The role of demographic and academic features in a student performance prediction

Educational Data Mining is widely used for predicting student's performance. It’s a challenging task because a plethora of features related to demographics, personality traits, socio-economic, and environmental may affect students' performance. Such varying features may depend on the level...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; pp. 12508 - 9
Main Authors Bilal, Muhammad, Omar, Muhammad, Anwar, Waheed, Bokhari, Rahat H., Choi, Gyu Sang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 22.07.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Educational Data Mining is widely used for predicting student's performance. It’s a challenging task because a plethora of features related to demographics, personality traits, socio-economic, and environmental may affect students' performance. Such varying features may depend on the level of study, program offered, nature of subject, and geographical location. This study attempted to predict the final semester’s results of students studying Doctor of Veterinary Medicine (DVM) based on their pre-admission academic achievements, demographics, and first semester performance. The imbalanced data led to non-generic prediction models, so it was addressed through synthetic minority oversampling technique. Among five prediction models, the Support Vector Machine led the best with 92% accuracy. The decision tree model identified key features affecting students’ performance. The analysis led to the conclusion that marks obtained in Biology, Islamiat, and Urdu at Matric and English at Intermediate level affected the students’ performance in their final semester. The findings provide useful information to predict students’ performance and guidelines for academic institutes’ management regarding improving students’ achievement. It is speculated that adoption of digital transformation may help reduce difficulty faced in data collection and analysis.
AbstractList Educational Data Mining is widely used for predicting student's performance. It's a challenging task because a plethora of features related to demographics, personality traits, socio-economic, and environmental may affect students' performance. Such varying features may depend on the level of study, program offered, nature of subject, and geographical location. This study attempted to predict the final semester's results of students studying Doctor of Veterinary Medicine (DVM) based on their pre-admission academic achievements, demographics, and first semester performance. The imbalanced data led to non-generic prediction models, so it was addressed through synthetic minority oversampling technique. Among five prediction models, the Support Vector Machine led the best with 92% accuracy. The decision tree model identified key features affecting students' performance. The analysis led to the conclusion that marks obtained in Biology, Islamiat, and Urdu at Matric and English at Intermediate level affected the students' performance in their final semester. The findings provide useful information to predict students' performance and guidelines for academic institutes' management regarding improving students' achievement. It is speculated that adoption of digital transformation may help reduce difficulty faced in data collection and analysis.Educational Data Mining is widely used for predicting student's performance. It's a challenging task because a plethora of features related to demographics, personality traits, socio-economic, and environmental may affect students' performance. Such varying features may depend on the level of study, program offered, nature of subject, and geographical location. This study attempted to predict the final semester's results of students studying Doctor of Veterinary Medicine (DVM) based on their pre-admission academic achievements, demographics, and first semester performance. The imbalanced data led to non-generic prediction models, so it was addressed through synthetic minority oversampling technique. Among five prediction models, the Support Vector Machine led the best with 92% accuracy. The decision tree model identified key features affecting students' performance. The analysis led to the conclusion that marks obtained in Biology, Islamiat, and Urdu at Matric and English at Intermediate level affected the students' performance in their final semester. The findings provide useful information to predict students' performance and guidelines for academic institutes' management regarding improving students' achievement. It is speculated that adoption of digital transformation may help reduce difficulty faced in data collection and analysis.
Educational Data Mining is widely used for predicting student's performance. It’s a challenging task because a plethora of features related to demographics, personality traits, socio-economic, and environmental may affect students' performance. Such varying features may depend on the level of study, program offered, nature of subject, and geographical location. This study attempted to predict the final semester’s results of students studying Doctor of Veterinary Medicine (DVM) based on their pre-admission academic achievements, demographics, and first semester performance. The imbalanced data led to non-generic prediction models, so it was addressed through synthetic minority oversampling technique. Among five prediction models, the Support Vector Machine led the best with 92% accuracy. The decision tree model identified key features affecting students’ performance. The analysis led to the conclusion that marks obtained in Biology, Islamiat, and Urdu at Matric and English at Intermediate level affected the students’ performance in their final semester. The findings provide useful information to predict students’ performance and guidelines for academic institutes’ management regarding improving students’ achievement. It is speculated that adoption of digital transformation may help reduce difficulty faced in data collection and analysis.
Abstract Educational Data Mining is widely used for predicting student's performance. It’s a challenging task because a plethora of features related to demographics, personality traits, socio-economic, and environmental may affect students' performance. Such varying features may depend on the level of study, program offered, nature of subject, and geographical location. This study attempted to predict the final semester’s results of students studying Doctor of Veterinary Medicine (DVM) based on their pre-admission academic achievements, demographics, and first semester performance. The imbalanced data led to non-generic prediction models, so it was addressed through synthetic minority oversampling technique. Among five prediction models, the Support Vector Machine led the best with 92% accuracy. The decision tree model identified key features affecting students’ performance. The analysis led to the conclusion that marks obtained in Biology, Islamiat, and Urdu at Matric and English at Intermediate level affected the students’ performance in their final semester. The findings provide useful information to predict students’ performance and guidelines for academic institutes’ management regarding improving students’ achievement. It is speculated that adoption of digital transformation may help reduce difficulty faced in data collection and analysis.
ArticleNumber 12508
Author Choi, Gyu Sang
Omar, Muhammad
Bokhari, Rahat H.
Anwar, Waheed
Bilal, Muhammad
Author_xml – sequence: 1
  givenname: Muhammad
  surname: Bilal
  fullname: Bilal, Muhammad
  organization: Department of Computer Science & IT, The Islamia University of Bahawalpur
– sequence: 2
  givenname: Muhammad
  surname: Omar
  fullname: Omar, Muhammad
  email: m.omar.nazeer@gmail.com
  organization: Department of Data Science, Faculty of Computing, The Islamia University of Bahawalpur, Department of Information and Communication Engineering, Yeungnam University
– sequence: 3
  givenname: Waheed
  surname: Anwar
  fullname: Anwar, Waheed
  organization: Department of Computer Science, Faculty of Computing, The Islamia University of Bahawalpur
– sequence: 4
  givenname: Rahat H.
  surname: Bokhari
  fullname: Bokhari, Rahat H.
  organization: Department of Computer Science, University of South Asia
– sequence: 5
  givenname: Gyu Sang
  surname: Choi
  fullname: Choi, Gyu Sang
  email: castchoi@ynu.ac.kr
  organization: Department of Information and Communication Engineering, Yeungnam University
BookMark eNp9UktrFTEYDVKx9do_4Crgxs1o3plsBCk-CgUR6jpk8rg3l5lkTGYE_725nYq2i2aTfF_OOcn5OC_BWcrJA_Aao3cY0f59ZZirvkOEdJj3PerEM3BBEOMdoYSc_Xc-B5e1HlFbnCiG1QtwTnkvVJO5AN9vDx6WPHqYA3R-yvti5kO00CQHjTWt1YrgzbIWX2FM0MC6rM6nBc6-hFwmk6yHc_Eu2iXm9Ao8D2as_vJ-34Efnz_dXn3tbr59ub76eNNZjuXScSGIdYxbpgwhgrNAjfXSSWIpD5JhRtXgaOAGy6EXDjGBKHNBMIacEgPdgetN12Vz1HOJkym_dTZR3zVy2WtTlmhHrweukA2DQ6bvmZTIBBsEZp4gNVjBbNP6sGnN6zB5Z5u7YsYHog9vUjzoff6lFUWSS9QE3t4LlPxz9XXRU6zWj6NJPq9VE6GobKbwCfrmEfSY15LaqE4oojChzfsO9BvKllxr8UHbuJjTfNv7cdQY6VMM9BYD3WKg72KgRaOSR9S_Pp4k0Y1UGzjtffn3qydYfwAWe8T5
CitedBy_id crossref_primary_10_1007_s13278_024_01234_9
crossref_primary_10_1038_s41598_024_63629_0
crossref_primary_10_22144_ctujoisd_2023_039
crossref_primary_10_29333_ejmste_13863
crossref_primary_10_4018_IJWLTT_347661
crossref_primary_10_1038_s41598_024_75242_2
crossref_primary_10_1016_j_caeai_2024_100301
crossref_primary_10_3390_bdcc8120187
crossref_primary_10_1097_JCMA_0000000000001097
crossref_primary_10_1109_ACCESS_2023_3294700
Cites_doi 10.1155/2014/836895
10.1007/s10639-020-10346-6
10.1109/ACCESS.2020.2981905
10.1038/s41598-021-03867-8
10.1111/exsy.12135
10.1016/j.compedu.2019.103676
10.1016/j.compedu.2017.05.007
10.1016/j.compedu.2012.08.015
10.3390/app10113894
10.5688/ajpe81346
10.1109/TLT.2019.2913358
10.1016/j.procs.2015.12.157
10.5815/ijisa.2015.01.05
10.1007/s10462-011-9234-x
10.1016/j.compedu.2019.04.001
10.47678/cjhe.v23i2.183161
10.1613/jair.953
10.1023/A:1010933404324
10.20473/jisebi.7.1.1-10
10.1109/JSTSP.2017.2692560
10.1007/978-3-642-34041-3_27
10.1177/0020720916688484
10.1109/ICETAS.2017.8277884
10.1109/ACCT.2014.105
10.1007/978-3-540-39964-3_62
10.1109/ICSIMA.2013.6717966
10.1109/ICCOINS.2018.8510600
10.1007/BF00116251
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-022-15880-6
DatabaseName Springer Nature OA/Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Veterinary Medicine
EISSN 2045-2322
EndPage 9
ExternalDocumentID oai_doaj_org_article_b590cfbd0a884770afcf614e209bc64c
PMC9307570
10_1038_s41598_022_15880_6
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c517t-5662cd45c49a22654f3ace7d72c35f741439bd3f5a17b86d046034df6440d96b3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:26:54 EDT 2025
Thu Aug 21 13:42:31 EDT 2025
Fri Jul 11 05:11:16 EDT 2025
Wed Aug 13 06:42:58 EDT 2025
Thu Apr 24 23:12:00 EDT 2025
Tue Jul 01 04:16:56 EDT 2025
Fri Feb 21 02:36:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-5662cd45c49a22654f3ace7d72c35f741439bd3f5a17b86d046034df6440d96b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-022-15880-6
PMID 35869103
PQID 2692912314
PQPubID 2041939
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_b590cfbd0a884770afcf614e209bc64c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9307570
proquest_miscellaneous_2693774110
proquest_journals_2692912314
crossref_citationtrail_10_1038_s41598_022_15880_6
crossref_primary_10_1038_s41598_022_15880_6
springer_journals_10_1038_s41598_022_15880_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-22
PublicationDateYYYYMMDD 2022-07-22
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-22
  day: 22
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Sultana, Khan, Abbas (CR38) 2017; 54
Polyzou, Karypis (CR24) 2019; 12
Asif, Merceron (CR34) 2015
Asif (CR39) 2016; 14
CR17
Yassein, Helali, Mohomad (CR1) 2017; 7
Yin, Gao, Karimi, Zhu (CR30) 2014
Qiu (CR23) 2022
Asif, Hina, Haque (CR15) 2017; 17
CR11
Breiman (CR28) 2001; 45
CR31
Singh, Kaur (CR12) 2016; 7
Hussain, Dahan, Ba-Alwib, Ribata (CR18) 2018; 9
Chawla, Bowyer, Hall, Kegelmeyer (CR26) 2002; 16
Muratov, Lewis, Fourches, Tropsha, Cox (CR25) 2002; 81
Mengash (CR3) 2020; 8
Mishra, Chaudhary (CR13) 2021; 12
Tomasevic, Gvozdenovic, Vranes (CR19) 2020; 143
Kotsiantis (CR6) 2012
Asif, Merceron, Ali, Haider (CR14) 2017
Shaziya, Zaheer, Kavitha (CR20) 2015; 4
Gil, da Cruz Martins, Moro, Costa (CR36) 2021; 26
Shahiri, Husain, Rashid (CR5) 2015; 72
Pavya, Srinivasan (CR33) 2017; 2
Zhang (CR29) 2001
Aggarwal, Mittal, Bali (CR37) 2021; 10
CR9
CR27
Hasan (CR10) 2020; 10
Rizvi, Rienties, Khoja (CR35) 2019; 137
Baker, Yacef (CR2) 2009; 1
Xu, Moon, Member, Van Der (CR8) 2017; 11
Santosa, Lukito (CR4) 2021; 7
CR22
Makhtar, Nawang, Nor, Shamsuddin (CR21) 2017; 95
Pyke, Sheridan (CR32) 1993; 23
Márquez-Vera (CR40) 2016; 33
Asif, Haider, Ali (CR16) 2016; 14
Huang, Fang (CR7) 2013; 61
A Polyzou (15880_CR24) 2019; 12
K Pavya (15880_CR33) 2017; 2
S Sultana (15880_CR38) 2017; 54
15880_CR9
J Xu (15880_CR8) 2017; 11
W Singh (15880_CR12) 2016; 7
L Breiman (15880_CR28) 2001; 45
E Muratov (15880_CR25) 2002; 81
N Tomasevic (15880_CR19) 2020; 143
R Asif (15880_CR14) 2017
S Rizvi (15880_CR35) 2019; 137
R Asif (15880_CR34) 2015
AM Shahiri (15880_CR5) 2015; 72
Y Zhang (15880_CR29) 2001
S Yin (15880_CR30) 2014
15880_CR22
15880_CR27
D Aggarwal (15880_CR37) 2021; 10
R Asif (15880_CR39) 2016; 14
SB Kotsiantis (15880_CR6) 2012
H Shaziya (15880_CR20) 2015; 4
RSJD Baker (15880_CR2) 2009; 1
R Hasan (15880_CR10) 2020; 10
NV Chawla (15880_CR26) 2002; 16
PD Gil (15880_CR36) 2021; 26
S Hussain (15880_CR18) 2018; 9
C Márquez-Vera (15880_CR40) 2016; 33
HA Mengash (15880_CR3) 2020; 8
SW Pyke (15880_CR32) 1993; 23
R Asif (15880_CR16) 2016; 14
15880_CR17
A Mishra (15880_CR13) 2021; 12
RG Santosa (15880_CR4) 2021; 7
F Qiu (15880_CR23) 2022
NA Yassein (15880_CR1) 2017; 7
S Huang (15880_CR7) 2013; 61
15880_CR11
R Asif (15880_CR15) 2017; 17
15880_CR31
M Makhtar (15880_CR21) 2017; 95
References_xml – year: 2014
  ident: CR30
  article-title: Study on support vector machine-based fault detection in tennessee eastman process
  publication-title: Abst. Appl. Anal. vec.
  doi: 10.1155/2014/836895
– ident: CR22
– volume: 26
  start-page: 2165
  issue: 2
  year: 2021
  end-page: 2190
  ident: CR36
  article-title: A data-driven approach to predict first-year students’ academic success in higher education institutions
  publication-title: Educ. Inf. Technol.
  doi: 10.1007/s10639-020-10346-6
– volume: 8
  start-page: 55462
  year: 2020
  end-page: 55470
  ident: CR3
  article-title: Using data mining techniques to predict student performance to support decision making in university admission systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2981905
– year: 2022
  ident: CR23
  article-title: Predicting students ’ performance in e - learning using learning process and behaviour data
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-03867-8
– volume: 33
  start-page: 107
  year: 2016
  end-page: 124
  ident: CR40
  article-title: Early dropout prediction using data mining: A case study with high school students
  publication-title: Expert Syst.
  doi: 10.1111/exsy.12135
– volume: 143
  start-page: 103676
  year: 2020
  ident: CR19
  article-title: Computers & Education An overview and comparison of supervised data mining techniques for student exam performance prediction
  publication-title: Comput. Educ.
  doi: 10.1016/j.compedu.2019.103676
– volume: 4
  start-page: 9823
  year: 2015
  end-page: 9829
  ident: CR20
  article-title: Prediction of students performance in semester exams using a naïve bayes classifier
  publication-title: Int. J. Innov. Res. Sci. Eng. Technol.
– volume: 2
  start-page: 594
  issue: 6
  year: 2017
  end-page: 598
  ident: CR33
  article-title: Feature selection techniques in data mining: a study
  publication-title: Int. Jour. Sci. Devel. Res.(IJSDR)
– volume: 14
  start-page: 374
  year: 2016
  end-page: 380
  ident: CR39
  article-title: Prediction of undergraduate student's performance using data mining methods
  publication-title: Int. J. Comp. Sci. Inf. Secur. (IJCSIS)
– volume: 1
  start-page: 3
  year: 2009
  end-page: 16
  ident: CR2
  article-title: The state of educational data mining in 2009: A review and future visions
  publication-title: J. Educ. Data Min.
– year: 2017
  ident: CR14
  article-title: Analyzing undergraduate students’ performance using educational data mining
  publication-title: Comput. Educ.
  doi: 10.1016/j.compedu.2017.05.007
– volume: 7
  start-page: 1
  issue: 5
  year: 2017
  end-page: 5
  ident: CR1
  article-title: Predicting student academic performance in KSA using data mining techniques
  publication-title: J. Inf. Technol. Softw. Eng.
– volume: 12
  start-page: 4063
  year: 2021
  end-page: 4069
  ident: CR13
  article-title: Student performance measure by using different classification methods of data mining
  publication-title: Turk. J. Comput. Math. Educ.
– volume: 61
  start-page: 133
  year: 2013
  end-page: 145
  ident: CR7
  article-title: Computers & Education Predicting student academic performance in an engineering dynamics course: A comparison of four types of predictive mathematical models
  publication-title: Comput. Educ.
  doi: 10.1016/j.compedu.2012.08.015
– volume: 10
  start-page: 3894
  issue: 11
  year: 2020
  ident: CR10
  article-title: Predicting student performance in higher educational institutions using video learning analytics and data mining techniques
  publication-title: Appl. Sci.
  doi: 10.3390/app10113894
– ident: CR27
– volume: 17
  start-page: 187
  issue: 5
  year: 2017
  end-page: 191
  ident: CR15
  article-title: Predicting student academic performance using data mining methods
  publication-title: Int. J. Comput. Sci. Netw. Secur.
– volume: 81
  start-page: 46
  issue: 3
  year: 2002
  ident: CR25
  article-title: Computer-assisted decision support for student admissions based on their predicted academic performance
  publication-title: Am. J. Pharm. Educ.
  doi: 10.5688/ajpe81346
– volume: 12
  start-page: 237
  year: 2019
  end-page: 248
  ident: CR24
  article-title: Feature extraction for next-term prediction of poor student performance
  publication-title: IEEE Trans. Learn. Technol.
  doi: 10.1109/TLT.2019.2913358
– volume: 72
  start-page: 414
  year: 2015
  end-page: 422
  ident: CR5
  article-title: A review on predicting student’s performance using data mining techniques
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.12.157
– volume: 95
  start-page: 3993
  year: 2017
  end-page: 4000
  ident: CR21
  article-title: Analysis on students performance using naive bayes classifier
  publication-title: J. Theor. Appl. Inf. Technol.
– year: 2015
  ident: CR34
  article-title: Predicting student academic performance at degree level: A case study
  publication-title: Int. J. Intell. Syst. Technol. Appl.
  doi: 10.5815/ijisa.2015.01.05
– year: 2012
  ident: CR6
  article-title: Use of machine learning techniques for educational proposes: a decision support system for forecasting students grades
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-011-9234-x
– ident: CR17
– volume: 137
  start-page: 32
  year: 2019
  end-page: 47
  ident: CR35
  article-title: The role of demographics in online learning; a decision tree based approach
  publication-title: Comput. Educ.
  doi: 10.1016/j.compedu.2019.04.001
– ident: CR31
– volume: 23
  start-page: 44
  issue: 2
  year: 1993
  end-page: 64
  ident: CR32
  article-title: Logistic regression analysis of graduate student retention
  publication-title: Can. J. Higher Educ.
  doi: 10.47678/cjhe.v23i2.183161
– ident: CR11
– ident: CR9
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: CR26
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: CR28
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 7
  start-page: 1
  year: 2021
  end-page: 10
  ident: CR4
  article-title: Classification and prediction of students gpa using kmeans clustering algorithm to assist atudent admission process
  publication-title: J. Inf. Syst. Eng. Bus. Intell.
  doi: 10.20473/jisebi.7.1.1-10
– volume: 14
  start-page: 374
  year: 2016
  end-page: 380
  ident: CR16
  article-title: Prediction of undergraduate student ’ s performance using data mining methods
  publication-title: Int. J. Comput. Sci. Inf. Secur.
– volume: 7
  start-page: 31
  year: 2016
  end-page: 36
  ident: CR12
  article-title: Comparative analysis of classification techniques for predicting computer engineering students’ academic performance
  publication-title: Int. J. Adv. Res. Comput. Sci.
– volume: 10
  start-page: 38
  year: 2021
  end-page: 49
  ident: CR37
  article-title: Significance of non-academic parameters for predicting student performance using ensemble learning techniques
  publication-title: Int. J. Syst. Dyn. Appl.
– volume: 11
  start-page: 742
  year: 2017
  end-page: 753
  ident: CR8
  article-title: A machine learning approach for tracking and predicting student performance in degree programs
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2017.2692560
– volume: 9
  start-page: 447
  year: 2018
  end-page: 459
  ident: CR18
  article-title: Educational data mining and analysis of students ’ academic performance using WEKA
  publication-title: Indones. J. Electr. Eng. Comput. Sci.
– year: 2001
  ident: CR29
  article-title: Support vector machine classification algorithm and its application
  publication-title: Int. Conf. Inf. Comput. Appl.
  doi: 10.1007/978-3-642-34041-3_27
– volume: 54
  start-page: 105
  year: 2017
  end-page: 118
  ident: CR38
  article-title: Predicting performance of electrical engineering students using cognitive and non-cognitive features for identification of potential dropouts
  publication-title: Int. J. Electr. Eng. Educ.
  doi: 10.1177/0020720916688484
– ident: 15880_CR11
  doi: 10.1109/ICETAS.2017.8277884
– volume: 8
  start-page: 55462
  year: 2020
  ident: 15880_CR3
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2981905
– year: 2022
  ident: 15880_CR23
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-03867-8
– ident: 15880_CR17
  doi: 10.1109/ACCT.2014.105
– volume: 16
  start-page: 321
  year: 2002
  ident: 15880_CR26
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– volume: 7
  start-page: 1
  issue: 5
  year: 2017
  ident: 15880_CR1
  publication-title: J. Inf. Technol. Softw. Eng.
– volume: 10
  start-page: 3894
  issue: 11
  year: 2020
  ident: 15880_CR10
  publication-title: Appl. Sci.
  doi: 10.3390/app10113894
– volume: 9
  start-page: 447
  year: 2018
  ident: 15880_CR18
  publication-title: Indones. J. Electr. Eng. Comput. Sci.
– volume: 33
  start-page: 107
  year: 2016
  ident: 15880_CR40
  publication-title: Expert Syst.
  doi: 10.1111/exsy.12135
– ident: 15880_CR31
  doi: 10.1007/978-3-540-39964-3_62
– ident: 15880_CR22
  doi: 10.1109/ICSIMA.2013.6717966
– year: 2015
  ident: 15880_CR34
  publication-title: Int. J. Intell. Syst. Technol. Appl.
  doi: 10.5815/ijisa.2015.01.05
– volume: 61
  start-page: 133
  year: 2013
  ident: 15880_CR7
  publication-title: Comput. Educ.
  doi: 10.1016/j.compedu.2012.08.015
– year: 2012
  ident: 15880_CR6
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-011-9234-x
– volume: 4
  start-page: 9823
  year: 2015
  ident: 15880_CR20
  publication-title: Int. J. Innov. Res. Sci. Eng. Technol.
– volume: 11
  start-page: 742
  year: 2017
  ident: 15880_CR8
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2017.2692560
– volume: 17
  start-page: 187
  issue: 5
  year: 2017
  ident: 15880_CR15
  publication-title: Int. J. Comput. Sci. Netw. Secur.
– volume: 81
  start-page: 46
  issue: 3
  year: 2002
  ident: 15880_CR25
  publication-title: Am. J. Pharm. Educ.
  doi: 10.5688/ajpe81346
– ident: 15880_CR9
  doi: 10.1109/ICCOINS.2018.8510600
– volume: 10
  start-page: 38
  year: 2021
  ident: 15880_CR37
  publication-title: Int. J. Syst. Dyn. Appl.
– year: 2014
  ident: 15880_CR30
  publication-title: Abst. Appl. Anal. vec.
  doi: 10.1155/2014/836895
– year: 2001
  ident: 15880_CR29
  publication-title: Int. Conf. Inf. Comput. Appl.
  doi: 10.1007/978-3-642-34041-3_27
– volume: 2
  start-page: 594
  issue: 6
  year: 2017
  ident: 15880_CR33
  publication-title: Int. Jour. Sci. Devel. Res.(IJSDR)
– volume: 1
  start-page: 3
  year: 2009
  ident: 15880_CR2
  publication-title: J. Educ. Data Min.
– year: 2017
  ident: 15880_CR14
  publication-title: Comput. Educ.
  doi: 10.1016/j.compedu.2017.05.007
– volume: 95
  start-page: 3993
  year: 2017
  ident: 15880_CR21
  publication-title: J. Theor. Appl. Inf. Technol.
– volume: 7
  start-page: 31
  year: 2016
  ident: 15880_CR12
  publication-title: Int. J. Adv. Res. Comput. Sci.
– volume: 12
  start-page: 4063
  year: 2021
  ident: 15880_CR13
  publication-title: Turk. J. Comput. Math. Educ.
– volume: 7
  start-page: 1
  year: 2021
  ident: 15880_CR4
  publication-title: J. Inf. Syst. Eng. Bus. Intell.
  doi: 10.20473/jisebi.7.1.1-10
– volume: 72
  start-page: 414
  year: 2015
  ident: 15880_CR5
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.12.157
– ident: 15880_CR27
  doi: 10.1007/BF00116251
– volume: 12
  start-page: 237
  year: 2019
  ident: 15880_CR24
  publication-title: IEEE Trans. Learn. Technol.
  doi: 10.1109/TLT.2019.2913358
– volume: 45
  start-page: 5
  year: 2001
  ident: 15880_CR28
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 26
  start-page: 2165
  issue: 2
  year: 2021
  ident: 15880_CR36
  publication-title: Educ. Inf. Technol.
  doi: 10.1007/s10639-020-10346-6
– volume: 14
  start-page: 374
  year: 2016
  ident: 15880_CR16
  publication-title: Int. J. Comput. Sci. Inf. Secur.
– volume: 137
  start-page: 32
  year: 2019
  ident: 15880_CR35
  publication-title: Comput. Educ.
  doi: 10.1016/j.compedu.2019.04.001
– volume: 143
  start-page: 103676
  year: 2020
  ident: 15880_CR19
  publication-title: Comput. Educ.
  doi: 10.1016/j.compedu.2019.103676
– volume: 14
  start-page: 374
  year: 2016
  ident: 15880_CR39
  publication-title: Int. J. Comp. Sci. Inf. Secur. (IJCSIS)
– volume: 23
  start-page: 44
  issue: 2
  year: 1993
  ident: 15880_CR32
  publication-title: Can. J. Higher Educ.
  doi: 10.47678/cjhe.v23i2.183161
– volume: 54
  start-page: 105
  year: 2017
  ident: 15880_CR38
  publication-title: Int. J. Electr. Eng. Educ.
  doi: 10.1177/0020720916688484
SSID ssj0000529419
Score 2.473312
Snippet Educational Data Mining is widely used for predicting student's performance. It’s a challenging task because a plethora of features related to demographics,...
Educational Data Mining is widely used for predicting student's performance. It's a challenging task because a plethora of features related to demographics,...
Abstract Educational Data Mining is widely used for predicting student's performance. It’s a challenging task because a plethora of features related to...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12508
SubjectTerms 639/705/117
639/705/258
Data collection
Data mining
Demography
Digital transformation
Geographical distribution
Humanities and Social Sciences
multidisciplinary
Prediction models
Science
Science (multidisciplinary)
Students
Veterinary medicine
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxUxEA5SEHwRr7j2QgTfdGnuyT7a0lIEBcFC30KueED3HHpOH_z3TpI9p92C9cXXTcImk5nMFybzDULvM5dUGbip5hBCL2hUvSNR9IwFZbzjIdGS7_zlq7q4FJ-v5NWdUl_lTVijB26CO_ZyICH7SJyBg1QTl0MGl5IYGXxQIpTTF3zenctUY_Vmg6DDlCVDuDleg6cq2WRw96ISlLZXM09UCftnKPP-G8l7gdLqf86foacTcMSf2oSfo0dpfIEet1KSv1-ib7DfuDwVxMuMY_rVmKgXAbsxYjc9gsc5VR7PNV6M2OF147XEq9vkAby6LpGbsluv0OX52ffTi34ql9AHSfWmB2DGQhQyiMEBqJIicxeSjpoFLjMgB8AePvIsHdXeqFhColzEDIiIxEF5_hrtjcsxvUE4xeRdSVnVNAmV5cCMoyQaJkIwTvIO0a3obJi4xEtJi5-2xrS5sU3cFsRtq7it6tCH3ZhVY9J4sPdJ2ZFdz8KCXT-AbthJN-y_dKNDB9v9tJNpri1TgAjBX1PRoXe7ZjCqEilxY1re1D4ccDFAow7pmR7MJjRvGRc_Kj33AMem1DDy41Zjbn_-9wW__R8L3kdPWNFwosHYDtDe5vomHQJo2vijah9_AHxeEy4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivhy6KpYPSWCb1quab7aJ1HxOIQTBE_2LaT50AVt1-3eg__9zaTZXXrgvbbp58xkfsnM_IaQN5FLphpYqUbnXCmYV6WtvCjr2qmms9wFhvXOF1_V-aX4spTLvOE25rTK3ZyYJmo_ONwjP60VOHKYZpl4v_5bYtcojK7mFhp3yT2kLsOULr3U-z0WjGIJ1uZamYo3pyP4K6wpgxUYk6C6pZr5o0TbP8OaNzMlb4RLkxc6e0iOM3ykHyZ5PyJ3Qr8g96eGkv8WZPEDs1tSiS29yFHzx-Qb6ALFNEI6ROrDn4mleuWo7T21OUGexpA4Pke66qml48R5SdeHwgK63uAtUZJPyOXZ5--fzsvcSqF0kultCaCtdl5IJ1oLgEuKyK0L2uvacRkBVQAu6TyP0jLdNcpjuJQLHwEtVb5VHX9KjvqhD88IDT50FstZNQtCRdnWjWWVb2rhXGMlLwjb_VDjMs84trv4bVK8mzdmEoIBIZgkBKMK8nZ_zXpi2bh19EeU034kMmSnA8Pmp8kGZzrZVi52vrINOGBd2egiQJFQV23nlHAFOdlJ2WSzHc1ByQryen8aDA6jKLYPw1UawwEzA2wqiJ5px-yF5mf61a9E3d3ClCo1XPlup0eHh___g5_f_q4vyIMaNbrSYGIn5Gi7uQovASptu1fJHq4BBSoRZg
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA/Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA-1Ivgi1g9crRLBN13Md7KP9rCUgoJgoW8hn3qge8fd9aH_vZPs7pUtVfB1M2GzyUzml52ZXxB6l7mkysBJNYcQWkGjah2JomUsKOMdD4mWeucvX9XZhTi_lJcHiE21MDVpv1Ja1m16yg77uAVHU4rB4OhEJehcq-6h-4W6vWj1Qi32_1VK5ErQbqyPIdzc0XXmgypV_wxf3s6OvBUirZ7n9DF6NEJG_GkY5BE6SP0T9GC4RPL6KfoGK41LkiBeZRzT74GDehmw6yN2Y_o7zql-7hYve-zwdmC0xOubsgG83pSYTVmnZ-ji9PP3xVk7XpTQBkn1rgVIxkIUMojOAZySInMXko6aBS4zYAZAHT7yLB3V3qhYgqFcxAxYiMROef4cHfarPr1AOMXkXSlW1TQJlWXHjKMkGiZCME7yBtFp6mwYWcTLZRa_bI1mc2OH6bYw3bZOt1UNer_vsx44NP4pfVJWZC9Z-K_rg9Xmhx31wXrZkZB9JM6Ae9XE5ZABaCRGOh-UCA06ntbTjka5tUwBFgRPTUWD3u6bwZxKjMT1aXVVZTggYgBFDdIzPZgNaN7SL39WYu4ONkypoeeHSWNuXv73D375f-Kv0ENWdJloMKhjdLjbXKXXAIx2_k21hD_EMge1
  priority: 102
  providerName: Springer Nature
Title The role of demographic and academic features in a student performance prediction
URI https://link.springer.com/article/10.1038/s41598-022-15880-6
https://www.proquest.com/docview/2692912314
https://www.proquest.com/docview/2693774110
https://pubmed.ncbi.nlm.nih.gov/PMC9307570
https://doaj.org/article/b590cfbd0a884770afcf614e209bc64c
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Za9tAEF5yUOhL6UnVpGYLfWvVam_poRTHJARDQi-D35bVHqkhlR3bgebfd3YlOTikhT4J9kDS7IzmW83ONwi9DUwQWcJONVhrc06czE3heE6plWVtmPUk5jufncvTCR9PxXQH9eWOOgGu7t3axXpSk-Xlh99XN5_B4D-1KePlxxU4oZgoBtsqIkAfc7mL9sEzqWioZx3cb7m-acVJ1eXO3D91yz8lGv8t7Hn35OSd8GnySieP0aMOTuJhu_5P0I5vnqIHbYHJm2foK2gBjgcI8Txg53-1_NQzi03jsOmOxuPgE7vnCs8abPCqZbvEi9uUArxYxnhOXMPnaHJy_GN0mndFFHIriFrnANeodVxYXhmAWoIHZqxXTlHLRAA8AYikdiwIQ1RdShcDpYy7ADipcJWs2Qu018wb_xJh73xtYiKrIp7LICpaGlK4knJrSyNYhkgvOm07hvFY6OJSp0g3K3Urbg3i1kncWmbo3WbOouXX-Ofoo7gim5GRGzs1zJcXujM1XYuqsKF2hSnB9arCBBsAhHhaVLWV3GbosF9P3eubphJwInhxwjP0ZtMNphbjJ6bx8-s0hgFaBsCUIbWlB1sPtN3TzH4m0u4KPqZCwcz3vcbc3vzvL_zq_4YfoIc06nKhwNgO0d56ee1fA2ha1wO0q6ZqgPaHw_H3MVyPjs-_fIPWkRwN0o-IQbKVP10KFzI
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JbxMxFH4qqRBcEAQQgQJGghOMOl5n5oAQhVYtbSJALerN9XiBSDAJSSrUP8Vv5HmWRKlEb72OPZ7lbZ_9NoCXgUuqctypBmttIqhTiUmdSBizKi8Nt57GfOfhSO2fiE-n8nQD_na5MDGsstOJtaJ2ExvPyLeZQkOOapaKd9PfSewaFb2rXQuNhi0O_cUf3LLN3x58RPq-Ymxv9_jDftJ2FUispNkiQfzCrBPSisIg9pAicGN95jJmuQxoYNFEl44HaWhW5spFzyEXLiBwSF2hSo7r3oBNwXEr04PNnd3R56_LU53oNxO0aLNzUp5vz9FCxiw23PNRicKSqDULWDcKWEO3l2MzLzloa7u3dxfutICVvG847B5s-KoPN5sWlhd96H-L8TR1Ui8Ztn76-_AFuY_EwEUyCcT5X01d7LElpnLEtCH5JPi6quicjCtiyLypskmmq1QGMp3FJSPvPICTa_nND6FXTSr_CIh3vjQxgTajXqggC5YbmrqcCWtzI_kAaPdDtW0rm8cGGz917WHnuW6IoJEIuiaCVgN4vbxn2tT1uHL2TqTTcmasyV1fmMy-61bEdSmL1IbSpSZHk5-lJtiA4MeztCitEnYAWx2Vdaso5nrF1gN4sRxGEY9-G1P5yXk9hyNKR6A2gGyNO9ZeaH2kGv-oi4UXqMRlhne-6fho9fD_f_Djq9_1OdzaPx4e6aOD0eETuM0id6cZCvgW9Bazc_8UgdqifNZKB4Gz6xbIf6rkTlU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIgXBAVEYYCR4AmixvfkASFgVBtjE0gM9c04vrBKIy1NJ7S_xq_j2EladRJ722tiO5dz--xzQ-hFYILIAnaqwVqbceJkZnLHM0qtLCrDrCcx3_nwSO4d808TMdlCf_tcmBhW2evEpKjdzMYz8hGVYMhBzRI-Cl1YxJfd8dv57yx2kIqe1r6dRssiB_78D2zfmjf7u0Drl5SOP377sJd1HQYyK4haZoBlqHVcWF4awCGCB2asV05Ry0QAYwvmunIsCENUVUgXvYiMuwAgInelrBisew1dV_DBUcbURK3Od6IHjZOyy9PJWTFqwFbGfDbY_REBYpPJDVuYWgZs4NyLUZoXXLXJAo7voNsddMXvWl67i7Z8PUA32maW5wM0-B4ja1J6Lz7sPPb30FfgQxxDGPEsYOd_tRWypxab2mHTBefj4FN90QZPa2xw09bbxPN1UgOeL-KSkYvuo-Mr-ckP0HY9q_1DhL3zlYmptIp4LoMoaWFI7grKrS2MYENE-h-qbVfjPLbaONXJ184K3RJBAxF0IoKWQ_RqNWfeVvi4dPT7SKfVyFidO12YLX7qTth1JcrchsrlpgDjr3ITbAAY5GleVlZyO0Q7PZV1pzIavWbwIXq-ug3CHj04pvazszSGAV4HyDZEaoM7Nl5o8049PUllw0tQ50LBzNc9H60f_v8PfnT5uz5DN0EM9ef9o4PH6BaNzJ0rkPQdtL1cnPkngNiW1dMkGhj9uGpZ_AefklEl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+demographic+and+academic+features+in+a+student+performance+prediction&rft.jtitle=Scientific+reports&rft.au=Bilal%2C+Muhammad&rft.au=Omar%2C+Muhammad&rft.au=Anwar%2C+Waheed&rft.au=Bokhari%2C+Rahat+H.&rft.date=2022-07-22&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-022-15880-6&rft.externalDocID=10_1038_s41598_022_15880_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon