A convolution neural network for higher resolution dose prediction in prostate volumetric modulated arc therapy
•Convolution neural network (CNN) predicts high resolution dose distribution.•Proposed CNN predicts high resolution dose distribution faster.•Proposed CNN predicts accurate dose even in inhomogeneity region. This study aims to investigate the feasibility of using convolutional neural networks to pre...
Saved in:
Published in | Physica medica Vol. 72; pp. 88 - 95 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Italy
Elsevier Ltd
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Convolution neural network (CNN) predicts high resolution dose distribution.•Proposed CNN predicts high resolution dose distribution faster.•Proposed CNN predicts accurate dose even in inhomogeneity region.
This study aims to investigate the feasibility of using convolutional neural networks to predict an accurate and high resolution dose distribution from an approximated and low resolution input dose.
Sixty-six patients were treated for prostate cancer with VMAT. We created the treatment plans using the Acuros XB algorithm with 2 mm grid size, followed by the dose calculated using the anisotropic analytical algorithm with 5 mm grid with the same plan parameters. U-net model was used to predict 2 mm grid dose from 5 mm grid dose. We investigated the two models differing for the training data used as input, one used just the low resolution dose (D model) and the other combined the low resolution dose with CT data (DC model). Dice similarity coefficient (DSC) was calculated to ascertain how well the shape of the dose-volume is matched. We conducted gamma analysis for the following: DVH from the two models and the reference DVH for all prostate structures.
The DSC values in the DC model were significantly higher than those in the D model (p < 0.01). For the CTV, PTV, and bladder, the gamma passing rates in the DC model were significantly higher than those in the D model (p < 0.002–0.02). The mean doses in the CTV and PTV for the DC model were significantly better matched to those in the reference dose (p < 0.0001).
The proposed U-net model with dose and CT image used as input predicted more accurate dose. |
---|---|
AbstractList | •Convolution neural network (CNN) predicts high resolution dose distribution.•Proposed CNN predicts high resolution dose distribution faster.•Proposed CNN predicts accurate dose even in inhomogeneity region.
This study aims to investigate the feasibility of using convolutional neural networks to predict an accurate and high resolution dose distribution from an approximated and low resolution input dose.
Sixty-six patients were treated for prostate cancer with VMAT. We created the treatment plans using the Acuros XB algorithm with 2 mm grid size, followed by the dose calculated using the anisotropic analytical algorithm with 5 mm grid with the same plan parameters. U-net model was used to predict 2 mm grid dose from 5 mm grid dose. We investigated the two models differing for the training data used as input, one used just the low resolution dose (D model) and the other combined the low resolution dose with CT data (DC model). Dice similarity coefficient (DSC) was calculated to ascertain how well the shape of the dose-volume is matched. We conducted gamma analysis for the following: DVH from the two models and the reference DVH for all prostate structures.
The DSC values in the DC model were significantly higher than those in the D model (p < 0.01). For the CTV, PTV, and bladder, the gamma passing rates in the DC model were significantly higher than those in the D model (p < 0.002–0.02). The mean doses in the CTV and PTV for the DC model were significantly better matched to those in the reference dose (p < 0.0001).
The proposed U-net model with dose and CT image used as input predicted more accurate dose. This study aims to investigate the feasibility of using convolutional neural networks to predict an accurate and high resolution dose distribution from an approximated and low resolution input dose.PURPOSEThis study aims to investigate the feasibility of using convolutional neural networks to predict an accurate and high resolution dose distribution from an approximated and low resolution input dose.Sixty-six patients were treated for prostate cancer with VMAT. We created the treatment plans using the Acuros XB algorithm with 2 mm grid size, followed by the dose calculated using the anisotropic analytical algorithm with 5 mm grid with the same plan parameters. U-net model was used to predict 2 mm grid dose from 5 mm grid dose. We investigated the two models differing for the training data used as input, one used just the low resolution dose (D model) and the other combined the low resolution dose with CT data (DC model). Dice similarity coefficient (DSC) was calculated to ascertain how well the shape of the dose-volume is matched. We conducted gamma analysis for the following: DVH from the two models and the reference DVH for all prostate structures.METHODSSixty-six patients were treated for prostate cancer with VMAT. We created the treatment plans using the Acuros XB algorithm with 2 mm grid size, followed by the dose calculated using the anisotropic analytical algorithm with 5 mm grid with the same plan parameters. U-net model was used to predict 2 mm grid dose from 5 mm grid dose. We investigated the two models differing for the training data used as input, one used just the low resolution dose (D model) and the other combined the low resolution dose with CT data (DC model). Dice similarity coefficient (DSC) was calculated to ascertain how well the shape of the dose-volume is matched. We conducted gamma analysis for the following: DVH from the two models and the reference DVH for all prostate structures.The DSC values in the DC model were significantly higher than those in the D model (p < 0.01). For the CTV, PTV, and bladder, the gamma passing rates in the DC model were significantly higher than those in the D model (p < 0.002-0.02). The mean doses in the CTV and PTV for the DC model were significantly better matched to those in the reference dose (p < 0.0001).RESULTSThe DSC values in the DC model were significantly higher than those in the D model (p < 0.01). For the CTV, PTV, and bladder, the gamma passing rates in the DC model were significantly higher than those in the D model (p < 0.002-0.02). The mean doses in the CTV and PTV for the DC model were significantly better matched to those in the reference dose (p < 0.0001).The proposed U-net model with dose and CT image used as input predicted more accurate dose.CONCLUSIONSThe proposed U-net model with dose and CT image used as input predicted more accurate dose. This study aims to investigate the feasibility of using convolutional neural networks to predict an accurate and high resolution dose distribution from an approximated and low resolution input dose. Sixty-six patients were treated for prostate cancer with VMAT. We created the treatment plans using the Acuros XB algorithm with 2 mm grid size, followed by the dose calculated using the anisotropic analytical algorithm with 5 mm grid with the same plan parameters. U-net model was used to predict 2 mm grid dose from 5 mm grid dose. We investigated the two models differing for the training data used as input, one used just the low resolution dose (D model) and the other combined the low resolution dose with CT data (DC model). Dice similarity coefficient (DSC) was calculated to ascertain how well the shape of the dose-volume is matched. We conducted gamma analysis for the following: DVH from the two models and the reference DVH for all prostate structures. The DSC values in the DC model were significantly higher than those in the D model (p < 0.01). For the CTV, PTV, and bladder, the gamma passing rates in the DC model were significantly higher than those in the D model (p < 0.002-0.02). The mean doses in the CTV and PTV for the DC model were significantly better matched to those in the reference dose (p < 0.0001). The proposed U-net model with dose and CT image used as input predicted more accurate dose. |
Author | Seo, Yuji Kizaki, Hisao Yamaguchi, Hajime Ogawa, Kazuhiko Isohashi, Fumiaki Aboshi, Keiko Magome, Taiki Sumida, Iori Das, Indra J Yamaguchi, Hiroko |
Author_xml | – sequence: 1 givenname: Iori surname: Sumida fullname: Sumida, Iori organization: Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871 Japan – sequence: 2 givenname: Taiki orcidid: 0000-0002-0133-5932 surname: Magome fullname: Magome, Taiki organization: Department of Radiological Sciences, Faculty of Health Sciences, Komazawa University, 1-23-1 Komazawa, Setagaya-ku, Tokyo 154-8525 Japan – sequence: 3 givenname: Indra J orcidid: 0000-0003-4094-0892 surname: Das fullname: Das, Indra J organization: Department of Radiation Oncology, Northwestern Memorial Hospital, Northwest University Medical Center, Galter Pavilion, Chicago, IL 60611 – sequence: 4 givenname: Hajime surname: Yamaguchi fullname: Yamaguchi, Hajime organization: Department of Radiation Oncology, Daini Osaka Police Hospital, 2-6-40 Karasugatsuji, Tennoji-ku, Osaka 543-8922 Japan – sequence: 5 givenname: Hisao surname: Kizaki fullname: Kizaki, Hisao organization: Department of Radiation Oncology, Daini Osaka Police Hospital, 2-6-40 Karasugatsuji, Tennoji-ku, Osaka 543-8922 Japan – sequence: 6 givenname: Keiko surname: Aboshi fullname: Aboshi, Keiko organization: Department of Radiation Oncology, Daini Osaka Police Hospital, 2-6-40 Karasugatsuji, Tennoji-ku, Osaka 543-8922 Japan – sequence: 7 givenname: Hiroko surname: Yamaguchi fullname: Yamaguchi, Hiroko organization: Department of Radiation Oncology, Daini Osaka Police Hospital, 2-6-40 Karasugatsuji, Tennoji-ku, Osaka 543-8922 Japan – sequence: 8 givenname: Yuji surname: Seo fullname: Seo, Yuji organization: Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871 Japan – sequence: 9 givenname: Fumiaki surname: Isohashi fullname: Isohashi, Fumiaki organization: Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871 Japan – sequence: 10 givenname: Kazuhiko surname: Ogawa fullname: Ogawa, Kazuhiko organization: Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871 Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32247227$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1TAQhS1U1Bf9AyyQl2wS_EqcIDZVRQGpEhuQ2FnueEJ9m8QX2ym6_74Ot3fTRVmNxzrf0cycM3I0hxkJectZzRlvP2xq3EzbWjDBaiZrJuQrcsq1UBXv-a-j8uaCVVz3-oScpbRhTArRNMfkpFSlhdCnJFxSCPNDGJfsw0xnXKIdS8l_Q7ynQ4j0zv--w0gjpoPIhYR0G9F5-Nf7uXQhZZuRrk4T5uiBTsEtY_lz1EaguZjY7e4NeT3YMeHFUz0nP68__7j6Wt18__Lt6vKmgobrXDUDCNtypzgDJTporOq7btCq7yXoHjvW3QpUyjklbd8DdyCk5Hxo2sEq5PKcvN_7lsn-LJiymXwCHEc7Y1iSEbJrhda6XaXvnqTL7YTObKOfbNyZw5GKoNsLoGyZIg4GfFm2rJ6j9aPhzKx5mI1Z8zBrHoZJU_IoqHiGHtxfhD7tISwHevAYTQKPM5SDR4RsXPAv4x-f4TD62YMd73H3P_gRLQO5bA |
CitedBy_id | crossref_primary_10_1016_j_media_2021_102339 crossref_primary_10_1088_1361_6560_ac6b10 crossref_primary_10_1007_s11548_022_02801_1 crossref_primary_10_1088_1361_6560_adbff1 crossref_primary_10_1186_s13014_024_02531_5 crossref_primary_10_3389_fonc_2020_593381 crossref_primary_10_1007_s10278_024_01296_3 crossref_primary_10_1016_j_ctro_2024_100792 crossref_primary_10_1088_1361_6560_ac0684 crossref_primary_10_1016_j_semradonc_2022_06_004 crossref_primary_10_1088_1742_6596_2377_1_012030 crossref_primary_10_1109_TMI_2024_3383423 crossref_primary_10_1002_mp_17416 crossref_primary_10_1002_acm2_13337 crossref_primary_10_1016_j_ejmp_2021_02_021 crossref_primary_10_1088_1361_6560_ac0856 crossref_primary_10_1016_j_ejmp_2021_02_022 crossref_primary_10_1002_acm2_14197 crossref_primary_10_1016_j_zemedi_2022_10_006 crossref_primary_10_3233_XST_221240 crossref_primary_10_3390_diagnostics12061489 |
Cites_doi | 10.1016/j.ejmp.2019.11.023 10.1088/1361-6560/aab9e9 10.1002/mp.12810 10.1038/s41598-018-37741-x 10.1002/mp.12251 10.1088/0031-9155/55/3/002 10.1259/bjr/42085182 10.1118/1.598248 10.1002/mp.13271 10.1002/mp.13490 10.1016/j.radonc.2013.09.020 10.1088/0031-9155/58/8/2597 10.1109/JBHI.2018.2843819 10.1118/1.1843354 10.1118/1.2818738 10.1002/acm2.12507 10.1186/s13014-015-0346-3 10.1016/j.ijrobp.2011.10.078 10.1118/1.596360 10.1002/mp.13597 10.1016/j.ijrobp.2008.12.033 10.3390/s18030789 10.1088/1361-6560/aacdd4 10.1118/1.4826166 10.1016/j.prro.2016.10.001 10.1016/j.meddos.2018.07.002 10.1118/1.3438081 10.1118/1.3567146 |
ContentType | Journal Article |
Copyright | 2020 Associazione Italiana di Fisica Medica Copyright © 2020 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2020 Associazione Italiana di Fisica Medica – notice: Copyright © 2020 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.ejmp.2020.03.023 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1724-191X |
EndPage | 95 |
ExternalDocumentID | 32247227 10_1016_j_ejmp_2020_03_023 S1120179720300788 |
Genre | Journal Article |
GroupedDBID | --- --K --M -QF .1- .FO .~1 0R~ 123 1B1 1P~ 1~. 1~5 3J0 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABFRF ABJNI ABMAC ABMZM ABNEU ABXDB ACDAQ ACFVG ACGFS ACIEU ACRLP ACXCU ADBBV ADEZE ADVLN AEBSH AEFWE AEIPS AEKER AEVXI AFJKZ AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AIEXJ AIIUN AIKHN AITUG AIVDX AJRQY AJUYK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BKOJK BLXMC BNPGV CS3 DC1 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OGIMB OI~ OU0 OZT P-8 P-9 PC. Q38 RLW ROL RPZ SDF SDG SEL SES SJN SPC SPCBC SSH SSQ SSZ T5K UNMZH Z5R ~G- ~XS 6I. AACTN AAFTH AAIAV ABLVK ABYKQ ACNNM AFCTW AFKWA AJBFU AJOXV AMFUW CLCPZ EFLBG LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c517t-5fc2a61d410c428c5a4988f74993c79e808b2e44dd43a99c1dc23311f56fa4e13 |
IEDL.DBID | .~1 |
ISSN | 1120-1797 1724-191X |
IngestDate | Thu Jul 10 23:31:43 EDT 2025 Wed Feb 19 02:30:30 EST 2025 Thu Apr 24 23:03:06 EDT 2025 Tue Jul 01 04:30:22 EDT 2025 Fri Feb 23 02:48:12 EST 2024 Tue Aug 26 19:48:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Dose prediction CT Convolution neural network |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2020 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-5fc2a61d410c428c5a4988f74993c79e808b2e44dd43a99c1dc23311f56fa4e13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4094-0892 0000-0002-0133-5932 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1120179720300788 |
PMID | 32247227 |
PQID | 2386277761 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2386277761 pubmed_primary_32247227 crossref_citationtrail_10_1016_j_ejmp_2020_03_023 crossref_primary_10_1016_j_ejmp_2020_03_023 elsevier_sciencedirect_doi_10_1016_j_ejmp_2020_03_023 elsevier_clinicalkey_doi_10_1016_j_ejmp_2020_03_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2020 2020-04-00 2020-Apr 20200401 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
PublicationDecade | 2020 |
PublicationPlace | Italy |
PublicationPlace_xml | – name: Italy |
PublicationTitle | Physica medica |
PublicationTitleAlternate | Phys Med |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167. Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv:1412.6980. Otto (b0005) 2008; 35 Benedict, Yenice, Followill (b0070) 2010; 37 Zhang Y, Tian Y, Kong Y et al. Residual dense network for image super-resolution. arXiv:1802.08797v2. Fan, Wang, Chen (b0095) 2019; 46 Koo, Chung, Eom (b0100) 2015; 10 Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010;249-56. Bush, Gagne, Zavgorodni (b0110) 2011; 38 Dempsey, Romeijn, Li (b0055) 2005; 32 Chatterjee, Serban, Faria (b0075) 2020; 69 Liu, Fan, Li (b0195) 2019; 46 Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. MICCAI 2015. Part III, LNCS. 2015;9351:234-41. Miften, Olch, Mihailidis (b0190) 2018; 45 Snyder, Hyer, Flynn (b0040) 2019; 20 International Commission on Radiation Units and Measurements. Prescribing, recording and reporting photon-beam intensity-modulated radiation therapy (IMRT). Special considerations regarding absorbed-dose and dose-volume prescribing and reporting in IMRT. ICRU Report 83. J ICRU 2010;10:27-40. Nguyen, Long, Jia (b0080) 2019; 9 Vassiliev, Wareing, McGhee (b0105) 2010; 55 Al Sa’d M, Graham J, Liney GP et al. Quantitative comparison of 3D and 2.5D gamma analysis: introducing gamma angle histogram. Phys Med Biol. 2013;58:2597-608. Lechner, Kragl, Georg (b0010) 2013; 109 Bedford, Childs, Nordmark (b0060) 2003; 76 Nguyen D, Jia X, Sher D et al. Three-dimensional radiotherapy dose prediction on head and neck cancer patients with a hierarchically densely connected U-net deep learning architecture. arXiv:1805.10397v3. Low, Harms, Mutic (b0180) 1998; 25 Dong C, Loy CC, He K et al. Image super-resolution using deep convolutional networks. arXiv:1501.00092v3. J. Sievinen W. Ulmer W. Kaissl, AAA photon dose calculation model in Eclipse. Palo Alto, CA: Varian Medical Systems. 2005;118:2894. Srivastava, Cheng, Das (b0050) 2017; 7 Park, Hwang, Kim (b0150) 2018; 63 Verbakel, Cuijpers, Hoffmans (b0020) 2009; 74 Du, Qu, He (b0125) 2018; 18 Kim J, Lee JK, Lee KM. Accurate image super-resolution using very deep convolutional networks. arXiv:1511.04587v2. Barragán-Montero, Nguyen, Lu (b0200) 2019; 46 Nelms, Chan, Jarry (b0015) 2013; 40 Fogliata, Nicolini, Clivio (b0115) 2012; 83 Aland, Walsh, Jones (b0045) 2019; 44 Shi, Liu, Wang (b0140) 2018; 63 Ahnesjö (b0030) 1989; 16 Shi, Li, Ying (b0145) 2019; 23 Kim, Chung, Suh (b0065) 2018; 13 Failla GA, Wareing T, Archambault Y et al. Acuros XB advanced dose calculation for the Eclipse treatment planning system. Palo Alto, CA: Varian Medical Systems. 2010. Wieser, Cisternas, Wahs (b0090) 2017; 44 Bedford (10.1016/j.ejmp.2020.03.023_b0060) 2003; 76 Benedict (10.1016/j.ejmp.2020.03.023_b0070) 2010; 37 Koo (10.1016/j.ejmp.2020.03.023_b0100) 2015; 10 Vassiliev (10.1016/j.ejmp.2020.03.023_b0105) 2010; 55 Lechner (10.1016/j.ejmp.2020.03.023_b0010) 2013; 109 Nguyen (10.1016/j.ejmp.2020.03.023_b0080) 2019; 9 Ahnesjö (10.1016/j.ejmp.2020.03.023_b0030) 1989; 16 Low (10.1016/j.ejmp.2020.03.023_b0180) 1998; 25 Verbakel (10.1016/j.ejmp.2020.03.023_b0020) 2009; 74 10.1016/j.ejmp.2020.03.023_b0025 Chatterjee (10.1016/j.ejmp.2020.03.023_b0075) 2020; 69 Wieser (10.1016/j.ejmp.2020.03.023_b0090) 2017; 44 Shi (10.1016/j.ejmp.2020.03.023_b0145) 2019; 23 10.1016/j.ejmp.2020.03.023_b0160 Otto (10.1016/j.ejmp.2020.03.023_b0005) 2008; 35 10.1016/j.ejmp.2020.03.023_b0085 10.1016/j.ejmp.2020.03.023_b0185 Srivastava (10.1016/j.ejmp.2020.03.023_b0050) 2017; 7 10.1016/j.ejmp.2020.03.023_b0120 10.1016/j.ejmp.2020.03.023_b0165 Snyder (10.1016/j.ejmp.2020.03.023_b0040) 2019; 20 10.1016/j.ejmp.2020.03.023_b0170 Aland (10.1016/j.ejmp.2020.03.023_b0045) 2019; 44 Du (10.1016/j.ejmp.2020.03.023_b0125) 2018; 18 Fogliata (10.1016/j.ejmp.2020.03.023_b0115) 2012; 83 Miften (10.1016/j.ejmp.2020.03.023_b0190) 2018; 45 Dempsey (10.1016/j.ejmp.2020.03.023_b0055) 2005; 32 Kim (10.1016/j.ejmp.2020.03.023_b0065) 2018; 13 10.1016/j.ejmp.2020.03.023_b0135 Shi (10.1016/j.ejmp.2020.03.023_b0140) 2018; 63 Fan (10.1016/j.ejmp.2020.03.023_b0095) 2019; 46 Liu (10.1016/j.ejmp.2020.03.023_b0195) 2019; 46 Nelms (10.1016/j.ejmp.2020.03.023_b0015) 2013; 40 Bush (10.1016/j.ejmp.2020.03.023_b0110) 2011; 38 10.1016/j.ejmp.2020.03.023_b0130 Park (10.1016/j.ejmp.2020.03.023_b0150) 2018; 63 10.1016/j.ejmp.2020.03.023_b0175 Barragán-Montero (10.1016/j.ejmp.2020.03.023_b0200) 2019; 46 10.1016/j.ejmp.2020.03.023_b0155 10.1016/j.ejmp.2020.03.023_b0035 |
References_xml | – volume: 38 start-page: 2208 year: 2011 end-page: 2221 ident: b0110 article-title: Dosimetric validation of Acuros® XB with Monte Carlo methods for photon dose calculations publication-title: Med Phys – volume: 20 start-page: 184 year: 2019 end-page: 193 ident: b0040 article-title: The commissioning and validation of Monaco treatment planning system on an Elekta VersaHD linear accelerator publication-title: J Appl Clin Med Phys. – volume: 32 start-page: 380 year: 2005 end-page: 388 ident: b0055 article-title: A Fourier analysis of the dose grid resolution required for accurate IMRT fluence map publication-title: Med Phys – volume: 83 start-page: 1587 year: 2012 end-page: 1595 ident: b0115 article-title: Critical appraisal of Acuros XB and Anisotropic Analytic Algorithm dose calculation in advanced non-small-cell lung cancer treatments publication-title: Int J Radiat Oncol Biol Phys – volume: 63 year: 2018 ident: b0150 article-title: Computed tomography super-resolution using deep convolutional neural network publication-title: Phys Med Biol – reference: Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010;249-56. – volume: 46 start-page: 1972 year: 2019 end-page: 1983 ident: b0195 article-title: A deep learning method for prediction of three-dimensional dose distribution of helical tomotherapy publication-title: Med Phys – volume: 44 start-page: 2556 year: 2017 end-page: 2568 ident: b0090 article-title: Development of the open-source dose calculation and optimization toolkit matRad publication-title: Med Phys – reference: Zhang Y, Tian Y, Kong Y et al. Residual dense network for image super-resolution. arXiv:1802.08797v2. – volume: 69 start-page: 36 year: 2020 end-page: 43 ident: b0075 article-title: Novel knowledge-based treatment planning model for hypofractionated radiotherapy of prostate cancer patients publication-title: Phys Med – reference: J. Sievinen W. Ulmer W. Kaissl, AAA photon dose calculation model in Eclipse. Palo Alto, CA: Varian Medical Systems. 2005;118:2894. – volume: 23 start-page: 1129 year: 2019 end-page: 1140 ident: b0145 article-title: MR image super-resolution via wide residual networks with fixed skip connection publication-title: IEEE J Biomed Health Inform – volume: 46 start-page: 370 year: 2019 end-page: 381 ident: b0095 article-title: Automatic treatment planning based on three-dimensional dose distribution predicted from deep learning technique publication-title: Med Phys – volume: 18 start-page: 789 year: 2018 ident: b0125 article-title: Single image super-resolution based on multi-scale competitive convolutional neural network publication-title: Sensors – reference: Al Sa’d M, Graham J, Liney GP et al. Quantitative comparison of 3D and 2.5D gamma analysis: introducing gamma angle histogram. Phys Med Biol. 2013;58:2597-608. – volume: 37 start-page: 4078 year: 2010 end-page: 4101 ident: b0070 article-title: Stereotactic body radiation therapy: the report of AAPM Task Group 101 publication-title: Med Phys – volume: 10 start-page: 48 year: 2015 ident: b0100 article-title: Dosimetric effects of the acuros XB and anisotropic analytical algorithm on volumetric modulated arc therapy planning for prostate cancer using an endorectal balloon publication-title: Radiat Oncol – volume: 40 year: 2013 ident: b0015 article-title: Evaluating IMRT and VMAT dose accuracy: practical examples of failure to detect systematic errors when applying a commonly used metric and action levels publication-title: Med Phys – reference: Failla GA, Wareing T, Archambault Y et al. Acuros XB advanced dose calculation for the Eclipse treatment planning system. Palo Alto, CA: Varian Medical Systems. 2010. – volume: 74 start-page: 252 year: 2009 end-page: 259 ident: b0020 article-title: Volumetric intensity-modulated arc therapy vs. conventional IMRT in head-and-neck cancer: a comparative planning and dosimetric study publication-title: Int J Radiat Oncol Biol Phys – volume: 63 year: 2018 ident: b0140 article-title: Super-resolution reconstruction of MR image with a novel residual learning network algorithm publication-title: Phys Med Biol – volume: 55 start-page: 581 year: 2010 ident: b0105 article-title: Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams publication-title: Phys Med Biol – volume: 9 start-page: 1076 year: 2019 ident: b0080 article-title: A feasibility study of predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning publication-title: Sci Rep – volume: 109 start-page: 437 year: 2013 end-page: 441 ident: b0010 article-title: Evaluation of treatment plan quality of IMRT and VMAT with and without flattening filter using Pareto optimal fronts publication-title: Radiother Oncol – volume: 35 start-page: 310 year: 2008 end-page: 317 ident: b0005 article-title: Volumetric modulated arc therapy: IMRT in a single gantry arc publication-title: Med Phys – reference: Nguyen D, Jia X, Sher D et al. Three-dimensional radiotherapy dose prediction on head and neck cancer patients with a hierarchically densely connected U-net deep learning architecture. arXiv:1805.10397v3. – volume: 45 start-page: e53 year: 2018 end-page: e83 ident: b0190 article-title: Tolerance limits and methodologies for IMRT measurement-based verification QA: Recommendations of AAPM Task Group No. 218 publication-title: Med Phys – volume: 7 start-page: 209 year: 2017 end-page: 217 ident: b0050 article-title: The dosimetric and radiobiological impact of calculation grid size on head and neck IMRT publication-title: Pr Radiat Oncol – reference: Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. MICCAI 2015. Part III, LNCS. 2015;9351:234-41. – volume: 16 start-page: 577 year: 1989 end-page: 592 ident: b0030 article-title: Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media publication-title: Med Phys – volume: 46 start-page: 3679 year: 2019 end-page: 3691 ident: b0200 article-title: Three-dimensional dose prediction for lung IMRT patients with deep neural networks: robust learning from heterogeneous beam configurations publication-title: Med Phys – reference: Kim J, Lee JK, Lee KM. Accurate image super-resolution using very deep convolutional networks. arXiv:1511.04587v2. – reference: Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv:1412.6980. – reference: Dong C, Loy CC, He K et al. Image super-resolution using deep convolutional networks. arXiv:1501.00092v3. – reference: Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167. – volume: 76 start-page: 163 year: 2003 end-page: 176 ident: b0060 article-title: Commissioning and quality assurance of the Pinnacle publication-title: Br J Radiol – volume: 25 start-page: 656 year: 1998 end-page: 661 ident: b0180 article-title: A technique for the quantitative evaluation of dose distributions publication-title: Med Phys – volume: 13 year: 2018 ident: b0065 article-title: Dosimetric and radiobiological comparison in different dose calculation grid sizes between Acuros XB and anisotropic analytical algorithm for prostate VMAT publication-title: PLoS ONE – reference: International Commission on Radiation Units and Measurements. Prescribing, recording and reporting photon-beam intensity-modulated radiation therapy (IMRT). Special considerations regarding absorbed-dose and dose-volume prescribing and reporting in IMRT. ICRU Report 83. J ICRU 2010;10:27-40. – volume: 44 start-page: 219 year: 2019 end-page: 225 ident: b0045 article-title: Accuracy and efficiency of graphics processing unit (GPU) based Acuros XB dose calculation within the Varian Eclipse treatment planning system publication-title: Med Dosim – volume: 69 start-page: 36 year: 2020 ident: 10.1016/j.ejmp.2020.03.023_b0075 article-title: Novel knowledge-based treatment planning model for hypofractionated radiotherapy of prostate cancer patients publication-title: Phys Med doi: 10.1016/j.ejmp.2019.11.023 – volume: 63 year: 2018 ident: 10.1016/j.ejmp.2020.03.023_b0140 article-title: Super-resolution reconstruction of MR image with a novel residual learning network algorithm publication-title: Phys Med Biol doi: 10.1088/1361-6560/aab9e9 – volume: 45 start-page: e53 year: 2018 ident: 10.1016/j.ejmp.2020.03.023_b0190 article-title: Tolerance limits and methodologies for IMRT measurement-based verification QA: Recommendations of AAPM Task Group No. 218 publication-title: Med Phys doi: 10.1002/mp.12810 – volume: 13 year: 2018 ident: 10.1016/j.ejmp.2020.03.023_b0065 article-title: Dosimetric and radiobiological comparison in different dose calculation grid sizes between Acuros XB and anisotropic analytical algorithm for prostate VMAT publication-title: PLoS ONE – volume: 9 start-page: 1076 year: 2019 ident: 10.1016/j.ejmp.2020.03.023_b0080 article-title: A feasibility study of predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning publication-title: Sci Rep doi: 10.1038/s41598-018-37741-x – ident: 10.1016/j.ejmp.2020.03.023_b0120 – volume: 44 start-page: 2556 year: 2017 ident: 10.1016/j.ejmp.2020.03.023_b0090 article-title: Development of the open-source dose calculation and optimization toolkit matRad publication-title: Med Phys doi: 10.1002/mp.12251 – volume: 55 start-page: 581 year: 2010 ident: 10.1016/j.ejmp.2020.03.023_b0105 article-title: Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams publication-title: Phys Med Biol doi: 10.1088/0031-9155/55/3/002 – ident: 10.1016/j.ejmp.2020.03.023_b0160 – volume: 76 start-page: 163 year: 2003 ident: 10.1016/j.ejmp.2020.03.023_b0060 article-title: Commissioning and quality assurance of the Pinnacle3 radiotherapy treatment planning system for external beam photons publication-title: Br J Radiol doi: 10.1259/bjr/42085182 – volume: 25 start-page: 656 year: 1998 ident: 10.1016/j.ejmp.2020.03.023_b0180 article-title: A technique for the quantitative evaluation of dose distributions publication-title: Med Phys doi: 10.1118/1.598248 – volume: 46 start-page: 370 year: 2019 ident: 10.1016/j.ejmp.2020.03.023_b0095 article-title: Automatic treatment planning based on three-dimensional dose distribution predicted from deep learning technique publication-title: Med Phys doi: 10.1002/mp.13271 – volume: 46 start-page: 1972 year: 2019 ident: 10.1016/j.ejmp.2020.03.023_b0195 article-title: A deep learning method for prediction of three-dimensional dose distribution of helical tomotherapy publication-title: Med Phys doi: 10.1002/mp.13490 – volume: 109 start-page: 437 year: 2013 ident: 10.1016/j.ejmp.2020.03.023_b0010 article-title: Evaluation of treatment plan quality of IMRT and VMAT with and without flattening filter using Pareto optimal fronts publication-title: Radiother Oncol doi: 10.1016/j.radonc.2013.09.020 – ident: 10.1016/j.ejmp.2020.03.023_b0185 doi: 10.1088/0031-9155/58/8/2597 – volume: 23 start-page: 1129 year: 2019 ident: 10.1016/j.ejmp.2020.03.023_b0145 article-title: MR image super-resolution via wide residual networks with fixed skip connection publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2018.2843819 – ident: 10.1016/j.ejmp.2020.03.023_b0135 – ident: 10.1016/j.ejmp.2020.03.023_b0085 – ident: 10.1016/j.ejmp.2020.03.023_b0175 – volume: 32 start-page: 380 year: 2005 ident: 10.1016/j.ejmp.2020.03.023_b0055 article-title: A Fourier analysis of the dose grid resolution required for accurate IMRT fluence map publication-title: Med Phys doi: 10.1118/1.1843354 – volume: 35 start-page: 310 year: 2008 ident: 10.1016/j.ejmp.2020.03.023_b0005 article-title: Volumetric modulated arc therapy: IMRT in a single gantry arc publication-title: Med Phys doi: 10.1118/1.2818738 – ident: 10.1016/j.ejmp.2020.03.023_b0165 – volume: 20 start-page: 184 year: 2019 ident: 10.1016/j.ejmp.2020.03.023_b0040 article-title: The commissioning and validation of Monaco treatment planning system on an Elekta VersaHD linear accelerator publication-title: J Appl Clin Med Phys. doi: 10.1002/acm2.12507 – volume: 10 start-page: 48 year: 2015 ident: 10.1016/j.ejmp.2020.03.023_b0100 article-title: Dosimetric effects of the acuros XB and anisotropic analytical algorithm on volumetric modulated arc therapy planning for prostate cancer using an endorectal balloon publication-title: Radiat Oncol doi: 10.1186/s13014-015-0346-3 – volume: 83 start-page: 1587 year: 2012 ident: 10.1016/j.ejmp.2020.03.023_b0115 article-title: Critical appraisal of Acuros XB and Anisotropic Analytic Algorithm dose calculation in advanced non-small-cell lung cancer treatments publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2011.10.078 – volume: 16 start-page: 577 year: 1989 ident: 10.1016/j.ejmp.2020.03.023_b0030 article-title: Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media publication-title: Med Phys doi: 10.1118/1.596360 – volume: 46 start-page: 3679 year: 2019 ident: 10.1016/j.ejmp.2020.03.023_b0200 article-title: Three-dimensional dose prediction for lung IMRT patients with deep neural networks: robust learning from heterogeneous beam configurations publication-title: Med Phys doi: 10.1002/mp.13597 – ident: 10.1016/j.ejmp.2020.03.023_b0035 – volume: 74 start-page: 252 year: 2009 ident: 10.1016/j.ejmp.2020.03.023_b0020 article-title: Volumetric intensity-modulated arc therapy vs. conventional IMRT in head-and-neck cancer: a comparative planning and dosimetric study publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2008.12.033 – volume: 18 start-page: 789 year: 2018 ident: 10.1016/j.ejmp.2020.03.023_b0125 article-title: Single image super-resolution based on multi-scale competitive convolutional neural network publication-title: Sensors doi: 10.3390/s18030789 – volume: 63 year: 2018 ident: 10.1016/j.ejmp.2020.03.023_b0150 article-title: Computed tomography super-resolution using deep convolutional neural network publication-title: Phys Med Biol doi: 10.1088/1361-6560/aacdd4 – volume: 40 year: 2013 ident: 10.1016/j.ejmp.2020.03.023_b0015 article-title: Evaluating IMRT and VMAT dose accuracy: practical examples of failure to detect systematic errors when applying a commonly used metric and action levels publication-title: Med Phys doi: 10.1118/1.4826166 – volume: 7 start-page: 209 year: 2017 ident: 10.1016/j.ejmp.2020.03.023_b0050 article-title: The dosimetric and radiobiological impact of calculation grid size on head and neck IMRT publication-title: Pr Radiat Oncol doi: 10.1016/j.prro.2016.10.001 – ident: 10.1016/j.ejmp.2020.03.023_b0130 – ident: 10.1016/j.ejmp.2020.03.023_b0025 – volume: 44 start-page: 219 year: 2019 ident: 10.1016/j.ejmp.2020.03.023_b0045 article-title: Accuracy and efficiency of graphics processing unit (GPU) based Acuros XB dose calculation within the Varian Eclipse treatment planning system publication-title: Med Dosim doi: 10.1016/j.meddos.2018.07.002 – volume: 37 start-page: 4078 year: 2010 ident: 10.1016/j.ejmp.2020.03.023_b0070 article-title: Stereotactic body radiation therapy: the report of AAPM Task Group 101 publication-title: Med Phys doi: 10.1118/1.3438081 – ident: 10.1016/j.ejmp.2020.03.023_b0170 – ident: 10.1016/j.ejmp.2020.03.023_b0155 – volume: 38 start-page: 2208 year: 2011 ident: 10.1016/j.ejmp.2020.03.023_b0110 article-title: Dosimetric validation of Acuros® XB with Monte Carlo methods for photon dose calculations publication-title: Med Phys doi: 10.1118/1.3567146 |
SSID | ssj0032255 |
Score | 2.3040853 |
Snippet | •Convolution neural network (CNN) predicts high resolution dose distribution.•Proposed CNN predicts high resolution dose distribution faster.•Proposed CNN... This study aims to investigate the feasibility of using convolutional neural networks to predict an accurate and high resolution dose distribution from an... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 88 |
SubjectTerms | Convolution neural network Deep learning Dose prediction Humans Male Neural Networks, Computer Prostatic Neoplasms - diagnostic imaging Prostatic Neoplasms - radiotherapy Radiation Dosage Radiotherapy Dosage Radiotherapy Planning, Computer-Assisted - methods Radiotherapy, Intensity-Modulated Tomography, X-Ray Computed |
Title | A convolution neural network for higher resolution dose prediction in prostate volumetric modulated arc therapy |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1120179720300788 https://dx.doi.org/10.1016/j.ejmp.2020.03.023 https://www.ncbi.nlm.nih.gov/pubmed/32247227 https://www.proquest.com/docview/2386277761 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhhdJLSd_bNEGF3oq71ts-LkvC9pFQSgO5Ca0k0w2NvSSbQy757Z2R5IUekkJPRmbGNuNP80DzIOQDC1x75pqq7lpXSdbEynFnKt_6Buyb8DzNWDo51Ysz-eVcne-Q-VgLg2mVRfdnnZ60dbkzLdKcrlerKexDjnDCc0Q0dFjwK6VBlH-626Z5IF5VGrACYRJSl8KZnOMVLy6xZyWvU6NTLu4zTvc5n8kIHe-Rp8V7pLP8gc_ITuyfk8cn5Xz8BRlmFNPIC5woNqsE8j6nelPwT-mvlNdBIcgeicJwHen6Cp-R1qseVkMqNKJZd2ETf3o5BJz0FQOFrUFz2dbtS3J2fPRzvqjKSIXKK2Y2leo8d5oFyWoPgYdXTrZN0xmIe4Q3bWzqZsmjlCFI4drWs-C5EIx1SndORiZekd1-6OMbQlsdRQvU0oROKqDW0jeKL5e1jlrzOCFslKX1pd84jr34bcfEsguL8rcof1sLC_KfkI9bnnXutvEgtRh_kR3rSEHzWTAGD3KpLddfSPsn3_sRBRa2IJ6ruD4ON9cWvB7NjTGaTcjrDI_t1wP-sB2nefufb90nT3CVc4Xekd3N1U08ADdoszxMOD8kj2bzH9--4_Xz18XpH19HCHU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkEviDfL00hwQmHjR-zkwKECqi3t9tRKvRmv7YitaLLqblX1wp_iDzKTOCtxaJGQekxiO9bn8cxY_mYG4B0PQnvuyiyvK5cpXsbMCWcyX_kS7Zv0oquxND3QkyP17bg43oDfQywM0SqT7u91eqet05txQnO8mM_HuA8FiRPdI5KhKxOzci9eXuC5bflp9wsu8nshdr4efp5kqbRA5gtuVllRe-E0D4rnHh1wXzhVlWVt0P-X3lSxzMuZiEqFoKSrKs-DF1JyXhe6dipyiePegtsK1QWVTfj4a80roQ1SdBVd8FxG00uROj2pLJ6cUpJMkXeZVYW8yhpe5e12Vm_nPtxL7irb7hF5ABuxeQh3pulC_hG024x460l-GWXHxOZNzy1n6BCzHx2RhOGpfmgU2mVkizMao3ueN_jUdpFNrFeWVDWAnbaBSovFwBBv1seJXT6GoxsB-glsNm0TnwGrdJQVtlYm1Ai8q7TyZSFms1xHrUUcAR-wtD4lOKc6Gz_twGQ7sYS_JfxtLi3iP4IP6z6LPr3Hta3lsER2CFxFVWvR-lzbq1j3-ku0_9nv7SAFFvc8XeS4JrbnS4tulhbGGM1H8LQXj_XsUf4o_6d5_p9_fQN3J4fTfbu_e7D3ArboS09Uegmbq7Pz-Ap9sNXsdSfzDL7f9Cb7A7liQZ4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+convolution+neural+network+for+higher+resolution+dose+prediction+in+prostate+volumetric+modulated+arc+therapy&rft.jtitle=Physica+medica&rft.au=Sumida%2C+Iori&rft.au=Magome%2C+Taiki&rft.au=Das%2C+Indra+J&rft.au=Yamaguchi%2C+Hajime&rft.date=2020-04-01&rft.pub=Elsevier+Ltd&rft.issn=1120-1797&rft.volume=72&rft.spage=88&rft.epage=95&rft_id=info:doi/10.1016%2Fj.ejmp.2020.03.023&rft.externalDocID=S1120179720300788 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1120-1797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1120-1797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1120-1797&client=summon |