Species differences in the pharmacokinetics of cefadroxil as determined in wildtype and humanized PepT1 mice
[Display omitted] PepT1 (SLC15A1) is a high-capacity low-affinity transporter that is important in the absorption of digested di/tripeptides from dietary protein in the small intestine. PepT1 is also crucial for the intestinal uptake and absorption of therapeutic agents such as the β-lactam aminocep...
Saved in:
Published in | Biochemical pharmacology Vol. 107; pp. 81 - 90 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Inc
01.05.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0006-2952 1873-2968 1873-2968 |
DOI | 10.1016/j.bcp.2016.03.008 |
Cover
Abstract | [Display omitted]
PepT1 (SLC15A1) is a high-capacity low-affinity transporter that is important in the absorption of digested di/tripeptides from dietary protein in the small intestine. PepT1 is also crucial for the intestinal uptake and absorption of therapeutic agents such as the β-lactam aminocephalosporins and antiviral prodrugs. Species differences, however, have been observed in PepT1-mediated intestinal absorption and pharmacokinetics, thereby, making it more difficult to predict systemic drug exposure. In the present study, we evaluated the in situ intestinal permeability of the PepT1 substrate cefadroxil in wildtype and humanized PepT1 (huPepT1) mice, and the in vivo absorption and disposition of drug after escalating oral doses. The in situ perfusions indicated that cefadroxil had a twofold higher affinity (i.e., twofold lower Km) for jejunal PepT1 in huPepT1 mice, lower but substantial permeability in all regions of the small intestine, and low but measureable permeability in the colon as compared to wildtype animals. The in vivo experiments indicated almost superimposable pharmacokinetic profiles between the two genotypes after intravenous bolus dosing of cefadroxil. In contrast, after oral dose escalation, the systemic exposure of cefadroxil was reduced in huPepT1 mice as compared to wildtype animals. Moreover, the AUC and Cmax versus dose relationships were nonlinear for huPepT1 but not wildtype mice, and similar to that observed from human subjects. In conclusion, our findings indicate that huPepT1 mice may provide a valuable tool in the drug discovery process by better predicting the oral pharmacokinetic profiles of PepT1 substrates in humans. |
---|---|
AbstractList | PepT1 (SLC15A1) is a high-capacity low-affinity transporter that is important in the absorption of digested di/tripeptides from dietary protein in the small intestine. PepT1 is also crucial for the intestinal uptake and absorption of therapeutic agents such as the β-lactam aminocephalosporins and antiviral prodrugs. Species differences, however, have been observed in PepT1-mediated intestinal absorption and pharmacokinetics, thereby, making it more difficult to predict systemic drug exposure. In the present study, we evaluated the in situ intestinal permeability of the PepT1 substrate cefadroxil in wildtype and humanized PepT1 (huPepT1) mice, and the in vivo absorption and disposition of drug after escalating oral doses. The in situ perfusions indicated that cefadroxil had a twofold higher affinity (i.e., twofold lower Km) for jejunal PepT1 in huPepT1 mice, lower but substantial permeability in all regions of the small intestine, and low but measureable permeability in the colon as compared to wildtype animals. The in vivo experiments indicated almost superimposable pharmacokinetic profiles between the two genotypes after intravenous bolus dosing of cefadroxil. In contrast, after oral dose escalation, the systemic exposure of cefadroxil was reduced in huPepT1 mice as compared to wildtype animals. Moreover, the AUC and Cmax versus dose relationships were nonlinear for huPepT1 but not wildtype mice, and similar to that observed from human subjects. In conclusion, our findings indicate that huPepT1 mice may provide a valuable tool in the drug discovery process by better predicting the oral pharmacokinetic profiles of PepT1 substrates in humans.PepT1 (SLC15A1) is a high-capacity low-affinity transporter that is important in the absorption of digested di/tripeptides from dietary protein in the small intestine. PepT1 is also crucial for the intestinal uptake and absorption of therapeutic agents such as the β-lactam aminocephalosporins and antiviral prodrugs. Species differences, however, have been observed in PepT1-mediated intestinal absorption and pharmacokinetics, thereby, making it more difficult to predict systemic drug exposure. In the present study, we evaluated the in situ intestinal permeability of the PepT1 substrate cefadroxil in wildtype and humanized PepT1 (huPepT1) mice, and the in vivo absorption and disposition of drug after escalating oral doses. The in situ perfusions indicated that cefadroxil had a twofold higher affinity (i.e., twofold lower Km) for jejunal PepT1 in huPepT1 mice, lower but substantial permeability in all regions of the small intestine, and low but measureable permeability in the colon as compared to wildtype animals. The in vivo experiments indicated almost superimposable pharmacokinetic profiles between the two genotypes after intravenous bolus dosing of cefadroxil. In contrast, after oral dose escalation, the systemic exposure of cefadroxil was reduced in huPepT1 mice as compared to wildtype animals. Moreover, the AUC and Cmax versus dose relationships were nonlinear for huPepT1 but not wildtype mice, and similar to that observed from human subjects. In conclusion, our findings indicate that huPepT1 mice may provide a valuable tool in the drug discovery process by better predicting the oral pharmacokinetic profiles of PepT1 substrates in humans. PepT1 (SLC15A1) is a high-capacity low-affinity transporter that is important in the absorption of digested di/tripeptides from dietary protein in the small intestine. PepT1 is also crucial for the intestinal uptake and absorption of therapeutic agents such as the β-lactam aminocephalosporins and antiviral prodrugs. Species differences, however, have been observed in PepT1-mediated intestinal absorption and pharmacokinetics, thereby, making it more difficult to predict systemic drug exposure. In the present study, we evaluated the in situ intestinal permeability of the PepT1 substrate cefadroxil in wildtype and humanized PepT1 ( huPepT1 ) mice, and the in vivo absorption and disposition of drug after escalating oral doses. The in situ perfusions indicated that cefadroxil had a two-fold higher affinity (i.e., two-fold lower K m ) for jejunal PepT1 in huPepT1 mice, lower but substantial permeability in all regions of the small intestine, and low but measureable permeability in the colon as compared to wildtype animals. The in vivo experiments indicated almost superimposable pharmacokinetic profiles between the two genotypes after intravenous bolus dosing of cefadroxil. In contrast, after oral dose escalation, the systemic exposure of cefadroxil was reduced in huPepT1 mice as compared to wildtype animals. Moreover, the AUC and C max versus dose relationships were nonlinear for huPepT1 but not wildtype mice, and similar to that observed from human subjects. In conclusion, our findings indicate that huPepT1 mice may provide a valuable tool in the drug discovery process by better predicting the oral pharmacokinetic profiles of PepT1 substrates in humans. [Display omitted] PepT1 (SLC15A1) is a high-capacity low-affinity transporter that is important in the absorption of digested di/tripeptides from dietary protein in the small intestine. PepT1 is also crucial for the intestinal uptake and absorption of therapeutic agents such as the β-lactam aminocephalosporins and antiviral prodrugs. Species differences, however, have been observed in PepT1-mediated intestinal absorption and pharmacokinetics, thereby, making it more difficult to predict systemic drug exposure. In the present study, we evaluated the in situ intestinal permeability of the PepT1 substrate cefadroxil in wildtype and humanized PepT1 (huPepT1) mice, and the in vivo absorption and disposition of drug after escalating oral doses. The in situ perfusions indicated that cefadroxil had a twofold higher affinity (i.e., twofold lower Km) for jejunal PepT1 in huPepT1 mice, lower but substantial permeability in all regions of the small intestine, and low but measureable permeability in the colon as compared to wildtype animals. The in vivo experiments indicated almost superimposable pharmacokinetic profiles between the two genotypes after intravenous bolus dosing of cefadroxil. In contrast, after oral dose escalation, the systemic exposure of cefadroxil was reduced in huPepT1 mice as compared to wildtype animals. Moreover, the AUC and Cmax versus dose relationships were nonlinear for huPepT1 but not wildtype mice, and similar to that observed from human subjects. In conclusion, our findings indicate that huPepT1 mice may provide a valuable tool in the drug discovery process by better predicting the oral pharmacokinetic profiles of PepT1 substrates in humans. PepT1 (SLC15A1) is a high-capacity low-affinity transporter that is important in the absorption of digested di/tripeptides from dietary protein in the small intestine. PepT1 is also crucial for the intestinal uptake and absorption of therapeutic agents such as the β-lactam aminocephalosporins and antiviral prodrugs. Species differences, however, have been observed in PepT1-mediated intestinal absorption and pharmacokinetics, thereby, making it more difficult to predict systemic drug exposure. In the present study, we evaluated the in situ intestinal permeability of the PepT1 substrate cefadroxil in wildtype and humanized PepT1 (huPepT1) mice, and the in vivo absorption and disposition of drug after escalating oral doses. The in situ perfusions indicated that cefadroxil had a twofold higher affinity (i.e., twofold lower Km) for jejunal PepT1 in huPepT1 mice, lower but substantial permeability in all regions of the small intestine, and low but measureable permeability in the colon as compared to wildtype animals. The in vivo experiments indicated almost superimposable pharmacokinetic profiles between the two genotypes after intravenous bolus dosing of cefadroxil. In contrast, after oral dose escalation, the systemic exposure of cefadroxil was reduced in huPepT1 mice as compared to wildtype animals. Moreover, the AUC and Cmax versus dose relationships were nonlinear for huPepT1 but not wildtype mice, and similar to that observed from human subjects. In conclusion, our findings indicate that huPepT1 mice may provide a valuable tool in the drug discovery process by better predicting the oral pharmacokinetic profiles of PepT1 substrates in humans. |
Author | Hu, Yongjun Smith, David E. |
AuthorAffiliation | b Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA a Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA |
AuthorAffiliation_xml | – name: b Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA – name: a Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA |
Author_xml | – sequence: 1 givenname: Yongjun surname: Hu fullname: Hu, Yongjun email: yongjun@umich.edu – sequence: 2 givenname: David E. surname: Smith fullname: Smith, David E. email: smithb@umich.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26979860$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9v1DAQxS3Uim4LH4ALypHLhrGzsR0hIaGKf1IlKrU9W449Yb0kdrC9hfLpcbQtAg692DOa-b0nzTslRz54JOQFhZoC5a93dW_mmpWyhqYGkE_IikrRrFnH5RFZAQAvdctOyGlKu6WVnD4lJ4x3opMcVmS8mtE4TJV1w4ARvSm181XeYjVvdZy0Cd-cx-xMqsJQGRy0jeGnGytdIMwYpzK2C_PDjTbfzVhpb6vtftLe_SqTS5yvaTU5g8_I8aDHhM_v_zNy8-H99fmn9cWXj5_P312sTUtFXreypVzQRg59KzsDWrDWImfFm0rWcw499HLYiK7vYcMs1Ry0bJoeykOBNWfk7UF33vcTWoM-Rz2qObpJxzsVtFP_Trzbqq_hVm0ko7yjReDVvUAM3_eYsppcMjiO2mPYJ0WF6DZMdALK6su_vf6YPJy4LIjDgokhpYiDMi7r7MJi7UZFQS1hqp0qYaolTAWNKmEWkv5HPog_xrw5MFjue-swqlTiLalaF9FkZYN7hP4N2j-4UA |
CitedBy_id | crossref_primary_10_1155_2018_9074893 crossref_primary_10_1016_j_bcp_2017_12_025 crossref_primary_10_1016_j_bcp_2019_06_013 crossref_primary_10_2745_dds_35_309 crossref_primary_10_1208_s12249_024_02811_z crossref_primary_10_1002_cpt_672 crossref_primary_10_1007_s11095_017_2242_z crossref_primary_10_1016_j_bcp_2018_06_010 crossref_primary_10_1016_j_jep_2022_115030 crossref_primary_10_1124_dmd_116_073320 crossref_primary_10_1016_j_omtm_2019_11_008 crossref_primary_10_1016_j_bcp_2018_08_018 crossref_primary_10_3389_fphar_2022_941270 crossref_primary_10_1016_j_ejcb_2025_151479 crossref_primary_10_1038_s41401_020_0408_4 crossref_primary_10_1124_dmd_118_084236 crossref_primary_10_1186_s13287_024_03685_5 crossref_primary_10_1186_s13287_024_03859_1 |
Cites_doi | 10.1007/s00418-002-0479-y 10.1016/j.addr.2007.06.016 10.1203/00006450-200106000-00013 10.1023/A:1020436028194 10.1152/ajpgi.00491.2012 10.1080/00498250701875254 10.1023/A:1015974920682 10.2165/00003495-198600323-00003 10.1021/mp8001655 10.1016/S0165-6147(02)02072-2 10.1023/A:1015842425553 10.1016/0378-5173(80)90140-4 10.1093/jac/10.suppl_B.143 10.3109/03602532.2012.738687 10.1023/A:1015829128646 10.1093/ajcn/75.5.922 10.1124/dmd.112.049239 10.1128/AAC.11.2.331 10.1006/bbrc.1996.0493 10.1124/dmd.107.015263 10.1016/j.mam.2012.11.003 10.1053/gast.2001.24845 10.1124/dmd.110.034025 10.1111/j.1469-7793.1998.697bs.x 10.1517/17425255.2013.741589 10.1093/jac/10.suppl_B.17 10.1021/mp500330y 10.1016/S0090-9556(25)08083-3 10.1007/BF00265914 10.2165/00003495-198600323-00007 10.1023/A:1025088628787 10.1124/dmd.104.001347 10.1211/jpp.60.1.0008 10.1111/j.2042-7158.1989.tb06425.x 10.1007/s11095-013-1168-3 10.1007/s11095-011-0580-9 10.1021/mp500497p 10.1074/jbc.270.43.25672 10.1152/ajpgi.2001.281.3.G697 10.1177/030006057600400305 10.1159/000238617 10.1124/dmd.113.052597 10.1211/jpp.60.5.0002 10.1124/dmd.111.044263 10.1146/annurev.pharmtox.45.120403.100007 10.1007/s11095-012-0937-8 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Inc. Copyright © 2016 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier Inc. – notice: Copyright © 2016 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.bcp.2016.03.008 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-2968 |
EndPage | 90 |
ExternalDocumentID | PMC4821691 26979860 10_1016_j_bcp_2016_03_008 S0006295216001611 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM115481 – fundername: NIGMS NIH HHS grantid: R01-GM115481 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5RE 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AATCM AAXUO ABFNM ABFRF ABJNI ABLJU ABMAC ABYKQ ABZDS ACDAQ ACGFO ACGFS ACIUM ACNCT ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C45 CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IH2 IHE J1W K-O KOM L7B M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPCBC SPT SSP SSZ T5K TEORI TWZ WH7 ZA5 ~G- .55 .GJ .HR 3O- 53G 5VS AAQFI AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HMT HVGLF HZ~ LPU R2- SEW VH1 WUQ X7M ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c517t-585167138fb589c0a725de62cef182b660b0b8f479bb042d1a60a833b08331023 |
IEDL.DBID | AIKHN |
ISSN | 0006-2952 1873-2968 |
IngestDate | Thu Aug 21 18:36:21 EDT 2025 Fri Sep 05 08:31:13 EDT 2025 Wed Feb 19 01:55:41 EST 2025 Thu Apr 24 23:07:00 EDT 2025 Tue Aug 12 03:10:02 EDT 2025 Fri Feb 23 02:26:16 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cefadroxil Pharmacokinetics Humanized mice Species differences PEPT1 |
Language | English |
License | Copyright © 2016 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-585167138fb589c0a725de62cef182b660b0b8f479bb042d1a60a833b08331023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4821691 |
PMID | 26979860 |
PQID | 1779427970 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4821691 proquest_miscellaneous_1779427970 pubmed_primary_26979860 crossref_citationtrail_10_1016_j_bcp_2016_03_008 crossref_primary_10_1016_j_bcp_2016_03_008 elsevier_sciencedirect_doi_10_1016_j_bcp_2016_03_008 |
PublicationCentury | 2000 |
PublicationDate | 2016-05-01 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Biochemical pharmacology |
PublicationTitleAlternate | Biochem Pharmacol |
PublicationYear | 2016 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Adachi, Suzuki, Sugiyama (b0155) 2003; 20 Beisel (b0095) 1980; 8 Jappar, Wu, Hu, Smith (b0025) 2010; 38 Yang, Hu, Smith (b0015) 2013; 41 Yang, Smith (b0240) 2013; 41 Rubio-Aliaga, Daniel (b0175) 2008; 38 Smith, Clemencon, Hediger (b0145) 2013; 34 Tanrisever, Santella (b0075) 1986; 32 Garrigues, Martin, Peris-Ribera, Prescott (b0120) 1991; 41 Ogihara, Saito, Shin, Terado, Takenoshita, Nagamachi, Inui, Takata (b0225) 1996; 220 Hu, Chen, Smith (b0035) 2012; 40 Shen, Smith, Brosius (b0200) 2001; 49 Groneberg, Doring, Eynott, Fischer, Daniel (b0230) 2001; 281 Kaminszczik (b0105) 1986; 32 Rubio-Aliaga, Daniel (b0170) 2002; 23 Garcia-Carbonell, Granero, Torres-Molina, Aristorena, Chesa-Jimenez, Pla-Delfina, Peris-Ribera (b0115) 1993; 21 Hu, Xie, Wang, Chen, Smith (b0060) 2014; 11 Lennernas (b0190) 2007; 59 Randolph (b0100) 1988; 34 Walker, Thwaites, Simmons, Gilbert, Hirst (b0210) 1998; 507 Scheer, Wilson (b0040) 2015 Sinko, Amidon (b0185) 1988; 5 Pfeffer, Jackson, Ximenes, de Menezes (b0065) 1977; 11 Scheer, Roland Wolf (b0055) 2013; 45 Kou, Fleisher, Amidon (b0160) 1991; 8 Naruhashi, Sai, Tamai, Suzuki, Tsuji (b0130) 2002; 19 Chen (b0245) 1992; 9 Ganapathy, Brandsch, Prasad, Ganapathy, Leibach (b0135) 1995; 270 Drozdzik, Groer, Penski, Lapczuk, Ostrowski, Lai, Prasad, Unadkat, Siegmund, Oswald (b0005) 2014; 11 Posada, Smith (b0140) 2013; 30 Hausman (b0080) 1980; 8 Ma, Hu, Smith (b0020) 2012; 29 Katoh, Matsui, Nakajima, Tateno, Kataoka, Soeno, Horie, Iwasaki, Yoshizato, Yokoi (b0045) 2004; 32 Gonzalez, Yu (b0050) 2006; 46 Brandsch, Knutter, Bosse-Doenecke (b0180) 2008; 60 Yu, Novicki (b0070) 1995; 12 Ziegler, Fernandez-Estivariz, Gu, Bazargan, Umeakunne, Wallace, Diaz, Rosado, Pascal, Galloway, Wilcox, Leader (b0205) 2002; 75 Ford, Howard, Hirst (b0220) 2003; 119 Merlin, Si-Tahar, Sitaraman, Eastburn, Williams, Liu, Hediger, Madara (b0235) 2001; 120 Sanchez-Pico, Peris-Ribera, Toledano, Torres-Molina, Casabo, Martin-Villodre, Pla-Delfina (b0150) 1989; 41 McConnell, Basit, Murdan (b0250) 2008; 60 Chu, Bleasby, Evers (b0030) 2013; 9 Cordero (b0090) 1976; 4 Santella, Henness (b0110) 1982; 10 Ballantyne (b0085) 1982; 10 Shen, Ocheltree, Hu, Keep, Smith (b0195) 2007; 35 Komiya, Park, Kamani, Ho, Higuchi (b0165) 1980; 4 Posada, Smith (b0125) 2013; 30 Hu, Smith, Ma, Jappar, Thomas, Hillgren (b0010) 2008; 5 Wuensch, Schulz, Ullrich, Lill, Stelzl, Rubio-Aliaga, Loh, Chamaillard, Haller, Daniel (b0215) 2013; 305 Hu (10.1016/j.bcp.2016.03.008_b0035) 2012; 40 Sanchez-Pico (10.1016/j.bcp.2016.03.008_b0150) 1989; 41 Walker (10.1016/j.bcp.2016.03.008_b0210) 1998; 507 Wuensch (10.1016/j.bcp.2016.03.008_b0215) 2013; 305 Hausman (10.1016/j.bcp.2016.03.008_b0080) 1980; 8 Katoh (10.1016/j.bcp.2016.03.008_b0045) 2004; 32 Komiya (10.1016/j.bcp.2016.03.008_b0165) 1980; 4 Drozdzik (10.1016/j.bcp.2016.03.008_b0005) 2014; 11 Randolph (10.1016/j.bcp.2016.03.008_b0100) 1988; 34 Shen (10.1016/j.bcp.2016.03.008_b0195) 2007; 35 Shen (10.1016/j.bcp.2016.03.008_b0200) 2001; 49 Kaminszczik (10.1016/j.bcp.2016.03.008_b0105) 1986; 32 Pfeffer (10.1016/j.bcp.2016.03.008_b0065) 1977; 11 Ziegler (10.1016/j.bcp.2016.03.008_b0205) 2002; 75 Yang (10.1016/j.bcp.2016.03.008_b0240) 2013; 41 Adachi (10.1016/j.bcp.2016.03.008_b0155) 2003; 20 Chen (10.1016/j.bcp.2016.03.008_b0245) 1992; 9 Gonzalez (10.1016/j.bcp.2016.03.008_b0050) 2006; 46 Yang (10.1016/j.bcp.2016.03.008_b0015) 2013; 41 Rubio-Aliaga (10.1016/j.bcp.2016.03.008_b0175) 2008; 38 Smith (10.1016/j.bcp.2016.03.008_b0145) 2013; 34 Chu (10.1016/j.bcp.2016.03.008_b0030) 2013; 9 Groneberg (10.1016/j.bcp.2016.03.008_b0230) 2001; 281 Merlin (10.1016/j.bcp.2016.03.008_b0235) 2001; 120 Cordero (10.1016/j.bcp.2016.03.008_b0090) 1976; 4 Hu (10.1016/j.bcp.2016.03.008_b0060) 2014; 11 Ma (10.1016/j.bcp.2016.03.008_b0020) 2012; 29 Ballantyne (10.1016/j.bcp.2016.03.008_b0085) 1982; 10 Santella (10.1016/j.bcp.2016.03.008_b0110) 1982; 10 Ganapathy (10.1016/j.bcp.2016.03.008_b0135) 1995; 270 Posada (10.1016/j.bcp.2016.03.008_b0140) 2013; 30 Kou (10.1016/j.bcp.2016.03.008_b0160) 1991; 8 Yu (10.1016/j.bcp.2016.03.008_b0070) 1995; 12 Ogihara (10.1016/j.bcp.2016.03.008_b0225) 1996; 220 Scheer (10.1016/j.bcp.2016.03.008_b0055) 2013; 45 Posada (10.1016/j.bcp.2016.03.008_b0125) 2013; 30 Naruhashi (10.1016/j.bcp.2016.03.008_b0130) 2002; 19 Jappar (10.1016/j.bcp.2016.03.008_b0025) 2010; 38 Sinko (10.1016/j.bcp.2016.03.008_b0185) 1988; 5 Garrigues (10.1016/j.bcp.2016.03.008_b0120) 1991; 41 Ford (10.1016/j.bcp.2016.03.008_b0220) 2003; 119 McConnell (10.1016/j.bcp.2016.03.008_b0250) 2008; 60 Scheer (10.1016/j.bcp.2016.03.008_b0040) 2015 Beisel (10.1016/j.bcp.2016.03.008_b0095) 1980; 8 Garcia-Carbonell (10.1016/j.bcp.2016.03.008_b0115) 1993; 21 Hu (10.1016/j.bcp.2016.03.008_b0010) 2008; 5 Lennernas (10.1016/j.bcp.2016.03.008_b0190) 2007; 59 Brandsch (10.1016/j.bcp.2016.03.008_b0180) 2008; 60 Tanrisever (10.1016/j.bcp.2016.03.008_b0075) 1986; 32 Rubio-Aliaga (10.1016/j.bcp.2016.03.008_b0170) 2002; 23 23924683 - Drug Metab Dispos. 2013 Oct;41(10):1867-74 11375948 - Gastroenterology. 2001 Jun;120(7):1666-79 2052515 - Pharm Res. 1991 Mar;8(3):298-305 8097688 - Drug Metab Dispos. 1993 Mar-Apr;21(2):215-7 25148225 - Mol Pharm. 2014 Oct 6;11(10):3737-46 848940 - Antimicrob Agents Chemother. 1977 Feb;11(2):331-8 11976168 - Am J Clin Nutr. 2002 May;75(5):922-30 20660104 - Drug Metab Dispos. 2010 Oct;38(10):1740-6 2568445 - J Pharm Pharmacol. 1989 Mar;41(3):179-85 10150319 - Adv Ther. 1995 Jan-Feb;12(1):1-10 1026545 - J Int Med Res. 1976;4(3):176-8 18416933 - J Pharm Pharmacol. 2008 May;60(5):543-85 7439511 - J Int Med Res. 1980;8(Suppl 1):87-93 17900749 - Adv Drug Deliv Rev. 2007 Sep 30;59(11):1103-20 19434858 - Mol Pharm. 2008 Nov-Dec;5(6):1122-30 3803251 - Drugs. 1986;32 Suppl 3:33-8 12548404 - Histochem Cell Biol. 2003 Jan;119(1):37-43 11385139 - Pediatr Res. 2001 Jun;49(6):789-95 11518682 - Am J Physiol Gastrointest Liver Physiol. 2001 Sep;281(3):G697-704 23506874 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):323-36 1743250 - Eur J Clin Pharmacol. 1991;41(2):179-83 23256482 - Expert Opin Drug Metab Toxicol. 2013 Mar;9(3):237-52 9508831 - J Physiol. 1998 Mar 15;507 ( Pt 3):697-706 3243093 - Chemotherapy. 1988;34(6):512-8 23264448 - Drug Metab Dispos. 2013 Mar;41(3):608-14 16402898 - Annu Rev Pharmacol Toxicol. 2006;46:41-64 23959853 - Pharm Res. 2013 Nov;30(11):2931-9 7439501 - J Int Med Res. 1980;8(Suppl 1):21-8 12425457 - Pharm Res. 2002 Oct;19(10):1417-23 7142089 - J Antimicrob Chemother. 1982 Sep;10 Suppl B:17-25 21904935 - Pharm Res. 2012 Feb;29(2):535-45 22490229 - Drug Metab Dispos. 2012 Jul;40(7):1328-35 1475222 - Pharm Res. 1992 Nov;9(11):1380-5 18088506 - J Pharm Pharmacol. 2008 Jan;60(1):63-70 7592745 - J Biol Chem. 1995 Oct 27;270(43):25672-7 3542485 - Drugs. 1986;32 Suppl 3:1-16 23660505 - Am J Physiol Gastrointest Liver Physiol. 2013 Jul 1;305(1):G66-73 17452417 - Drug Metab Dispos. 2007 Jul;35(7):1209-16 25158075 - Mol Pharm. 2014 Oct 6;11(10):3547-55 12948013 - Pharm Res. 2003 Aug;20(8):1163-9 6754687 - J Antimicrob Chemother. 1982 Sep;10 Suppl B:143-7 23173549 - Drug Metab Rev. 2013 Feb;45(1):110-21 3244617 - Pharm Res. 1988 Oct;5(10):645-50 18668438 - Xenobiotica. 2008 Jul;38(7-8):1022-42 23224978 - Pharm Res. 2013 Apr;30(4):1017-25 26360054 - Drug Discov Today. 2016 Feb;21(2):250-63 15383493 - Drug Metab Dispos. 2004 Dec;32(12):1402-10 12237156 - Trends Pharmacol Sci. 2002 Sep;23(9):434-40 8607854 - Biochem Biophys Res Commun. 1996 Mar 27;220(3):848-52 |
References_xml | – volume: 59 start-page: 1103 year: 2007 end-page: 1120 ident: b0190 article-title: Animal data: the contributions of the using chamber and perfusion systems to predicting human oral drug delivery in vivo publication-title: Adv. Drug Deliv. Rev. – volume: 32 start-page: 1 year: 1986 end-page: 16 ident: b0075 article-title: Cefadroxil. A review of its antibacterial, pharmacokinetic and therapeutic properties in comparison with cephalexin and cephradine publication-title: Drugs – volume: 34 start-page: 323 year: 2013 end-page: 336 ident: b0145 article-title: Proton-coupled oligopeptide transporter family slc15: physiological, pharmacological and pathological implications publication-title: Mol. Aspects Med. – volume: 41 start-page: 179 year: 1989 end-page: 185 ident: b0150 article-title: Non-linear intestinal absorption kinetics of cefadroxil in the rat publication-title: J. Pharm. Pharmacol. – volume: 9 start-page: 237 year: 2013 end-page: 252 ident: b0030 article-title: Species differences in drug transporters and implications for translating preclinical findings to humans publication-title: Expert Opin. Drug Metab. Toxicol. – volume: 8 start-page: 21 year: 1980 end-page: 28 ident: b0080 article-title: Treatment of urinary tract infections with cefadroxil, a new cephalosporin publication-title: J. Int. Med. Res. – volume: 220 start-page: 848 year: 1996 end-page: 852 ident: b0225 article-title: Immuno-localization of h+/peptide cotransporter in rat digestive tract publication-title: Biochem. Biophys. Res. Commun. – volume: 30 start-page: 1017 year: 2013 end-page: 1025 ident: b0125 article-title: Relevance of pept1 in the intestinal permeability and oral absorption of cefadroxil publication-title: Pharm. Res. – volume: 40 start-page: 1328 year: 2012 end-page: 1335 ident: b0035 article-title: Species-dependent uptake of glycylsarcosine but not oseltamivir in publication-title: Drug Metab. Dispos. – volume: 305 start-page: G66 year: 2013 end-page: G73 ident: b0215 article-title: The peptide transporter pept1 is expressed in distal colon in rodents and humans and contributes to water absorption publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. – volume: 34 start-page: 512 year: 1988 end-page: 518 ident: b0100 article-title: Clinical comparison of once-daily cefadroxil and thrice-daily cefaclor in the treatment of streptococcal pharyngitis publication-title: Chemotherapy – volume: 23 start-page: 434 year: 2002 end-page: 440 ident: b0170 article-title: Mammalian peptide transporters as targets for drug delivery publication-title: Trends Pharmacol. Sci. – volume: 120 start-page: 1666 year: 2001 end-page: 1679 ident: b0235 article-title: Colonic epithelial hpept1 expression occurs in inflammatory bowel disease: transport of bacterial peptides influences expression of mhc class 1 molecules publication-title: Gastroenterology – volume: 75 start-page: 922 year: 2002 end-page: 930 ident: b0205 article-title: Distribution of the h+/peptide transporter pept1 in human intestine: up-regulated expression in the colonic mucosa of patients with short-bowel syndrome publication-title: Am. J. Clin. Nutr. – volume: 41 start-page: 608 year: 2013 end-page: 614 ident: b0240 article-title: Significance of peptide transporter 1 in the intestinal permeability of valacyclovir in wild-type and pept1 knockout mice publication-title: Drug Metab. Dispos. – volume: 11 start-page: 331 year: 1977 end-page: 338 ident: b0065 article-title: Comparative human oral clinical pharmacology of cefadroxil, cephalexin, and cephradine publication-title: Antimicrob. Agents Chemother. – volume: 4 start-page: 176 year: 1976 end-page: 178 ident: b0090 article-title: Treatment of skin and soft tissue infections with cefadroxil, a new oral cephalosporin publication-title: J. Int. Med. Res. – volume: 270 start-page: 25672 year: 1995 end-page: 25677 ident: b0135 article-title: Differential recognition of beta-lactam antibiotics by intestinal and renal peptide transporters, pept 1 and pept 2 publication-title: J. Biol. Chem. – volume: 60 start-page: 63 year: 2008 end-page: 70 ident: b0250 article-title: Measurements of rat and mouse gastrointestinal ph, fluid and lymphoid tissue, and implications for in-vivo experiments publication-title: J. Pharm. Pharmacol. – volume: 11 start-page: 3547 year: 2014 end-page: 3555 ident: b0005 article-title: Protein abundance of clinically relevant multidrug transporters along the entire length of the human intestine publication-title: Mol. Pharm. – volume: 46 start-page: 41 year: 2006 end-page: 64 ident: b0050 article-title: Cytochrome p450 and xenobiotic receptor humanized mice publication-title: Annu. Rev. Pharmacol. Toxicol. – volume: 45 start-page: 110 year: 2013 end-page: 121 ident: b0055 article-title: Xenobiotic receptor humanized mice and their utility publication-title: Drug Metab. Rev. – volume: 8 start-page: 298 year: 1991 end-page: 305 ident: b0160 article-title: Calculation of the aqueous diffusion layer resistance for absorption in a tube: application to intestinal membrane permeability determination publication-title: Pharm. Res. – volume: 11 start-page: 3737 year: 2014 end-page: 3746 ident: b0060 article-title: Development and characterization of a novel mouse line humanized for the intestinal peptide transporter pept1 publication-title: Mol. Pharm. – volume: 4 start-page: 14 year: 1980 ident: b0165 article-title: Quantitative mechanistic studies in simultaneous fluid flow and intestinal absorption using steroids as model solutes publication-title: Int. J. Pharm. – volume: 119 start-page: 37 year: 2003 end-page: 43 ident: b0220 article-title: Expression of the peptide transporter hpept1 in human colon: a potential route for colonic protein nitrogen and drug absorption publication-title: Histochem. Cell Biol. – volume: 281 start-page: G697 year: 2001 end-page: G704 ident: b0230 article-title: Intestinal peptide transport: ex vivo uptake studies and localization of peptide carrier pept1 publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. – volume: 507 start-page: 697 year: 1998 end-page: 706 ident: b0210 article-title: Substrate upregulation of the human small intestinal peptide transporter, hpept1 publication-title: J. Physiol. – year: 2015 ident: b0040 article-title: A comparison between genetically humanized and chimeric liver humanized mouse models for studies in drug metabolism and toxicity publication-title: Drug Discov. Today – volume: 8 start-page: 87 year: 1980 end-page: 93 ident: b0095 article-title: Efficacy and safety of cefadroxil in bacterial pharyngitis publication-title: J. Int. Med. Res. – volume: 29 start-page: 535 year: 2012 end-page: 545 ident: b0020 article-title: Influence of fed-fasted state on intestinal pept1 expression and in vivo pharmacokinetics of glycylsarcosine in wild-type and pept1 knockout mice publication-title: Pharm. Res. – volume: 21 start-page: 215 year: 1993 end-page: 217 ident: b0115 article-title: Nonlinear pharmacokinetics of cefadroxil in the rat publication-title: Drug Metab. Dispos. – volume: 32 start-page: 1402 year: 2004 end-page: 1410 ident: b0045 article-title: Expression of human cytochromes p450 in chimeric mice with humanized liver publication-title: Drug Metab. Dispos. – volume: 41 start-page: 179 year: 1991 end-page: 183 ident: b0120 article-title: Dose-dependent absorption and elimination of cefadroxil in man publication-title: Eur. J. Clin. Pharmacol. – volume: 38 start-page: 1022 year: 2008 end-page: 1042 ident: b0175 article-title: Peptide transporters and their roles in physiological processes and drug disposition publication-title: Xenobiotica – volume: 60 start-page: 543 year: 2008 end-page: 585 ident: b0180 article-title: Pharmaceutical and pharmacological importance of peptide transporters publication-title: J. Pharm. Pharmacol. – volume: 5 start-page: 1122 year: 2008 end-page: 1130 ident: b0010 article-title: Targeted disruption of peptide transporter pept1 gene in mice significantly reduces dipeptide absorption in intestine publication-title: Mol. Pharm. – volume: 49 start-page: 789 year: 2001 end-page: 795 ident: b0200 article-title: Developmental expression of pept1 and pept2 in rat small intestine, colon, and kidney publication-title: Pediatr. Res. – volume: 38 start-page: 1740 year: 2010 end-page: 1746 ident: b0025 article-title: Significance and regional dependency of peptide transporter (pept) 1 in the intestinal permeability of glycylsarcosine: in situ single-pass perfusion studies in wild-type and pept1 knockout mice publication-title: Drug Metab. Dispos. – volume: 9 start-page: 1380 year: 1992 end-page: 1385 ident: b0245 article-title: An alternative approach for assessment of rate of absorption in bioequivalence studies publication-title: Pharm. Res. – volume: 12 start-page: 1 year: 1995 end-page: 10 ident: b0070 article-title: Cefadroxil in skin and skin-structure foot infections: a retrospective review publication-title: Adv. Ther. – volume: 30 start-page: 2931 year: 2013 end-page: 2939 ident: b0140 article-title: In vivo absorption and disposition of cefadroxil after escalating oral doses in wild-type and pept1 knockout mice publication-title: Pharm. Res. – volume: 20 start-page: 1163 year: 2003 end-page: 1169 ident: b0155 article-title: Quantitative evaluation of the function of small intestinal p-glycoprotein: comparative studies between in situ and in vitro publication-title: Pharm. Res. – volume: 41 start-page: 1867 year: 2013 end-page: 1874 ident: b0015 article-title: Impact of peptide transporter 1 on the intestinal absorption and pharmacokinetics of valacyclovir after oral dose escalation in wild-type and pept1 knockout mice publication-title: Drug Metab. Dispos. – volume: 10 start-page: 143 year: 1982 end-page: 147 ident: b0085 article-title: Cefadroxil in the treatment of skin and soft tissue infections publication-title: J. Antimicrob. Chemother. – volume: 32 start-page: 33 year: 1986 end-page: 38 ident: b0105 article-title: Treatment of acute and chronic sinusitis with cefadroxil publication-title: Drugs – volume: 35 start-page: 1209 year: 2007 end-page: 1216 ident: b0195 article-title: Impact of genetic knockout of PEPT2 on cefadroxil pharmacokinetics, renal tubular reabsorption, and brain penetration in mice publication-title: Drug Metab. Dispos. – volume: 10 start-page: 17 year: 1982 end-page: 25 ident: b0110 article-title: A review of the bioavailability of cefadroxil publication-title: J. Antimicrob. Chemother. – volume: 5 start-page: 645 year: 1988 end-page: 650 ident: b0185 article-title: Characterization of the oral absorption of beta-lactam antibiotics. I. Cephalosporins: determination of intrinsic membrane absorption parameters in the rat intestine in situ publication-title: Pharm. Res. – volume: 19 start-page: 1417 year: 2002 end-page: 1423 ident: b0130 article-title: Pept1 mrna expression is induced by starvation and its level correlates with absorptive transport of cefadroxil longitudinally in the rat intestine publication-title: Pharm. Res. – volume: 119 start-page: 37 year: 2003 ident: 10.1016/j.bcp.2016.03.008_b0220 article-title: Expression of the peptide transporter hpept1 in human colon: a potential route for colonic protein nitrogen and drug absorption publication-title: Histochem. Cell Biol. doi: 10.1007/s00418-002-0479-y – volume: 59 start-page: 1103 year: 2007 ident: 10.1016/j.bcp.2016.03.008_b0190 article-title: Animal data: the contributions of the using chamber and perfusion systems to predicting human oral drug delivery in vivo publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2007.06.016 – volume: 49 start-page: 789 year: 2001 ident: 10.1016/j.bcp.2016.03.008_b0200 article-title: Developmental expression of pept1 and pept2 in rat small intestine, colon, and kidney publication-title: Pediatr. Res. doi: 10.1203/00006450-200106000-00013 – volume: 12 start-page: 1 year: 1995 ident: 10.1016/j.bcp.2016.03.008_b0070 article-title: Cefadroxil in skin and skin-structure foot infections: a retrospective review publication-title: Adv. Ther. – volume: 19 start-page: 1417 year: 2002 ident: 10.1016/j.bcp.2016.03.008_b0130 article-title: Pept1 mrna expression is induced by starvation and its level correlates with absorptive transport of cefadroxil longitudinally in the rat intestine publication-title: Pharm. Res. doi: 10.1023/A:1020436028194 – volume: 305 start-page: G66 year: 2013 ident: 10.1016/j.bcp.2016.03.008_b0215 article-title: The peptide transporter pept1 is expressed in distal colon in rodents and humans and contributes to water absorption publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.00491.2012 – volume: 38 start-page: 1022 year: 2008 ident: 10.1016/j.bcp.2016.03.008_b0175 article-title: Peptide transporters and their roles in physiological processes and drug disposition publication-title: Xenobiotica doi: 10.1080/00498250701875254 – volume: 5 start-page: 645 year: 1988 ident: 10.1016/j.bcp.2016.03.008_b0185 article-title: Characterization of the oral absorption of beta-lactam antibiotics. I. Cephalosporins: determination of intrinsic membrane absorption parameters in the rat intestine in situ publication-title: Pharm. Res. doi: 10.1023/A:1015974920682 – volume: 32 start-page: 1 issue: Suppl. 3 year: 1986 ident: 10.1016/j.bcp.2016.03.008_b0075 article-title: Cefadroxil. A review of its antibacterial, pharmacokinetic and therapeutic properties in comparison with cephalexin and cephradine publication-title: Drugs doi: 10.2165/00003495-198600323-00003 – volume: 5 start-page: 1122 year: 2008 ident: 10.1016/j.bcp.2016.03.008_b0010 article-title: Targeted disruption of peptide transporter pept1 gene in mice significantly reduces dipeptide absorption in intestine publication-title: Mol. Pharm. doi: 10.1021/mp8001655 – volume: 23 start-page: 434 year: 2002 ident: 10.1016/j.bcp.2016.03.008_b0170 article-title: Mammalian peptide transporters as targets for drug delivery publication-title: Trends Pharmacol. Sci. doi: 10.1016/S0165-6147(02)02072-2 – volume: 9 start-page: 1380 year: 1992 ident: 10.1016/j.bcp.2016.03.008_b0245 article-title: An alternative approach for assessment of rate of absorption in bioequivalence studies publication-title: Pharm. Res. doi: 10.1023/A:1015842425553 – volume: 4 start-page: 14 year: 1980 ident: 10.1016/j.bcp.2016.03.008_b0165 article-title: Quantitative mechanistic studies in simultaneous fluid flow and intestinal absorption using steroids as model solutes publication-title: Int. J. Pharm. doi: 10.1016/0378-5173(80)90140-4 – volume: 10 start-page: 143 issue: Suppl. B year: 1982 ident: 10.1016/j.bcp.2016.03.008_b0085 article-title: Cefadroxil in the treatment of skin and soft tissue infections publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/10.suppl_B.143 – volume: 45 start-page: 110 year: 2013 ident: 10.1016/j.bcp.2016.03.008_b0055 article-title: Xenobiotic receptor humanized mice and their utility publication-title: Drug Metab. Rev. doi: 10.3109/03602532.2012.738687 – volume: 8 start-page: 298 year: 1991 ident: 10.1016/j.bcp.2016.03.008_b0160 article-title: Calculation of the aqueous diffusion layer resistance for absorption in a tube: application to intestinal membrane permeability determination publication-title: Pharm. Res. doi: 10.1023/A:1015829128646 – volume: 75 start-page: 922 year: 2002 ident: 10.1016/j.bcp.2016.03.008_b0205 article-title: Distribution of the h+/peptide transporter pept1 in human intestine: up-regulated expression in the colonic mucosa of patients with short-bowel syndrome publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/75.5.922 – volume: 41 start-page: 608 year: 2013 ident: 10.1016/j.bcp.2016.03.008_b0240 article-title: Significance of peptide transporter 1 in the intestinal permeability of valacyclovir in wild-type and pept1 knockout mice publication-title: Drug Metab. Dispos. doi: 10.1124/dmd.112.049239 – volume: 11 start-page: 331 year: 1977 ident: 10.1016/j.bcp.2016.03.008_b0065 article-title: Comparative human oral clinical pharmacology of cefadroxil, cephalexin, and cephradine publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.11.2.331 – volume: 220 start-page: 848 year: 1996 ident: 10.1016/j.bcp.2016.03.008_b0225 article-title: Immuno-localization of h+/peptide cotransporter in rat digestive tract publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1996.0493 – volume: 35 start-page: 1209 year: 2007 ident: 10.1016/j.bcp.2016.03.008_b0195 article-title: Impact of genetic knockout of PEPT2 on cefadroxil pharmacokinetics, renal tubular reabsorption, and brain penetration in mice publication-title: Drug Metab. Dispos. doi: 10.1124/dmd.107.015263 – volume: 34 start-page: 323 year: 2013 ident: 10.1016/j.bcp.2016.03.008_b0145 article-title: Proton-coupled oligopeptide transporter family slc15: physiological, pharmacological and pathological implications publication-title: Mol. Aspects Med. doi: 10.1016/j.mam.2012.11.003 – volume: 120 start-page: 1666 year: 2001 ident: 10.1016/j.bcp.2016.03.008_b0235 article-title: Colonic epithelial hpept1 expression occurs in inflammatory bowel disease: transport of bacterial peptides influences expression of mhc class 1 molecules publication-title: Gastroenterology doi: 10.1053/gast.2001.24845 – volume: 38 start-page: 1740 year: 2010 ident: 10.1016/j.bcp.2016.03.008_b0025 article-title: Significance and regional dependency of peptide transporter (pept) 1 in the intestinal permeability of glycylsarcosine: in situ single-pass perfusion studies in wild-type and pept1 knockout mice publication-title: Drug Metab. Dispos. doi: 10.1124/dmd.110.034025 – volume: 8 start-page: 87 year: 1980 ident: 10.1016/j.bcp.2016.03.008_b0095 article-title: Efficacy and safety of cefadroxil in bacterial pharyngitis publication-title: J. Int. Med. Res. – volume: 507 start-page: 697 issue: Pt 3 year: 1998 ident: 10.1016/j.bcp.2016.03.008_b0210 article-title: Substrate upregulation of the human small intestinal peptide transporter, hpept1 publication-title: J. Physiol. doi: 10.1111/j.1469-7793.1998.697bs.x – volume: 9 start-page: 237 year: 2013 ident: 10.1016/j.bcp.2016.03.008_b0030 article-title: Species differences in drug transporters and implications for translating preclinical findings to humans publication-title: Expert Opin. Drug Metab. Toxicol. doi: 10.1517/17425255.2013.741589 – volume: 10 start-page: 17 issue: Suppl. B year: 1982 ident: 10.1016/j.bcp.2016.03.008_b0110 article-title: A review of the bioavailability of cefadroxil publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/10.suppl_B.17 – volume: 11 start-page: 3547 year: 2014 ident: 10.1016/j.bcp.2016.03.008_b0005 article-title: Protein abundance of clinically relevant multidrug transporters along the entire length of the human intestine publication-title: Mol. Pharm. doi: 10.1021/mp500330y – volume: 21 start-page: 215 year: 1993 ident: 10.1016/j.bcp.2016.03.008_b0115 article-title: Nonlinear pharmacokinetics of cefadroxil in the rat publication-title: Drug Metab. Dispos. doi: 10.1016/S0090-9556(25)08083-3 – volume: 41 start-page: 179 year: 1991 ident: 10.1016/j.bcp.2016.03.008_b0120 article-title: Dose-dependent absorption and elimination of cefadroxil in man publication-title: Eur. J. Clin. Pharmacol. doi: 10.1007/BF00265914 – volume: 32 start-page: 33 issue: Suppl. 3 year: 1986 ident: 10.1016/j.bcp.2016.03.008_b0105 article-title: Treatment of acute and chronic sinusitis with cefadroxil publication-title: Drugs doi: 10.2165/00003495-198600323-00007 – volume: 20 start-page: 1163 year: 2003 ident: 10.1016/j.bcp.2016.03.008_b0155 article-title: Quantitative evaluation of the function of small intestinal p-glycoprotein: comparative studies between in situ and in vitro publication-title: Pharm. Res. doi: 10.1023/A:1025088628787 – volume: 32 start-page: 1402 year: 2004 ident: 10.1016/j.bcp.2016.03.008_b0045 article-title: Expression of human cytochromes p450 in chimeric mice with humanized liver publication-title: Drug Metab. Dispos. doi: 10.1124/dmd.104.001347 – volume: 8 start-page: 21 year: 1980 ident: 10.1016/j.bcp.2016.03.008_b0080 article-title: Treatment of urinary tract infections with cefadroxil, a new cephalosporin publication-title: J. Int. Med. Res. – volume: 60 start-page: 63 year: 2008 ident: 10.1016/j.bcp.2016.03.008_b0250 article-title: Measurements of rat and mouse gastrointestinal ph, fluid and lymphoid tissue, and implications for in-vivo experiments publication-title: J. Pharm. Pharmacol. doi: 10.1211/jpp.60.1.0008 – volume: 41 start-page: 179 year: 1989 ident: 10.1016/j.bcp.2016.03.008_b0150 article-title: Non-linear intestinal absorption kinetics of cefadroxil in the rat publication-title: J. Pharm. Pharmacol. doi: 10.1111/j.2042-7158.1989.tb06425.x – volume: 30 start-page: 2931 year: 2013 ident: 10.1016/j.bcp.2016.03.008_b0140 article-title: In vivo absorption and disposition of cefadroxil after escalating oral doses in wild-type and pept1 knockout mice publication-title: Pharm. Res. doi: 10.1007/s11095-013-1168-3 – volume: 29 start-page: 535 year: 2012 ident: 10.1016/j.bcp.2016.03.008_b0020 article-title: Influence of fed-fasted state on intestinal pept1 expression and in vivo pharmacokinetics of glycylsarcosine in wild-type and pept1 knockout mice publication-title: Pharm. Res. doi: 10.1007/s11095-011-0580-9 – volume: 11 start-page: 3737 year: 2014 ident: 10.1016/j.bcp.2016.03.008_b0060 article-title: Development and characterization of a novel mouse line humanized for the intestinal peptide transporter pept1 publication-title: Mol. Pharm. doi: 10.1021/mp500497p – volume: 270 start-page: 25672 year: 1995 ident: 10.1016/j.bcp.2016.03.008_b0135 article-title: Differential recognition of beta-lactam antibiotics by intestinal and renal peptide transporters, pept 1 and pept 2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.43.25672 – volume: 281 start-page: G697 year: 2001 ident: 10.1016/j.bcp.2016.03.008_b0230 article-title: Intestinal peptide transport: ex vivo uptake studies and localization of peptide carrier pept1 publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.2001.281.3.G697 – volume: 4 start-page: 176 year: 1976 ident: 10.1016/j.bcp.2016.03.008_b0090 article-title: Treatment of skin and soft tissue infections with cefadroxil, a new oral cephalosporin publication-title: J. Int. Med. Res. doi: 10.1177/030006057600400305 – volume: 34 start-page: 512 year: 1988 ident: 10.1016/j.bcp.2016.03.008_b0100 article-title: Clinical comparison of once-daily cefadroxil and thrice-daily cefaclor in the treatment of streptococcal pharyngitis publication-title: Chemotherapy doi: 10.1159/000238617 – volume: 41 start-page: 1867 year: 2013 ident: 10.1016/j.bcp.2016.03.008_b0015 article-title: Impact of peptide transporter 1 on the intestinal absorption and pharmacokinetics of valacyclovir after oral dose escalation in wild-type and pept1 knockout mice publication-title: Drug Metab. Dispos. doi: 10.1124/dmd.113.052597 – volume: 60 start-page: 543 year: 2008 ident: 10.1016/j.bcp.2016.03.008_b0180 article-title: Pharmaceutical and pharmacological importance of peptide transporters publication-title: J. Pharm. Pharmacol. doi: 10.1211/jpp.60.5.0002 – volume: 40 start-page: 1328 year: 2012 ident: 10.1016/j.bcp.2016.03.008_b0035 article-title: Species-dependent uptake of glycylsarcosine but not oseltamivir in Pichia pastoris expressing the rat, mouse, and human intestinal peptide transporter pept1 publication-title: Drug Metab. Dispos. doi: 10.1124/dmd.111.044263 – volume: 46 start-page: 41 year: 2006 ident: 10.1016/j.bcp.2016.03.008_b0050 article-title: Cytochrome p450 and xenobiotic receptor humanized mice publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev.pharmtox.45.120403.100007 – year: 2015 ident: 10.1016/j.bcp.2016.03.008_b0040 article-title: A comparison between genetically humanized and chimeric liver humanized mouse models for studies in drug metabolism and toxicity publication-title: Drug Discov. Today – volume: 30 start-page: 1017 year: 2013 ident: 10.1016/j.bcp.2016.03.008_b0125 article-title: Relevance of pept1 in the intestinal permeability and oral absorption of cefadroxil publication-title: Pharm. Res. doi: 10.1007/s11095-012-0937-8 – reference: 3542485 - Drugs. 1986;32 Suppl 3:1-16 – reference: 19434858 - Mol Pharm. 2008 Nov-Dec;5(6):1122-30 – reference: 23924683 - Drug Metab Dispos. 2013 Oct;41(10):1867-74 – reference: 9508831 - J Physiol. 1998 Mar 15;507 ( Pt 3):697-706 – reference: 11385139 - Pediatr Res. 2001 Jun;49(6):789-95 – reference: 12425457 - Pharm Res. 2002 Oct;19(10):1417-23 – reference: 10150319 - Adv Ther. 1995 Jan-Feb;12(1):1-10 – reference: 7142089 - J Antimicrob Chemother. 1982 Sep;10 Suppl B:17-25 – reference: 3803251 - Drugs. 1986;32 Suppl 3:33-8 – reference: 2568445 - J Pharm Pharmacol. 1989 Mar;41(3):179-85 – reference: 17900749 - Adv Drug Deliv Rev. 2007 Sep 30;59(11):1103-20 – reference: 7439501 - J Int Med Res. 1980;8(Suppl 1):21-8 – reference: 17452417 - Drug Metab Dispos. 2007 Jul;35(7):1209-16 – reference: 1026545 - J Int Med Res. 1976;4(3):176-8 – reference: 1475222 - Pharm Res. 1992 Nov;9(11):1380-5 – reference: 23506874 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):323-36 – reference: 23173549 - Drug Metab Rev. 2013 Feb;45(1):110-21 – reference: 8097688 - Drug Metab Dispos. 1993 Mar-Apr;21(2):215-7 – reference: 20660104 - Drug Metab Dispos. 2010 Oct;38(10):1740-6 – reference: 3243093 - Chemotherapy. 1988;34(6):512-8 – reference: 8607854 - Biochem Biophys Res Commun. 1996 Mar 27;220(3):848-52 – reference: 18088506 - J Pharm Pharmacol. 2008 Jan;60(1):63-70 – reference: 2052515 - Pharm Res. 1991 Mar;8(3):298-305 – reference: 23264448 - Drug Metab Dispos. 2013 Mar;41(3):608-14 – reference: 12237156 - Trends Pharmacol Sci. 2002 Sep;23(9):434-40 – reference: 25148225 - Mol Pharm. 2014 Oct 6;11(10):3737-46 – reference: 18416933 - J Pharm Pharmacol. 2008 May;60(5):543-85 – reference: 15383493 - Drug Metab Dispos. 2004 Dec;32(12):1402-10 – reference: 18668438 - Xenobiotica. 2008 Jul;38(7-8):1022-42 – reference: 21904935 - Pharm Res. 2012 Feb;29(2):535-45 – reference: 848940 - Antimicrob Agents Chemother. 1977 Feb;11(2):331-8 – reference: 11518682 - Am J Physiol Gastrointest Liver Physiol. 2001 Sep;281(3):G697-704 – reference: 7439511 - J Int Med Res. 1980;8(Suppl 1):87-93 – reference: 12948013 - Pharm Res. 2003 Aug;20(8):1163-9 – reference: 6754687 - J Antimicrob Chemother. 1982 Sep;10 Suppl B:143-7 – reference: 16402898 - Annu Rev Pharmacol Toxicol. 2006;46:41-64 – reference: 1743250 - Eur J Clin Pharmacol. 1991;41(2):179-83 – reference: 12548404 - Histochem Cell Biol. 2003 Jan;119(1):37-43 – reference: 23959853 - Pharm Res. 2013 Nov;30(11):2931-9 – reference: 26360054 - Drug Discov Today. 2016 Feb;21(2):250-63 – reference: 11375948 - Gastroenterology. 2001 Jun;120(7):1666-79 – reference: 23224978 - Pharm Res. 2013 Apr;30(4):1017-25 – reference: 22490229 - Drug Metab Dispos. 2012 Jul;40(7):1328-35 – reference: 23256482 - Expert Opin Drug Metab Toxicol. 2013 Mar;9(3):237-52 – reference: 23660505 - Am J Physiol Gastrointest Liver Physiol. 2013 Jul 1;305(1):G66-73 – reference: 7592745 - J Biol Chem. 1995 Oct 27;270(43):25672-7 – reference: 11976168 - Am J Clin Nutr. 2002 May;75(5):922-30 – reference: 3244617 - Pharm Res. 1988 Oct;5(10):645-50 – reference: 25158075 - Mol Pharm. 2014 Oct 6;11(10):3547-55 |
SSID | ssj0006861 |
Score | 2.306713 |
Snippet | [Display omitted]
PepT1 (SLC15A1) is a high-capacity low-affinity transporter that is important in the absorption of digested di/tripeptides from dietary... PepT1 (SLC15A1) is a high-capacity low-affinity transporter that is important in the absorption of digested di/tripeptides from dietary protein in the small... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 81 |
SubjectTerms | Animals Anti-Bacterial Agents - administration & dosage Anti-Bacterial Agents - blood Anti-Bacterial Agents - metabolism Anti-Bacterial Agents - pharmacokinetics Cefadroxil Cefadroxil - administration & dosage Cefadroxil - blood Cefadroxil - metabolism Cefadroxil - pharmacokinetics Colon - metabolism Crosses, Genetic Dose-Response Relationship, Drug Half-Life Humanized mice Humans In Vitro Techniques Intestinal Absorption Intestinal Mucosa - metabolism Jejunum - metabolism Mice, Inbred C57BL Mice, Knockout Mice, Transgenic PEPT1 Peptide Transporter 1 Perfusion Pharmacokinetics Species differences Species Specificity Symporters - genetics Symporters - metabolism Tissue Distribution |
Title | Species differences in the pharmacokinetics of cefadroxil as determined in wildtype and humanized PepT1 mice |
URI | https://dx.doi.org/10.1016/j.bcp.2016.03.008 https://www.ncbi.nlm.nih.gov/pubmed/26979860 https://www.proquest.com/docview/1779427970 https://pubmed.ncbi.nlm.nih.gov/PMC4821691 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9gAXBOW1UCojoR5QQ-08JsmxWrVaQFR72Eq9WX5FpCzZVXcrUQ789s4kzpYtogeOiT2KlXE-f45nvmHsfQJGJFaXEdJdH6XSAn1zLrIFSCp0kjhNicJfT2F8ln4-z8632KjPhaGwyoD9Haa3aB3uHIa3ebioa8rxFRCXuPxAy1twC7QdJyVkA7Z99OnL-HQNyFBAKJwHERn0h5ttmJexpFopIUid_mt5-pt-3o2i_GNZOnnCHgc-yY-6IT9lW77ZYQ9HfRm3HbY_6cSprw_49DbXannA9_nkVrb6-hmbtaXo_ZL3NVMQQXjdcGSIfBF6fkdOStZ8XnHrK-0u5z_rGddoFMJqvCMbJOCOfu5y3TjelgGsf2HLxC-mkv9AbHrOzk6Op6NxFGoxRDaT-Sqi00PADW1RmawordB5nDkPMT4LdygGQBhhiirNS2MQB5zUIHSRJAYpXkLyEC_YoJk3_hXjiBJxLitXGqJDqdHIWTJbWSfBOCHdkIneBcoGoXKqlzFTfUTahUKvKfKaEolCrw3Zh7XJolPpuK9z2vtVbUw1havIfWbv-jmg0IV0rqIbP79aKpkjqMV5mYshe9nNifUoYijzsgBsyTdmy7oDyXtvtjT1t1bmOy1iUjJ6_X_DfcMe0VUXm7nLBqvLK_8W-dPK7LEHH3_LvfCV3ADCqBpX |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQPdBL1fJoty2tKyEOiBQ7Dzs5olXRlgLawyJxs_yKmrJkV-wilR747cwkzm63VTn0mvEoVmY88zkef0PIXiIMS6wuIoC7Pkq5FbjmXGRzwbHRSeI0XhQ-vxCDy_T0KrtaI_3uLgyWVYbY38b0JlqHJ0fhax5Nqwrv-DIRF5B-RINbYAv0LM0SiXV9nx-WdR4iF6FtnohweHe02RR5GYuclVwEotN_Jae_weefNZS_JaWTl-RFQJP0uJ3wK7Lm602y0e-auG2S_WFLTX1_SEfLm1azQ7pPh0vS6vstMm4a0fsZ7TqmQPygVU0BH9JpGHkNiBS16aSk1pfa3U5-VmOqQSkU1XiHOgC_Hf7apbp2tGkCWP0CydBPR5zeQGTaJpcnX0b9QRQ6MUQ243Ie4dmhgO1sXposLyzTMs6cFzG8C_YnRghmmMnLVBbGQBRwXAum8yQxAPASJIfYIev1pPZvCIUYEUteusIgGEqNBsSS2dI6Loxj3PUI60ygbKApx24ZY9XVo_1QYDWFVlMsUWC1HjlYqExbjo6nBqedXdWKoynIIU-pfep8QIEJ8VRF135yN1NcQkiLZSFZj7xufWIxi1gUssgFSOSKtywGILn3qqSuvjck32keI4_R2_-b7keyMRidn6mzrxff3pHnKGmrNN-T9fntnd8FJDU3H5qV8ggsihsi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Species+differences+in+the+pharmacokinetics+of+cefadroxil+as+determined+in+wildtype+and+humanized+PepT1+mice&rft.jtitle=Biochemical+pharmacology&rft.au=Hu%2C+Yongjun&rft.au=Smith%2C+David+E&rft.date=2016-05-01&rft.issn=1873-2968&rft.eissn=1873-2968&rft.volume=107&rft.spage=81&rft_id=info:doi/10.1016%2Fj.bcp.2016.03.008&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2952&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2952&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2952&client=summon |