Speciation and transformation of nitrogen for swine manure thermochemical liquefaction

The nitrogen conversion mechanism of swine manure by thermochemical liquefaction with ethanol as solvent was investigated at a lower temperature range (180–300 °C). The fate of nitrogen in liquid phase products, bio-oil and biochar was evaluated by XPS, GC–MS and other methods. After thermochemical...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; pp. 12056 - 13
Main Authors Liu, Zhuangzhuang, Yan, Zhiwei, Liu, Fen, Fang, Jun
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 14.07.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The nitrogen conversion mechanism of swine manure by thermochemical liquefaction with ethanol as solvent was investigated at a lower temperature range (180–300 °C). The fate of nitrogen in liquid phase products, bio-oil and biochar was evaluated by XPS, GC–MS and other methods. After thermochemical liquefaction, most of the nitrogen in swine manure was transferred to biochar (63.75%). As the temperature increased to 220 °C, the biochar-N yields decreased to 43.29%, accompanied by an increase in bio-oil-N and liquid phase product-N by 7.99% and 1.26% respectively. The results indicated that increasing the temperature could facilitate solid nitrogen structure cracking into bio-oil-N. Amines and heterocyclic nitrogen from protein peptide bond cracking and Maillard reactions made up the main nitrogen compounds in bio-oil, and high temperatures favored the further cyclization and condensation of heterocyclic nitrogen (e.g., indole, quinoline). In the case of biochar, the inorganic nitrogen disappeared at 260 °C and was obviously transformed into liquid phase products. The rising temperature promoted the polymerization of pyridine nitrogen and pyrrole nitrogen, which formed more stabilized nitrogen formation (such as quaternary nitrogen). Nitrogen conversion and possible reaction schematics during swine manure thermochemical liquefaction were explored in this study.
AbstractList Abstract The nitrogen conversion mechanism of swine manure by thermochemical liquefaction with ethanol as solvent was investigated at a lower temperature range (180–300 °C). The fate of nitrogen in liquid phase products, bio-oil and biochar was evaluated by XPS, GC–MS and other methods. After thermochemical liquefaction, most of the nitrogen in swine manure was transferred to biochar (63.75%). As the temperature increased to 220 °C, the biochar-N yields decreased to 43.29%, accompanied by an increase in bio-oil-N and liquid phase product-N by 7.99% and 1.26% respectively. The results indicated that increasing the temperature could facilitate solid nitrogen structure cracking into bio-oil-N. Amines and heterocyclic nitrogen from protein peptide bond cracking and Maillard reactions made up the main nitrogen compounds in bio-oil, and high temperatures favored the further cyclization and condensation of heterocyclic nitrogen (e.g., indole, quinoline). In the case of biochar, the inorganic nitrogen disappeared at 260 °C and was obviously transformed into liquid phase products. The rising temperature promoted the polymerization of pyridine nitrogen and pyrrole nitrogen, which formed more stabilized nitrogen formation (such as quaternary nitrogen). Nitrogen conversion and possible reaction schematics during swine manure thermochemical liquefaction were explored in this study.
The nitrogen conversion mechanism of swine manure by thermochemical liquefaction with ethanol as solvent was investigated at a lower temperature range (180–300 °C). The fate of nitrogen in liquid phase products, bio-oil and biochar was evaluated by XPS, GC–MS and other methods. After thermochemical liquefaction, most of the nitrogen in swine manure was transferred to biochar (63.75%). As the temperature increased to 220 °C, the biochar-N yields decreased to 43.29%, accompanied by an increase in bio-oil-N and liquid phase product-N by 7.99% and 1.26% respectively. The results indicated that increasing the temperature could facilitate solid nitrogen structure cracking into bio-oil-N. Amines and heterocyclic nitrogen from protein peptide bond cracking and Maillard reactions made up the main nitrogen compounds in bio-oil, and high temperatures favored the further cyclization and condensation of heterocyclic nitrogen (e.g., indole, quinoline). In the case of biochar, the inorganic nitrogen disappeared at 260 °C and was obviously transformed into liquid phase products. The rising temperature promoted the polymerization of pyridine nitrogen and pyrrole nitrogen, which formed more stabilized nitrogen formation (such as quaternary nitrogen). Nitrogen conversion and possible reaction schematics during swine manure thermochemical liquefaction were explored in this study.
The nitrogen conversion mechanism of swine manure by thermochemical liquefaction with ethanol as solvent was investigated at a lower temperature range (180–300 °C). The fate of nitrogen in liquid phase products, bio-oil and biochar was evaluated by XPS, GC–MS and other methods. After thermochemical liquefaction, most of the nitrogen in swine manure was transferred to biochar (63.75%). As the temperature increased to 220 °C, the biochar-N yields decreased to 43.29%, accompanied by an increase in bio-oil-N and liquid phase product-N by 7.99% and 1.26% respectively. The results indicated that increasing the temperature could facilitate solid nitrogen structure cracking into bio-oil-N. Amines and heterocyclic nitrogen from protein peptide bond cracking and Maillard reactions made up the main nitrogen compounds in bio-oil, and high temperatures favored the further cyclization and condensation of heterocyclic nitrogen (e.g., indole, quinoline). In the case of biochar, the inorganic nitrogen disappeared at 260 °C and was obviously transformed into liquid phase products. The rising temperature promoted the polymerization of pyridine nitrogen and pyrrole nitrogen, which formed more stabilized nitrogen formation (such as quaternary nitrogen). Nitrogen conversion and possible reaction schematics during swine manure thermochemical liquefaction were explored in this study.
The nitrogen conversion mechanism of swine manure by thermochemical liquefaction with ethanol as solvent was investigated at a lower temperature range (180-300 °C). The fate of nitrogen in liquid phase products, bio-oil and biochar was evaluated by XPS, GC-MS and other methods. After thermochemical liquefaction, most of the nitrogen in swine manure was transferred to biochar (63.75%). As the temperature increased to 220 °C, the biochar-N yields decreased to 43.29%, accompanied by an increase in bio-oil-N and liquid phase product-N by 7.99% and 1.26% respectively. The results indicated that increasing the temperature could facilitate solid nitrogen structure cracking into bio-oil-N. Amines and heterocyclic nitrogen from protein peptide bond cracking and Maillard reactions made up the main nitrogen compounds in bio-oil, and high temperatures favored the further cyclization and condensation of heterocyclic nitrogen (e.g., indole, quinoline). In the case of biochar, the inorganic nitrogen disappeared at 260 °C and was obviously transformed into liquid phase products. The rising temperature promoted the polymerization of pyridine nitrogen and pyrrole nitrogen, which formed more stabilized nitrogen formation (such as quaternary nitrogen). Nitrogen conversion and possible reaction schematics during swine manure thermochemical liquefaction were explored in this study.The nitrogen conversion mechanism of swine manure by thermochemical liquefaction with ethanol as solvent was investigated at a lower temperature range (180-300 °C). The fate of nitrogen in liquid phase products, bio-oil and biochar was evaluated by XPS, GC-MS and other methods. After thermochemical liquefaction, most of the nitrogen in swine manure was transferred to biochar (63.75%). As the temperature increased to 220 °C, the biochar-N yields decreased to 43.29%, accompanied by an increase in bio-oil-N and liquid phase product-N by 7.99% and 1.26% respectively. The results indicated that increasing the temperature could facilitate solid nitrogen structure cracking into bio-oil-N. Amines and heterocyclic nitrogen from protein peptide bond cracking and Maillard reactions made up the main nitrogen compounds in bio-oil, and high temperatures favored the further cyclization and condensation of heterocyclic nitrogen (e.g., indole, quinoline). In the case of biochar, the inorganic nitrogen disappeared at 260 °C and was obviously transformed into liquid phase products. The rising temperature promoted the polymerization of pyridine nitrogen and pyrrole nitrogen, which formed more stabilized nitrogen formation (such as quaternary nitrogen). Nitrogen conversion and possible reaction schematics during swine manure thermochemical liquefaction were explored in this study.
ArticleNumber 12056
Author Liu, Fen
Yan, Zhiwei
Liu, Zhuangzhuang
Fang, Jun
Author_xml – sequence: 1
  givenname: Zhuangzhuang
  surname: Liu
  fullname: Liu, Zhuangzhuang
  organization: College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production
– sequence: 2
  givenname: Zhiwei
  surname: Yan
  fullname: Yan, Zhiwei
  organization: College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production
– sequence: 3
  givenname: Fen
  surname: Liu
  fullname: Liu, Fen
  organization: College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production
– sequence: 4
  givenname: Jun
  surname: Fang
  fullname: Fang, Jun
  email: fangjun1973@hunau.edu.cn
  organization: College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production
BookMark eNp9UstuFDEQtFAQCSE_wGkkLlwG7PZjxhckFPGIFIkDj6vltXt2vZqxF3uWFX-PdycCkkN8aatdVW5V13NyFlNEQl4y-oZR3r8tgkndtxSgZYpR1h6ekAugQrbAAc7-u5-Tq1K2tB4JWjD9jJxz2XOpGbsgP77u0AU7hxQbG30zZxvLkPK0tNLQxDDntMbY1G5TDiFiM9m4z9jMG8xTchucgrNjM4afexysOxJfkKeDHQte3dVL8v3jh2_Xn9vbL59urt_ftk6ybm6l78DpbhBUKQVWcO-UdxY8DK5zTg_eK4kKqRUOapXQi5WnK7VSXHYC-SW5WXR9sluzy2Gy-bdJNphTI-W1sXkObkQzgPc9UODaSuEUWl4tkEwPPWcena5a7xat3X41oXcYqxnjPdH7LzFszDr9Mhp6LhhUgdd3AjlVK8psplAcjqONmPbFgNKs7kDRI_TVA-g27XOsVlVUrwWoup6KggXlciol4_B3GEbNMQVmSYGpKTCnFJhDJfUPSC7Mp23WocP4OJUv1FL_iWvM_6Z6hPUHLHrJrA
CitedBy_id crossref_primary_10_1080_10643389_2025_2457991
crossref_primary_10_1016_j_indcrop_2022_115564
Cites_doi 10.13031/2013.22291
10.1016/j.jclepro.2020.120020
10.1016/j.renene.2020.11.033
10.3934/energy.2017.2.239
10.1016/j.fuel.2016.02.068
10.1016/j.energy.2017.06.166
10.1016/j.enconman.2016.12.052
10.1038/s41598-021-91440-8
10.1016/j.joei.2021.04.004
10.1016/j.biortech.2019.121385
10.1016/j.energy.2020.117105
10.1021/acs.energyfuels.0c01993
10.1016/j.fuproc.2018.10.020
10.1016/j.chemosphere.2021.131635
10.1016/j.biombioe.2019.01.035
10.1016/j.jaap.2017.09.019
10.1016/j.biortech.2016.03.102
10.1038/s41598-020-74130-9
10.1016/j.scitotenv.2021.147103
10.1007/s11356-020-11111-5
10.1016/j.jaap.2017.05.017
10.1038/s41598-019-51315-5
10.1016/j.energy.2018.01.186
10.1016/j.biortech.2017.06.085
10.1016/j.conbuildmat.2021.123584
10.1021/acs.energyfuels.6b01312
10.1016/b978-0-08-052349-1.00158-x
10.1016/j.energy.2021.120733
10.1016/j.biortech.2017.09.076
10.1039/c5gc02953h
10.1080/00103628909368129
10.1021/acssuschemeng.8b03810
10.1002/bbb.1831
10.1007/s12155-011-9157-z
10.1016/j.jaap.2013.04.002
10.1016/j.renene.2020.10.066
10.3389/fmicb.2021.746718
10.1016/j.biortech.2015.01.045
10.1016/j.biortech.2017.02.017
10.1016/j.jaap.2018.07.008
10.1016/j.jclepro.2021.128175
10.1016/j.btre.2020.e00570
10.1016/j.biortech.2020.123414
10.1016/j.energy.2021.121027
10.1016/j.fuel.2020.119407
10.1016/j.biortech.2016.05.012
10.1016/j.renene.2021.11.001
10.1021/es304532c
10.1016/j.apenergy.2013.04.084
10.1016/j.fuel.2020.118738
10.1016/j.fuel.2021.121149
10.1016/j.rser.2020.110476
10.1016/j.apenergy.2014.06.038
10.1016/j.renene.2017.06.104
10.1007/s11356-020-11748-2
10.1016/j.renene.2021.01.098
10.1016/j.biortech.2015.09.033
10.1016/j.scitotenv.2020.141972
10.1016/j.fuel.2021.122616
10.1016/j.biombioe.2021.106119
10.3390/en11040957
10.1016/j.scitotenv.2021.145922
10.1016/j.energy.2018.04.057
10.3390/molecules24122250
10.1201/9780367816087
10.3390/antibiotics10050539
10.1016/j.jaap.2016.05.004
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-022-16101-w
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_f2dd820239a54c6ea3359519f831dec9
PMC9283412
10_1038_s41598_022_16101_w
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: No. 31672457
– fundername: Hunan Provincial Science and Technology Department
  grantid: 2020NK2004
  funderid: http://dx.doi.org/10.13039/501100002767
– fundername: Double first-class construction project of Hunan Agricultural University
  grantid: SYL201802003
– fundername: ;
  grantid: SYL201802003
– fundername: ;
  grantid: 2020NK2004
– fundername: ;
  grantid: No. 31672457
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c517t-5d72c97f406662a43dc6dca2d2fc7cc9fdd65e6e0a4c2e6e5284bd0b6b63574e3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:25:07 EDT 2025
Thu Aug 21 18:45:16 EDT 2025
Tue Aug 05 10:43:53 EDT 2025
Wed Aug 13 07:01:45 EDT 2025
Tue Jul 01 04:16:52 EDT 2025
Thu Apr 24 23:12:25 EDT 2025
Fri Feb 21 02:36:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-5d72c97f406662a43dc6dca2d2fc7cc9fdd65e6e0a4c2e6e5284bd0b6b63574e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2689426591?pq-origsite=%requestingapplication%
PMID 35835911
PQID 2689426591
PQPubID 2041939
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_f2dd820239a54c6ea3359519f831dec9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9283412
proquest_miscellaneous_2691052602
proquest_journals_2689426591
crossref_primary_10_1038_s41598_022_16101_w
crossref_citationtrail_10_1038_s41598_022_16101_w
springer_journals_10_1038_s41598_022_16101_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-14
PublicationDateYYYYMMDD 2022-07-14
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-14
  day: 14
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Tian (CR1) 2021
Lu, Li, Zhang, Liu (CR12) 2018; 6
Minarick (CR59) 2011
Wu (CR6) 2022
Ekpo, Ross, Camargo-Valero, Fletcher (CR34) 2016
Peng (CR57) 2016
Zhao, Shen, Ge, Chen, Yoshikawa (CR29) 2014
Sun (CR7) 2021
Xin (CR66) 2016
Nie, Bi (CR65) 2018
Zhang, Gong, Peng, Feng, Li (CR22) 2022
Zhang (CR56) 2021
Huang (CR28) 2013; 102
Pedersen, Hansen, Pérez, Cabezas, Rosendahl (CR62) 2018
Magdeldin, Kohl, Järvinen (CR64) 2017
Mateus, Bordado, Galhano dos Santos (CR18) 2021
Zhang, Jiang, Xie, Wang, Kang (CR50) 2019; 122
Ocfemia, Zhang, Funk (CR15) 2006; 49
Xiao (CR21) 2019
Wądrzyk, Janus, Vos, Brilman (CR55) 2018
Lu (CR30) 2017
Xu (CR32) 2020
CR2
Lai (CR39) 2018
Ali Shah (CR11) 2021
Luan (CR17) 2021
Hong (CR16) 2021
Paneque, De la Rosa, Kern, Reza, Knicker (CR51) 2017
Arif (CR69) 2021
Chen (CR46) 2016
Obeid (CR20) 2021
Wang (CR44) 2018
Fang (CR35) 2021
Zhang (CR43) 2020
Kruse, Koch, Stelzl, Wüst, Zeller (CR42) 2016
Babu (CR60) 2019
Ponnusamy (CR48) 2020
Juneja, Murthy (CR67) 2017
Xu (CR36) 2018
Torrijos, Calvo Dopico, Soto (CR8) 2021
Wang, Zhang, Ji, Shi (CR61) 2020
Sharara, Sadaka (CR13) 2018
Liu (CR49) 2017
Goswami, Makut, Das (CR23) 2019
Zhang (CR38) 2019; 24
Baethgen, Alley (CR68) 1989
Pham, Schideman, Scott, Rajagopalan, Plewa (CR25) 2013
Adánez-Rubio, Ferreira, Rio, Alzueta, Costa (CR10) 2020
Wang, He, Zhang, Duan (CR41) 2021
Wu (CR4) 2021
Wang (CR33) 2021
Gai, Liu, Han, Peng, Fan (CR31) 2015
Grashey (CR54) 1991
Wang (CR5) 2021
Qian, Wang, Savage (CR52) 2017; 232
Yin, Chen, Xu, Wang, Xu (CR37) 2015
Alherbawi, Parthasarathy, Al-Ansari, Mackey, McKay (CR58) 2021
Wang, Jing, Zhang, Cao, Lyu (CR9) 2021
Zhang (CR3) 2021
Zhang, Tang, Sheng, Yang (CR53) 2016
Wang (CR14) 2022
Tzanetis, Posada, Ramirez (CR63) 2017; 113
Li, Wang, Yang, Chen (CR24) 2016; 5
Zhu (CR45) 2017
Manimaran, Murugu Mohan Kumar, Sathiya Narayanan (CR19) 2020
He, Giannis, Wang (CR47) 2013
Song (CR40) 2020
Yaashikaa, Kumar, Varjani, Saravanan (CR26) 2020
Chen, Wang, Zhang, Yi, Liu (CR27) 2021
Y Nie (16101_CR65) 2018
V Babu (16101_CR60) 2019
H Zhang (16101_CR43) 2020
P Zhao (16101_CR29) 2014
V Torrijos (16101_CR8) 2021
R Wang (16101_CR33) 2021
M Minarick (16101_CR59) 2011
W Chen (16101_CR46) 2016
KF Tzanetis (16101_CR63) 2017; 113
S Zhang (16101_CR38) 2019; 24
N Li (16101_CR24) 2016; 5
A Juneja (16101_CR67) 2017
T Wang (16101_CR61) 2020
M Chen (16101_CR27) 2021
ZX Xu (16101_CR36) 2018
B Wang (16101_CR41) 2021
Z Zhu (16101_CR45) 2017
R Grashey (16101_CR54) 1991
C Zhang (16101_CR53) 2016
MA Sharara (16101_CR13) 2018
L Sun (16101_CR7) 2021
G Goswami (16101_CR23) 2019
H Xiao (16101_CR21) 2019
J Fang (16101_CR35) 2021
F Yin (16101_CR37) 2015
M Alherbawi (16101_CR58) 2021
WE Baethgen (16101_CR68) 1989
Z Zhang (16101_CR56) 2021
HJ Huang (16101_CR28) 2013; 102
VK Ponnusamy (16101_CR48) 2020
H Wang (16101_CR9) 2021
J Lu (16101_CR12) 2018; 6
M Paneque (16101_CR51) 2017
R Manimaran (16101_CR19) 2020
F Obeid (16101_CR20) 2021
U Ekpo (16101_CR34) 2016
TH Pedersen (16101_CR62) 2018
MM Mateus (16101_CR18) 2021
T Liu (16101_CR49) 2017
C Peng (16101_CR57) 2016
M Tian (16101_CR1) 2021
R Wang (16101_CR14) 2022
M Pham (16101_CR25) 2013
L Xu (16101_CR32) 2020
M Arif (16101_CR69) 2021
C Song (16101_CR40) 2020
A Ali Shah (16101_CR11) 2021
M Magdeldin (16101_CR64) 2017
H Luan (16101_CR17) 2021
D Wu (16101_CR6) 2022
Y Zhang (16101_CR50) 2019; 122
16101_CR2
FY Lai (16101_CR39) 2018
C Zhang (16101_CR22) 2022
C Xin (16101_CR66) 2016
KS Ocfemia (16101_CR15) 2006; 49
A Kruse (16101_CR42) 2016
C Gai (16101_CR31) 2015
RT Wu (16101_CR4) 2021
Y Zhang (16101_CR3) 2021
I Adánez-Rubio (16101_CR10) 2020
J Lu (16101_CR30) 2017
L Qian (16101_CR52) 2017; 232
M Wądrzyk (16101_CR55) 2018
W Hong (16101_CR16) 2021
PR Yaashikaa (16101_CR26) 2020
A Wang (16101_CR5) 2021
T Wang (16101_CR44) 2018
C He (16101_CR47) 2013
References_xml – volume: 49
  start-page: 1897
  year: 2006
  end-page: 1904
  ident: CR15
  article-title: Hydrothermal processing of swine manure to oil using a continuous reactor system: Effects of operating parameters on oil yield and quality
  publication-title: Trans. ASABE
  doi: 10.13031/2013.22291
– year: 2020
  ident: CR43
  article-title: Effect of temperature on the product characteristics and fuel-nitrogen evolution during chromium-tanned solid wastes pyrolysis polygeneration
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.120020
– year: 2021
  ident: CR35
  article-title: Thermochemical liquefaction of cattle manure using ethanol as solvent: Effects of temperature on bio-oil yields and chemical compositions
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.11.033
– year: 2017
  ident: CR67
  article-title: Evaluating the potential of renewable diesel production from algae cultured on wastewater: Techno-economic analysis and life cycle assessment
  publication-title: AIMS Energy
  doi: 10.3934/energy.2017.2.239
– year: 2016
  ident: CR57
  article-title: Production of char from sewage sludge employing hydrothermal carbonization: Char properties, combustion behavior and thermal characteristics
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.02.068
– year: 2017
  ident: CR64
  article-title: Techno-economic assessment of the by-products contribution from non-catalytic hydrothermal liquefaction of lignocellulose residues
  publication-title: Energy
  doi: 10.1016/j.energy.2017.06.166
– year: 2017
  ident: CR30
  article-title: Simultaneous production of biocrude oil and recovery of nutrients and metals from human feces via hydrothermal liquefaction
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.12.052
– year: 2021
  ident: CR5
  article-title: Speciation and environmental risk of heavy metals in biochars produced by pyrolysis of chicken manure and water-washed swine manure
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-91440-8
– year: 2021
  ident: CR16
  article-title: Efficient thermochemical liquefaction of microalgae for production of high quality biocrude with high selectivity over Fe/montmorillonite catalyst
  publication-title: J. Energy Inst.
  doi: 10.1016/j.joei.2021.04.004
– year: 2019
  ident: CR21
  article-title: Speciation and transformation of nitrogen for spirulina hydrothermal carbonization
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.121385
– year: 2020
  ident: CR61
  article-title: Market reforms and determinants of import natural gas prices in China
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117105
– year: 2020
  ident: CR32
  article-title: Recent advances of producing biobased N-containing compounds via thermo-chemical conversion with ammonia process
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.0c01993
– year: 2018
  ident: CR36
  article-title: Investigation of pathways for transformation of N-heterocycle compounds during sewage sludge pyrolysis process
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2018.10.020
– year: 2022
  ident: CR6
  article-title: Lignocellulose biomass bioconversion during composting: Mechanism of action of lignocellulase, pretreatment methods and future perspectives
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.131635
– volume: 122
  start-page: 175
  year: 2019
  end-page: 182
  ident: CR50
  article-title: Effects of temperature, time and acidity of hydrothermal carbonization on the hydrochar properties and nitrogen recovery from corn stover
  publication-title: Biomass Bioenergy.
  doi: 10.1016/j.biombioe.2019.01.035
– year: 2017
  ident: CR51
  article-title: Hydrothermal carbonization and pyrolysis of sewage sludges: What happen to carbon and nitrogen?
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2017.09.019
– year: 2016
  ident: CR66
  article-title: Comprehensive techno-economic analysis of wastewater-based algal biofuel production: A case study
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.03.102
– year: 2020
  ident: CR19
  article-title: Synthesis of bio-oil from waste seeds: A substitute for conventional fuel
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-74130-9
– year: 2021
  ident: CR56
  article-title: Mitigation of carbon and nitrogen losses during pig manure composting: A meta-analysis
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.147103
– year: 2021
  ident: CR4
  article-title: A novel method for extraction of polypropylene microplastics in swine manure
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-020-11111-5
– year: 2017
  ident: CR49
  article-title: Nitrogen transformation among char, tar and gas during pyrolysis of sewage sludge and corresponding hydrochar
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2017.05.017
– year: 2019
  ident: CR23
  article-title: Sustainable production of bio-crude oil via hydrothermal liquefaction of symbiotically grown biomass of microalgae-bacteria coupled with effective wastewater treatment
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-51315-5
– year: 2018
  ident: CR39
  article-title: Liquefaction of sewage sludge in ethanol-water mixed solvents for bio-oil and biochar products
  publication-title: Energy
  doi: 10.1016/j.energy.2018.01.186
– year: 2017
  ident: CR45
  article-title: Elemental migration and characterization of products during hydrothermal liquefaction of cornstalk
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.06.085
– year: 2021
  ident: CR9
  article-title: Preparation and performance evaluation of swine manure bio-oil modified rubber asphalt binder
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.123584
– year: 2016
  ident: CR42
  article-title: Fate of nitrogen during hydrothermal carbonization
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.6b01312
– year: 1991
  ident: CR54
  article-title: Synthesis of pseudohalides, nitriles and related compounds
  publication-title: Compr. Org. Synth.
  doi: 10.1016/b978-0-08-052349-1.00158-x
– year: 2021
  ident: CR41
  article-title: Study on hydrothermal liquefaction of spirulina platensis using biochar based catalysts to produce bio-oil
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120733
– year: 2018
  ident: CR44
  article-title: Influence of temperature on nitrogen fate during hydrothermal carbonization of food waste
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.09.076
– year: 2016
  ident: CR53
  article-title: Enhancing the performance of Co-hydrothermal liquefaction for mixed algae strains by the Maillard reaction
  publication-title: Green Chem.
  doi: 10.1039/c5gc02953h
– year: 1989
  ident: CR68
  article-title: A manual colorimetric procedure for measuring ammonium nitrogen in soil and plant kjeldahl digests
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103628909368129
– volume: 6
  start-page: 13570
  year: 2018
  end-page: 13578
  ident: CR12
  article-title: Nitrogen migration and transformation during hydrothermal liquefaction of livestock manures
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b03810
– year: 2018
  ident: CR62
  article-title: Renewable hydrocarbon fuels from hydrothermal liquefaction: A techno-economic analysis
  publication-title: Biofuels Bioprod. Biorefining
  doi: 10.1002/bbb.1831
– volume: 5
  start-page: 285
  year: 2016
  end-page: 295
  ident: CR24
  article-title: Retardation effect of basic nitrogen compounds in shale oil on catalytic cracking and their structure characterization
  publication-title: Pet. Process. Petrochem.
– year: 2011
  ident: CR59
  article-title: Product and economic analysis of direct liquefaction of swine manure
  publication-title: Bioenergy Res.
  doi: 10.1007/s12155-011-9157-z
– volume: 102
  start-page: 60
  year: 2013
  end-page: 67
  ident: CR28
  article-title: Thermochemical liquefaction of rice husk for bio-oil production with sub- and supercritical ethanol as solvent
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2013.04.002
– year: 2021
  ident: CR69
  article-title: A complete characterization of microalgal biomass through FTIR/TGA/CHNS analysis: An approach for biofuel generation and nutrients removal
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.10.066
– year: 2021
  ident: CR7
  article-title: Different effects of thermophilic microbiological inoculation with and without biochar on physicochemical characteristics and bacterial communities in pig manure composting
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2021.746718
– year: 2015
  ident: CR31
  article-title: Combustion behavior and kinetics of low-lipid microalgae via thermogravimetric analysis
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.01.045
– volume: 232
  start-page: 27
  year: 2017
  end-page: 34
  ident: CR52
  article-title: Hydrothermal liquefaction of sewage sludge under isothermal and fast conditions
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.02.017
– year: 2018
  ident: CR55
  article-title: Effect of process conditions on bio-oil obtained through continuous hydrothermal liquefaction of sp. microalgae
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2018.07.008
– ident: CR2
– year: 2021
  ident: CR8
  article-title: Integration of food waste composting and vegetable gardens in a university campus
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.128175
– year: 2020
  ident: CR26
  article-title: A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy
  publication-title: Biotechnol. Rep.
  doi: 10.1016/j.btre.2020.e00570
– year: 2020
  ident: CR48
  article-title: Review on sustainable production of biochar through hydrothermal liquefaction: Physico-chemical properties and applications
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.123414
– year: 2021
  ident: CR58
  article-title: Potential of drop-in biofuel production from camel manure by hydrothermal liquefaction and biocrude upgrading: A Qatar case study
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121027
– year: 2021
  ident: CR11
  article-title: Bio-crude production through co-hydrothermal processing of swine manure with sewage sludge to enhance pumpability
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.119407
– year: 2016
  ident: CR34
  article-title: Influence of pH on hydrothermal treatment of swine manure: Impact on extraction of nitrogen and phosphorus in process water
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.05.012
– year: 2022
  ident: CR14
  article-title: Analysis and prediction of characteristics for solid product obtained by hydrothermal carbonization of biomass components
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.11.001
– year: 2013
  ident: CR25
  article-title: Chemical and biological characterization of wastewater generated from hydrothermal liquefaction of Spirulina
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es304532c
– year: 2013
  ident: CR47
  article-title: Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.04.084
– year: 2020
  ident: CR10
  article-title: Soot and char formation in the gasification of pig manure in a drop tube reactor
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.118738
– year: 2021
  ident: CR18
  article-title: Estimation of higher heating value (HHV) of bio-oils from thermochemical liquefaction by linear correlation
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.121149
– year: 2021
  ident: CR3
  article-title: Environmental sustainability assessment of pig manure mono- and co-digestion and dynamic land application of the digestate
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.110476
– year: 2014
  ident: CR29
  article-title: Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.06.038
– volume: 113
  start-page: 1388
  year: 2017
  end-page: 1398
  ident: CR63
  article-title: Analysis of biomass hydrothermal liquefaction and biocrude-oil upgrading for renewable jet fuel production: The impact of reaction conditions on production costs and GHG emissions performance
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.06.104
– year: 2021
  ident: CR17
  article-title: The migration, transformation, and risk assessment of heavy metals in residue and bio-oil obtained by the liquefaction of pig manure
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-020-11748-2
– year: 2021
  ident: CR27
  article-title: Effects of acid modification on the structure and adsorption NH4 –N properties of biochar
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.01.098
– year: 2015
  ident: CR37
  article-title: A detailed kinetic model for the hydrothermal decomposition process of sewage sludge
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.09.033
– year: 2020
  ident: CR40
  article-title: Thermochemical liquefaction of agricultural and forestry wastes into biofuels and chemicals from circular economy perspectives
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.141972
– year: 2022
  ident: CR22
  article-title: Transformation of nitrogen during microalgae model compounds liquefaction in sub-/supercritical ethanol
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.122616
– year: 2021
  ident: CR20
  article-title: The fate of nitrogen and sulphur during co-liquefaction of algae and bagasse: Experimental and multi-criterion decision analysis
  publication-title: Biomass Bioenerg.
  doi: 10.1016/j.biombioe.2021.106119
– year: 2018
  ident: CR13
  article-title: Opportunities and barriers to bioenergy conversion techniques and their potential implementation on swine manure
  publication-title: Energies
  doi: 10.3390/en11040957
– year: 2021
  ident: CR33
  article-title: The redistribution and migration mechanism of nitrogen in the hydrothermal co-carbonization process of sewage sludge and lignocellulosic wastes
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.145922
– year: 2018
  ident: CR65
  article-title: Techno-economic assessment of transportation biofuels from hydrothermal liquefaction of forest residues in British Columbia
  publication-title: Energy
  doi: 10.1016/j.energy.2018.04.057
– volume: 24
  start-page: 2250
  year: 2019
  ident: CR38
  article-title: Liquefaction of biomass and upgrading of bio-oil: A review
  publication-title: Molecules
  doi: 10.3390/molecules24122250
– year: 2019
  ident: CR60
  article-title: Fundamentals of engineering thermodynamics
  publication-title: Fundam. Eng. Thermodyn.
  doi: 10.1201/9780367816087
– year: 2021
  ident: CR1
  article-title: Pollution by antibiotics and antimicrobial resistance in live stock and poultry manure in China, and countermeasures
  publication-title: Antibiotics
  doi: 10.3390/antibiotics10050539
– year: 2016
  ident: CR46
  article-title: Biomass pyrolysis for nitrogen-containing liquid chemicals and nitrogen-doped carbon materials
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2016.05.004
– year: 2022
  ident: 16101_CR6
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.131635
– year: 2018
  ident: 16101_CR55
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2018.07.008
– year: 2016
  ident: 16101_CR42
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.6b01312
– year: 2019
  ident: 16101_CR23
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-51315-5
– year: 2017
  ident: 16101_CR49
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2017.05.017
– year: 2021
  ident: 16101_CR41
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120733
– year: 2021
  ident: 16101_CR69
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.10.066
– year: 2021
  ident: 16101_CR11
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.119407
– year: 2020
  ident: 16101_CR32
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.0c01993
– year: 2020
  ident: 16101_CR48
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.123414
– year: 2016
  ident: 16101_CR57
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.02.068
– year: 2016
  ident: 16101_CR34
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.05.012
– year: 2021
  ident: 16101_CR27
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.01.098
– year: 2021
  ident: 16101_CR18
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.121149
– year: 2021
  ident: 16101_CR8
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.128175
– year: 2017
  ident: 16101_CR67
  publication-title: AIMS Energy
  doi: 10.3934/energy.2017.2.239
– year: 2021
  ident: 16101_CR35
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.11.033
– year: 2017
  ident: 16101_CR51
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2017.09.019
– year: 1989
  ident: 16101_CR68
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103628909368129
– year: 2022
  ident: 16101_CR22
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.122616
– year: 2021
  ident: 16101_CR20
  publication-title: Biomass Bioenerg.
  doi: 10.1016/j.biombioe.2021.106119
– year: 2020
  ident: 16101_CR40
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.141972
– volume: 49
  start-page: 1897
  year: 2006
  ident: 16101_CR15
  publication-title: Trans. ASABE
  doi: 10.13031/2013.22291
– volume: 102
  start-page: 60
  year: 2013
  ident: 16101_CR28
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2013.04.002
– year: 2021
  ident: 16101_CR56
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.147103
– year: 2017
  ident: 16101_CR64
  publication-title: Energy
  doi: 10.1016/j.energy.2017.06.166
– year: 2021
  ident: 16101_CR17
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-020-11748-2
– year: 2017
  ident: 16101_CR30
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.12.052
– year: 2019
  ident: 16101_CR60
  publication-title: Fundam. Eng. Thermodyn.
  doi: 10.1201/9780367816087
– volume: 24
  start-page: 2250
  year: 2019
  ident: 16101_CR38
  publication-title: Molecules
  doi: 10.3390/molecules24122250
– year: 2018
  ident: 16101_CR62
  publication-title: Biofuels Bioprod. Biorefining
  doi: 10.1002/bbb.1831
– year: 2014
  ident: 16101_CR29
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.06.038
– year: 2015
  ident: 16101_CR31
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.01.045
– year: 2020
  ident: 16101_CR61
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117105
– volume: 5
  start-page: 285
  year: 2016
  ident: 16101_CR24
  publication-title: Pet. Process. Petrochem.
– year: 2020
  ident: 16101_CR19
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-74130-9
– year: 2021
  ident: 16101_CR7
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2021.746718
– year: 2018
  ident: 16101_CR36
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2018.10.020
– year: 2021
  ident: 16101_CR16
  publication-title: J. Energy Inst.
  doi: 10.1016/j.joei.2021.04.004
– volume: 232
  start-page: 27
  year: 2017
  ident: 16101_CR52
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.02.017
– year: 2013
  ident: 16101_CR47
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.04.084
– year: 2016
  ident: 16101_CR46
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2016.05.004
– volume: 6
  start-page: 13570
  year: 2018
  ident: 16101_CR12
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b03810
– year: 2022
  ident: 16101_CR14
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.11.001
– year: 2021
  ident: 16101_CR1
  publication-title: Antibiotics
  doi: 10.3390/antibiotics10050539
– year: 2020
  ident: 16101_CR10
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.118738
– year: 2018
  ident: 16101_CR39
  publication-title: Energy
  doi: 10.1016/j.energy.2018.01.186
– volume: 122
  start-page: 175
  year: 2019
  ident: 16101_CR50
  publication-title: Biomass Bioenergy.
  doi: 10.1016/j.biombioe.2019.01.035
– year: 1991
  ident: 16101_CR54
  publication-title: Compr. Org. Synth.
  doi: 10.1016/b978-0-08-052349-1.00158-x
– year: 2016
  ident: 16101_CR53
  publication-title: Green Chem.
  doi: 10.1039/c5gc02953h
– ident: 16101_CR2
– year: 2018
  ident: 16101_CR13
  publication-title: Energies
  doi: 10.3390/en11040957
– year: 2013
  ident: 16101_CR25
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es304532c
– year: 2021
  ident: 16101_CR3
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.110476
– year: 2019
  ident: 16101_CR21
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.121385
– year: 2017
  ident: 16101_CR45
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.06.085
– year: 2020
  ident: 16101_CR43
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.120020
– year: 2011
  ident: 16101_CR59
  publication-title: Bioenergy Res.
  doi: 10.1007/s12155-011-9157-z
– year: 2018
  ident: 16101_CR65
  publication-title: Energy
  doi: 10.1016/j.energy.2018.04.057
– year: 2021
  ident: 16101_CR58
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121027
– year: 2021
  ident: 16101_CR5
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-91440-8
– year: 2020
  ident: 16101_CR26
  publication-title: Biotechnol. Rep.
  doi: 10.1016/j.btre.2020.e00570
– volume: 113
  start-page: 1388
  year: 2017
  ident: 16101_CR63
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.06.104
– year: 2021
  ident: 16101_CR9
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.123584
– year: 2015
  ident: 16101_CR37
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.09.033
– year: 2021
  ident: 16101_CR4
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-020-11111-5
– year: 2016
  ident: 16101_CR66
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.03.102
– year: 2021
  ident: 16101_CR33
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.145922
– year: 2018
  ident: 16101_CR44
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.09.076
SSID ssj0000529419
Score 2.3917518
Snippet The nitrogen conversion mechanism of swine manure by thermochemical liquefaction with ethanol as solvent was investigated at a lower temperature range...
The nitrogen conversion mechanism of swine manure by thermochemical liquefaction with ethanol as solvent was investigated at a lower temperature range (180–300...
The nitrogen conversion mechanism of swine manure by thermochemical liquefaction with ethanol as solvent was investigated at a lower temperature range (180-300...
Abstract The nitrogen conversion mechanism of swine manure by thermochemical liquefaction with ethanol as solvent was investigated at a lower temperature range...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12056
SubjectTerms 639/4077
639/4077/909
639/4077/909/4053
639/4077/909/4053/906
Amines
Charcoal
Ethanol
High temperature
Humanities and Social Sciences
Liquefaction
Low temperature
Manures
multidisciplinary
Nitrogen
Oil
Pig manure
Science
Science (multidisciplinary)
Speciation
Temperature
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SKHgRaxVXq6TgTZfuZvOxOaq0FEFPVnoLySRBod0nfa88_O87k933fFtQL54W8sEmkxnmNyTzG8beiNQ3Wsiu9qZPtexkrnsVoU7BxBhlgAx0o_v5iz6_kJ8u1eVOqS96EzbSA4-CO8kixp5qfFuvJOjkO0olbW3uuzYmKKl76PN2gqmR1VtY2dopS6bp-pMleirKJsPYC0EOxtDrmScqhP0zlHn_jeS9i9Lif84es0cTcOTvxwUfsAdpeML2x1KSvw7Zt7GQPImZ-yHy1Q4gxaZF5mi7NwtUF46tfLlGdMmvPaUJc8KA11Q5q1AH8CuidJ0SHp6yi7PTrx_P66lmQg2qNataRSPAmiwpLhFedhF0BC-iyGAAbI5Rq6RT4yUI_Cp0TyE2QQcippOpe8b2hsWQnjOOwQ3ONm22waOZQ_DRNmA1GC9kUL5i7UZ-DiZCcaprceXKxXbXu1HmDmXuiszdumJvt3N-jnQafx39gY5lO5KosEsDKoibFMT9S0EqdrQ5VDfZ59IJ3VvEJsq2FTvedqNl0XWJH9LilsYglFIY74mKmZkyzBY07xl-fC8c3RZhm2xx5ruN2vz--Z83_OJ_bPgleyhIzYn9Ux6xvdXNbXqFyGkVXhcjuQO6mxeA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF-0IvgifmJslRV809Bksx_ZJ1GxFEGfrNzbsp8qtEl7d-Xwv-_MZu9qCvYpsB8kmZ3ZmdnZ-Q0hb1nsG8l4V1vVx5p3PNW9CL6OToUQuPPJY0T323d5fMK_LsSiHLityrXK7Z6YN-owejwjP2Sy16BNhG4_nF_UWDUKo6ulhMZdcg-hy_BKl1qo3RkLRrF4q0uuTNP1hyvQV5hTBh4YmDrgSW9m-ijD9s9szZs3JW-ES7MWOnpEHhbzkX6c1vsxuROHJ-T-VFDy71Pycyonj8Smdgh0_Y9ZCk1joiDByxGYhkIrXW3AxqRnFpOFKVqCZ1g_KwMI0FMEdi1pD8_IydGXH5-P61I5ofaiVetaBMW8Vomjd8Is74KXwVsWWPLKe51CkCLK2FjuGTwFKCkXGicdwtPx2D0ne8M4xBeEgosDs1WbtLMg7N7ZoBuvpVeWcSdsRdot_YwvsOJY3eLU5PB215uJ5gZobjLNzaYi73ZzzidQjVtHf8Jl2Y1EQOzcMC5_mSJfJrEQeiwFr63gXkbbYcZxq1PftSF6XZGD7aKaIqUrc81TFXmz6wb5wqCJHeJ4iWPAoBLg9bGKqBkzzD5o3jP8-Z2RujUYb7yFme-3bHP98v__8Mvbv3WfPGDIwIjuyQ_I3np5GV-BZbR2rzP7XwGpSA9N
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9UwEB7WFcEX8YrVVSL4psU2TdLmUQ8ui6BPruxbyFWF3XY55ywH_70zaXu0iwo-FXKh7WSm-aaT-QbgJY9dpbhoStt2sRSNSGUngy-ja0MIwvnkKaL78ZM6ORUfzuTZAfA5FyYf2s-UlvkzPZ8Oe7PBjYaSwdB1QoyCLvDuBtwk6nbS6pVa7f-rUORK1HrKj6ma7g9TF3tQpupf4MvrpyOvhUjzznN8F-5MkJG9HR_yHhzE_j7cGotI_ngAX8YS8iRgZvvAtr9BUWwaEkOrXQ-oKAxb2WaHuJJdWEoQZoT-LqhmViYNYOdE5jqlOjyE0-P3n1cn5VQtofSybrelDC33uk2CPBJuRRO8Ct7ywJNvvdcpBCWjipUVnuNV4sbkQuWUI0o6EZtHcNgPfXwMDN0anN3WSTuLBu6dDbryWvnWcuGkLaCe5Wf8RCVOFS3OTQ5pN50ZZW5Q5ibL3OwKeLWfczkSafxz9Dtalv1IIsHODcP6q5mUwiQeQkfl37WVwqtoG8oyrnXqmjpErws4mhfVTJa5MVx1GlGJ1HUBL_bdaFMUKLF9HK5oDIIoiZ4eL6BdKMPigZY9_fdvmZ1bI2ATNc58PavNr5v__YWf_N_wp3Cbk0ITw6c4gsPt-io-Q3S0dc-zOfwE83YNdw
  priority: 102
  providerName: Springer Nature
Title Speciation and transformation of nitrogen for swine manure thermochemical liquefaction
URI https://link.springer.com/article/10.1038/s41598-022-16101-w
https://www.proquest.com/docview/2689426591
https://www.proquest.com/docview/2691052602
https://pubmed.ncbi.nlm.nih.gov/PMC9283412
https://doaj.org/article/f2dd820239a54c6ea3359519f831dec9
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2ISReEJ-ibFRG4g0CjeOP-AGhrto0VdqEgKK-WY7tAFKXsLZT2X_PnZMUMg3EUyTHbtPzXe93de_3I-QlC_lIMp4lVuUh4Rkvk1x4l4RCee954UqHJ7pn5_J0xqdzMd8hndxRa8DVraUd6knNlos3Py-v30PAv2taxvO3K0hC2CgGZRXgFyiPN7tkHzKTwkA9a-F-w_XNNI9aH0jCngCYYG0fze0v08tVkdK_h0Nv_ovyxlFqzFAn98m9FlrSceMLD8hOqB6SO43Y5PUj8qWRmseNoLbydP0HZIWhuqQQ3csaHIrCKF1tAH_SC4uNxBRR4gVqa0VyAbpA0te2JeIxmZ0cf56cJq2qQuJEqtaJ8Io5rUqOlQuzPPNOemeZZ6VTzunSeymCDCPLHYOrgARW-FEhC6Su4yF7QvaqugpPCYXyB1artNSFhS8CV1ivR05LpyzjhbADknb2M66lHEfli4WJR99ZbhqbG7C5iTY3mwF5tV3zoyHc-OfsI9yW7Uwky44D9fKraWPPlMz7HGXitRXcyWAz7EZOdZlnqQ9OD8hht6mmc0DDZK4BvQidDsiL7W2IPTxQsVWor3AOgC0BFSEbENVzht4D9e9U379FFm8NwI6nsPJ15za_3_zvH_jZfzzMAbnL0IuR_pMfkr318io8B-i0LoZkV83VkOyPx9NPU7geHZ9_-AijEzkZxp8jhjFifgH4_RxP
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEE8RKGAkOEHUxLGT-IAQhVZb2q4QalFvxrEdWqlNyu5Wq_4pfiMzeWxJJXrrKZJj5zEej7_JZOYDeMN9HqVcJKHJch-KRJRhLp0NfZE550RhS0sR3b1JOj4QXw_l4Qr86XNh6LfK3iY2htrVlr6Rr_M0V7ibSBV_PPsdEmsURVd7Co1WLXb8xQJdttmH7S84v28539rc_zwOO1aB0Mo4m4fSZdyqrBSE3LkRibOps4Y7XtrMWlU6l0qf-sgIy_Eo0YAXLirSgkq3CZ_gdW_BqkjQlRnB6sbm5Nv35VcdipuJWHXZOVGSr89wh6QsNvT5EFyh774Y7IANUcAA3V79N_NKgLbZ97buw70OsLJPrYY9gBVfPYTbLYXlxSP40RLY0_QyUzk2_wcIY1NdMrQZ0xrVlGErmy0Q1bJTQ-nJjLDnKTF2NSUL2AmVku0SLR7DwY1I9QmMqrryT4GhU4Wjs7hUhUHzYgvjVGRVajPDRSFNAHEvP227QubEp3Gim4B6kutW5hplrhuZ60UA75ZjztoyHtf23qBpWfakEtxNQz39pbsVrUvuXE7k88pIYVNvEspxjlWZJ7HzVgWw1k-q7uzCTF9qcQCvl6dxRVOYxlS-Pqc-COEk-pk8gGygDIMHGp6pjo-a2uAK4aKIceT7Xm0ub_7_F352_bO-gjvj_b1dvbs92XkOdzkpM9UWFWswmk_P_QvEZfPiZbcYGPy86fX3F2OiTuA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxFMEChgJThBt4thxfEAIKKuWQsWBor0Zx3YAqU3K7lar_jV-HTN5bEkleuspkmMnznhm_E3GMwPwnIciybnIYquKEItMVHEhvYtDqbz3onSVI4_u5_1850B8nMnZBvwZYmHoWOWgE1tF7RtH_8gnPC807iZSp5OqPxbxZXv65vh3TBWkyNM6lNPoWGQvnK7QfFu83t3GtX7B-fTD1_c7cV9hIHYyVctYesWdVpUgFM-tyLzLvbPc88op53TlfS5DHhIrHMerRGVe-qTMS0rjJkKGz70CV1UmU5IxNVPr_zvkQROp7uN0kqyYLHCvpHg2tP4QZqEVvxrthW3JgBHOPX9K85yrtt0Bp7fgZg9d2duO127DRqjvwLWumOXpXfjWlbKnhWa29mz5DyTGpqZiqD3mDTIsw1a2WCG-ZUeWApUZodAjqt3VJi9gh5RUtg-5uAcHl0LT-7BZN3V4AAzNKxyt0kqXFhWNK63XidO5U5aLUtoI0oF-xvUpzamyxqFpXetZYTqaG6S5aWluVhG8XI857hJ6XNj7HS3Luicl424bmvkP08u2qbj3BZWh11YKlwebUbRzqqsiS31wOoKtYVFNryEW5oyfI3i2vo2yTQ4bW4fmhPogmJNocfII1IgZRhMa36l__WyzhGsEjiLFka8Gtjl7-f8_-OHFc30K11HqzKfd_b1HcIMTL1OSUbEFm8v5SXiMAG1ZPmklgcH3yxa9vxmZUbA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Speciation+and+transformation+of+nitrogen+for+swine+manure+thermochemical+liquefaction&rft.jtitle=Scientific+reports&rft.au=Liu%2C+Zhuangzhuang&rft.au=Yan%2C+Zhiwei&rft.au=Liu%2C+Fen&rft.au=Fang%2C+Jun&rft.date=2022-07-14&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=12056&rft_id=info:doi/10.1038%2Fs41598-022-16101-w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon