A convolution neural network for higher resolution dose prediction in prostate volumetric modulated arc therapy

•Convolution neural network (CNN) predicts high resolution dose distribution.•Proposed CNN predicts high resolution dose distribution faster.•Proposed CNN predicts accurate dose even in inhomogeneity region. This study aims to investigate the feasibility of using convolutional neural networks to pre...

Full description

Saved in:
Bibliographic Details
Published inPhysica medica Vol. 72; pp. 88 - 95
Main Authors Sumida, Iori, Magome, Taiki, Das, Indra J, Yamaguchi, Hajime, Kizaki, Hisao, Aboshi, Keiko, Yamaguchi, Hiroko, Seo, Yuji, Isohashi, Fumiaki, Ogawa, Kazuhiko
Format Journal Article
LanguageEnglish
Published Italy Elsevier Ltd 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Convolution neural network (CNN) predicts high resolution dose distribution.•Proposed CNN predicts high resolution dose distribution faster.•Proposed CNN predicts accurate dose even in inhomogeneity region. This study aims to investigate the feasibility of using convolutional neural networks to predict an accurate and high resolution dose distribution from an approximated and low resolution input dose. Sixty-six patients were treated for prostate cancer with VMAT. We created the treatment plans using the Acuros XB algorithm with 2 mm grid size, followed by the dose calculated using the anisotropic analytical algorithm with 5 mm grid with the same plan parameters. U-net model was used to predict 2 mm grid dose from 5 mm grid dose. We investigated the two models differing for the training data used as input, one used just the low resolution dose (D model) and the other combined the low resolution dose with CT data (DC model). Dice similarity coefficient (DSC) was calculated to ascertain how well the shape of the dose-volume is matched. We conducted gamma analysis for the following: DVH from the two models and the reference DVH for all prostate structures. The DSC values in the DC model were significantly higher than those in the D model (p < 0.01). For the CTV, PTV, and bladder, the gamma passing rates in the DC model were significantly higher than those in the D model (p < 0.002–0.02). The mean doses in the CTV and PTV for the DC model were significantly better matched to those in the reference dose (p < 0.0001). The proposed U-net model with dose and CT image used as input predicted more accurate dose.
AbstractList •Convolution neural network (CNN) predicts high resolution dose distribution.•Proposed CNN predicts high resolution dose distribution faster.•Proposed CNN predicts accurate dose even in inhomogeneity region. This study aims to investigate the feasibility of using convolutional neural networks to predict an accurate and high resolution dose distribution from an approximated and low resolution input dose. Sixty-six patients were treated for prostate cancer with VMAT. We created the treatment plans using the Acuros XB algorithm with 2 mm grid size, followed by the dose calculated using the anisotropic analytical algorithm with 5 mm grid with the same plan parameters. U-net model was used to predict 2 mm grid dose from 5 mm grid dose. We investigated the two models differing for the training data used as input, one used just the low resolution dose (D model) and the other combined the low resolution dose with CT data (DC model). Dice similarity coefficient (DSC) was calculated to ascertain how well the shape of the dose-volume is matched. We conducted gamma analysis for the following: DVH from the two models and the reference DVH for all prostate structures. The DSC values in the DC model were significantly higher than those in the D model (p < 0.01). For the CTV, PTV, and bladder, the gamma passing rates in the DC model were significantly higher than those in the D model (p < 0.002–0.02). The mean doses in the CTV and PTV for the DC model were significantly better matched to those in the reference dose (p < 0.0001). The proposed U-net model with dose and CT image used as input predicted more accurate dose.
This study aims to investigate the feasibility of using convolutional neural networks to predict an accurate and high resolution dose distribution from an approximated and low resolution input dose.PURPOSEThis study aims to investigate the feasibility of using convolutional neural networks to predict an accurate and high resolution dose distribution from an approximated and low resolution input dose.Sixty-six patients were treated for prostate cancer with VMAT. We created the treatment plans using the Acuros XB algorithm with 2 mm grid size, followed by the dose calculated using the anisotropic analytical algorithm with 5 mm grid with the same plan parameters. U-net model was used to predict 2 mm grid dose from 5 mm grid dose. We investigated the two models differing for the training data used as input, one used just the low resolution dose (D model) and the other combined the low resolution dose with CT data (DC model). Dice similarity coefficient (DSC) was calculated to ascertain how well the shape of the dose-volume is matched. We conducted gamma analysis for the following: DVH from the two models and the reference DVH for all prostate structures.METHODSSixty-six patients were treated for prostate cancer with VMAT. We created the treatment plans using the Acuros XB algorithm with 2 mm grid size, followed by the dose calculated using the anisotropic analytical algorithm with 5 mm grid with the same plan parameters. U-net model was used to predict 2 mm grid dose from 5 mm grid dose. We investigated the two models differing for the training data used as input, one used just the low resolution dose (D model) and the other combined the low resolution dose with CT data (DC model). Dice similarity coefficient (DSC) was calculated to ascertain how well the shape of the dose-volume is matched. We conducted gamma analysis for the following: DVH from the two models and the reference DVH for all prostate structures.The DSC values in the DC model were significantly higher than those in the D model (p < 0.01). For the CTV, PTV, and bladder, the gamma passing rates in the DC model were significantly higher than those in the D model (p < 0.002-0.02). The mean doses in the CTV and PTV for the DC model were significantly better matched to those in the reference dose (p < 0.0001).RESULTSThe DSC values in the DC model were significantly higher than those in the D model (p < 0.01). For the CTV, PTV, and bladder, the gamma passing rates in the DC model were significantly higher than those in the D model (p < 0.002-0.02). The mean doses in the CTV and PTV for the DC model were significantly better matched to those in the reference dose (p < 0.0001).The proposed U-net model with dose and CT image used as input predicted more accurate dose.CONCLUSIONSThe proposed U-net model with dose and CT image used as input predicted more accurate dose.
This study aims to investigate the feasibility of using convolutional neural networks to predict an accurate and high resolution dose distribution from an approximated and low resolution input dose. Sixty-six patients were treated for prostate cancer with VMAT. We created the treatment plans using the Acuros XB algorithm with 2 mm grid size, followed by the dose calculated using the anisotropic analytical algorithm with 5 mm grid with the same plan parameters. U-net model was used to predict 2 mm grid dose from 5 mm grid dose. We investigated the two models differing for the training data used as input, one used just the low resolution dose (D model) and the other combined the low resolution dose with CT data (DC model). Dice similarity coefficient (DSC) was calculated to ascertain how well the shape of the dose-volume is matched. We conducted gamma analysis for the following: DVH from the two models and the reference DVH for all prostate structures. The DSC values in the DC model were significantly higher than those in the D model (p < 0.01). For the CTV, PTV, and bladder, the gamma passing rates in the DC model were significantly higher than those in the D model (p < 0.002-0.02). The mean doses in the CTV and PTV for the DC model were significantly better matched to those in the reference dose (p < 0.0001). The proposed U-net model with dose and CT image used as input predicted more accurate dose.
Author Seo, Yuji
Kizaki, Hisao
Yamaguchi, Hajime
Ogawa, Kazuhiko
Isohashi, Fumiaki
Aboshi, Keiko
Magome, Taiki
Sumida, Iori
Das, Indra J
Yamaguchi, Hiroko
Author_xml – sequence: 1
  givenname: Iori
  surname: Sumida
  fullname: Sumida, Iori
  organization: Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871 Japan
– sequence: 2
  givenname: Taiki
  orcidid: 0000-0002-0133-5932
  surname: Magome
  fullname: Magome, Taiki
  organization: Department of Radiological Sciences, Faculty of Health Sciences, Komazawa University, 1-23-1 Komazawa, Setagaya-ku, Tokyo 154-8525 Japan
– sequence: 3
  givenname: Indra J
  orcidid: 0000-0003-4094-0892
  surname: Das
  fullname: Das, Indra J
  organization: Department of Radiation Oncology, Northwestern Memorial Hospital, Northwest University Medical Center, Galter Pavilion, Chicago, IL 60611
– sequence: 4
  givenname: Hajime
  surname: Yamaguchi
  fullname: Yamaguchi, Hajime
  organization: Department of Radiation Oncology, Daini Osaka Police Hospital, 2-6-40 Karasugatsuji, Tennoji-ku, Osaka 543-8922 Japan
– sequence: 5
  givenname: Hisao
  surname: Kizaki
  fullname: Kizaki, Hisao
  organization: Department of Radiation Oncology, Daini Osaka Police Hospital, 2-6-40 Karasugatsuji, Tennoji-ku, Osaka 543-8922 Japan
– sequence: 6
  givenname: Keiko
  surname: Aboshi
  fullname: Aboshi, Keiko
  organization: Department of Radiation Oncology, Daini Osaka Police Hospital, 2-6-40 Karasugatsuji, Tennoji-ku, Osaka 543-8922 Japan
– sequence: 7
  givenname: Hiroko
  surname: Yamaguchi
  fullname: Yamaguchi, Hiroko
  organization: Department of Radiation Oncology, Daini Osaka Police Hospital, 2-6-40 Karasugatsuji, Tennoji-ku, Osaka 543-8922 Japan
– sequence: 8
  givenname: Yuji
  surname: Seo
  fullname: Seo, Yuji
  organization: Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871 Japan
– sequence: 9
  givenname: Fumiaki
  surname: Isohashi
  fullname: Isohashi, Fumiaki
  organization: Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871 Japan
– sequence: 10
  givenname: Kazuhiko
  surname: Ogawa
  fullname: Ogawa, Kazuhiko
  organization: Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871 Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32247227$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1TAQhS1U1Bf9AyyQl2wS_EqcIDZVRQGpEhuQ2FnueEJ9m8QX2ym6_74Ot3fTRVmNxzrf0cycM3I0hxkJectZzRlvP2xq3EzbWjDBaiZrJuQrcsq1UBXv-a-j8uaCVVz3-oScpbRhTArRNMfkpFSlhdCnJFxSCPNDGJfsw0xnXKIdS8l_Q7ynQ4j0zv--w0gjpoPIhYR0G9F5-Nf7uXQhZZuRrk4T5uiBTsEtY_lz1EaguZjY7e4NeT3YMeHFUz0nP68__7j6Wt18__Lt6vKmgobrXDUDCNtypzgDJTporOq7btCq7yXoHjvW3QpUyjklbd8DdyCk5Hxo2sEq5PKcvN_7lsn-LJiymXwCHEc7Y1iSEbJrhda6XaXvnqTL7YTObKOfbNyZw5GKoNsLoGyZIg4GfFm2rJ6j9aPhzKx5mI1Z8zBrHoZJU_IoqHiGHtxfhD7tISwHevAYTQKPM5SDR4RsXPAv4x-f4TD62YMd73H3P_gRLQO5bA
CitedBy_id crossref_primary_10_1016_j_media_2021_102339
crossref_primary_10_1088_1361_6560_ac6b10
crossref_primary_10_1007_s11548_022_02801_1
crossref_primary_10_1088_1361_6560_adbff1
crossref_primary_10_1186_s13014_024_02531_5
crossref_primary_10_3389_fonc_2020_593381
crossref_primary_10_1007_s10278_024_01296_3
crossref_primary_10_1016_j_ctro_2024_100792
crossref_primary_10_1088_1361_6560_ac0684
crossref_primary_10_1016_j_semradonc_2022_06_004
crossref_primary_10_1088_1742_6596_2377_1_012030
crossref_primary_10_1109_TMI_2024_3383423
crossref_primary_10_1002_mp_17416
crossref_primary_10_1002_acm2_13337
crossref_primary_10_1016_j_ejmp_2021_02_021
crossref_primary_10_1088_1361_6560_ac0856
crossref_primary_10_1016_j_ejmp_2021_02_022
crossref_primary_10_1002_acm2_14197
crossref_primary_10_1016_j_zemedi_2022_10_006
crossref_primary_10_3233_XST_221240
crossref_primary_10_3390_diagnostics12061489
Cites_doi 10.1016/j.ejmp.2019.11.023
10.1088/1361-6560/aab9e9
10.1002/mp.12810
10.1038/s41598-018-37741-x
10.1002/mp.12251
10.1088/0031-9155/55/3/002
10.1259/bjr/42085182
10.1118/1.598248
10.1002/mp.13271
10.1002/mp.13490
10.1016/j.radonc.2013.09.020
10.1088/0031-9155/58/8/2597
10.1109/JBHI.2018.2843819
10.1118/1.1843354
10.1118/1.2818738
10.1002/acm2.12507
10.1186/s13014-015-0346-3
10.1016/j.ijrobp.2011.10.078
10.1118/1.596360
10.1002/mp.13597
10.1016/j.ijrobp.2008.12.033
10.3390/s18030789
10.1088/1361-6560/aacdd4
10.1118/1.4826166
10.1016/j.prro.2016.10.001
10.1016/j.meddos.2018.07.002
10.1118/1.3438081
10.1118/1.3567146
ContentType Journal Article
Copyright 2020 Associazione Italiana di Fisica Medica
Copyright © 2020 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Associazione Italiana di Fisica Medica
– notice: Copyright © 2020 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.ejmp.2020.03.023
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1724-191X
EndPage 95
ExternalDocumentID 32247227
10_1016_j_ejmp_2020_03_023
S1120179720300788
Genre Journal Article
GroupedDBID ---
--K
--M
-QF
.1-
.FO
.~1
0R~
123
1B1
1P~
1~.
1~5
3J0
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABJNI
ABMAC
ABMZM
ABNEU
ABXDB
ACDAQ
ACFVG
ACGFS
ACIEU
ACRLP
ACXCU
ADBBV
ADEZE
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AEVXI
AFJKZ
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AIEXJ
AIIUN
AIKHN
AITUG
AIVDX
AJRQY
AJUYK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DC1
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OI~
OU0
OZT
P-8
P-9
PC.
Q38
RLW
ROL
RPZ
SDF
SDG
SEL
SES
SJN
SPC
SPCBC
SSH
SSQ
SSZ
T5K
UNMZH
Z5R
~G-
~XS
6I.
AACTN
AAFTH
AAIAV
ABLVK
ABYKQ
ACNNM
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
CLCPZ
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c517t-5fc2a61d410c428c5a4988f74993c79e808b2e44dd43a99c1dc23311f56fa4e13
IEDL.DBID .~1
ISSN 1120-1797
1724-191X
IngestDate Thu Jul 10 23:31:43 EDT 2025
Wed Feb 19 02:30:30 EST 2025
Thu Apr 24 23:03:06 EDT 2025
Tue Jul 01 04:30:22 EDT 2025
Fri Feb 23 02:48:12 EST 2024
Tue Aug 26 19:48:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Dose prediction
CT
Convolution neural network
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2020 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-5fc2a61d410c428c5a4988f74993c79e808b2e44dd43a99c1dc23311f56fa4e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4094-0892
0000-0002-0133-5932
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1120179720300788
PMID 32247227
PQID 2386277761
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2386277761
pubmed_primary_32247227
crossref_citationtrail_10_1016_j_ejmp_2020_03_023
crossref_primary_10_1016_j_ejmp_2020_03_023
elsevier_sciencedirect_doi_10_1016_j_ejmp_2020_03_023
elsevier_clinicalkey_doi_10_1016_j_ejmp_2020_03_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
2020-Apr
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationPlace Italy
PublicationPlace_xml – name: Italy
PublicationTitle Physica medica
PublicationTitleAlternate Phys Med
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167.
Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv:1412.6980.
Otto (b0005) 2008; 35
Benedict, Yenice, Followill (b0070) 2010; 37
Zhang Y, Tian Y, Kong Y et al. Residual dense network for image super-resolution. arXiv:1802.08797v2.
Fan, Wang, Chen (b0095) 2019; 46
Koo, Chung, Eom (b0100) 2015; 10
Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010;249-56.
Bush, Gagne, Zavgorodni (b0110) 2011; 38
Dempsey, Romeijn, Li (b0055) 2005; 32
Chatterjee, Serban, Faria (b0075) 2020; 69
Liu, Fan, Li (b0195) 2019; 46
Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. MICCAI 2015. Part III, LNCS. 2015;9351:234-41.
Miften, Olch, Mihailidis (b0190) 2018; 45
Snyder, Hyer, Flynn (b0040) 2019; 20
International Commission on Radiation Units and Measurements. Prescribing, recording and reporting photon-beam intensity-modulated radiation therapy (IMRT). Special considerations regarding absorbed-dose and dose-volume prescribing and reporting in IMRT. ICRU Report 83. J ICRU 2010;10:27-40.
Nguyen, Long, Jia (b0080) 2019; 9
Vassiliev, Wareing, McGhee (b0105) 2010; 55
Al Sa’d M, Graham J, Liney GP et al. Quantitative comparison of 3D and 2.5D gamma analysis: introducing gamma angle histogram. Phys Med Biol. 2013;58:2597-608.
Lechner, Kragl, Georg (b0010) 2013; 109
Bedford, Childs, Nordmark (b0060) 2003; 76
Nguyen D, Jia X, Sher D et al. Three-dimensional radiotherapy dose prediction on head and neck cancer patients with a hierarchically densely connected U-net deep learning architecture. arXiv:1805.10397v3.
Low, Harms, Mutic (b0180) 1998; 25
Dong C, Loy CC, He K et al. Image super-resolution using deep convolutional networks. arXiv:1501.00092v3.
J. Sievinen W. Ulmer W. Kaissl, AAA photon dose calculation model in Eclipse. Palo Alto, CA: Varian Medical Systems. 2005;118:2894.
Srivastava, Cheng, Das (b0050) 2017; 7
Park, Hwang, Kim (b0150) 2018; 63
Verbakel, Cuijpers, Hoffmans (b0020) 2009; 74
Du, Qu, He (b0125) 2018; 18
Kim J, Lee JK, Lee KM. Accurate image super-resolution using very deep convolutional networks. arXiv:1511.04587v2.
Barragán-Montero, Nguyen, Lu (b0200) 2019; 46
Nelms, Chan, Jarry (b0015) 2013; 40
Fogliata, Nicolini, Clivio (b0115) 2012; 83
Aland, Walsh, Jones (b0045) 2019; 44
Shi, Liu, Wang (b0140) 2018; 63
Ahnesjö (b0030) 1989; 16
Shi, Li, Ying (b0145) 2019; 23
Kim, Chung, Suh (b0065) 2018; 13
Failla GA, Wareing T, Archambault Y et al. Acuros XB advanced dose calculation for the Eclipse treatment planning system. Palo Alto, CA: Varian Medical Systems. 2010.
Wieser, Cisternas, Wahs (b0090) 2017; 44
Bedford (10.1016/j.ejmp.2020.03.023_b0060) 2003; 76
Benedict (10.1016/j.ejmp.2020.03.023_b0070) 2010; 37
Koo (10.1016/j.ejmp.2020.03.023_b0100) 2015; 10
Vassiliev (10.1016/j.ejmp.2020.03.023_b0105) 2010; 55
Lechner (10.1016/j.ejmp.2020.03.023_b0010) 2013; 109
Nguyen (10.1016/j.ejmp.2020.03.023_b0080) 2019; 9
Ahnesjö (10.1016/j.ejmp.2020.03.023_b0030) 1989; 16
Low (10.1016/j.ejmp.2020.03.023_b0180) 1998; 25
Verbakel (10.1016/j.ejmp.2020.03.023_b0020) 2009; 74
10.1016/j.ejmp.2020.03.023_b0025
Chatterjee (10.1016/j.ejmp.2020.03.023_b0075) 2020; 69
Wieser (10.1016/j.ejmp.2020.03.023_b0090) 2017; 44
Shi (10.1016/j.ejmp.2020.03.023_b0145) 2019; 23
10.1016/j.ejmp.2020.03.023_b0160
Otto (10.1016/j.ejmp.2020.03.023_b0005) 2008; 35
10.1016/j.ejmp.2020.03.023_b0085
10.1016/j.ejmp.2020.03.023_b0185
Srivastava (10.1016/j.ejmp.2020.03.023_b0050) 2017; 7
10.1016/j.ejmp.2020.03.023_b0120
10.1016/j.ejmp.2020.03.023_b0165
Snyder (10.1016/j.ejmp.2020.03.023_b0040) 2019; 20
10.1016/j.ejmp.2020.03.023_b0170
Aland (10.1016/j.ejmp.2020.03.023_b0045) 2019; 44
Du (10.1016/j.ejmp.2020.03.023_b0125) 2018; 18
Fogliata (10.1016/j.ejmp.2020.03.023_b0115) 2012; 83
Miften (10.1016/j.ejmp.2020.03.023_b0190) 2018; 45
Dempsey (10.1016/j.ejmp.2020.03.023_b0055) 2005; 32
Kim (10.1016/j.ejmp.2020.03.023_b0065) 2018; 13
10.1016/j.ejmp.2020.03.023_b0135
Shi (10.1016/j.ejmp.2020.03.023_b0140) 2018; 63
Fan (10.1016/j.ejmp.2020.03.023_b0095) 2019; 46
Liu (10.1016/j.ejmp.2020.03.023_b0195) 2019; 46
Nelms (10.1016/j.ejmp.2020.03.023_b0015) 2013; 40
Bush (10.1016/j.ejmp.2020.03.023_b0110) 2011; 38
10.1016/j.ejmp.2020.03.023_b0130
Park (10.1016/j.ejmp.2020.03.023_b0150) 2018; 63
10.1016/j.ejmp.2020.03.023_b0175
Barragán-Montero (10.1016/j.ejmp.2020.03.023_b0200) 2019; 46
10.1016/j.ejmp.2020.03.023_b0155
10.1016/j.ejmp.2020.03.023_b0035
References_xml – volume: 38
  start-page: 2208
  year: 2011
  end-page: 2221
  ident: b0110
  article-title: Dosimetric validation of Acuros® XB with Monte Carlo methods for photon dose calculations
  publication-title: Med Phys
– volume: 20
  start-page: 184
  year: 2019
  end-page: 193
  ident: b0040
  article-title: The commissioning and validation of Monaco treatment planning system on an Elekta VersaHD linear accelerator
  publication-title: J Appl Clin Med Phys.
– volume: 32
  start-page: 380
  year: 2005
  end-page: 388
  ident: b0055
  article-title: A Fourier analysis of the dose grid resolution required for accurate IMRT fluence map
  publication-title: Med Phys
– volume: 83
  start-page: 1587
  year: 2012
  end-page: 1595
  ident: b0115
  article-title: Critical appraisal of Acuros XB and Anisotropic Analytic Algorithm dose calculation in advanced non-small-cell lung cancer treatments
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 63
  year: 2018
  ident: b0150
  article-title: Computed tomography super-resolution using deep convolutional neural network
  publication-title: Phys Med Biol
– reference: Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010;249-56.
– volume: 46
  start-page: 1972
  year: 2019
  end-page: 1983
  ident: b0195
  article-title: A deep learning method for prediction of three-dimensional dose distribution of helical tomotherapy
  publication-title: Med Phys
– volume: 44
  start-page: 2556
  year: 2017
  end-page: 2568
  ident: b0090
  article-title: Development of the open-source dose calculation and optimization toolkit matRad
  publication-title: Med Phys
– reference: Zhang Y, Tian Y, Kong Y et al. Residual dense network for image super-resolution. arXiv:1802.08797v2.
– volume: 69
  start-page: 36
  year: 2020
  end-page: 43
  ident: b0075
  article-title: Novel knowledge-based treatment planning model for hypofractionated radiotherapy of prostate cancer patients
  publication-title: Phys Med
– reference: J. Sievinen W. Ulmer W. Kaissl, AAA photon dose calculation model in Eclipse. Palo Alto, CA: Varian Medical Systems. 2005;118:2894.
– volume: 23
  start-page: 1129
  year: 2019
  end-page: 1140
  ident: b0145
  article-title: MR image super-resolution via wide residual networks with fixed skip connection
  publication-title: IEEE J Biomed Health Inform
– volume: 46
  start-page: 370
  year: 2019
  end-page: 381
  ident: b0095
  article-title: Automatic treatment planning based on three-dimensional dose distribution predicted from deep learning technique
  publication-title: Med Phys
– volume: 18
  start-page: 789
  year: 2018
  ident: b0125
  article-title: Single image super-resolution based on multi-scale competitive convolutional neural network
  publication-title: Sensors
– reference: Al Sa’d M, Graham J, Liney GP et al. Quantitative comparison of 3D and 2.5D gamma analysis: introducing gamma angle histogram. Phys Med Biol. 2013;58:2597-608.
– volume: 37
  start-page: 4078
  year: 2010
  end-page: 4101
  ident: b0070
  article-title: Stereotactic body radiation therapy: the report of AAPM Task Group 101
  publication-title: Med Phys
– volume: 10
  start-page: 48
  year: 2015
  ident: b0100
  article-title: Dosimetric effects of the acuros XB and anisotropic analytical algorithm on volumetric modulated arc therapy planning for prostate cancer using an endorectal balloon
  publication-title: Radiat Oncol
– volume: 40
  year: 2013
  ident: b0015
  article-title: Evaluating IMRT and VMAT dose accuracy: practical examples of failure to detect systematic errors when applying a commonly used metric and action levels
  publication-title: Med Phys
– reference: Failla GA, Wareing T, Archambault Y et al. Acuros XB advanced dose calculation for the Eclipse treatment planning system. Palo Alto, CA: Varian Medical Systems. 2010.
– volume: 74
  start-page: 252
  year: 2009
  end-page: 259
  ident: b0020
  article-title: Volumetric intensity-modulated arc therapy vs. conventional IMRT in head-and-neck cancer: a comparative planning and dosimetric study
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 63
  year: 2018
  ident: b0140
  article-title: Super-resolution reconstruction of MR image with a novel residual learning network algorithm
  publication-title: Phys Med Biol
– volume: 55
  start-page: 581
  year: 2010
  ident: b0105
  article-title: Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams
  publication-title: Phys Med Biol
– volume: 9
  start-page: 1076
  year: 2019
  ident: b0080
  article-title: A feasibility study of predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning
  publication-title: Sci Rep
– volume: 109
  start-page: 437
  year: 2013
  end-page: 441
  ident: b0010
  article-title: Evaluation of treatment plan quality of IMRT and VMAT with and without flattening filter using Pareto optimal fronts
  publication-title: Radiother Oncol
– volume: 35
  start-page: 310
  year: 2008
  end-page: 317
  ident: b0005
  article-title: Volumetric modulated arc therapy: IMRT in a single gantry arc
  publication-title: Med Phys
– reference: Nguyen D, Jia X, Sher D et al. Three-dimensional radiotherapy dose prediction on head and neck cancer patients with a hierarchically densely connected U-net deep learning architecture. arXiv:1805.10397v3.
– volume: 45
  start-page: e53
  year: 2018
  end-page: e83
  ident: b0190
  article-title: Tolerance limits and methodologies for IMRT measurement-based verification QA: Recommendations of AAPM Task Group No. 218
  publication-title: Med Phys
– volume: 7
  start-page: 209
  year: 2017
  end-page: 217
  ident: b0050
  article-title: The dosimetric and radiobiological impact of calculation grid size on head and neck IMRT
  publication-title: Pr Radiat Oncol
– reference: Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. MICCAI 2015. Part III, LNCS. 2015;9351:234-41.
– volume: 16
  start-page: 577
  year: 1989
  end-page: 592
  ident: b0030
  article-title: Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media
  publication-title: Med Phys
– volume: 46
  start-page: 3679
  year: 2019
  end-page: 3691
  ident: b0200
  article-title: Three-dimensional dose prediction for lung IMRT patients with deep neural networks: robust learning from heterogeneous beam configurations
  publication-title: Med Phys
– reference: Kim J, Lee JK, Lee KM. Accurate image super-resolution using very deep convolutional networks. arXiv:1511.04587v2.
– reference: Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv:1412.6980.
– reference: Dong C, Loy CC, He K et al. Image super-resolution using deep convolutional networks. arXiv:1501.00092v3.
– reference: Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167.
– volume: 76
  start-page: 163
  year: 2003
  end-page: 176
  ident: b0060
  article-title: Commissioning and quality assurance of the Pinnacle
  publication-title: Br J Radiol
– volume: 25
  start-page: 656
  year: 1998
  end-page: 661
  ident: b0180
  article-title: A technique for the quantitative evaluation of dose distributions
  publication-title: Med Phys
– volume: 13
  year: 2018
  ident: b0065
  article-title: Dosimetric and radiobiological comparison in different dose calculation grid sizes between Acuros XB and anisotropic analytical algorithm for prostate VMAT
  publication-title: PLoS ONE
– reference: International Commission on Radiation Units and Measurements. Prescribing, recording and reporting photon-beam intensity-modulated radiation therapy (IMRT). Special considerations regarding absorbed-dose and dose-volume prescribing and reporting in IMRT. ICRU Report 83. J ICRU 2010;10:27-40.
– volume: 44
  start-page: 219
  year: 2019
  end-page: 225
  ident: b0045
  article-title: Accuracy and efficiency of graphics processing unit (GPU) based Acuros XB dose calculation within the Varian Eclipse treatment planning system
  publication-title: Med Dosim
– volume: 69
  start-page: 36
  year: 2020
  ident: 10.1016/j.ejmp.2020.03.023_b0075
  article-title: Novel knowledge-based treatment planning model for hypofractionated radiotherapy of prostate cancer patients
  publication-title: Phys Med
  doi: 10.1016/j.ejmp.2019.11.023
– volume: 63
  year: 2018
  ident: 10.1016/j.ejmp.2020.03.023_b0140
  article-title: Super-resolution reconstruction of MR image with a novel residual learning network algorithm
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/aab9e9
– volume: 45
  start-page: e53
  year: 2018
  ident: 10.1016/j.ejmp.2020.03.023_b0190
  article-title: Tolerance limits and methodologies for IMRT measurement-based verification QA: Recommendations of AAPM Task Group No. 218
  publication-title: Med Phys
  doi: 10.1002/mp.12810
– volume: 13
  year: 2018
  ident: 10.1016/j.ejmp.2020.03.023_b0065
  article-title: Dosimetric and radiobiological comparison in different dose calculation grid sizes between Acuros XB and anisotropic analytical algorithm for prostate VMAT
  publication-title: PLoS ONE
– volume: 9
  start-page: 1076
  year: 2019
  ident: 10.1016/j.ejmp.2020.03.023_b0080
  article-title: A feasibility study of predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-37741-x
– ident: 10.1016/j.ejmp.2020.03.023_b0120
– volume: 44
  start-page: 2556
  year: 2017
  ident: 10.1016/j.ejmp.2020.03.023_b0090
  article-title: Development of the open-source dose calculation and optimization toolkit matRad
  publication-title: Med Phys
  doi: 10.1002/mp.12251
– volume: 55
  start-page: 581
  year: 2010
  ident: 10.1016/j.ejmp.2020.03.023_b0105
  article-title: Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/55/3/002
– ident: 10.1016/j.ejmp.2020.03.023_b0160
– volume: 76
  start-page: 163
  year: 2003
  ident: 10.1016/j.ejmp.2020.03.023_b0060
  article-title: Commissioning and quality assurance of the Pinnacle3 radiotherapy treatment planning system for external beam photons
  publication-title: Br J Radiol
  doi: 10.1259/bjr/42085182
– volume: 25
  start-page: 656
  year: 1998
  ident: 10.1016/j.ejmp.2020.03.023_b0180
  article-title: A technique for the quantitative evaluation of dose distributions
  publication-title: Med Phys
  doi: 10.1118/1.598248
– volume: 46
  start-page: 370
  year: 2019
  ident: 10.1016/j.ejmp.2020.03.023_b0095
  article-title: Automatic treatment planning based on three-dimensional dose distribution predicted from deep learning technique
  publication-title: Med Phys
  doi: 10.1002/mp.13271
– volume: 46
  start-page: 1972
  year: 2019
  ident: 10.1016/j.ejmp.2020.03.023_b0195
  article-title: A deep learning method for prediction of three-dimensional dose distribution of helical tomotherapy
  publication-title: Med Phys
  doi: 10.1002/mp.13490
– volume: 109
  start-page: 437
  year: 2013
  ident: 10.1016/j.ejmp.2020.03.023_b0010
  article-title: Evaluation of treatment plan quality of IMRT and VMAT with and without flattening filter using Pareto optimal fronts
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2013.09.020
– ident: 10.1016/j.ejmp.2020.03.023_b0185
  doi: 10.1088/0031-9155/58/8/2597
– volume: 23
  start-page: 1129
  year: 2019
  ident: 10.1016/j.ejmp.2020.03.023_b0145
  article-title: MR image super-resolution via wide residual networks with fixed skip connection
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2018.2843819
– ident: 10.1016/j.ejmp.2020.03.023_b0135
– ident: 10.1016/j.ejmp.2020.03.023_b0085
– ident: 10.1016/j.ejmp.2020.03.023_b0175
– volume: 32
  start-page: 380
  year: 2005
  ident: 10.1016/j.ejmp.2020.03.023_b0055
  article-title: A Fourier analysis of the dose grid resolution required for accurate IMRT fluence map
  publication-title: Med Phys
  doi: 10.1118/1.1843354
– volume: 35
  start-page: 310
  year: 2008
  ident: 10.1016/j.ejmp.2020.03.023_b0005
  article-title: Volumetric modulated arc therapy: IMRT in a single gantry arc
  publication-title: Med Phys
  doi: 10.1118/1.2818738
– ident: 10.1016/j.ejmp.2020.03.023_b0165
– volume: 20
  start-page: 184
  year: 2019
  ident: 10.1016/j.ejmp.2020.03.023_b0040
  article-title: The commissioning and validation of Monaco treatment planning system on an Elekta VersaHD linear accelerator
  publication-title: J Appl Clin Med Phys.
  doi: 10.1002/acm2.12507
– volume: 10
  start-page: 48
  year: 2015
  ident: 10.1016/j.ejmp.2020.03.023_b0100
  article-title: Dosimetric effects of the acuros XB and anisotropic analytical algorithm on volumetric modulated arc therapy planning for prostate cancer using an endorectal balloon
  publication-title: Radiat Oncol
  doi: 10.1186/s13014-015-0346-3
– volume: 83
  start-page: 1587
  year: 2012
  ident: 10.1016/j.ejmp.2020.03.023_b0115
  article-title: Critical appraisal of Acuros XB and Anisotropic Analytic Algorithm dose calculation in advanced non-small-cell lung cancer treatments
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2011.10.078
– volume: 16
  start-page: 577
  year: 1989
  ident: 10.1016/j.ejmp.2020.03.023_b0030
  article-title: Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media
  publication-title: Med Phys
  doi: 10.1118/1.596360
– volume: 46
  start-page: 3679
  year: 2019
  ident: 10.1016/j.ejmp.2020.03.023_b0200
  article-title: Three-dimensional dose prediction for lung IMRT patients with deep neural networks: robust learning from heterogeneous beam configurations
  publication-title: Med Phys
  doi: 10.1002/mp.13597
– ident: 10.1016/j.ejmp.2020.03.023_b0035
– volume: 74
  start-page: 252
  year: 2009
  ident: 10.1016/j.ejmp.2020.03.023_b0020
  article-title: Volumetric intensity-modulated arc therapy vs. conventional IMRT in head-and-neck cancer: a comparative planning and dosimetric study
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2008.12.033
– volume: 18
  start-page: 789
  year: 2018
  ident: 10.1016/j.ejmp.2020.03.023_b0125
  article-title: Single image super-resolution based on multi-scale competitive convolutional neural network
  publication-title: Sensors
  doi: 10.3390/s18030789
– volume: 63
  year: 2018
  ident: 10.1016/j.ejmp.2020.03.023_b0150
  article-title: Computed tomography super-resolution using deep convolutional neural network
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/aacdd4
– volume: 40
  year: 2013
  ident: 10.1016/j.ejmp.2020.03.023_b0015
  article-title: Evaluating IMRT and VMAT dose accuracy: practical examples of failure to detect systematic errors when applying a commonly used metric and action levels
  publication-title: Med Phys
  doi: 10.1118/1.4826166
– volume: 7
  start-page: 209
  year: 2017
  ident: 10.1016/j.ejmp.2020.03.023_b0050
  article-title: The dosimetric and radiobiological impact of calculation grid size on head and neck IMRT
  publication-title: Pr Radiat Oncol
  doi: 10.1016/j.prro.2016.10.001
– ident: 10.1016/j.ejmp.2020.03.023_b0130
– ident: 10.1016/j.ejmp.2020.03.023_b0025
– volume: 44
  start-page: 219
  year: 2019
  ident: 10.1016/j.ejmp.2020.03.023_b0045
  article-title: Accuracy and efficiency of graphics processing unit (GPU) based Acuros XB dose calculation within the Varian Eclipse treatment planning system
  publication-title: Med Dosim
  doi: 10.1016/j.meddos.2018.07.002
– volume: 37
  start-page: 4078
  year: 2010
  ident: 10.1016/j.ejmp.2020.03.023_b0070
  article-title: Stereotactic body radiation therapy: the report of AAPM Task Group 101
  publication-title: Med Phys
  doi: 10.1118/1.3438081
– ident: 10.1016/j.ejmp.2020.03.023_b0170
– ident: 10.1016/j.ejmp.2020.03.023_b0155
– volume: 38
  start-page: 2208
  year: 2011
  ident: 10.1016/j.ejmp.2020.03.023_b0110
  article-title: Dosimetric validation of Acuros® XB with Monte Carlo methods for photon dose calculations
  publication-title: Med Phys
  doi: 10.1118/1.3567146
SSID ssj0032255
Score 2.3040853
Snippet •Convolution neural network (CNN) predicts high resolution dose distribution.•Proposed CNN predicts high resolution dose distribution faster.•Proposed CNN...
This study aims to investigate the feasibility of using convolutional neural networks to predict an accurate and high resolution dose distribution from an...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 88
SubjectTerms Convolution neural network
Deep learning
Dose prediction
Humans
Male
Neural Networks, Computer
Prostatic Neoplasms - diagnostic imaging
Prostatic Neoplasms - radiotherapy
Radiation Dosage
Radiotherapy Dosage
Radiotherapy Planning, Computer-Assisted - methods
Radiotherapy, Intensity-Modulated
Tomography, X-Ray Computed
Title A convolution neural network for higher resolution dose prediction in prostate volumetric modulated arc therapy
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1120179720300788
https://dx.doi.org/10.1016/j.ejmp.2020.03.023
https://www.ncbi.nlm.nih.gov/pubmed/32247227
https://www.proquest.com/docview/2386277761
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhhdJLSd_bNEGF3oq71ts-LkvC9pFQSgO5Ca0k0w2NvSSbQy757Z2R5IUekkJPRmbGNuNP80DzIOQDC1x75pqq7lpXSdbEynFnKt_6Buyb8DzNWDo51Ysz-eVcne-Q-VgLg2mVRfdnnZ60dbkzLdKcrlerKexDjnDCc0Q0dFjwK6VBlH-626Z5IF5VGrACYRJSl8KZnOMVLy6xZyWvU6NTLu4zTvc5n8kIHe-Rp8V7pLP8gc_ITuyfk8cn5Xz8BRlmFNPIC5woNqsE8j6nelPwT-mvlNdBIcgeicJwHen6Cp-R1qseVkMqNKJZd2ETf3o5BJz0FQOFrUFz2dbtS3J2fPRzvqjKSIXKK2Y2leo8d5oFyWoPgYdXTrZN0xmIe4Q3bWzqZsmjlCFI4drWs-C5EIx1SndORiZekd1-6OMbQlsdRQvU0oROKqDW0jeKL5e1jlrzOCFslKX1pd84jr34bcfEsguL8rcof1sLC_KfkI9bnnXutvEgtRh_kR3rSEHzWTAGD3KpLddfSPsn3_sRBRa2IJ6ruD4ON9cWvB7NjTGaTcjrDI_t1wP-sB2nefufb90nT3CVc4Xekd3N1U08ADdoszxMOD8kj2bzH9--4_Xz18XpH19HCHU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkEviDfL00hwQmHjR-zkwKECqi3t9tRKvRmv7YitaLLqblX1wp_iDzKTOCtxaJGQekxiO9bn8cxY_mYG4B0PQnvuyiyvK5cpXsbMCWcyX_kS7Zv0oquxND3QkyP17bg43oDfQywM0SqT7u91eqet05txQnO8mM_HuA8FiRPdI5KhKxOzci9eXuC5bflp9wsu8nshdr4efp5kqbRA5gtuVllRe-E0D4rnHh1wXzhVlWVt0P-X3lSxzMuZiEqFoKSrKs-DF1JyXhe6dipyiePegtsK1QWVTfj4a80roQ1SdBVd8FxG00uROj2pLJ6cUpJMkXeZVYW8yhpe5e12Vm_nPtxL7irb7hF5ABuxeQh3pulC_hG024x460l-GWXHxOZNzy1n6BCzHx2RhOGpfmgU2mVkizMao3ueN_jUdpFNrFeWVDWAnbaBSovFwBBv1seJXT6GoxsB-glsNm0TnwGrdJQVtlYm1Ai8q7TyZSFms1xHrUUcAR-wtD4lOKc6Gz_twGQ7sYS_JfxtLi3iP4IP6z6LPr3Hta3lsER2CFxFVWvR-lzbq1j3-ku0_9nv7SAFFvc8XeS4JrbnS4tulhbGGM1H8LQXj_XsUf4o_6d5_p9_fQN3J4fTfbu_e7D3ArboS09Uegmbq7Pz-Ap9sNXsdSfzDL7f9Cb7A7liQZ4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+convolution+neural+network+for+higher+resolution+dose+prediction+in+prostate+volumetric+modulated+arc+therapy&rft.jtitle=Physica+medica&rft.au=Sumida%2C+Iori&rft.au=Magome%2C+Taiki&rft.au=Das%2C+Indra+J&rft.au=Yamaguchi%2C+Hajime&rft.date=2020-04-01&rft.pub=Elsevier+Ltd&rft.issn=1120-1797&rft.volume=72&rft.spage=88&rft.epage=95&rft_id=info:doi/10.1016%2Fj.ejmp.2020.03.023&rft.externalDocID=S1120179720300788
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1120-1797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1120-1797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1120-1797&client=summon