Neuromorphic computing using non-volatile memory

Dense crossbar arrays of non-volatile memory (NVM) devices represent one possible path for implementing massively-parallel and highly energy-efficient neuromorphic computing systems. We first review recent advances in the application of NVM devices to three computing paradigms: spiking neural networ...

Full description

Saved in:
Bibliographic Details
Published inAdvances in physics: X Vol. 2; no. 1; pp. 89 - 124
Main Authors Burr, Geoffrey W., Shelby, Robert M., Sebastian, Abu, Kim, Sangbum, Kim, Seyoung, Sidler, Severin, Virwani, Kumar, Ishii, Masatoshi, Narayanan, Pritish, Fumarola, Alessandro, Sanches, Lucas L., Boybat, Irem, Le Gallo, Manuel, Moon, Kibong, Woo, Jiyoo, Hwang, Hyunsang, Leblebici, Yusuf
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 01.01.2017
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dense crossbar arrays of non-volatile memory (NVM) devices represent one possible path for implementing massively-parallel and highly energy-efficient neuromorphic computing systems. We first review recent advances in the application of NVM devices to three computing paradigms: spiking neural networks (SNNs), deep neural networks (DNNs), and 'Memcomputing'. In SNNs, NVM synaptic connections are updated by a local learning rule such as spike-timing-dependent-plasticity, a computational approach directly inspired by biology. For DNNs, NVM arrays can represent matrices of synaptic weights, implementing the matrix-vector multiplication needed for algorithms such as backpropagation in an analog yet massively-parallel fashion. This approach could provide significant improvements in power and speed compared to GPU-based DNN training, for applications of commercial significance. We then survey recent research in which different types of NVM devices - including phase change memory, conductive-bridging RAM, filamentary and non-filamentary RRAM, and other NVMs - have been proposed, either as a synapse or as a neuron, for use within a neuromorphic computing application. The relevant virtues and limitations of these devices are assessed, in terms of properties such as conductance dynamic range, (non)linearity and (a)symmetry of conductance response, retention, endurance, required switching power, and device variability.
AbstractList Dense crossbar arrays of non-volatile memory (NVM) devices represent one possible path for implementing massively-parallel and highly energy-efficient neuromorphic computing systems. We first review recent advances in the application of NVM devices to three computing paradigms: spiking neural networks (SNNs), deep neural networks (DNNs), and ‘Memcomputing’. In SNNs, NVM synaptic connections are updated by a local learning rule such as spike-timing-dependent-plasticity, a computational approach directly inspired by biology. For DNNs, NVM arrays can represent matrices of synaptic weights, implementing the matrix–vector multiplication needed for algorithms such as backpropagation in an analog yet massively-parallel fashion. This approach could provide significant improvements in power and speed compared to GPU-based DNN training, for applications of commercial significance. We then survey recent research in which different types of NVM devices – including phase change memory, conductive-bridging RAM, filamentary and non-filamentary RRAM, and other NVMs – have been proposed, either as a synapse or as a neuron, for use within a neuromorphic computing application. The relevant virtues and limitations of these devices are assessed, in terms of properties such as conductance dynamic range, (non)linearity and (a)symmetry of conductance response, retention, endurance, required switching power, and device variability.
Author Kim, Sangbum
Shelby, Robert M.
Kim, Seyoung
Narayanan, Pritish
Burr, Geoffrey W.
Le Gallo, Manuel
Ishii, Masatoshi
Leblebici, Yusuf
Sanches, Lucas L.
Boybat, Irem
Fumarola, Alessandro
Sebastian, Abu
Sidler, Severin
Virwani, Kumar
Woo, Jiyoo
Hwang, Hyunsang
Moon, Kibong
Author_xml – sequence: 1
  givenname: Geoffrey W.
  surname: Burr
  fullname: Burr, Geoffrey W.
  email: gwburr@us.ibm.com
  organization: IBM Research - Almaden
– sequence: 2
  givenname: Robert M.
  surname: Shelby
  fullname: Shelby, Robert M.
  organization: IBM Research - Almaden
– sequence: 3
  givenname: Abu
  surname: Sebastian
  fullname: Sebastian, Abu
  organization: IBM Research - Zurich
– sequence: 4
  givenname: Sangbum
  surname: Kim
  fullname: Kim, Sangbum
  organization: IBM T. J. Watson Research Center
– sequence: 5
  givenname: Seyoung
  surname: Kim
  fullname: Kim, Seyoung
  organization: IBM T. J. Watson Research Center
– sequence: 6
  givenname: Severin
  surname: Sidler
  fullname: Sidler, Severin
  organization: EPFL
– sequence: 7
  givenname: Kumar
  surname: Virwani
  fullname: Virwani, Kumar
  organization: IBM Research - Almaden
– sequence: 8
  givenname: Masatoshi
  surname: Ishii
  fullname: Ishii, Masatoshi
  organization: IBM Tokyo Research Laboratory
– sequence: 9
  givenname: Pritish
  surname: Narayanan
  fullname: Narayanan, Pritish
  organization: IBM Research - Almaden
– sequence: 10
  givenname: Alessandro
  surname: Fumarola
  fullname: Fumarola, Alessandro
  organization: IBM Research - Almaden
– sequence: 11
  givenname: Lucas L.
  surname: Sanches
  fullname: Sanches, Lucas L.
  organization: IBM Research - Almaden
– sequence: 12
  givenname: Irem
  surname: Boybat
  fullname: Boybat, Irem
  organization: IBM Research - Zurich
– sequence: 13
  givenname: Manuel
  surname: Le Gallo
  fullname: Le Gallo, Manuel
  organization: IBM Research - Zurich
– sequence: 14
  givenname: Kibong
  surname: Moon
  fullname: Moon, Kibong
  organization: Department of Material Science and Engineering, Pohang University of Science and Technology
– sequence: 15
  givenname: Jiyoo
  surname: Woo
  fullname: Woo, Jiyoo
  organization: Department of Material Science and Engineering, Pohang University of Science and Technology
– sequence: 16
  givenname: Hyunsang
  surname: Hwang
  fullname: Hwang, Hyunsang
  organization: Department of Material Science and Engineering, Pohang University of Science and Technology
– sequence: 17
  givenname: Yusuf
  surname: Leblebici
  fullname: Leblebici, Yusuf
  organization: EPFL
BookMark eNqFkF9LwzAUxYNMcM59BGHgc2fSJk2CL8rwz0D0RZ9DmqQzo21qmir79qZ2ivigL7nh3nN-93KOwaRxjQHgFMElggyepxnFOcJ8mUKUL1FKOGHkAEyHfjIMJj_-R2DedVsIo5RGczYF8MH03tXOty9WLZSr2z7YZrPou-GNu5I3V8lgK7OoTZTtTsBhKavOzPd1Bp5vrp9Wd8n94-16dXWfKIJoSCgyPCsYM4XJaa4RpwXVmDMFodGSEY2ZZrkuqEFRpaFKdZ7lsiw54zDPSDYD65GrndyK1tta-p1w0orPhvMbIX2wqjICaY5RAVWRkhIzY3iBTIojjFOOCOGRdTayWu9ee9MFsXW9b-L5Ik0pxRkidFCRUaW86zpvyu-tCIoha_GVtRiyFvuso-_il0_ZECNzTfDSVv-6L0e3bUrna_nufKVFkLvK-dLLRtlOZH8jPgATapgU
CitedBy_id crossref_primary_10_1109_TED_2023_3266186
crossref_primary_10_1088_1361_6463_ad0b52
crossref_primary_10_3389_fnbot_2022_948386
crossref_primary_10_1021_acsnano_1c04654
crossref_primary_10_1021_acsaelm_2c01316
crossref_primary_10_1002_adma_201907541
crossref_primary_10_1063_1_5109267
crossref_primary_10_1021_acsnano_3c11373
crossref_primary_10_1063_5_0174863
crossref_primary_10_1021_acs_chemrev_4c00631
crossref_primary_10_1002_adma_201705914
crossref_primary_10_1021_acsmaterialslett_3c01241
crossref_primary_10_1088_1402_4896_ad9a1c
crossref_primary_10_1063_5_0035542
crossref_primary_10_1063_5_0030097
crossref_primary_10_35848_1347_4065_ab80a1
crossref_primary_10_1103_PhysRevApplied_18_014039
crossref_primary_10_1109_TCAD_2021_3121347
crossref_primary_10_1142_S0129156424400561
crossref_primary_10_1002_advs_202406433
crossref_primary_10_1063_1_5142089
crossref_primary_10_1002_aisy_202100021
crossref_primary_10_1109_LED_2023_3335628
crossref_primary_10_1142_S1793962322500301
crossref_primary_10_1063_1_5042100
crossref_primary_10_1021_acs_chemmater_2c01252
crossref_primary_10_1088_1361_6528_aa86f8
crossref_primary_10_1088_2634_4386_ac6d04
crossref_primary_10_1063_5_0181382
crossref_primary_10_1109_LED_2022_3223048
crossref_primary_10_1109_TED_2021_3133197
crossref_primary_10_1063_5_0226135
crossref_primary_10_1088_1361_6463_ad1016
crossref_primary_10_35848_1347_4065_ab8be6
crossref_primary_10_3389_femat_2023_1061269
crossref_primary_10_1109_TED_2022_3209639
crossref_primary_10_1021_acs_nanolett_0c00733
crossref_primary_10_1088_1361_6528_abfa51
crossref_primary_10_56767_jfpe_2024_3_1_65
crossref_primary_10_1109_JLT_2023_3252819
crossref_primary_10_1002_adma_202204944
crossref_primary_10_1002_adfm_202305261
crossref_primary_10_1109_TED_2024_3449828
crossref_primary_10_3389_fnins_2022_991851
crossref_primary_10_1109_MDAT_2019_2952341
crossref_primary_10_1021_acsami_0c06960
crossref_primary_10_1021_acs_nanolett_3c00262
crossref_primary_10_5194_jsss_11_233_2022
crossref_primary_10_1063_5_0138218
crossref_primary_10_1109_TED_2018_2875937
crossref_primary_10_35848_1347_4065_ac5533
crossref_primary_10_1002_adma_202201488
crossref_primary_10_1088_1361_6641_ab220f
crossref_primary_10_1063_5_0174426
crossref_primary_10_1021_acs_nanolett_3c02217
crossref_primary_10_1080_23746149_2017_1346483
crossref_primary_10_1116_6_0000591
crossref_primary_10_1002_aisy_202000202
crossref_primary_10_1002_aelm_202100974
crossref_primary_10_1109_JEDS_2017_2780275
crossref_primary_10_1088_1361_6463_acc8e4
crossref_primary_10_1063_1_5100128
crossref_primary_10_1109_JXCDC_2019_2911135
crossref_primary_10_1088_1674_1056_abc163
crossref_primary_10_1002_adfm_202422321
crossref_primary_10_1080_23746149_2017_1284646
crossref_primary_10_1109_JPROC_2020_3004543
crossref_primary_10_1088_1361_6463_aabe70
crossref_primary_10_1109_TNANO_2020_3010070
crossref_primary_10_3389_fnins_2019_00753
crossref_primary_10_1109_MDAT_2021_3069952
crossref_primary_10_1002_pssa_202000534
crossref_primary_10_1063_5_0204469
crossref_primary_10_1109_ACCESS_2019_2944417
crossref_primary_10_1007_s00521_021_05699_z
crossref_primary_10_1021_acsami_3c18446
crossref_primary_10_1109_LED_2021_3090906
crossref_primary_10_1126_science_abl4110
crossref_primary_10_1007_s00339_023_06616_y
crossref_primary_10_1063_5_0120826
crossref_primary_10_1109_TNS_2023_3333812
crossref_primary_10_1109_TCSII_2021_3049716
crossref_primary_10_1002_aelm_201700627
crossref_primary_10_1002_aisy_202500028
crossref_primary_10_1088_1361_6528_ac7651
crossref_primary_10_1021_acsaelm_8b00034
crossref_primary_10_1063_5_0047977
crossref_primary_10_1109_TED_2022_3207130
crossref_primary_10_1109_JXCDC_2022_3220032
crossref_primary_10_1002_pssr_201900029
crossref_primary_10_1002_aelm_202300249
crossref_primary_10_1116_6_0000336
crossref_primary_10_1109_JETCAS_2018_2816339
crossref_primary_10_1109_TCSI_2022_3186024
crossref_primary_10_1063_5_0032494
crossref_primary_10_1088_1674_1056_ab65b5
crossref_primary_10_1063_1_5042413
crossref_primary_10_1063_5_0080532
crossref_primary_10_3365_KJMM_2024_62_3_212
crossref_primary_10_1080_03772063_2022_2132303
crossref_primary_10_1088_2634_4386_adb512
crossref_primary_10_1109_JPROC_2020_3029600
crossref_primary_10_1038_s41598_020_62642_3
crossref_primary_10_1109_TNNLS_2021_3095724
crossref_primary_10_1021_acsaelm_0c00099
crossref_primary_10_1109_TNANO_2022_3223183
crossref_primary_10_1063_1_5089261
crossref_primary_10_1080_00107514_2022_2160542
crossref_primary_10_1021_acsnano_3c11019
crossref_primary_10_1063_1_5042408
crossref_primary_10_1109_JETCAS_2023_3329449
crossref_primary_10_1021_acsaelm_3c01275
crossref_primary_10_1063_5_0213396
crossref_primary_10_1002_aelm_202400905
crossref_primary_10_1063_5_0168089
crossref_primary_10_1109_JSSC_2022_3140414
crossref_primary_10_1002_admt_202400464
crossref_primary_10_1002_admt_202400585
crossref_primary_10_1021_acsaelm_0c00203
crossref_primary_10_1109_JEDS_2022_3166449
crossref_primary_10_1063_5_0073528
crossref_primary_10_3389_fnins_2022_1012964
crossref_primary_10_1109_TCAD_2020_2979819
crossref_primary_10_1002_adma_202202371
crossref_primary_10_1557_s43577_022_00391_6
crossref_primary_10_35848_1347_4065_ab7ff1
crossref_primary_10_1109_JEDS_2018_2817628
crossref_primary_10_1145_3473036
crossref_primary_10_1109_ACCESS_2022_3223657
crossref_primary_10_35848_1347_4065_ab709d
crossref_primary_10_1021_acsami_2c03451
crossref_primary_10_1021_acsaelm_0c00313
crossref_primary_10_1063_1_5106381
crossref_primary_10_1088_2634_4386_ac2cd4
crossref_primary_10_1063_5_0154995
crossref_primary_10_1109_JXCDC_2022_3206879
crossref_primary_10_1103_PhysRevApplied_14_034029
crossref_primary_10_1515_nanoph_2022_0089
crossref_primary_10_1109_LED_2017_2723503
crossref_primary_10_3389_fmats_2024_1406853
crossref_primary_10_1007_s10853_022_06954_x
crossref_primary_10_3389_fnins_2017_00538
crossref_primary_10_1149_2162_8777_ab7883
crossref_primary_10_1063_5_0081016
crossref_primary_10_1088_1361_6463_ad40b9
crossref_primary_10_1063_5_0248203
crossref_primary_10_1063_1_5049137
crossref_primary_10_1002_adma_202203209
crossref_primary_10_1002_adfm_201904602
crossref_primary_10_1021_acs_chemrev_4c00454
crossref_primary_10_1021_acsaelm_3c01106
crossref_primary_10_1021_acsaelm_0c00341
crossref_primary_10_1088_2634_4386_ac5086
crossref_primary_10_1109_TED_2023_3321018
crossref_primary_10_1038_s41598_019_56816_x
crossref_primary_10_1109_TCSI_2020_2971642
crossref_primary_10_1109_LED_2024_3359600
crossref_primary_10_1002_advs_202405768
crossref_primary_10_3389_fnins_2021_636127
crossref_primary_10_1088_2634_4386_acce61
crossref_primary_10_1002_pssb_201900756
crossref_primary_10_1002_pssr_202100125
crossref_primary_10_1088_1361_6463_ad7a82
crossref_primary_10_1088_2631_7990_ad1573
crossref_primary_10_1103_PhysRevMaterials_5_115401
crossref_primary_10_1088_2631_8695_ad9a3e
crossref_primary_10_1007_s10825_024_02221_1
crossref_primary_10_1021_acsaelm_2c00393
crossref_primary_10_1002_aelm_202100669
crossref_primary_10_1002_adma_202305044
crossref_primary_10_1109_TCSII_2024_3466963
crossref_primary_10_1088_1361_6463_acbb12
crossref_primary_10_1021_acsaelm_0c00002
crossref_primary_10_1109_LED_2019_2897777
crossref_primary_10_1063_5_0069116
crossref_primary_10_1073_pnas_2408974121
crossref_primary_10_1021_acs_nanolett_7b02947
crossref_primary_10_1063_1_5143659
crossref_primary_10_1002_aisy_202300586
crossref_primary_10_1002_aelm_202100217
crossref_primary_10_1002_aisy_202100054
crossref_primary_10_1109_ACCESS_2022_3209148
crossref_primary_10_1109_TED_2023_3244761
crossref_primary_10_1002_adma_202108025
crossref_primary_10_1103_PhysRevB_107_125162
crossref_primary_10_1063_5_0047571
crossref_primary_10_1109_TCSI_2022_3151920
crossref_primary_10_3389_fnins_2020_00406
crossref_primary_10_1109_TNS_2021_3058548
crossref_primary_10_3389_fnins_2021_661667
crossref_primary_10_1021_acs_jpclett_4c00600
crossref_primary_10_1088_1361_6463_ab4157
crossref_primary_10_1109_TETC_2023_3238708
crossref_primary_10_1002_smll_202407612
crossref_primary_10_1063_5_0234139
crossref_primary_10_1109_JEDS_2017_2782184
crossref_primary_10_1002_advs_202301323
crossref_primary_10_1021_acsami_8b07443
crossref_primary_10_1002_aelm_202300511
crossref_primary_10_1088_2631_7990_ad88bb
crossref_primary_10_1063_5_0185388
crossref_primary_10_1103_PhysRevApplied_16_064068
crossref_primary_10_1109_JSTQE_2022_3218019
crossref_primary_10_1088_1361_6668_ad3d10
crossref_primary_10_1021_acsami_9b21747
crossref_primary_10_1109_MNANO_2021_3098218
crossref_primary_10_1109_TED_2020_3048100
crossref_primary_10_1063_1_5124915
crossref_primary_10_1002_adfm_202313802
crossref_primary_10_1063_5_0131797
crossref_primary_10_1002_advs_202303735
crossref_primary_10_1088_2634_4386_acf1c4
crossref_primary_10_1063_5_0059697
crossref_primary_10_1002_aelm_202300889
crossref_primary_10_1021_acsami_0c07867
crossref_primary_10_3389_fnano_2022_1034357
crossref_primary_10_3389_fnins_2024_1465789
crossref_primary_10_1002_admi_201900471
crossref_primary_10_1063_1_5110889
crossref_primary_10_1038_s41528_024_00313_3
crossref_primary_10_1088_1361_6528_aad2fa
crossref_primary_10_1088_2634_4386_ac57a2
crossref_primary_10_1088_2634_4386_ad57e7
crossref_primary_10_1088_1361_6528_ab47bc
crossref_primary_10_3389_fnins_2022_941753
crossref_primary_10_1109_TNANO_2023_3273624
crossref_primary_10_1088_1361_6641_abe31a
crossref_primary_10_1002_pssr_201800562
crossref_primary_10_4028_p_90x9b8
crossref_primary_10_1002_nla_2597
crossref_primary_10_1021_acsmaterialslett_3c01587
crossref_primary_10_1002_aelm_202000815
crossref_primary_10_1021_acsami_0c08708
crossref_primary_10_1109_TNANO_2024_3358950
crossref_primary_10_1103_PhysRevB_101_235316
crossref_primary_10_3389_felec_2022_872163
crossref_primary_10_1063_1_5120565
crossref_primary_10_1063_5_0133846
crossref_primary_10_1088_1361_6528_ab5a1a
crossref_primary_10_1109_TCSII_2023_3336831
crossref_primary_10_1109_ACCESS_2019_2920076
crossref_primary_10_1021_acsami_1c14667
crossref_primary_10_1109_MNANO_2018_2845479
crossref_primary_10_1109_ACCESS_2023_3275431
crossref_primary_10_3389_fnins_2021_664208
crossref_primary_10_1109_TPDS_2021_3065591
crossref_primary_10_1002_aelm_202400432
crossref_primary_10_1021_acsami_1c23268
crossref_primary_10_1088_1361_6528_abf0cc
crossref_primary_10_1109_JPROC_2018_2871057
crossref_primary_10_1002_aisy_202300147
crossref_primary_10_3389_fnins_2021_728086
crossref_primary_10_1063_5_0129023
crossref_primary_10_1002_aisy_202000085
crossref_primary_10_1021_acsmaterialslett_1c00513
crossref_primary_10_1002_admt_202401041
crossref_primary_10_1021_acsnano_3c05493
crossref_primary_10_1063_5_0257462
crossref_primary_10_1088_1361_6528_abaa0e
crossref_primary_10_3389_frai_2022_891624
crossref_primary_10_1002_adma_201902761
crossref_primary_10_1002_smll_202004371
crossref_primary_10_20517_ss_2024_12
crossref_primary_10_1109_TED_2019_2912483
crossref_primary_10_1021_acsnano_4c00456
crossref_primary_10_1109_TED_2020_3018096
crossref_primary_10_1007_s10825_020_01504_7
crossref_primary_10_1063_5_0232395
crossref_primary_10_1109_TVLSI_2019_2951493
crossref_primary_10_1063_5_0109787
crossref_primary_10_1002_aisy_202300490
crossref_primary_10_1002_adma_202410060
crossref_primary_10_1021_acsaelm_1c00398
crossref_primary_10_1109_TED_2020_3014841
crossref_primary_10_1088_1361_6528_ab34da
crossref_primary_10_1109_TED_2018_2888871
crossref_primary_10_1109_ACCESS_2023_3305277
crossref_primary_10_1063_5_0188573
crossref_primary_10_1109_TNANO_2023_3330535
crossref_primary_10_1088_1361_6463_abfef7
crossref_primary_10_1021_acsaelm_3c00654
crossref_primary_10_3389_frobt_2024_1372375
crossref_primary_10_1002_aelm_202100164
crossref_primary_10_1021_acsami_9b04412
crossref_primary_10_1145_3563697
crossref_primary_10_1007_s40820_023_01289_x
crossref_primary_10_1088_1361_6528_ad1540
crossref_primary_10_1364_OE_456048
crossref_primary_10_1021_acsami_0c00877
crossref_primary_10_1109_LED_2024_3355889
crossref_primary_10_1145_3643134
crossref_primary_10_1021_acsnanoscienceau_2c00017
crossref_primary_10_1021_acsnano_4c12884
crossref_primary_10_1109_LED_2022_3149029
crossref_primary_10_1063_5_0026350
crossref_primary_10_1109_TED_2024_3392170
crossref_primary_10_3389_fdata_2022_787421
crossref_primary_10_1021_acs_nanolett_3c04193
crossref_primary_10_1063_1_5109910
crossref_primary_10_3389_fnins_2023_1270090
crossref_primary_10_1109_LED_2021_3094765
crossref_primary_10_1002_aelm_202400421
crossref_primary_10_1002_inf2_12367
crossref_primary_10_1073_pnas_2314347121
crossref_primary_10_1109_TBCAS_2023_3312300
crossref_primary_10_1088_1361_6528_ab32a7
crossref_primary_10_1088_1361_6463_ab642d
crossref_primary_10_1021_acsami_9b14338
crossref_primary_10_1140_epjb_s10051_024_00821_1
crossref_primary_10_1109_TCSI_2023_3334267
crossref_primary_10_1103_PhysRevApplied_19_064010
crossref_primary_10_1002_aisy_202300391
crossref_primary_10_1109_TED_2024_3406310
crossref_primary_10_1063_1_5097317
crossref_primary_10_1109_ACCESS_2022_3206958
crossref_primary_10_1021_acsami_0c19544
crossref_primary_10_3389_fncom_2021_675741
crossref_primary_10_1002_aelm_202100185
crossref_primary_10_1063_1_5108654
crossref_primary_10_1109_TIE_2020_3032867
crossref_primary_10_1147_JRD_2019_2940427
crossref_primary_10_1002_adfm_202003683
crossref_primary_10_1063_1_5143815
crossref_primary_10_3389_fnins_2018_00774
crossref_primary_10_1002_pssa_201700875
crossref_primary_10_1109_TED_2024_3405472
crossref_primary_10_1088_1674_1056_ac7548
crossref_primary_10_1063_5_0189599
crossref_primary_10_1109_JEDS_2022_3208241
crossref_primary_10_1109_TCSI_2019_2902475
crossref_primary_10_1063_5_0154153
crossref_primary_10_1002_smll_202409510
crossref_primary_10_35848_1347_4065_ad394f
crossref_primary_10_1002_adfm_202003571
crossref_primary_10_1109_TED_2024_3496436
crossref_primary_10_1109_TBCAS_2021_3090786
crossref_primary_10_1021_acs_nanolett_0c01096
crossref_primary_10_1088_1361_6528_aae975
crossref_primary_10_31613_ceramist_2023_26_1_07
crossref_primary_10_1002_inf2_12380
crossref_primary_10_1088_1674_4926_23120037
crossref_primary_10_1109_LED_2019_2900867
crossref_primary_10_1109_TED_2019_2940602
crossref_primary_10_1021_acsami_3c03974
crossref_primary_10_1088_2634_4386_ac4918
crossref_primary_10_1002_aelm_201800876
crossref_primary_10_1002_pssa_202300483
crossref_primary_10_36937_ben_2021_001_004
crossref_primary_10_1002_advs_202308460
crossref_primary_10_1002_jnm_2588
crossref_primary_10_1063_5_0179424
crossref_primary_10_1134_S2635167621060239
crossref_primary_10_3389_fnano_2021_649560
crossref_primary_10_1002_aelm_202000309
crossref_primary_10_1002_aelm_202400212
crossref_primary_10_1088_1402_4896_ac9dcd
crossref_primary_10_1103_PhysRevApplied_14_034016
crossref_primary_10_1380_vss_62_332
crossref_primary_10_1088_1361_6528_ac189f
crossref_primary_10_1109_TED_2017_2766063
crossref_primary_10_1145_3479156
crossref_primary_10_3389_fphy_2023_1112295
crossref_primary_10_1002_advs_202102973
crossref_primary_10_1002_pssr_202200378
crossref_primary_10_1063_1_5129306
crossref_primary_10_1109_TCSI_2018_2866510
crossref_primary_10_1109_TCSII_2020_3015337
crossref_primary_10_1088_1674_4926_42_6_064101
crossref_primary_10_1063_5_0157645
crossref_primary_10_7210_jrsj_35_209
crossref_primary_10_1021_acsami_8b12767
crossref_primary_10_1002_adfm_202303956
crossref_primary_10_1002_aelm_202000412
crossref_primary_10_1021_acsmaterialslett_1c00204
crossref_primary_10_1109_LED_2018_2805822
crossref_primary_10_1002_adma_202104034
crossref_primary_10_1088_1361_6463_ac71e2
crossref_primary_10_1002_aelm_201900026
crossref_primary_10_1002_aisy_202000127
crossref_primary_10_1021_acsami_9b04901
crossref_primary_10_1109_JFLEX_2023_3321256
crossref_primary_10_1021_acsami_9b11319
crossref_primary_10_1002_advs_202103808
crossref_primary_10_1002_aisy_202000001
crossref_primary_10_1021_acs_nanolett_4c00739
crossref_primary_10_1109_MDAT_2021_3063366
crossref_primary_10_1021_acs_nanolett_4c05071
crossref_primary_10_1063_5_0010882
crossref_primary_10_1109_LED_2017_2730959
crossref_primary_10_1002_aelm_202200150
crossref_primary_10_1002_apxr_202400087
crossref_primary_10_1038_s41467_023_37097_5
crossref_primary_10_31857_S0044451023120143
crossref_primary_10_35848_1347_4065_ab9adf
crossref_primary_10_1145_3571155
crossref_primary_10_1002_adfm_202302290
crossref_primary_10_1002_aelm_202201104
crossref_primary_10_1002_aelm_202201226
crossref_primary_10_1109_TED_2021_3068716
crossref_primary_10_1002_aelm_202101186
crossref_primary_10_1002_aelm_202201227
crossref_primary_10_1002_pssr_202400424
crossref_primary_10_2174_1872210517666230413092108
crossref_primary_10_1002_adma_202403937
crossref_primary_10_1063_1_5037835
crossref_primary_10_1002_aisy_202000137
crossref_primary_10_1021_acsami_0c21161
crossref_primary_10_1109_JETCAS_2019_2934929
crossref_primary_10_1007_s10825_024_02228_8
crossref_primary_10_1038_s41467_022_32078_6
crossref_primary_10_1007_s10853_018_2134_6
crossref_primary_10_1038_s41598_022_11199_4
crossref_primary_10_1109_TED_2020_3031249
crossref_primary_10_1109_JXCDC_2021_3098469
crossref_primary_10_1145_3609387
crossref_primary_10_1109_TED_2023_3305332
crossref_primary_10_1002_adma_202105022
crossref_primary_10_1088_2634_4386_ac29ca
crossref_primary_10_1002_aisy_202200047
crossref_primary_10_1109_TCAD_2021_3120068
crossref_primary_10_1080_23746149_2021_1894234
crossref_primary_10_1088_1361_6528_ab7fce
crossref_primary_10_1088_1361_6528_aab177
crossref_primary_10_1109_TCDS_2021_3049487
crossref_primary_10_1109_ACCESS_2019_2921104
crossref_primary_10_1021_acs_jpcb_1c03905
crossref_primary_10_1109_TCSII_2017_2701282
crossref_primary_10_1103_PhysRevB_99_245124
crossref_primary_10_1002_cpe_7997
crossref_primary_10_1002_aelm_201900115
crossref_primary_10_1063_1_5136264
crossref_primary_10_1063_5_0066577
crossref_primary_10_1063_5_0086164
crossref_primary_10_1109_TCSII_2020_3048034
crossref_primary_10_1016_j_optlastec_2021_107305
crossref_primary_10_1021_acs_nanolett_1c03832
crossref_primary_10_1021_acsaelm_9b00694
crossref_primary_10_1063_5_0124781
crossref_primary_10_3389_frai_2021_699148
crossref_primary_10_1021_acsami_1c09436
crossref_primary_10_1002_admt_202000514
crossref_primary_10_1080_10408436_2021_1935212
crossref_primary_10_1063_1_5042040
crossref_primary_10_1002_pssr_202000394
crossref_primary_10_1021_acsami_0c19028
crossref_primary_10_1016_j_neucom_2021_12_021
crossref_primary_10_1002_smll_201901457
crossref_primary_10_1002_admi_202101257
crossref_primary_10_1109_TMAG_2023_3288546
crossref_primary_10_35848_1347_4065_ac6b12
crossref_primary_10_1109_TED_2021_3089450
crossref_primary_10_1063_1_5113574
crossref_primary_10_1109_LED_2024_3416704
crossref_primary_10_1109_TCSI_2021_3126555
crossref_primary_10_1007_s13204_019_01179_y
crossref_primary_10_1109_ACCESS_2022_3226447
crossref_primary_10_1002_adfm_202101288
crossref_primary_10_1109_LED_2019_2963300
crossref_primary_10_1088_1361_6528_aa9a18
crossref_primary_10_1109_ACCESS_2023_3301562
crossref_primary_10_1021_acs_nanolett_7b03000
crossref_primary_10_1109_TED_2022_3211478
crossref_primary_10_1002_smll_202107575
crossref_primary_10_1021_acsami_8b09068
crossref_primary_10_5802_crphys_184
crossref_primary_10_35848_1347_4065_ada9f5
crossref_primary_10_1109_TED_2023_3263818
crossref_primary_10_1109_LED_2019_2950202
crossref_primary_10_1126_science_adi8474
crossref_primary_10_1002_smll_202307792
crossref_primary_10_3389_fncom_2021_674154
crossref_primary_10_1007_s00366_024_01967_3
crossref_primary_10_1063_1_5116863
crossref_primary_10_1109_LED_2020_2972006
crossref_primary_10_1002_aisy_202400694
crossref_primary_10_1002_adma_202003984
crossref_primary_10_1088_1361_6528_aae470
crossref_primary_10_1109_JETCAS_2019_2911537
crossref_primary_10_1145_3524068
crossref_primary_10_1063_5_0124219
crossref_primary_10_1109_JXCDC_2019_2960307
crossref_primary_10_1002_adfm_202113050
crossref_primary_10_3389_fnins_2020_00184
crossref_primary_10_35848_1882_0786_ab7e07
crossref_primary_10_1002_aisy_202000196
crossref_primary_10_1002_smsc_202300306
crossref_primary_10_1088_1674_1056_ab973f
crossref_primary_10_1021_acs_chemrev_9b00730
Cites_doi 10.102/nl904092h
10.1109/TBCAS.2016.2533798
10.1038/srep21331
10.1142/S0218127409025031
10.1109/JPROC.2014.2310593
10.1109/JETCAS.2015.2435512
10.1109/JEDS.2015.2442242
10.3389/fnins.2015.00141
10.1109/JPROC.2015.2437616
10.1147/rd.524.0465
10.1021/nl203687n
10.1109/TNANO.2005.846936
10.1088/0957-4484/24/38/384009
10.1063/1.4915924
10.1002/adma.201203680
10.1109/IEDM.2012.6479018
10.1145/2851613.2851724
10.1109/TED.2012.2217146
10.1109/IEDM.2015.7409719
10.1021/nl201040y
10.1109/TED.2012.2197951
10.1126/science.1254642
10.1016/j.neunet.2010.05.001
10.1002/pssr.201510150
10.1088/0957-4484/24/38/384010
10.1109/IEDM.2015.7409718
10.1109/TED.2015.2439635
10.1088/0957-4484/24/38/384013
10.1109/IJCNN.2011.6033311
10.1002/adma.201503202
10.3389/fnins.2013.00186
10.1002/adma.200900375
10.1109/LED.2015.2418342
10.1088/0957-4484/22/25/254003
10.1073/pnas.1407633111
10.1016/j.sse.2012.09.006
10.1109/JPROC.2011.2166749
10.1109/IEDM.2013.6724691
10.1109/TED.2015.2440102
10.1038/nnano.2015.56
10.1109/IEDM.2012.6479017
10.1109/TNNLS.2015.2391182
10.1109/JETCAS.2016.2547718
10.1109/TIE.2013.2275966
10.1002/adma.201101060
10.1145/2539123
10.3389/fnins.2015.00051
10.1088/0957-4484/20/34/345201
10.1109/TED.2016.2537792
10.1007/s00422-008-0233-1
10.1162/neco.2007.19.11.2881
10.1109/IEDM.2010.5703410
10.1088/0957-4484/24/38/382001
10.1109/IEDM.2015.7409716
10.3389/fnins.2015.00241
10.3934/matersci.2015.3.203
10.1109/LED.2015.2457243
10.1109/TNN.2005.860850
10.1088/0022-3727/46/9/093001
10.1109/IJCNN.2011.6033439
10.1021/acsami.5b01825
10.1017/CBO9781107447615
10.1113/jphysiol.1952.sp004764
10.1088/0957-4484/24/38/384005
10.1109/IEDM.2012.6479026
10.1109/4.309904
10.1016/j.neunet.2010.12.003
10.1196/annals.1292.010
10.1109/ESSDERC.2016.7599680
10.1038/srep01230
10.1038/nmat3054
10.1109/IEDM.2013.6724692
10.1109/IEDM.2015.7409622
10.1109/NanoArch.2013.6623029
10.1103/PhysRevE.84.046703
10.1109/JPROC.2014.2313565
10.1016/j.physleta.2015.12.024
10.1109/IEDM.2015.7409717
10.1109/JRPROC.1962.288234
10.3389/fnins.2013.00002
10.1088/0957-4484/23/7/075201
10.1016/j.procs.2014.11.094
10.1109/LED.2016.2591181
10.1038/nn.2479
10.1038/78829
10.1109/IJCNN.2014.6889506
10.1109/TNNLS.2012.2204770
10.1109/TNANO.2014.2300342
10.1109/IEDM.2014.7047127
10.1109/IEDM.2014.7047126
10.1166/jno.2008.301
10.1116/1.4889999
10.1109/IMW.2015.7150295
10.1109/TNANO.2016.2570248
10.1088/0957-4484/26/45/455204
10.1109/TVLSI.2013.2282132
10.1088/0957-4484/25/49/495204
10.1088/0268-1242/30/10/105014
10.1109/JETCAS.2016.2533298
10.1109/TED.2016.2631567
10.1371/journal.pcbi.1003037
10.1109/ICCAD.2015.7372570
10.1007/s00339-015-8993-7
10.1109/IEDM.2012.6479016
10.1063/1.4914111
10.1109/CICC.2011.6055293
10.1126/science.275.5297.213
10.7567/APEX.7.083001
10.3389/fnins.2016.00241
10.1038/nature14539
10.1038/nphys2796
10.1088/0957-4484/24/38/384012
10.1088/0957-4484/27/35/355205
10.1088/0268-1242/29/10/104006
10.1109/TCAD.2015.2474396
10.3389/fncom.2015.00099
10.1109/IEDM.2011.6131643
10.1088/0957-4484/24/38/384003
10.1126/science.1074376
10.1109/IJCNN.2015.7280658
10.3389/fnins.2016.00056
10.1038/nmat3510
10.1038/scientificamerican0215-56
10.1063/1.3662390
10.1038/nature08940
10.1038/ncomms3072
10.1109/JETCAS.2015.2426492
10.1038/srep01619
10.1371/journal.pcbi.0030031
10.1109/IMW.2012.6213674
10.7551/mitpress/5236.001.0001
10.3389/fnins.2016.00333
10.1109/IEDM.2011.6131488
10.1038/srep13753
10.1038/nnano.2016.70
10.1088/0957-4484/24/38/384011
10.1007/s00339-011-6296-1
10.1088/0957-4484/24/38/384004
10.1038/srep10150
10.1109/LED.2015.2481819
10.3389/fnins.2013.00178
10.1088/0957-4484/18/36/365202
10.1109/TCSII.2014.2357292
10.1109/JPROC.2015.2444094
10.1038/ncomms4158
10.1116/1.3301579
10.1021/acsami.5b08541
10.1002/adfm.200901335
10.1038/srep22970
10.1038/nature06932
10.1038/nrn1888
10.1145/2463585.2463588
10.1109/TED.2012.2227969
10.1016/j.neunet.2013.07.012
10.1002/adfm.201200244
10.1088/0957-4484/22/25/254023
10.1109/IJCNN.2015.7280785
10.1103/PhysRevE.71.061907
10.1145/2465787.2465794
10.1109/IEDM.1997.650395
10.3389/fncom.2010.00129
10.1002/adma.201301940
10.1063/1.4934818
10.1109/TBCAS.2015.2414423
10.1371/journal.pone.0001377
10.1038/nphys2566
10.1109/JPROC.2012.2190369
10.1109/5.726791
10.1002/adfm.201202383
10.1038/srep10492
10.1021/nn401946s
10.1523/JNEUROSCI.18-24-10464.1998
10.1109/TNANO.2013.2250995
10.3389/fnins.2012.00090
10.1038/nature14441
10.1109/IMW.2012.6213663
10.3389/fnsyn.2011.00004
10.1063/1.4749411
10.1109/IEDM.2015.7409720
10.1038/srep10123
10.1109/TED.2011.2147791
ContentType Journal Article
Copyright 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2016
2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2016
– notice: 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
3V.
7XB
8FD
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
H8D
L7M
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1080/23746149.2016.1259585
DatabaseName Taylor & Francis Open Access
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
Aerospace Database
Advanced Technologies Database with Aerospace
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2374-6149
EndPage 124
ExternalDocumentID oai_doaj_org_article_1d941b0cb25f48ee9b1e246af9791559
10_1080_23746149_2016_1259585
1259585
Genre Review
GroupedDBID 0YH
8G5
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BCNDV
BENPR
BPHCQ
CCPQU
DWQXO
EBS
EJD
GNUQQ
GROUPED_DOAJ
GUQSH
H13
M2O
M4Z
M~E
OK1
PIMPY
PQQKQ
PROAC
TDBHL
TFW
AAFWJ
AAYXX
ADMLS
AFPKN
CITATION
PHGZM
PHGZT
3V.
7XB
8FD
8FK
H8D
L7M
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c517t-71e93b88ebe676d197b7d498c00eda85d48d86db7e1b88d0c2d636aff98906353
IEDL.DBID 0YH
ISSN 2374-6149
IngestDate Wed Aug 27 01:31:48 EDT 2025
Sun Jun 29 13:12:45 EDT 2025
Tue Jul 01 01:13:48 EDT 2025
Thu Apr 24 22:55:03 EDT 2025
Wed Dec 25 09:07:37 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-71e93b88ebe676d197b7d498c00eda85d48d86db7e1b88d0c2d636aff98906353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/23746149.2016.1259585
PQID 2277431579
PQPubID 3933228
PageCount 36
ParticipantIDs proquest_journals_2277431579
crossref_primary_10_1080_23746149_2016_1259585
crossref_citationtrail_10_1080_23746149_2016_1259585
doaj_primary_oai_doaj_org_article_1d941b0cb25f48ee9b1e246af9791559
informaworld_taylorfrancis_310_1080_23746149_2016_1259585
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Advances in physics: X
PublicationYear 2017
Publisher Taylor & Francis
Taylor & Francis Ltd
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
– name: Taylor & Francis Group
References Meier K. (CIT0055) 2015
CIT0111
CIT0110
CIT0113
CIT0112
CIT0115
CIT0114
CIT0117
CIT0116
CIT0119
CIT0118
CIT0001
Rumelhart D. (CIT0064) 1986
CIT0122
CIT0121
Eryilmaz S.B. (CIT0120) 2015
CIT0003
CIT0124
CIT0002
CIT0123
CIT0005
CIT0126
CIT0004
CIT0125
CIT0007
CIT0128
CIT0006
CIT0127
CIT0009
CIT0008
CIT0129
CIT0010
CIT0131
CIT0130
CIT0012
CIT0133
CIT0011
CIT0132
CIT0014
CIT0135
CIT0013
CIT0134
CIT0016
CIT0137
CIT0015
CIT0136
CIT0018
CIT0139
CIT0017
CIT0138
CIT0140
CIT0021
CIT0142
CIT0020
CIT0141
CIT0023
CIT0144
Kandel E.R. (CIT0195) 2000; 4
CIT0022
CIT0143
Burr G.W. (CIT0069) 2015
Kim J.K. (CIT0058) 2014
CIT0025
CIT0146
Moon K. (CIT0208) 2015
CIT0024
CIT0145
CIT0027
CIT0148
Wang Z. (CIT0050) 2016; 8
CIT0147
CIT0149
Ovhsinsky S.R. (CIT0198) 2006
Zhu L.Q. (CIT0181) 2014; 5
CIT0201
CIT0200
CIT0203
CIT0202
CIT0205
CIT0204
CIT0207
CIT0206
Gamrat C. (CIT0084) 2015
Vreeken J. (CIT0031) 2002
CIT0100
CIT0109
Sheridan P.M. (CIT0079) 2016
CIT0102
CIT0101
CIT0104
CIT0103
CIT0106
CIT0105
Bill J. (CIT0156) 2014; 8
CIT0107
CIT0072
CIT0193
CIT0071
CIT0192
CIT0074
CIT0073
CIT0194
CIT0076
CIT0075
CIT0196
CIT0078
CIT0199
CIT0077
Lee D. (CIT0177) 2015
Hebb D.O. (CIT0028) 1949
CIT0070
CIT0191
CIT0083
CIT0082
CIT0085
CIT0087
CIT0086
CIT0089
CIT0088
Bojnordi M.N. (CIT0081) 2016
CIT0080
CIT0094
CIT0093
CIT0096
CIT0095
CIT0098
CIT0097
CIT0099
CIT0090
CIT0092
CIT0091
Indiveri G. (CIT0052) 2015
Deng L. (CIT0160) 2015; 5
Le M. (CIT0108) 2016
Kaneko Y. (CIT0190) 2013
Orchard G. (CIT0059) 2015; 2015
CIT0151
CIT0150
CIT0032
CIT0153
CIT0152
CIT0034
CIT0155
CIT0033
CIT0154
CIT0036
CIT0157
CIT0035
CIT0038
CIT0159
CIT0037
CIT0158
CIT0039
Bi G.Q. (CIT0026) 1998; 18
Indiveri G. (CIT0197) 2011; 5
Burr G.W. (CIT0019) 2014
CIT0041
CIT0162
CIT0040
CIT0161
CIT0043
CIT0164
CIT0042
CIT0163
CIT0045
CIT0166
CIT0165
Querlioz D. (CIT0044) 2012; 2011
Löwel S. (CIT0029) 1992; 255
CIT0047
CIT0168
CIT0046
CIT0167
CIT0049
CIT0048
CIT0169
CIT0171
CIT0170
CIT0173
CIT0051
CIT0172
CIT0054
CIT0175
CIT0053
CIT0174
CIT0056
CIT0176
CIT0179
CIT0057
CIT0178
CIT0061
CIT0182
CIT0060
Chintala S. (CIT0209) 2016
CIT0063
CIT0184
CIT0062
CIT0183
CIT0065
CIT0186
CIT0185
CIT0067
CIT0188
CIT0066
CIT0187
CIT0180
CIT0068
CIT0189
Grüning A. (CIT0030) 2014
References_xml – ident: CIT0137
  doi: 10.102/nl904092h
– ident: CIT0193
  doi: 10.1109/TBCAS.2016.2533798
– ident: CIT0158
  doi: 10.1038/srep21331
– ident: CIT0145
  doi: 10.1142/S0218127409025031
– ident: CIT0202
  doi: 10.1109/JPROC.2014.2310593
– ident: CIT0203
  doi: 10.1109/JETCAS.2015.2435512
– ident: CIT0017
  doi: 10.1109/JEDS.2015.2442242
– ident: CIT0054
  doi: 10.3389/fnins.2015.00141
– ident: CIT0007
  doi: 10.1109/JPROC.2015.2437616
– ident: CIT0114
  doi: 10.1147/rd.524.0465
– ident: CIT0155
  doi: 10.1021/nl203687n
– ident: CIT0117
  doi: 10.1109/TNANO.2005.846936
– ident: CIT0170
  doi: 10.1088/0957-4484/24/38/384009
– ident: CIT0175
  doi: 10.1063/1.4915924
– volume: 2015
  start-page: 2413
  year: 2015
  ident: CIT0059
  publication-title: Real-time event-driven spiking neural network object recognition on the spiNNaker platform
– ident: CIT0148
  doi: 10.1002/adma.201203680
– ident: CIT0149
  doi: 10.1109/IEDM.2012.6479018
– ident: CIT0039
  doi: 10.1145/2851613.2851724
– ident: CIT0126
  doi: 10.1109/TED.2012.2217146
– ident: CIT0088
  doi: 10.1109/IEDM.2015.7409719
– ident: CIT0127
  doi: 10.1021/nl201040y
– ident: CIT0018
  doi: 10.1109/TED.2012.2197951
– ident: CIT0062
  doi: 10.1126/science.1254642
– ident: CIT0001
  doi: 10.1016/j.neunet.2010.05.001
– ident: CIT0132
  doi: 10.1002/pssr.201510150
– ident: CIT0003
  doi: 10.1088/0957-4484/24/38/384010
– ident: CIT0023
  doi: 10.1109/IEDM.2015.7409718
– ident: CIT0068
  doi: 10.1109/TED.2015.2439635
– ident: CIT0187
  doi: 10.1088/0957-4484/24/38/384013
– ident: CIT0042
  doi: 10.1109/IJCNN.2011.6033311
– ident: CIT0140
  doi: 10.1002/adma.201503202
– ident: CIT0150
  doi: 10.3389/fnins.2013.00186
– ident: CIT0161
  doi: 10.1002/adma.200900375
– ident: CIT0073
  doi: 10.1109/LED.2015.2418342
– ident: CIT0118
  doi: 10.1088/0957-4484/22/25/254003
– ident: CIT0098
  doi: 10.1073/pnas.1407633111
– ident: CIT0123
  doi: 10.1016/j.sse.2012.09.006
– ident: CIT0147
  doi: 10.1109/JPROC.2011.2166749
– ident: CIT0129
  doi: 10.1109/IEDM.2013.6724691
– ident: CIT0086
  doi: 10.1109/TED.2015.2440102
– ident: CIT0183
  doi: 10.1038/nnano.2015.56
– ident: CIT0138
  doi: 10.1109/IEDM.2012.6479017
– ident: CIT0111
  doi: 10.1109/TNNLS.2015.2391182
– ident: CIT0116
  doi: 10.1109/JETCAS.2016.2547718
– volume: 5
  year: 2015
  ident: CIT0160
  publication-title: Sci. Rep.
– ident: CIT0173
  doi: 10.1109/TIE.2013.2275966
– ident: CIT0099
  doi: 10.1002/adma.201101060
– start-page: 29.5
  volume-title: IEDM Technical Digest
  year: 2014
  ident: CIT0019
– ident: CIT0083
  doi: 10.1145/2539123
– ident: CIT0008
  doi: 10.3389/fnins.2015.00051
– start-page: 4.4
  volume-title: IEDM Technical Digest
  year: 2015
  ident: CIT0069
– ident: CIT0142
  doi: 10.1088/0957-4484/20/34/345201
– ident: CIT0109
  doi: 10.1109/TED.2016.2537792
– ident: CIT0027
  doi: 10.1007/s00422-008-0233-1
– start-page: 4.7
  volume-title: IEDM Technical Digest
  year: 2015
  ident: CIT0177
– ident: CIT0186
– ident: CIT0034
  doi: 10.1162/neco.2007.19.11.2881
– ident: CIT0136
  doi: 10.1109/IEDM.2010.5703410
– ident: CIT0004
  doi: 10.1088/0957-4484/24/38/382001
– ident: CIT0049
  doi: 10.1109/IEDM.2015.7409716
– ident: CIT0192
  doi: 10.3389/fnins.2015.00241
– ident: CIT0179
  doi: 10.3934/matersci.2015.3.203
– ident: CIT0101
  doi: 10.1109/LED.2015.2457243
– ident: CIT0051
  doi: 10.1109/TNN.2005.860850
– ident: CIT0006
  doi: 10.1088/0022-3727/46/9/093001
– ident: CIT0045
  doi: 10.1109/IJCNN.2011.6033439
– ident: CIT0128
  doi: 10.1021/acsami.5b01825
– ident: CIT0196
  doi: 10.1017/CBO9781107447615
– ident: CIT0206
  doi: 10.1113/jphysiol.1952.sp004764
– ident: CIT0167
  doi: 10.1088/0957-4484/24/38/384005
– ident: CIT0182
  doi: 10.1109/IEDM.2012.6479026
– ident: CIT0067
  doi: 10.1109/4.309904
– ident: CIT0012
  doi: 10.1016/j.neunet.2010.12.003
– ident: CIT0015
  doi: 10.1196/annals.1292.010
– start-page: 17.6
  volume-title: IEDM Technical Digest
  year: 2015
  ident: CIT0208
– ident: CIT0082
  doi: 10.1109/ESSDERC.2016.7599680
– ident: CIT0102
  doi: 10.1038/srep01230
– ident: CIT0135
  doi: 10.1038/nmat3054
– ident: CIT0171
  doi: 10.1109/IEDM.2013.6724692
– ident: CIT0013
  doi: 10.1109/IEDM.2015.7409622
– ident: CIT0048
  doi: 10.1109/NanoArch.2013.6623029
– ident: CIT0110
  doi: 10.1103/PhysRevE.84.046703
– ident: CIT0063
  doi: 10.1109/JPROC.2014.2313565
– start-page: T16.2
  volume-title: Symposium on VLSI Technology
  year: 2013
  ident: CIT0190
– ident: CIT0022
  doi: 10.1016/j.physleta.2015.12.024
– ident: CIT0157
  doi: 10.1109/IEDM.2015.7409717
– ident: CIT0207
  doi: 10.1109/JRPROC.1962.288234
– start-page: 1
  year: 2016
  ident: CIT0079
  publication-title: IEEE Trans. Neural Networks Learn. Syst. PP
– ident: CIT0005
  doi: 10.3389/fnins.2013.00002
– ident: CIT0074
  doi: 10.1088/0957-4484/23/7/075201
– ident: CIT0076
  doi: 10.1016/j.procs.2014.11.094
– ident: CIT0199
  doi: 10.1109/LED.2016.2591181
– ident: CIT0032
  doi: 10.1038/nn.2479
– ident: CIT0033
  doi: 10.1038/78829
– ident: CIT0046
  doi: 10.1109/IJCNN.2014.6889506
– ident: CIT0146
  doi: 10.1109/TNNLS.2012.2204770
– ident: CIT0106
  doi: 10.1109/TNANO.2014.2300342
– ident: CIT0165
  doi: 10.1109/IEDM.2014.7047127
– ident: CIT0085
  doi: 10.1109/IEDM.2014.7047126
– ident: CIT0011
  doi: 10.1166/jno.2008.301
– ident: CIT0016
  doi: 10.1116/1.4889999
– ident: CIT0014
  doi: 10.1109/IMW.2015.7150295
– ident: CIT0095
  doi: 10.1109/TNANO.2016.2570248
– ident: CIT0077
  doi: 10.1088/0957-4484/26/45/455204
– ident: CIT0092
  doi: 10.1109/TVLSI.2013.2282132
– ident: CIT0174
  doi: 10.1088/0957-4484/25/49/495204
– ident: CIT0152
  doi: 10.1088/0268-1242/30/10/105014
– ident: CIT0009
  doi: 10.1109/JETCAS.2016.2533298
– start-page: 4.1
  volume-title: IEDM Technical Digest
  year: 2015
  ident: CIT0120
– ident: CIT0205
  doi: 10.1109/TED.2016.2631567
– start-page: 4.5
  volume-title: IEDM Technical Digest
  year: 2015
  ident: CIT0084
– ident: CIT0204
  doi: 10.1371/journal.pcbi.1003037
– ident: CIT0072
  doi: 10.1109/ICCAD.2015.7372570
– start-page: 1
  volume-title: Symposium on VLSI Circuits
  year: 2014
  ident: CIT0058
– ident: CIT0089
  doi: 10.1007/s00339-015-8993-7
– ident: CIT0169
  doi: 10.1109/IEDM.2012.6479016
– volume: 4
  volume-title: Principles of Neural Science
  year: 2000
  ident: CIT0195
– ident: CIT0185
  doi: 10.1063/1.4914111
– ident: CIT0056
  doi: 10.1109/CICC.2011.6055293
– ident: CIT0024
  doi: 10.1126/science.275.5297.213
– ident: CIT0105
  doi: 10.7567/APEX.7.083001
– ident: CIT0041
  doi: 10.3389/fnins.2016.00241
– ident: CIT0065
  doi: 10.1038/nature14539
– ident: CIT0096
  doi: 10.1038/nphys2796
– volume-title: Spiking Neural Networks: Principles and Challenges, in European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
  year: 2014
  ident: CIT0030
– ident: CIT0154
  doi: 10.1088/0957-4484/24/38/384012
– ident: CIT0200
  doi: 10.1088/0957-4484/27/35/355205
– ident: CIT0172
  doi: 10.1088/0268-1242/29/10/104006
– volume: 8
  start-page: 412
  year: 2014
  ident: CIT0156
  publication-title: Front. Neurosci.
– volume-title: Analog Neurons and Neurosynaptic Networks
  year: 2006
  ident: CIT0198
– start-page: 4.6
  volume-title: IEDM Technical Digest
  year: 2015
  ident: CIT0055
– ident: CIT0057
  doi: 10.1109/TCAD.2015.2474396
– ident: CIT0036
  doi: 10.3389/fncom.2015.00099
– ident: CIT0125
  doi: 10.1109/IEDM.2011.6131643
– ident: CIT0168
  doi: 10.1088/0957-4484/24/38/384003
– ident: CIT0103
  doi: 10.1126/science.1074376
– ident: CIT0113
– ident: CIT0078
  doi: 10.1109/IJCNN.2015.7280658
– volume: 2011
  start-page: 203
  year: 2012
  ident: CIT0044
  publication-title: Bioinspired networks with nanoscale memristive devices that combine the unsupervised and supervised learning approaches
– ident: CIT0130
  doi: 10.3389/fnins.2016.00056
– ident: CIT0191
  doi: 10.1038/nmat3510
– ident: CIT0112
  doi: 10.1038/scientificamerican0215-56
– ident: CIT0134
  doi: 10.1063/1.3662390
– volume: 8
  start-page: 438
  year: 2016
  ident: CIT0050
  publication-title: Front. Neurosci.
– ident: CIT0091
  doi: 10.1038/nature08940
– ident: CIT0071
  doi: 10.1038/ncomms3072
– ident: CIT0107
  doi: 10.1109/JETCAS.2015.2426492
– ident: CIT0131
  doi: 10.1038/srep01619
– ident: CIT0037
  doi: 10.1371/journal.pcbi.0030031
– ident: CIT0122
  doi: 10.1109/IMW.2012.6213674
– start-page: 45
  volume-title: Parallel Distributed Processing
  year: 1986
  ident: CIT0064
  doi: 10.7551/mitpress/5236.001.0001
– ident: CIT0070
  doi: 10.3389/fnins.2016.00333
– volume-title: Convnet benchmarks
  year: 2016
  ident: CIT0209
– ident: CIT0121
  doi: 10.1109/IEDM.2011.6131488
– ident: CIT0178
  doi: 10.1038/srep13753
– ident: CIT0194
  doi: 10.1038/nnano.2016.70
– ident: CIT0159
  doi: 10.1088/0957-4484/24/38/384011
– ident: CIT0164
  doi: 10.1007/s00339-011-6296-1
– volume: 5
  start-page: 73
  year: 2011
  ident: CIT0197
  publication-title: Front. Neurosci.
– ident: CIT0141
  doi: 10.1088/0957-4484/24/38/384004
– ident: CIT0166
  doi: 10.1038/srep10150
– volume-title: Utrecht University Technical Report UU-CS-2003-008
  year: 2002
  ident: CIT0031
– ident: CIT0075
  doi: 10.1109/LED.2015.2481819
– volume-title: The Organization of Behavior
  year: 1949
  ident: CIT0028
– ident: CIT0040
  doi: 10.3389/fnins.2013.00178
– ident: CIT0020
  doi: 10.1088/0957-4484/18/36/365202
– ident: CIT0094
  doi: 10.1109/TCSII.2014.2357292
– ident: CIT0053
  doi: 10.1109/JPROC.2015.2444094
– volume: 5
  start-page: 3158
  year: 2014
  ident: CIT0181
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4158
– ident: CIT0115
  doi: 10.1116/1.3301579
– ident: CIT0189
  doi: 10.1021/acsami.5b08541
– volume-title: Proceeding of the European Solid-State Device Research Conference (ESSDERC)
  year: 2016
  ident: CIT0108
– ident: CIT0180
  doi: 10.1002/adfm.200901335
– start-page: 4.2
  volume-title: IEDM Technical Digest
  year: 2015
  ident: CIT0052
– ident: CIT0153
  doi: 10.1038/srep22970
– ident: CIT0162
  doi: 10.1038/nature06932
– ident: CIT0201
  doi: 10.1038/nrn1888
– ident: CIT0133
  doi: 10.1145/2463585.2463588
– ident: CIT0021
  doi: 10.1109/TED.2012.2227969
– ident: CIT0043
  doi: 10.1016/j.neunet.2013.07.012
– ident: CIT0139
  doi: 10.1002/adfm.201200244
– ident: CIT0163
  doi: 10.1088/0957-4484/22/25/254023
– ident: CIT0090
  doi: 10.1109/IJCNN.2015.7280785
– ident: CIT0010
  doi: 10.1103/PhysRevE.71.061907
– ident: CIT0104
  doi: 10.1145/2465787.2465794
– ident: CIT0066
  doi: 10.1109/IEDM.1997.650395
– ident: CIT0060
  doi: 10.3389/fncom.2010.00129
– ident: CIT0097
  doi: 10.1002/adma.201301940
– ident: CIT0151
  doi: 10.1063/1.4934818
– ident: CIT0184
  doi: 10.1109/TBCAS.2015.2414423
– ident: CIT0038
  doi: 10.1371/journal.pone.0001377
– ident: CIT0002
  doi: 10.1038/nphys2566
– ident: CIT0119
  doi: 10.1109/JPROC.2012.2190369
– ident: CIT0035
  doi: 10.1109/5.726791
– ident: CIT0100
  doi: 10.1002/adfm.201202383
– volume: 255
  start-page: 209
  year: 1992
  ident: CIT0029
  publication-title: Am. Assoc. Adv. Sci.
– ident: CIT0080
  doi: 10.1038/srep10492
– ident: CIT0188
  doi: 10.1021/nn401946s
– volume: 18
  start-page: 10464
  year: 1998
  ident: CIT0026
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.18-24-10464.1998
– ident: CIT0047
  doi: 10.1109/TNANO.2013.2250995
– start-page: 1
  year: 2016
  ident: CIT0081
  publication-title: Memristive Boltzmann machine: a hardware accelerator for combinatorial optimization and deep learning
– ident: CIT0061
  doi: 10.3389/fnins.2012.00090
– ident: CIT0087
  doi: 10.1038/nature14441
– ident: CIT0144
  doi: 10.1109/IMW.2012.6213663
– ident: CIT0025
  doi: 10.3389/fnsyn.2011.00004
– ident: CIT0124
  doi: 10.1063/1.4749411
– ident: CIT0093
  doi: 10.1109/IEDM.2015.7409720
– ident: CIT0176
  doi: 10.1038/srep10123
– ident: CIT0143
  doi: 10.1109/TED.2011.2147791
SSID ssj0001670803
Score 2.5766158
SecondaryResourceType review_article
Snippet Dense crossbar arrays of non-volatile memory (NVM) devices represent one possible path for implementing massively-parallel and highly energy-efficient...
SourceID doaj
proquest
crossref
informaworld
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 89
SubjectTerms Algorithms
Arrays
Artificial neural networks
Back propagation
Computation
Linearity
Machine learning
Mathematical analysis
Matrix algebra
Matrix methods
Memory devices
Multiplication
Neural networks
Neuromorphic computing
non-volatile memory
NVM-based neurons
NVM-based synapses
Power management
Random access memory
Resistance
spike-timing-dependent-plasticity
spiking neural networks
vector-matrix multiplication
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yELyInzid0oPXbkmT5uOo4hiCnhzsFvJVETYVVw_-976k7Sh62MVrSdrwe2ne7yUvv4fQdUW5K4RwucFGQoBCbQ5-JuTOBOtwcKFM18cen_hszh4W5aJX6ivmhDXywA1wE-IVIxY7W5QVkyEoS0LBuKmUSNLmcfUFn9cLptLuChdAhWh3ZUfiSUEFA1cU76YQPga3rspYP7nnjJJm_y_F0j8rdHI70wO03_LF7KYZ5yHaCW9HaDflbbr1McJJXGP1Dmi9usylEg3gjLKYzv6SQWifw_ID4C9Dtoo5td8naD69f76b5W0RhNyVRNS5IEFRKyWAzQX3RAkrPFPSYRy8kaVn0kseRZIJtPLYFZ5TgKdSUgH9KOkpGsDXwhnKglEGXuEqU3gWT-A80KtgZIyRGAQaQ8Q6NLRrFcJjoYqlJq2QaAeijiDqFsQhGm-6fTQSGds63EaoN42jwnV6AHbXrd31NrsPkeobStdpg6NqqpFoumUAo86quv1l17qAKQtsqhTq_D_Gd4H2isgA0m7NCA3qz69wCfyltldpqv4Ag_HmjQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEA7aIngRn1itsgevq8luNo-TWFGKYBGx0FvIa0VQW9t68N87SbNVFPS6u8nuTpL5ZiaTbxA6qUtmC85trrEW4KCUJgec8bnV3ljsra_i8bHbAesP6c2oGqWA2yylVTY6MSpqN7YhRn5WQI8AdhWX55O3PFSNCrurqYTGKmqDChbgfLV7V4O7-68oC-NgEpXN0R2Bz4qSU4CkcEaFsFOAd1mFOsrfQCly9_9gLv2lqSP8XG-ijWQ3ZheLgd5CK_51G63F_E0720E4kmy8jEFqTzazsVQDgFIW0tofM3Dxc1BDMAjPPnsJubUfu2h4ffVw2c9TMYTcVoTPc068LI0QIHTGmSOSG-6oFBZj77SoHBVOsECWTOAph23hWMl0XUshwQypyj3Ugrf5fZR5LTV0YWtdOBp24hyYWV6L4CtRcDg6iDbSUDYxhYeCFc-KJELRRogqCFElIXbQ6bLZZEGV8V-DXhD18uHAdB0vjKePKi0cRZykxGBriqqmwntpiC8o_Jjkkdq-g-T3gVLzGOioF1VJVPnPB3SbUVVp6c7U10Q7-Pv2IVovAsbHeEwXtebTd38EFsrcHKdp-AkYO9-s
  priority: 102
  providerName: ProQuest
Title Neuromorphic computing using non-volatile memory
URI https://www.tandfonline.com/doi/abs/10.1080/23746149.2016.1259585
https://www.proquest.com/docview/2277431579
https://doaj.org/article/1d941b0cb25f48ee9b1e246af9791559
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7aIngRn1itZQ9et26y2TyOVlqKYBGxoKeQ1xZBrbT14L93ku7WF-LB65LJ7s5MMo9MvkHotMyZJZzbVGdaQICSmxTsjE-t9sZm3voiXh-7GrHhmF7eFXU14bwqqwwxdLkEioh7dVjc2szrirgzknMKViVcM8GsCxZags-7jpokaCuodHY__EizMA4keX135zfqL1Ypgvd_gy79sVVH-zPYRluV45icLyW9g9b88y7aiAWcdr6Hsoiy8TQFtj3YxMZeDWCVklDXPkkgxk9hHwIpPPrkKRTXvu2j8aB_ezFMq24IqS0wX6Qce5kbIYDrjDOHJTfcUSlslnmnReGocIIFtGQMo1xmiWM502UphQQ_pMgPUAPe5g9R4rXUMIUtNXE0HMU58LO8FiFYohBxtBCtuaFsBRUeOlY8KlwhitZMVIGJqmJiC3VXZC9LrIy_CHqB1avBAeo6PpjOJqpaOQo7SbHJrCFFSYX30mBPKPyY5BHbvoXkZ0GpRcx0lMu2JCr_4wPatVRVtXbnioDugltVcHn0j6mP0SYJHkDM1rRRYzF79SfgvyxMJ2poBzV7_dH1TSdmAd4B8NjmNg
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB6hRRVcUB9ULKVtDu0xEDuOHwdUlRa0FFghBBI317EdhAS7wG6F-FP9jZ3xJoBaqZy4JrbjzIznYXvmA_jUlNJzpXzuCqcxQCnrHO1MzL2LtS-ij1VKHzsYysGJ-HFanc7B7y4Xhq5VdjoxKeow9rRHvsFxRDR2lTJfrq5zQo2i09UOQmMmFnvx7hZDtsnm7nfk72fOd7aPvw3yFlUg9xVT01yxaMpaa5y9VDIwo2oVhNG-KGJwugpCBy2p6jDDVqHwPMhSuqYx2qA9J5QIVPnzosRQpgfzW9vDw6OHXR2p0AUru1QhXWzwUgk0gZQTw-Q6uhOmItzmR0YwYQX8VSn1H8uQzN3OS1hq_dTs60ywXsFcHL2GF-m-qJ-8gSIV9bgcI5fOfeYTNAQawYyu0Z9lo_EoR7WHTL-I2SXd5b1bhpNnIdNb6OHX4gpk0RmHQ_jG8SDo5C-gWxedpthMYIDTB9FRw_q2MjkBZFxY1hYw7YhoiYi2JWIf1u-7Xc1KczzVYYtIfd-YKmunB-ObM9suVMuCEawufM2rRugYTc0iF_hjRqVS-n0wjxllp2ljpZmhoNjyiQmsdVy1raqY2AfBXv3_64-wMDg-2Lf7u8O9d7DIyb9Ie0Fr0Jve_Irv0Tua1h9akczg53Ovgj-Pgxy8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagCMSCeIpCgQysKXHi-DHyqsqrYqASTJZjOxVSS6s2DPx7zk5SXkIMrJHPSe5sf3f2-TuEjvOE6pgxHapIcQhQkiwEnLGhVjbTkdU29dfH7nq02yfXj2mdTTir0ipdDJ2XRBF-rXaTe2LyOiPuJE4YAVRx10wwbQNCC_B5F9FSygHrYUhHT92PbRbKQCSp7-78Jv0FlTx5_zfq0h9LtcefzjpaqxzH4LS09AZasC-baNkncOrZFoo8y8ZoDGp71oH2tRoAlQKX1z4IIMYPYR0CKwxtMHLJtW_bqN-5fDjvhlU1hFCnmBUhw1YkGeegdcqowYJlzBDBdRRZo3hqCDecOrZkDK1MpGNDE6ryXHABfkia7KAGvM3uosAqoaALnavYEHcUZ8DPsoq7YIlAxNFEpNaG1BVVuKtYMZS4YhStlSidEmWlxCZqz8UmJVfGXwJnTtXzxo7q2j8YTweymjkSG0FwFuksTnPCrRUZtjGBHxPMc9s3kfhsKFn4nY68LEsikz8-oFVbVVZzdyZjGLvgVqVM7P2j6yO0cn_RkbdXvZt9tBo7Z8Bv3LRQo5i-2gNwZYrs0A_Wd4895k0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuromorphic+computing+using+non-volatile+memory&rft.jtitle=Advances+in+physics%3A+X&rft.au=Burr%2C+Geoffrey+W.&rft.au=Shelby%2C+Robert+M.&rft.au=Sebastian%2C+Abu&rft.au=Kim%2C+Sangbum&rft.date=2017-01-01&rft.issn=2374-6149&rft.eissn=2374-6149&rft.volume=2&rft.issue=1&rft.spage=89&rft.epage=124&rft_id=info:doi/10.1080%2F23746149.2016.1259585&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_23746149_2016_1259585
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2374-6149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2374-6149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2374-6149&client=summon