Applying logistic LASSO regression for the diagnosis of atypical Crohn's disease

In countries with a high incidence of tuberculosis, the typical clinical features of Crohn's disease (CD) may be covered up after tuberculosis infection, and the identification of atypical Crohn's disease and intestinal tuberculosis (ITB) is still a dilemma for clinicians. Least absolute s...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; pp. 11340 - 9
Main Authors Li, Ying, Lu, Fanggen, Yin, Yani
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.07.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In countries with a high incidence of tuberculosis, the typical clinical features of Crohn's disease (CD) may be covered up after tuberculosis infection, and the identification of atypical Crohn's disease and intestinal tuberculosis (ITB) is still a dilemma for clinicians. Least absolute shrinkage and selection operator (LASSO) regression has been applied to select variables in disease diagnosis. However, its value in discriminating ITB and atypical Crohn's disease remains unknown. A total of 400 patients were enrolled from January 2014 to January 2019 in second Xiangya hospital Central South University.Among them, 57 indicators including clinical manifestations, laboratory results, endoscopic findings, computed tomography enterography features were collected for further analysis. R software version 3.6.1 (glmnet package) was used to perform the LASSO logistic regression analysis. SPSS 20.0 was used to perform Pearson chi-square test and binary logistic regression analysis. In the variable selection step, LASSO regression and Pearson chi-square test were applied to select the most valuable variables as candidates for further logistic regression analysis. Secondly, variables identified from step 1 were applied to construct binary logistic regression analysis. Receiver operating characteristic (ROC) curve analysis was performed on these models to assess the ability and the optimal cutoff value for diagnosis. The area under the ROC curve (AUC), sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy rate, together with their 95% confidence and intervals (CIs) were calculated. MedCalc software (Version 16.8) was applied to analyze the ROC curves of models. 332 patients were eventually enrolled to build a binary logistic regression model to discriminate CD (including comprehensive CD and tuberculosis infected CD) and ITB. However, we did not get a satisfactory diagnostic value via applying the binary logistic regression model of comprehensive CD and ITB to predict tuberculosis infected CD and ITB (accuracy rate:79.2%VS 65.1%). Therefore, we further established a binary logistic regression model to discriminate atypical CD from ITB, based on Pearsonchi-square test (model1) and LASSO regression (model 2). Model 1 showed 89.9% specificity, 65.9% sensitivity, 88.5% PPV, 68.9% NPV, 76.9% diagnostic accuracy, and an AUC value of 0.811, and model 2 showed 80.6% specificity, 84.4% sensitivity, 82.3% PPV, 82.9% NPV, 82.6% diagnostic accuracy, and an AUC value of 0.887. The comparison of AUCs between model1 and model2 was statistically different (P < 0.05). Tuberculosis infection increases the difficulty of discriminating CD from ITB. LASSO regression showed a more efficient ability than Pearson chi-square test based logistic regression on differential diagnosing atypical CD and ITB.
AbstractList In countries with a high incidence of tuberculosis, the typical clinical features of Crohn's disease (CD) may be covered up after tuberculosis infection, and the identification of atypical Crohn's disease and intestinal tuberculosis (ITB) is still a dilemma for clinicians. Least absolute shrinkage and selection operator (LASSO) regression has been applied to select variables in disease diagnosis. However, its value in discriminating ITB and atypical Crohn's disease remains unknown. A total of 400 patients were enrolled from January 2014 to January 2019 in second Xiangya hospital Central South University.Among them, 57 indicators including clinical manifestations, laboratory results, endoscopic findings, computed tomography enterography features were collected for further analysis. R software version 3.6.1 (glmnet package) was used to perform the LASSO logistic regression analysis. SPSS 20.0 was used to perform Pearson chi-square test and binary logistic regression analysis. In the variable selection step, LASSO regression and Pearson chi-square test were applied to select the most valuable variables as candidates for further logistic regression analysis. Secondly, variables identified from step 1 were applied to construct binary logistic regression analysis. Receiver operating characteristic (ROC) curve analysis was performed on these models to assess the ability and the optimal cutoff value for diagnosis. The area under the ROC curve (AUC), sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy rate, together with their 95% confidence and intervals (CIs) were calculated. MedCalc software (Version 16.8) was applied to analyze the ROC curves of models. 332 patients were eventually enrolled to build a binary logistic regression model to discriminate CD (including comprehensive CD and tuberculosis infected CD) and ITB. However, we did not get a satisfactory diagnostic value via applying the binary logistic regression model of comprehensive CD and ITB to predict tuberculosis infected CD and ITB (accuracy rate:79.2%VS 65.1%). Therefore, we further established a binary logistic regression model to discriminate atypical CD from ITB, based on Pearsonchi-square test (model1) and LASSO regression (model 2). Model 1 showed 89.9% specificity, 65.9% sensitivity, 88.5% PPV, 68.9% NPV, 76.9% diagnostic accuracy, and an AUC value of 0.811, and model 2 showed 80.6% specificity, 84.4% sensitivity, 82.3% PPV, 82.9% NPV, 82.6% diagnostic accuracy, and an AUC value of 0.887. The comparison of AUCs between model1 and model2 was statistically different (P < 0.05). Tuberculosis infection increases the difficulty of discriminating CD from ITB. LASSO regression showed a more efficient ability than Pearson chi-square test based logistic regression on differential diagnosing atypical CD and ITB.
Abstract In countries with a high incidence of tuberculosis, the typical clinical features of Crohn's disease (CD) may be covered up after tuberculosis infection, and the identification of atypical Crohn's disease and intestinal tuberculosis (ITB) is still a dilemma for clinicians. Least absolute shrinkage and selection operator (LASSO) regression has been applied to select variables in disease diagnosis. However, its value in discriminating ITB and atypical Crohn's disease remains unknown. A total of 400 patients were enrolled from January 2014 to January 2019 in second Xiangya hospital Central South University.Among them, 57 indicators including clinical manifestations, laboratory results, endoscopic findings, computed tomography enterography features were collected for further analysis. R software version 3.6.1 (glmnet package) was used to perform the LASSO logistic regression analysis. SPSS 20.0 was used to perform Pearson chi-square test and binary logistic regression analysis. In the variable selection step, LASSO regression and Pearson chi-square test were applied to select the most valuable variables as candidates for further logistic regression analysis. Secondly, variables identified from step 1 were applied to construct binary logistic regression analysis. Receiver operating characteristic (ROC) curve analysis was performed on these models to assess the ability and the optimal cutoff value for diagnosis. The area under the ROC curve (AUC), sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy rate, together with their 95% confidence and intervals (CIs) were calculated. MedCalc software (Version 16.8) was applied to analyze the ROC curves of models. 332 patients were eventually enrolled to build a binary logistic regression model to discriminate CD (including comprehensive CD and tuberculosis infected CD) and ITB. However, we did not get a satisfactory diagnostic value via applying the binary logistic regression model of comprehensive CD and ITB to predict tuberculosis infected CD and ITB (accuracy rate:79.2%VS 65.1%). Therefore, we further established a binary logistic regression model to discriminate atypical CD from ITB, based on Pearsonchi-square test (model1) and LASSO regression (model 2). Model 1 showed 89.9% specificity, 65.9% sensitivity, 88.5% PPV, 68.9% NPV, 76.9% diagnostic accuracy, and an AUC value of 0.811, and model 2 showed 80.6% specificity, 84.4% sensitivity, 82.3% PPV, 82.9% NPV, 82.6% diagnostic accuracy, and an AUC value of 0.887. The comparison of AUCs between model1 and model2 was statistically different (P < 0.05). Tuberculosis infection increases the difficulty of discriminating CD from ITB. LASSO regression showed a more efficient ability than Pearson chi-square test based logistic regression on differential diagnosing atypical CD and ITB.
In countries with a high incidence of tuberculosis, the typical clinical features of Crohn's disease (CD) may be covered up after tuberculosis infection, and the identification of atypical Crohn's disease and intestinal tuberculosis (ITB) is still a dilemma for clinicians. Least absolute shrinkage and selection operator (LASSO) regression has been applied to select variables in disease diagnosis. However, its value in discriminating ITB and atypical Crohn's disease remains unknown. A total of 400 patients were enrolled from January 2014 to January 2019 in second Xiangya hospital Central South University.Among them, 57 indicators including clinical manifestations, laboratory results, endoscopic findings, computed tomography enterography features were collected for further analysis. R software version 3.6.1 (glmnet package) was used to perform the LASSO logistic regression analysis. SPSS 20.0 was used to perform Pearson chi-square test and binary logistic regression analysis. In the variable selection step, LASSO regression and Pearson chi-square test were applied to select the most valuable variables as candidates for further logistic regression analysis. Secondly, variables identified from step 1 were applied to construct binary logistic regression analysis. Receiver operating characteristic (ROC) curve analysis was performed on these models to assess the ability and the optimal cutoff value for diagnosis. The area under the ROC curve (AUC), sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy rate, together with their 95% confidence and intervals (CIs) were calculated. MedCalc software (Version 16.8) was applied to analyze the ROC curves of models. 332 patients were eventually enrolled to build a binary logistic regression model to discriminate CD (including comprehensive CD and tuberculosis infected CD) and ITB. However, we did not get a satisfactory diagnostic value via applying the binary logistic regression model of comprehensive CD and ITB to predict tuberculosis infected CD and ITB (accuracy rate:79.2%VS 65.1%). Therefore, we further established a binary logistic regression model to discriminate atypical CD from ITB, based on Pearsonchi-square test (model1) and LASSO regression (model 2). Model 1 showed 89.9% specificity, 65.9% sensitivity, 88.5% PPV, 68.9% NPV, 76.9% diagnostic accuracy, and an AUC value of 0.811, and model 2 showed 80.6% specificity, 84.4% sensitivity, 82.3% PPV, 82.9% NPV, 82.6% diagnostic accuracy, and an AUC value of 0.887. The comparison of AUCs between model1 and model2 was statistically different (P < 0.05). Tuberculosis infection increases the difficulty of discriminating CD from ITB. LASSO regression showed a more efficient ability than Pearson chi-square test based logistic regression on differential diagnosing atypical CD and ITB.In countries with a high incidence of tuberculosis, the typical clinical features of Crohn's disease (CD) may be covered up after tuberculosis infection, and the identification of atypical Crohn's disease and intestinal tuberculosis (ITB) is still a dilemma for clinicians. Least absolute shrinkage and selection operator (LASSO) regression has been applied to select variables in disease diagnosis. However, its value in discriminating ITB and atypical Crohn's disease remains unknown. A total of 400 patients were enrolled from January 2014 to January 2019 in second Xiangya hospital Central South University.Among them, 57 indicators including clinical manifestations, laboratory results, endoscopic findings, computed tomography enterography features were collected for further analysis. R software version 3.6.1 (glmnet package) was used to perform the LASSO logistic regression analysis. SPSS 20.0 was used to perform Pearson chi-square test and binary logistic regression analysis. In the variable selection step, LASSO regression and Pearson chi-square test were applied to select the most valuable variables as candidates for further logistic regression analysis. Secondly, variables identified from step 1 were applied to construct binary logistic regression analysis. Receiver operating characteristic (ROC) curve analysis was performed on these models to assess the ability and the optimal cutoff value for diagnosis. The area under the ROC curve (AUC), sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy rate, together with their 95% confidence and intervals (CIs) were calculated. MedCalc software (Version 16.8) was applied to analyze the ROC curves of models. 332 patients were eventually enrolled to build a binary logistic regression model to discriminate CD (including comprehensive CD and tuberculosis infected CD) and ITB. However, we did not get a satisfactory diagnostic value via applying the binary logistic regression model of comprehensive CD and ITB to predict tuberculosis infected CD and ITB (accuracy rate:79.2%VS 65.1%). Therefore, we further established a binary logistic regression model to discriminate atypical CD from ITB, based on Pearsonchi-square test (model1) and LASSO regression (model 2). Model 1 showed 89.9% specificity, 65.9% sensitivity, 88.5% PPV, 68.9% NPV, 76.9% diagnostic accuracy, and an AUC value of 0.811, and model 2 showed 80.6% specificity, 84.4% sensitivity, 82.3% PPV, 82.9% NPV, 82.6% diagnostic accuracy, and an AUC value of 0.887. The comparison of AUCs between model1 and model2 was statistically different (P < 0.05). Tuberculosis infection increases the difficulty of discriminating CD from ITB. LASSO regression showed a more efficient ability than Pearson chi-square test based logistic regression on differential diagnosing atypical CD and ITB.
ArticleNumber 11340
Author Yin, Yani
Lu, Fanggen
Li, Ying
Author_xml – sequence: 1
  givenname: Ying
  surname: Li
  fullname: Li, Ying
  organization: Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University
– sequence: 2
  givenname: Fanggen
  surname: Lu
  fullname: Lu, Fanggen
  organization: Department of Gastroenterology, The Second Xiangya Hospital of Central South University
– sequence: 3
  givenname: Yani
  surname: Yin
  fullname: Yin, Yani
  email: yinyani@csu.edu.cn
  organization: Department of Gastroenterology of Xiangya Hospital, Central South University, Hunan International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis and Treatment for Digestive Disease, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital
BookMark eNp9Uk1r3DAQNSWl-Wj-QE-GHtqLW0nW56WwLG0aWEghuQtJHnu1eCVX8gb231eJU9rkEF0kZt57o5l559VJiAGq6gNGXzBq5ddMMVOyQYQ0mHGkGvamOiOIsoa0hJz89z6tLnPeoXIYURSrd9Vpy4RCQtCz6tdqmsajD0M9xsHn2bt6s7q9vakTDAly9jHUfUz1vIW682YIMftcx74283Hyzoz1OsVt-JRLNoPJ8L5625sxw-XTfVHd_fh-t_7ZbG6urterTeMYFnMjsEGAlFAt5hbL3ppe9FwRy4UVri9hwKwlTgBwh5FwkoA1thWi7zqK24vqepHtotnpKfm9SUcdjdePgZgGbVLpZgQNFENnwCgglCoupRC2LZUtMIuN5UXr26I1HeweOgdhTmZ8Jvo8E_xWD_FeK8I4R7IIfH4SSPH3AfKs9z47GEcTIB6yJlwySjlhpEA_voDu4iGFMqkHFBVCSawKSi4ol2LOCXrt_GzmsoxS348aI_1gAr2YQBcT6EcTaFao5AX1bx-vktqFlAs4DJD-_eoV1h8oHsTP
CitedBy_id crossref_primary_10_1177_01617346241271184
crossref_primary_10_3389_fnins_2024_1390117
crossref_primary_10_3892_ol_2024_14318
crossref_primary_10_2147_JIR_S445929
crossref_primary_10_7717_peerj_19112
crossref_primary_10_3389_fneur_2024_1384320
crossref_primary_10_35741_issn_0258_2724_59_3_20
crossref_primary_10_1016_j_jbo_2024_100640
crossref_primary_10_1038_s41598_025_92028_2
crossref_primary_10_1007_s10238_024_01322_2
crossref_primary_10_3389_fmicb_2024_1451201
crossref_primary_10_3390_jcm13195803
crossref_primary_10_1186_s12890_025_03581_5
crossref_primary_10_3389_fnagi_2025_1511272
crossref_primary_10_3389_fonc_2024_1347058
crossref_primary_10_1080_16078454_2025_2452701
crossref_primary_10_1186_s13690_024_01361_x
crossref_primary_10_3389_frai_2025_1473223
crossref_primary_10_1007_s00484_024_02763_w
crossref_primary_10_1016_j_intimp_2024_113765
crossref_primary_10_1186_s12935_025_03648_7
crossref_primary_10_1007_s00259_024_06774_y
crossref_primary_10_3389_fimmu_2025_1515490
crossref_primary_10_3389_fnagi_2023_1168840
crossref_primary_10_1007_s00403_025_04017_0
crossref_primary_10_1038_s41598_025_85569_z
crossref_primary_10_3390_healthcare12161639
crossref_primary_10_1080_03610926_2023_2268767
crossref_primary_10_31083_j_fbl2907240
crossref_primary_10_3390_ijms26051875
crossref_primary_10_3389_fmolb_2024_1365447
crossref_primary_10_1111_pai_14032
crossref_primary_10_2147_JIR_S457414
crossref_primary_10_1186_s40537_024_00991_w
crossref_primary_10_1002_iid3_1339
crossref_primary_10_1038_s41598_025_85957_5
crossref_primary_10_1615_CritRevEukaryotGeneExpr_2024057000
crossref_primary_10_1007_s12519_024_00802_5
crossref_primary_10_3389_fimmu_2024_1408974
crossref_primary_10_3389_fmed_2025_1502315
crossref_primary_10_1186_s12885_024_13024_9
crossref_primary_10_3389_fimmu_2024_1351513
crossref_primary_10_3389_fonc_2024_1433874
crossref_primary_10_1111_iep_12522
crossref_primary_10_1007_s12033_025_01379_8
crossref_primary_10_1038_s41598_023_46294_7
crossref_primary_10_3389_fendo_2023_1270772
crossref_primary_10_1097_MD_0000000000038186
crossref_primary_10_1038_s41598_023_49925_1
crossref_primary_10_1002_tox_24287
crossref_primary_10_3390_biomedicines12071626
crossref_primary_10_3389_fimmu_2025_1560438
crossref_primary_10_3390_biomedicines12122827
crossref_primary_10_3390_ijms25168952
crossref_primary_10_7717_peerj_17862
crossref_primary_10_1186_s12920_024_01901_y
crossref_primary_10_1007_s12033_024_01252_0
crossref_primary_10_1186_s12985_024_02400_3
crossref_primary_10_18632_aging_205294
crossref_primary_10_3389_fimmu_2024_1453633
crossref_primary_10_1186_s12864_024_10283_5
crossref_primary_10_1111_cns_70083
Cites_doi 10.1177/1756284820922003
10.1007/s10620-019-05491-z
10.3390/diagnostics11081517
10.4103/0971-3026.184417
10.1111/jgh.12645
10.1038/ajg.2016.212
10.2147/JIR.S298604
10.1111/apt.13840
10.1007/s12664-015-0550-y
10.3390/jcm11051201
10.2147/CEG.S154235
10.1111/tmi.12908
10.1016/S2214-109X(18)30277-8
10.1080/00273171.2015.1036965
10.1111/jch.14403
10.1093/ibd/izy154
10.1093/ibd/izz296
10.1055/s-0034-1391230
10.1053/j.ajkd.2021.07.011
10.1016/S2214-109X(14)70361-4
10.1111/j.1751-2980.2010.00431.x
10.14309/ajg.0000000000000064
10.2147/JIR.S236262
10.5217/ir.2017.15.1.138
10.3389/fcvm.2022.847206
10.1111/j.1440-1746.2005.03814.x
10.3748/wjg.v25.i4.418
10.1111/j.1751-2980.2010.00429.x
10.1016/j.compbiomed.2022.105398
10.1097/MIB.0000000000001162
10.1186/s13104-022-06015-1
10.1111/j.2517-6161.1996.tb02080.x
10.1055/a-1788-7592
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-022-15609-5
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
Coronavirus Research Database
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access资源_DOAJ
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (WRLC)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 9
ExternalDocumentID oai_doaj_org_article_e41edaea9e244968877b3979be5b1ab6
PMC9256608
10_1038_s41598_022_15609_5
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
7XB
8FK
AARCD
COVID
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c517t-71a0e0979316b18fbaf7f692b67b7cf931e1532c7ee6c107c82ebab377fdd413
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 00:48:11 EDT 2025
Thu Aug 21 13:58:56 EDT 2025
Fri Jul 11 12:24:20 EDT 2025
Wed Aug 13 06:11:31 EDT 2025
Thu Apr 24 23:11:28 EDT 2025
Tue Jul 01 04:16:48 EDT 2025
Fri Feb 21 02:36:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-71a0e0979316b18fbaf7f692b67b7cf931e1532c7ee6c107c82ebab377fdd413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-022-15609-5
PMID 35790774
PQID 2684779819
PQPubID 2041939
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_e41edaea9e244968877b3979be5b1ab6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9256608
proquest_miscellaneous_2685446252
proquest_journals_2684779819
crossref_citationtrail_10_1038_s41598_022_15609_5
crossref_primary_10_1038_s41598_022_15609_5
springer_journals_10_1038_s41598_022_15609_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-05
PublicationDateYYYYMMDD 2022-07-05
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Ali, Al Juboori, Petroski, Diaz-Arias, Syed-Abdul, Wheeler, Ganga, Pitt, Spencer, Hammoud, Rector, Parks, Ibdah (CR15) 2022; 11
Kuenzig, Hawken, Wilson, Talarico, Chakraborty, Sood, Benchimol (CR26) 2020; 26
Jung, Hwangbo, Yoon, Koo, Shin, Shin, Moon, Kang, Lee, Huh (CR30) 2016; 111
Kentley, Ooi, Potter, Tiberi, O'Shaughnessy, Langmead, Chin Aleong, Thaha, Kunst (CR35) 2017; 22
Riumallo-Herl, Canning, Salomon (CR2) 2018; 6
CR17
Liu, Duan, Li (CR27) 2020; 13
Zumla, George, Sharma, Herbert, Oxley, Oliver (CR3) 2015; 3
Xu, Han, Huang, Zhang, Lu, Shen, Lyu, Wang (CR14) 2022; 9
Pratap, Munot, Ananthakrishnan, Kedia, Addagalla, Garg, Benjamin, Singla, Dhingra, Tiwari, Bopanna, Hutfless, Makharia, Ahuja (CR29) 2017; 45
Kedia, Das, Madhusudhan, Dattagupta, Sharma, Sahni, Makharia, Ahuja (CR8) 2019; 25
Au, Wong, Howard, Chapman, Castells, Roger, Bourke, Macaskill, Turner, Lim, Lok, Diekmann, Cross, Sen, Allen, Chadban, Pollock, Tong, Teixeira-Pinto, Yang, Kieu, James, Craig (CR24) 2022; 79
Zheng, Zhu, Huangfu, Shi, Guo (CR1) 2010; 11
Zhao, Xu, Chen, Liu, Sun (CR32) 2020; 13
Ahuja, Tandon (CR5) 2010; 11
Mao, Liao, He, Ouyang, Zhu, Yu, Long, Chen, Li, Wu, Lv, Hu, Chen (CR11) 2015; 47
McNeish (CR19) 2015; 50
Jin, Deng, Wang (CR23) 2022; 2022
Ng, Hirai, Tsoi, Wong, Chan, Sung, Wu (CR12) 2014; 29
Chong, Park, Jeong, Kim, Park, Lee, Lee, Hong, Park, Han (CR25) 2021; 11
Wu, Huang, Hou, Shen, Yu, Zhou, Bosco, Mao, Wang, Sun (CR10) 2018; 24
Varshney, Glodjo, Adalbert (CR18) 2022; 15
Tibshirani (CR33) 1996; 58
Tibshirani (CR20) 1996; 58
Sharma, Madhusudhan, Ahuja (CR36) 2016; 26
Kedia, Sharma, Nagi, Mouli, Aananthakrishnan, Dhingra, Srivastava, Kurrey, Ahuja (CR7) 2015; 34
He, Zhu, Chen, Chen, Wang, Ouyang, Yang, Huang, Zhuang, Mao, Ben-Horin, Wu, Ouyang, Qian, Lu, Hu, Chen (CR9) 2019; 114
Bae, Park, Ye, Kim, Cho, Youn, Lee, Hwang, Yang, Kim, Byeon, Myung, Yang (CR31) 2017; 23
Singh, Ananthakrishnan, Ahuja (CR4) 2017; 15
Meng, Li, Hao, Li, Lu (CR13) 2019; 64
Garza-Hernandez, Estrada, Trevino (CR28) 2022; 145
Alshanbari, Sami, Mehmood, Aboud, Alanazi, Hamza, Brema, Alosaimi (CR16) 2022; 26
Patel, Yagnik (CR34) 2018; 11
Pulimood, Peter, Ramakrishna, Chacko, Jeyamani, Jeyaseelan, Kurian (CR6) 2005; 20
Li, Huang, Yi, Wang, Wei, Yan, Qin, Zou, Wei, Chen (CR21) 2021; 14
Ouyang, Li, Wang, Sun (CR22) 2022; 24
Y He (15609_CR9) 2019; 114
L Jin (15609_CR23) 2022; 2022
DM McNeish (15609_CR19) 2015; 50
R Sharma (15609_CR36) 2016; 26
R Tibshirani (15609_CR20) 1996; 58
AH Ali (15609_CR15) 2022; 11
K Varshney (15609_CR18) 2022; 15
R Tibshirani (15609_CR33) 1996; 58
EH Au (15609_CR24) 2022; 79
HM Alshanbari (15609_CR16) 2022; 26
MV Pratap (15609_CR29) 2017; 45
Z Li (15609_CR21) 2021; 14
Y Liu (15609_CR27) 2020; 13
C Riumallo-Herl (15609_CR2) 2018; 6
ME Kuenzig (15609_CR26) 2020; 26
JJ Zheng (15609_CR1) 2010; 11
J Kentley (15609_CR35) 2017; 22
R Mao (15609_CR11) 2015; 47
N Ouyang (15609_CR22) 2022; 24
SC Ng (15609_CR12) 2014; 29
GO Chong (15609_CR25) 2021; 11
P Singh (15609_CR4) 2017; 15
AB Pulimood (15609_CR6) 2005; 20
Y Meng (15609_CR13) 2019; 64
Y Xu (15609_CR14) 2022; 9
D Garza-Hernandez (15609_CR28) 2022; 145
B Patel (15609_CR34) 2018; 11
S Kedia (15609_CR8) 2019; 25
JH Bae (15609_CR31) 2017; 23
A Zumla (15609_CR3) 2015; 3
S Kedia (15609_CR7) 2015; 34
V Ahuja (15609_CR5) 2010; 11
Y Jung (15609_CR30) 2016; 111
15609_CR17
Y Zhao (15609_CR32) 2020; 13
X Wu (15609_CR10) 2018; 24
References_xml – volume: 13
  start-page: 320856429
  year: 2020
  ident: CR32
  article-title: Levels of TB-IGRA may help to differentiate between intestinal tuberculosis and Crohn's disease in patients with positive results
  publication-title: Ther. Adv. Gastroenterol.
  doi: 10.1177/1756284820922003
– volume: 64
  start-page: 1967
  year: 2019
  end-page: 1975
  ident: CR13
  article-title: Analysis of phenotypic variables and differentiation between untypical Crohn's disease and untypical intestinal tuberculosis
  publication-title: Dig. Dis. Sci.
  doi: 10.1007/s10620-019-05491-z
– volume: 11
  start-page: 1517
  year: 2021
  ident: CR25
  article-title: Prediction model for tumor budding status using the radiomic features of f-18 fluorodeoxyglucose positron emission Tomography/Computed tomography in cervical cancer
  publication-title: Diagnostics
  doi: 10.3390/diagnostics11081517
– volume: 26
  start-page: 161
  year: 2016
  end-page: 172
  ident: CR36
  article-title: Intestinal tuberculosis versus Crohn's disease: Clinical and radiological recommendations
  publication-title: Indian J. Radiol. Imaging
  doi: 10.4103/0971-3026.184417
– volume: 29
  start-page: 1664
  year: 2014
  end-page: 1670
  ident: CR12
  article-title: Systematic review with meta-analysis: Accuracy of interferon-gamma releasing assay and anti- antibody in differentiating intestinal tuberculosis from Crohn's disease in Asians
  publication-title: J. Gastroenterol. Hepatol.
  doi: 10.1111/jgh.12645
– volume: 111
  start-page: 1156
  year: 2016
  end-page: 1164
  ident: CR30
  article-title: Predictive factors for differentiating between Crohn's disease and intestinal tuberculosis in koreans
  publication-title: Am. J. Gastroenterol.
  doi: 10.1038/ajg.2016.212
– volume: 14
  start-page: 621
  year: 2021
  end-page: 631
  ident: CR21
  article-title: Identification of potential early diagnostic biomarkers of sepsis
  publication-title: J. Inflamm. Res.
  doi: 10.2147/JIR.S298604
– volume: 45
  start-page: 27
  year: 2017
  end-page: 36
  ident: CR29
  article-title: Endoscopic and clinical responses to anti-tubercular therapy can differentiate intestinal tuberculosis from Crohn's disease
  publication-title: Aliment. Pharmacol. Ther.
  doi: 10.1111/apt.13840
– volume: 34
  start-page: 135
  year: 2015
  end-page: 143
  ident: CR7
  article-title: Computerized tomography-based predictive model for differentiation of Crohn's disease from intestinal tuberculosis
  publication-title: Indian J. Gastroenterol.
  doi: 10.1007/s12664-015-0550-y
– volume: 11
  start-page: 1201
  year: 2022
  ident: CR15
  article-title: The utility and diagnostic accuracy of transient elastography in adults with morbid obesity: A prospective study
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm11051201
– volume: 11
  start-page: 97
  year: 2018
  end-page: 103
  ident: CR34
  article-title: Clinical and laboratory features of intestinal tuberculosis
  publication-title: Clin. Exp. Gastroenterol.
  doi: 10.2147/CEG.S154235
– volume: 22
  start-page: 994
  year: 2017
  end-page: 999
  ident: CR35
  article-title: Intestinal tuberculosis: A diagnostic challenge
  publication-title: Trop. Med. Int. Health
  doi: 10.1111/tmi.12908
– volume: 6
  start-page: e843
  year: 2018
  end-page: e858
  ident: CR2
  article-title: Measuring health and economic wellbeing in the Sustainable Development Goals era: Development of a poverty-free life expectancy metric and estimates for 90 countries
  publication-title: Lancet Glob. Health
  doi: 10.1016/S2214-109X(18)30277-8
– volume: 50
  start-page: 471
  year: 2015
  end-page: 484
  ident: CR19
  article-title: Using lasso for predictor selection and to assuage overfitting: A method long overlooked in behavioral sciences
  publication-title: Multivariate Behav. Res.
  doi: 10.1080/00273171.2015.1036965
– volume: 24
  start-page: 38
  year: 2022
  end-page: 46
  ident: CR22
  article-title: Construction of a risk assessment model of cardiovascular disease in a rural Chinese hypertensive population based on lasso-Cox analysis
  publication-title: J. Clin. Hypertens.
  doi: 10.1111/jch.14403
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: CR33
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. Roy. Stat. Soc.: Ser. B (Methodol.)
– volume: 24
  start-page: 2452
  year: 2018
  end-page: 2460
  ident: CR10
  article-title: Diagnostic performance of a 5-Marker predictive model for differential diagnosis between intestinal tuberculosis and Crohn's disease
  publication-title: Inflamm. Bowel Dis.
  doi: 10.1093/ibd/izy154
– volume: 26
  start-page: 1743
  year: 2020
  end-page: 1747
  ident: CR26
  article-title: Serum newborn screening blood metabolites are not associated with childhood-onset inflammatory bowel disease: A population-based matched case-control study
  publication-title: Inflamm. Bowel Dis.
  doi: 10.1093/ibd/izz296
– volume: 47
  start-page: 322
  year: 2015
  end-page: 329
  ident: CR11
  article-title: Computed tomographic enterography adds value to colonoscopy in differentiating Crohn's disease from intestinal tuberculosis: A potential diagnostic algorithm
  publication-title: Endoscopy
  doi: 10.1055/s-0034-1391230
– volume: 79
  start-page: 549
  year: 2022
  end-page: 560
  ident: CR24
  article-title: Factors associated with advanced colorectal neoplasia in patients with CKD
  publication-title: Am. J. Kidney Dis.
  doi: 10.1053/j.ajkd.2021.07.011
– volume: 3
  start-page: e10
  year: 2015
  end-page: e12
  ident: CR3
  article-title: The WHO 2014 global tuberculosis report–further to go
  publication-title: Lancet Glob. Health
  doi: 10.1016/S2214-109X(14)70361-4
– volume: 2022
  start-page: 8745722
  year: 2022
  ident: CR23
  article-title: Candidate genes of allergic dermatitis are associated with immune response
  publication-title: J. Healthc. Eng.
– volume: 11
  start-page: 161
  year: 2010
  end-page: 166
  ident: CR1
  article-title: Prevalence and incidence rates of Crohn's disease in mainland China: A meta-analysis of 55 years of research
  publication-title: J. Dig. Dis.
  doi: 10.1111/j.1751-2980.2010.00431.x
– volume: 114
  start-page: 490
  year: 2019
  end-page: 499
  ident: CR9
  article-title: Development and validation of a novel diagnostic nomogram to differentiate between intestinal tuberculosis and crohn's disease: A 6-year prospective multicenter study
  publication-title: Am. J. Gastroenterol.
  doi: 10.14309/ajg.0000000000000064
– ident: CR17
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: CR20
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
– volume: 13
  start-page: 81
  year: 2020
  end-page: 95
  ident: CR27
  article-title: Integrated gene expression profiling analysis reveals probable molecular mechanism and candidate biomarker in anti-TNFalpha non-response IBD patients
  publication-title: J. Inflamm. Res.
  doi: 10.2147/JIR.S236262
– volume: 15
  start-page: 138
  year: 2017
  end-page: 141
  ident: CR4
  article-title: Pivot to Asia: Inflammatory bowel disease burden
  publication-title: Intest. Res.
  doi: 10.5217/ir.2017.15.1.138
– volume: 9
  start-page: 847206
  year: 2022
  ident: CR14
  article-title: Predicting ICU mortality in rheumatic heart disease: Comparison of XGBoost and logistic regression
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2022.847206
– volume: 20
  start-page: 688
  year: 2005
  end-page: 696
  ident: CR6
  article-title: Segmental colonoscopic biopsies in the differentiation of ileocolic tuberculosis from Crohn's disease
  publication-title: J. Gastroenterol. Hepatol.
  doi: 10.1111/j.1440-1746.2005.03814.x
– volume: 25
  start-page: 418
  year: 2019
  end-page: 432
  ident: CR8
  article-title: Differentiating Crohn's disease from intestinal tuberculosis
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v25.i4.418
– volume: 11
  start-page: 134
  year: 2010
  end-page: 147
  ident: CR5
  article-title: Inflammatory bowel disease in the Asia-Pacific area: A comparison with developed countries and regional differences
  publication-title: J. Dig. Dis.
  doi: 10.1111/j.1751-2980.2010.00429.x
– volume: 145
  start-page: 105398
  year: 2022
  ident: CR28
  article-title: Multivariate genome-wide association study models to improve prediction of Crohn's disease risk and identification of potential novel variants
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105398
– volume: 23
  start-page: 1614
  year: 2017
  end-page: 1623
  ident: CR31
  article-title: Development and validation of a novel prediction model for differential diagnosis between Crohn's disease and intestinal tuberculosis
  publication-title: Inflamm. Bowel Dis.
  doi: 10.1097/MIB.0000000000001162
– volume: 26
  start-page: 2592
  year: 2022
  end-page: 2601
  ident: CR16
  article-title: Prediction of COVID-19 severity from clinical and biochemical markers: A single-center study from Saudi Arabia
  publication-title: Eur. Rev. Med. Pharmacol. Sci.
– volume: 15
  start-page: 126
  year: 2022
  ident: CR18
  article-title: Overcrowded housing increases risk for COVID-19 mortality: An ecological study
  publication-title: BMC Res. Notes
  doi: 10.1186/s13104-022-06015-1
– volume: 29
  start-page: 1664
  year: 2014
  ident: 15609_CR12
  publication-title: J. Gastroenterol. Hepatol.
  doi: 10.1111/jgh.12645
– volume: 145
  start-page: 105398
  year: 2022
  ident: 15609_CR28
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105398
– volume: 25
  start-page: 418
  year: 2019
  ident: 15609_CR8
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v25.i4.418
– volume: 26
  start-page: 161
  year: 2016
  ident: 15609_CR36
  publication-title: Indian J. Radiol. Imaging
  doi: 10.4103/0971-3026.184417
– volume: 11
  start-page: 134
  year: 2010
  ident: 15609_CR5
  publication-title: J. Dig. Dis.
  doi: 10.1111/j.1751-2980.2010.00429.x
– volume: 22
  start-page: 994
  year: 2017
  ident: 15609_CR35
  publication-title: Trop. Med. Int. Health
  doi: 10.1111/tmi.12908
– volume: 20
  start-page: 688
  year: 2005
  ident: 15609_CR6
  publication-title: J. Gastroenterol. Hepatol.
  doi: 10.1111/j.1440-1746.2005.03814.x
– volume: 58
  start-page: 267
  year: 1996
  ident: 15609_CR33
  publication-title: J. Roy. Stat. Soc.: Ser. B (Methodol.)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 23
  start-page: 1614
  year: 2017
  ident: 15609_CR31
  publication-title: Inflamm. Bowel Dis.
  doi: 10.1097/MIB.0000000000001162
– volume: 114
  start-page: 490
  year: 2019
  ident: 15609_CR9
  publication-title: Am. J. Gastroenterol.
  doi: 10.14309/ajg.0000000000000064
– volume: 58
  start-page: 267
  year: 1996
  ident: 15609_CR20
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 2022
  start-page: 8745722
  year: 2022
  ident: 15609_CR23
  publication-title: J. Healthc. Eng.
– volume: 34
  start-page: 135
  year: 2015
  ident: 15609_CR7
  publication-title: Indian J. Gastroenterol.
  doi: 10.1007/s12664-015-0550-y
– volume: 64
  start-page: 1967
  year: 2019
  ident: 15609_CR13
  publication-title: Dig. Dis. Sci.
  doi: 10.1007/s10620-019-05491-z
– volume: 111
  start-page: 1156
  year: 2016
  ident: 15609_CR30
  publication-title: Am. J. Gastroenterol.
  doi: 10.1038/ajg.2016.212
– volume: 26
  start-page: 2592
  year: 2022
  ident: 15609_CR16
  publication-title: Eur. Rev. Med. Pharmacol. Sci.
– volume: 13
  start-page: 81
  year: 2020
  ident: 15609_CR27
  publication-title: J. Inflamm. Res.
  doi: 10.2147/JIR.S236262
– volume: 50
  start-page: 471
  year: 2015
  ident: 15609_CR19
  publication-title: Multivariate Behav. Res.
  doi: 10.1080/00273171.2015.1036965
– volume: 26
  start-page: 1743
  year: 2020
  ident: 15609_CR26
  publication-title: Inflamm. Bowel Dis.
  doi: 10.1093/ibd/izz296
– volume: 45
  start-page: 27
  year: 2017
  ident: 15609_CR29
  publication-title: Aliment. Pharmacol. Ther.
  doi: 10.1111/apt.13840
– volume: 15
  start-page: 126
  year: 2022
  ident: 15609_CR18
  publication-title: BMC Res. Notes
  doi: 10.1186/s13104-022-06015-1
– volume: 24
  start-page: 38
  year: 2022
  ident: 15609_CR22
  publication-title: J. Clin. Hypertens.
  doi: 10.1111/jch.14403
– volume: 13
  start-page: 320856429
  year: 2020
  ident: 15609_CR32
  publication-title: Ther. Adv. Gastroenterol.
  doi: 10.1177/1756284820922003
– volume: 14
  start-page: 621
  year: 2021
  ident: 15609_CR21
  publication-title: J. Inflamm. Res.
  doi: 10.2147/JIR.S298604
– volume: 9
  start-page: 847206
  year: 2022
  ident: 15609_CR14
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2022.847206
– volume: 79
  start-page: 549
  year: 2022
  ident: 15609_CR24
  publication-title: Am. J. Kidney Dis.
  doi: 10.1053/j.ajkd.2021.07.011
– volume: 47
  start-page: 322
  year: 2015
  ident: 15609_CR11
  publication-title: Endoscopy
  doi: 10.1055/s-0034-1391230
– ident: 15609_CR17
  doi: 10.1055/a-1788-7592
– volume: 11
  start-page: 1517
  year: 2021
  ident: 15609_CR25
  publication-title: Diagnostics
  doi: 10.3390/diagnostics11081517
– volume: 3
  start-page: e10
  year: 2015
  ident: 15609_CR3
  publication-title: Lancet Glob. Health
  doi: 10.1016/S2214-109X(14)70361-4
– volume: 11
  start-page: 97
  year: 2018
  ident: 15609_CR34
  publication-title: Clin. Exp. Gastroenterol.
  doi: 10.2147/CEG.S154235
– volume: 15
  start-page: 138
  year: 2017
  ident: 15609_CR4
  publication-title: Intest. Res.
  doi: 10.5217/ir.2017.15.1.138
– volume: 11
  start-page: 1201
  year: 2022
  ident: 15609_CR15
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm11051201
– volume: 6
  start-page: e843
  year: 2018
  ident: 15609_CR2
  publication-title: Lancet Glob. Health
  doi: 10.1016/S2214-109X(18)30277-8
– volume: 11
  start-page: 161
  year: 2010
  ident: 15609_CR1
  publication-title: J. Dig. Dis.
  doi: 10.1111/j.1751-2980.2010.00431.x
– volume: 24
  start-page: 2452
  year: 2018
  ident: 15609_CR10
  publication-title: Inflamm. Bowel Dis.
  doi: 10.1093/ibd/izy154
SSID ssj0000529419
Score 2.6303015
Snippet In countries with a high incidence of tuberculosis, the typical clinical features of Crohn's disease (CD) may be covered up after tuberculosis infection, and...
Abstract In countries with a high incidence of tuberculosis, the typical clinical features of Crohn's disease (CD) may be covered up after tuberculosis...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11340
SubjectTerms 692/1807
692/4020
692/499
Accuracy
Computed tomography
Crohn's disease
Diagnosis
Humanities and Social Sciences
multidisciplinary
Patients
Regression analysis
Science
Science (multidisciplinary)
Tuberculosis
Variables
SummonAdditionalLinks – databaseName: Open Access资源_DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na90wDDelMOhlrFvHsnbFg0EPW2jsxHZyXMtKGVvZoYPejD-U9cHIK--9HvrfV7LzXpvCtsuusUNsWYokS_qJsQ8mmB6Zt6I7AF82IGPpQNSlES5WMdBFJDmK3y_0-c_m65W6etTqi3LCMjxwJtwxNAKiA9cBKqJOo0wYT7EoD8oL5xPYNuq8R85URvWWXSO6sUqmqtvjJWoqqiZD34uKh7tSTTRRAuyfWJlPcySfBEqT_jl7wZ6PhiP_nBe8y7ZgeMme5VaSd6_YDzInqWSJ55qeWeDfCLKRL-BXTnUdONqnHO09HnN63WzJ5z13q7sbOih-uphfD0dLPoZs9tjl2ZfL0_Ny7JZQBiXMiqhbQYWUqYX2ou29602vO-m18Sb0-Bjw7yaDAdABnb7QSvDO18b0MaIqe822h_kAbxhHAmsXahFl7xow2kFUQPkyGlwVhCyYWBPOhhFJnBpa_LYpol23NhPbIrFtIrZVBfu4eecm42j8dfYJncdmJmFgpwfIGXbkDPsvzijYwfo07SiYS0vgNsZ0aAcV7P1mGEWK4iRugPltmqPQS5YKd2omXDBZ0HRkmF0ncO4ObUhdtQX7tOaXh4__ecNv_8eG99mOJP6my2d1wLZXi1t4hybTyh8m6bgHHFEScw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1da9UwNOhE8EXcVKzOkYHgg5Y1bZO0T6LDMUTFhwn3LeTjdLsg7fX27mH_3nPS3Ds6cK9JSpOTk_P9wdg77XWHyFuQDcDlNZQhtyCqXAsbiuDJEEmK4o-f6vx3_W0hF8ngNqawyi1NjIQ6DJ5s5CdUlUTrFhnYp9XfnLpGkXc1tdB4yB5R6TLCar3QOxsLebFq0aZcmaJqTkbkV5RThhoYpRC3uZzxo1i2fyZr3o2UvOMujVzo7Bl7msRH_nm67332APoD9nhqKHnznP0ioZISl_iU2bP0_DsVbuRruJwCXnuOUipHqY-HKchuOfKh43Zzs6Lr4qfr4ap_P_LkuHnBLs6-Xpye56lnQu6l0BuCcQFFi69OKCeaztlOd6otndJO-w6HAWlc6TWA8qj6-aYEZ12ldRcCMrSXbK8fenjFuHaVsr4SoexsDVpZCBIoakaBLbwoMya2gDM-1ROnthZ_TPRrV42ZgG0Q2CYC28iMfdh9s5qqady7-gvdx24lVcKOA8P60qSHZaAWECzYFlBQaRXSTNw4nt-BdMI6lbHD7W2a9DxHc4tMGTveTePDIm-J7WG4jmsk6sqlxJPqGRbMNjSf6ZdXsUR3i5KkKpqMfdziy-3P_3_g1_fv9Q17UhLmknFZHrK9zfoa3qJItHFHEe__AXNzCX8
  priority: 102
  providerName: ProQuest
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFA9zQ_BF5hfWTYkg-KDFJm2S9vE6HOOiIjhhbyEfp9sFace9dw_77z0nba90qOBrk9Dk5CT55Xz8wtgbE0yLyluQDcDnFciYOxBlboSLRQxkiKSL4pev-uxHtbxQF3tMTrkwKWg_UVqmbXqKDvuwwYOGksHw6kS5v02u7rEDompH3T5YLJbflzvLCvmuKtGMGTJFWf-h8ewUSmT9M4R5Nz7yjpM0nT2nh-zhCBr5YujmI7YH3WN2f3hG8vYJ-0ZQktKV-JDPswr8M9E18jVcDmGuHUdsyhHr8TiE1q02vG-5295e0yTxk3V_1b3d8NFd85Sdn346PznLx5cS8qCE2ZJkCygaXGtCe1G33rWm1Y302ngTWvwMuLPJYAB0wAtfqCV450tj2hjxGHvG9ru-g-eMG19qF0oRZesqMNpBVECxMhpcEYTMmJgEZ8PIIk6PWfy0yZtd1nYQtkVh2yRsqzL2btfmeuDQ-GftjzQfu5rEf50-9OtLO-qDhUpAdOAaQHjSaNwpseM4fg_KC-d1xo6n2bTjotxYIrYxpkEMlLHXu2JcTuQjcR30N6mOwhuyVDhSM9OCWYfmJd3qKhFzN4gfdVFn7P2kL79__vcBv_i_6kfsgSRNJhOzOmb72_UNvERgtPWvxpXwCyK_CIY
  priority: 102
  providerName: Springer Nature
Title Applying logistic LASSO regression for the diagnosis of atypical Crohn's disease
URI https://link.springer.com/article/10.1038/s41598-022-15609-5
https://www.proquest.com/docview/2684779819
https://www.proquest.com/docview/2685446252
https://pubmed.ncbi.nlm.nih.gov/PMC9256608
https://doaj.org/article/e41edaea9e244968877b3979be5b1ab6
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBf9YLCX0X0xb13QYLCHzZst25L9MEYaWkpYS9layJuQ5HMbKHaXpND897uT7QyXbuwpICuJdLrz_U7S_Y6x98qpCpU3oj0AG6YgytBAnIQqNmVUOtqIpEDx5FQeX6TTWTbbYn25o06AywdDO6ondbG4_nz3a_0NDf5rmzKef1miE6JEMQyrKC-4CLNttoueSVFFg5MO7rdc36JIfa0PImEPEUyILo_m4Z8Z-CpP6T_AofdvUd47SvUe6miPPemgJR-3uvCUbUH9jD1qi02un7MzApyU1MTbrJ-549-J1JEv4LK9DFtzRLAcESEv2wt48yVvKm5W6xtaSj5ZNFf1hyXvDnVesPOjw_PJcdjVUwhdFqsVyT-CqECLjKWN88qaSlWyEFYqq1yFzYDvP-EUgHQYFrpcgDU2UaoqS3R2L9lO3dTwinFlE2lcEpeiMikoaaDMgG7USDCRi0XA4l5w2nVc41Ty4lr7M-8k162wNQpbe2HrLGAfN9-5aZk2_tn7gNZj05NYsn1Ds7jUndFpSGMoDZgCEMQUEt-nOHCcv4XMxsbKgO33q6l7zdNEf6NUgUgpYO82j9Ho6CTF1NDc-j4ZxtEiw5mqgRYMBjR8Us-vPH13gShTRnnAPvX68ufP_z7h1_8xmDfssSD1pd3nbJ_trBa38BYx08qO2LaaqRHbHY-nP6f4eXB4evYDWydyMvL7ECNvKr8B2HkWRA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw1CpFCC6IVU0pYCQQB4gaZ7GTA0JQqKZ0WnEYpLlZXl7akVAynZkKzUfxj7yXZapUordeYyexn5_fvjD2VjlVIvJGZAOwYQqxDw2IJFTC-Mg7MkSSonhyKke_0h_TbLrF_va5MBRW2dPEhlD72pGNfJ-qkihVIAP7PL8IqWsUeVf7FhotWhzD-g-qbMtPR9_wfN_F8eH3ycEo7LoKhC4TakWriCAqEC-FtCIvrSlVKYvYSmWVK_ExIBWInQKQDpUjl8dgjU2UKr1Hko-fvcPuIt-NSNdTU7Ux6ZDTLBVFl5oTJfn-EtkjpbChwkcZy0WYDdhf0yVgINpeD8y85p1tmN7hI_awk1b5lxa9HrMtqJ6we23_yvVT9pNkWMqT4m0i0czxMdWJ5As4a-NrK45CMUchk_s2pm-25HXJzWo9J-zgB4v6vHq_5J2f6Bmb3AYwn7Ptqq5gh3FlE2lcInxcmhSUNOAzoCAdCSZyIg6Y6AGnXVe-nLpo_NaNGz3JdQtsjcDWDbB1FrAPm3fmbfGOG2d_pfPYzKTC282DenGmu3usIRXgDZgCUC4qJJJoXDju30JmhbEyYHv9aeqOGiz1Fe4G7M1mGO8xOWdMBfVlMydD1TzOcKdqgAWDBQ1Hqtl5UxG8QMFVRnnAPvb4cvXz_2949-a1vmb3R5OTsR4fnR6_YA9iwmKya2d7bHu1uISXKI2t7KvmDnCmb_nO_QNUH0Yi
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8DQ6gXhBfIrAACOBeICocdLYzQNC7KPa2KgqNKS9WbZz2SqhpLSdUH8a_467fHTqJPa219hJ7PPd-b4P4J32uiDkjdgG4MIBxnloUSahljaPcs-GSFYUv4_V4c_Bt7P0bAv-drkwHFbZ8cSaUeeVZxt5n6uSaJ3RBdYv2rCIyf7oy-x3yB2k2NPatdNoUOQYV39IfVt8Ptqns34fx6OD073DsO0wEPpU6iWvKMIoIxyVyslh4WyhC5XFTmmnfUGPkThC7DWi8qQo-WGMzrpE6yLPif3TZ-_AtmalqAfbuwfjyY-1gYddaAOZtYk6UTLsL-iy5IQ2Uv84fzkL043LsO4ZsCHoXg_TvOarra_A0UN40Mqu4muDbI9gC8vHcLfpZrl6AhOWaDlrSjRpRVMvTrhqpJjjeRNtWwoSkQWJnCJvIvymC1EVwi5XM8YVsTevLsoPC9F6jZ7C6W2A8xn0yqrE5yC0S5T1iczjwg5QK4t5ihyyo9BGXsYByA5wxrfFzLmnxi9TO9WToWmAbQjYpga2SQP4uH5n1pTyuHH2Lp_HeiaX4a4fVPNz01K1wYHE3KLNkKSkTBHDpoXT_h2mTlqnAtjpTtO0vGFhrjA5gLfrYaJqdtXYEqvLek5Kinqc0k71BhZsLGhzpJxe1PXBMxJjVTQM4FOHL1c___-GX9y81jdwj-jNnByNj1_C_ZiRmI3c6Q70lvNLfEWi2dK9bolAgLllsvsHFqpLvQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+logistic+LASSO+regression+for+the+diagnosis+of+atypical+Crohn%27s+disease&rft.jtitle=Scientific+reports&rft.au=Li%2C+Ying&rft.au=Lu%2C+Fanggen&rft.au=Yin%2C+Yani&rft.date=2022-07-05&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=11340&rft_id=info:doi/10.1038%2Fs41598-022-15609-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon