Vmp1, Vps13D, and Marf/Mfn2 function in a conserved pathway to regulate mitochondria and ER contact in development and disease
Mutations in Vps13D cause defects in autophagy, clearance of mitochondria, and human movement disorders. Here, we discover that Vps13D functions in a pathway downstream of Vmp1 and upstream of Marf/Mfn2. Like vps13d, vmp1 mutant cells exhibit defects in autophagy, mitochondrial size, and clearance....
Saved in:
Published in | Current biology Vol. 31; no. 14; pp. 3028 - 3039.e7 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Inc
26.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mutations in Vps13D cause defects in autophagy, clearance of mitochondria, and human movement disorders. Here, we discover that Vps13D functions in a pathway downstream of Vmp1 and upstream of Marf/Mfn2. Like vps13d, vmp1 mutant cells exhibit defects in autophagy, mitochondrial size, and clearance. Through the relationship between vmp1 and vps13d, we reveal a novel role for Vps13D in the regulation of mitochondria and endoplasmic reticulum (ER) contact. Significantly, the function of Vps13D in mitochondria and ER contact is conserved between fly and human cells, including fibroblasts derived from patients suffering from VPS13D mutation-associated neurological symptoms. vps13d mutants have increased levels of Marf/MFN2, a regulator of mitochondrial fusion. Importantly, loss of marf/MFN2 suppresses vps13d mutant phenotypes, including mitochondria and ER contact. These findings indicate that Vps13d functions at a regulatory point between mitochondria and ER contact, mitochondrial fusion and autophagy, and help to explain how Vps13D contributes to disease.
[Display omitted]
•Vps13D and Vmp1 are linked as regulators of autophagy and mitochondrial morphology•Vps13D, like Vmp1, regulates mitochondria and ER contact sites•Vps13D regulates mitophagy and mitochondrial morphology downstream of Vmp1•Vps13D mitochondria and ER contact phenotypes depend on Marf/MFN2
The clearance of mitochondria by mitophagy is important for cell health. Shen et al. identify Vps13D as functioning in a pathway with Vmp1 and Marf/Mfn2 to regulate mitophagy. Loss of Vps13D in flies and cells derived from patients with movement disorders also impacts mitochondria and ER contact, and these cellular defects depend on Marf/MFN2. |
---|---|
AbstractList | Mutations in
Vps13D
cause defects in autophagy, clearance of mitochondria and human movement disorders. Here we discover that Vps13D functions in a pathway downstream of Vmp1 and upstream of Marf/Mfn2. Like
vps13d, vmp1
mutant cells exhibit defects in autophagy, mitochondrial size and clearance. Through the relationship between
vmp1
and
vps13d
, we reveal a novel role for Vps13D in the regulation of mitochondria and endoplasmic reticulum (ER) contact. Significantly, the function of Vps13D in mitochondria and ER contact is conserved between fly and human cells, including fibroblasts derived from patients suffering from
VPS13D
mutation-associated neurological symptoms.
vps13d
mutants have increased levels of Marf/MFN2, a regulator of mitochondrial fusion. Importantly, loss of
marf/MFN2
suppresses
vps13d
mutant phenotypes, including mitochondria and ER contact. These findings indicate that Vps13d functions at a regulatory point between mitochondria and ER contact, mitochondrial fusion and autophagy, and help to explain how Vps13D contributes to disease.
The clearance of mitochondria by mitophagy is important for cell health. Shen
et al.
identify Vps13D as functioning in a pathway with Vmp1 and Marf/Mfn2 to regulate mitophagy. Loss of
Vps13D
in flies and cells derived from patients with movement disorders also impacts mitochondria and ER contact, and these cellular defects depend on Marf/MFN2. Mutations in Vps13D cause defects in autophagy, clearance of mitochondria, and human movement disorders. Here, we discover that Vps13D functions in a pathway downstream of Vmp1 and upstream of Marf/Mfn2. Like vps13d, vmp1 mutant cells exhibit defects in autophagy, mitochondrial size, and clearance. Through the relationship between vmp1 and vps13d, we reveal a novel role for Vps13D in the regulation of mitochondria and endoplasmic reticulum (ER) contact. Significantly, the function of Vps13D in mitochondria and ER contact is conserved between fly and human cells, including fibroblasts derived from patients suffering from VPS13D mutation-associated neurological symptoms. vps13d mutants have increased levels of Marf/MFN2, a regulator of mitochondrial fusion. Importantly, loss of marf/MFN2 suppresses vps13d mutant phenotypes, including mitochondria and ER contact. These findings indicate that Vps13d functions at a regulatory point between mitochondria and ER contact, mitochondrial fusion and autophagy, and help to explain how Vps13D contributes to disease. Mutations in Vps13D cause defects in autophagy, clearance of mitochondria, and human movement disorders. Here, we discover that Vps13D functions in a pathway downstream of Vmp1 and upstream of Marf/Mfn2. Like vps13d, vmp1 mutant cells exhibit defects in autophagy, mitochondrial size, and clearance. Through the relationship between vmp1 and vps13d, we reveal a novel role for Vps13D in the regulation of mitochondria and endoplasmic reticulum (ER) contact. Significantly, the function of Vps13D in mitochondria and ER contact is conserved between fly and human cells, including fibroblasts derived from patients suffering from VPS13D mutation-associated neurological symptoms. vps13d mutants have increased levels of Marf/MFN2, a regulator of mitochondrial fusion. Importantly, loss of marf/MFN2 suppresses vps13d mutant phenotypes, including mitochondria and ER contact. These findings indicate that Vps13d functions at a regulatory point between mitochondria and ER contact, mitochondrial fusion and autophagy, and help to explain how Vps13D contributes to disease.Mutations in Vps13D cause defects in autophagy, clearance of mitochondria, and human movement disorders. Here, we discover that Vps13D functions in a pathway downstream of Vmp1 and upstream of Marf/Mfn2. Like vps13d, vmp1 mutant cells exhibit defects in autophagy, mitochondrial size, and clearance. Through the relationship between vmp1 and vps13d, we reveal a novel role for Vps13D in the regulation of mitochondria and endoplasmic reticulum (ER) contact. Significantly, the function of Vps13D in mitochondria and ER contact is conserved between fly and human cells, including fibroblasts derived from patients suffering from VPS13D mutation-associated neurological symptoms. vps13d mutants have increased levels of Marf/MFN2, a regulator of mitochondrial fusion. Importantly, loss of marf/MFN2 suppresses vps13d mutant phenotypes, including mitochondria and ER contact. These findings indicate that Vps13d functions at a regulatory point between mitochondria and ER contact, mitochondrial fusion and autophagy, and help to explain how Vps13D contributes to disease. Mutations in Vps13D cause defects in autophagy, clearance of mitochondria, and human movement disorders. Here, we discover that Vps13D functions in a pathway downstream of Vmp1 and upstream of Marf/Mfn2. Like vps13d, vmp1 mutant cells exhibit defects in autophagy, mitochondrial size, and clearance. Through the relationship between vmp1 and vps13d, we reveal a novel role for Vps13D in the regulation of mitochondria and endoplasmic reticulum (ER) contact. Significantly, the function of Vps13D in mitochondria and ER contact is conserved between fly and human cells, including fibroblasts derived from patients suffering from VPS13D mutation-associated neurological symptoms. vps13d mutants have increased levels of Marf/MFN2, a regulator of mitochondrial fusion. Importantly, loss of marf/MFN2 suppresses vps13d mutant phenotypes, including mitochondria and ER contact. These findings indicate that Vps13d functions at a regulatory point between mitochondria and ER contact, mitochondrial fusion and autophagy, and help to explain how Vps13D contributes to disease. [Display omitted] •Vps13D and Vmp1 are linked as regulators of autophagy and mitochondrial morphology•Vps13D, like Vmp1, regulates mitochondria and ER contact sites•Vps13D regulates mitophagy and mitochondrial morphology downstream of Vmp1•Vps13D mitochondria and ER contact phenotypes depend on Marf/MFN2 The clearance of mitochondria by mitophagy is important for cell health. Shen et al. identify Vps13D as functioning in a pathway with Vmp1 and Marf/Mfn2 to regulate mitophagy. Loss of Vps13D in flies and cells derived from patients with movement disorders also impacts mitochondria and ER contact, and these cellular defects depend on Marf/MFN2. |
Author | Zhao, Yan G. Shen, James L. Wang, Ruoxi Burmeister, Margit Fortier, Tina M. Baehrecke, Eric H. |
AuthorAffiliation | 2 Michigan Neuroscience Institute and Dept of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA 4 Twitter: @BaehreckeLab 3 Lead Contact 1 Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605 USA |
AuthorAffiliation_xml | – name: 4 Twitter: @BaehreckeLab – name: 3 Lead Contact – name: 2 Michigan Neuroscience Institute and Dept of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA – name: 1 Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605 USA |
Author_xml | – sequence: 1 givenname: James L. surname: Shen fullname: Shen, James L. organization: Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA – sequence: 2 givenname: Tina M. surname: Fortier fullname: Fortier, Tina M. organization: Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA – sequence: 3 givenname: Yan G. surname: Zhao fullname: Zhao, Yan G. organization: Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA – sequence: 4 givenname: Ruoxi orcidid: 0000-0002-3828-899X surname: Wang fullname: Wang, Ruoxi organization: Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA – sequence: 5 givenname: Margit orcidid: 0000-0002-1914-2434 surname: Burmeister fullname: Burmeister, Margit organization: Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA – sequence: 6 givenname: Eric H. surname: Baehrecke fullname: Baehrecke, Eric H. email: eric.baehrecke@umassmed.edu organization: Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34019822$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9v1DAQxS1URLeFD8AF-cihST3OHydCQkKlBaRWSAh6tbz2pOtVYgfbWdQLn71Jt1TAoaeRZt7vzWjeETlw3iEhr4HlwKA-3eZ6WueccchZmbOaPyMraESbsbKsDsiKtTXL2obzQ3IU45Yx4E1bvyCHRclg6a_I7-thhBN6PUYoPp5Q5Qy9UqE7veocp93kdLLeUeuootq7iGGHho4qbX6pW5o8DXgz9SohHWzyeuOdCVbd25x_W4ikdFpwgzvs_TigS_dTYyOqiC_J8071EV891GPy4-L8-9nn7PLrpy9nHy4zXYFImeAgOm2w1lUhWmCqEIUQrFPGCCZAmFasedmVFTdGV0xwzkFBKYypWzBNWRyT93vfcVoPaPR8RlC9HIMdVLiVXln578TZjbzxO9kU0LIGZoO3DwbB_5wwJjnYqLHvlUM_RcmrAjhA2bJZ-ubvXY9L_jx9FsBeoIOPMWD3KAEml2DlVs7ByiVYyUo5Bzsz4j9G26SWcOZzbf8k-W5P4vzfncUgo7boNBobUCdpvH2CvgMSm707 |
CitedBy_id | crossref_primary_10_1002_adbi_202200221 crossref_primary_10_1016_j_bbalip_2021_159003 crossref_primary_10_1016_j_cell_2023_08_008 crossref_primary_10_1111_febs_16280 crossref_primary_10_1016_j_jmb_2024_168473 crossref_primary_10_1083_jcb_202104073 crossref_primary_10_1146_annurev_cellbio_120420_014634 crossref_primary_10_14336_AD_2023_0201 crossref_primary_10_15252_embj_2021108863 crossref_primary_10_1016_j_cub_2022_01_040 crossref_primary_10_1101_cshperspect_a041257 crossref_primary_10_1016_j_arr_2023_101951 crossref_primary_10_1016_j_mitoco_2024_11_002 crossref_primary_10_3389_fnagi_2023_1166146 crossref_primary_10_1073_pnas_2203769119 crossref_primary_10_3390_cells10092273 crossref_primary_10_1080_27694127_2022_2055724 crossref_primary_10_1177_25152564221136388 crossref_primary_10_15252_embr_202153894 crossref_primary_10_1007_s12035_022_02916_1 crossref_primary_10_1111_febs_16241 crossref_primary_10_1038_s41418_022_01014_y crossref_primary_10_1093_g3journal_jkaf023 crossref_primary_10_1177_20503121231221941 |
Cites_doi | 10.1126/science.1207385 10.1073/pnas.0913485107 10.1159/000381265 10.1016/j.cub.2017.11.064 10.1016/j.ygeno.2004.04.012 10.1002/ana.25204 10.1126/science.aac7557 10.1083/jcb.201610055 10.1016/j.cmet.2017.12.008 10.1016/j.tins.2016.01.008 10.1016/j.molcel.2017.08.005 10.1111/cns.13140 10.1534/genetics.104.031930 10.1089/ars.2014.6223 10.7554/eLife.24463 10.1038/cdd.2012.43 10.1038/s41556-018-0176-2 10.1083/jcb.202010004 10.1371/journal.pone.0044214 10.7554/eLife.43561 10.1038/nature11910 10.1385/NMM:8:1-2:43 10.1083/jcb.139.1.23 10.1073/pnas.1606786113 10.1371/journal.pbio.1000298 10.1126/science.aac7041 10.1006/dbio.2002.0784 10.1093/annonc/mdw009 10.1083/jcb.201807019 10.1242/dev.124.22.4673 10.1038/ng.3984 10.1038/ncb2804 10.7554/eLife.32866 10.1016/j.devcel.2014.01.012 10.1016/j.cell.2010.04.009 10.1083/jcb.201801044 10.15252/embr.201744331 10.1016/j.mcn.2012.07.011 10.1038/nature07534 10.1016/j.cell.2010.04.034 10.1002/ana.25220 10.1534/genetics.113.160713 10.1083/jcb.201808151 10.1083/jcb.201709111 10.1002/gene.10137 10.1126/scitranslmed.3001065 10.1016/j.cmet.2020.07.017 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.cub.2021.04.062 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1879-0445 |
EndPage | 3039.e7 |
ExternalDocumentID | PMC8319081 34019822 10_1016_j_cub_2021_04_062 S0960982221006096 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: F30 CA239374 – fundername: NIGMS NIH HHS grantid: R35 GM131689 |
GroupedDBID | --- --K -DZ -~X 0R~ 1RT 1~5 2WC 4.4 457 4G. 53G 5GY 62- 6J9 7-5 AACTN AAEDW AAFTH AAFWJ AAIAV AAKRW AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHSJ AGKMS AGUBO AHHHB AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FIRID IHE IXB J1W JIG LX5 M3Z M41 O-L O9- OK1 P2P RCE ROL RPZ SCP SDG SES SSZ TR2 WQ6 ZA5 29F 5VS AAEDT AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP ASPBG AVWKF CAG CITATION COF EJD FEDTE FGOYB G-2 HVGLF HZ~ OZT R2- RIG SEW UHS XIH XPP Y6R ZGI CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c517t-7217fcde6c537910a373770fadd70717d97b24f452ddc5072221a147dd691d843 |
IEDL.DBID | IXB |
ISSN | 0960-9822 1879-0445 |
IngestDate | Thu Aug 21 14:11:37 EDT 2025 Fri Jul 11 07:45:29 EDT 2025 Mon Jul 21 05:23:53 EDT 2025 Tue Jul 01 01:57:15 EDT 2025 Thu Apr 24 22:52:37 EDT 2025 Fri Feb 23 02:41:24 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | Vmp1 membrane contact Vps13D autophagy mitochondria Drosophila |
Language | English |
License | Copyright © 2021 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-7217fcde6c537910a373770fadd70717d97b24f452ddc5072221a147dd691d843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 J.L.S., Y.G.Z. and E.H.B. designed experiments, J.L.S. and T.M.F. performed experiments, R.W. and M.B. provided resources, J.L.S. and E.H.B. wrote the manuscript and all authors commented on it. Author contributions |
ORCID | 0000-0002-1914-2434 0000-0002-3828-899X |
OpenAccessLink | http://www.cell.com/article/S0960982221006096/pdf |
PMID | 34019822 |
PQID | 2531211490 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8319081 proquest_miscellaneous_2531211490 pubmed_primary_34019822 crossref_primary_10_1016_j_cub_2021_04_062 crossref_citationtrail_10_1016_j_cub_2021_04_062 elsevier_sciencedirect_doi_10_1016_j_cub_2021_04_062 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-26 |
PublicationDateYYYYMMDD | 2021-07-26 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Current biology |
PublicationTitleAlternate | Curr Biol |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Paillusson, Stoica, Gomez-Suaga, Lau, Mueller, Miller, Miller (bib36) 2016; 39 Gao, Yang (bib32) 2018; 217 Nakada, Boyd, Russell, Aguirre-Hernández, Wilkinson, Thair, Nakada, McConechy, Fjell, Walley (bib18) 2015; 7 Hamasaki, Furuta, Matsuda, Nezu, Yamamoto, Fujita, Oomori, Noda, Haraguchi, Hiraoka (bib26) 2013; 495 Lee, Sanchez-Martinez, Martinez Zarate, Benincá, Mayor, Clague, Whitworth (bib5) 2018; 217 Velayos-Baeza, Vettori, Copley, Dobson-Stone, Monaco (bib13) 2004; 84 Meyers, Bryan, McFarland, Weir, Sizemore, Xu, Dharia, Montgomery, Cowley, Pantel (bib49) 2017; 49 Schon, Area-Gomez (bib40) 2013; 55 Insolera, Lőrincz, Wishnie, Juhász, Collins (bib41) 2020 Friedman, Lackner, West, DiBenedetto, Nunnari, Voeltz (bib28) 2011; 334 Hayashi, Ito, Sado, Taniguchi, Akimoto, Takeuchi, Aigaki, Matsuzaki, Nakagoshi, Tanimura (bib44) 2002; 34 Guillén-Samander, Leonzino, Hanna, Tang, Shen, De Camilli (bib37) 2021; 220 Tian, Li, Hu, Ren, Tian, Zhao, Lu, Huang, Yang, Li (bib21) 2010; 141 John Peter, Herrmann, Antunes, Rapaport, Dimmer, Kornmann (bib15) 2017; 216 Narendra, Jin, Tanaka, Suen, Gautier, Shen, Cookson, Youle (bib3) 2010; 8 Anding, Wang, Chang, Sliter, Powers, Hofmann, Youle, Baehrecke (bib7) 2018; 28 Ziviani, Tao, Whitworth (bib31) 2010; 107 Andersen, Sathyanarayanan, Di Bacco, Chi, Zhang, Chen, Dolinski, Kraus, Roberts, Arthur (bib20) 2010; 2 Hailey, Rambold, Satpute-Krishnan, Mitra, Sougrat, Kim, Lippincott-Schwartz (bib33) 2010; 141 Böckler, Westermann (bib27) 2014; 28 Giorgi, Missiroli, Patergnani, Duszynski, Wieckowski, Pinton (bib39) 2015; 22 Hung, Lam, Udeshi, Svinkina, Guzman, Mootha, Carr, Ting (bib30) 2017; 6 Chakrabarti, Ji, Stan, de Juan Sanz, Ryan, Higgs (bib38) 2018; 217 Pircs, Nagy, Varga, Venkei, Erdi, Hegedus, Juhasz (bib46) 2012; 7 McWilliams, Prescott, Montava-Garriga, Ball, Singh, Barini, Muqit, Brooks, Ganley (bib4) 2018; 27 Lee, Cooksey, Baehrecke (bib8) 2002; 250 Dempster, Rossen, Kazachkova, Pan, Kugener, Root, Tsherniak (bib48) 2019 de Brito, Scorrano (bib23) 2008; 456 Kumar, Leonzino, Hancock-Cerutti, Horenkamp, Li, Lees, Wheeler, Reinisch, De Camilli (bib14) 2018; 217 Brickner, Fuller (bib12) 1997; 139 Naon, Zaninello, Giacomello, Varanita, Grespi, Lakshminaranayan, Serafini, Semenzato, Herkenne, Hernández-Alvarez (bib24) 2016; 113 Bousquet, Noirot, Accadbled, Sales de Gauzy, Castex, Brousset, Gomez-Brouchet (bib19) 2016; 27 Antonicka, Lin, Janer, Aaltonen, Weraarpachai, Gingras, Shoubridge (bib29) 2020; 32 Yeshaw, van der Zwaag, Pinto, Lahaye, Faber, Gómez-Sánchez, Dolga, Poland, Monaco, van IJzendoorn (bib35) 2019; 8 Chang, Shravage, Hayes, Powers, Simin, Wade Harper, Baehrecke (bib6) 2013; 15 Jiang, Baehrecke, Thummel (bib9) 1997; 124 Gratz, Ukken, Rubinstein, Thiede, Donohue, Cummings, O’Connor-Giles (bib43) 2014; 196 Wang, Liu, Lu (bib2) 2019; 25 Blomen, Májek, Jae, Bigenzahn, Nieuwenhuis, Staring, Sacco, van Diemen, Olk, Stukalov (bib16) 2015; 350 Gauthier, Meijer, Lessel, Mencacci, Krainc, Hempel, Tsiakas, Prokisch, Rossignol, Helm (bib11) 2018; 83 Wang, Birsoy, Hughes, Krupczak, Post, Wei, Lander, Sabatini (bib17) 2015; 350 Denton, Chang, Nicolson, Shravage, Simin, Baehrecke, Kumar (bib45) 2012; 19 McLelland, Goiran, Yi, Dorval, Chen, Lauinger, Krahn, Valimehr, Rakovic, Rouiller (bib25) 2018; 7 Houlden, Reilly (bib42) 2006; 8 Sanyal, Consoulas, Kuromi, Basole, Mukai, Kidokoro, Krishnan, Ramaswami (bib47) 2005; 169 Seong, Insolera, Dulovic, Kamsteeg, Trinh, Brüggemann, Sandford, Li, Ozel, Li (bib10) 2018; 83 Palikaras, Lionaki, Tavernarakis (bib1) 2018; 20 Muallem, Chung, Jha, Ahuja (bib34) 2017; 18 Zhao, Chen, Miao, Zhao, Qu, Li, Wang, Liu, Li, Chen (bib22) 2017; 67 Schon (10.1016/j.cub.2021.04.062_bib40) 2013; 55 Nakada (10.1016/j.cub.2021.04.062_bib18) 2015; 7 Kumar (10.1016/j.cub.2021.04.062_bib14) 2018; 217 Muallem (10.1016/j.cub.2021.04.062_bib34) 2017; 18 Houlden (10.1016/j.cub.2021.04.062_bib42) 2006; 8 Tian (10.1016/j.cub.2021.04.062_bib21) 2010; 141 Pircs (10.1016/j.cub.2021.04.062_bib46) 2012; 7 Narendra (10.1016/j.cub.2021.04.062_bib3) 2010; 8 Friedman (10.1016/j.cub.2021.04.062_bib28) 2011; 334 Gauthier (10.1016/j.cub.2021.04.062_bib11) 2018; 83 Hamasaki (10.1016/j.cub.2021.04.062_bib26) 2013; 495 McLelland (10.1016/j.cub.2021.04.062_bib25) 2018; 7 Denton (10.1016/j.cub.2021.04.062_bib45) 2012; 19 Jiang (10.1016/j.cub.2021.04.062_bib9) 1997; 124 Sanyal (10.1016/j.cub.2021.04.062_bib47) 2005; 169 Blomen (10.1016/j.cub.2021.04.062_bib16) 2015; 350 Hailey (10.1016/j.cub.2021.04.062_bib33) 2010; 141 Velayos-Baeza (10.1016/j.cub.2021.04.062_bib13) 2004; 84 Böckler (10.1016/j.cub.2021.04.062_bib27) 2014; 28 Insolera (10.1016/j.cub.2021.04.062_bib41) 2020 Gratz (10.1016/j.cub.2021.04.062_bib43) 2014; 196 Palikaras (10.1016/j.cub.2021.04.062_bib1) 2018; 20 Hayashi (10.1016/j.cub.2021.04.062_bib44) 2002; 34 Hung (10.1016/j.cub.2021.04.062_bib30) 2017; 6 Brickner (10.1016/j.cub.2021.04.062_bib12) 1997; 139 Giorgi (10.1016/j.cub.2021.04.062_bib39) 2015; 22 Chakrabarti (10.1016/j.cub.2021.04.062_bib38) 2018; 217 Dempster (10.1016/j.cub.2021.04.062_bib48) 2019 McWilliams (10.1016/j.cub.2021.04.062_bib4) 2018; 27 Wang (10.1016/j.cub.2021.04.062_bib2) 2019; 25 Anding (10.1016/j.cub.2021.04.062_bib7) 2018; 28 Meyers (10.1016/j.cub.2021.04.062_bib49) 2017; 49 Lee (10.1016/j.cub.2021.04.062_bib5) 2018; 217 Wang (10.1016/j.cub.2021.04.062_bib17) 2015; 350 Gao (10.1016/j.cub.2021.04.062_bib32) 2018; 217 Seong (10.1016/j.cub.2021.04.062_bib10) 2018; 83 Yeshaw (10.1016/j.cub.2021.04.062_bib35) 2019; 8 Paillusson (10.1016/j.cub.2021.04.062_bib36) 2016; 39 Ziviani (10.1016/j.cub.2021.04.062_bib31) 2010; 107 Zhao (10.1016/j.cub.2021.04.062_bib22) 2017; 67 Bousquet (10.1016/j.cub.2021.04.062_bib19) 2016; 27 de Brito (10.1016/j.cub.2021.04.062_bib23) 2008; 456 Guillén-Samander (10.1016/j.cub.2021.04.062_bib37) 2021; 220 John Peter (10.1016/j.cub.2021.04.062_bib15) 2017; 216 Andersen (10.1016/j.cub.2021.04.062_bib20) 2010; 2 Naon (10.1016/j.cub.2021.04.062_bib24) 2016; 113 Chang (10.1016/j.cub.2021.04.062_bib6) 2013; 15 Antonicka (10.1016/j.cub.2021.04.062_bib29) 2020; 32 Lee (10.1016/j.cub.2021.04.062_bib8) 2002; 250 |
References_xml | – volume: 350 start-page: 1092 year: 2015 end-page: 1096 ident: bib16 article-title: Gene essentiality and synthetic lethality in haploid human cells publication-title: Science – volume: 141 start-page: 1042 year: 2010 end-page: 1055 ident: bib21 article-title: C. elegans screen identifies autophagy genes specific to multicellular organisms publication-title: Cell – volume: 495 start-page: 389 year: 2013 end-page: 393 ident: bib26 article-title: Autophagosomes form at ER-mitochondria contact sites publication-title: Nature – volume: 217 start-page: 3322 year: 2018 end-page: 3324 ident: bib32 article-title: VPS13: a lipid transfer protein making contacts at multiple cellular locations publication-title: J. Cell Biol. – volume: 39 start-page: 146 year: 2016 end-page: 157 ident: bib36 article-title: There’s something wrong with my MAM; the ER-mitochondria axis and neurodegenerative diseases publication-title: Trends Neurosci. – volume: 7 start-page: e32866 year: 2018 ident: bib25 article-title: Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy publication-title: eLife – volume: 55 start-page: 26 year: 2013 end-page: 36 ident: bib40 article-title: Mitochondria-associated ER membranes in Alzheimer disease publication-title: Mol. Cell. Neurosci. – year: 2019 ident: bib48 article-title: Extracting biological insights from the Project Achilles genome-scale CRISPR screens in cancer cell lines publication-title: bioRxiv – volume: 67 start-page: 974 year: 2017 end-page: 989.e6 ident: bib22 article-title: The ER-localized transmembrane protein EPG-3/VMP1 regulates SERCA activity to control ER-isolation membrane contacts for autophagosome formation publication-title: Mol. Cell – volume: 220 start-page: e202010004 year: 2021 ident: bib37 article-title: VPS13D bridges the ER to Miro containing membranes publication-title: J. Cell Biol. – volume: 22 start-page: 995 year: 2015 end-page: 1019 ident: bib39 article-title: Mitochondria-associated membranes: composition, molecular mechanisms, and physiopathological implications publication-title: Antioxid. Redox Signal. – volume: 83 start-page: 1089 year: 2018 end-page: 1095 ident: bib11 article-title: Recessive mutations in VPS13D cause childhood onset movement disorders publication-title: Ann. Neurol. – volume: 19 start-page: 1299 year: 2012 end-page: 1307 ident: bib45 article-title: Relationship between growth arrest and autophagy in midgut programmed cell death in Drosophila publication-title: Cell Death Differ. – volume: 8 start-page: e1000298 year: 2010 ident: bib3 article-title: PINK1 is selectively stabilized on impaired mitochondria to activate Parkin publication-title: PLoS Biol. – volume: 169 start-page: 737 year: 2005 end-page: 750 ident: bib47 article-title: Analysis of conditional paralytic mutants in Drosophila sarco-endoplasmic reticulum calcium ATPase reveals novel mechanisms for regulating membrane excitability publication-title: Genetics – volume: 196 start-page: 961 year: 2014 end-page: 971 ident: bib43 article-title: Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila publication-title: Genetics – volume: 20 start-page: 1013 year: 2018 end-page: 1022 ident: bib1 article-title: Mechanisms of mitophagy in cellular homeostasis, physiology and pathology publication-title: Nat. Cell Biol. – volume: 350 start-page: 1096 year: 2015 end-page: 1101 ident: bib17 article-title: Identification and characterization of essential genes in the human genome publication-title: Science – volume: 107 start-page: 5018 year: 2010 end-page: 5023 ident: bib31 article-title: Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin publication-title: Proc. Natl. Acad. Sci. USA – year: 2020 ident: bib41 article-title: Mitochondrial fission, integrity and completion of mitophagy require separable functions of Vps13D in publication-title: bioRxiv – volume: 6 start-page: e24463 year: 2017 ident: bib30 article-title: Proteomic mapping of cytosol-facing outer mitochondrial and ER membranes in living human cells by proximity biotinylation publication-title: eLife – volume: 217 start-page: 1613 year: 2018 end-page: 1622 ident: bib5 article-title: Basal mitophagy is widespread in publication-title: J. Cell Biol. – volume: 27 start-page: 439 year: 2018 end-page: 449.e5 ident: bib4 article-title: Basal mitophagy occurs independently of PINK1 in mouse tissues of high metabolic demand publication-title: Cell Metab. – volume: 28 start-page: 450 year: 2014 end-page: 458 ident: bib27 article-title: Mitochondrial ER contacts are crucial for mitophagy in yeast publication-title: Dev. Cell – volume: 84 start-page: 536 year: 2004 end-page: 549 ident: bib13 article-title: Analysis of the human VPS13 gene family publication-title: Genomics – volume: 2 start-page: 43ra55 year: 2010 ident: bib20 article-title: Pathway-based identification of biomarkers for targeted therapeutics: personalized oncology with PI3K pathway inhibitors publication-title: Sci. Transl. Med. – volume: 28 start-page: 287 year: 2018 end-page: 295.e6 ident: bib7 article-title: Vps13D encodes a ubiquitin-binding protein that is required for the regulation of mitochondrial size and clearance publication-title: Curr. Biol. – volume: 83 start-page: 1075 year: 2018 end-page: 1088 ident: bib10 article-title: Mutations in VPS13D lead to a new recessive ataxia with spasticity and mitochondrial defects publication-title: Ann. Neurol. – volume: 8 start-page: e43561 year: 2019 ident: bib35 article-title: Human VPS13A is associated with multiple organelles and influences mitochondrial morphology and lipid droplet motility publication-title: eLife – volume: 217 start-page: 251 year: 2018 end-page: 268 ident: bib38 article-title: INF2-mediated actin polymerization at the ER stimulates mitochondrial calcium uptake, inner membrane constriction, and division publication-title: J. Cell Biol. – volume: 27 start-page: 738 year: 2016 end-page: 744 ident: bib19 article-title: Whole-exome sequencing in osteosarcoma reveals important heterogeneity of genetic alterations publication-title: Ann. Oncol. – volume: 18 start-page: 1893 year: 2017 end-page: 1904 ident: bib34 article-title: Lipids at membrane contact sites: cell signaling and ion transport publication-title: EMBO Rep. – volume: 141 start-page: 656 year: 2010 end-page: 667 ident: bib33 article-title: Mitochondria supply membranes for autophagosome biogenesis during starvation publication-title: Cell – volume: 25 start-page: 859 year: 2019 end-page: 875 ident: bib2 article-title: Mechanisms and roles of mitophagy in neurodegenerative diseases publication-title: CNS Neurosci. Ther. – volume: 216 start-page: 3219 year: 2017 end-page: 3229 ident: bib15 article-title: Vps13-Mcp1 interact at vacuole-mitochondria interfaces and bypass ER-mitochondria contact sites publication-title: J. Cell Biol. – volume: 15 start-page: 1067 year: 2013 end-page: 1078 ident: bib6 article-title: Uba1 functions in Atg7- and Atg3-independent autophagy publication-title: Nat. Cell Biol. – volume: 124 start-page: 4673 year: 1997 end-page: 4683 ident: bib9 article-title: Steroid regulated programmed cell death during Drosophila metamorphosis publication-title: Development – volume: 217 start-page: 3625 year: 2018 end-page: 3639 ident: bib14 article-title: VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites publication-title: J. Cell Biol. – volume: 7 start-page: e44214 year: 2012 ident: bib46 article-title: Advantages and limitations of different p62-based assays for estimating autophagic activity in Drosophila publication-title: PLoS ONE – volume: 250 start-page: 101 year: 2002 end-page: 111 ident: bib8 article-title: Steroid regulation of midgut cell death during Drosophila development publication-title: Dev. Biol. – volume: 7 start-page: 545 year: 2015 end-page: 553 ident: bib18 article-title: VPS13D gene variant is associated with altered IL-6 production and mortality in septic shock publication-title: J. Innate Immun. – volume: 8 start-page: 43 year: 2006 end-page: 62 ident: bib42 article-title: Molecular genetics of autosomal-dominant demyelinating Charcot-Marie-Tooth disease publication-title: Neuromolecular Med. – volume: 49 start-page: 1779 year: 2017 end-page: 1784 ident: bib49 article-title: Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells publication-title: Nat. Genet. – volume: 139 start-page: 23 year: 1997 end-page: 36 ident: bib12 article-title: SOI1 encodes a novel, conserved protein that promotes TGN-endosomal cycling of Kex2p and other membrane proteins by modulating the function of two TGN localization signals publication-title: J. Cell Biol. – volume: 113 start-page: 11249 year: 2016 end-page: 11254 ident: bib24 article-title: Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum-mitochondria tether publication-title: Proc. Natl. Acad. Sci. USA – volume: 456 start-page: 605 year: 2008 end-page: 610 ident: bib23 article-title: Mitofusin 2 tethers endoplasmic reticulum to mitochondria publication-title: Nature – volume: 32 start-page: 479 year: 2020 end-page: 497.e9 ident: bib29 article-title: A high-density human mitochondrial proximity interaction network publication-title: Cell Metab. – volume: 34 start-page: 58 year: 2002 end-page: 61 ident: bib44 article-title: GETDB, a database compiling expression patterns and molecular locations of a collection of Gal4 enhancer traps publication-title: Genesis – volume: 334 start-page: 358 year: 2011 end-page: 362 ident: bib28 article-title: ER tubules mark sites of mitochondrial division publication-title: Science – volume: 334 start-page: 358 year: 2011 ident: 10.1016/j.cub.2021.04.062_bib28 article-title: ER tubules mark sites of mitochondrial division publication-title: Science doi: 10.1126/science.1207385 – volume: 107 start-page: 5018 year: 2010 ident: 10.1016/j.cub.2021.04.062_bib31 article-title: Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0913485107 – volume: 7 start-page: 545 year: 2015 ident: 10.1016/j.cub.2021.04.062_bib18 article-title: VPS13D gene variant is associated with altered IL-6 production and mortality in septic shock publication-title: J. Innate Immun. doi: 10.1159/000381265 – volume: 28 start-page: 287 year: 2018 ident: 10.1016/j.cub.2021.04.062_bib7 article-title: Vps13D encodes a ubiquitin-binding protein that is required for the regulation of mitochondrial size and clearance publication-title: Curr. Biol. doi: 10.1016/j.cub.2017.11.064 – volume: 84 start-page: 536 year: 2004 ident: 10.1016/j.cub.2021.04.062_bib13 article-title: Analysis of the human VPS13 gene family publication-title: Genomics doi: 10.1016/j.ygeno.2004.04.012 – volume: 83 start-page: 1089 year: 2018 ident: 10.1016/j.cub.2021.04.062_bib11 article-title: Recessive mutations in VPS13D cause childhood onset movement disorders publication-title: Ann. Neurol. doi: 10.1002/ana.25204 – volume: 350 start-page: 1092 year: 2015 ident: 10.1016/j.cub.2021.04.062_bib16 article-title: Gene essentiality and synthetic lethality in haploid human cells publication-title: Science doi: 10.1126/science.aac7557 – volume: 216 start-page: 3219 year: 2017 ident: 10.1016/j.cub.2021.04.062_bib15 article-title: Vps13-Mcp1 interact at vacuole-mitochondria interfaces and bypass ER-mitochondria contact sites publication-title: J. Cell Biol. doi: 10.1083/jcb.201610055 – volume: 27 start-page: 439 year: 2018 ident: 10.1016/j.cub.2021.04.062_bib4 article-title: Basal mitophagy occurs independently of PINK1 in mouse tissues of high metabolic demand publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.12.008 – volume: 39 start-page: 146 year: 2016 ident: 10.1016/j.cub.2021.04.062_bib36 article-title: There’s something wrong with my MAM; the ER-mitochondria axis and neurodegenerative diseases publication-title: Trends Neurosci. doi: 10.1016/j.tins.2016.01.008 – volume: 67 start-page: 974 year: 2017 ident: 10.1016/j.cub.2021.04.062_bib22 article-title: The ER-localized transmembrane protein EPG-3/VMP1 regulates SERCA activity to control ER-isolation membrane contacts for autophagosome formation publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.08.005 – volume: 25 start-page: 859 year: 2019 ident: 10.1016/j.cub.2021.04.062_bib2 article-title: Mechanisms and roles of mitophagy in neurodegenerative diseases publication-title: CNS Neurosci. Ther. doi: 10.1111/cns.13140 – volume: 169 start-page: 737 year: 2005 ident: 10.1016/j.cub.2021.04.062_bib47 article-title: Analysis of conditional paralytic mutants in Drosophila sarco-endoplasmic reticulum calcium ATPase reveals novel mechanisms for regulating membrane excitability publication-title: Genetics doi: 10.1534/genetics.104.031930 – volume: 22 start-page: 995 year: 2015 ident: 10.1016/j.cub.2021.04.062_bib39 article-title: Mitochondria-associated membranes: composition, molecular mechanisms, and physiopathological implications publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2014.6223 – volume: 6 start-page: e24463 year: 2017 ident: 10.1016/j.cub.2021.04.062_bib30 article-title: Proteomic mapping of cytosol-facing outer mitochondrial and ER membranes in living human cells by proximity biotinylation publication-title: eLife doi: 10.7554/eLife.24463 – volume: 19 start-page: 1299 year: 2012 ident: 10.1016/j.cub.2021.04.062_bib45 article-title: Relationship between growth arrest and autophagy in midgut programmed cell death in Drosophila publication-title: Cell Death Differ. doi: 10.1038/cdd.2012.43 – volume: 20 start-page: 1013 year: 2018 ident: 10.1016/j.cub.2021.04.062_bib1 article-title: Mechanisms of mitophagy in cellular homeostasis, physiology and pathology publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0176-2 – volume: 220 start-page: e202010004 year: 2021 ident: 10.1016/j.cub.2021.04.062_bib37 article-title: VPS13D bridges the ER to Miro containing membranes publication-title: J. Cell Biol. doi: 10.1083/jcb.202010004 – volume: 7 start-page: e44214 year: 2012 ident: 10.1016/j.cub.2021.04.062_bib46 article-title: Advantages and limitations of different p62-based assays for estimating autophagic activity in Drosophila publication-title: PLoS ONE doi: 10.1371/journal.pone.0044214 – volume: 8 start-page: e43561 year: 2019 ident: 10.1016/j.cub.2021.04.062_bib35 article-title: Human VPS13A is associated with multiple organelles and influences mitochondrial morphology and lipid droplet motility publication-title: eLife doi: 10.7554/eLife.43561 – volume: 495 start-page: 389 year: 2013 ident: 10.1016/j.cub.2021.04.062_bib26 article-title: Autophagosomes form at ER-mitochondria contact sites publication-title: Nature doi: 10.1038/nature11910 – volume: 8 start-page: 43 year: 2006 ident: 10.1016/j.cub.2021.04.062_bib42 article-title: Molecular genetics of autosomal-dominant demyelinating Charcot-Marie-Tooth disease publication-title: Neuromolecular Med. doi: 10.1385/NMM:8:1-2:43 – volume: 139 start-page: 23 year: 1997 ident: 10.1016/j.cub.2021.04.062_bib12 article-title: SOI1 encodes a novel, conserved protein that promotes TGN-endosomal cycling of Kex2p and other membrane proteins by modulating the function of two TGN localization signals publication-title: J. Cell Biol. doi: 10.1083/jcb.139.1.23 – year: 2019 ident: 10.1016/j.cub.2021.04.062_bib48 article-title: Extracting biological insights from the Project Achilles genome-scale CRISPR screens in cancer cell lines publication-title: bioRxiv – volume: 113 start-page: 11249 year: 2016 ident: 10.1016/j.cub.2021.04.062_bib24 article-title: Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum-mitochondria tether publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1606786113 – volume: 8 start-page: e1000298 year: 2010 ident: 10.1016/j.cub.2021.04.062_bib3 article-title: PINK1 is selectively stabilized on impaired mitochondria to activate Parkin publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000298 – volume: 350 start-page: 1096 year: 2015 ident: 10.1016/j.cub.2021.04.062_bib17 article-title: Identification and characterization of essential genes in the human genome publication-title: Science doi: 10.1126/science.aac7041 – volume: 250 start-page: 101 year: 2002 ident: 10.1016/j.cub.2021.04.062_bib8 article-title: Steroid regulation of midgut cell death during Drosophila development publication-title: Dev. Biol. doi: 10.1006/dbio.2002.0784 – volume: 27 start-page: 738 year: 2016 ident: 10.1016/j.cub.2021.04.062_bib19 article-title: Whole-exome sequencing in osteosarcoma reveals important heterogeneity of genetic alterations publication-title: Ann. Oncol. doi: 10.1093/annonc/mdw009 – volume: 217 start-page: 3625 year: 2018 ident: 10.1016/j.cub.2021.04.062_bib14 article-title: VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites publication-title: J. Cell Biol. doi: 10.1083/jcb.201807019 – volume: 124 start-page: 4673 year: 1997 ident: 10.1016/j.cub.2021.04.062_bib9 article-title: Steroid regulated programmed cell death during Drosophila metamorphosis publication-title: Development doi: 10.1242/dev.124.22.4673 – volume: 49 start-page: 1779 year: 2017 ident: 10.1016/j.cub.2021.04.062_bib49 article-title: Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells publication-title: Nat. Genet. doi: 10.1038/ng.3984 – volume: 15 start-page: 1067 year: 2013 ident: 10.1016/j.cub.2021.04.062_bib6 article-title: Uba1 functions in Atg7- and Atg3-independent autophagy publication-title: Nat. Cell Biol. doi: 10.1038/ncb2804 – volume: 7 start-page: e32866 year: 2018 ident: 10.1016/j.cub.2021.04.062_bib25 article-title: Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy publication-title: eLife doi: 10.7554/eLife.32866 – volume: 28 start-page: 450 year: 2014 ident: 10.1016/j.cub.2021.04.062_bib27 article-title: Mitochondrial ER contacts are crucial for mitophagy in yeast publication-title: Dev. Cell doi: 10.1016/j.devcel.2014.01.012 – volume: 141 start-page: 656 year: 2010 ident: 10.1016/j.cub.2021.04.062_bib33 article-title: Mitochondria supply membranes for autophagosome biogenesis during starvation publication-title: Cell doi: 10.1016/j.cell.2010.04.009 – volume: 217 start-page: 1613 year: 2018 ident: 10.1016/j.cub.2021.04.062_bib5 article-title: Basal mitophagy is widespread in Drosophila but minimally affected by loss of Pink1 or parkin publication-title: J. Cell Biol. doi: 10.1083/jcb.201801044 – volume: 18 start-page: 1893 year: 2017 ident: 10.1016/j.cub.2021.04.062_bib34 article-title: Lipids at membrane contact sites: cell signaling and ion transport publication-title: EMBO Rep. doi: 10.15252/embr.201744331 – volume: 55 start-page: 26 year: 2013 ident: 10.1016/j.cub.2021.04.062_bib40 article-title: Mitochondria-associated ER membranes in Alzheimer disease publication-title: Mol. Cell. Neurosci. doi: 10.1016/j.mcn.2012.07.011 – volume: 456 start-page: 605 year: 2008 ident: 10.1016/j.cub.2021.04.062_bib23 article-title: Mitofusin 2 tethers endoplasmic reticulum to mitochondria publication-title: Nature doi: 10.1038/nature07534 – year: 2020 ident: 10.1016/j.cub.2021.04.062_bib41 article-title: Mitochondrial fission, integrity and completion of mitophagy require separable functions of Vps13D in Drosophila neurons publication-title: bioRxiv – volume: 141 start-page: 1042 year: 2010 ident: 10.1016/j.cub.2021.04.062_bib21 article-title: C. elegans screen identifies autophagy genes specific to multicellular organisms publication-title: Cell doi: 10.1016/j.cell.2010.04.034 – volume: 83 start-page: 1075 year: 2018 ident: 10.1016/j.cub.2021.04.062_bib10 article-title: Mutations in VPS13D lead to a new recessive ataxia with spasticity and mitochondrial defects publication-title: Ann. Neurol. doi: 10.1002/ana.25220 – volume: 196 start-page: 961 year: 2014 ident: 10.1016/j.cub.2021.04.062_bib43 article-title: Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila publication-title: Genetics doi: 10.1534/genetics.113.160713 – volume: 217 start-page: 3322 year: 2018 ident: 10.1016/j.cub.2021.04.062_bib32 article-title: VPS13: a lipid transfer protein making contacts at multiple cellular locations publication-title: J. Cell Biol. doi: 10.1083/jcb.201808151 – volume: 217 start-page: 251 year: 2018 ident: 10.1016/j.cub.2021.04.062_bib38 article-title: INF2-mediated actin polymerization at the ER stimulates mitochondrial calcium uptake, inner membrane constriction, and division publication-title: J. Cell Biol. doi: 10.1083/jcb.201709111 – volume: 34 start-page: 58 year: 2002 ident: 10.1016/j.cub.2021.04.062_bib44 article-title: GETDB, a database compiling expression patterns and molecular locations of a collection of Gal4 enhancer traps publication-title: Genesis doi: 10.1002/gene.10137 – volume: 2 start-page: 43ra55 year: 2010 ident: 10.1016/j.cub.2021.04.062_bib20 article-title: Pathway-based identification of biomarkers for targeted therapeutics: personalized oncology with PI3K pathway inhibitors publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3001065 – volume: 32 start-page: 479 year: 2020 ident: 10.1016/j.cub.2021.04.062_bib29 article-title: A high-density human mitochondrial proximity interaction network publication-title: Cell Metab. doi: 10.1016/j.cmet.2020.07.017 |
SSID | ssj0012896 |
Score | 2.4895537 |
Snippet | Mutations in Vps13D cause defects in autophagy, clearance of mitochondria, and human movement disorders. Here, we discover that Vps13D functions in a pathway... Mutations in Vps13D cause defects in autophagy, clearance of mitochondria and human movement disorders. Here we discover that Vps13D functions in a pathway... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3028 |
SubjectTerms | autophagy Autophagy - genetics Drosophila Endoplasmic Reticulum - metabolism GTP Phosphohydrolases - metabolism Humans membrane contact Membrane Proteins - genetics Membrane Proteins - metabolism mitochondria Mitochondria - metabolism Mitochondrial Dynamics - genetics Mitochondrial Proteins - genetics Mitochondrial Proteins - metabolism Mitochondrial Size Proteins - metabolism Vmp1 Vps13D |
Title | Vmp1, Vps13D, and Marf/Mfn2 function in a conserved pathway to regulate mitochondria and ER contact in development and disease |
URI | https://dx.doi.org/10.1016/j.cub.2021.04.062 https://www.ncbi.nlm.nih.gov/pubmed/34019822 https://www.proquest.com/docview/2531211490 https://pubmed.ncbi.nlm.nih.gov/PMC8319081 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiQuqLy3hcpInFCjXT9iJ8dSWlVUy6HQsjfLsR11EfWuttlWvfS3M-MkCwuiB45JxpHlGc_DM_6GkHdeWa_LwmY5czKTrmZZIaqQlbJ0XlhnlcUD_fFndXwmP03yyQY56O_CYFllp_tbnZ60dfdm2K3mcD6dDr8ksDS0bwxBRUqE3RaySJf4Jh9WmQQIKFK-EogzpO4zm6nGyy0rCBE5S2iniv_LNv3te_5ZQvmbTTraIo87Z5Lut_N9QjZCfEoetu0lb5-Ru_PLOduj5_MrJj7uURs9HdtFPRzXkVM0aMgUOo3UUodF1Yvr4Cm2KL6xt7SZ0UXbpz7QS9j2oCajB2lNvzk8xRGNdQ0O978Kj9LXLunznJwdHX49OM66fguZy5luMggGde18UC4XGtwIK7TQelSDCtQY9vlSV1zWMufeO_Ajcektk9p7VTJfSPGCbMZZDK8IdQgjU9lagozIUPsK_EBuFQ-lcIp7PSCjfqWN68DIsSfGD9NXnX03wByDzDEjaYA5A_J-NWTeInHcRyx79pk1cTJgKe4b9rZntYFthrkTG8NseWU46CqIlWU5GpCXLetXsxAQo6JoDYheE4oVAUJ4r3-J04sE5V2ABgSnbPv_prtDHuETHjVz9ZpsNotleAM-UlPtkgf7J6ffTnbTZvgJZjsRWg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfGEIILGl-jMMBInNCi1h-xm-M2NnWw7gDb1Jvl2I4oYm7VpaBd-Nt5z0kKBbED19gvsvy-815-j5A3Xlmvi6HNcuZkJl3FsqEoQ1bIwnlhnVUWP-iPT9XoXL6f5JMNctD9C4Ntla3tb2x6stbtk357m_35dNr_lMDS0L8xBBUp1C1yG6IBjdp5PNlflRIgo0gFS9id4fautJmavNyyhByRswR3qvi_nNPfweefPZS_OaWjLXK_jSbpXnPgB2QjxIfkTjNf8voR-XFxOWe79GJ-xcS7XWqjp2O7qPrjKnKKHg25QqeRWuqwq3rxLXiKM4q_22taz-iiGVQf6CXoPdjJ6EFc02sOPyJFbV2N5P5X51Fabas-j8n50eHZwShrBy5kLme6ziAb1JXzQblcaIgjrNBC60EFNlBj3ucLXXJZyZx77yCQxLu3TGrvVcH8UIonZDPOYnhKqEMcmdJWEoREhsqXEAhyq3gohFPc6x4ZdDdtXItGjkMxvpqu7eyLAeYYZI4ZSAPM6ZG3K5J5A8Vx02bZsc-syZMBV3ET2euO1Qb0DIsnNobZ8spwMFaQLMti0CPbDetXpxCQpKJo9YheE4rVBsTwXl-J088Jy3sIJhCismf_d9xX5O7obHxiTo5PPzwn93AFvztztUM268UyvICAqS5fJoX4CYoBEtc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vmp1%2C+Vps13D%2C+and+Marf%2FMfn2+function+in+a+conserved+pathway+to+regulate+mitochondria+and+ER+contact+in+development+and+disease&rft.jtitle=Current+biology&rft.au=Shen%2C+James+L&rft.au=Fortier%2C+Tina+M&rft.au=Zhao%2C+Yan+G&rft.au=Wang%2C+Ruoxi&rft.date=2021-07-26&rft.eissn=1879-0445&rft.volume=31&rft.issue=14&rft.spage=3028&rft_id=info:doi/10.1016%2Fj.cub.2021.04.062&rft_id=info%3Apmid%2F34019822&rft.externalDocID=34019822 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-9822&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-9822&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-9822&client=summon |