Species differences in the pharmacokinetics of cefadroxil as determined in wildtype and humanized PepT1 mice

[Display omitted] PepT1 (SLC15A1) is a high-capacity low-affinity transporter that is important in the absorption of digested di/tripeptides from dietary protein in the small intestine. PepT1 is also crucial for the intestinal uptake and absorption of therapeutic agents such as the β-lactam aminocep...

Full description

Saved in:
Bibliographic Details
Published inBiochemical pharmacology Vol. 107; pp. 81 - 90
Main Authors Hu, Yongjun, Smith, David E.
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 01.05.2016
Subjects
Online AccessGet full text
ISSN0006-2952
1873-2968
1873-2968
DOI10.1016/j.bcp.2016.03.008

Cover

Abstract [Display omitted] PepT1 (SLC15A1) is a high-capacity low-affinity transporter that is important in the absorption of digested di/tripeptides from dietary protein in the small intestine. PepT1 is also crucial for the intestinal uptake and absorption of therapeutic agents such as the β-lactam aminocephalosporins and antiviral prodrugs. Species differences, however, have been observed in PepT1-mediated intestinal absorption and pharmacokinetics, thereby, making it more difficult to predict systemic drug exposure. In the present study, we evaluated the in situ intestinal permeability of the PepT1 substrate cefadroxil in wildtype and humanized PepT1 (huPepT1) mice, and the in vivo absorption and disposition of drug after escalating oral doses. The in situ perfusions indicated that cefadroxil had a twofold higher affinity (i.e., twofold lower Km) for jejunal PepT1 in huPepT1 mice, lower but substantial permeability in all regions of the small intestine, and low but measureable permeability in the colon as compared to wildtype animals. The in vivo experiments indicated almost superimposable pharmacokinetic profiles between the two genotypes after intravenous bolus dosing of cefadroxil. In contrast, after oral dose escalation, the systemic exposure of cefadroxil was reduced in huPepT1 mice as compared to wildtype animals. Moreover, the AUC and Cmax versus dose relationships were nonlinear for huPepT1 but not wildtype mice, and similar to that observed from human subjects. In conclusion, our findings indicate that huPepT1 mice may provide a valuable tool in the drug discovery process by better predicting the oral pharmacokinetic profiles of PepT1 substrates in humans.
AbstractList PepT1 (SLC15A1) is a high-capacity low-affinity transporter that is important in the absorption of digested di/tripeptides from dietary protein in the small intestine. PepT1 is also crucial for the intestinal uptake and absorption of therapeutic agents such as the β-lactam aminocephalosporins and antiviral prodrugs. Species differences, however, have been observed in PepT1-mediated intestinal absorption and pharmacokinetics, thereby, making it more difficult to predict systemic drug exposure. In the present study, we evaluated the in situ intestinal permeability of the PepT1 substrate cefadroxil in wildtype and humanized PepT1 (huPepT1) mice, and the in vivo absorption and disposition of drug after escalating oral doses. The in situ perfusions indicated that cefadroxil had a twofold higher affinity (i.e., twofold lower Km) for jejunal PepT1 in huPepT1 mice, lower but substantial permeability in all regions of the small intestine, and low but measureable permeability in the colon as compared to wildtype animals. The in vivo experiments indicated almost superimposable pharmacokinetic profiles between the two genotypes after intravenous bolus dosing of cefadroxil. In contrast, after oral dose escalation, the systemic exposure of cefadroxil was reduced in huPepT1 mice as compared to wildtype animals. Moreover, the AUC and Cmax versus dose relationships were nonlinear for huPepT1 but not wildtype mice, and similar to that observed from human subjects. In conclusion, our findings indicate that huPepT1 mice may provide a valuable tool in the drug discovery process by better predicting the oral pharmacokinetic profiles of PepT1 substrates in humans.PepT1 (SLC15A1) is a high-capacity low-affinity transporter that is important in the absorption of digested di/tripeptides from dietary protein in the small intestine. PepT1 is also crucial for the intestinal uptake and absorption of therapeutic agents such as the β-lactam aminocephalosporins and antiviral prodrugs. Species differences, however, have been observed in PepT1-mediated intestinal absorption and pharmacokinetics, thereby, making it more difficult to predict systemic drug exposure. In the present study, we evaluated the in situ intestinal permeability of the PepT1 substrate cefadroxil in wildtype and humanized PepT1 (huPepT1) mice, and the in vivo absorption and disposition of drug after escalating oral doses. The in situ perfusions indicated that cefadroxil had a twofold higher affinity (i.e., twofold lower Km) for jejunal PepT1 in huPepT1 mice, lower but substantial permeability in all regions of the small intestine, and low but measureable permeability in the colon as compared to wildtype animals. The in vivo experiments indicated almost superimposable pharmacokinetic profiles between the two genotypes after intravenous bolus dosing of cefadroxil. In contrast, after oral dose escalation, the systemic exposure of cefadroxil was reduced in huPepT1 mice as compared to wildtype animals. Moreover, the AUC and Cmax versus dose relationships were nonlinear for huPepT1 but not wildtype mice, and similar to that observed from human subjects. In conclusion, our findings indicate that huPepT1 mice may provide a valuable tool in the drug discovery process by better predicting the oral pharmacokinetic profiles of PepT1 substrates in humans.
PepT1 (SLC15A1) is a high-capacity low-affinity transporter that is important in the absorption of digested di/tripeptides from dietary protein in the small intestine. PepT1 is also crucial for the intestinal uptake and absorption of therapeutic agents such as the β-lactam aminocephalosporins and antiviral prodrugs. Species differences, however, have been observed in PepT1-mediated intestinal absorption and pharmacokinetics, thereby, making it more difficult to predict systemic drug exposure. In the present study, we evaluated the in situ intestinal permeability of the PepT1 substrate cefadroxil in wildtype and humanized PepT1 ( huPepT1 ) mice, and the in vivo absorption and disposition of drug after escalating oral doses. The in situ perfusions indicated that cefadroxil had a two-fold higher affinity (i.e., two-fold lower K m ) for jejunal PepT1 in huPepT1 mice, lower but substantial permeability in all regions of the small intestine, and low but measureable permeability in the colon as compared to wildtype animals. The in vivo experiments indicated almost superimposable pharmacokinetic profiles between the two genotypes after intravenous bolus dosing of cefadroxil. In contrast, after oral dose escalation, the systemic exposure of cefadroxil was reduced in huPepT1 mice as compared to wildtype animals. Moreover, the AUC and C max versus dose relationships were nonlinear for huPepT1 but not wildtype mice, and similar to that observed from human subjects. In conclusion, our findings indicate that huPepT1 mice may provide a valuable tool in the drug discovery process by better predicting the oral pharmacokinetic profiles of PepT1 substrates in humans.
[Display omitted] PepT1 (SLC15A1) is a high-capacity low-affinity transporter that is important in the absorption of digested di/tripeptides from dietary protein in the small intestine. PepT1 is also crucial for the intestinal uptake and absorption of therapeutic agents such as the β-lactam aminocephalosporins and antiviral prodrugs. Species differences, however, have been observed in PepT1-mediated intestinal absorption and pharmacokinetics, thereby, making it more difficult to predict systemic drug exposure. In the present study, we evaluated the in situ intestinal permeability of the PepT1 substrate cefadroxil in wildtype and humanized PepT1 (huPepT1) mice, and the in vivo absorption and disposition of drug after escalating oral doses. The in situ perfusions indicated that cefadroxil had a twofold higher affinity (i.e., twofold lower Km) for jejunal PepT1 in huPepT1 mice, lower but substantial permeability in all regions of the small intestine, and low but measureable permeability in the colon as compared to wildtype animals. The in vivo experiments indicated almost superimposable pharmacokinetic profiles between the two genotypes after intravenous bolus dosing of cefadroxil. In contrast, after oral dose escalation, the systemic exposure of cefadroxil was reduced in huPepT1 mice as compared to wildtype animals. Moreover, the AUC and Cmax versus dose relationships were nonlinear for huPepT1 but not wildtype mice, and similar to that observed from human subjects. In conclusion, our findings indicate that huPepT1 mice may provide a valuable tool in the drug discovery process by better predicting the oral pharmacokinetic profiles of PepT1 substrates in humans.
PepT1 (SLC15A1) is a high-capacity low-affinity transporter that is important in the absorption of digested di/tripeptides from dietary protein in the small intestine. PepT1 is also crucial for the intestinal uptake and absorption of therapeutic agents such as the β-lactam aminocephalosporins and antiviral prodrugs. Species differences, however, have been observed in PepT1-mediated intestinal absorption and pharmacokinetics, thereby, making it more difficult to predict systemic drug exposure. In the present study, we evaluated the in situ intestinal permeability of the PepT1 substrate cefadroxil in wildtype and humanized PepT1 (huPepT1) mice, and the in vivo absorption and disposition of drug after escalating oral doses. The in situ perfusions indicated that cefadroxil had a twofold higher affinity (i.e., twofold lower Km) for jejunal PepT1 in huPepT1 mice, lower but substantial permeability in all regions of the small intestine, and low but measureable permeability in the colon as compared to wildtype animals. The in vivo experiments indicated almost superimposable pharmacokinetic profiles between the two genotypes after intravenous bolus dosing of cefadroxil. In contrast, after oral dose escalation, the systemic exposure of cefadroxil was reduced in huPepT1 mice as compared to wildtype animals. Moreover, the AUC and Cmax versus dose relationships were nonlinear for huPepT1 but not wildtype mice, and similar to that observed from human subjects. In conclusion, our findings indicate that huPepT1 mice may provide a valuable tool in the drug discovery process by better predicting the oral pharmacokinetic profiles of PepT1 substrates in humans.
Author Hu, Yongjun
Smith, David E.
AuthorAffiliation b Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
a Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
AuthorAffiliation_xml – name: b Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
– name: a Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
Author_xml – sequence: 1
  givenname: Yongjun
  surname: Hu
  fullname: Hu, Yongjun
  email: yongjun@umich.edu
– sequence: 2
  givenname: David E.
  surname: Smith
  fullname: Smith, David E.
  email: smithb@umich.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26979860$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxS3Uim4LH4ALypHLhrGzsR0hIaGKf1IlKrU9W449Yb0kdrC9hfLpcbQtAg692DOa-b0nzTslRz54JOQFhZoC5a93dW_mmpWyhqYGkE_IikrRrFnH5RFZAQAvdctOyGlKu6WVnD4lJ4x3opMcVmS8mtE4TJV1w4ARvSm181XeYjVvdZy0Cd-cx-xMqsJQGRy0jeGnGytdIMwYpzK2C_PDjTbfzVhpb6vtftLe_SqTS5yvaTU5g8_I8aDHhM_v_zNy8-H99fmn9cWXj5_P312sTUtFXreypVzQRg59KzsDWrDWImfFm0rWcw499HLYiK7vYcMs1Ry0bJoeykOBNWfk7UF33vcTWoM-Rz2qObpJxzsVtFP_Trzbqq_hVm0ko7yjReDVvUAM3_eYsppcMjiO2mPYJ0WF6DZMdALK6su_vf6YPJy4LIjDgokhpYiDMi7r7MJi7UZFQS1hqp0qYaolTAWNKmEWkv5HPog_xrw5MFjue-swqlTiLalaF9FkZYN7hP4N2j-4UA
CitedBy_id crossref_primary_10_1155_2018_9074893
crossref_primary_10_1016_j_bcp_2017_12_025
crossref_primary_10_1016_j_bcp_2019_06_013
crossref_primary_10_2745_dds_35_309
crossref_primary_10_1208_s12249_024_02811_z
crossref_primary_10_1002_cpt_672
crossref_primary_10_1007_s11095_017_2242_z
crossref_primary_10_1016_j_bcp_2018_06_010
crossref_primary_10_1016_j_jep_2022_115030
crossref_primary_10_1124_dmd_116_073320
crossref_primary_10_1016_j_omtm_2019_11_008
crossref_primary_10_1016_j_bcp_2018_08_018
crossref_primary_10_3389_fphar_2022_941270
crossref_primary_10_1016_j_ejcb_2025_151479
crossref_primary_10_1038_s41401_020_0408_4
crossref_primary_10_1124_dmd_118_084236
crossref_primary_10_1186_s13287_024_03685_5
crossref_primary_10_1186_s13287_024_03859_1
Cites_doi 10.1007/s00418-002-0479-y
10.1016/j.addr.2007.06.016
10.1203/00006450-200106000-00013
10.1023/A:1020436028194
10.1152/ajpgi.00491.2012
10.1080/00498250701875254
10.1023/A:1015974920682
10.2165/00003495-198600323-00003
10.1021/mp8001655
10.1016/S0165-6147(02)02072-2
10.1023/A:1015842425553
10.1016/0378-5173(80)90140-4
10.1093/jac/10.suppl_B.143
10.3109/03602532.2012.738687
10.1023/A:1015829128646
10.1093/ajcn/75.5.922
10.1124/dmd.112.049239
10.1128/AAC.11.2.331
10.1006/bbrc.1996.0493
10.1124/dmd.107.015263
10.1016/j.mam.2012.11.003
10.1053/gast.2001.24845
10.1124/dmd.110.034025
10.1111/j.1469-7793.1998.697bs.x
10.1517/17425255.2013.741589
10.1093/jac/10.suppl_B.17
10.1021/mp500330y
10.1016/S0090-9556(25)08083-3
10.1007/BF00265914
10.2165/00003495-198600323-00007
10.1023/A:1025088628787
10.1124/dmd.104.001347
10.1211/jpp.60.1.0008
10.1111/j.2042-7158.1989.tb06425.x
10.1007/s11095-013-1168-3
10.1007/s11095-011-0580-9
10.1021/mp500497p
10.1074/jbc.270.43.25672
10.1152/ajpgi.2001.281.3.G697
10.1177/030006057600400305
10.1159/000238617
10.1124/dmd.113.052597
10.1211/jpp.60.5.0002
10.1124/dmd.111.044263
10.1146/annurev.pharmtox.45.120403.100007
10.1007/s11095-012-0937-8
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright © 2016 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Copyright © 2016 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.bcp.2016.03.008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-2968
EndPage 90
ExternalDocumentID PMC4821691
26979860
10_1016_j_bcp_2016_03_008
S0006295216001611
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM115481
– fundername: NIGMS NIH HHS
  grantid: R01-GM115481
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5RE
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AATCM
AAXUO
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
C45
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IH2
IHE
J1W
K-O
KOM
L7B
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SPT
SSP
SSZ
T5K
TEORI
TWZ
WH7
ZA5
~G-
.55
.GJ
.HR
3O-
53G
5VS
AAQFI
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HMT
HVGLF
HZ~
LPU
R2-
SEW
VH1
WUQ
X7M
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c517t-585167138fb589c0a725de62cef182b660b0b8f479bb042d1a60a833b08331023
IEDL.DBID AIKHN
ISSN 0006-2952
1873-2968
IngestDate Thu Aug 21 18:36:21 EDT 2025
Fri Sep 05 08:31:13 EDT 2025
Wed Feb 19 01:55:41 EST 2025
Thu Apr 24 23:07:00 EDT 2025
Tue Aug 12 03:10:02 EDT 2025
Fri Feb 23 02:26:16 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Cefadroxil
Pharmacokinetics
Humanized mice
Species differences
PEPT1
Language English
License Copyright © 2016 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-585167138fb589c0a725de62cef182b660b0b8f479bb042d1a60a833b08331023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4821691
PMID 26979860
PQID 1779427970
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4821691
proquest_miscellaneous_1779427970
pubmed_primary_26979860
crossref_citationtrail_10_1016_j_bcp_2016_03_008
crossref_primary_10_1016_j_bcp_2016_03_008
elsevier_sciencedirect_doi_10_1016_j_bcp_2016_03_008
PublicationCentury 2000
PublicationDate 2016-05-01
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biochemical pharmacology
PublicationTitleAlternate Biochem Pharmacol
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Adachi, Suzuki, Sugiyama (b0155) 2003; 20
Beisel (b0095) 1980; 8
Jappar, Wu, Hu, Smith (b0025) 2010; 38
Yang, Hu, Smith (b0015) 2013; 41
Yang, Smith (b0240) 2013; 41
Rubio-Aliaga, Daniel (b0175) 2008; 38
Smith, Clemencon, Hediger (b0145) 2013; 34
Tanrisever, Santella (b0075) 1986; 32
Garrigues, Martin, Peris-Ribera, Prescott (b0120) 1991; 41
Ogihara, Saito, Shin, Terado, Takenoshita, Nagamachi, Inui, Takata (b0225) 1996; 220
Hu, Chen, Smith (b0035) 2012; 40
Shen, Smith, Brosius (b0200) 2001; 49
Groneberg, Doring, Eynott, Fischer, Daniel (b0230) 2001; 281
Kaminszczik (b0105) 1986; 32
Rubio-Aliaga, Daniel (b0170) 2002; 23
Garcia-Carbonell, Granero, Torres-Molina, Aristorena, Chesa-Jimenez, Pla-Delfina, Peris-Ribera (b0115) 1993; 21
Hu, Xie, Wang, Chen, Smith (b0060) 2014; 11
Lennernas (b0190) 2007; 59
Randolph (b0100) 1988; 34
Walker, Thwaites, Simmons, Gilbert, Hirst (b0210) 1998; 507
Scheer, Wilson (b0040) 2015
Sinko, Amidon (b0185) 1988; 5
Pfeffer, Jackson, Ximenes, de Menezes (b0065) 1977; 11
Scheer, Roland Wolf (b0055) 2013; 45
Kou, Fleisher, Amidon (b0160) 1991; 8
Naruhashi, Sai, Tamai, Suzuki, Tsuji (b0130) 2002; 19
Chen (b0245) 1992; 9
Ganapathy, Brandsch, Prasad, Ganapathy, Leibach (b0135) 1995; 270
Drozdzik, Groer, Penski, Lapczuk, Ostrowski, Lai, Prasad, Unadkat, Siegmund, Oswald (b0005) 2014; 11
Posada, Smith (b0140) 2013; 30
Hausman (b0080) 1980; 8
Ma, Hu, Smith (b0020) 2012; 29
Katoh, Matsui, Nakajima, Tateno, Kataoka, Soeno, Horie, Iwasaki, Yoshizato, Yokoi (b0045) 2004; 32
Gonzalez, Yu (b0050) 2006; 46
Brandsch, Knutter, Bosse-Doenecke (b0180) 2008; 60
Yu, Novicki (b0070) 1995; 12
Ziegler, Fernandez-Estivariz, Gu, Bazargan, Umeakunne, Wallace, Diaz, Rosado, Pascal, Galloway, Wilcox, Leader (b0205) 2002; 75
Ford, Howard, Hirst (b0220) 2003; 119
Merlin, Si-Tahar, Sitaraman, Eastburn, Williams, Liu, Hediger, Madara (b0235) 2001; 120
Sanchez-Pico, Peris-Ribera, Toledano, Torres-Molina, Casabo, Martin-Villodre, Pla-Delfina (b0150) 1989; 41
McConnell, Basit, Murdan (b0250) 2008; 60
Chu, Bleasby, Evers (b0030) 2013; 9
Cordero (b0090) 1976; 4
Santella, Henness (b0110) 1982; 10
Ballantyne (b0085) 1982; 10
Shen, Ocheltree, Hu, Keep, Smith (b0195) 2007; 35
Komiya, Park, Kamani, Ho, Higuchi (b0165) 1980; 4
Posada, Smith (b0125) 2013; 30
Hu, Smith, Ma, Jappar, Thomas, Hillgren (b0010) 2008; 5
Wuensch, Schulz, Ullrich, Lill, Stelzl, Rubio-Aliaga, Loh, Chamaillard, Haller, Daniel (b0215) 2013; 305
Hu (10.1016/j.bcp.2016.03.008_b0035) 2012; 40
Sanchez-Pico (10.1016/j.bcp.2016.03.008_b0150) 1989; 41
Walker (10.1016/j.bcp.2016.03.008_b0210) 1998; 507
Wuensch (10.1016/j.bcp.2016.03.008_b0215) 2013; 305
Hausman (10.1016/j.bcp.2016.03.008_b0080) 1980; 8
Katoh (10.1016/j.bcp.2016.03.008_b0045) 2004; 32
Komiya (10.1016/j.bcp.2016.03.008_b0165) 1980; 4
Drozdzik (10.1016/j.bcp.2016.03.008_b0005) 2014; 11
Randolph (10.1016/j.bcp.2016.03.008_b0100) 1988; 34
Shen (10.1016/j.bcp.2016.03.008_b0195) 2007; 35
Shen (10.1016/j.bcp.2016.03.008_b0200) 2001; 49
Kaminszczik (10.1016/j.bcp.2016.03.008_b0105) 1986; 32
Pfeffer (10.1016/j.bcp.2016.03.008_b0065) 1977; 11
Ziegler (10.1016/j.bcp.2016.03.008_b0205) 2002; 75
Yang (10.1016/j.bcp.2016.03.008_b0240) 2013; 41
Adachi (10.1016/j.bcp.2016.03.008_b0155) 2003; 20
Chen (10.1016/j.bcp.2016.03.008_b0245) 1992; 9
Gonzalez (10.1016/j.bcp.2016.03.008_b0050) 2006; 46
Yang (10.1016/j.bcp.2016.03.008_b0015) 2013; 41
Rubio-Aliaga (10.1016/j.bcp.2016.03.008_b0175) 2008; 38
Smith (10.1016/j.bcp.2016.03.008_b0145) 2013; 34
Chu (10.1016/j.bcp.2016.03.008_b0030) 2013; 9
Groneberg (10.1016/j.bcp.2016.03.008_b0230) 2001; 281
Merlin (10.1016/j.bcp.2016.03.008_b0235) 2001; 120
Cordero (10.1016/j.bcp.2016.03.008_b0090) 1976; 4
Hu (10.1016/j.bcp.2016.03.008_b0060) 2014; 11
Ma (10.1016/j.bcp.2016.03.008_b0020) 2012; 29
Ballantyne (10.1016/j.bcp.2016.03.008_b0085) 1982; 10
Santella (10.1016/j.bcp.2016.03.008_b0110) 1982; 10
Ganapathy (10.1016/j.bcp.2016.03.008_b0135) 1995; 270
Posada (10.1016/j.bcp.2016.03.008_b0140) 2013; 30
Kou (10.1016/j.bcp.2016.03.008_b0160) 1991; 8
Yu (10.1016/j.bcp.2016.03.008_b0070) 1995; 12
Ogihara (10.1016/j.bcp.2016.03.008_b0225) 1996; 220
Scheer (10.1016/j.bcp.2016.03.008_b0055) 2013; 45
Posada (10.1016/j.bcp.2016.03.008_b0125) 2013; 30
Naruhashi (10.1016/j.bcp.2016.03.008_b0130) 2002; 19
Jappar (10.1016/j.bcp.2016.03.008_b0025) 2010; 38
Sinko (10.1016/j.bcp.2016.03.008_b0185) 1988; 5
Garrigues (10.1016/j.bcp.2016.03.008_b0120) 1991; 41
Ford (10.1016/j.bcp.2016.03.008_b0220) 2003; 119
McConnell (10.1016/j.bcp.2016.03.008_b0250) 2008; 60
Scheer (10.1016/j.bcp.2016.03.008_b0040) 2015
Beisel (10.1016/j.bcp.2016.03.008_b0095) 1980; 8
Garcia-Carbonell (10.1016/j.bcp.2016.03.008_b0115) 1993; 21
Hu (10.1016/j.bcp.2016.03.008_b0010) 2008; 5
Lennernas (10.1016/j.bcp.2016.03.008_b0190) 2007; 59
Brandsch (10.1016/j.bcp.2016.03.008_b0180) 2008; 60
Tanrisever (10.1016/j.bcp.2016.03.008_b0075) 1986; 32
Rubio-Aliaga (10.1016/j.bcp.2016.03.008_b0170) 2002; 23
23924683 - Drug Metab Dispos. 2013 Oct;41(10):1867-74
11375948 - Gastroenterology. 2001 Jun;120(7):1666-79
2052515 - Pharm Res. 1991 Mar;8(3):298-305
8097688 - Drug Metab Dispos. 1993 Mar-Apr;21(2):215-7
25148225 - Mol Pharm. 2014 Oct 6;11(10):3737-46
848940 - Antimicrob Agents Chemother. 1977 Feb;11(2):331-8
11976168 - Am J Clin Nutr. 2002 May;75(5):922-30
20660104 - Drug Metab Dispos. 2010 Oct;38(10):1740-6
2568445 - J Pharm Pharmacol. 1989 Mar;41(3):179-85
10150319 - Adv Ther. 1995 Jan-Feb;12(1):1-10
1026545 - J Int Med Res. 1976;4(3):176-8
18416933 - J Pharm Pharmacol. 2008 May;60(5):543-85
7439511 - J Int Med Res. 1980;8(Suppl 1):87-93
17900749 - Adv Drug Deliv Rev. 2007 Sep 30;59(11):1103-20
19434858 - Mol Pharm. 2008 Nov-Dec;5(6):1122-30
3803251 - Drugs. 1986;32 Suppl 3:33-8
12548404 - Histochem Cell Biol. 2003 Jan;119(1):37-43
11385139 - Pediatr Res. 2001 Jun;49(6):789-95
11518682 - Am J Physiol Gastrointest Liver Physiol. 2001 Sep;281(3):G697-704
23506874 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):323-36
1743250 - Eur J Clin Pharmacol. 1991;41(2):179-83
23256482 - Expert Opin Drug Metab Toxicol. 2013 Mar;9(3):237-52
9508831 - J Physiol. 1998 Mar 15;507 ( Pt 3):697-706
3243093 - Chemotherapy. 1988;34(6):512-8
23264448 - Drug Metab Dispos. 2013 Mar;41(3):608-14
16402898 - Annu Rev Pharmacol Toxicol. 2006;46:41-64
23959853 - Pharm Res. 2013 Nov;30(11):2931-9
7439501 - J Int Med Res. 1980;8(Suppl 1):21-8
12425457 - Pharm Res. 2002 Oct;19(10):1417-23
7142089 - J Antimicrob Chemother. 1982 Sep;10 Suppl B:17-25
21904935 - Pharm Res. 2012 Feb;29(2):535-45
22490229 - Drug Metab Dispos. 2012 Jul;40(7):1328-35
1475222 - Pharm Res. 1992 Nov;9(11):1380-5
18088506 - J Pharm Pharmacol. 2008 Jan;60(1):63-70
7592745 - J Biol Chem. 1995 Oct 27;270(43):25672-7
3542485 - Drugs. 1986;32 Suppl 3:1-16
23660505 - Am J Physiol Gastrointest Liver Physiol. 2013 Jul 1;305(1):G66-73
17452417 - Drug Metab Dispos. 2007 Jul;35(7):1209-16
25158075 - Mol Pharm. 2014 Oct 6;11(10):3547-55
12948013 - Pharm Res. 2003 Aug;20(8):1163-9
6754687 - J Antimicrob Chemother. 1982 Sep;10 Suppl B:143-7
23173549 - Drug Metab Rev. 2013 Feb;45(1):110-21
3244617 - Pharm Res. 1988 Oct;5(10):645-50
18668438 - Xenobiotica. 2008 Jul;38(7-8):1022-42
23224978 - Pharm Res. 2013 Apr;30(4):1017-25
26360054 - Drug Discov Today. 2016 Feb;21(2):250-63
15383493 - Drug Metab Dispos. 2004 Dec;32(12):1402-10
12237156 - Trends Pharmacol Sci. 2002 Sep;23(9):434-40
8607854 - Biochem Biophys Res Commun. 1996 Mar 27;220(3):848-52
References_xml – volume: 59
  start-page: 1103
  year: 2007
  end-page: 1120
  ident: b0190
  article-title: Animal data: the contributions of the using chamber and perfusion systems to predicting human oral drug delivery in vivo
  publication-title: Adv. Drug Deliv. Rev.
– volume: 32
  start-page: 1
  year: 1986
  end-page: 16
  ident: b0075
  article-title: Cefadroxil. A review of its antibacterial, pharmacokinetic and therapeutic properties in comparison with cephalexin and cephradine
  publication-title: Drugs
– volume: 34
  start-page: 323
  year: 2013
  end-page: 336
  ident: b0145
  article-title: Proton-coupled oligopeptide transporter family slc15: physiological, pharmacological and pathological implications
  publication-title: Mol. Aspects Med.
– volume: 41
  start-page: 179
  year: 1989
  end-page: 185
  ident: b0150
  article-title: Non-linear intestinal absorption kinetics of cefadroxil in the rat
  publication-title: J. Pharm. Pharmacol.
– volume: 9
  start-page: 237
  year: 2013
  end-page: 252
  ident: b0030
  article-title: Species differences in drug transporters and implications for translating preclinical findings to humans
  publication-title: Expert Opin. Drug Metab. Toxicol.
– volume: 8
  start-page: 21
  year: 1980
  end-page: 28
  ident: b0080
  article-title: Treatment of urinary tract infections with cefadroxil, a new cephalosporin
  publication-title: J. Int. Med. Res.
– volume: 220
  start-page: 848
  year: 1996
  end-page: 852
  ident: b0225
  article-title: Immuno-localization of h+/peptide cotransporter in rat digestive tract
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 30
  start-page: 1017
  year: 2013
  end-page: 1025
  ident: b0125
  article-title: Relevance of pept1 in the intestinal permeability and oral absorption of cefadroxil
  publication-title: Pharm. Res.
– volume: 40
  start-page: 1328
  year: 2012
  end-page: 1335
  ident: b0035
  article-title: Species-dependent uptake of glycylsarcosine but not oseltamivir in
  publication-title: Drug Metab. Dispos.
– volume: 305
  start-page: G66
  year: 2013
  end-page: G73
  ident: b0215
  article-title: The peptide transporter pept1 is expressed in distal colon in rodents and humans and contributes to water absorption
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
– volume: 34
  start-page: 512
  year: 1988
  end-page: 518
  ident: b0100
  article-title: Clinical comparison of once-daily cefadroxil and thrice-daily cefaclor in the treatment of streptococcal pharyngitis
  publication-title: Chemotherapy
– volume: 23
  start-page: 434
  year: 2002
  end-page: 440
  ident: b0170
  article-title: Mammalian peptide transporters as targets for drug delivery
  publication-title: Trends Pharmacol. Sci.
– volume: 120
  start-page: 1666
  year: 2001
  end-page: 1679
  ident: b0235
  article-title: Colonic epithelial hpept1 expression occurs in inflammatory bowel disease: transport of bacterial peptides influences expression of mhc class 1 molecules
  publication-title: Gastroenterology
– volume: 75
  start-page: 922
  year: 2002
  end-page: 930
  ident: b0205
  article-title: Distribution of the h+/peptide transporter pept1 in human intestine: up-regulated expression in the colonic mucosa of patients with short-bowel syndrome
  publication-title: Am. J. Clin. Nutr.
– volume: 41
  start-page: 608
  year: 2013
  end-page: 614
  ident: b0240
  article-title: Significance of peptide transporter 1 in the intestinal permeability of valacyclovir in wild-type and pept1 knockout mice
  publication-title: Drug Metab. Dispos.
– volume: 11
  start-page: 331
  year: 1977
  end-page: 338
  ident: b0065
  article-title: Comparative human oral clinical pharmacology of cefadroxil, cephalexin, and cephradine
  publication-title: Antimicrob. Agents Chemother.
– volume: 4
  start-page: 176
  year: 1976
  end-page: 178
  ident: b0090
  article-title: Treatment of skin and soft tissue infections with cefadroxil, a new oral cephalosporin
  publication-title: J. Int. Med. Res.
– volume: 270
  start-page: 25672
  year: 1995
  end-page: 25677
  ident: b0135
  article-title: Differential recognition of beta-lactam antibiotics by intestinal and renal peptide transporters, pept 1 and pept 2
  publication-title: J. Biol. Chem.
– volume: 60
  start-page: 63
  year: 2008
  end-page: 70
  ident: b0250
  article-title: Measurements of rat and mouse gastrointestinal ph, fluid and lymphoid tissue, and implications for in-vivo experiments
  publication-title: J. Pharm. Pharmacol.
– volume: 11
  start-page: 3547
  year: 2014
  end-page: 3555
  ident: b0005
  article-title: Protein abundance of clinically relevant multidrug transporters along the entire length of the human intestine
  publication-title: Mol. Pharm.
– volume: 46
  start-page: 41
  year: 2006
  end-page: 64
  ident: b0050
  article-title: Cytochrome p450 and xenobiotic receptor humanized mice
  publication-title: Annu. Rev. Pharmacol. Toxicol.
– volume: 45
  start-page: 110
  year: 2013
  end-page: 121
  ident: b0055
  article-title: Xenobiotic receptor humanized mice and their utility
  publication-title: Drug Metab. Rev.
– volume: 8
  start-page: 298
  year: 1991
  end-page: 305
  ident: b0160
  article-title: Calculation of the aqueous diffusion layer resistance for absorption in a tube: application to intestinal membrane permeability determination
  publication-title: Pharm. Res.
– volume: 11
  start-page: 3737
  year: 2014
  end-page: 3746
  ident: b0060
  article-title: Development and characterization of a novel mouse line humanized for the intestinal peptide transporter pept1
  publication-title: Mol. Pharm.
– volume: 4
  start-page: 14
  year: 1980
  ident: b0165
  article-title: Quantitative mechanistic studies in simultaneous fluid flow and intestinal absorption using steroids as model solutes
  publication-title: Int. J. Pharm.
– volume: 119
  start-page: 37
  year: 2003
  end-page: 43
  ident: b0220
  article-title: Expression of the peptide transporter hpept1 in human colon: a potential route for colonic protein nitrogen and drug absorption
  publication-title: Histochem. Cell Biol.
– volume: 281
  start-page: G697
  year: 2001
  end-page: G704
  ident: b0230
  article-title: Intestinal peptide transport: ex vivo uptake studies and localization of peptide carrier pept1
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
– volume: 507
  start-page: 697
  year: 1998
  end-page: 706
  ident: b0210
  article-title: Substrate upregulation of the human small intestinal peptide transporter, hpept1
  publication-title: J. Physiol.
– year: 2015
  ident: b0040
  article-title: A comparison between genetically humanized and chimeric liver humanized mouse models for studies in drug metabolism and toxicity
  publication-title: Drug Discov. Today
– volume: 8
  start-page: 87
  year: 1980
  end-page: 93
  ident: b0095
  article-title: Efficacy and safety of cefadroxil in bacterial pharyngitis
  publication-title: J. Int. Med. Res.
– volume: 29
  start-page: 535
  year: 2012
  end-page: 545
  ident: b0020
  article-title: Influence of fed-fasted state on intestinal pept1 expression and in vivo pharmacokinetics of glycylsarcosine in wild-type and pept1 knockout mice
  publication-title: Pharm. Res.
– volume: 21
  start-page: 215
  year: 1993
  end-page: 217
  ident: b0115
  article-title: Nonlinear pharmacokinetics of cefadroxil in the rat
  publication-title: Drug Metab. Dispos.
– volume: 32
  start-page: 1402
  year: 2004
  end-page: 1410
  ident: b0045
  article-title: Expression of human cytochromes p450 in chimeric mice with humanized liver
  publication-title: Drug Metab. Dispos.
– volume: 41
  start-page: 179
  year: 1991
  end-page: 183
  ident: b0120
  article-title: Dose-dependent absorption and elimination of cefadroxil in man
  publication-title: Eur. J. Clin. Pharmacol.
– volume: 38
  start-page: 1022
  year: 2008
  end-page: 1042
  ident: b0175
  article-title: Peptide transporters and their roles in physiological processes and drug disposition
  publication-title: Xenobiotica
– volume: 60
  start-page: 543
  year: 2008
  end-page: 585
  ident: b0180
  article-title: Pharmaceutical and pharmacological importance of peptide transporters
  publication-title: J. Pharm. Pharmacol.
– volume: 5
  start-page: 1122
  year: 2008
  end-page: 1130
  ident: b0010
  article-title: Targeted disruption of peptide transporter pept1 gene in mice significantly reduces dipeptide absorption in intestine
  publication-title: Mol. Pharm.
– volume: 49
  start-page: 789
  year: 2001
  end-page: 795
  ident: b0200
  article-title: Developmental expression of pept1 and pept2 in rat small intestine, colon, and kidney
  publication-title: Pediatr. Res.
– volume: 38
  start-page: 1740
  year: 2010
  end-page: 1746
  ident: b0025
  article-title: Significance and regional dependency of peptide transporter (pept) 1 in the intestinal permeability of glycylsarcosine: in situ single-pass perfusion studies in wild-type and pept1 knockout mice
  publication-title: Drug Metab. Dispos.
– volume: 9
  start-page: 1380
  year: 1992
  end-page: 1385
  ident: b0245
  article-title: An alternative approach for assessment of rate of absorption in bioequivalence studies
  publication-title: Pharm. Res.
– volume: 12
  start-page: 1
  year: 1995
  end-page: 10
  ident: b0070
  article-title: Cefadroxil in skin and skin-structure foot infections: a retrospective review
  publication-title: Adv. Ther.
– volume: 30
  start-page: 2931
  year: 2013
  end-page: 2939
  ident: b0140
  article-title: In vivo absorption and disposition of cefadroxil after escalating oral doses in wild-type and pept1 knockout mice
  publication-title: Pharm. Res.
– volume: 20
  start-page: 1163
  year: 2003
  end-page: 1169
  ident: b0155
  article-title: Quantitative evaluation of the function of small intestinal p-glycoprotein: comparative studies between in situ and in vitro
  publication-title: Pharm. Res.
– volume: 41
  start-page: 1867
  year: 2013
  end-page: 1874
  ident: b0015
  article-title: Impact of peptide transporter 1 on the intestinal absorption and pharmacokinetics of valacyclovir after oral dose escalation in wild-type and pept1 knockout mice
  publication-title: Drug Metab. Dispos.
– volume: 10
  start-page: 143
  year: 1982
  end-page: 147
  ident: b0085
  article-title: Cefadroxil in the treatment of skin and soft tissue infections
  publication-title: J. Antimicrob. Chemother.
– volume: 32
  start-page: 33
  year: 1986
  end-page: 38
  ident: b0105
  article-title: Treatment of acute and chronic sinusitis with cefadroxil
  publication-title: Drugs
– volume: 35
  start-page: 1209
  year: 2007
  end-page: 1216
  ident: b0195
  article-title: Impact of genetic knockout of PEPT2 on cefadroxil pharmacokinetics, renal tubular reabsorption, and brain penetration in mice
  publication-title: Drug Metab. Dispos.
– volume: 10
  start-page: 17
  year: 1982
  end-page: 25
  ident: b0110
  article-title: A review of the bioavailability of cefadroxil
  publication-title: J. Antimicrob. Chemother.
– volume: 5
  start-page: 645
  year: 1988
  end-page: 650
  ident: b0185
  article-title: Characterization of the oral absorption of beta-lactam antibiotics. I. Cephalosporins: determination of intrinsic membrane absorption parameters in the rat intestine in situ
  publication-title: Pharm. Res.
– volume: 19
  start-page: 1417
  year: 2002
  end-page: 1423
  ident: b0130
  article-title: Pept1 mrna expression is induced by starvation and its level correlates with absorptive transport of cefadroxil longitudinally in the rat intestine
  publication-title: Pharm. Res.
– volume: 119
  start-page: 37
  year: 2003
  ident: 10.1016/j.bcp.2016.03.008_b0220
  article-title: Expression of the peptide transporter hpept1 in human colon: a potential route for colonic protein nitrogen and drug absorption
  publication-title: Histochem. Cell Biol.
  doi: 10.1007/s00418-002-0479-y
– volume: 59
  start-page: 1103
  year: 2007
  ident: 10.1016/j.bcp.2016.03.008_b0190
  article-title: Animal data: the contributions of the using chamber and perfusion systems to predicting human oral drug delivery in vivo
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2007.06.016
– volume: 49
  start-page: 789
  year: 2001
  ident: 10.1016/j.bcp.2016.03.008_b0200
  article-title: Developmental expression of pept1 and pept2 in rat small intestine, colon, and kidney
  publication-title: Pediatr. Res.
  doi: 10.1203/00006450-200106000-00013
– volume: 12
  start-page: 1
  year: 1995
  ident: 10.1016/j.bcp.2016.03.008_b0070
  article-title: Cefadroxil in skin and skin-structure foot infections: a retrospective review
  publication-title: Adv. Ther.
– volume: 19
  start-page: 1417
  year: 2002
  ident: 10.1016/j.bcp.2016.03.008_b0130
  article-title: Pept1 mrna expression is induced by starvation and its level correlates with absorptive transport of cefadroxil longitudinally in the rat intestine
  publication-title: Pharm. Res.
  doi: 10.1023/A:1020436028194
– volume: 305
  start-page: G66
  year: 2013
  ident: 10.1016/j.bcp.2016.03.008_b0215
  article-title: The peptide transporter pept1 is expressed in distal colon in rodents and humans and contributes to water absorption
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
  doi: 10.1152/ajpgi.00491.2012
– volume: 38
  start-page: 1022
  year: 2008
  ident: 10.1016/j.bcp.2016.03.008_b0175
  article-title: Peptide transporters and their roles in physiological processes and drug disposition
  publication-title: Xenobiotica
  doi: 10.1080/00498250701875254
– volume: 5
  start-page: 645
  year: 1988
  ident: 10.1016/j.bcp.2016.03.008_b0185
  article-title: Characterization of the oral absorption of beta-lactam antibiotics. I. Cephalosporins: determination of intrinsic membrane absorption parameters in the rat intestine in situ
  publication-title: Pharm. Res.
  doi: 10.1023/A:1015974920682
– volume: 32
  start-page: 1
  issue: Suppl. 3
  year: 1986
  ident: 10.1016/j.bcp.2016.03.008_b0075
  article-title: Cefadroxil. A review of its antibacterial, pharmacokinetic and therapeutic properties in comparison with cephalexin and cephradine
  publication-title: Drugs
  doi: 10.2165/00003495-198600323-00003
– volume: 5
  start-page: 1122
  year: 2008
  ident: 10.1016/j.bcp.2016.03.008_b0010
  article-title: Targeted disruption of peptide transporter pept1 gene in mice significantly reduces dipeptide absorption in intestine
  publication-title: Mol. Pharm.
  doi: 10.1021/mp8001655
– volume: 23
  start-page: 434
  year: 2002
  ident: 10.1016/j.bcp.2016.03.008_b0170
  article-title: Mammalian peptide transporters as targets for drug delivery
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/S0165-6147(02)02072-2
– volume: 9
  start-page: 1380
  year: 1992
  ident: 10.1016/j.bcp.2016.03.008_b0245
  article-title: An alternative approach for assessment of rate of absorption in bioequivalence studies
  publication-title: Pharm. Res.
  doi: 10.1023/A:1015842425553
– volume: 4
  start-page: 14
  year: 1980
  ident: 10.1016/j.bcp.2016.03.008_b0165
  article-title: Quantitative mechanistic studies in simultaneous fluid flow and intestinal absorption using steroids as model solutes
  publication-title: Int. J. Pharm.
  doi: 10.1016/0378-5173(80)90140-4
– volume: 10
  start-page: 143
  issue: Suppl. B
  year: 1982
  ident: 10.1016/j.bcp.2016.03.008_b0085
  article-title: Cefadroxil in the treatment of skin and soft tissue infections
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/10.suppl_B.143
– volume: 45
  start-page: 110
  year: 2013
  ident: 10.1016/j.bcp.2016.03.008_b0055
  article-title: Xenobiotic receptor humanized mice and their utility
  publication-title: Drug Metab. Rev.
  doi: 10.3109/03602532.2012.738687
– volume: 8
  start-page: 298
  year: 1991
  ident: 10.1016/j.bcp.2016.03.008_b0160
  article-title: Calculation of the aqueous diffusion layer resistance for absorption in a tube: application to intestinal membrane permeability determination
  publication-title: Pharm. Res.
  doi: 10.1023/A:1015829128646
– volume: 75
  start-page: 922
  year: 2002
  ident: 10.1016/j.bcp.2016.03.008_b0205
  article-title: Distribution of the h+/peptide transporter pept1 in human intestine: up-regulated expression in the colonic mucosa of patients with short-bowel syndrome
  publication-title: Am. J. Clin. Nutr.
  doi: 10.1093/ajcn/75.5.922
– volume: 41
  start-page: 608
  year: 2013
  ident: 10.1016/j.bcp.2016.03.008_b0240
  article-title: Significance of peptide transporter 1 in the intestinal permeability of valacyclovir in wild-type and pept1 knockout mice
  publication-title: Drug Metab. Dispos.
  doi: 10.1124/dmd.112.049239
– volume: 11
  start-page: 331
  year: 1977
  ident: 10.1016/j.bcp.2016.03.008_b0065
  article-title: Comparative human oral clinical pharmacology of cefadroxil, cephalexin, and cephradine
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.11.2.331
– volume: 220
  start-page: 848
  year: 1996
  ident: 10.1016/j.bcp.2016.03.008_b0225
  article-title: Immuno-localization of h+/peptide cotransporter in rat digestive tract
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1996.0493
– volume: 35
  start-page: 1209
  year: 2007
  ident: 10.1016/j.bcp.2016.03.008_b0195
  article-title: Impact of genetic knockout of PEPT2 on cefadroxil pharmacokinetics, renal tubular reabsorption, and brain penetration in mice
  publication-title: Drug Metab. Dispos.
  doi: 10.1124/dmd.107.015263
– volume: 34
  start-page: 323
  year: 2013
  ident: 10.1016/j.bcp.2016.03.008_b0145
  article-title: Proton-coupled oligopeptide transporter family slc15: physiological, pharmacological and pathological implications
  publication-title: Mol. Aspects Med.
  doi: 10.1016/j.mam.2012.11.003
– volume: 120
  start-page: 1666
  year: 2001
  ident: 10.1016/j.bcp.2016.03.008_b0235
  article-title: Colonic epithelial hpept1 expression occurs in inflammatory bowel disease: transport of bacterial peptides influences expression of mhc class 1 molecules
  publication-title: Gastroenterology
  doi: 10.1053/gast.2001.24845
– volume: 38
  start-page: 1740
  year: 2010
  ident: 10.1016/j.bcp.2016.03.008_b0025
  article-title: Significance and regional dependency of peptide transporter (pept) 1 in the intestinal permeability of glycylsarcosine: in situ single-pass perfusion studies in wild-type and pept1 knockout mice
  publication-title: Drug Metab. Dispos.
  doi: 10.1124/dmd.110.034025
– volume: 8
  start-page: 87
  year: 1980
  ident: 10.1016/j.bcp.2016.03.008_b0095
  article-title: Efficacy and safety of cefadroxil in bacterial pharyngitis
  publication-title: J. Int. Med. Res.
– volume: 507
  start-page: 697
  issue: Pt 3
  year: 1998
  ident: 10.1016/j.bcp.2016.03.008_b0210
  article-title: Substrate upregulation of the human small intestinal peptide transporter, hpept1
  publication-title: J. Physiol.
  doi: 10.1111/j.1469-7793.1998.697bs.x
– volume: 9
  start-page: 237
  year: 2013
  ident: 10.1016/j.bcp.2016.03.008_b0030
  article-title: Species differences in drug transporters and implications for translating preclinical findings to humans
  publication-title: Expert Opin. Drug Metab. Toxicol.
  doi: 10.1517/17425255.2013.741589
– volume: 10
  start-page: 17
  issue: Suppl. B
  year: 1982
  ident: 10.1016/j.bcp.2016.03.008_b0110
  article-title: A review of the bioavailability of cefadroxil
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/10.suppl_B.17
– volume: 11
  start-page: 3547
  year: 2014
  ident: 10.1016/j.bcp.2016.03.008_b0005
  article-title: Protein abundance of clinically relevant multidrug transporters along the entire length of the human intestine
  publication-title: Mol. Pharm.
  doi: 10.1021/mp500330y
– volume: 21
  start-page: 215
  year: 1993
  ident: 10.1016/j.bcp.2016.03.008_b0115
  article-title: Nonlinear pharmacokinetics of cefadroxil in the rat
  publication-title: Drug Metab. Dispos.
  doi: 10.1016/S0090-9556(25)08083-3
– volume: 41
  start-page: 179
  year: 1991
  ident: 10.1016/j.bcp.2016.03.008_b0120
  article-title: Dose-dependent absorption and elimination of cefadroxil in man
  publication-title: Eur. J. Clin. Pharmacol.
  doi: 10.1007/BF00265914
– volume: 32
  start-page: 33
  issue: Suppl. 3
  year: 1986
  ident: 10.1016/j.bcp.2016.03.008_b0105
  article-title: Treatment of acute and chronic sinusitis with cefadroxil
  publication-title: Drugs
  doi: 10.2165/00003495-198600323-00007
– volume: 20
  start-page: 1163
  year: 2003
  ident: 10.1016/j.bcp.2016.03.008_b0155
  article-title: Quantitative evaluation of the function of small intestinal p-glycoprotein: comparative studies between in situ and in vitro
  publication-title: Pharm. Res.
  doi: 10.1023/A:1025088628787
– volume: 32
  start-page: 1402
  year: 2004
  ident: 10.1016/j.bcp.2016.03.008_b0045
  article-title: Expression of human cytochromes p450 in chimeric mice with humanized liver
  publication-title: Drug Metab. Dispos.
  doi: 10.1124/dmd.104.001347
– volume: 8
  start-page: 21
  year: 1980
  ident: 10.1016/j.bcp.2016.03.008_b0080
  article-title: Treatment of urinary tract infections with cefadroxil, a new cephalosporin
  publication-title: J. Int. Med. Res.
– volume: 60
  start-page: 63
  year: 2008
  ident: 10.1016/j.bcp.2016.03.008_b0250
  article-title: Measurements of rat and mouse gastrointestinal ph, fluid and lymphoid tissue, and implications for in-vivo experiments
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1211/jpp.60.1.0008
– volume: 41
  start-page: 179
  year: 1989
  ident: 10.1016/j.bcp.2016.03.008_b0150
  article-title: Non-linear intestinal absorption kinetics of cefadroxil in the rat
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1111/j.2042-7158.1989.tb06425.x
– volume: 30
  start-page: 2931
  year: 2013
  ident: 10.1016/j.bcp.2016.03.008_b0140
  article-title: In vivo absorption and disposition of cefadroxil after escalating oral doses in wild-type and pept1 knockout mice
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-013-1168-3
– volume: 29
  start-page: 535
  year: 2012
  ident: 10.1016/j.bcp.2016.03.008_b0020
  article-title: Influence of fed-fasted state on intestinal pept1 expression and in vivo pharmacokinetics of glycylsarcosine in wild-type and pept1 knockout mice
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-011-0580-9
– volume: 11
  start-page: 3737
  year: 2014
  ident: 10.1016/j.bcp.2016.03.008_b0060
  article-title: Development and characterization of a novel mouse line humanized for the intestinal peptide transporter pept1
  publication-title: Mol. Pharm.
  doi: 10.1021/mp500497p
– volume: 270
  start-page: 25672
  year: 1995
  ident: 10.1016/j.bcp.2016.03.008_b0135
  article-title: Differential recognition of beta-lactam antibiotics by intestinal and renal peptide transporters, pept 1 and pept 2
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.270.43.25672
– volume: 281
  start-page: G697
  year: 2001
  ident: 10.1016/j.bcp.2016.03.008_b0230
  article-title: Intestinal peptide transport: ex vivo uptake studies and localization of peptide carrier pept1
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
  doi: 10.1152/ajpgi.2001.281.3.G697
– volume: 4
  start-page: 176
  year: 1976
  ident: 10.1016/j.bcp.2016.03.008_b0090
  article-title: Treatment of skin and soft tissue infections with cefadroxil, a new oral cephalosporin
  publication-title: J. Int. Med. Res.
  doi: 10.1177/030006057600400305
– volume: 34
  start-page: 512
  year: 1988
  ident: 10.1016/j.bcp.2016.03.008_b0100
  article-title: Clinical comparison of once-daily cefadroxil and thrice-daily cefaclor in the treatment of streptococcal pharyngitis
  publication-title: Chemotherapy
  doi: 10.1159/000238617
– volume: 41
  start-page: 1867
  year: 2013
  ident: 10.1016/j.bcp.2016.03.008_b0015
  article-title: Impact of peptide transporter 1 on the intestinal absorption and pharmacokinetics of valacyclovir after oral dose escalation in wild-type and pept1 knockout mice
  publication-title: Drug Metab. Dispos.
  doi: 10.1124/dmd.113.052597
– volume: 60
  start-page: 543
  year: 2008
  ident: 10.1016/j.bcp.2016.03.008_b0180
  article-title: Pharmaceutical and pharmacological importance of peptide transporters
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1211/jpp.60.5.0002
– volume: 40
  start-page: 1328
  year: 2012
  ident: 10.1016/j.bcp.2016.03.008_b0035
  article-title: Species-dependent uptake of glycylsarcosine but not oseltamivir in Pichia pastoris expressing the rat, mouse, and human intestinal peptide transporter pept1
  publication-title: Drug Metab. Dispos.
  doi: 10.1124/dmd.111.044263
– volume: 46
  start-page: 41
  year: 2006
  ident: 10.1016/j.bcp.2016.03.008_b0050
  article-title: Cytochrome p450 and xenobiotic receptor humanized mice
  publication-title: Annu. Rev. Pharmacol. Toxicol.
  doi: 10.1146/annurev.pharmtox.45.120403.100007
– year: 2015
  ident: 10.1016/j.bcp.2016.03.008_b0040
  article-title: A comparison between genetically humanized and chimeric liver humanized mouse models for studies in drug metabolism and toxicity
  publication-title: Drug Discov. Today
– volume: 30
  start-page: 1017
  year: 2013
  ident: 10.1016/j.bcp.2016.03.008_b0125
  article-title: Relevance of pept1 in the intestinal permeability and oral absorption of cefadroxil
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-012-0937-8
– reference: 3542485 - Drugs. 1986;32 Suppl 3:1-16
– reference: 19434858 - Mol Pharm. 2008 Nov-Dec;5(6):1122-30
– reference: 23924683 - Drug Metab Dispos. 2013 Oct;41(10):1867-74
– reference: 9508831 - J Physiol. 1998 Mar 15;507 ( Pt 3):697-706
– reference: 11385139 - Pediatr Res. 2001 Jun;49(6):789-95
– reference: 12425457 - Pharm Res. 2002 Oct;19(10):1417-23
– reference: 10150319 - Adv Ther. 1995 Jan-Feb;12(1):1-10
– reference: 7142089 - J Antimicrob Chemother. 1982 Sep;10 Suppl B:17-25
– reference: 3803251 - Drugs. 1986;32 Suppl 3:33-8
– reference: 2568445 - J Pharm Pharmacol. 1989 Mar;41(3):179-85
– reference: 17900749 - Adv Drug Deliv Rev. 2007 Sep 30;59(11):1103-20
– reference: 7439501 - J Int Med Res. 1980;8(Suppl 1):21-8
– reference: 17452417 - Drug Metab Dispos. 2007 Jul;35(7):1209-16
– reference: 1026545 - J Int Med Res. 1976;4(3):176-8
– reference: 1475222 - Pharm Res. 1992 Nov;9(11):1380-5
– reference: 23506874 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):323-36
– reference: 23173549 - Drug Metab Rev. 2013 Feb;45(1):110-21
– reference: 8097688 - Drug Metab Dispos. 1993 Mar-Apr;21(2):215-7
– reference: 20660104 - Drug Metab Dispos. 2010 Oct;38(10):1740-6
– reference: 3243093 - Chemotherapy. 1988;34(6):512-8
– reference: 8607854 - Biochem Biophys Res Commun. 1996 Mar 27;220(3):848-52
– reference: 18088506 - J Pharm Pharmacol. 2008 Jan;60(1):63-70
– reference: 2052515 - Pharm Res. 1991 Mar;8(3):298-305
– reference: 23264448 - Drug Metab Dispos. 2013 Mar;41(3):608-14
– reference: 12237156 - Trends Pharmacol Sci. 2002 Sep;23(9):434-40
– reference: 25148225 - Mol Pharm. 2014 Oct 6;11(10):3737-46
– reference: 18416933 - J Pharm Pharmacol. 2008 May;60(5):543-85
– reference: 15383493 - Drug Metab Dispos. 2004 Dec;32(12):1402-10
– reference: 18668438 - Xenobiotica. 2008 Jul;38(7-8):1022-42
– reference: 21904935 - Pharm Res. 2012 Feb;29(2):535-45
– reference: 848940 - Antimicrob Agents Chemother. 1977 Feb;11(2):331-8
– reference: 11518682 - Am J Physiol Gastrointest Liver Physiol. 2001 Sep;281(3):G697-704
– reference: 7439511 - J Int Med Res. 1980;8(Suppl 1):87-93
– reference: 12948013 - Pharm Res. 2003 Aug;20(8):1163-9
– reference: 6754687 - J Antimicrob Chemother. 1982 Sep;10 Suppl B:143-7
– reference: 16402898 - Annu Rev Pharmacol Toxicol. 2006;46:41-64
– reference: 1743250 - Eur J Clin Pharmacol. 1991;41(2):179-83
– reference: 12548404 - Histochem Cell Biol. 2003 Jan;119(1):37-43
– reference: 23959853 - Pharm Res. 2013 Nov;30(11):2931-9
– reference: 26360054 - Drug Discov Today. 2016 Feb;21(2):250-63
– reference: 11375948 - Gastroenterology. 2001 Jun;120(7):1666-79
– reference: 23224978 - Pharm Res. 2013 Apr;30(4):1017-25
– reference: 22490229 - Drug Metab Dispos. 2012 Jul;40(7):1328-35
– reference: 23256482 - Expert Opin Drug Metab Toxicol. 2013 Mar;9(3):237-52
– reference: 23660505 - Am J Physiol Gastrointest Liver Physiol. 2013 Jul 1;305(1):G66-73
– reference: 7592745 - J Biol Chem. 1995 Oct 27;270(43):25672-7
– reference: 11976168 - Am J Clin Nutr. 2002 May;75(5):922-30
– reference: 3244617 - Pharm Res. 1988 Oct;5(10):645-50
– reference: 25158075 - Mol Pharm. 2014 Oct 6;11(10):3547-55
SSID ssj0006861
Score 2.306713
Snippet [Display omitted] PepT1 (SLC15A1) is a high-capacity low-affinity transporter that is important in the absorption of digested di/tripeptides from dietary...
PepT1 (SLC15A1) is a high-capacity low-affinity transporter that is important in the absorption of digested di/tripeptides from dietary protein in the small...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 81
SubjectTerms Animals
Anti-Bacterial Agents - administration & dosage
Anti-Bacterial Agents - blood
Anti-Bacterial Agents - metabolism
Anti-Bacterial Agents - pharmacokinetics
Cefadroxil
Cefadroxil - administration & dosage
Cefadroxil - blood
Cefadroxil - metabolism
Cefadroxil - pharmacokinetics
Colon - metabolism
Crosses, Genetic
Dose-Response Relationship, Drug
Half-Life
Humanized mice
Humans
In Vitro Techniques
Intestinal Absorption
Intestinal Mucosa - metabolism
Jejunum - metabolism
Mice, Inbred C57BL
Mice, Knockout
Mice, Transgenic
PEPT1
Peptide Transporter 1
Perfusion
Pharmacokinetics
Species differences
Species Specificity
Symporters - genetics
Symporters - metabolism
Tissue Distribution
Title Species differences in the pharmacokinetics of cefadroxil as determined in wildtype and humanized PepT1 mice
URI https://dx.doi.org/10.1016/j.bcp.2016.03.008
https://www.ncbi.nlm.nih.gov/pubmed/26979860
https://www.proquest.com/docview/1779427970
https://pubmed.ncbi.nlm.nih.gov/PMC4821691
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9gAXBOW1UCojoR5QQ-08JsmxWrVaQFR72Eq9WX5FpCzZVXcrUQ789s4kzpYtogeOiT2KlXE-f45nvmHsfQJGJFaXEdJdH6XSAn1zLrIFSCp0kjhNicJfT2F8ln4-z8632KjPhaGwyoD9Haa3aB3uHIa3ebioa8rxFRCXuPxAy1twC7QdJyVkA7Z99OnL-HQNyFBAKJwHERn0h5ttmJexpFopIUid_mt5-pt-3o2i_GNZOnnCHgc-yY-6IT9lW77ZYQ9HfRm3HbY_6cSprw_49DbXannA9_nkVrb6-hmbtaXo_ZL3NVMQQXjdcGSIfBF6fkdOStZ8XnHrK-0u5z_rGddoFMJqvCMbJOCOfu5y3TjelgGsf2HLxC-mkv9AbHrOzk6Op6NxFGoxRDaT-Sqi00PADW1RmawordB5nDkPMT4LdygGQBhhiirNS2MQB5zUIHSRJAYpXkLyEC_YoJk3_hXjiBJxLitXGqJDqdHIWTJbWSfBOCHdkIneBcoGoXKqlzFTfUTahUKvKfKaEolCrw3Zh7XJolPpuK9z2vtVbUw1havIfWbv-jmg0IV0rqIbP79aKpkjqMV5mYshe9nNifUoYijzsgBsyTdmy7oDyXtvtjT1t1bmOy1iUjJ6_X_DfcMe0VUXm7nLBqvLK_8W-dPK7LEHH3_LvfCV3ADCqBpX
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQPdBL1fJoty2tKyEOiBQ7Dzs5olXRlgLawyJxs_yKmrJkV-wilR747cwkzm63VTn0mvEoVmY88zkef0PIXiIMS6wuIoC7Pkq5FbjmXGRzwbHRSeI0XhQ-vxCDy_T0KrtaI_3uLgyWVYbY38b0JlqHJ0fhax5Nqwrv-DIRF5B-RINbYAv0LM0SiXV9nx-WdR4iF6FtnohweHe02RR5GYuclVwEotN_Jae_weefNZS_JaWTl-RFQJP0uJ3wK7Lm602y0e-auG2S_WFLTX1_SEfLm1azQ7pPh0vS6vstMm4a0fsZ7TqmQPygVU0BH9JpGHkNiBS16aSk1pfa3U5-VmOqQSkU1XiHOgC_Hf7apbp2tGkCWP0CydBPR5zeQGTaJpcnX0b9QRQ6MUQ243Ie4dmhgO1sXposLyzTMs6cFzG8C_YnRghmmMnLVBbGQBRwXAum8yQxAPASJIfYIev1pPZvCIUYEUteusIgGEqNBsSS2dI6Loxj3PUI60ygbKApx24ZY9XVo_1QYDWFVlMsUWC1HjlYqExbjo6nBqedXdWKoynIIU-pfep8QIEJ8VRF135yN1NcQkiLZSFZj7xufWIxi1gUssgFSOSKtywGILn3qqSuvjck32keI4_R2_-b7keyMRidn6mzrxff3pHnKGmrNN-T9fntnd8FJDU3H5qV8ggsihsi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Species+differences+in+the+pharmacokinetics+of+cefadroxil+as+determined+in+wildtype+and+humanized+PepT1+mice&rft.jtitle=Biochemical+pharmacology&rft.au=Hu%2C+Yongjun&rft.au=Smith%2C+David+E&rft.date=2016-05-01&rft.issn=1873-2968&rft.eissn=1873-2968&rft.volume=107&rft.spage=81&rft_id=info:doi/10.1016%2Fj.bcp.2016.03.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2952&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2952&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2952&client=summon