Speciation and transformation of nitrogen for swine manure thermochemical liquefaction
The nitrogen conversion mechanism of swine manure by thermochemical liquefaction with ethanol as solvent was investigated at a lower temperature range (180–300 °C). The fate of nitrogen in liquid phase products, bio-oil and biochar was evaluated by XPS, GC–MS and other methods. After thermochemical...
Saved in:
Published in | Scientific reports Vol. 12; no. 1; pp. 12056 - 13 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
14.07.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The nitrogen conversion mechanism of swine manure by thermochemical liquefaction with ethanol as solvent was investigated at a lower temperature range (180–300 °C). The fate of nitrogen in liquid phase products, bio-oil and biochar was evaluated by XPS, GC–MS and other methods. After thermochemical liquefaction, most of the nitrogen in swine manure was transferred to biochar (63.75%). As the temperature increased to 220 °C, the biochar-N yields decreased to 43.29%, accompanied by an increase in bio-oil-N and liquid phase product-N by 7.99% and 1.26% respectively. The results indicated that increasing the temperature could facilitate solid nitrogen structure cracking into bio-oil-N. Amines and heterocyclic nitrogen from protein peptide bond cracking and Maillard reactions made up the main nitrogen compounds in bio-oil, and high temperatures favored the further cyclization and condensation of heterocyclic nitrogen (e.g., indole, quinoline). In the case of biochar, the inorganic nitrogen disappeared at 260 °C and was obviously transformed into liquid phase products. The rising temperature promoted the polymerization of pyridine nitrogen and pyrrole nitrogen, which formed more stabilized nitrogen formation (such as quaternary nitrogen). Nitrogen conversion and possible reaction schematics during swine manure thermochemical liquefaction were explored in this study. |
---|---|
AbstractList | Abstract The nitrogen conversion mechanism of swine manure by thermochemical liquefaction with ethanol as solvent was investigated at a lower temperature range (180–300 °C). The fate of nitrogen in liquid phase products, bio-oil and biochar was evaluated by XPS, GC–MS and other methods. After thermochemical liquefaction, most of the nitrogen in swine manure was transferred to biochar (63.75%). As the temperature increased to 220 °C, the biochar-N yields decreased to 43.29%, accompanied by an increase in bio-oil-N and liquid phase product-N by 7.99% and 1.26% respectively. The results indicated that increasing the temperature could facilitate solid nitrogen structure cracking into bio-oil-N. Amines and heterocyclic nitrogen from protein peptide bond cracking and Maillard reactions made up the main nitrogen compounds in bio-oil, and high temperatures favored the further cyclization and condensation of heterocyclic nitrogen (e.g., indole, quinoline). In the case of biochar, the inorganic nitrogen disappeared at 260 °C and was obviously transformed into liquid phase products. The rising temperature promoted the polymerization of pyridine nitrogen and pyrrole nitrogen, which formed more stabilized nitrogen formation (such as quaternary nitrogen). Nitrogen conversion and possible reaction schematics during swine manure thermochemical liquefaction were explored in this study. The nitrogen conversion mechanism of swine manure by thermochemical liquefaction with ethanol as solvent was investigated at a lower temperature range (180–300 °C). The fate of nitrogen in liquid phase products, bio-oil and biochar was evaluated by XPS, GC–MS and other methods. After thermochemical liquefaction, most of the nitrogen in swine manure was transferred to biochar (63.75%). As the temperature increased to 220 °C, the biochar-N yields decreased to 43.29%, accompanied by an increase in bio-oil-N and liquid phase product-N by 7.99% and 1.26% respectively. The results indicated that increasing the temperature could facilitate solid nitrogen structure cracking into bio-oil-N. Amines and heterocyclic nitrogen from protein peptide bond cracking and Maillard reactions made up the main nitrogen compounds in bio-oil, and high temperatures favored the further cyclization and condensation of heterocyclic nitrogen (e.g., indole, quinoline). In the case of biochar, the inorganic nitrogen disappeared at 260 °C and was obviously transformed into liquid phase products. The rising temperature promoted the polymerization of pyridine nitrogen and pyrrole nitrogen, which formed more stabilized nitrogen formation (such as quaternary nitrogen). Nitrogen conversion and possible reaction schematics during swine manure thermochemical liquefaction were explored in this study. The nitrogen conversion mechanism of swine manure by thermochemical liquefaction with ethanol as solvent was investigated at a lower temperature range (180–300 °C). The fate of nitrogen in liquid phase products, bio-oil and biochar was evaluated by XPS, GC–MS and other methods. After thermochemical liquefaction, most of the nitrogen in swine manure was transferred to biochar (63.75%). As the temperature increased to 220 °C, the biochar-N yields decreased to 43.29%, accompanied by an increase in bio-oil-N and liquid phase product-N by 7.99% and 1.26% respectively. The results indicated that increasing the temperature could facilitate solid nitrogen structure cracking into bio-oil-N. Amines and heterocyclic nitrogen from protein peptide bond cracking and Maillard reactions made up the main nitrogen compounds in bio-oil, and high temperatures favored the further cyclization and condensation of heterocyclic nitrogen (e.g., indole, quinoline). In the case of biochar, the inorganic nitrogen disappeared at 260 °C and was obviously transformed into liquid phase products. The rising temperature promoted the polymerization of pyridine nitrogen and pyrrole nitrogen, which formed more stabilized nitrogen formation (such as quaternary nitrogen). Nitrogen conversion and possible reaction schematics during swine manure thermochemical liquefaction were explored in this study. The nitrogen conversion mechanism of swine manure by thermochemical liquefaction with ethanol as solvent was investigated at a lower temperature range (180-300 °C). The fate of nitrogen in liquid phase products, bio-oil and biochar was evaluated by XPS, GC-MS and other methods. After thermochemical liquefaction, most of the nitrogen in swine manure was transferred to biochar (63.75%). As the temperature increased to 220 °C, the biochar-N yields decreased to 43.29%, accompanied by an increase in bio-oil-N and liquid phase product-N by 7.99% and 1.26% respectively. The results indicated that increasing the temperature could facilitate solid nitrogen structure cracking into bio-oil-N. Amines and heterocyclic nitrogen from protein peptide bond cracking and Maillard reactions made up the main nitrogen compounds in bio-oil, and high temperatures favored the further cyclization and condensation of heterocyclic nitrogen (e.g., indole, quinoline). In the case of biochar, the inorganic nitrogen disappeared at 260 °C and was obviously transformed into liquid phase products. The rising temperature promoted the polymerization of pyridine nitrogen and pyrrole nitrogen, which formed more stabilized nitrogen formation (such as quaternary nitrogen). Nitrogen conversion and possible reaction schematics during swine manure thermochemical liquefaction were explored in this study.The nitrogen conversion mechanism of swine manure by thermochemical liquefaction with ethanol as solvent was investigated at a lower temperature range (180-300 °C). The fate of nitrogen in liquid phase products, bio-oil and biochar was evaluated by XPS, GC-MS and other methods. After thermochemical liquefaction, most of the nitrogen in swine manure was transferred to biochar (63.75%). As the temperature increased to 220 °C, the biochar-N yields decreased to 43.29%, accompanied by an increase in bio-oil-N and liquid phase product-N by 7.99% and 1.26% respectively. The results indicated that increasing the temperature could facilitate solid nitrogen structure cracking into bio-oil-N. Amines and heterocyclic nitrogen from protein peptide bond cracking and Maillard reactions made up the main nitrogen compounds in bio-oil, and high temperatures favored the further cyclization and condensation of heterocyclic nitrogen (e.g., indole, quinoline). In the case of biochar, the inorganic nitrogen disappeared at 260 °C and was obviously transformed into liquid phase products. The rising temperature promoted the polymerization of pyridine nitrogen and pyrrole nitrogen, which formed more stabilized nitrogen formation (such as quaternary nitrogen). Nitrogen conversion and possible reaction schematics during swine manure thermochemical liquefaction were explored in this study. |
ArticleNumber | 12056 |
Author | Liu, Fen Yan, Zhiwei Liu, Zhuangzhuang Fang, Jun |
Author_xml | – sequence: 1 givenname: Zhuangzhuang surname: Liu fullname: Liu, Zhuangzhuang organization: College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production – sequence: 2 givenname: Zhiwei surname: Yan fullname: Yan, Zhiwei organization: College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production – sequence: 3 givenname: Fen surname: Liu fullname: Liu, Fen organization: College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production – sequence: 4 givenname: Jun surname: Fang fullname: Fang, Jun email: fangjun1973@hunau.edu.cn organization: College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production |
BookMark | eNp9UstuFDEQtFAQCSE_wGkkLlwG7PZjxhckFPGIFIkDj6vltXt2vZqxF3uWFX-PdycCkkN8aatdVW5V13NyFlNEQl4y-oZR3r8tgkndtxSgZYpR1h6ekAugQrbAAc7-u5-Tq1K2tB4JWjD9jJxz2XOpGbsgP77u0AU7hxQbG30zZxvLkPK0tNLQxDDntMbY1G5TDiFiM9m4z9jMG8xTchucgrNjM4afexysOxJfkKeDHQte3dVL8v3jh2_Xn9vbL59urt_ftk6ybm6l78DpbhBUKQVWcO-UdxY8DK5zTg_eK4kKqRUOapXQi5WnK7VSXHYC-SW5WXR9sluzy2Gy-bdJNphTI-W1sXkObkQzgPc9UODaSuEUWl4tkEwPPWcena5a7xat3X41oXcYqxnjPdH7LzFszDr9Mhp6LhhUgdd3AjlVK8psplAcjqONmPbFgNKs7kDRI_TVA-g27XOsVlVUrwWoup6KggXlciol4_B3GEbNMQVmSYGpKTCnFJhDJfUPSC7Mp23WocP4OJUv1FL_iWvM_6Z6hPUHLHrJrA |
CitedBy_id | crossref_primary_10_1080_10643389_2025_2457991 crossref_primary_10_1016_j_indcrop_2022_115564 |
Cites_doi | 10.13031/2013.22291 10.1016/j.jclepro.2020.120020 10.1016/j.renene.2020.11.033 10.3934/energy.2017.2.239 10.1016/j.fuel.2016.02.068 10.1016/j.energy.2017.06.166 10.1016/j.enconman.2016.12.052 10.1038/s41598-021-91440-8 10.1016/j.joei.2021.04.004 10.1016/j.biortech.2019.121385 10.1016/j.energy.2020.117105 10.1021/acs.energyfuels.0c01993 10.1016/j.fuproc.2018.10.020 10.1016/j.chemosphere.2021.131635 10.1016/j.biombioe.2019.01.035 10.1016/j.jaap.2017.09.019 10.1016/j.biortech.2016.03.102 10.1038/s41598-020-74130-9 10.1016/j.scitotenv.2021.147103 10.1007/s11356-020-11111-5 10.1016/j.jaap.2017.05.017 10.1038/s41598-019-51315-5 10.1016/j.energy.2018.01.186 10.1016/j.biortech.2017.06.085 10.1016/j.conbuildmat.2021.123584 10.1021/acs.energyfuels.6b01312 10.1016/b978-0-08-052349-1.00158-x 10.1016/j.energy.2021.120733 10.1016/j.biortech.2017.09.076 10.1039/c5gc02953h 10.1080/00103628909368129 10.1021/acssuschemeng.8b03810 10.1002/bbb.1831 10.1007/s12155-011-9157-z 10.1016/j.jaap.2013.04.002 10.1016/j.renene.2020.10.066 10.3389/fmicb.2021.746718 10.1016/j.biortech.2015.01.045 10.1016/j.biortech.2017.02.017 10.1016/j.jaap.2018.07.008 10.1016/j.jclepro.2021.128175 10.1016/j.btre.2020.e00570 10.1016/j.biortech.2020.123414 10.1016/j.energy.2021.121027 10.1016/j.fuel.2020.119407 10.1016/j.biortech.2016.05.012 10.1016/j.renene.2021.11.001 10.1021/es304532c 10.1016/j.apenergy.2013.04.084 10.1016/j.fuel.2020.118738 10.1016/j.fuel.2021.121149 10.1016/j.rser.2020.110476 10.1016/j.apenergy.2014.06.038 10.1016/j.renene.2017.06.104 10.1007/s11356-020-11748-2 10.1016/j.renene.2021.01.098 10.1016/j.biortech.2015.09.033 10.1016/j.scitotenv.2020.141972 10.1016/j.fuel.2021.122616 10.1016/j.biombioe.2021.106119 10.3390/en11040957 10.1016/j.scitotenv.2021.145922 10.1016/j.energy.2018.04.057 10.3390/molecules24122250 10.1201/9780367816087 10.3390/antibiotics10050539 10.1016/j.jaap.2016.05.004 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-022-16101-w |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_f2dd820239a54c6ea3359519f831dec9 PMC9283412 10_1038_s41598_022_16101_w |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: No. 31672457 – fundername: Hunan Provincial Science and Technology Department grantid: 2020NK2004 funderid: http://dx.doi.org/10.13039/501100002767 – fundername: Double first-class construction project of Hunan Agricultural University grantid: SYL201802003 – fundername: ; grantid: SYL201802003 – fundername: ; grantid: 2020NK2004 – fundername: ; grantid: No. 31672457 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c517t-5d72c97f406662a43dc6dca2d2fc7cc9fdd65e6e0a4c2e6e5284bd0b6b63574e3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:25:07 EDT 2025 Thu Aug 21 18:45:16 EDT 2025 Tue Aug 05 10:43:53 EDT 2025 Wed Aug 13 07:01:45 EDT 2025 Tue Jul 01 04:16:52 EDT 2025 Thu Apr 24 23:12:25 EDT 2025 Fri Feb 21 02:36:45 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-5d72c97f406662a43dc6dca2d2fc7cc9fdd65e6e0a4c2e6e5284bd0b6b63574e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2689426591?pq-origsite=%requestingapplication% |
PMID | 35835911 |
PQID | 2689426591 |
PQPubID | 2041939 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f2dd820239a54c6ea3359519f831dec9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9283412 proquest_miscellaneous_2691052602 proquest_journals_2689426591 crossref_primary_10_1038_s41598_022_16101_w crossref_citationtrail_10_1038_s41598_022_16101_w springer_journals_10_1038_s41598_022_16101_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-14 |
PublicationDateYYYYMMDD | 2022-07-14 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Tian (CR1) 2021 Lu, Li, Zhang, Liu (CR12) 2018; 6 Minarick (CR59) 2011 Wu (CR6) 2022 Ekpo, Ross, Camargo-Valero, Fletcher (CR34) 2016 Peng (CR57) 2016 Zhao, Shen, Ge, Chen, Yoshikawa (CR29) 2014 Sun (CR7) 2021 Xin (CR66) 2016 Nie, Bi (CR65) 2018 Zhang, Gong, Peng, Feng, Li (CR22) 2022 Zhang (CR56) 2021 Huang (CR28) 2013; 102 Pedersen, Hansen, Pérez, Cabezas, Rosendahl (CR62) 2018 Magdeldin, Kohl, Järvinen (CR64) 2017 Mateus, Bordado, Galhano dos Santos (CR18) 2021 Zhang, Jiang, Xie, Wang, Kang (CR50) 2019; 122 Ocfemia, Zhang, Funk (CR15) 2006; 49 Xiao (CR21) 2019 Wądrzyk, Janus, Vos, Brilman (CR55) 2018 Lu (CR30) 2017 Xu (CR32) 2020 CR2 Lai (CR39) 2018 Ali Shah (CR11) 2021 Luan (CR17) 2021 Hong (CR16) 2021 Paneque, De la Rosa, Kern, Reza, Knicker (CR51) 2017 Arif (CR69) 2021 Chen (CR46) 2016 Obeid (CR20) 2021 Wang (CR44) 2018 Fang (CR35) 2021 Zhang (CR43) 2020 Kruse, Koch, Stelzl, Wüst, Zeller (CR42) 2016 Babu (CR60) 2019 Ponnusamy (CR48) 2020 Juneja, Murthy (CR67) 2017 Xu (CR36) 2018 Torrijos, Calvo Dopico, Soto (CR8) 2021 Wang, Zhang, Ji, Shi (CR61) 2020 Sharara, Sadaka (CR13) 2018 Liu (CR49) 2017 Goswami, Makut, Das (CR23) 2019 Zhang (CR38) 2019; 24 Baethgen, Alley (CR68) 1989 Pham, Schideman, Scott, Rajagopalan, Plewa (CR25) 2013 Adánez-Rubio, Ferreira, Rio, Alzueta, Costa (CR10) 2020 Wang, He, Zhang, Duan (CR41) 2021 Wu (CR4) 2021 Wang (CR33) 2021 Gai, Liu, Han, Peng, Fan (CR31) 2015 Grashey (CR54) 1991 Wang (CR5) 2021 Qian, Wang, Savage (CR52) 2017; 232 Yin, Chen, Xu, Wang, Xu (CR37) 2015 Alherbawi, Parthasarathy, Al-Ansari, Mackey, McKay (CR58) 2021 Wang, Jing, Zhang, Cao, Lyu (CR9) 2021 Zhang (CR3) 2021 Zhang, Tang, Sheng, Yang (CR53) 2016 Wang (CR14) 2022 Tzanetis, Posada, Ramirez (CR63) 2017; 113 Li, Wang, Yang, Chen (CR24) 2016; 5 Zhu (CR45) 2017 Manimaran, Murugu Mohan Kumar, Sathiya Narayanan (CR19) 2020 He, Giannis, Wang (CR47) 2013 Song (CR40) 2020 Yaashikaa, Kumar, Varjani, Saravanan (CR26) 2020 Chen, Wang, Zhang, Yi, Liu (CR27) 2021 Y Nie (16101_CR65) 2018 V Babu (16101_CR60) 2019 H Zhang (16101_CR43) 2020 P Zhao (16101_CR29) 2014 V Torrijos (16101_CR8) 2021 R Wang (16101_CR33) 2021 M Minarick (16101_CR59) 2011 W Chen (16101_CR46) 2016 KF Tzanetis (16101_CR63) 2017; 113 S Zhang (16101_CR38) 2019; 24 N Li (16101_CR24) 2016; 5 A Juneja (16101_CR67) 2017 T Wang (16101_CR61) 2020 M Chen (16101_CR27) 2021 ZX Xu (16101_CR36) 2018 B Wang (16101_CR41) 2021 Z Zhu (16101_CR45) 2017 R Grashey (16101_CR54) 1991 C Zhang (16101_CR53) 2016 MA Sharara (16101_CR13) 2018 L Sun (16101_CR7) 2021 G Goswami (16101_CR23) 2019 H Xiao (16101_CR21) 2019 J Fang (16101_CR35) 2021 F Yin (16101_CR37) 2015 M Alherbawi (16101_CR58) 2021 WE Baethgen (16101_CR68) 1989 Z Zhang (16101_CR56) 2021 HJ Huang (16101_CR28) 2013; 102 VK Ponnusamy (16101_CR48) 2020 H Wang (16101_CR9) 2021 J Lu (16101_CR12) 2018; 6 M Paneque (16101_CR51) 2017 R Manimaran (16101_CR19) 2020 F Obeid (16101_CR20) 2021 U Ekpo (16101_CR34) 2016 TH Pedersen (16101_CR62) 2018 MM Mateus (16101_CR18) 2021 T Liu (16101_CR49) 2017 C Peng (16101_CR57) 2016 M Tian (16101_CR1) 2021 R Wang (16101_CR14) 2022 M Pham (16101_CR25) 2013 L Xu (16101_CR32) 2020 M Arif (16101_CR69) 2021 C Song (16101_CR40) 2020 A Ali Shah (16101_CR11) 2021 M Magdeldin (16101_CR64) 2017 H Luan (16101_CR17) 2021 D Wu (16101_CR6) 2022 Y Zhang (16101_CR50) 2019; 122 16101_CR2 FY Lai (16101_CR39) 2018 C Zhang (16101_CR22) 2022 C Xin (16101_CR66) 2016 KS Ocfemia (16101_CR15) 2006; 49 A Kruse (16101_CR42) 2016 C Gai (16101_CR31) 2015 RT Wu (16101_CR4) 2021 Y Zhang (16101_CR3) 2021 I Adánez-Rubio (16101_CR10) 2020 J Lu (16101_CR30) 2017 L Qian (16101_CR52) 2017; 232 M Wądrzyk (16101_CR55) 2018 W Hong (16101_CR16) 2021 PR Yaashikaa (16101_CR26) 2020 A Wang (16101_CR5) 2021 T Wang (16101_CR44) 2018 C He (16101_CR47) 2013 |
References_xml | – volume: 49 start-page: 1897 year: 2006 end-page: 1904 ident: CR15 article-title: Hydrothermal processing of swine manure to oil using a continuous reactor system: Effects of operating parameters on oil yield and quality publication-title: Trans. ASABE doi: 10.13031/2013.22291 – year: 2020 ident: CR43 article-title: Effect of temperature on the product characteristics and fuel-nitrogen evolution during chromium-tanned solid wastes pyrolysis polygeneration publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.120020 – year: 2021 ident: CR35 article-title: Thermochemical liquefaction of cattle manure using ethanol as solvent: Effects of temperature on bio-oil yields and chemical compositions publication-title: Renew. Energy doi: 10.1016/j.renene.2020.11.033 – year: 2017 ident: CR67 article-title: Evaluating the potential of renewable diesel production from algae cultured on wastewater: Techno-economic analysis and life cycle assessment publication-title: AIMS Energy doi: 10.3934/energy.2017.2.239 – year: 2016 ident: CR57 article-title: Production of char from sewage sludge employing hydrothermal carbonization: Char properties, combustion behavior and thermal characteristics publication-title: Fuel doi: 10.1016/j.fuel.2016.02.068 – year: 2017 ident: CR64 article-title: Techno-economic assessment of the by-products contribution from non-catalytic hydrothermal liquefaction of lignocellulose residues publication-title: Energy doi: 10.1016/j.energy.2017.06.166 – year: 2017 ident: CR30 article-title: Simultaneous production of biocrude oil and recovery of nutrients and metals from human feces via hydrothermal liquefaction publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.12.052 – year: 2021 ident: CR5 article-title: Speciation and environmental risk of heavy metals in biochars produced by pyrolysis of chicken manure and water-washed swine manure publication-title: Sci. Rep. doi: 10.1038/s41598-021-91440-8 – year: 2021 ident: CR16 article-title: Efficient thermochemical liquefaction of microalgae for production of high quality biocrude with high selectivity over Fe/montmorillonite catalyst publication-title: J. Energy Inst. doi: 10.1016/j.joei.2021.04.004 – year: 2019 ident: CR21 article-title: Speciation and transformation of nitrogen for spirulina hydrothermal carbonization publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.121385 – year: 2020 ident: CR61 article-title: Market reforms and determinants of import natural gas prices in China publication-title: Energy doi: 10.1016/j.energy.2020.117105 – year: 2020 ident: CR32 article-title: Recent advances of producing biobased N-containing compounds via thermo-chemical conversion with ammonia process publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.0c01993 – year: 2018 ident: CR36 article-title: Investigation of pathways for transformation of N-heterocycle compounds during sewage sludge pyrolysis process publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2018.10.020 – year: 2022 ident: CR6 article-title: Lignocellulose biomass bioconversion during composting: Mechanism of action of lignocellulase, pretreatment methods and future perspectives publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.131635 – volume: 122 start-page: 175 year: 2019 end-page: 182 ident: CR50 article-title: Effects of temperature, time and acidity of hydrothermal carbonization on the hydrochar properties and nitrogen recovery from corn stover publication-title: Biomass Bioenergy. doi: 10.1016/j.biombioe.2019.01.035 – year: 2017 ident: CR51 article-title: Hydrothermal carbonization and pyrolysis of sewage sludges: What happen to carbon and nitrogen? publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2017.09.019 – year: 2016 ident: CR66 article-title: Comprehensive techno-economic analysis of wastewater-based algal biofuel production: A case study publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.03.102 – year: 2020 ident: CR19 article-title: Synthesis of bio-oil from waste seeds: A substitute for conventional fuel publication-title: Sci. Rep. doi: 10.1038/s41598-020-74130-9 – year: 2021 ident: CR56 article-title: Mitigation of carbon and nitrogen losses during pig manure composting: A meta-analysis publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.147103 – year: 2021 ident: CR4 article-title: A novel method for extraction of polypropylene microplastics in swine manure publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-020-11111-5 – year: 2017 ident: CR49 article-title: Nitrogen transformation among char, tar and gas during pyrolysis of sewage sludge and corresponding hydrochar publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2017.05.017 – year: 2019 ident: CR23 article-title: Sustainable production of bio-crude oil via hydrothermal liquefaction of symbiotically grown biomass of microalgae-bacteria coupled with effective wastewater treatment publication-title: Sci. Rep. doi: 10.1038/s41598-019-51315-5 – year: 2018 ident: CR39 article-title: Liquefaction of sewage sludge in ethanol-water mixed solvents for bio-oil and biochar products publication-title: Energy doi: 10.1016/j.energy.2018.01.186 – year: 2017 ident: CR45 article-title: Elemental migration and characterization of products during hydrothermal liquefaction of cornstalk publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.06.085 – year: 2021 ident: CR9 article-title: Preparation and performance evaluation of swine manure bio-oil modified rubber asphalt binder publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.123584 – year: 2016 ident: CR42 article-title: Fate of nitrogen during hydrothermal carbonization publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.6b01312 – year: 1991 ident: CR54 article-title: Synthesis of pseudohalides, nitriles and related compounds publication-title: Compr. Org. Synth. doi: 10.1016/b978-0-08-052349-1.00158-x – year: 2021 ident: CR41 article-title: Study on hydrothermal liquefaction of spirulina platensis using biochar based catalysts to produce bio-oil publication-title: Energy doi: 10.1016/j.energy.2021.120733 – year: 2018 ident: CR44 article-title: Influence of temperature on nitrogen fate during hydrothermal carbonization of food waste publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.09.076 – year: 2016 ident: CR53 article-title: Enhancing the performance of Co-hydrothermal liquefaction for mixed algae strains by the Maillard reaction publication-title: Green Chem. doi: 10.1039/c5gc02953h – year: 1989 ident: CR68 article-title: A manual colorimetric procedure for measuring ammonium nitrogen in soil and plant kjeldahl digests publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103628909368129 – volume: 6 start-page: 13570 year: 2018 end-page: 13578 ident: CR12 article-title: Nitrogen migration and transformation during hydrothermal liquefaction of livestock manures publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b03810 – year: 2018 ident: CR62 article-title: Renewable hydrocarbon fuels from hydrothermal liquefaction: A techno-economic analysis publication-title: Biofuels Bioprod. Biorefining doi: 10.1002/bbb.1831 – volume: 5 start-page: 285 year: 2016 end-page: 295 ident: CR24 article-title: Retardation effect of basic nitrogen compounds in shale oil on catalytic cracking and their structure characterization publication-title: Pet. Process. Petrochem. – year: 2011 ident: CR59 article-title: Product and economic analysis of direct liquefaction of swine manure publication-title: Bioenergy Res. doi: 10.1007/s12155-011-9157-z – volume: 102 start-page: 60 year: 2013 end-page: 67 ident: CR28 article-title: Thermochemical liquefaction of rice husk for bio-oil production with sub- and supercritical ethanol as solvent publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2013.04.002 – year: 2021 ident: CR69 article-title: A complete characterization of microalgal biomass through FTIR/TGA/CHNS analysis: An approach for biofuel generation and nutrients removal publication-title: Renew. Energy doi: 10.1016/j.renene.2020.10.066 – year: 2021 ident: CR7 article-title: Different effects of thermophilic microbiological inoculation with and without biochar on physicochemical characteristics and bacterial communities in pig manure composting publication-title: Front. Microbiol. doi: 10.3389/fmicb.2021.746718 – year: 2015 ident: CR31 article-title: Combustion behavior and kinetics of low-lipid microalgae via thermogravimetric analysis publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.01.045 – volume: 232 start-page: 27 year: 2017 end-page: 34 ident: CR52 article-title: Hydrothermal liquefaction of sewage sludge under isothermal and fast conditions publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.02.017 – year: 2018 ident: CR55 article-title: Effect of process conditions on bio-oil obtained through continuous hydrothermal liquefaction of sp. microalgae publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2018.07.008 – ident: CR2 – year: 2021 ident: CR8 article-title: Integration of food waste composting and vegetable gardens in a university campus publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.128175 – year: 2020 ident: CR26 article-title: A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy publication-title: Biotechnol. Rep. doi: 10.1016/j.btre.2020.e00570 – year: 2020 ident: CR48 article-title: Review on sustainable production of biochar through hydrothermal liquefaction: Physico-chemical properties and applications publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.123414 – year: 2021 ident: CR58 article-title: Potential of drop-in biofuel production from camel manure by hydrothermal liquefaction and biocrude upgrading: A Qatar case study publication-title: Energy doi: 10.1016/j.energy.2021.121027 – year: 2021 ident: CR11 article-title: Bio-crude production through co-hydrothermal processing of swine manure with sewage sludge to enhance pumpability publication-title: Fuel doi: 10.1016/j.fuel.2020.119407 – year: 2016 ident: CR34 article-title: Influence of pH on hydrothermal treatment of swine manure: Impact on extraction of nitrogen and phosphorus in process water publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.05.012 – year: 2022 ident: CR14 article-title: Analysis and prediction of characteristics for solid product obtained by hydrothermal carbonization of biomass components publication-title: Renew. Energy doi: 10.1016/j.renene.2021.11.001 – year: 2013 ident: CR25 article-title: Chemical and biological characterization of wastewater generated from hydrothermal liquefaction of Spirulina publication-title: Environ. Sci. Technol. doi: 10.1021/es304532c – year: 2013 ident: CR47 article-title: Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.04.084 – year: 2020 ident: CR10 article-title: Soot and char formation in the gasification of pig manure in a drop tube reactor publication-title: Fuel doi: 10.1016/j.fuel.2020.118738 – year: 2021 ident: CR18 article-title: Estimation of higher heating value (HHV) of bio-oils from thermochemical liquefaction by linear correlation publication-title: Fuel doi: 10.1016/j.fuel.2021.121149 – year: 2021 ident: CR3 article-title: Environmental sustainability assessment of pig manure mono- and co-digestion and dynamic land application of the digestate publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.110476 – year: 2014 ident: CR29 article-title: Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.06.038 – volume: 113 start-page: 1388 year: 2017 end-page: 1398 ident: CR63 article-title: Analysis of biomass hydrothermal liquefaction and biocrude-oil upgrading for renewable jet fuel production: The impact of reaction conditions on production costs and GHG emissions performance publication-title: Renew. Energy doi: 10.1016/j.renene.2017.06.104 – year: 2021 ident: CR17 article-title: The migration, transformation, and risk assessment of heavy metals in residue and bio-oil obtained by the liquefaction of pig manure publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-020-11748-2 – year: 2021 ident: CR27 article-title: Effects of acid modification on the structure and adsorption NH4 –N properties of biochar publication-title: Renew. Energy doi: 10.1016/j.renene.2021.01.098 – year: 2015 ident: CR37 article-title: A detailed kinetic model for the hydrothermal decomposition process of sewage sludge publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.09.033 – year: 2020 ident: CR40 article-title: Thermochemical liquefaction of agricultural and forestry wastes into biofuels and chemicals from circular economy perspectives publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.141972 – year: 2022 ident: CR22 article-title: Transformation of nitrogen during microalgae model compounds liquefaction in sub-/supercritical ethanol publication-title: Fuel doi: 10.1016/j.fuel.2021.122616 – year: 2021 ident: CR20 article-title: The fate of nitrogen and sulphur during co-liquefaction of algae and bagasse: Experimental and multi-criterion decision analysis publication-title: Biomass Bioenerg. doi: 10.1016/j.biombioe.2021.106119 – year: 2018 ident: CR13 article-title: Opportunities and barriers to bioenergy conversion techniques and their potential implementation on swine manure publication-title: Energies doi: 10.3390/en11040957 – year: 2021 ident: CR33 article-title: The redistribution and migration mechanism of nitrogen in the hydrothermal co-carbonization process of sewage sludge and lignocellulosic wastes publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.145922 – year: 2018 ident: CR65 article-title: Techno-economic assessment of transportation biofuels from hydrothermal liquefaction of forest residues in British Columbia publication-title: Energy doi: 10.1016/j.energy.2018.04.057 – volume: 24 start-page: 2250 year: 2019 ident: CR38 article-title: Liquefaction of biomass and upgrading of bio-oil: A review publication-title: Molecules doi: 10.3390/molecules24122250 – year: 2019 ident: CR60 article-title: Fundamentals of engineering thermodynamics publication-title: Fundam. Eng. Thermodyn. doi: 10.1201/9780367816087 – year: 2021 ident: CR1 article-title: Pollution by antibiotics and antimicrobial resistance in live stock and poultry manure in China, and countermeasures publication-title: Antibiotics doi: 10.3390/antibiotics10050539 – year: 2016 ident: CR46 article-title: Biomass pyrolysis for nitrogen-containing liquid chemicals and nitrogen-doped carbon materials publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2016.05.004 – year: 2022 ident: 16101_CR6 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.131635 – year: 2018 ident: 16101_CR55 publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2018.07.008 – year: 2016 ident: 16101_CR42 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.6b01312 – year: 2019 ident: 16101_CR23 publication-title: Sci. Rep. doi: 10.1038/s41598-019-51315-5 – year: 2017 ident: 16101_CR49 publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2017.05.017 – year: 2021 ident: 16101_CR41 publication-title: Energy doi: 10.1016/j.energy.2021.120733 – year: 2021 ident: 16101_CR69 publication-title: Renew. Energy doi: 10.1016/j.renene.2020.10.066 – year: 2021 ident: 16101_CR11 publication-title: Fuel doi: 10.1016/j.fuel.2020.119407 – year: 2020 ident: 16101_CR32 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.0c01993 – year: 2020 ident: 16101_CR48 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.123414 – year: 2016 ident: 16101_CR57 publication-title: Fuel doi: 10.1016/j.fuel.2016.02.068 – year: 2016 ident: 16101_CR34 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.05.012 – year: 2021 ident: 16101_CR27 publication-title: Renew. Energy doi: 10.1016/j.renene.2021.01.098 – year: 2021 ident: 16101_CR18 publication-title: Fuel doi: 10.1016/j.fuel.2021.121149 – year: 2021 ident: 16101_CR8 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.128175 – year: 2017 ident: 16101_CR67 publication-title: AIMS Energy doi: 10.3934/energy.2017.2.239 – year: 2021 ident: 16101_CR35 publication-title: Renew. Energy doi: 10.1016/j.renene.2020.11.033 – year: 2017 ident: 16101_CR51 publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2017.09.019 – year: 1989 ident: 16101_CR68 publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103628909368129 – year: 2022 ident: 16101_CR22 publication-title: Fuel doi: 10.1016/j.fuel.2021.122616 – year: 2021 ident: 16101_CR20 publication-title: Biomass Bioenerg. doi: 10.1016/j.biombioe.2021.106119 – year: 2020 ident: 16101_CR40 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.141972 – volume: 49 start-page: 1897 year: 2006 ident: 16101_CR15 publication-title: Trans. ASABE doi: 10.13031/2013.22291 – volume: 102 start-page: 60 year: 2013 ident: 16101_CR28 publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2013.04.002 – year: 2021 ident: 16101_CR56 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.147103 – year: 2017 ident: 16101_CR64 publication-title: Energy doi: 10.1016/j.energy.2017.06.166 – year: 2021 ident: 16101_CR17 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-020-11748-2 – year: 2017 ident: 16101_CR30 publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.12.052 – year: 2019 ident: 16101_CR60 publication-title: Fundam. Eng. Thermodyn. doi: 10.1201/9780367816087 – volume: 24 start-page: 2250 year: 2019 ident: 16101_CR38 publication-title: Molecules doi: 10.3390/molecules24122250 – year: 2018 ident: 16101_CR62 publication-title: Biofuels Bioprod. Biorefining doi: 10.1002/bbb.1831 – year: 2014 ident: 16101_CR29 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.06.038 – year: 2015 ident: 16101_CR31 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.01.045 – year: 2020 ident: 16101_CR61 publication-title: Energy doi: 10.1016/j.energy.2020.117105 – volume: 5 start-page: 285 year: 2016 ident: 16101_CR24 publication-title: Pet. Process. Petrochem. – year: 2020 ident: 16101_CR19 publication-title: Sci. Rep. doi: 10.1038/s41598-020-74130-9 – year: 2021 ident: 16101_CR7 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2021.746718 – year: 2018 ident: 16101_CR36 publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2018.10.020 – year: 2021 ident: 16101_CR16 publication-title: J. Energy Inst. doi: 10.1016/j.joei.2021.04.004 – volume: 232 start-page: 27 year: 2017 ident: 16101_CR52 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.02.017 – year: 2013 ident: 16101_CR47 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.04.084 – year: 2016 ident: 16101_CR46 publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2016.05.004 – volume: 6 start-page: 13570 year: 2018 ident: 16101_CR12 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b03810 – year: 2022 ident: 16101_CR14 publication-title: Renew. Energy doi: 10.1016/j.renene.2021.11.001 – year: 2021 ident: 16101_CR1 publication-title: Antibiotics doi: 10.3390/antibiotics10050539 – year: 2020 ident: 16101_CR10 publication-title: Fuel doi: 10.1016/j.fuel.2020.118738 – year: 2018 ident: 16101_CR39 publication-title: Energy doi: 10.1016/j.energy.2018.01.186 – volume: 122 start-page: 175 year: 2019 ident: 16101_CR50 publication-title: Biomass Bioenergy. doi: 10.1016/j.biombioe.2019.01.035 – year: 1991 ident: 16101_CR54 publication-title: Compr. Org. Synth. doi: 10.1016/b978-0-08-052349-1.00158-x – year: 2016 ident: 16101_CR53 publication-title: Green Chem. doi: 10.1039/c5gc02953h – ident: 16101_CR2 – year: 2018 ident: 16101_CR13 publication-title: Energies doi: 10.3390/en11040957 – year: 2013 ident: 16101_CR25 publication-title: Environ. Sci. Technol. doi: 10.1021/es304532c – year: 2021 ident: 16101_CR3 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.110476 – year: 2019 ident: 16101_CR21 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.121385 – year: 2017 ident: 16101_CR45 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.06.085 – year: 2020 ident: 16101_CR43 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.120020 – year: 2011 ident: 16101_CR59 publication-title: Bioenergy Res. doi: 10.1007/s12155-011-9157-z – year: 2018 ident: 16101_CR65 publication-title: Energy doi: 10.1016/j.energy.2018.04.057 – year: 2021 ident: 16101_CR58 publication-title: Energy doi: 10.1016/j.energy.2021.121027 – year: 2021 ident: 16101_CR5 publication-title: Sci. Rep. doi: 10.1038/s41598-021-91440-8 – year: 2020 ident: 16101_CR26 publication-title: Biotechnol. Rep. doi: 10.1016/j.btre.2020.e00570 – volume: 113 start-page: 1388 year: 2017 ident: 16101_CR63 publication-title: Renew. Energy doi: 10.1016/j.renene.2017.06.104 – year: 2021 ident: 16101_CR9 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.123584 – year: 2015 ident: 16101_CR37 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.09.033 – year: 2021 ident: 16101_CR4 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-020-11111-5 – year: 2016 ident: 16101_CR66 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.03.102 – year: 2021 ident: 16101_CR33 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.145922 – year: 2018 ident: 16101_CR44 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.09.076 |
SSID | ssj0000529419 |
Score | 2.3917518 |
Snippet | The nitrogen conversion mechanism of swine manure by thermochemical liquefaction with ethanol as solvent was investigated at a lower temperature range... The nitrogen conversion mechanism of swine manure by thermochemical liquefaction with ethanol as solvent was investigated at a lower temperature range (180–300... The nitrogen conversion mechanism of swine manure by thermochemical liquefaction with ethanol as solvent was investigated at a lower temperature range (180-300... Abstract The nitrogen conversion mechanism of swine manure by thermochemical liquefaction with ethanol as solvent was investigated at a lower temperature range... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 12056 |
SubjectTerms | 639/4077 639/4077/909 639/4077/909/4053 639/4077/909/4053/906 Amines Charcoal Ethanol High temperature Humanities and Social Sciences Liquefaction Low temperature Manures multidisciplinary Nitrogen Oil Pig manure Science Science (multidisciplinary) Speciation Temperature |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SKHgRaxVXq6TgTZfuZvOxOaq0FEFPVnoLySRBod0nfa88_O87k933fFtQL54W8sEmkxnmNyTzG8beiNQ3Wsiu9qZPtexkrnsVoU7BxBhlgAx0o_v5iz6_kJ8u1eVOqS96EzbSA4-CO8kixp5qfFuvJOjkO0olbW3uuzYmKKl76PN2gqmR1VtY2dopS6bp-pMleirKJsPYC0EOxtDrmScqhP0zlHn_jeS9i9Lif84es0cTcOTvxwUfsAdpeML2x1KSvw7Zt7GQPImZ-yHy1Q4gxaZF5mi7NwtUF46tfLlGdMmvPaUJc8KA11Q5q1AH8CuidJ0SHp6yi7PTrx_P66lmQg2qNataRSPAmiwpLhFedhF0BC-iyGAAbI5Rq6RT4yUI_Cp0TyE2QQcippOpe8b2hsWQnjOOwQ3ONm22waOZQ_DRNmA1GC9kUL5i7UZ-DiZCcaprceXKxXbXu1HmDmXuiszdumJvt3N-jnQafx39gY5lO5KosEsDKoibFMT9S0EqdrQ5VDfZ59IJ3VvEJsq2FTvedqNl0XWJH9LilsYglFIY74mKmZkyzBY07xl-fC8c3RZhm2xx5ruN2vz--Z83_OJ_bPgleyhIzYn9Ux6xvdXNbXqFyGkVXhcjuQO6mxeA priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF-0IvgifmJslRV809Bksx_ZJ1GxFEGfrNzbsp8qtEl7d-Xwv-_MZu9qCvYpsB8kmZ3ZmdnZ-Q0hb1nsG8l4V1vVx5p3PNW9CL6OToUQuPPJY0T323d5fMK_LsSiHLityrXK7Z6YN-owejwjP2Sy16BNhG4_nF_UWDUKo6ulhMZdcg-hy_BKl1qo3RkLRrF4q0uuTNP1hyvQV5hTBh4YmDrgSW9m-ijD9s9szZs3JW-ES7MWOnpEHhbzkX6c1vsxuROHJ-T-VFDy71Pycyonj8Smdgh0_Y9ZCk1joiDByxGYhkIrXW3AxqRnFpOFKVqCZ1g_KwMI0FMEdi1pD8_IydGXH5-P61I5ofaiVetaBMW8Vomjd8Is74KXwVsWWPLKe51CkCLK2FjuGTwFKCkXGicdwtPx2D0ne8M4xBeEgosDs1WbtLMg7N7ZoBuvpVeWcSdsRdot_YwvsOJY3eLU5PB215uJ5gZobjLNzaYi73ZzzidQjVtHf8Jl2Y1EQOzcMC5_mSJfJrEQeiwFr63gXkbbYcZxq1PftSF6XZGD7aKaIqUrc81TFXmz6wb5wqCJHeJ4iWPAoBLg9bGKqBkzzD5o3jP8-Z2RujUYb7yFme-3bHP98v__8Mvbv3WfPGDIwIjuyQ_I3np5GV-BZbR2rzP7XwGpSA9N priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9UwEB7WFcEX8YrVVSL4psU2TdLmUQ8ui6BPruxbyFWF3XY55ywH_70zaXu0iwo-FXKh7WSm-aaT-QbgJY9dpbhoStt2sRSNSGUngy-ja0MIwvnkKaL78ZM6ORUfzuTZAfA5FyYf2s-UlvkzPZ8Oe7PBjYaSwdB1QoyCLvDuBtwk6nbS6pVa7f-rUORK1HrKj6ma7g9TF3tQpupf4MvrpyOvhUjzznN8F-5MkJG9HR_yHhzE_j7cGotI_ngAX8YS8iRgZvvAtr9BUWwaEkOrXQ-oKAxb2WaHuJJdWEoQZoT-LqhmViYNYOdE5jqlOjyE0-P3n1cn5VQtofSybrelDC33uk2CPBJuRRO8Ct7ywJNvvdcpBCWjipUVnuNV4sbkQuWUI0o6EZtHcNgPfXwMDN0anN3WSTuLBu6dDbryWvnWcuGkLaCe5Wf8RCVOFS3OTQ5pN50ZZW5Q5ibL3OwKeLWfczkSafxz9Dtalv1IIsHODcP6q5mUwiQeQkfl37WVwqtoG8oyrnXqmjpErws4mhfVTJa5MVx1GlGJ1HUBL_bdaFMUKLF9HK5oDIIoiZ4eL6BdKMPigZY9_fdvmZ1bI2ATNc58PavNr5v__YWf_N_wp3Cbk0ITw6c4gsPt-io-Q3S0dc-zOfwE83YNdw priority: 102 providerName: Springer Nature |
Title | Speciation and transformation of nitrogen for swine manure thermochemical liquefaction |
URI | https://link.springer.com/article/10.1038/s41598-022-16101-w https://www.proquest.com/docview/2689426591 https://www.proquest.com/docview/2691052602 https://pubmed.ncbi.nlm.nih.gov/PMC9283412 https://doaj.org/article/f2dd820239a54c6ea3359519f831dec9 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2ISReEJ-ibFRG4g0CjeOP-AGhrto0VdqEgKK-WY7tAFKXsLZT2X_PnZMUMg3EUyTHbtPzXe93de_3I-QlC_lIMp4lVuUh4Rkvk1x4l4RCee954UqHJ7pn5_J0xqdzMd8hndxRa8DVraUd6knNlos3Py-v30PAv2taxvO3K0hC2CgGZRXgFyiPN7tkHzKTwkA9a-F-w_XNNI9aH0jCngCYYG0fze0v08tVkdK_h0Nv_ovyxlFqzFAn98m9FlrSceMLD8hOqB6SO43Y5PUj8qWRmseNoLbydP0HZIWhuqQQ3csaHIrCKF1tAH_SC4uNxBRR4gVqa0VyAbpA0te2JeIxmZ0cf56cJq2qQuJEqtaJ8Io5rUqOlQuzPPNOemeZZ6VTzunSeymCDCPLHYOrgARW-FEhC6Su4yF7QvaqugpPCYXyB1artNSFhS8CV1ivR05LpyzjhbADknb2M66lHEfli4WJR99ZbhqbG7C5iTY3mwF5tV3zoyHc-OfsI9yW7Uwky44D9fKraWPPlMz7HGXitRXcyWAz7EZOdZlnqQ9OD8hht6mmc0DDZK4BvQidDsiL7W2IPTxQsVWor3AOgC0BFSEbENVzht4D9e9U379FFm8NwI6nsPJ15za_3_zvH_jZfzzMAbnL0IuR_pMfkr318io8B-i0LoZkV83VkOyPx9NPU7geHZ9_-AijEzkZxp8jhjFifgH4_RxP |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEE8RKGAkOEHUxLGT-IAQhVZb2q4QalFvxrEdWqlNyu5Wq_4pfiMzeWxJJXrrKZJj5zEej7_JZOYDeMN9HqVcJKHJch-KRJRhLp0NfZE550RhS0sR3b1JOj4QXw_l4Qr86XNh6LfK3iY2htrVlr6Rr_M0V7ibSBV_PPsdEmsURVd7Co1WLXb8xQJdttmH7S84v28539rc_zwOO1aB0Mo4m4fSZdyqrBSE3LkRibOps4Y7XtrMWlU6l0qf-sgIy_Eo0YAXLirSgkq3CZ_gdW_BqkjQlRnB6sbm5Nv35VcdipuJWHXZOVGSr89wh6QsNvT5EFyh774Y7IANUcAA3V79N_NKgLbZ97buw70OsLJPrYY9gBVfPYTbLYXlxSP40RLY0_QyUzk2_wcIY1NdMrQZ0xrVlGErmy0Q1bJTQ-nJjLDnKTF2NSUL2AmVku0SLR7DwY1I9QmMqrryT4GhU4Wjs7hUhUHzYgvjVGRVajPDRSFNAHEvP227QubEp3Gim4B6kutW5hplrhuZ60UA75ZjztoyHtf23qBpWfakEtxNQz39pbsVrUvuXE7k88pIYVNvEspxjlWZJ7HzVgWw1k-q7uzCTF9qcQCvl6dxRVOYxlS-Pqc-COEk-pk8gGygDIMHGp6pjo-a2uAK4aKIceT7Xm0ub_7_F352_bO-gjvj_b1dvbs92XkOdzkpM9UWFWswmk_P_QvEZfPiZbcYGPy86fX3F2OiTuA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxFMEChgJThBt4thxfEAIKKuWQsWBor0Zx3YAqU3K7lar_jV-HTN5bEkleuspkmMnznhm_E3GMwPwnIciybnIYquKEItMVHEhvYtDqbz3onSVI4_u5_1850B8nMnZBvwZYmHoWOWgE1tF7RtH_8gnPC807iZSp5OqPxbxZXv65vh3TBWkyNM6lNPoWGQvnK7QfFu83t3GtX7B-fTD1_c7cV9hIHYyVctYesWdVpUgFM-tyLzLvbPc88op53TlfS5DHhIrHMerRGVe-qTMS0rjJkKGz70CV1UmU5IxNVPr_zvkQROp7uN0kqyYLHCvpHg2tP4QZqEVvxrthW3JgBHOPX9K85yrtt0Bp7fgZg9d2duO127DRqjvwLWumOXpXfjWlbKnhWa29mz5DyTGpqZiqD3mDTIsw1a2WCG-ZUeWApUZodAjqt3VJi9gh5RUtg-5uAcHl0LT-7BZN3V4AAzNKxyt0kqXFhWNK63XidO5U5aLUtoI0oF-xvUpzamyxqFpXetZYTqaG6S5aWluVhG8XI857hJ6XNj7HS3Luicl424bmvkP08u2qbj3BZWh11YKlwebUbRzqqsiS31wOoKtYVFNryEW5oyfI3i2vo2yTQ4bW4fmhPogmJNocfII1IgZRhMa36l__WyzhGsEjiLFka8Gtjl7-f8_-OHFc30K11HqzKfd_b1HcIMTL1OSUbEFm8v5SXiMAG1ZPmklgcH3yxa9vxmZUbA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Speciation+and+transformation+of+nitrogen+for+swine+manure+thermochemical+liquefaction&rft.jtitle=Scientific+reports&rft.au=Liu%2C+Zhuangzhuang&rft.au=Yan%2C+Zhiwei&rft.au=Liu%2C+Fen&rft.au=Fang%2C+Jun&rft.date=2022-07-14&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=12056&rft_id=info:doi/10.1038%2Fs41598-022-16101-w&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |