Ultrafast dynamics of electrons and phonons: from the two-temperature model to the time-dependent Boltzmann equation
The advent of pump-probe spectroscopy techniques paved the way to the exploration of ultrafast dynamics of electrons and phonons in crystalline solids. Following photo-absorption of a pump pulse and the initial electronic thermalization, the dynamics of electronic and vibrational degrees of freedom...
Saved in:
Published in | Advances in physics: X Vol. 7; no. 1 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
31.12.2022
Taylor & Francis Ltd Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The advent of pump-probe spectroscopy techniques paved the way to the exploration of ultrafast dynamics of electrons and phonons in crystalline solids. Following photo-absorption of a pump pulse and the initial electronic thermalization, the dynamics of electronic and vibrational degrees of freedom is dominated by electron-phonon and phonon-phonon scattering processes. The two-temperature model (TTM) and its generalizations provide valuable tools to describe these phenomena and the ensuing coupled dynamics of electrons and phonons. While more sophisticated theoretical approaches are nowadays available, the conceptual and computational simplicity of the TTM makes it the method of choice to model thermalization processes in pump-probe spectroscopy, and it keeps being widely applied in both experimental and theoretical studies. In the domain of ab-initio methods, the time-dependent Boltzmann equation (TDBE) ameliorates many of the shortcomings of the TTM and enables a realistic and parameter-free description of ultrafast phenomena with full momentum resolution. After a pedagogical introduction to the TTM and TDBE, in this manuscript we review their application to the description of ultrafast process in solid-state physics and materials science as well as their theoretical foundation. |
---|---|
AbstractList | The advent of pump-probe spectroscopy techniques paved the way to the exploration of ultrafast dynamics of electrons and phonons in crystalline solids. Following photo-absorption of a pump pulse and the initial electronic thermalization, the dynamics of electronic and vibrational degrees of freedom is dominated by electron-phonon and phonon-phonon scattering processes. The two-temperature model (TTM) and its generalizations provide valuable tools to describe these phenomena and the ensuing coupled dynamics of electrons and phonons. While more sophisticated theoretical approaches are nowadays available, the conceptual and computational simplicity of the TTM makes it the method of choice to model thermalization processes in pump-probe spectroscopy, and it keeps being widely applied in both experimental and theoretical studies. In the domain of ab-initio methods, the time-dependent Boltzmann equation (TDBE) ameliorates many of the shortcomings of the TTM and enables a realistic and parameter-free description of ultrafast phenomena with full momentum resolution. After a pedagogical introduction to the TTM and TDBE, in this manuscript we review their application to the description of ultrafast process in solid-state physics and materials science as well as their theoretical foundation. |
Author | Caruso, Fabio Novko, Dino |
Author_xml | – sequence: 1 givenname: Fabio surname: Caruso fullname: Caruso, Fabio email: caruso@physik.uni-kiel.de – sequence: 2 givenname: Dino surname: Novko fullname: Novko, Dino organization: Institute of Physics |
BookMark | eNqFkctu1TAQhiNUJErpIyBZYp3iS2wnsAEqLpUqsaFry7HH1EeJ59T2UXV4epKmIMQCNh5rZr5_RvM_b04SJmial4xeMNrT11zoTrFuuOCU8-UZ5MDlk-Z0zbdr4eSP_7PmvJQdpZQpvcDitKk3U8022FKJPyY7R1cIBgITuJoxFWKTJ_tbXKaWNyRknEm9BVLvsa0w7yHbeshAZvQwkYpbMc7QethD8pAq-YBT_THblAjcHWyNmF40T4OdCpw_xrPm5tPHb5df2uuvn68u31-3TjJdWyV1J1VPYWQiKCfHwXvWKe1ox7vAFWV80IFqBx0LSgnmrWJah-BZcGroxFlztel6tDuzz3G2-WjQRvOQwPzd2Fyjm8AE56Uc1ahHpzsQfHBBQRAKFKU97-Wi9WrT2me8O0CpZoeHnJb1DddMS9ELvXbJrctlLCVD-D2VUbP6ZX75ZVa_zKNfC_f2L87F-nCrxZ04_Zd-t9ExBcyzvcc8eVPtccIcsk0uFiP-LfETTNmwyw |
CitedBy_id | crossref_primary_10_1063_5_0239140 crossref_primary_10_1103_PhysRevE_107_055304 crossref_primary_10_1063_5_0245833 crossref_primary_10_1103_PhysRevB_107_174432 crossref_primary_10_21468_SciPostPhys_16_3_073 crossref_primary_10_1021_acs_jpcc_3c03664 crossref_primary_10_1021_acs_jpcc_4c03031 crossref_primary_10_1063_5_0155720 crossref_primary_10_1103_PhysRevLett_133_066901 crossref_primary_10_1021_acs_jpclett_3c01905 crossref_primary_10_1021_acs_nanolett_3c01904 crossref_primary_10_1103_PhysRevB_108_045409 crossref_primary_10_1515_nanoph_2022_0592 crossref_primary_10_1021_acsnano_5c00744 crossref_primary_10_1021_acs_jpcc_3c04680 crossref_primary_10_1063_5_0213237 crossref_primary_10_1103_PhysRevB_107_054102 crossref_primary_10_7566_JPSJ_92_124001 crossref_primary_10_1103_PhysRevResearch_4_033218 crossref_primary_10_1103_PhysRevResearch_6_013069 crossref_primary_10_1021_acsphotonics_4c00776 |
Cites_doi | 10.1021/acsphotonics.1c01454 10.1103/PhysRevLett.99.197001 10.1039/C8FD00153G 10.1103/PhysRevB.57.2878 10.1103/PhysRevB.97.245129 10.1103/PhysRevLett.115.086803 10.1126/sciadv.abd9275 10.2298/TSCI160818068X 10.1103/PhysRevB.101.035128 10.1103/PhysRevB.87.165413 10.1103/PhysRevLett.113.235502 10.1103/PhysRevB.87.035139 10.1103/PhysRevB.90.035121 10.1038/s41467-018-03354-1 10.1103/PhysRevLett.101.157402 10.1103/PhysRevB.85.245423 10.1103/PhysRevB.61.1101 10.1103/PhysRevLett.112.257401 10.1103/PhysRevB.88.054507 10.1126/science.1216765 10.1038/srep00064 10.1103/PhysRevB.50.15337 10.1007/s003400050189 10.1103/PhysRevB.45.1107 10.1038/nmat3757 10.1103/PhysRevB.68.064114 10.1103/PhysRevLett.118.054101 10.1007/s00339-003-2301-7 10.1038/nnano.2012.95 10.1103/PhysRevLett.121.256401 10.1103/PhysRevB.45.5079 10.1002/andp.201600235 10.1103/PhysRevB.88.035430 10.1126/sciadv.abg0869 10.1103/PhysRevB.97.205118 10.1103/PhysRevB.98.134309 10.1103/PhysRevB.46.13592 10.1103/PhysRevB.93.014301 10.1063/5.0019719 10.1021/nl503614v 10.1021/nl8019399 10.1103/PhysRevB.74.024301 10.1016/0022-3697(86)90125-3 10.1038/nphys3925 10.1002/aenm.202003071 10.1103/RevModPhys.73.515 10.1002/lpor.201000035 10.1063/1.3117236 10.1103/PhysRevB.81.241201 10.1103/PhysRevB.80.115107 10.1103/PhysRevB.103.064305 10.1103/PhysRevB.76.155431 10.1103/PhysRevLett.109.166603 10.1038/nature13875 10.1007/978-3-642-55675-3_4 10.1088/1361-6633/ab6a43 10.1038/ncomms1882 10.1038/s41699-019-0131-5 10.1103/PhysRevLett.124.226403 10.1103/PhysRevB.93.054303 10.1038/ncomms15769 10.1103/PhysRevB.89.024422 10.1007/978-3-642-52263-5 10.1103/PhysRevLett.58.1680 10.1103/PhysRevB.92.214303 10.1103/PhysRevB.50.8016 10.1103/PhysRevB.71.184301 10.1103/PhysRevB.77.121402 10.1103/PhysRevLett.114.125503 10.1103/PhysRevB.102.024308 10.1063/1.3291615 10.1103/PhysRevLett.108.167402 10.1557/s43577-021-00156-7 10.1007/s00339-018-1704-4 10.1088/0953-8984/27/16/164204 10.1126/science.aaw1662 10.1103/PhysRevB.99.035435 10.1103/PhysRevB.82.155108 10.1103/PhysRevB.97.165113 10.1126/sciadv.aap7427 10.1021/acs.nanolett.7b02212 10.1103/PhysRevResearch.2.043408 10.1103/PhysRevB.89.220301 10.1103/PhysRevLett.76.535 10.1103/PhysRevLett.53.1837 10.1103/PhysRevLett.119.017001 10.1103/PhysRevB.89.125102 10.1021/acsnano.0c10864 10.1016/j.elspec.2021.147152 10.1021/cr00025a006 10.1103/PhysRevLett.68.2834 10.1038/ncomms4229 10.1103/PhysRevLett.105.127404 10.1021/nl1024485 10.1103/PhysRevB.100.235117 10.1103/PhysRevB.97.054310 10.1103/PhysRevLett.127.257401 10.1063/1.4940981 10.1103/PhysRevB.85.081402 10.1103/PhysRevB.102.184307 10.1038/ncomms13761 10.1103/PhysRevLett.111.027403 10.1103/PhysRevB.3.2063 10.1093/nsr/nwab175 10.1126/sciadv.abf2810 10.1063/1.2901028 10.1103/PhysRevLett.73.3243 10.1103/PhysRevB.95.134113 10.1103/PhysRevB.87.024505 10.1103/PhysRevLett.128.016801 10.1103/PhysRevB.98.041112 10.1038/s41467-018-04749-w 10.1021/nl301997r 10.1038/nature21432 10.1103/PhysRevB.101.054304 10.1016/j.apsusc.2021.150427 10.1016/j.cpc.2021.107970 10.1021/acs.nanolett.1c01786 10.1073/pnas.2113967119 10.1103/PhysRevB.86.155139 10.1038/ncomms8047 10.1021/ja1110738 10.1103/RevModPhys.89.015003 10.1103/PhysRevB.47.558 10.1088/1367-2630/ab3acf 10.1021/acs.jpclett.9b01272 10.1038/s41467-020-16076-0 10.1103/RevModPhys.93.041002 10.1103/PhysRevB.102.085203 10.1103/PhysRevB.95.165303 10.1063/1.4935366 10.1103/PhysRevB.93.041408 10.1038/ncomms2987 10.1016/S0301-0104(99)00330-4 10.1103/PhysRevB.96.174439 10.1103/PhysRevLett.127.207401 10.1038/nphys2055 10.1021/acs.nanolett.2c00850 10.1103/PhysRevB.90.205426 10.1103/PhysRevB.45.768 10.1142/S0217979210055366 10.1038/srep40876 10.1088/1367-2630/13/12/123010 10.1038/s41535-021-00421-7 10.1103/PhysRevLett.119.136602 10.1021/nl502740g 10.1126/science.aaw4911 10.1016/j.elspec.2022.147189 10.1103/PhysRevB.84.205406 10.1103/PhysRevB.99.155410 10.1103/PhysRevB.103.L241108 10.1103/PhysRevLett.71.1023 10.1103/PhysRevB.82.165111 10.1103/PhysRevLett.124.037401 10.1063/1.1777214 10.1021/acs.nanolett.7b02926 10.1103/PhysRevLett.97.067402 10.1103/PhysRevLett.64.2172 10.1073/pnas.1424791112 10.1103/PhysRevE.103.033204 10.1103/PhysRevLett.110.147206 10.1016/j.cpc.2014.02.015 10.1103/PhysRevB.99.214302 10.1103/PhysRevB.72.024545 10.1103/PhysRevB.104.205109 10.1016/B978-0-12-409547-2.13273-1 10.1103/PhysRevB.72.024546 10.1038/s42005-020-0299-1 10.1103/PhysRevB.23.1495 10.1103/PhysRevLett.124.077001 10.1103/PhysRevLett.114.247001 10.1103/PhysRevB.97.165416 10.1103/PhysRevX.6.021003 10.1103/PhysRevB.95.054302 10.1103/PhysRev.125.804 10.1103/PhysRevLett.108.167401 10.1103/PhysRevLett.107.237401 10.1103/PhysRevLett.105.265501 10.1103/PhysRevB.101.100302 10.1038/s42005-019-0182-0 10.1103/PhysRevB.94.075120 10.1103/PhysRevB.15.1489 10.1103/PhysRevB.96.020301 10.1103/PhysRevB.73.184113 10.1103/PhysRevLett.93.185503 10.1021/acs.jpclett.1c00073 10.1007/s003400050778 10.1038/nnano.2012.96 10.1021/acs.nanolett.7b05391 10.1103/PhysRevLett.122.205001 10.1021/acs.jpclett.2c01034 10.1103/PhysRevLett.113.025902 10.1021/acs.jpclett.0c03616 10.1103/PhysRevLett.120.185701 10.1016/j.elspec.2016.11.001 10.1038/s41563-018-0092-7 10.1103/PhysRevLett.122.016806 10.1103/PhysRevLett.128.015702 10.1103/PhysRevLett.111.245004 10.1088/1361-6463/50/19/193001 10.1126/science.aar4183 10.1021/acs.nanolett.7b03553 10.1140/epjb/e2018-90126-5 10.1038/nature02044 10.1103/PhysRevB.80.241108 10.1088/1367-2630/abec0f 10.1103/PhysRevB.97.174302 10.1103/PhysRevLett.102.086809 10.1126/sciadv.aar5313 10.1080/104077801300348842 10.1021/acs.jctc.9b00596 10.3390/nano12101655 10.1021/nl402696q 10.1103/PhysRevB.102.155127 10.1103/PhysRevB.101.035203 10.1103/PhysRevLett.58.1212 10.1103/PhysRevB.3.305 10.1038/s41563-021-00935-2 10.1103/PhysRevB.101.094103 10.1103/PhysRevLett.112.257402 10.1103/PhysRevLett.112.187401 10.1103/PhysRevB.88.094410 10.1103/PhysRevLett.97.266407 10.1103/PhysRevB.48.15488 10.1088/1367-2630/ab5c76 10.1103/PhysRevLett.124.076601 10.1016/j.cpc.2016.07.028 10.1103/PhysRevB.95.024304 10.1103/PhysRevB.102.214305 10.1103/PhysRevB.92.184303 10.1103/PhysRevB.84.075449 10.1103/PhysRevA.90.012508 10.1103/PhysRevB.99.165421 10.1103/PhysRevB.103.125412 10.1007/BF01479732 10.1103/PhysRevB.97.134308 10.1115/1.2035113 10.1103/PhysRevLett.113.056602 10.1063/1.3095497 10.1021/acsnano.5b06199 10.1103/PhysRevB.77.075133 10.1103/PhysRevLett.125.136401 10.1103/PhysRevLett.65.1251 10.1039/C4FD00020J 10.1016/j.elspec.2015.06.003 10.1103/PhysRevLett.106.155503 10.1103/PhysRevLett.95.187403 10.1103/PhysRevLett.92.117401 10.1021/acsnano.0c00309 10.1103/PhysRevResearch.3.023072 10.1073/pnas.1518224112 10.1103/PhysRevLett.111.107204 10.1103/PhysRevB.103.L121105 10.1103/PhysRevB.65.214303 10.1063/5.0006531 10.1016/0167-5729(95)00002-X 10.1103/PhysRevB.100.214115 10.1088/0022-3719/9/12/013 10.1103/PhysRevLett.108.056801 10.1103/PhysRevLett.111.167204 10.1103/PhysRevB.97.121201 10.1038/s41567-019-0698-y 10.1021/nl303988q 10.1103/PhysRevLett.76.4250 10.1103/PhysRevLett.77.3661 10.1103/RevModPhys.74.895 10.1103/PhysRevLett.61.2886 10.1103/PhysRevB.104.L180505 10.1103/PhysRevLett.59.1460 10.1103/PhysRevB.83.153410 10.1103/PhysRevB.88.144305 10.1021/acs.nanolett.1c02538 |
ContentType | Journal Article |
Copyright | 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022 – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 0YH AAYXX CITATION 3V. 7XB 8FD 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH H8D L7M M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1080/23746149.2022.2095925 |
DatabaseName | Taylor & Francis Open Access CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Student ProQuest Research Library Aerospace Database Advanced Technologies Database with Aerospace Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2374-6149 |
ExternalDocumentID | oai_doaj_org_article_fcd55b6b7bc74e329cf6ef36e6008285 10_1080_23746149_2022_2095925 2095925 |
Genre | Review |
GroupedDBID | 0YH 8G5 ABDBF ABUWG ACGFS ACUHS ADBBV AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BCNDV BENPR CCPQU DWQXO EBS GNUQQ GROUPED_DOAJ GUQSH H13 M2O M4Z M~E OK1 PIMPY PROAC TDBHL TFW AAFWJ AAYXX ADMLS AFPKN CITATION PHGZM PHGZT 3V. 7XB 8FD 8FK H8D L7M MBDVC PKEHL PQEST PQQKQ PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c517t-65745680eb13f6c5b9dd1467c0424f2601297f07ce41f6631da6177ffd1fc6943 |
IEDL.DBID | BENPR |
ISSN | 2374-6149 |
IngestDate | Wed Aug 27 01:24:06 EDT 2025 Mon Jun 30 04:57:13 EDT 2025 Tue Jul 01 01:13:49 EDT 2025 Thu Apr 24 22:54:10 EDT 2025 Wed Dec 25 09:05:58 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-65745680eb13f6c5b9dd1467c0424f2601297f07ce41f6631da6177ffd1fc6943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2717538375?pq-origsite=%requestingapplication% |
PQID | 2717538375 |
PQPubID | 3933228 |
ParticipantIDs | crossref_primary_10_1080_23746149_2022_2095925 informaworld_taylorfrancis_310_1080_23746149_2022_2095925 proquest_journals_2717538375 doaj_primary_oai_doaj_org_article_fcd55b6b7bc74e329cf6ef36e6008285 crossref_citationtrail_10_1080_23746149_2022_2095925 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-31 |
PublicationDateYYYYMMDD | 2022-12-31 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Advances in physics: X |
PublicationYear | 2022 |
Publisher | Taylor & Francis Taylor & Francis Ltd Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd – name: Taylor & Francis Group |
References | cit0077 cit0198 cit0078 cit0199 cit0075 cit0196 cit0076 cit0197 cit0073 cit0194 cit0074 cit0195 cit0192 cit0072 cit0190 cit0070 cit0191 Anisimov SI (cit0045) 1973; 39 cit0079 cit0066 cit0187 cit0067 cit0188 cit0064 cit0185 cit0065 cit0186 cit0062 cit0183 cit0063 cit0184 cit0060 cit0181 cit0061 cit0182 cit0180 Kaganov MI (cit0043) 1957; 4 cit0068 cit0189 cit0069 cit0099 cit0097 cit0098 cit0095 cit0096 cit0093 cit0094 cit0091 cit0092 cit0090 cit0088 cit0089 cit0086 cit0087 cit0084 cit0085 Schüler M (cit0173) 2020; 10 cit0082 cit0083 cit0080 cit0081 cit0033 cit0154 cit0275 cit0155 cit0276 cit0031 cit0152 cit0273 cit0153 cit0274 cit0150 cit0271 cit0030 cit0151 cit0272 cit0270 cit0039 cit0037 cit0158 cit0279 cit0038 cit0159 cit0035 cit0156 cit0277 cit0036 cit0157 cit0278 cit0022 cit0143 cit0264 cit0023 cit0144 cit0265 cit0020 cit0141 cit0262 cit0021 cit0142 cit0263 cit0260 cit0140 cit0261 cit0028 cit0149 cit0029 cit0026 cit0147 cit0027 cit0148 cit0269 cit0024 cit0145 cit0266 cit0025 cit0146 cit0267 cit0055 cit0176 cit0056 cit0177 cit0053 cit0174 cit0054 Sidiropoulos TPH (cit0071) 2021; 11 cit0175 cit0051 cit0172 cit0052 cit0170 cit0050 cit0171 cit0059 cit0057 cit0178 cit0058 cit0179 cit0044 cit0165 cit0286 cit0166 cit0042 cit0163 cit0284 cit0285 cit0040 cit0161 cit0282 cit0041 cit0162 cit0283 cit0280 cit0160 Giannozzi P (cit0219) 2017; 29 cit0281 cit0048 cit0169 cit0049 cit0046 cit0167 cit0047 cit0168 cit0110 cit0231 cit0111 cit0232 cit0230 Zijlstra ES (cit0268) 2013; 3 Bonitz M (cit0250) 2015 cit0118 cit0239 cit0119 cit0116 cit0237 cit0117 cit0238 cit0114 cit0235 cit0115 cit0236 cit0112 cit0233 cit0113 cit0234 cit0220 cit0100 cit0221 Grimvall G (cit0218) 1981 cit0109 cit0107 cit0228 cit0108 cit0229 cit0105 cit0106 cit0227 cit0103 cit0224 cit0104 cit0225 cit0101 cit0222 cit0102 cit0223 cit0011 cit0132 cit0253 cit0012 cit0133 cit0254 cit0130 cit0251 cit0010 cit0131 cit0252 Rossnagel K (cit0032) 2011; 23 cit0019 cit0017 cit0138 cit0259 cit0018 cit0139 cit0015 cit0136 cit0257 cit0016 cit0137 cit0258 cit0013 cit0134 cit0255 cit0014 cit0135 cit0256 cit0121 cit0242 cit0001 cit0122 cit0243 cit0240 cit0120 cit0241 cit0008 cit0129 cit0009 cit0006 cit0127 cit0248 cit0007 cit0128 cit0249 cit0004 cit0125 cit0246 cit0005 cit0126 cit0247 cit0002 cit0123 cit0244 cit0003 cit0124 cit0245 Tan S (cit0193) 2017; 7 Michael Ziman J (cit0164) 1960 cit0210 cit0217 cit0215 cit0216 cit0213 cit0214 cit0211 cit0212 Kemper AF (cit0034) 2018; 8 cit0208 cit0209 cit0206 Schlünzen N (cit0226) 2019; 32 cit0207 cit0204 cit0205 cit0202 cit0203 cit0200 cit0201 |
References_xml | – volume: 11 start-page: 041060 year: 2021 ident: cit0071 publication-title: Phys Rev X – ident: cit0171 doi: 10.1021/acsphotonics.1c01454 – ident: cit0076 doi: 10.1103/PhysRevLett.99.197001 – ident: cit0133 doi: 10.1039/C8FD00153G – ident: cit0130 doi: 10.1103/PhysRevB.57.2878 – ident: cit0243 doi: 10.1103/PhysRevB.97.245129 – ident: cit0189 doi: 10.1103/PhysRevLett.115.086803 – ident: cit0227 doi: 10.1126/sciadv.abd9275 – ident: cit0059 doi: 10.2298/TSCI160818068X – ident: cit0081 doi: 10.1103/PhysRevB.101.035128 – ident: cit0199 doi: 10.1103/PhysRevB.87.165413 – ident: cit0228 doi: 10.1103/PhysRevLett.113.235502 – ident: cit0054 doi: 10.1103/PhysRevB.87.035139 – ident: cit0104 doi: 10.1103/PhysRevB.90.035121 – ident: cit0238 doi: 10.1038/s41467-018-03354-1 – ident: cit0176 doi: 10.1103/PhysRevLett.101.157402 – ident: cit0053 doi: 10.1103/PhysRevB.85.245423 – volume: 8 start-page: 041009 year: 2018 ident: cit0034 publication-title: Phys Rev X – ident: cit0077 doi: 10.1103/PhysRevB.61.1101 – ident: cit0187 doi: 10.1103/PhysRevLett.112.257401 – ident: cit0127 doi: 10.1103/PhysRevB.88.054507 – ident: cit0126 doi: 10.1126/science.1216765 – ident: cit0125 doi: 10.1038/srep00064 – ident: cit0090 doi: 10.1103/PhysRevB.50.15337 – ident: cit0091 doi: 10.1007/s003400050189 – ident: cit0136 doi: 10.1103/PhysRevB.45.1107 – ident: cit0079 doi: 10.1038/nmat3757 – ident: cit0157 doi: 10.1103/PhysRevB.68.064114 – ident: cit0230 doi: 10.1103/PhysRevLett.118.054101 – ident: cit0036 doi: 10.1007/s00339-003-2301-7 – ident: cit0150 doi: 10.1038/nnano.2012.95 – ident: cit0039 doi: 10.1103/PhysRevLett.121.256401 – ident: cit0088 doi: 10.1103/PhysRevB.45.5079 – ident: cit0030 doi: 10.1002/andp.201600235 – ident: cit0200 doi: 10.1103/PhysRevB.88.035430 – ident: cit0280 doi: 10.1126/sciadv.abg0869 – ident: cit0013 doi: 10.1103/PhysRevB.97.205118 – volume: 23 start-page: 213001 year: 2011 ident: cit0032 publication-title: J Phys – volume: 7 start-page: 011004 year: 2017 ident: cit0193 publication-title: Phys Rev X – ident: cit0122 doi: 10.1103/PhysRevB.98.134309 – ident: cit0074 doi: 10.1103/PhysRevB.46.13592 – ident: cit0058 doi: 10.1103/PhysRevB.93.014301 – volume-title: The electron-phonon interaction in metals year: 1981 ident: cit0218 – ident: cit0066 doi: 10.1063/5.0019719 – ident: cit0191 doi: 10.1021/nl503614v – ident: cit0175 doi: 10.1021/nl8019399 – ident: cit0051 doi: 10.1103/PhysRevB.74.024301 – ident: cit0135 doi: 10.1016/0022-3697(86)90125-3 – ident: cit0275 doi: 10.1038/nphys3925 – ident: cit0100 doi: 10.1002/aenm.202003071 – ident: cit0159 doi: 10.1103/RevModPhys.73.515 – ident: cit0038 doi: 10.1002/lpor.201000035 – ident: cit0139 doi: 10.1063/1.3117236 – ident: cit0009 doi: 10.1103/PhysRevB.81.241201 – ident: cit0245 doi: 10.1103/PhysRevB.80.115107 – ident: cit0101 doi: 10.1103/PhysRevB.103.064305 – ident: cit0166 doi: 10.1103/PhysRevB.76.155431 – ident: cit0140 doi: 10.1103/PhysRevLett.109.166603 – ident: cit0272 doi: 10.1038/nature13875 – ident: cit0026 doi: 10.1007/978-3-642-55675-3_4 – ident: cit0008 doi: 10.1088/1361-6633/ab6a43 – ident: cit0148 doi: 10.1038/ncomms1882 – ident: cit0097 doi: 10.1038/s41699-019-0131-5 – ident: cit0067 doi: 10.1103/PhysRevLett.124.226403 – ident: cit0247 doi: 10.1103/PhysRevB.93.054303 – ident: cit0021 doi: 10.1038/ncomms15769 – ident: cit0114 doi: 10.1103/PhysRevB.89.024422 – ident: cit0265 doi: 10.1007/978-3-642-52263-5 – ident: cit0087 doi: 10.1103/PhysRevLett.58.1680 – ident: cit0273 doi: 10.1103/PhysRevB.92.214303 – ident: cit0215 doi: 10.1103/PhysRevB.50.8016 – ident: cit0094 doi: 10.1103/PhysRevB.71.184301 – ident: cit0258 doi: 10.1103/PhysRevB.77.121402 – ident: cit0190 doi: 10.1103/PhysRevLett.114.125503 – ident: cit0134 doi: 10.1103/PhysRevB.102.024308 – ident: cit0161 doi: 10.1063/1.3291615 – ident: cit0010 doi: 10.1103/PhysRevLett.108.167402 – ident: cit0042 doi: 10.1557/s43577-021-00156-7 – ident: cit0117 doi: 10.1007/s00339-018-1704-4 – ident: cit0209 doi: 10.1088/0953-8984/27/16/164204 – ident: cit0196 doi: 10.1126/science.aaw1662 – volume: 39 start-page: 375 year: 1973 ident: cit0045 publication-title: Sov Phys JETP – ident: cit0096 doi: 10.1103/PhysRevB.99.035435 – ident: cit0246 doi: 10.1103/PhysRevB.82.155108 – ident: cit0023 doi: 10.1103/PhysRevB.97.165113 – ident: cit0225 doi: 10.1126/sciadv.aap7427 – ident: cit0137 doi: 10.1021/acs.nanolett.7b02212 – ident: cit0233 doi: 10.1103/PhysRevResearch.2.043408 – ident: cit0271 doi: 10.1103/PhysRevB.89.220301 – ident: cit0075 doi: 10.1103/PhysRevLett.76.535 – ident: cit0072 doi: 10.1103/PhysRevLett.53.1837 – ident: cit0017 doi: 10.1103/PhysRevLett.119.017001 – ident: cit0132 doi: 10.1103/PhysRevB.89.125102 – volume-title: Quantum kinetic theory year: 2015 ident: cit0250 – ident: cit0212 doi: 10.1021/acsnano.0c10864 – ident: cit0170 doi: 10.1016/j.elspec.2021.147152 – ident: cit0261 doi: 10.1021/cr00025a006 – ident: cit0073 doi: 10.1103/PhysRevLett.68.2834 – ident: cit0116 doi: 10.1038/ncomms4229 – ident: cit0177 doi: 10.1103/PhysRevLett.105.127404 – ident: cit0210 doi: 10.1021/nl1024485 – ident: cit0248 doi: 10.1103/PhysRevB.100.235117 – ident: cit0123 doi: 10.1103/PhysRevB.97.054310 – ident: cit0231 doi: 10.1103/PhysRevLett.127.257401 – ident: cit0084 doi: 10.1063/1.4940981 – ident: cit0186 doi: 10.1103/PhysRevB.85.081402 – ident: cit0202 doi: 10.1103/PhysRevB.102.184307 – ident: cit0224 doi: 10.1038/ncomms13761 – ident: cit0078 doi: 10.1103/PhysRevLett.111.027403 – ident: cit0263 doi: 10.1103/PhysRevB.3.2063 – ident: cit0207 doi: 10.1093/nsr/nwab175 – ident: cit0152 doi: 10.1126/sciadv.abf2810 – ident: cit0102 doi: 10.1063/1.2901028 – ident: cit0253 doi: 10.1103/PhysRevLett.73.3243 – ident: cit0274 doi: 10.1103/PhysRevB.95.134113 – volume-title: Electrons and phonons: the theory of transport phenomena in solids year: 1960 ident: cit0164 – ident: cit0029 doi: 10.1103/PhysRevB.87.024505 – ident: cit0205 doi: 10.1103/PhysRevLett.128.016801 – ident: cit0018 doi: 10.1103/PhysRevB.98.041112 – ident: cit0022 doi: 10.1038/s41467-018-04749-w – ident: cit0211 doi: 10.1021/nl301997r – ident: cit0278 doi: 10.1038/nature21432 – ident: cit0019 doi: 10.1103/PhysRevB.101.054304 – ident: cit0108 doi: 10.1016/j.apsusc.2021.150427 – ident: cit0138 doi: 10.1016/j.cpc.2021.107970 – ident: cit0145 doi: 10.1021/acs.nanolett.1c01786 – ident: cit0236 doi: 10.1073/pnas.2113967119 – ident: cit0095 doi: 10.1103/PhysRevB.86.155139 – ident: cit0174 doi: 10.1038/ncomms8047 – ident: cit0221 doi: 10.1021/ja1110738 – ident: cit0001 doi: 10.1103/RevModPhys.89.015003 – ident: cit0267 doi: 10.1103/PhysRevB.47.558 – ident: cit0234 doi: 10.1088/1367-2630/ab3acf – ident: cit0281 doi: 10.1021/acs.jpclett.9b01272 – ident: cit0260 doi: 10.1038/s41467-020-16076-0 – ident: cit0037 doi: 10.1103/RevModPhys.93.041002 – ident: cit0249 doi: 10.1103/PhysRevB.102.085203 – ident: cit0195 doi: 10.1103/PhysRevB.95.165303 – ident: cit0056 doi: 10.1063/1.4935366 – ident: cit0167 doi: 10.1103/PhysRevB.93.041408 – ident: cit0141 doi: 10.1038/ncomms2987 – ident: cit0093 doi: 10.1016/S0301-0104(99)00330-4 – ident: cit0062 doi: 10.1103/PhysRevB.96.174439 – ident: cit0154 doi: 10.1103/PhysRevLett.127.207401 – ident: cit0264 doi: 10.1038/nphys2055 – ident: cit0163 doi: 10.1021/acs.nanolett.2c00850 – ident: cit0220 doi: 10.1103/PhysRevB.90.205426 – ident: cit0252 doi: 10.1103/PhysRevB.45.768 – ident: cit0119 doi: 10.1142/S0217979210055366 – ident: cit0080 doi: 10.1038/srep40876 – ident: cit0146 doi: 10.1088/1367-2630/13/12/123010 – ident: cit0204 doi: 10.1038/s41535-021-00421-7 – volume: 3 start-page: 011005 year: 2013 ident: cit0268 publication-title: Phys Rev X – ident: cit0061 doi: 10.1103/PhysRevLett.119.136602 – ident: cit0183 doi: 10.1021/nl502740g – ident: cit0276 doi: 10.1126/science.aaw4911 – ident: cit0229 doi: 10.1016/j.elspec.2022.147189 – ident: cit0198 doi: 10.1103/PhysRevB.84.205406 – ident: cit0201 doi: 10.1103/PhysRevB.99.155410 – ident: cit0217 doi: 10.1103/PhysRevB.103.L241108 – ident: cit0156 doi: 10.1103/PhysRevLett.71.1023 – ident: cit0016 doi: 10.1103/PhysRevB.82.165111 – ident: cit0099 doi: 10.1103/PhysRevLett.124.037401 – ident: cit0256 doi: 10.1063/1.1777214 – ident: cit0060 doi: 10.1021/acs.nanolett.7b02926 – ident: cit0257 doi: 10.1103/PhysRevLett.97.067402 – ident: cit0048 doi: 10.1103/PhysRevLett.64.2172 – ident: cit0033 doi: 10.1073/pnas.1424791112 – ident: cit0106 doi: 10.1103/PhysRevE.103.033204 – ident: cit0113 doi: 10.1103/PhysRevLett.110.147206 – ident: cit0286 doi: 10.1016/j.cpc.2014.02.015 – volume: 4 start-page: 173 year: 1957 ident: cit0043 publication-title: Sov Phys JETP – ident: cit0235 doi: 10.1103/PhysRevB.99.214302 – ident: cit0027 doi: 10.1103/PhysRevB.72.024545 – ident: cit0153 doi: 10.1103/PhysRevB.104.205109 – ident: cit0169 doi: 10.1016/B978-0-12-409547-2.13273-1 – ident: cit0028 doi: 10.1103/PhysRevB.72.024546 – ident: cit0020 doi: 10.1038/s42005-020-0299-1 – ident: cit0003 doi: 10.1103/PhysRevB.23.1495 – ident: cit0082 doi: 10.1103/PhysRevLett.124.077001 – ident: cit0165 doi: 10.1103/PhysRevLett.114.247001 – ident: cit0041 doi: 10.1103/PhysRevB.97.165416 – ident: cit0040 doi: 10.1103/PhysRevX.6.021003 – ident: cit0121 doi: 10.1103/PhysRevB.95.054302 – ident: cit0128 doi: 10.1103/PhysRev.125.804 – ident: cit0180 doi: 10.1103/PhysRevLett.108.167401 – ident: cit0179 doi: 10.1103/PhysRevLett.107.237401 – ident: cit0004 doi: 10.1103/PhysRevLett.105.265501 – ident: cit0063 doi: 10.1103/PhysRevB.101.100302 – ident: cit0025 doi: 10.1038/s42005-019-0182-0 – ident: cit0057 doi: 10.1103/PhysRevB.94.075120 – ident: cit0110 doi: 10.1103/PhysRevB.15.1489 – ident: cit0192 doi: 10.1103/PhysRevB.96.020301 – ident: cit0158 doi: 10.1103/PhysRevB.73.184113 – ident: cit0014 doi: 10.1103/PhysRevLett.93.185503 – ident: cit0282 doi: 10.1021/acs.jpclett.1c00073 – ident: cit0092 doi: 10.1007/s003400050778 – ident: cit0149 doi: 10.1038/nnano.2012.96 – ident: cit0270 doi: 10.1021/acs.nanolett.7b05391 – ident: cit0107 doi: 10.1103/PhysRevLett.122.205001 – ident: cit0151 doi: 10.1021/acs.jpclett.2c01034 – ident: cit0115 doi: 10.1103/PhysRevLett.113.025902 – ident: cit0223 doi: 10.1021/acs.jpclett.0c03616 – ident: cit0269 doi: 10.1103/PhysRevLett.120.185701 – ident: cit0208 doi: 10.1016/j.elspec.2016.11.001 – ident: cit0024 doi: 10.1038/s41563-018-0092-7 – ident: cit0064 doi: 10.1103/PhysRevLett.122.016806 – ident: cit0232 doi: 10.1103/PhysRevLett.128.015702 – ident: cit0105 doi: 10.1103/PhysRevLett.111.245004 – ident: cit0120 doi: 10.1088/1361-6463/50/19/193001 – ident: cit0277 doi: 10.1126/science.aar4183 – ident: cit0012 doi: 10.1021/acs.nanolett.7b03553 – ident: cit0237 doi: 10.1140/epjb/e2018-90126-5 – ident: cit0255 doi: 10.1038/nature02044 – ident: cit0031 doi: 10.1103/PhysRevB.80.241108 – ident: cit0070 doi: 10.1088/1367-2630/abec0f – ident: cit0262 doi: 10.1103/PhysRevB.97.174302 – ident: cit0162 doi: 10.1103/PhysRevLett.102.086809 – ident: cit0206 doi: 10.1126/sciadv.aar5313 – ident: cit0155 doi: 10.1080/104077801300348842 – ident: cit0284 doi: 10.1021/acs.jctc.9b00596 – ident: cit0118 doi: 10.3390/nano12101655 – ident: cit0007 doi: 10.1021/nl402696q – ident: cit0098 doi: 10.1103/PhysRevB.102.155127 – ident: cit0244 doi: 10.1103/PhysRevB.101.035203 – ident: cit0086 doi: 10.1103/PhysRevLett.58.1212 – ident: cit0006 doi: 10.1103/PhysRevB.3.305 – ident: cit0168 doi: 10.1038/s41563-021-00935-2 – ident: cit0065 doi: 10.1103/PhysRevB.101.094103 – ident: cit0035 doi: 10.1103/PhysRevLett.112.257402 – ident: cit0222 doi: 10.1103/PhysRevLett.112.187401 – ident: cit0111 doi: 10.1103/PhysRevB.88.094410 – ident: cit0015 doi: 10.1103/PhysRevLett.97.266407 – ident: cit0089 doi: 10.1103/PhysRevB.48.15488 – volume: 29 start-page: 465901 year: 2017 ident: cit0219 publication-title: J Phys – ident: cit0142 doi: 10.1088/1367-2630/ab5c76 – ident: cit0251 doi: 10.1103/PhysRevLett.124.076601 – ident: cit0160 doi: 10.1016/j.cpc.2016.07.028 – ident: cit0194 doi: 10.1103/PhysRevB.95.024304 – ident: cit0068 doi: 10.1103/PhysRevB.102.214305 – ident: cit0213 doi: 10.1103/PhysRevB.92.184303 – volume: 32 start-page: 103001 year: 2019 ident: cit0226 publication-title: J Phys – ident: cit0131 doi: 10.1103/PhysRevB.84.075449 – ident: cit0241 doi: 10.1103/PhysRevA.90.012508 – ident: cit0216 doi: 10.1103/PhysRevB.99.165421 – ident: cit0069 doi: 10.1103/PhysRevB.103.125412 – ident: cit0044 doi: 10.1007/BF01479732 – ident: cit0283 doi: 10.1103/PhysRevB.97.134308 – ident: cit0050 doi: 10.1115/1.2035113 – ident: cit0182 doi: 10.1103/PhysRevLett.113.056602 – ident: cit0285 doi: 10.1063/1.3095497 – ident: cit0011 doi: 10.1021/acsnano.5b06199 – ident: cit0052 doi: 10.1103/PhysRevB.77.075133 – ident: cit0203 doi: 10.1103/PhysRevLett.125.136401 – ident: cit0129 doi: 10.1103/PhysRevLett.65.1251 – ident: cit0188 doi: 10.1039/C4FD00020J – ident: cit0214 doi: 10.1016/j.elspec.2015.06.003 – ident: cit0103 doi: 10.1103/PhysRevLett.106.155503 – volume: 10 start-page: 041013 year: 2020 ident: cit0173 publication-title: Phys Rev X – ident: cit0124 doi: 10.1103/PhysRevLett.95.187403 – ident: cit0266 doi: 10.1103/PhysRevLett.92.117401 – ident: cit0259 doi: 10.1021/acsnano.0c00309 – ident: cit0143 doi: 10.1103/PhysRevResearch.3.023072 – ident: cit0242 doi: 10.1073/pnas.1518224112 – ident: cit0112 doi: 10.1103/PhysRevLett.111.107204 – ident: cit0279 doi: 10.1103/PhysRevB.103.L121105 – ident: cit0049 doi: 10.1103/PhysRevB.65.214303 – ident: cit0197 doi: 10.1063/5.0006531 – ident: cit0184 doi: 10.1016/0167-5729(95)00002-X – ident: cit0085 doi: 10.1103/PhysRevB.100.214115 – ident: cit0002 doi: 10.1088/0022-3719/9/12/013 – ident: cit0185 doi: 10.1103/PhysRevLett.108.056801 – ident: cit0147 doi: 10.1103/PhysRevLett.111.167204 – ident: cit0005 doi: 10.1103/PhysRevB.97.121201 – ident: cit0172 doi: 10.1038/s41567-019-0698-y – ident: cit0144 doi: 10.1021/acs.jpclett.0c03616 – ident: cit0181 doi: 10.1021/nl303988q – ident: cit0109 doi: 10.1103/PhysRevLett.76.4250 – ident: cit0254 doi: 10.1103/PhysRevLett.77.3661 – ident: cit0240 doi: 10.1103/RevModPhys.74.895 – ident: cit0047 doi: 10.1103/PhysRevLett.61.2886 – ident: cit0083 doi: 10.1103/PhysRevB.104.L180505 – ident: cit0046 doi: 10.1103/PhysRevLett.59.1460 – ident: cit0178 doi: 10.1103/PhysRevB.83.153410 – ident: cit0055 doi: 10.1103/PhysRevB.88.144305 – ident: cit0239 doi: 10.1021/acs.nanolett.1c02538 |
SSID | ssj0001670803 |
Score | 2.495361 |
SecondaryResourceType | review_article |
Snippet | The advent of pump-probe spectroscopy techniques paved the way to the exploration of ultrafast dynamics of electrons and phonons in crystalline solids.... |
SourceID | doaj proquest crossref informaworld |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Ab-initio methods Boltzmann transport equation carrier thermalization Dynamics electron-phonon coupling Electrons Materials science Phonons Solid state physics Spectroscopy Spectrum analysis Thermalization (energy absorption) Time dependence time-dependent boltzmann equation two-temperature model ultrafast dynamics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZhoZBLSdKGbLoJOvTqZm29VrllS5cQSE9dyE1Yj4HAPpJYodBfX41khyU97KU34wceNON5yDPfR8jXma-DnnJfNTVLBUoIrNIBeFKI55YD1z4j8N3_lLdLfvcgHnaovrAnrMADl4W7AueFsNIq6xQPrNEOZAAmgyzoa-h9U8zbKaby7opUKRViw8jObHrVMMVTKMLZlAYHsLTQSI-9E4wyZv87xNJ_PHQOO4sj8rHPF-lNkfOYHITNCfmQ-zZd94nE5Sq-tNB2kfrCLd_RLdCB3Kaj7cZTbD9Px9cUZ0loyvho_L2tEJSqR1SmmQ-Hxm25-LgO1UCOG-l8u4p_1u1mQ8NzwQX_TJaLH7--31Y9kULlRK0itrekPGk2TX6ZgXTCau_RQzr87wkIKtZoBVPlAq8hpSC1b1NiowB8DU5qzk7JKMkZzghVjfDWc7AulYaOhZkUHEKwum1d3YpmTPiwosb1KONIdrEydQ9GOijCoCJMr4gx-fb22FOB2dj3wBzV9XYzomTnE8l2TG87Zp_tjIneVbaJeZMECqOJYXsEmAyWYfrPvjONQuDTVPOL8_8h3xdyiK8suJITMoovr-Ei5UDRXmZz_wtl1wBL priority: 102 providerName: Directory of Open Access Journals – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LixQxEA66IngRnzi6Sg5eW7vznHhzxWUQ9OSAnkLnUSLMTq_TEcFfbypJry9kD976VU26q1OPdNX3EfJ0HYZoehE6NvCcoMTIOxNBZIUE4QQIEwoC39t3arMVbz7IpZpwbmWVmENDBYoothon9-jmpSLuOeNaZK-CbSYMe6mMNExeJdeyJ-6RxKD_uPm5zKJ0FuFL786_pH_zSgW8_w_o0r9MdfE_p7fIzRY40pdV07fJlbi_Q66XAk4_3yVpu0uHEcY50VBJ5mc6AV1Ybmaan5ZiHXrefkGxqYTm0I-mb1OH6FQNWpkWYhyapnry81nsFpbcRE-mXfp-Nu73NH6pAOH3yPb09ftXm64xKnReDjphnUsOmNZ9NtAclJfOhICm0uMPUEB0MWY09NpHMUCORYYw5ghHA4QBvDKC3ydHeZzxAaGayeCCAOdzjuh5XCspIEZnxtEPo2QrIpY3an2DG0fWi50dGirpogiLirBNESvy7ELsvOJtXCZwguq6uBjhssuB6fDJttlnwQcpnXLaeS0iZ8aDisBVVBXCb0XMr8q2qayWQKU2sfySARwvX4Zt83-2TCMCak7-5cP_uPUjcgN3K67kMTlKh6_xcY6BkntSvvIfedH8hw priority: 102 providerName: Taylor & Francis |
Title | Ultrafast dynamics of electrons and phonons: from the two-temperature model to the time-dependent Boltzmann equation |
URI | https://www.tandfonline.com/doi/abs/10.1080/23746149.2022.2095925 https://www.proquest.com/docview/2717538375 https://doaj.org/article/fcd55b6b7bc74e329cf6ef36e6008285 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1La9wwEBbJhkIvoU-6abro0Ksb23pZvZRuSVgCCaF0IT0J61UKm3WyVgjk11cjy0lIoLkZyzLGnzQajWa-D6HPja2cLKkt6orEDYpzpJDO0wiIpZp6Km1i4Ds55YslPT5n5zng1ue0ytEmJkNtOwMx8oNaAKdk3E6xb5dXBahGwelqltDYRjvRBDfNBO3MD0_Pft5HWbiILhEZS3ea8qAmgsYlCWpUaijEkkyCTPaDRSlx9z9iLn1iqdPyc_QK7Wa_EX8fgH6Nttz6DXqR8jdN_xaF5SpsWt_2AdtBY77HncejyE2P27XFkIYer79iqCnB0fPD4aYrgJwqMyvjpIuDQzc0_r1wxSiSG_C8W4Xbi3a9xu5q4Ad_h5ZHh79-LIosqFAYVokAaS7RX2rKaJ-J54ZpaS1YSgPnnx7IxWopfCmMo5WPrkhl2-jgCO9t5Q2XlLxHk_id7gPComZWW-q1iVtEQ1zDGfXOadm2pmpZPUV0_KPKZLZxEL1YqSqTko5AKABCZSCm6Mtdt8uBbuO5DnOA6-5hYMtON7rNH5Unn_LGMqa5FtoI6kgtjefOE-74wOA3RfIh2CqkYIkflE0UeeYD9seRofL079X9YN37f_NH9BJeNjBH7qNJ2Fy7T9HLCXqGtsvfi1ke0LMUK_gHTWr6gQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEB_qFdEX8ROvrZoHfVx7m8-LIOJpy9W2h0gP-hZ38yHC9ba9jRT9o_wbzexHWxTsU9-W3U0ImcnMJJn5_QBejl3u9Yi7jOYsbVC8Z5n2gSeBOF7ywLVrEPgOZ3I655-OxfEa_O5rYTCtsreJjaF2lcUz8m2qEFMybafEu9OzDFmj8Ha1p9Bo1WLf_zxPW7b67d7HJN9XlO7uHH2YZh2rQGZFriLmeqSgYTxKRooFaUWpnUNzYfESMCDCFtUqjJT1PA_JH-euSF5eheDyYKXmLPV7C9Y5kyM6gPXJzuzzl8tTHalSCMb6UqHxaJsyxZMLxJoYioVfWmik5b7iBBuugL-QUv_xDI27270P97o4lbxvFesBrPnlQ7jd5Iva-hHE-SKuilDUkbiW074mVSA9qU5NiqUjmPaent8QrGEhKdIk8bzKEAyrQ3ImDQ8PiVX78fuJz3pS3kgm1SL-OimWS-LPWjzyxzC_kal-AoM0Tv8UiKLClY6H0qYtqWV-LAUP3pe6KGxeCDoE3s-osR26OZJsLEzegaD2gjAoCNMJYgivL5qdtvAe1zWYoLgufkZ07uZFtfpmusVugnVClLJUpVXcM6ptkD4w6WWLGDgEfVXYJjaHM6FlUjHsmgFs9ZphOnNTm8vFsfH_zy_gzvTo8MAc7M32N-EudtyiVm7BIK5--Gcpworl806tCXy96ZX0B9hxM-g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYhLxVNdWsAHOAY2fq6ROFDKakuh4sBK5WQS21NV2m7KxqiCf8U_xOMk5SXUA-otimPL8tjzcGa-j5DHE18GMxa-YCVPAUoIvDABRBKIF7UAYXxG4Ht3oGZz8eZQHq6R70MtDKZVYgwNHVBE1tV4uE89DBlxzxjXIlkVLDNhWEtlpGFDXuV--HqWorb2xd5uEvETxqavP7yaFT2xQOFkqSOmeyS_YTJOeoqDcrI23qPGcPgfEBBkixkNY-2CKCGZ5NJXydBrAF-CU0bwNO4VclUmW49sEeOPs5_XOkqnKfKhVuhfs_3NCmaygD-gUv8yDdneTW-Sjd5RpS-7nXWLrIXlbXItJ4y69g6J80VcVVC1kfqO1L6lDdCBVaelaXUp5r2n5-cUi1hocjVpPGsKRMPqoZxpJuKhsekaj09CMbDyRrrTLOK3k2q5pOFzB0h-l8wvZaHvkfU0z7BJqGbS115A7VJM6niYKCkghNpUlSsryUZEDCtqXQ9vjiwbC1v2KKiDICwKwvaCGJGn591OO3yPizrsoLjOP0Z47vyiWR3Z_rRbcF7KWtW6dloEzowDFYCroDrIwBExvwrbxnw7Ax2ViuUXTGB72Bm21zetZRoRVydcy_v_MfQjcv397tS-3TvY3yI3sKWDtNwm63H1JTxI7lesH-YNT8mnyz5hPwB7mDen |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrafast+dynamics+of+electrons+and+phonons%3A+from+the+two-temperature+model+to+the+time-dependent+Boltzmann+equation&rft.jtitle=Advances+in+physics%3A+X&rft.au=Caruso%2C+Fabio&rft.au=Novko%2C+Dino&rft.date=2022-12-31&rft.issn=2374-6149&rft.eissn=2374-6149&rft.volume=7&rft.issue=1&rft_id=info:doi/10.1080%2F23746149.2022.2095925&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_23746149_2022_2095925 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2374-6149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2374-6149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2374-6149&client=summon |