Unprecedentedly high activity and selectivity for hydrogenation of nitroarenes with single atomic Co1-N3P1 sites
Transition metal single atom catalysts (SACs) with M 1 -N x coordination configuration have shown outstanding activity and selectivity for hydrogenation of nitroarenes. Modulating the atomic coordination structure has emerged as a promising strategy to further improve the catalytic performance. Here...
Saved in:
Published in | Nature communications Vol. 13; no. 1; pp. 723 - 9 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
07.02.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transition metal single atom catalysts (SACs) with M
1
-N
x
coordination configuration have shown outstanding activity and selectivity for hydrogenation of nitroarenes. Modulating the atomic coordination structure has emerged as a promising strategy to further improve the catalytic performance. Herein, we report an atomic Co
1
/NPC catalyst with unsymmetrical single Co
1
-N
3
P
1
sites that displays unprecedentedly high activity and chemoselectivity for hydrogenation of functionalized nitroarenes. Compared to the most popular Co
1
-N
4
coordination, the electron density of Co atom in Co
1
-N
3
P
1
is increased, which is more favorable for H
2
dissociation as verified by kinetic isotope effect and density functional theory calculation results. In nitrobenzene hydrogenation reaction, the as-synthesized Co
1
-N
3
P
1
SAC exhibits a turnover frequency of 6560 h
−1
, which is 60-fold higher than that of Co
1
-N
4
SAC and one order of magnitude higher than the state-of-the-art M
1
-N
x
-C SACs in literatures. Furthermore, Co
1
-N
3
P
1
SAC shows superior selectivity (>99%) toward many substituted nitroarenes with co-existence of other sensitive reducible groups. This work is an excellent example of relationship between catalytic performance and the coordination environment of SACs, and offers a potential practical catalyst for aromatic amine synthesis by hydrogenation of nitroarenes.
Modulating the atomic coordination structure has emerged as a promising strategy to further improve catalytic performance. Here, the authors report an atomic Co1/NPC catalyst with unsymmetrical single Co1N3P1 sites that displays high activity and chemoselectivity for hydrogenation of functionalized nitroarenes. |
---|---|
AbstractList | Transition metal single atom catalysts (SACs) with M
1
-N
x
coordination configuration have shown outstanding activity and selectivity for hydrogenation of nitroarenes. Modulating the atomic coordination structure has emerged as a promising strategy to further improve the catalytic performance. Herein, we report an atomic Co
1
/NPC catalyst with unsymmetrical single Co
1
-N
3
P
1
sites that displays unprecedentedly high activity and chemoselectivity for hydrogenation of functionalized nitroarenes. Compared to the most popular Co
1
-N
4
coordination, the electron density of Co atom in Co
1
-N
3
P
1
is increased, which is more favorable for H
2
dissociation as verified by kinetic isotope effect and density functional theory calculation results. In nitrobenzene hydrogenation reaction, the as-synthesized Co
1
-N
3
P
1
SAC exhibits a turnover frequency of 6560 h
−1
, which is 60-fold higher than that of Co
1
-N
4
SAC and one order of magnitude higher than the state-of-the-art M
1
-N
x
-C SACs in literatures. Furthermore, Co
1
-N
3
P
1
SAC shows superior selectivity (>99%) toward many substituted nitroarenes with co-existence of other sensitive reducible groups. This work is an excellent example of relationship between catalytic performance and the coordination environment of SACs, and offers a potential practical catalyst for aromatic amine synthesis by hydrogenation of nitroarenes.
Modulating the atomic coordination structure has emerged as a promising strategy to further improve catalytic performance. Here, the authors report an atomic Co1/NPC catalyst with unsymmetrical single Co1N3P1 sites that displays high activity and chemoselectivity for hydrogenation of functionalized nitroarenes. Transition metal single atom catalysts (SACs) with M1-Nx coordination configuration have shown outstanding activity and selectivity for hydrogenation of nitroarenes. Modulating the atomic coordination structure has emerged as a promising strategy to further improve the catalytic performance. Herein, we report an atomic Co1/NPC catalyst with unsymmetrical single Co1-N3P1 sites that displays unprecedentedly high activity and chemoselectivity for hydrogenation of functionalized nitroarenes. Compared to the most popular Co1-N4 coordination, the electron density of Co atom in Co1-N3P1 is increased, which is more favorable for H2 dissociation as verified by kinetic isotope effect and density functional theory calculation results. In nitrobenzene hydrogenation reaction, the as-synthesized Co1-N3P1 SAC exhibits a turnover frequency of 6560 h-1, which is 60-fold higher than that of Co1-N4 SAC and one order of magnitude higher than the state-of-the-art M1-Nx-C SACs in literatures. Furthermore, Co1-N3P1 SAC shows superior selectivity (>99%) toward many substituted nitroarenes with co-existence of other sensitive reducible groups. This work is an excellent example of relationship between catalytic performance and the coordination environment of SACs, and offers a potential practical catalyst for aromatic amine synthesis by hydrogenation of nitroarenes.Transition metal single atom catalysts (SACs) with M1-Nx coordination configuration have shown outstanding activity and selectivity for hydrogenation of nitroarenes. Modulating the atomic coordination structure has emerged as a promising strategy to further improve the catalytic performance. Herein, we report an atomic Co1/NPC catalyst with unsymmetrical single Co1-N3P1 sites that displays unprecedentedly high activity and chemoselectivity for hydrogenation of functionalized nitroarenes. Compared to the most popular Co1-N4 coordination, the electron density of Co atom in Co1-N3P1 is increased, which is more favorable for H2 dissociation as verified by kinetic isotope effect and density functional theory calculation results. In nitrobenzene hydrogenation reaction, the as-synthesized Co1-N3P1 SAC exhibits a turnover frequency of 6560 h-1, which is 60-fold higher than that of Co1-N4 SAC and one order of magnitude higher than the state-of-the-art M1-Nx-C SACs in literatures. Furthermore, Co1-N3P1 SAC shows superior selectivity (>99%) toward many substituted nitroarenes with co-existence of other sensitive reducible groups. This work is an excellent example of relationship between catalytic performance and the coordination environment of SACs, and offers a potential practical catalyst for aromatic amine synthesis by hydrogenation of nitroarenes. Transition metal single atom catalysts (SACs) with M1-Nx coordination configuration have shown outstanding activity and selectivity for hydrogenation of nitroarenes. Modulating the atomic coordination structure has emerged as a promising strategy to further improve the catalytic performance. Herein, we report an atomic Co1/NPC catalyst with unsymmetrical single Co1-N3P1 sites that displays unprecedentedly high activity and chemoselectivity for hydrogenation of functionalized nitroarenes. Compared to the most popular Co1-N4 coordination, the electron density of Co atom in Co1-N3P1 is increased, which is more favorable for H2 dissociation as verified by kinetic isotope effect and density functional theory calculation results. In nitrobenzene hydrogenation reaction, the as-synthesized Co1-N3P1 SAC exhibits a turnover frequency of 6560 h−1, which is 60-fold higher than that of Co1-N4 SAC and one order of magnitude higher than the state-of-the-art M1-Nx-C SACs in literatures. Furthermore, Co1-N3P1 SAC shows superior selectivity (>99%) toward many substituted nitroarenes with co-existence of other sensitive reducible groups. This work is an excellent example of relationship between catalytic performance and the coordination environment of SACs, and offers a potential practical catalyst for aromatic amine synthesis by hydrogenation of nitroarenes.Modulating the atomic coordination structure has emerged as a promising strategy to further improve catalytic performance. Here, the authors report an atomic Co1/NPC catalyst with unsymmetrical single Co1N3P1 sites that displays high activity and chemoselectivity for hydrogenation of functionalized nitroarenes. Transition metal single atom catalysts (SACs) with M 1 -N x coordination configuration have shown outstanding activity and selectivity for hydrogenation of nitroarenes. Modulating the atomic coordination structure has emerged as a promising strategy to further improve the catalytic performance. Herein, we report an atomic Co 1 /NPC catalyst with unsymmetrical single Co 1 -N 3 P 1 sites that displays unprecedentedly high activity and chemoselectivity for hydrogenation of functionalized nitroarenes. Compared to the most popular Co 1 -N 4 coordination, the electron density of Co atom in Co 1 -N 3 P 1 is increased, which is more favorable for H 2 dissociation as verified by kinetic isotope effect and density functional theory calculation results. In nitrobenzene hydrogenation reaction, the as-synthesized Co 1 -N 3 P 1 SAC exhibits a turnover frequency of 6560 h −1 , which is 60-fold higher than that of Co 1 -N 4 SAC and one order of magnitude higher than the state-of-the-art M 1 -N x -C SACs in literatures. Furthermore, Co 1 -N 3 P 1 SAC shows superior selectivity (>99%) toward many substituted nitroarenes with co-existence of other sensitive reducible groups. This work is an excellent example of relationship between catalytic performance and the coordination environment of SACs, and offers a potential practical catalyst for aromatic amine synthesis by hydrogenation of nitroarenes. Modulating the atomic coordination structure has emerged as a promising strategy to further improve catalytic performance. Here, the authors report an atomic Co1/NPC catalyst with unsymmetrical single Co1N3P1 sites that displays high activity and chemoselectivity for hydrogenation of functionalized nitroarenes. |
ArticleNumber | 723 |
Author | Song, Weiguo Yu, Xiaohu Zhou, Wu Jin, Hongqiang Cui, Peixin Cao, Changyan Shi, Jinan Li, Peipei |
Author_xml | – sequence: 1 givenname: Hongqiang surname: Jin fullname: Jin, Hongqiang organization: Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, School of Chemical Sciences, University of Chinese Academy of Sciences – sequence: 2 givenname: Peipei surname: Li fullname: Li, Peipei organization: Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, School of Chemical Sciences, University of Chinese Academy of Sciences – sequence: 3 givenname: Peixin orcidid: 0000-0002-9887-2784 surname: Cui fullname: Cui, Peixin organization: Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences – sequence: 4 givenname: Jinan surname: Shi fullname: Shi, Jinan organization: School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences – sequence: 5 givenname: Wu orcidid: 0000-0002-6803-1095 surname: Zhou fullname: Zhou, Wu organization: School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences – sequence: 6 givenname: Xiaohu orcidid: 0000-0003-3670-2859 surname: Yu fullname: Yu, Xiaohu email: yuxiaohu@snut.edu.cn organization: Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Sciences, Shaanxi University of Technology – sequence: 7 givenname: Weiguo surname: Song fullname: Song, Weiguo organization: Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, School of Chemical Sciences, University of Chinese Academy of Sciences – sequence: 8 givenname: Changyan orcidid: 0000-0003-2139-1648 surname: Cao fullname: Cao, Changyan email: cycao@iccas.ac.cn organization: Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, School of Chemical Sciences, University of Chinese Academy of Sciences |
BookMark | eNp9Uk1v1DAQjVARLaV_gJMlLlxS_JXYviChFdBKFXCgZ8txJolXWXuxva323-PdtIL2UF88Hr_3Zjx-b6sTHzxU1XuCLwlm8lPihLeixpTWVLISqVfVGcWc1ERQdvJffFpdpLTGZTFFJOdvqlPWEEax4GfV9tZvI1jowWfo5z2a3DghY7O7c3mPjO9Rghkez0OIaNr3MYzgTXbBozAg73IMJoKHhO5dnlByfpwBmRw2zqJVIPUP9ouUdIb0rno9mDnBxcN-Xt1--_p7dVXf_Px-vfpyU9uGiFw3nepMg23DYFAtaXoxiI42UglhDelpJzpOLeYMD9YyxVsmlbVCGdWWPGnZeXW96PbBrPU2uo2Jex2M08dEiKM2MTs7g5bWqm6QVAmjOJa2I9Q0faNa2rRWGShanxet7a7bQG_LrKKZn4g-vfFu0mO401LS0sqhmY8PAjH82UHKeuOShXk2HsIuadrSVqrDBxXoh2fQddhFX0Z1RBHCCBYFJReUjSGlCIO2Lh8_pNR3syZYH1yiF5fo4hJ9dIk-FKDPqI_veJHEFlIqYD9C_NfVC6y_jLvQtA |
CitedBy_id | crossref_primary_10_1016_j_cej_2023_141865 crossref_primary_10_1039_D3TA06987G crossref_primary_10_1016_j_cej_2022_140808 crossref_primary_10_1002_anie_202406262 crossref_primary_10_1021_jacs_4c07847 crossref_primary_10_1002_cctc_202401902 crossref_primary_10_1039_D3TA05591D crossref_primary_10_1002_anie_202213296 crossref_primary_10_1021_acs_langmuir_4c01639 crossref_primary_10_1002_aic_18432 crossref_primary_10_1039_D3DT02163G crossref_primary_10_1016_j_cej_2025_160265 crossref_primary_10_1002_aic_18677 crossref_primary_10_1016_j_cej_2023_147046 crossref_primary_10_1002_adfm_202405328 crossref_primary_10_1002_anie_202202338 crossref_primary_10_1016_j_pecs_2023_101074 crossref_primary_10_1021_acscatal_2c01113 crossref_primary_10_1016_j_ces_2025_121294 crossref_primary_10_1016_j_cclet_2022_107959 crossref_primary_10_1038_s41467_023_38310_1 crossref_primary_10_1021_jacsau_3c00825 crossref_primary_10_1002_ange_202421277 crossref_primary_10_1021_jacs_4c00547 crossref_primary_10_1002_cctc_202400400 crossref_primary_10_1016_j_cej_2022_139430 crossref_primary_10_1039_D4GC05635C crossref_primary_10_1016_j_cclet_2023_108745 crossref_primary_10_1002_anie_202303007 crossref_primary_10_1007_s41061_023_00434_9 crossref_primary_10_1002_adma_202311419 crossref_primary_10_1039_D3SC06010A crossref_primary_10_1002_smll_202308285 crossref_primary_10_1016_j_nanoen_2023_108570 crossref_primary_10_1016_j_mcat_2023_113045 crossref_primary_10_1021_acs_iecr_2c04127 crossref_primary_10_1002_cctc_202401084 crossref_primary_10_1016_j_jcis_2025_01_049 crossref_primary_10_1038_s41929_023_00924_5 crossref_primary_10_1016_j_colsurfa_2025_136153 crossref_primary_10_1021_acsanm_4c02592 crossref_primary_10_1002_ange_202202338 crossref_primary_10_1016_j_jcat_2025_116033 crossref_primary_10_1021_acs_nanolett_4c00512 crossref_primary_10_1002_ange_202404883 crossref_primary_10_1016_j_apsusc_2024_162020 crossref_primary_10_1002_aenm_202402607 crossref_primary_10_1021_jacs_4c09241 crossref_primary_10_1021_jacs_4c06011 crossref_primary_10_1021_acs_inorgchem_3c00091 crossref_primary_10_1002_anie_202404019 crossref_primary_10_1016_j_comptc_2025_115098 crossref_primary_10_1002_cey2_657 crossref_primary_10_1021_acscatal_3c03209 crossref_primary_10_1016_j_jallcom_2024_177025 crossref_primary_10_1038_s41467_024_54225_x crossref_primary_10_1039_D3NJ00518F crossref_primary_10_1002_adfm_202423398 crossref_primary_10_1021_acscatal_3c01442 crossref_primary_10_1021_acscatal_4c00208 crossref_primary_10_1021_acscatal_2c03476 crossref_primary_10_3390_catal12101223 crossref_primary_10_1016_j_cej_2024_150723 crossref_primary_10_1039_D3CY01767B crossref_primary_10_1016_j_fuel_2024_132567 crossref_primary_10_1016_j_fuel_2025_134924 crossref_primary_10_1016_j_ces_2025_121473 crossref_primary_10_1016_j_apcatb_2023_123061 crossref_primary_10_1021_acs_jpcc_4c07183 crossref_primary_10_1016_j_cej_2023_142920 crossref_primary_10_1016_j_mattod_2023_04_016 crossref_primary_10_1016_j_catcom_2023_106630 crossref_primary_10_1039_D3QI01847D crossref_primary_10_1002_smll_202300556 crossref_primary_10_1021_jacs_4c07197 crossref_primary_10_1002_anie_202404883 crossref_primary_10_1007_s10904_024_03155_8 crossref_primary_10_1002_ange_202213296 crossref_primary_10_1016_j_cej_2024_156659 crossref_primary_10_1002_ange_202404019 crossref_primary_10_1021_acs_jpcc_3c01374 crossref_primary_10_1016_j_cej_2024_156935 crossref_primary_10_1039_D3QI01576A crossref_primary_10_1016_j_jallcom_2025_178488 crossref_primary_10_1016_j_tgchem_2024_100043 crossref_primary_10_1002_anie_202219306 crossref_primary_10_1016_j_apcatb_2024_123762 crossref_primary_10_1134_S0036024423130125 crossref_primary_10_1038_s41598_023_44292_3 crossref_primary_10_1021_acs_iecr_4c02348 crossref_primary_10_1360_SSC_2023_0126 crossref_primary_10_1016_j_cej_2024_157057 crossref_primary_10_1021_acscatal_2c05363 crossref_primary_10_1002_adsu_202400551 crossref_primary_10_1002_ange_202219306 crossref_primary_10_1021_acs_jpcc_2c09112 crossref_primary_10_3390_c10010027 crossref_primary_10_1002_ange_202303007 crossref_primary_10_1002_ange_202317660 crossref_primary_10_1016_j_jcat_2024_115313 crossref_primary_10_1016_j_cej_2023_145181 crossref_primary_10_1016_j_apcatb_2022_121896 crossref_primary_10_1021_prechem_3c00031 crossref_primary_10_1016_j_mcat_2024_114360 crossref_primary_10_1021_accountsmr_2c00183 crossref_primary_10_1039_D2DT03920F crossref_primary_10_1016_j_jcat_2023_115207 crossref_primary_10_1039_D3GC04739C crossref_primary_10_1007_s10562_025_04947_4 crossref_primary_10_1016_S1872_2067_23_64456_0 crossref_primary_10_1002_ange_202406262 crossref_primary_10_1002_cctc_202401651 crossref_primary_10_1016_j_nxmate_2024_100457 crossref_primary_10_1039_D3NJ00108C crossref_primary_10_1016_j_apcatb_2023_122510 crossref_primary_10_1016_j_apsusc_2025_162592 crossref_primary_10_1002_aoc_7685 crossref_primary_10_1038_s41467_022_35598_3 crossref_primary_10_1016_j_jcis_2024_09_250 crossref_primary_10_1021_acscatal_4c03421 crossref_primary_10_1016_j_jcat_2024_115428 crossref_primary_10_1016_j_jcat_2024_115549 crossref_primary_10_1039_D2TA03034A crossref_primary_10_1021_acscatal_2c03200 crossref_primary_10_1021_jacs_4c18040 crossref_primary_10_1021_acscatal_2c05862 crossref_primary_10_1021_jacs_3c00786 crossref_primary_10_1002_anie_202421277 crossref_primary_10_1016_j_jcat_2022_08_033 crossref_primary_10_3390_molecules29184353 crossref_primary_10_1038_s41467_023_42756_8 crossref_primary_10_1007_s40820_024_01440_2 crossref_primary_10_1021_acscatal_3c05160 crossref_primary_10_1002_smtd_202301363 crossref_primary_10_1021_acsnano_4c05637 crossref_primary_10_1021_jacsau_2c00582 crossref_primary_10_1021_jacs_2c12590 crossref_primary_10_1021_acscatal_3c03928 crossref_primary_10_1039_D4QI01244E crossref_primary_10_1016_j_nanoen_2024_109668 crossref_primary_10_1039_D2GC02344J crossref_primary_10_1002_adma_202304713 crossref_primary_10_1016_j_ijhydene_2023_11_076 crossref_primary_10_1016_j_mcat_2024_114365 crossref_primary_10_1002_ejoc_202400934 crossref_primary_10_1093_nsr_nwaf031 crossref_primary_10_1002_anie_202317660 crossref_primary_10_1007_s12274_023_5813_9 crossref_primary_10_1039_D3TA00156C crossref_primary_10_12677_MS_2023_132008 crossref_primary_10_1021_jacs_3c13834 crossref_primary_10_6023_A23080374 crossref_primary_10_1016_j_apcatb_2024_124655 crossref_primary_10_1016_j_greenca_2024_09_002 crossref_primary_10_1002_adfm_202315376 crossref_primary_10_1021_acscatal_4c04297 crossref_primary_10_1002_adma_202402747 |
Cites_doi | 10.1021/acscatal.5b01846 10.1126/sciadv.1601945 10.1021/acscatal.0c05479 10.1021/jacs.5b11413 10.1021/jacs.9b09352 10.1021/jacs.9b11852 10.1038/s41929-021-00609-x 10.1002/anie.202102647 10.1002/anie.202003651 10.1021/acscatal.0c00239 10.1038/s41467-019-13941-5 10.1126/science.aaf5251 10.1103/PhysRevB.54.11169 10.1038/s41467-019-14216-9 10.1002/anie.202006175 10.1038/s41467-020-17903-0 10.1021/acs.chemrev.9b00230 10.1021/ar300361m 10.1107/S0909049505012719 10.1038/s41467-020-16848-8 10.1002/anie.202012798 10.1021/acs.jpcc.0c11487 10.1002/adma.202008471 10.1002/cctc.201700095 10.1021/jacs.0c02229 10.1016/j.molcata.2016.04.008 10.1038/s41467-019-12459-0 10.1126/science.1242005 10.1007/s40843-019-9426-x 10.1103/PhysRevB.50.17953 10.1016/j.catcom.2017.04.029 10.1103/PhysRevB.59.1758 10.1021/cs500523k 10.1021/ja076721g 10.1016/0927-0256(96)00008-0 10.1063/1.1329672 10.1126/science.1219468 10.1039/C8GC03664K 10.1021/acs.chemrev.0c00797 10.1038/s41929-020-0481-6 10.1021/acsami.0c06632 10.1002/anie.202016219 10.1007/s40843-020-1443-8 10.1038/s41467-018-05754-9 10.1126/sciadv.aax6322 10.1038/nchem.1645 10.1039/C6SC02105K 10.1002/anie.201609663 10.1002/anie.201802231 10.1038/ncomms6634 10.1016/j.jcat.2017.02.028 10.1021/acscatal.0c00936 10.1063/1.3382344 10.1103/PhysRevLett.77.3865 10.1016/j.jcat.2017.10.030 10.1063/1.1323224 10.1002/adfm.202103597 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-022-28367-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database ProQuest Central Essentials Biological Science Collection ProQuest Central (New) Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_8cc9bf8297a9408cb12a5d596256c9ae PMC8821636 10_1038_s41467_022_28367_9 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 21932006 funderid: https://doi.org/10.13039/501100001809 – fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences (Youth Innovation Promotion Association CAS) grantid: 2017049 funderid: https://doi.org/10.13039/501100004739 – fundername: ; grantid: 2017049 – fundername: ; grantid: 21932006 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c517t-5b9ba50c53ef9615d7f7b258977ca1d2b7b42c0430fcc3946389cc79a9642c163 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:20:15 EDT 2025 Thu Aug 21 18:20:07 EDT 2025 Fri Jul 11 01:01:36 EDT 2025 Wed Aug 13 06:12:19 EDT 2025 Thu Apr 24 22:58:05 EDT 2025 Tue Jul 01 04:17:44 EDT 2025 Fri Feb 21 02:38:40 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-5b9ba50c53ef9615d7f7b258977ca1d2b7b42c0430fcc3946389cc79a9642c163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3670-2859 0000-0003-2139-1648 0000-0002-9887-2784 0000-0002-6803-1095 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-28367-9 |
PMID | 35132074 |
PQID | 2626113107 |
PQPubID | 546298 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8cc9bf8297a9408cb12a5d596256c9ae pubmedcentral_primary_oai_pubmedcentral_nih_gov_8821636 proquest_miscellaneous_2626890039 proquest_journals_2626113107 crossref_citationtrail_10_1038_s41467_022_28367_9 crossref_primary_10_1038_s41467_022_28367_9 springer_journals_10_1038_s41467_022_28367_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-07 |
PublicationDateYYYYMMDD | 2022-02-07 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Zhou (CR19) 2021; 11 Henkelman, Jonsson (CR58) 2000; 113 Wei (CR5) 2014; 5 Ji (CR32) 2021; 4 Boronat (CR8) 2007; 129 Serna, Corma (CR9) 2015; 5 Shang (CR28) 2020; 11 CR36 Merte (CR49) 2012; 336 Li (CR18) 2021; 11 Zhang (CR15) 2020; 10 Wang (CR37) 2020; 12 Zhang, Zhou, Wang, Zhang (CR2) 2020; 120 Yan (CR4) 2018; 9 Liu (CR45) 2016; 352 Hai (CR29) 2020; 10 Cai (CR38) 2021; 125 Lang (CR3) 2020; 120 Fu (CR11) 2014; 4 Kresse, Joubert (CR51) 1999; 59 Tian (CR41) 2021; 64 Kuai (CR44) 2020; 11 Perdew, Burke, Ernzerhof (CR56) 1996; 77 Zhang (CR34) 2017; 348 Blochl (CR55) 1994; 50 Wei (CR21) 2020; 59 Wang (CR26) 2019; 5 Henkelman, Uberuaga, Jonsson (CR57) 2000; 113 Westerhaus (CR12) 2013; 5 Wan (CR20) 2020; 142 Sun (CR39) 2018; 357 Ye (CR6) 2020; 11 Zhang (CR27) 2019; 141 Wang (CR13) 2020; 59 Wang, Li (CR43) 2016; 420 Zhang, Jiao, Yang, Xie, Jiang (CR33) 2021; 60 Qu, Yang, Wang, Chen, Wang (CR35) 2017; 97 Kresse, Furthmuller (CR53) 1996; 54 Zhang (CR7) 2016; 138 Grimme, Antony, Ehrlich, Krieg (CR54) 2010; 132 Sun (CR40) 2017; 9 Liu (CR48) 2018; 57 Liu (CR17) 2016; 7 Yang (CR42) 2019; 21 Bai (CR46) 2016; 55 Long (CR22) 2020; 11 Zhou (CR16) 2017; 3 Chen (CR31) 2021; 60 Liu (CR25) 2021; 60 Kresse, Furthmuller (CR52) 1996; 6 Ren (CR24) 2019; 10 Yang (CR10) 2013; 46 Chen (CR30) 2021; 33 Ravel, Newville (CR50) 2005; 12 Yuan (CR23) 2020; 142 Jagadeesh (CR1) 2013; 342 Qin (CR47) 2020; 3 Li (CR14) 2019; 62 B Ravel (28367_CR50) 2005; 12 W Liu (28367_CR17) 2016; 7 X Wei (28367_CR21) 2020; 59 H Yan (28367_CR4) 2018; 9 J Wan (28367_CR20) 2020; 142 X Sun (28367_CR40) 2017; 9 Y Qu (28367_CR35) 2017; 97 JP Perdew (28367_CR56) 1996; 77 G Henkelman (28367_CR58) 2000; 113 S Ji (28367_CR32) 2021; 4 H Li (28367_CR14) 2019; 62 G Kresse (28367_CR51) 1999; 59 L Bai (28367_CR46) 2016; 55 S Tian (28367_CR41) 2021; 64 F Yang (28367_CR42) 2019; 21 P Zhou (28367_CR16) 2017; 3 X-F Yang (28367_CR10) 2013; 46 X Long (28367_CR22) 2020; 11 J Liu (28367_CR25) 2021; 60 D Zhou (28367_CR19) 2021; 11 M Boronat (28367_CR8) 2007; 129 FA Westerhaus (28367_CR12) 2013; 5 Q Cai (28367_CR38) 2021; 125 R Qin (28367_CR47) 2020; 3 Y Zhang (28367_CR33) 2021; 60 G Kresse (28367_CR53) 1996; 54 S Zhang (28367_CR7) 2016; 138 LL Zhang (28367_CR2) 2020; 120 G Henkelman (28367_CR57) 2000; 113 G Kresse (28367_CR52) 1996; 6 LR Merte (28367_CR49) 2012; 336 PE Blochl (28367_CR55) 1994; 50 Y Chen (28367_CR31) 2021; 60 Y Wang (28367_CR13) 2020; 59 F Zhang (28367_CR34) 2017; 348 K Yuan (28367_CR23) 2020; 142 S Grimme (28367_CR54) 2010; 132 X Hai (28367_CR29) 2020; 10 L Wang (28367_CR26) 2019; 5 H Shang (28367_CR28) 2020; 11 W Liu (28367_CR48) 2018; 57 T Fu (28367_CR11) 2014; 4 T-N Ye (28367_CR6) 2020; 11 X Sun (28367_CR39) 2018; 357 Y Ren (28367_CR24) 2019; 10 R Lang (28367_CR3) 2020; 120 C Chen (28367_CR30) 2021; 33 L Zhang (28367_CR15) 2020; 10 M Li (28367_CR18) 2021; 11 J Zhang (28367_CR27) 2019; 141 H Wang (28367_CR37) 2020; 12 P Serna (28367_CR9) 2015; 5 28367_CR36 H Wei (28367_CR5) 2014; 5 X Wang (28367_CR43) 2016; 420 P Liu (28367_CR45) 2016; 352 RV Jagadeesh (28367_CR1) 2013; 342 L Kuai (28367_CR44) 2020; 11 |
References_xml | – volume: 5 start-page: 7114 year: 2015 end-page: 7121 ident: CR9 article-title: Transforming nano metal nonselective particulates into chemoselective catalysts for hydrogenation of substituted nitrobenzenes publication-title: ACS Catal. doi: 10.1021/acscatal.5b01846 – volume: 3 start-page: NO. e1601945 year: 2017 ident: CR16 article-title: High performance of a cobalt-nitrogen complex for the reduction and reductive coupling of nitro compounds into amines and their derivatives publication-title: Sci. Adv. doi: 10.1126/sciadv.1601945 – volume: 11 start-page: 3026 year: 2021 end-page: 3039 ident: CR18 article-title: Origin of the activity of Co-N-C catalysts for chemoselective hydrogenation of nitroarenes publication-title: ACS Catal. doi: 10.1021/acscatal.0c05479 – volume: 138 start-page: 2629 year: 2016 end-page: 2637 ident: CR7 article-title: High catalytic activity and chemoselectivity of sub-nanometric Pd clusters on porous nanorods of CeO for hydrogenation of nitroarenes publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11413 – volume: 141 start-page: 20118 year: 2019 end-page: 20126 ident: CR27 article-title: Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b09352 – volume: 142 start-page: 2404 year: 2020 end-page: 2412 ident: CR23 article-title: Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: nitrogen and phosphorus dual coordination publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b11852 – volume: 4 start-page: 407 year: 2021 end-page: 417 ident: CR32 article-title: Matching the kinetics of natural enzymes with a single-atom iron nanozyme publication-title: Nat. Catal. doi: 10.1038/s41929-021-00609-x – volume: 60 start-page: 15248 year: 2021 end-page: 15253 ident: CR25 article-title: Direct observation of metal oxide nanoparticles being transformed into metal single atoms with oxygen-coordinated structure and high-loadings publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202102647 – volume: 59 start-page: 12736 year: 2020 end-page: 12740 ident: CR13 article-title: Chemoselective hydrogenation of nitroaromatics at the nanoscale iron(III)-OH-platinum interface publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202003651 – volume: 10 start-page: 8672 year: 2020 end-page: 8682 ident: CR15 article-title: Atomically dispersed Co catalyst for efficient hydrodeoxygenation of lignin-derived species and hydrogenation of nitroaromatics publication-title: ACS Catal. doi: 10.1021/acscatal.0c00239 – volume: 11 year: 2020 ident: CR44 article-title: Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation publication-title: Nat. Commun. doi: 10.1038/s41467-019-13941-5 – volume: 352 start-page: 797 year: 2016 end-page: 801 ident: CR45 article-title: Photochemical route for synthesizing atomically dispersed palladium catalysts publication-title: Science doi: 10.1126/science.aaf5251 – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: CR53 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 11 year: 2020 ident: CR6 article-title: Stable single platinum atoms trapped in sub-nanometer cavities in 12CaO•7Al O for chemoselective hydrogenation of nitroarenes publication-title: Nat. Commun. doi: 10.1038/s41467-019-14216-9 – volume: 59 start-page: 14639 year: 2020 end-page: 14646 ident: CR21 article-title: Cross-linked polyphosphazene hollow nanosphere-derived N/P-doped porous carbon with single nonprecious metal atoms for the oxygen reduction reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202006175 – volume: 11 year: 2020 ident: CR22 article-title: Graphitic phosphorus coordinated single Fe atoms for hydrogenative transformations publication-title: Nat. Commun. doi: 10.1038/s41467-020-17903-0 – volume: 120 start-page: 683 year: 2020 end-page: 733 ident: CR2 article-title: Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00230 – volume: 46 start-page: 1740 year: 2013 end-page: 1748 ident: CR10 article-title: Single-atom catalysts: a new frontier in heterogeneous catalysis publication-title: Acc. Chem. Res. doi: 10.1021/ar300361m – volume: 12 start-page: 537 year: 2005 end-page: 541 ident: CR50 article-title: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT publication-title: J. Synchrotron Radiat. doi: 10.1107/S0909049505012719 – volume: 11 year: 2020 ident: CR28 article-title: Engineering unsymmetrically coordinated Cu-S N single atom sites with enhanced oxygen reduction activity publication-title: Nat. Commun. doi: 10.1038/s41467-020-16848-8 – volume: 60 start-page: 3212 year: 2021 end-page: 3221 ident: CR31 article-title: Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: enhanced oxygen reduction performance publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202012798 – volume: 125 start-page: 5088 year: 2021 end-page: 5098 ident: CR38 article-title: Boosted catalytic hydrogenation performance using isolated Co sites anchored on nitrogen-incorporated hollow porous carbon publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.0c11487 – volume: 33 start-page: 2008471 year: 2021 ident: CR30 article-title: Zero-valent palladium single-atoms catalysts confined in black phosphorus for efficient semi-hydrogenation publication-title: Adv. Mater. doi: 10.1002/adma.202008471 – volume: 9 start-page: 1854 year: 2017 end-page: 1862 ident: CR40 article-title: Metal-organic framework mediated cobalt/nitrogen-doped carbon hybrids as efficient and chemoselective catalysts for the hydrogenation of nitroarenes publication-title: ChemCatChem doi: 10.1002/cctc.201700095 – ident: CR36 – volume: 142 start-page: 8431 year: 2020 end-page: 8439 ident: CR20 article-title: In situ phosphatizing of triphenylphosphine encapsulated within metal-organic frameworks to design atomic Co -P N interfacial structure for promoting catalytic performance publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c02229 – volume: 420 start-page: 56 year: 2016 end-page: 65 ident: CR43 article-title: Chemoselective hydrogenation of functionalized nitroarenes using MOF-derived Co-based catalysts publication-title: J. Mol. Catal. A: Chem. doi: 10.1016/j.molcata.2016.04.008 – volume: 10 year: 2019 ident: CR24 article-title: Unraveling the coordination structure-performance relationship in Pt /Fe O single-atom catalyst publication-title: Nat. Commun. doi: 10.1038/s41467-019-12459-0 – volume: 342 start-page: 1073 year: 2013 end-page: 1076 ident: CR1 article-title: Nanoscale Fe O -based catalysts for selective hydrogenation of nitroarenes to anilines publication-title: Science doi: 10.1126/science.1242005 – volume: 62 start-page: 1306 year: 2019 end-page: 1314 ident: CR14 article-title: Cobalt single atoms anchored on N-doped ultrathin carbon nanosheets for selective transfer hydrogenation of nitroarenes publication-title: Sci. China Mater. doi: 10.1007/s40843-019-9426-x – volume: 50 start-page: 17953 year: 1994 end-page: 17979 ident: CR55 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 97 start-page: 83 year: 2017 end-page: 87 ident: CR35 article-title: Hydrogenation of nitrobenzene to aniline catalyzed by C-60-stabilized Ni publication-title: Catal. Commun. doi: 10.1016/j.catcom.2017.04.029 – volume: 59 start-page: 1758 year: 1999 end-page: 1775 ident: CR51 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 4 start-page: 2536 year: 2014 end-page: 2543 ident: CR11 article-title: Acid-resistant catalysis without use of noble metals: carbon nitride with underlying nickel publication-title: ACS Catal. doi: 10.1021/cs500523k – volume: 129 start-page: 16230 year: 2007 end-page: 16237 ident: CR8 article-title: A molecular mechanism for the chemoselective hydrogenation of substituted nitroaromatics with nanoparticles of gold on TiO catalysts: a cooperative effect between gold and the support publication-title: J. Am. Chem. Soc. doi: 10.1021/ja076721g – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: CR52 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comp. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 113 start-page: 9901 year: 2000 end-page: 9904 ident: CR57 article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 – volume: 336 start-page: 889 year: 2012 end-page: 893 ident: CR49 article-title: Water-mediated proton hopping on an iron oxide surface publication-title: Science doi: 10.1126/science.1219468 – volume: 21 start-page: 704 year: 2019 end-page: 711 ident: CR42 article-title: Atomically dispersed Ni as the active site towards selective hydrogenation of nitroarenes publication-title: Green. Chem. doi: 10.1039/C8GC03664K – volume: 11 start-page: 1 year: 2021 end-page: 9 ident: CR19 article-title: Tuning the coordination environment of single-atom catalyst M-N-C towards selective hydrogenation of functionalized nitroarenes publication-title: Nano Res. – volume: 120 start-page: 11986 year: 2020 end-page: 12043 ident: CR3 article-title: Single-atom catalysts based on the metal-oxide interaction publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00797 – volume: 3 start-page: 703 year: 2020 end-page: 709 ident: CR47 article-title: Alkali ions secure hydrides for catalytic hydrogenation publication-title: Nat. Catal. doi: 10.1038/s41929-020-0481-6 – volume: 12 start-page: 34021 year: 2020 end-page: 34031 ident: CR37 article-title: Highly efficient hydrogenation of nitroarenes by N-doped carbon-supported cobalt single-atom catalyst in ethanol/water mixed solvent publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c06632 – volume: 60 start-page: 7607 year: 2021 end-page: 7611 ident: CR33 article-title: Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202016219 – volume: 64 start-page: 642 year: 2021 end-page: 650 ident: CR41 article-title: Single-atom Fe with Fe N structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene publication-title: Sci. China Mater. doi: 10.1007/s40843-020-1443-8 – volume: 9 year: 2018 ident: CR4 article-title: Atomic engineering of high-density isolated Co atoms on graphene with proximal-atom controlled reaction selectivity publication-title: Nat. Commun. doi: 10.1038/s41467-018-05754-9 – volume: 5 start-page: eaax6322 year: 2019 ident: CR26 article-title: A sulfur-tethering synthesis strategy toward high-loading atomically dispersed noble metal catalysts publication-title: Sci. Adv. doi: 10.1126/sciadv.aax6322 – volume: 5 start-page: 537 year: 2013 end-page: 543 ident: CR12 article-title: Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes publication-title: Nat. Chem. doi: 10.1038/nchem.1645 – volume: 7 start-page: 5758 year: 2016 end-page: 5764 ident: CR17 article-title: Single-atom dispersed Co-N-C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes publication-title: Chem. Sci. doi: 10.1039/C6SC02105K – volume: 55 start-page: 15656 year: 2016 end-page: 15661 ident: CR46 article-title: Explaining the size dependence in platinum-nanoparticle-catalyzed hydrogenation reactions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201609663 – volume: 57 start-page: 7071 year: 2018 end-page: 7075 ident: CR48 article-title: A durable nickel single-atom catalyst for hydrogenation reactions and cellulose valorization under harsh conditions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201802231 – volume: 5 year: 2014 ident: CR5 article-title: FeO -supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes publication-title: Nat. Commun. doi: 10.1038/ncomms6634 – volume: 348 start-page: 212 year: 2017 end-page: 222 ident: CR34 article-title: In situ mosaic strategy generated Co-based N-doped mesoporous carbon for highly selective hydrogenation of nitroaromatics publication-title: J. Catal. doi: 10.1016/j.jcat.2017.02.028 – volume: 10 start-page: 5862 year: 2020 end-page: 5870 ident: CR29 article-title: Engineering local and global structures of single Co atoms for a superior oxygen reduction reaction publication-title: ACS Catal. doi: 10.1021/acscatal.0c00936 – volume: 132 start-page: 154104 year: 2010 ident: CR54 article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: CR56 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 357 start-page: 20 year: 2018 end-page: 28 ident: CR39 article-title: Single cobalt sites in mesoporous N-doped carbon matrix for selective catalytic hydrogenation of nitroarenes publication-title: J. Catal. doi: 10.1016/j.jcat.2017.10.030 – volume: 113 start-page: 9978 year: 2000 end-page: 9985 ident: CR58 article-title: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points publication-title: J. Chem. Phys. doi: 10.1063/1.1323224 – volume: 3 start-page: 703 year: 2020 ident: 28367_CR47 publication-title: Nat. Catal. doi: 10.1038/s41929-020-0481-6 – volume: 12 start-page: 537 year: 2005 ident: 28367_CR50 publication-title: J. Synchrotron Radiat. doi: 10.1107/S0909049505012719 – volume: 10 start-page: 8672 year: 2020 ident: 28367_CR15 publication-title: ACS Catal. doi: 10.1021/acscatal.0c00239 – volume: 10 start-page: 5862 year: 2020 ident: 28367_CR29 publication-title: ACS Catal. doi: 10.1021/acscatal.0c00936 – volume: 142 start-page: 2404 year: 2020 ident: 28367_CR23 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b11852 – volume: 357 start-page: 20 year: 2018 ident: 28367_CR39 publication-title: J. Catal. doi: 10.1016/j.jcat.2017.10.030 – volume: 420 start-page: 56 year: 2016 ident: 28367_CR43 publication-title: J. Mol. Catal. A: Chem. doi: 10.1016/j.molcata.2016.04.008 – volume: 9 start-page: 1854 year: 2017 ident: 28367_CR40 publication-title: ChemCatChem doi: 10.1002/cctc.201700095 – volume: 141 start-page: 20118 year: 2019 ident: 28367_CR27 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b09352 – volume: 62 start-page: 1306 year: 2019 ident: 28367_CR14 publication-title: Sci. China Mater. doi: 10.1007/s40843-019-9426-x – volume: 138 start-page: 2629 year: 2016 ident: 28367_CR7 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11413 – ident: 28367_CR36 doi: 10.1002/adfm.202103597 – volume: 9 year: 2018 ident: 28367_CR4 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05754-9 – volume: 5 start-page: eaax6322 year: 2019 ident: 28367_CR26 publication-title: Sci. Adv. doi: 10.1126/sciadv.aax6322 – volume: 57 start-page: 7071 year: 2018 ident: 28367_CR48 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201802231 – volume: 33 start-page: 2008471 year: 2021 ident: 28367_CR30 publication-title: Adv. Mater. doi: 10.1002/adma.202008471 – volume: 4 start-page: 407 year: 2021 ident: 28367_CR32 publication-title: Nat. Catal. doi: 10.1038/s41929-021-00609-x – volume: 336 start-page: 889 year: 2012 ident: 28367_CR49 publication-title: Science doi: 10.1126/science.1219468 – volume: 59 start-page: 1758 year: 1999 ident: 28367_CR51 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 113 start-page: 9901 year: 2000 ident: 28367_CR57 publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 – volume: 120 start-page: 683 year: 2020 ident: 28367_CR2 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00230 – volume: 11 start-page: 3026 year: 2021 ident: 28367_CR18 publication-title: ACS Catal. doi: 10.1021/acscatal.0c05479 – volume: 11 year: 2020 ident: 28367_CR28 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16848-8 – volume: 3 start-page: NO. e1601945 year: 2017 ident: 28367_CR16 publication-title: Sci. Adv. doi: 10.1126/sciadv.1601945 – volume: 11 year: 2020 ident: 28367_CR6 publication-title: Nat. Commun. doi: 10.1038/s41467-019-14216-9 – volume: 11 start-page: 1 year: 2021 ident: 28367_CR19 publication-title: Nano Res. – volume: 60 start-page: 3212 year: 2021 ident: 28367_CR31 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202012798 – volume: 50 start-page: 17953 year: 1994 ident: 28367_CR55 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 77 start-page: 3865 year: 1996 ident: 28367_CR56 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 352 start-page: 797 year: 2016 ident: 28367_CR45 publication-title: Science doi: 10.1126/science.aaf5251 – volume: 55 start-page: 15656 year: 2016 ident: 28367_CR46 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201609663 – volume: 7 start-page: 5758 year: 2016 ident: 28367_CR17 publication-title: Chem. Sci. doi: 10.1039/C6SC02105K – volume: 125 start-page: 5088 year: 2021 ident: 28367_CR38 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.0c11487 – volume: 5 start-page: 537 year: 2013 ident: 28367_CR12 publication-title: Nat. Chem. doi: 10.1038/nchem.1645 – volume: 21 start-page: 704 year: 2019 ident: 28367_CR42 publication-title: Green. Chem. doi: 10.1039/C8GC03664K – volume: 120 start-page: 11986 year: 2020 ident: 28367_CR3 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00797 – volume: 142 start-page: 8431 year: 2020 ident: 28367_CR20 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c02229 – volume: 10 year: 2019 ident: 28367_CR24 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12459-0 – volume: 6 start-page: 15 year: 1996 ident: 28367_CR52 publication-title: Comp. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 12 start-page: 34021 year: 2020 ident: 28367_CR37 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c06632 – volume: 11 year: 2020 ident: 28367_CR22 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17903-0 – volume: 54 start-page: 11169 year: 1996 ident: 28367_CR53 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 60 start-page: 15248 year: 2021 ident: 28367_CR25 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202102647 – volume: 11 year: 2020 ident: 28367_CR44 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13941-5 – volume: 64 start-page: 642 year: 2021 ident: 28367_CR41 publication-title: Sci. China Mater. doi: 10.1007/s40843-020-1443-8 – volume: 113 start-page: 9978 year: 2000 ident: 28367_CR58 publication-title: J. Chem. Phys. doi: 10.1063/1.1323224 – volume: 342 start-page: 1073 year: 2013 ident: 28367_CR1 publication-title: Science doi: 10.1126/science.1242005 – volume: 60 start-page: 7607 year: 2021 ident: 28367_CR33 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202016219 – volume: 129 start-page: 16230 year: 2007 ident: 28367_CR8 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja076721g – volume: 46 start-page: 1740 year: 2013 ident: 28367_CR10 publication-title: Acc. Chem. Res. doi: 10.1021/ar300361m – volume: 4 start-page: 2536 year: 2014 ident: 28367_CR11 publication-title: ACS Catal. doi: 10.1021/cs500523k – volume: 348 start-page: 212 year: 2017 ident: 28367_CR34 publication-title: J. Catal. doi: 10.1016/j.jcat.2017.02.028 – volume: 132 start-page: 154104 year: 2010 ident: 28367_CR54 publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 59 start-page: 14639 year: 2020 ident: 28367_CR21 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202006175 – volume: 5 start-page: 7114 year: 2015 ident: 28367_CR9 publication-title: ACS Catal. doi: 10.1021/acscatal.5b01846 – volume: 97 start-page: 83 year: 2017 ident: 28367_CR35 publication-title: Catal. Commun. doi: 10.1016/j.catcom.2017.04.029 – volume: 59 start-page: 12736 year: 2020 ident: 28367_CR13 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202003651 – volume: 5 year: 2014 ident: 28367_CR5 publication-title: Nat. Commun. doi: 10.1038/ncomms6634 |
SSID | ssj0000391844 |
Score | 2.6709714 |
Snippet | Transition metal single atom catalysts (SACs) with M
1
-N
x
coordination configuration have shown outstanding activity and selectivity for hydrogenation of... Transition metal single atom catalysts (SACs) with M1-Nx coordination configuration have shown outstanding activity and selectivity for hydrogenation of... Modulating the atomic coordination structure has emerged as a promising strategy to further improve catalytic performance. Here, the authors report an atomic... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 723 |
SubjectTerms | 639/301/357/537 639/638/77/884 639/638/77/887 Atomic structure Catalysts Chemical synthesis Coordination Density functional theory Displays Electron density Humanities and Social Sciences Hydrogenation Isotope effect multidisciplinary Nitrobenzene Science Science (multidisciplinary) Selectivity Single atom catalysts Transition metals |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9EndpEWF3loTy5Ys6diGhlBo6KELuQlpJJPA1l52N4f9952Rvds40PbSmx8yljSvbyTNDGPvjTYpSBnLtqpTKVUVSx-SLoOtFHgPqDQp3vnbZXuxkF-v1NWdUl90JmxMDzxO3KkBsKGjAFBvZWUgiNqrSDVjVAvWJ9K-aPPuOFNZBzcWXRc5RclUjTndyKwT6PA6WlS8sjNLlBP2z1Dm_TOS9zZKs_05f8IeT8CRfxo7_JQ9SP0z9nAsJbl7zlaLfoXKK1HcbYrLHac8xJyiFqg4BPd95Jtc8ma8R6jKr3dxPSD_ZNrwoeMo3euBgsPShtP6LKd1hGXi6Jf_vAF-NojysvkuOG04b16wxfmXH2cX5VRNoQQl9LZUwQavKlBN6izimKg7HWplEACCF7EOOsgaKAVYB9BYSVAGQFtv0UUBhG0v2VE_9OkV46nWIkqLdq01UtkYTKqAClMhGBLCdwUT-5l1MKUap4oXS5e3vBvjRmo4pIbL1HC2YB8O36zGRBt_bf2ZCHZoSUmy8wNkHTexjvsX6xTsZE9uN0nuxtXo4QmBoFcX7N3hNcocbaT4Pg23YxtDS8DYDz1jk1mH5m_6m-ucvRtdGpzMtmAf9wz1--d_HvDr_zHgY_aoJgGgQ-f6hB1t17fpDWKqbXibxecXrxMeAQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLdgCIkL2vgQYQMZiRtEixM7tk_TmOgmJCYOVNrN8lfYpC4pTXfof897Ttopk9gtjV3V9fv6-fl9EPJZSRUd5yGvizLmXBQhty7K3OlCeGs9KE3Md_55WV_M-Y8rcTU63PoxrHKrE5OiDp1HH_lxCcibMQAj8mT5N8euUXi7OrbQeEqeMbA0GNKlZuc7HwtWP1ecj7kyRaWOe540A4awg12FJz2xR6ls_wRrPoyUfHBdmqzQbJ-8HOEjPR3ofUCexPYVeT40lNy8Jst5uwQVFjH7NobFhmI1Yoq5C9gigto20D41vhk-A2Cl15uw6oCLEoVo11CQ8VWHKWKxp-ilpehNWEQKp_PbG0_POpZfVr8YxY3p35D57Pvvs4t87KmQe8HkOhdOOysKL6rYaEAzQTbSlUIBDPSWhdJJx0uPhcAa7yvNEdB4L7XVcFDxAN7ekr22a-M7QmMpWeAarFutuNDBqVh4bE8FkIgx22SEbXfW-LHgOPa9WJh08V0pM1DDADVMoobRGfmy-85yKLfx6OxvSLDdTCyVnV50qz9mlDyjvNeuwQxiq3mhvGOlFQGbDonaaxszcrQltxnltzf33JaRT7thkDy8TrFt7O6GOQodwbAOOWGTyYKmI-3NdarhDQcb2Mw6I1-3DHX_4___w-8fX-sheVEia2NQuTwie-vVXfwAmGntPibB-AcOJBUr priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_nHYIv4idWT4ngmxabNmmSx_XwOBY8BF24t5Cvegdru2z3Hva_dyZtV3qo4FvbpDTNzCS_JDO_IeSdkio6zkNeF2XMuShCbl2UudOF8NZ6GDQx3vnLZX2x4ssrcXVEyikWJjntJ0rLNExP3mEfe55MGn3PYUKEK32PnCBVO-j2yWKx_LY87Kwg57nifIyQKSr1h5dns1Ai658hzLv-kXcOSdPcc_6IPBxBI10MzXxMjmL7hNwf0kjun5LNqt3AwBUx5jaG9Z4iBzHFiAVMDEFtG2if0t0M9wBT6fU-bDvQnSQX2jUULHvbYWBY7CnuzVLcQ1hHCmvynzeennUsv6y-MoqHzf0zsjr__P3sIh8zKeReMLnLhdPOisKLKjYaMEyQjXSlUAD-vGWhdNLx0iP9V-N9pTnCGO-lthqWJx4g23Ny3HZtfEFoLCULXMOcVisudHAqFh6TUgEQYsw2GWFTzxo_0oxjtou1ScfdlTKDNAxIwyRpGJ2R94d3NgPJxj9rf0KBHWoiQXZ60G1_mFFhjPJeuwbjhq3mhfKOlVYETDUkaq9tzMjpJG4zWm1vSljdMQaAV2bk7aEY7A0PUWwbu9uhjsLtX2iHnKnJrEHzkvbmOjF3w3IGOrPOyIdJoX5__O8__PL_qr8iD0pUdXQtl6fkeLe9ja8BOe3cm9FUfgFSFxR- priority: 102 providerName: Springer Nature |
Title | Unprecedentedly high activity and selectivity for hydrogenation of nitroarenes with single atomic Co1-N3P1 sites |
URI | https://link.springer.com/article/10.1038/s41467-022-28367-9 https://www.proquest.com/docview/2626113107 https://www.proquest.com/docview/2626890039 https://pubmed.ncbi.nlm.nih.gov/PMC8821636 https://doaj.org/article/8cc9bf8297a9408cb12a5d596256c9ae |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELf2ISReEJ8iMCoj8QaBOLVj-wGhrlqZKq2agEp9i2zHYZNKUtJOov89d05S1Gkg8dK0iaMmvjvf72zf_Qh5o6TylvMizpLUx1wkRWysl7HViXDGOBg0Md_5Ypadz_l0IRYHpKc76jpwfWdoh3xS82b5_tfP7Scw-I9tyrj6sObB3HFfOjhL-KYPyTF4JomMBhcd3A8j81BDQMO73Jm7b93zT6GM_x72vL1z8tbyafBKk4fkQQcn6aiV_yNy4KvH5F5LMLl9QlbzagVDmsdsXF8stxSrE1PMZUDKCGqqgq4DEU77GwAsvdoWTQ1aFSRG65KCzTc1poz5NcVZW4qzC0tPIVr_ce3ouGbxbHjJKC5Dr5-S-eTs2_g87jgWYieY3MTCamtE4sTQlxrQTSFLaVOhABY6w4rUSstTh4XBSueGmiPAcU5qoyFwcQDmnpGjqq78c0J9KlnBNXi7THGhC6t84pCuCiASY6aMCOt7NnddAXLkwVjmYSF8qPJWGjlIIw_SyHVE3u7uWbXlN_7Z-hQFtmuJpbPDibr5nneWmCvntC0xo9honihnWWpEgSREInPa-Iic9OLOe3XMU4j7GAMoLCPyencZLBGXV0zl65u2jcKJYXgOuacmew-0f6W6vgo1vSHQgc7MIvKuV6g_f_73F37xf81fkvspqjpuOpcn5GjT3PhXgKk2dkAO5ULCp5p8HpDj0Wj6dQrH07PZ5Rc4O87GgzBbMQgG9RvhVyOG |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIIXxKfoGGAkeIJocWLX9gNCMCgd2yoeVmlvwV9hSFXSNZ1Q_yn-Ru6cpFMnsbe9pbHbuL7z3S9n3_0IeaOkCpZznwzTLCRcpD4xNsjE6lQ4YxwYTcx3Pp4Mx1P-_VScbpG_fS4MHqvsbWI01L52GCPfywB5MwZgRH6cnyfIGoW7qz2FRqsWh2H1B17Zmg8HX0C-b7Ns9PVkf5x0rAKJE0wuE2G1NSJ1Ig-lBn_uZSltJhQAIWeYz6y0PHNYCqt0LtccXbpzUhsNUN0BfIHfvUVu8xw8OWamj76tYzpYbV1x3uXmpLnaa3i0RHhkHvw4XOkN_xdpAjaw7dWTmVe2Z6PXGz0g9zu4Sj-1-vWQbIXqEbnTEliuHpP5tJqDyQyY7Rv8bEWx-jHFXAmkpKCm8rSJRDvtZwDI9GzlFzVobdQIWpcUbMqixpS00FCMClOMXswCNUtMmKb7NUsm-Q9GURDNEzK9kdl-SrarugrPCA2ZZJ5r8KZDxYX2VoXUIR0WQDDGTDkgrJ_ZwnUFzpFnY1bEjfZcFa00CpBGEaVR6AF5t_7OvC3vcW3vzyiwdU8szR1v1ItfRbfSC-WctiVmLBvNU-Usy4zwSHIkhk6bMCC7vbiLzl40xaV2D8jrdTOsdNy-MVWoL9o-CgPPMA65oSYbA9psqX6fxZrh8CIFkzkckPe9Ql0-_P9_eOf6sb4id8cnx0fF0cHk8Dm5l6Ga44F2uUu2l4uL8ALw2tK-jIuEkp83vSr_AfBgUTk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKhAXxFMEChgJTrDKemPH9gEh-ohaClGEiNSb8WspUrQbsqlQ_hq_jpl9pEoleustm3WyXs_T45n5CHmjpIqO85CM0iwmXKQhsS7KxOlUeGs9KE2sd_46GR3P-OczcbZD_na1MJhW2enEWlGH0mOMfJCB580YOCNykLdpEdPD8cfF7wQRpPCktYPTaFjkNK7_wPat-nByCLR-m2Xjo-8Hx0mLMJB4weQqEU47K1IvhjHXYNuDzKXLhAKnyFsWMicdzzy2xcq9H2qO5t17qa0Gt92DKwP_e4vsStwV9cju_tFk-m0T4cHe64rztlInHapBxWu9hAn0YNXhk96yhjVowJanezVP88phbW0Dx_fJvdZ5pZ8abntAdmLxkNxu4CzXj8hiVixAgUas_Y1hvqbYC5li5QQCVFBbBFrVsDvNNbjL9HwdliXwcM0ftMwpaJhliQVqsaIYI6YYy5hHaldYPk0PSpZMhlNGkRTVYzK7kfV-QnpFWcSnhMZMssA12NaR4kIHp2LqERwLHDLGbN4nrFtZ49t254i6MTf1sftQmYYaBqhhamoY3SfvNr9ZNM0-rh29jwTbjMRG3fUX5fKnaeXeKO-1y7F-2WqeKu9YZkVAyCMx8trGPtnryG1a7VGZS17vk9eb2yD3eJhji1heNGMUhqFhHnKLTbYmtH2n-HVedxCHbRUs5qhP3ncMdfnw_7_ws-vn-orcAYk0X04mp8_J3Qy5HLPb5R7prZYX8QU4byv3spUSSn7ctGD-A1lrVss |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unprecedentedly+high+activity+and+selectivity+for+hydrogenation+of+nitroarenes+with+single+atomic+Co1-N3P1+sites&rft.jtitle=Nature+communications&rft.au=Jin%2C+Hongqiang&rft.au=Li%2C+Peipei&rft.au=Cui%2C+Peixin&rft.au=Shi%2C+Jinan&rft.date=2022-02-07&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-022-28367-9&rft.externalDocID=10_1038_s41467_022_28367_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |