screen identifies autophagy genes specific to multicellular organisms
  publication-title: Cell
– volume: 495
  start-page: 389
  year: 2013
  end-page: 393
  ident: bib26
  article-title: Autophagosomes form at ER-mitochondria contact sites
  publication-title: Nature
– volume: 217
  start-page: 3322
  year: 2018
  end-page: 3324
  ident: bib32
  article-title: VPS13: a lipid transfer protein making contacts at multiple cellular locations
  publication-title: J. Cell Biol.
– volume: 39
  start-page: 146
  year: 2016
  end-page: 157
  ident: bib36
  article-title: There’s something wrong with my MAM; the ER-mitochondria axis and neurodegenerative diseases
  publication-title: Trends Neurosci.
– volume: 7
  start-page: e32866
  year: 2018
  ident: bib25
  article-title: Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy
  publication-title: eLife
– volume: 55
  start-page: 26
  year: 2013
  end-page: 36
  ident: bib40
  article-title: Mitochondria-associated ER membranes in Alzheimer disease
  publication-title: Mol. Cell. Neurosci.
– year: 2019
  ident: bib48
  article-title: Extracting biological insights from the Project Achilles genome-scale CRISPR screens in cancer cell lines
  publication-title: bioRxiv
– volume: 67
  start-page: 974
  year: 2017
  end-page: 989.e6
  ident: bib22
  article-title: The ER-localized transmembrane protein EPG-3/VMP1 regulates SERCA activity to control ER-isolation membrane contacts for autophagosome formation
  publication-title: Mol. Cell
– volume: 220
  start-page: e202010004
  year: 2021
  ident: bib37
  article-title: VPS13D bridges the ER to Miro containing membranes
  publication-title: J. Cell Biol.
– volume: 22
  start-page: 995
  year: 2015
  end-page: 1019
  ident: bib39
  article-title: Mitochondria-associated membranes: composition, molecular mechanisms, and physiopathological implications
  publication-title: Antioxid. Redox Signal.
– volume: 83
  start-page: 1089
  year: 2018
  end-page: 1095
  ident: bib11
  article-title: Recessive mutations in VPS13D cause childhood onset movement disorders
  publication-title: Ann. Neurol.
– volume: 19
  start-page: 1299
  year: 2012
  end-page: 1307
  ident: bib45
  article-title: Relationship between growth arrest and autophagy in midgut programmed cell death in Drosophila
  publication-title: Cell Death Differ.
– volume: 8
  start-page: e1000298
  year: 2010
  ident: bib3
  article-title: PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
  publication-title: PLoS Biol.
– volume: 169
  start-page: 737
  year: 2005
  end-page: 750
  ident: bib47
  article-title: Analysis of conditional paralytic mutants in Drosophila sarco-endoplasmic reticulum calcium ATPase reveals novel mechanisms for regulating membrane excitability
  publication-title: Genetics
– volume: 196
  start-page: 961
  year: 2014
  end-page: 971
  ident: bib43
  article-title: Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila
  publication-title: Genetics
– volume: 20
  start-page: 1013
  year: 2018
  end-page: 1022
  ident: bib1
  article-title: Mechanisms of mitophagy in cellular homeostasis, physiology and pathology
  publication-title: Nat. Cell Biol.
– volume: 350
  start-page: 1096
  year: 2015
  end-page: 1101
  ident: bib17
  article-title: Identification and characterization of essential genes in the human genome
  publication-title: Science
– volume: 107
  start-page: 5018
  year: 2010
  end-page: 5023
  ident: bib31
  article-title: Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 2020
  ident: bib41
  article-title: Mitochondrial fission, integrity and completion of mitophagy require separable functions of Vps13D in
  publication-title: bioRxiv
– volume: 6
  start-page: e24463
  year: 2017
  ident: bib30
  article-title: Proteomic mapping of cytosol-facing outer mitochondrial and ER membranes in living human cells by proximity biotinylation
  publication-title: eLife
– volume: 217
  start-page: 1613
  year: 2018
  end-page: 1622
  ident: bib5
  article-title: Basal mitophagy is widespread in
  publication-title: J. Cell Biol.
– volume: 27
  start-page: 439
  year: 2018
  end-page: 449.e5
  ident: bib4
  article-title: Basal mitophagy occurs independently of PINK1 in mouse tissues of high metabolic demand
  publication-title: Cell Metab.
– volume: 28
  start-page: 450
  year: 2014
  end-page: 458
  ident: bib27
  article-title: Mitochondrial ER contacts are crucial for mitophagy in yeast
  publication-title: Dev. Cell
– volume: 84
  start-page: 536
  year: 2004
  end-page: 549
  ident: bib13
  article-title: Analysis of the human VPS13 gene family
  publication-title: Genomics
– volume: 2
  start-page: 43ra55
  year: 2010
  ident: bib20
  article-title: Pathway-based identification of biomarkers for targeted therapeutics: personalized oncology with PI3K pathway inhibitors
  publication-title: Sci. Transl. Med.
– volume: 28
  start-page: 287
  year: 2018
  end-page: 295.e6
  ident: bib7
  article-title: Vps13D encodes a ubiquitin-binding protein that is required for the regulation of mitochondrial size and clearance
  publication-title: Curr. Biol.
– volume: 83
  start-page: 1075
  year: 2018
  end-page: 1088
  ident: bib10
  article-title: Mutations in VPS13D lead to a new recessive ataxia with spasticity and mitochondrial defects
  publication-title: Ann. Neurol.
– volume: 8
  start-page: e43561
  year: 2019
  ident: bib35
  article-title: Human VPS13A is associated with multiple organelles and influences mitochondrial morphology and lipid droplet motility
  publication-title: eLife
– volume: 217
  start-page: 251
  year: 2018
  end-page: 268
  ident: bib38
  article-title: INF2-mediated actin polymerization at the ER stimulates mitochondrial calcium uptake, inner membrane constriction, and division
  publication-title: J. Cell Biol.
– volume: 27
  start-page: 738
  year: 2016
  end-page: 744
  ident: bib19
  article-title: Whole-exome sequencing in osteosarcoma reveals important heterogeneity of genetic alterations
  publication-title: Ann. Oncol.
– volume: 18
  start-page: 1893
  year: 2017
  end-page: 1904
  ident: bib34
  article-title: Lipids at membrane contact sites: cell signaling and ion transport
  publication-title: EMBO Rep.
– volume: 141
  start-page: 656
  year: 2010
  end-page: 667
  ident: bib33
  article-title: Mitochondria supply membranes for autophagosome biogenesis during starvation
  publication-title: Cell
– volume: 25
  start-page: 859
  year: 2019
  end-page: 875
  ident: bib2
  article-title: Mechanisms and roles of mitophagy in neurodegenerative diseases
  publication-title: CNS Neurosci. Ther.
– volume: 216
  start-page: 3219
  year: 2017
  end-page: 3229
  ident: bib15
  article-title: Vps13-Mcp1 interact at vacuole-mitochondria interfaces and bypass ER-mitochondria contact sites
  publication-title: J. Cell Biol.
– volume: 15
  start-page: 1067
  year: 2013
  end-page: 1078
  ident: bib6
  article-title: Uba1 functions in Atg7- and Atg3-independent autophagy
  publication-title: Nat. Cell Biol.
– volume: 124
  start-page: 4673
  year: 1997
  end-page: 4683
  ident: bib9
  article-title: Steroid regulated programmed cell death during Drosophila metamorphosis
  publication-title: Development
– volume: 217
  start-page: 3625
  year: 2018
  end-page: 3639
  ident: bib14
  article-title: VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites
  publication-title: J. Cell Biol.
– volume: 7
  start-page: e44214
  year: 2012
  ident: bib46
  article-title: Advantages and limitations of different p62-based assays for estimating autophagic activity in Drosophila
  publication-title: PLoS ONE
– volume: 250
  start-page: 101
  year: 2002
  end-page: 111
  ident: bib8
  article-title: Steroid regulation of midgut cell death during Drosophila development
  publication-title: Dev. Biol.
– volume: 7
  start-page: 545
  year: 2015
  end-page: 553
  ident: bib18
  article-title: VPS13D gene variant is associated with altered IL-6 production and mortality in septic shock
  publication-title: J. Innate Immun.
– volume: 8
  start-page: 43
  year: 2006
  end-page: 62
  ident: bib42
  article-title: Molecular genetics of autosomal-dominant demyelinating Charcot-Marie-Tooth disease
  publication-title: Neuromolecular Med.
– volume: 49
  start-page: 1779
  year: 2017
  end-page: 1784
  ident: bib49
  article-title: Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells
  publication-title: Nat. Genet.
– volume: 139
  start-page: 23
  year: 1997
  end-page: 36
  ident: bib12
  article-title: SOI1 encodes a novel, conserved protein that promotes TGN-endosomal cycling of Kex2p and other membrane proteins by modulating the function of two TGN localization signals
  publication-title: J. Cell Biol.
– volume: 113
  start-page: 11249
  year: 2016
  end-page: 11254
  ident: bib24
  article-title: Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum-mitochondria tether
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 456
  start-page: 605
  year: 2008
  end-page: 610
  ident: bib23
  article-title: Mitofusin 2 tethers endoplasmic reticulum to mitochondria
  publication-title: Nature
– volume: 32
  start-page: 479
  year: 2020
  end-page: 497.e9
  ident: bib29
  article-title: A high-density human mitochondrial proximity interaction network
  publication-title: Cell Metab.
– volume: 34
  start-page: 58
  year: 2002
  end-page: 61
  ident: bib44
  article-title: GETDB, a database compiling expression patterns and molecular locations of a collection of Gal4 enhancer traps
  publication-title: Genesis
– volume: 334
  start-page: 358
  year: 2011
  end-page: 362
  ident: bib28
  article-title: ER tubules mark sites of mitochondrial division
  publication-title: Science
– volume: 334
  start-page: 358
  year: 2011
  ident: 10.1016/j.cub.2021.04.062_bib28
  article-title: ER tubules mark sites of mitochondrial division
  publication-title: Science
  doi: 10.1126/science.1207385
– volume: 107
  start-page: 5018
  year: 2010
  ident: 10.1016/j.cub.2021.04.062_bib31
  article-title: Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0913485107
– volume: 7
  start-page: 545
  year: 2015
  ident: 10.1016/j.cub.2021.04.062_bib18
  article-title: VPS13D gene variant is associated with altered IL-6 production and mortality in septic shock
  publication-title: J. Innate Immun.
  doi: 10.1159/000381265
– volume: 28
  start-page: 287
  year: 2018
  ident: 10.1016/j.cub.2021.04.062_bib7
  article-title: Vps13D encodes a ubiquitin-binding protein that is required for the regulation of mitochondrial size and clearance
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2017.11.064
– volume: 84
  start-page: 536
  year: 2004
  ident: 10.1016/j.cub.2021.04.062_bib13
  article-title: Analysis of the human VPS13 gene family
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2004.04.012
– volume: 83
  start-page: 1089
  year: 2018
  ident: 10.1016/j.cub.2021.04.062_bib11
  article-title: Recessive mutations in VPS13D cause childhood onset movement disorders
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.25204
– volume: 350
  start-page: 1092
  year: 2015
  ident: 10.1016/j.cub.2021.04.062_bib16
  article-title: Gene essentiality and synthetic lethality in haploid human cells
  publication-title: Science
  doi: 10.1126/science.aac7557
– volume: 216
  start-page: 3219
  year: 2017
  ident: 10.1016/j.cub.2021.04.062_bib15
  article-title: Vps13-Mcp1 interact at vacuole-mitochondria interfaces and bypass ER-mitochondria contact sites
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201610055
– volume: 27
  start-page: 439
  year: 2018
  ident: 10.1016/j.cub.2021.04.062_bib4
  article-title: Basal mitophagy occurs independently of PINK1 in mouse tissues of high metabolic demand
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2017.12.008
– volume: 39
  start-page: 146
  year: 2016
  ident: 10.1016/j.cub.2021.04.062_bib36
  article-title: There’s something wrong with my MAM; the ER-mitochondria axis and neurodegenerative diseases
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2016.01.008
– volume: 67
  start-page: 974
  year: 2017
  ident: 10.1016/j.cub.2021.04.062_bib22
  article-title: The ER-localized transmembrane protein EPG-3/VMP1 regulates SERCA activity to control ER-isolation membrane contacts for autophagosome formation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.08.005
– volume: 25
  start-page: 859
  year: 2019
  ident: 10.1016/j.cub.2021.04.062_bib2
  article-title: Mechanisms and roles of mitophagy in neurodegenerative diseases
  publication-title: CNS Neurosci. Ther.
  doi: 10.1111/cns.13140
– volume: 169
  start-page: 737
  year: 2005
  ident: 10.1016/j.cub.2021.04.062_bib47
  article-title: Analysis of conditional paralytic mutants in Drosophila sarco-endoplasmic reticulum calcium ATPase reveals novel mechanisms for regulating membrane excitability
  publication-title: Genetics
  doi: 10.1534/genetics.104.031930
– volume: 22
  start-page: 995
  year: 2015
  ident: 10.1016/j.cub.2021.04.062_bib39
  article-title: Mitochondria-associated membranes: composition, molecular mechanisms, and physiopathological implications
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2014.6223
– volume: 6
  start-page: e24463
  year: 2017
  ident: 10.1016/j.cub.2021.04.062_bib30
  article-title: Proteomic mapping of cytosol-facing outer mitochondrial and ER membranes in living human cells by proximity biotinylation
  publication-title: eLife
  doi: 10.7554/eLife.24463
– volume: 19
  start-page: 1299
  year: 2012
  ident: 10.1016/j.cub.2021.04.062_bib45
  article-title: Relationship between growth arrest and autophagy in midgut programmed cell death in Drosophila
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2012.43
– volume: 20
  start-page: 1013
  year: 2018
  ident: 10.1016/j.cub.2021.04.062_bib1
  article-title: Mechanisms of mitophagy in cellular homeostasis, physiology and pathology
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0176-2
– volume: 220
  start-page: e202010004
  year: 2021
  ident: 10.1016/j.cub.2021.04.062_bib37
  article-title: VPS13D bridges the ER to Miro containing membranes
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.202010004
– volume: 7
  start-page: e44214
  year: 2012
  ident: 10.1016/j.cub.2021.04.062_bib46
  article-title: Advantages and limitations of different p62-based assays for estimating autophagic activity in Drosophila
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0044214
– volume: 8
  start-page: e43561
  year: 2019
  ident: 10.1016/j.cub.2021.04.062_bib35
  article-title: Human VPS13A is associated with multiple organelles and influences mitochondrial morphology and lipid droplet motility
  publication-title: eLife
  doi: 10.7554/eLife.43561
– volume: 495
  start-page: 389
  year: 2013
  ident: 10.1016/j.cub.2021.04.062_bib26
  article-title: Autophagosomes form at ER-mitochondria contact sites
  publication-title: Nature
  doi: 10.1038/nature11910
– volume: 8
  start-page: 43
  year: 2006
  ident: 10.1016/j.cub.2021.04.062_bib42
  article-title: Molecular genetics of autosomal-dominant demyelinating Charcot-Marie-Tooth disease
  publication-title: Neuromolecular Med.
  doi: 10.1385/NMM:8:1-2:43
– volume: 139
  start-page: 23
  year: 1997
  ident: 10.1016/j.cub.2021.04.062_bib12
  article-title: SOI1 encodes a novel, conserved protein that promotes TGN-endosomal cycling of Kex2p and other membrane proteins by modulating the function of two TGN localization signals
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.139.1.23
– year: 2019
  ident: 10.1016/j.cub.2021.04.062_bib48
  article-title: Extracting biological insights from the Project Achilles genome-scale CRISPR screens in cancer cell lines
  publication-title: bioRxiv
– volume: 113
  start-page: 11249
  year: 2016
  ident: 10.1016/j.cub.2021.04.062_bib24
  article-title: Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum-mitochondria tether
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1606786113
– volume: 8
  start-page: e1000298
  year: 2010
  ident: 10.1016/j.cub.2021.04.062_bib3
  article-title: PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000298
– volume: 350
  start-page: 1096
  year: 2015
  ident: 10.1016/j.cub.2021.04.062_bib17
  article-title: Identification and characterization of essential genes in the human genome
  publication-title: Science
  doi: 10.1126/science.aac7041
– volume: 250
  start-page: 101
  year: 2002
  ident: 10.1016/j.cub.2021.04.062_bib8
  article-title: Steroid regulation of midgut cell death during Drosophila development
  publication-title: Dev. Biol.
  doi: 10.1006/dbio.2002.0784
– volume: 27
  start-page: 738
  year: 2016
  ident: 10.1016/j.cub.2021.04.062_bib19
  article-title: Whole-exome sequencing in osteosarcoma reveals important heterogeneity of genetic alterations
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdw009
– volume: 217
  start-page: 3625
  year: 2018
  ident: 10.1016/j.cub.2021.04.062_bib14
  article-title: VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201807019
– volume: 124
  start-page: 4673
  year: 1997
  ident: 10.1016/j.cub.2021.04.062_bib9
  article-title: Steroid regulated programmed cell death during Drosophila metamorphosis
  publication-title: Development
  doi: 10.1242/dev.124.22.4673
– volume: 49
  start-page: 1779
  year: 2017
  ident: 10.1016/j.cub.2021.04.062_bib49
  article-title: Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3984
– volume: 15
  start-page: 1067
  year: 2013
  ident: 10.1016/j.cub.2021.04.062_bib6
  article-title: Uba1 functions in Atg7- and Atg3-independent autophagy
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2804
– volume: 7
  start-page: e32866
  year: 2018
  ident: 10.1016/j.cub.2021.04.062_bib25
  article-title: Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy
  publication-title: eLife
  doi: 10.7554/eLife.32866
– volume: 28
  start-page: 450
  year: 2014
  ident: 10.1016/j.cub.2021.04.062_bib27
  article-title: Mitochondrial ER contacts are crucial for mitophagy in yeast
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2014.01.012
– volume: 141
  start-page: 656
  year: 2010
  ident: 10.1016/j.cub.2021.04.062_bib33
  article-title: Mitochondria supply membranes for autophagosome biogenesis during starvation
  publication-title: Cell
  doi: 10.1016/j.cell.2010.04.009
– volume: 217
  start-page: 1613
  year: 2018
  ident: 10.1016/j.cub.2021.04.062_bib5
  article-title: Basal mitophagy is widespread in Drosophila but minimally affected by loss of Pink1 or parkin
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201801044
– volume: 18
  start-page: 1893
  year: 2017
  ident: 10.1016/j.cub.2021.04.062_bib34
  article-title: Lipids at membrane contact sites: cell signaling and ion transport
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201744331
– volume: 55
  start-page: 26
  year: 2013
  ident: 10.1016/j.cub.2021.04.062_bib40
  article-title: Mitochondria-associated ER membranes in Alzheimer disease
  publication-title: Mol. Cell. Neurosci.
  doi: 10.1016/j.mcn.2012.07.011
– volume: 456
  start-page: 605
  year: 2008
  ident: 10.1016/j.cub.2021.04.062_bib23
  article-title: Mitofusin 2 tethers endoplasmic reticulum to mitochondria
  publication-title: Nature
  doi: 10.1038/nature07534
– year: 2020
  ident: 10.1016/j.cub.2021.04.062_bib41
  article-title: Mitochondrial fission, integrity and completion of mitophagy require separable functions of Vps13D in Drosophila neurons
  publication-title: bioRxiv
– volume: 141
  start-page: 1042
  year: 2010
  ident: 10.1016/j.cub.2021.04.062_bib21
  article-title: C. elegans screen identifies autophagy genes specific to multicellular organisms
  publication-title: Cell
  doi: 10.1016/j.cell.2010.04.034
– volume: 83
  start-page: 1075
  year: 2018
  ident: 10.1016/j.cub.2021.04.062_bib10
  article-title: Mutations in VPS13D lead to a new recessive ataxia with spasticity and mitochondrial defects
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.25220
– volume: 196
  start-page: 961
  year: 2014
  ident: 10.1016/j.cub.2021.04.062_bib43
  article-title: Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila
  publication-title: Genetics
  doi: 10.1534/genetics.113.160713
– volume: 217
  start-page: 3322
  year: 2018
  ident: 10.1016/j.cub.2021.04.062_bib32
  article-title: VPS13: a lipid transfer protein making contacts at multiple cellular locations
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201808151
– volume: 217
  start-page: 251
  year: 2018
  ident: 10.1016/j.cub.2021.04.062_bib38
  article-title: INF2-mediated actin polymerization at the ER stimulates mitochondrial calcium uptake, inner membrane constriction, and division
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201709111
– volume: 34
  start-page: 58
  year: 2002
  ident: 10.1016/j.cub.2021.04.062_bib44
  article-title: GETDB, a database compiling expression patterns and molecular locations of a collection of Gal4 enhancer traps
  publication-title: Genesis
  doi: 10.1002/gene.10137
– volume: 2
  start-page: 43ra55
  year: 2010
  ident: 10.1016/j.cub.2021.04.062_bib20
  article-title: Pathway-based identification of biomarkers for targeted therapeutics: personalized oncology with PI3K pathway inhibitors
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3001065
– volume: 32
  start-page: 479
  year: 2020
  ident: 10.1016/j.cub.2021.04.062_bib29
  article-title: A high-density human mitochondrial proximity interaction network
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2020.07.017
SSID ssj0012896
Score 2.4895537
Snippet Mutations in Vps13D cause defects in autophagy, clearance of mitochondria, and human movement disorders. Here, we discover that Vps13D functions in a pathway...
Mutations in Vps13D cause defects in autophagy, clearance of mitochondria and human movement disorders. Here we discover that Vps13D functions in a pathway...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3028
SubjectTerms autophagy
Autophagy - genetics
Drosophila
Endoplasmic Reticulum - metabolism
GTP Phosphohydrolases - metabolism
Humans
membrane contact
Membrane Proteins - genetics
Membrane Proteins - metabolism
mitochondria
Mitochondria - metabolism
Mitochondrial Dynamics - genetics
Mitochondrial Proteins - genetics
Mitochondrial Proteins - metabolism
Mitochondrial Size
Proteins - metabolism
Vmp1
Vps13D
Title Vmp1, Vps13D, and Marf/Mfn2 function in a conserved pathway to regulate mitochondria and ER contact in development and disease
URI https://dx.doi.org/10.1016/j.cub.2021.04.062
https://www.ncbi.nlm.nih.gov/pubmed/34019822
https://www.proquest.com/docview/2531211490
https://pubmed.ncbi.nlm.nih.gov/PMC8319081
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiQuqLy3hcpInFCjXT9iJ8dSWlVUy6HQsjfLsR11EfWuttlWvfS3M-MkCwuiB45JxpHlGc_DM_6GkHdeWa_LwmY5czKTrmZZIaqQlbJ0XlhnlcUD_fFndXwmP03yyQY56O_CYFllp_tbnZ60dfdm2K3mcD6dDr8ksDS0bwxBRUqE3RaySJf4Jh9WmQQIKFK-EogzpO4zm6nGyy0rCBE5S2iniv_LNv3te_5ZQvmbTTraIo87Z5Lut_N9QjZCfEoetu0lb5-Ru_PLOduj5_MrJj7uURs9HdtFPRzXkVM0aMgUOo3UUodF1Yvr4Cm2KL6xt7SZ0UXbpz7QS9j2oCajB2lNvzk8xRGNdQ0O978Kj9LXLunznJwdHX49OM66fguZy5luMggGde18UC4XGtwIK7TQelSDCtQY9vlSV1zWMufeO_Ajcektk9p7VTJfSPGCbMZZDK8IdQgjU9lagozIUPsK_EBuFQ-lcIp7PSCjfqWN68DIsSfGD9NXnX03wByDzDEjaYA5A_J-NWTeInHcRyx79pk1cTJgKe4b9rZntYFthrkTG8NseWU46CqIlWU5GpCXLetXsxAQo6JoDYheE4oVAUJ4r3-J04sE5V2ABgSnbPv_prtDHuETHjVz9ZpsNotleAM-UlPtkgf7J6ffTnbTZvgJZjsRWg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfGEIILGl-jMMBInNCi1h-xm-M2NnWw7gDb1Jvl2I4oYm7VpaBd-Nt5z0kKBbED19gvsvy-815-j5A3Xlmvi6HNcuZkJl3FsqEoQ1bIwnlhnVUWP-iPT9XoXL6f5JMNctD9C4Ntla3tb2x6stbtk357m_35dNr_lMDS0L8xBBUp1C1yG6IBjdp5PNlflRIgo0gFS9id4fautJmavNyyhByRswR3qvi_nNPfweefPZS_OaWjLXK_jSbpXnPgB2QjxIfkTjNf8voR-XFxOWe79GJ-xcS7XWqjp2O7qPrjKnKKHg25QqeRWuqwq3rxLXiKM4q_22taz-iiGVQf6CXoPdjJ6EFc02sOPyJFbV2N5P5X51Fabas-j8n50eHZwShrBy5kLme6ziAb1JXzQblcaIgjrNBC60EFNlBj3ucLXXJZyZx77yCQxLu3TGrvVcH8UIonZDPOYnhKqEMcmdJWEoREhsqXEAhyq3gohFPc6x4ZdDdtXItGjkMxvpqu7eyLAeYYZI4ZSAPM6ZG3K5J5A8Vx02bZsc-syZMBV3ET2euO1Qb0DIsnNobZ8spwMFaQLMti0CPbDetXpxCQpKJo9YheE4rVBsTwXl-J088Jy3sIJhCismf_d9xX5O7obHxiTo5PPzwn93AFvztztUM268UyvICAqS5fJoX4CYoBEtc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vmp1%2C+Vps13D%2C+and+Marf%2FMfn2+function+in+a+conserved+pathway+to+regulate+mitochondria+and+ER+contact+in+development+and+disease&rft.jtitle=Current+biology&rft.au=Shen%2C+James+L&rft.au=Fortier%2C+Tina+M&rft.au=Zhao%2C+Yan+G&rft.au=Wang%2C+Ruoxi&rft.date=2021-07-26&rft.eissn=1879-0445&rft.volume=31&rft.issue=14&rft.spage=3028&rft_id=info:doi/10.1016%2Fj.cub.2021.04.062&rft_id=info%3Apmid%2F34019822&rft.externalDocID=34019822
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-9822&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-9822&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-9822&client=summon