1-Pbps orbital angular momentum fibre-optic transmission
Space-division multiplexing (SDM), as a main candidate for future ultra-high capacity fibre-optic communications, needs to address limitations to its scalability imposed by computation-intensive multi-input multi-output (MIMO) digital signal processing (DSP) required to eliminate the crosstalk cause...
Saved in:
Published in | Light, science & applications Vol. 11; no. 1; pp. 202 - 11 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
05.07.2022
Springer Nature B.V Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Space-division multiplexing (SDM), as a main candidate for future ultra-high capacity fibre-optic communications, needs to address limitations to its scalability imposed by computation-intensive multi-input multi-output (MIMO) digital signal processing (DSP) required to eliminate the crosstalk caused by optical coupling between multiplexed spatial channels. By exploiting the unique propagation characteristics of orbital angular momentum (OAM) modes in ring core fibres (RCFs), a system that combines SDM and C + L band dense wavelength-division multiplexing (DWDM) in a 34 km 7-core RCF is demonstrated to transport a total of 24960 channels with a raw (net) capacity of 1.223 (1.02) Peta-bit s
−1
(Pbps) and a spectral efficiency of 156.8 (130.7) bit s
−1
Hz
−1
. Remarkably for such a high channel count, the system only uses fixed-size 4 × 4 MIMO DSP modules with no more than 25 time-domain taps. Such ultra-low MIMO complexity is enabled by the simultaneous weak coupling among fibre cores and amongst non-degenerate OAM mode groups within each core that have a fixed number of 4 modes. These results take the capacity of OAM-based fibre-optic communications links over the 1 Pbps milestone for the first time. They also simultaneously represent the lowest MIMO complexity and the 2nd smallest fibre cladding diameter amongst reported few-mode multicore-fibre (FM-MCF) SDM systems of >1 Pbps capacity. We believe these results represent a major step forward in SDM transmission, as they manifest the significant potentials for further up-scaling the capacity per optical fibre whilst keeping MIMO processing to an ultra-low complexity level and in a modularly expandable fashion.
A 1-Pbps orbital-angular-momentum fibre-optic transmission system that combines space-division multiplexing and wavelength-division multiplexing in a 34 km 7-core ring-core fibre is demonstrated utilizing low-complexity 4 × 4 MIMO equalization. |
---|---|
AbstractList | Space-division multiplexing (SDM), as a main candidate for future ultra-high capacity fibre-optic communications, needs to address limitations to its scalability imposed by computation-intensive multi-input multi-output (MIMO) digital signal processing (DSP) required to eliminate the crosstalk caused by optical coupling between multiplexed spatial channels. By exploiting the unique propagation characteristics of orbital angular momentum (OAM) modes in ring core fibres (RCFs), a system that combines SDM and C + L band dense wavelength-division multiplexing (DWDM) in a 34 km 7-core RCF is demonstrated to transport a total of 24960 channels with a raw (net) capacity of 1.223 (1.02) Peta-bit s-1 (Pbps) and a spectral efficiency of 156.8 (130.7) bit s-1 Hz-1. Remarkably for such a high channel count, the system only uses fixed-size 4 × 4 MIMO DSP modules with no more than 25 time-domain taps. Such ultra-low MIMO complexity is enabled by the simultaneous weak coupling among fibre cores and amongst non-degenerate OAM mode groups within each core that have a fixed number of 4 modes. These results take the capacity of OAM-based fibre-optic communications links over the 1 Pbps milestone for the first time. They also simultaneously represent the lowest MIMO complexity and the 2nd smallest fibre cladding diameter amongst reported few-mode multicore-fibre (FM-MCF) SDM systems of >1 Pbps capacity. We believe these results represent a major step forward in SDM transmission, as they manifest the significant potentials for further up-scaling the capacity per optical fibre whilst keeping MIMO processing to an ultra-low complexity level and in a modularly expandable fashion.Space-division multiplexing (SDM), as a main candidate for future ultra-high capacity fibre-optic communications, needs to address limitations to its scalability imposed by computation-intensive multi-input multi-output (MIMO) digital signal processing (DSP) required to eliminate the crosstalk caused by optical coupling between multiplexed spatial channels. By exploiting the unique propagation characteristics of orbital angular momentum (OAM) modes in ring core fibres (RCFs), a system that combines SDM and C + L band dense wavelength-division multiplexing (DWDM) in a 34 km 7-core RCF is demonstrated to transport a total of 24960 channels with a raw (net) capacity of 1.223 (1.02) Peta-bit s-1 (Pbps) and a spectral efficiency of 156.8 (130.7) bit s-1 Hz-1. Remarkably for such a high channel count, the system only uses fixed-size 4 × 4 MIMO DSP modules with no more than 25 time-domain taps. Such ultra-low MIMO complexity is enabled by the simultaneous weak coupling among fibre cores and amongst non-degenerate OAM mode groups within each core that have a fixed number of 4 modes. These results take the capacity of OAM-based fibre-optic communications links over the 1 Pbps milestone for the first time. They also simultaneously represent the lowest MIMO complexity and the 2nd smallest fibre cladding diameter amongst reported few-mode multicore-fibre (FM-MCF) SDM systems of >1 Pbps capacity. We believe these results represent a major step forward in SDM transmission, as they manifest the significant potentials for further up-scaling the capacity per optical fibre whilst keeping MIMO processing to an ultra-low complexity level and in a modularly expandable fashion. Space-division multiplexing (SDM), as a main candidate for future ultra-high capacity fibre-optic communications, needs to address limitations to its scalability imposed by computation-intensive multi-input multi-output (MIMO) digital signal processing (DSP) required to eliminate the crosstalk caused by optical coupling between multiplexed spatial channels. By exploiting the unique propagation characteristics of orbital angular momentum (OAM) modes in ring core fibres (RCFs), a system that combines SDM and C + L band dense wavelength-division multiplexing (DWDM) in a 34 km 7-core RCF is demonstrated to transport a total of 24960 channels with a raw (net) capacity of 1.223 (1.02) Peta-bit s −1 (Pbps) and a spectral efficiency of 156.8 (130.7) bit s −1 Hz −1 . Remarkably for such a high channel count, the system only uses fixed-size 4 × 4 MIMO DSP modules with no more than 25 time-domain taps. Such ultra-low MIMO complexity is enabled by the simultaneous weak coupling among fibre cores and amongst non-degenerate OAM mode groups within each core that have a fixed number of 4 modes. These results take the capacity of OAM-based fibre-optic communications links over the 1 Pbps milestone for the first time. They also simultaneously represent the lowest MIMO complexity and the 2nd smallest fibre cladding diameter amongst reported few-mode multicore-fibre (FM-MCF) SDM systems of >1 Pbps capacity. We believe these results represent a major step forward in SDM transmission, as they manifest the significant potentials for further up-scaling the capacity per optical fibre whilst keeping MIMO processing to an ultra-low complexity level and in a modularly expandable fashion. A 1-Pbps orbital-angular-momentum fibre-optic transmission system that combines space-division multiplexing and wavelength-division multiplexing in a 34 km 7-core ring-core fibre is demonstrated utilizing low-complexity 4 × 4 MIMO equalization. A 1-Pbps orbital-angular-momentum fibre-optic transmission system that combines space-division multiplexing and wavelength-division multiplexing in a 34 km 7-core ring-core fibre is demonstrated utilizing low-complexity 4 × 4 MIMO equalization. Space-division multiplexing (SDM), as a main candidate for future ultra-high capacity fibre-optic communications, needs to address limitations to its scalability imposed by computation-intensive multi-input multi-output (MIMO) digital signal processing (DSP) required to eliminate the crosstalk caused by optical coupling between multiplexed spatial channels. By exploiting the unique propagation characteristics of orbital angular momentum (OAM) modes in ring core fibres (RCFs), a system that combines SDM and C + L band dense wavelength-division multiplexing (DWDM) in a 34 km 7-core RCF is demonstrated to transport a total of 24960 channels with a raw (net) capacity of 1.223 (1.02) Peta-bit s−1 (Pbps) and a spectral efficiency of 156.8 (130.7) bit s−1 Hz−1. Remarkably for such a high channel count, the system only uses fixed-size 4 × 4 MIMO DSP modules with no more than 25 time-domain taps. Such ultra-low MIMO complexity is enabled by the simultaneous weak coupling among fibre cores and amongst non-degenerate OAM mode groups within each core that have a fixed number of 4 modes. These results take the capacity of OAM-based fibre-optic communications links over the 1 Pbps milestone for the first time. They also simultaneously represent the lowest MIMO complexity and the 2nd smallest fibre cladding diameter amongst reported few-mode multicore-fibre (FM-MCF) SDM systems of >1 Pbps capacity. We believe these results represent a major step forward in SDM transmission, as they manifest the significant potentials for further up-scaling the capacity per optical fibre whilst keeping MIMO processing to an ultra-low complexity level and in a modularly expandable fashion.A 1-Pbps orbital-angular-momentum fibre-optic transmission system that combines space-division multiplexing and wavelength-division multiplexing in a 34 km 7-core ring-core fibre is demonstrated utilizing low-complexity 4 × 4 MIMO equalization. Space-division multiplexing (SDM), as a main candidate for future ultra-high capacity fibre-optic communications, needs to address limitations to its scalability imposed by computation-intensive multi-input multi-output (MIMO) digital signal processing (DSP) required to eliminate the crosstalk caused by optical coupling between multiplexed spatial channels. By exploiting the unique propagation characteristics of orbital angular momentum (OAM) modes in ring core fibres (RCFs), a system that combines SDM and C + L band dense wavelength-division multiplexing (DWDM) in a 34 km 7-core RCF is demonstrated to transport a total of 24960 channels with a raw (net) capacity of 1.223 (1.02) Peta-bit s −1 (Pbps) and a spectral efficiency of 156.8 (130.7) bit s −1 Hz −1 . Remarkably for such a high channel count, the system only uses fixed-size 4 × 4 MIMO DSP modules with no more than 25 time-domain taps. Such ultra-low MIMO complexity is enabled by the simultaneous weak coupling among fibre cores and amongst non-degenerate OAM mode groups within each core that have a fixed number of 4 modes. These results take the capacity of OAM-based fibre-optic communications links over the 1 Pbps milestone for the first time. They also simultaneously represent the lowest MIMO complexity and the 2nd smallest fibre cladding diameter amongst reported few-mode multicore-fibre (FM-MCF) SDM systems of >1 Pbps capacity. We believe these results represent a major step forward in SDM transmission, as they manifest the significant potentials for further up-scaling the capacity per optical fibre whilst keeping MIMO processing to an ultra-low complexity level and in a modularly expandable fashion. |
ArticleNumber | 202 |
Author | Lan, Xiaobo Gao, Ran Yu, Siyuan Zhang, Jingxing Mo, Shuqi Cai, Xinlun Lin, Zhenrui Lin, Shuqing Huang, Cong Zhang, Lei Shen, Lei Li, Zhaohui Liu, Jie Li, Zhenhua Chen, Yujie Liu, Junyi Zhang, Junwei Lin, Zhongzheng |
Author_xml | – sequence: 1 givenname: Junyi surname: Liu fullname: Liu, Junyi organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University – sequence: 2 givenname: Jingxing surname: Zhang fullname: Zhang, Jingxing organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University – sequence: 3 givenname: Jie surname: Liu fullname: Liu, Jie email: liujie47@mail.sysu.edu.cn organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University – sequence: 4 givenname: Zhenrui surname: Lin fullname: Lin, Zhenrui organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University – sequence: 5 givenname: Zhenhua surname: Li fullname: Li, Zhenhua organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University – sequence: 6 givenname: Zhongzheng surname: Lin fullname: Lin, Zhongzheng organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University – sequence: 7 givenname: Junwei surname: Zhang fullname: Zhang, Junwei organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University – sequence: 8 givenname: Cong surname: Huang fullname: Huang, Cong organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University – sequence: 9 givenname: Shuqi surname: Mo fullname: Mo, Shuqi organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University – sequence: 10 givenname: Lei surname: Shen fullname: Shen, Lei organization: Yangtze Optical Fibre and Cable Joint Stock Limited Company, State Key Laboratory of Optical Fibre and Cable Manufacture Technology – sequence: 11 givenname: Shuqing surname: Lin fullname: Lin, Shuqing organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University – sequence: 12 givenname: Yujie orcidid: 0000-0002-0778-419X surname: Chen fullname: Chen, Yujie organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University – sequence: 13 givenname: Ran surname: Gao fullname: Gao, Ran organization: School of Information and Electronics, Beijing Institute of Technology – sequence: 14 givenname: Lei surname: Zhang fullname: Zhang, Lei organization: Yangtze Optical Fibre and Cable Joint Stock Limited Company, State Key Laboratory of Optical Fibre and Cable Manufacture Technology – sequence: 15 givenname: Xiaobo surname: Lan fullname: Lan, Xiaobo organization: Yangtze Optical Fibre and Cable Joint Stock Limited Company, State Key Laboratory of Optical Fibre and Cable Manufacture Technology – sequence: 16 givenname: Xinlun orcidid: 0000-0002-5544-7307 surname: Cai fullname: Cai, Xinlun organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University – sequence: 17 givenname: Zhaohui surname: Li fullname: Li, Zhaohui organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University – sequence: 18 givenname: Siyuan surname: Yu fullname: Yu, Siyuan email: yusy@mail.sysu.edu.cn organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University |
BookMark | eNp9UUtv1DAYtFARLUv_AKdIXLgE_IztCxKqeFSqBAc4W59fS1aJvdgJEv8eb1MB7aG-2LJn5hvPPEdnKaeA0EuC3xDM1NvKCZOyx5T2GCule_YEXVDMZS8FU2f_nc_RZa0H3JbmBCv5DJ0zITWWFF8gRfqv9li7XOy4wNRB2q8TlG7Oc0jLOndxtCX0-biMrlsKpDqPtY45vUBPI0w1XN7tO_T944dvV5_7my-frq_e3_ROELn0PDLL_AAi2MCsZlQHJVzkkUsARrGDCDIILL0iQyCEMjl4GHCknnIXPduh603XZziYYxlnKL9NhtHcXuSyN1CauSkYLIhWhAUvvOPYM0swWE-AeQZ2kCetd5vWcbVz8K79sMB0T_T-Sxp_mH3-ZTQVg6SsCby-Eyj55xrqYloaLkwTpJDXauigBOeCtth36NUD6CGvJbWoTigupZaaNxTdUK7kWkuIf80QbE49m61n03o2tz2bkwv1gORad0srpZkep8epbKPWNiftQ_nn6hHWH7_6vUc |
CitedBy_id | crossref_primary_10_1364_JOSAB_501917 crossref_primary_10_7498_aps_72_20231521 crossref_primary_10_1002_lpor_202400113 crossref_primary_10_3788_COL202321_110008 crossref_primary_10_1364_OL_511252 crossref_primary_10_1515_nanoph_2023_0947 crossref_primary_10_1016_j_optcom_2024_130587 crossref_primary_10_1364_OE_551143 crossref_primary_10_1016_j_optcom_2024_130462 crossref_primary_10_1109_JLT_2024_3355177 crossref_primary_10_1364_OL_525505 crossref_primary_10_1515_nanoph_2022_0493 crossref_primary_10_1364_OL_515570 crossref_primary_10_1109_JLT_2024_3496519 crossref_primary_10_1021_acsphotonics_4c00461 crossref_primary_10_1002_lpor_202200536 crossref_primary_10_1364_OE_506944 crossref_primary_10_1364_OE_511524 crossref_primary_10_1364_JOCN_531337 crossref_primary_10_1002_lpor_202300549 crossref_primary_10_1364_OL_528496 crossref_primary_10_1364_OE_544885 crossref_primary_10_1038_s41566_024_01421_2 crossref_primary_10_1364_OE_545732 crossref_primary_10_1063_5_0166876 crossref_primary_10_1364_OE_529506 crossref_primary_10_1063_5_0242874 crossref_primary_10_1364_OL_477168 crossref_primary_10_1364_OL_533911 crossref_primary_10_1126_sciadv_adt9159 crossref_primary_10_1063_5_0222120 crossref_primary_10_1364_PRJ_494864 crossref_primary_10_1016_j_optcom_2025_131487 crossref_primary_10_1186_s43074_023_00114_3 crossref_primary_10_1364_OPTICA_502144 crossref_primary_10_1364_OE_555581 crossref_primary_10_3389_fphy_2023_1225346 crossref_primary_10_1002_andp_202400169 crossref_primary_10_1021_acsphotonics_4c01862 crossref_primary_10_1109_JLT_2023_3236766 crossref_primary_10_1364_OE_543887 crossref_primary_10_1002_lpor_202300837 crossref_primary_10_1364_OL_515916 crossref_primary_10_1002_lpor_202402238 crossref_primary_10_1109_JLT_2024_3350655 crossref_primary_10_1364_OE_535286 crossref_primary_10_1515_nanoph_2022_0710 crossref_primary_10_1016_j_optcom_2023_130120 crossref_primary_10_1364_OE_473030 crossref_primary_10_1109_JPHOT_2023_3297594 crossref_primary_10_1364_OE_555127 crossref_primary_10_1038_s41377_023_01241_z crossref_primary_10_1007_s11082_024_07050_x crossref_primary_10_1364_PRJ_533993 crossref_primary_10_1364_AOP_507558 crossref_primary_10_1109_JLT_2024_3520981 crossref_primary_10_1515_nanoph_2024_0338 crossref_primary_10_1007_s11433_024_2609_9 crossref_primary_10_1002_lpor_202300489 crossref_primary_10_1002_inf2_12550 crossref_primary_10_1364_OE_506843 crossref_primary_10_1364_OL_485302 crossref_primary_10_3390_photonics10040352 crossref_primary_10_1038_s41467_024_50439_1 crossref_primary_10_1109_JLT_2022_3218828 crossref_primary_10_1002_lpor_202200631 crossref_primary_10_1364_PRJ_543744 crossref_primary_10_1109_JLT_2023_3306600 crossref_primary_10_1109_LPT_2024_3371496 crossref_primary_10_1063_5_0207349 crossref_primary_10_1109_JLT_2022_3229172 crossref_primary_10_1016_j_ijleo_2023_171156 crossref_primary_10_1021_acsphotonics_4c01852 crossref_primary_10_1002_lpor_202401954 crossref_primary_10_37188_lam_2023_040 crossref_primary_10_1007_s12648_024_03378_y crossref_primary_10_1364_OPTICA_486582 crossref_primary_10_1016_j_yofte_2022_103142 crossref_primary_10_1038_s41377_024_01460_y crossref_primary_10_1515_nanoph_2022_0466 crossref_primary_10_1002_lpor_202300460 crossref_primary_10_1364_OE_507169 crossref_primary_10_1109_JLT_2023_3312720 crossref_primary_10_1109_LPT_2023_3346452 crossref_primary_10_3788_COL202422_030602 crossref_primary_10_1016_j_rinp_2023_106800 crossref_primary_10_1038_s41467_024_45845_4 crossref_primary_10_1364_OL_528585 crossref_primary_10_1021_acsphotonics_4c00357 crossref_primary_10_1109_JLT_2024_3425903 crossref_primary_10_1364_OL_474307 crossref_primary_10_3389_fphy_2023_1225360 |
Cites_doi | 10.1103/PhysRevLett.105.153601 10.1109/JLT.2015.2508928 10.1515/nanoph-2021-0471 10.1038/s41467-021-24409-w 10.1109/JLT.2018.2792484 10.1109/JLT.2016.2594698 10.1109/JLT.2016.2609002 10.1109/JLT.2016.2564991 10.1109/JLT.2012.2234083 10.1364/OE.22.018044 10.1364/OE.26.000594 10.1364/OE.24.018938 10.1364/OE.27.008308 10.1364/OE.425419 10.1038/nphoton.2013.94 10.1364/OE.26.020225 10.1364/OPTICA.2.000267 10.1364/PRJ.394864 10.1364/OE.23.010553 10.1103/PhysRevLett.120.193904 10.1109/JLT.2003.819147 10.1364/OL.43.001890 10.1126/science.1237861 10.1364/OE.20.00B445 10.1109/JLT.2019.2902601 10.1364/OFC.2019.W3F.3 10.1364/OFC.2017.Th5B.1 10.1364/ECEOC.2012.Th.3.C.1 10.1109/ECOC.2015.7341686 10.1109/ECOC.2017.8345969 10.1364/CLEO_SI.2020.SF1J.5 10.1364/CLEO_AT.2020.JTh4A.7 10.1364/OFC.2020.Th3H.1 10.1364/FIO.2012.FW6C.3 10.1364/OFC.2021.W7D.5 10.1364/ACPC.2020.M4A.175 10.1109/ECOC.2015.7341685 10.1364/CLEO_SI.2017.SW4I.3 10.1364/OFC.2018.W4C.4 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41377-022-00889-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2047-7538 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_0519813ed5dc40d3b10abd1a3d3ab67d PMC9256723 10_1038_s41377_022_00889_3 |
GrantInformation_xml | – fundername: Ministry of Science and Technology of the People's Republic of China (Chinese Ministry of Science and Technology) grantid: 2019YFA0706300; 2018YFB1801800 funderid: https://doi.org/10.13039/501100002855 – fundername: ; grantid: 2019YFA0706300; 2018YFB1801800 |
GroupedDBID | 0R~ 3V. 5VS 7X7 88A 88I 8FE 8FH 8FI 8FJ AAJSJ ABUWG ACGFS ACSMW AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS ARCSS AZQEC BBNVY BENPR BHPHI BPHCQ BVXVI C6C CCPQU DWQXO EBLON EBS FYUFA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HYE KQ8 LK8 M0L M2P M7P M~E NAO OK1 PIMPY PQQKQ PROAC RNT RNTTT RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT 7XB 8FK AARCD K9. PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c517t-4f3b3d6a5ebe3b9329e85cf4f47aa320cafa7e507d816e112376da60f2d24cfd3 |
IEDL.DBID | AAJSJ |
ISSN | 2047-7538 2095-5545 |
IngestDate | Wed Aug 27 01:31:45 EDT 2025 Thu Aug 21 14:33:38 EDT 2025 Fri Jul 11 16:56:12 EDT 2025 Wed Aug 13 07:01:36 EDT 2025 Tue Jul 01 03:45:17 EDT 2025 Thu Apr 24 23:04:39 EDT 2025 Fri Feb 21 02:38:07 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-4f3b3d6a5ebe3b9329e85cf4f47aa320cafa7e507d816e112376da60f2d24cfd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0778-419X 0000-0002-5544-7307 |
OpenAccessLink | https://www.nature.com/articles/s41377-022-00889-3 |
PMID | 35790720 |
PQID | 2684779794 |
PQPubID | 2041947 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0519813ed5dc40d3b10abd1a3d3ab67d pubmedcentral_primary_oai_pubmedcentral_nih_gov_9256723 proquest_miscellaneous_2685445275 proquest_journals_2684779794 crossref_primary_10_1038_s41377_022_00889_3 crossref_citationtrail_10_1038_s41377_022_00889_3 springer_journals_10_1038_s41377_022_00889_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-05 |
PublicationDateYYYYMMDD | 2022-07-05 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Light, science & applications |
PublicationTitleAbbrev | Light Sci Appl |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Publishing Group |
References | Brunet (CR23) 2015; 23 Matsuo (CR14) 2016; 34 Ung (CR27) 2014; 22 Rojas-Rojas (CR38) 2021; 29 Jin (CR25) 2016; 34 Soma (CR10) 2018; 36 Liu (CR17) 2018; 54 CR18 CR39 CR16 Nejad (CR33) 2016; 34 Luís (CR4) 2019; 37 Zhu (CR20) 2018; 26 CR13 CR34 CR11 Maruyama (CR37) 2017; 35 Fujiwara (CR36) 2003; 21 Du, Lowery (CR35) 2012; 20 Ingerslev (CR29) 2018; 26 Gregg, Kristensen, Ramachandran (CR30) 2016; 24 Zhang (CR19) 2020; 8 Zhang (CR41) 2022; 11 Richardson, Fini, Nelson (CR1) 2013; 7 Rademacher (CR7) 2021; 12 CR2 CR3 Arik, Askarov, Kahn (CR12) 2013; 31 CR6 CR5 Bozinovic (CR15) 2013; 340 Guerra (CR24) 2019; 27 CR8 Zhu (CR22) 2018; 43 CR28 CR9 CR21 Gregg, Kristensen, Ramachandran (CR26) 2015; 2 CR40 Berkhout (CR31) 2010; 105 Wen (CR32) 2018; 120 N Bozinovic (889_CR15) 2013; 340 J Liu (889_CR17) 2018; 54 D Soma (889_CR10) 2018; 36 889_CR28 RS Luís (889_CR4) 2019; 37 SÖ Arik (889_CR12) 2013; 31 889_CR21 XQ Jin (889_CR25) 2016; 34 889_CR40 S Matsuo (889_CR14) 2016; 34 LB Du (889_CR35) 2012; 20 G Guerra (889_CR24) 2019; 27 RM Nejad (889_CR33) 2016; 34 GX Zhu (889_CR20) 2018; 26 889_CR8 C Brunet (889_CR23) 2015; 23 R Maruyama (889_CR37) 2017; 35 889_CR6 889_CR5 JX Zhang (889_CR41) 2022; 11 P Gregg (889_CR26) 2015; 2 GCG Berkhout (889_CR31) 2010; 105 S Rojas-Rojas (889_CR38) 2021; 29 889_CR9 P Gregg (889_CR30) 2016; 24 889_CR18 M Fujiwara (889_CR36) 2003; 21 889_CR3 889_CR2 889_CR39 889_CR16 889_CR11 YH Wen (889_CR32) 2018; 120 889_CR13 889_CR34 G Rademacher (889_CR7) 2021; 12 K Ingerslev (889_CR29) 2018; 26 B Ung (889_CR27) 2014; 22 DJ Richardson (889_CR1) 2013; 7 JW Zhang (889_CR19) 2020; 8 L Zhu (889_CR22) 2018; 43 |
References_xml | – ident: CR18 – volume: 105 start-page: 153601 year: 2010 ident: CR31 article-title: Efficient sorting of orbital angular momentum states of light publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.153601 – volume: 34 start-page: 1464 year: 2016 end-page: 1475 ident: CR14 article-title: High-spatial-multiplicity multicore fibers for future dense space-division-multiplexing systems publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2015.2508928 – volume: 11 start-page: 873 year: 2022 end-page: 884 ident: CR41 article-title: SDM transmission of orbital angular momentum mode channels over a multi-ring-core fibre publication-title: Nanophotonics doi: 10.1515/nanoph-2021-0471 – volume: 54 start-page: 0700118 year: 2018 ident: CR17 article-title: Mode division multiplexing based on ring core optical fibers. publication-title: Electronics – ident: CR39 – ident: CR2 – volume: 12 year: 2021 ident: CR7 article-title: Peta-bit-per-second optical communications system using a standard cladding diameter 15-mode fiber publication-title: Nat. Commun. doi: 10.1038/s41467-021-24409-w – ident: CR16 – volume: 36 start-page: 1362 year: 2018 end-page: 1368 ident: CR10 article-title: 10.16-peta-B/s dense SDM/WDM transmission over 6-mode 19-core fiber across the C+L band publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2018.2792484 – volume: 34 start-page: 4252 year: 2016 end-page: 4258 ident: CR33 article-title: Mode division multiplexing using orbital angular momentum modes over 1.4 km ring core fiber publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2016.2594698 – volume: 35 start-page: 650 year: 2017 end-page: 657 ident: CR37 article-title: Relationship between mode coupling and fiber characteristics in few-mode fibers analyzed using impulse response measurements technique publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2016.2609002 – volume: 34 start-page: 3365 year: 2016 end-page: 3372 ident: CR25 article-title: Mode coupling effects in ring-core fibers for space-division multiplexing systems publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2016.2564991 – ident: CR6 – volume: 31 start-page: 423 year: 2013 end-page: 431 ident: CR12 article-title: Effect of mode coupling on signal processing complexity in mode-division multiplexing publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2012.2234083 – volume: 22 start-page: 18044 year: 2014 end-page: 18055 ident: CR27 article-title: Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes publication-title: Opt. Express doi: 10.1364/OE.22.018044 – volume: 26 start-page: 594 year: 2018 end-page: 604 ident: CR20 article-title: Scalable mode division multiplexed transmission over a 10 km ring-core fiber using high-order orbital angular momentum modes publication-title: Opt. Express doi: 10.1364/OE.26.000594 – volume: 24 start-page: 18938 year: 2016 end-page: 18947 ident: CR30 article-title: 13.4km OAM state propagation by recirculating fiber loop publication-title: Opt. Express doi: 10.1364/OE.24.018938 – ident: CR8 – volume: 27 start-page: 8308 year: 2019 end-page: 8326 ident: CR24 article-title: Analysis of modal coupling due to birefringence and ellipticity in strongly guiding ring-core OAM fibers publication-title: Opt. Express doi: 10.1364/OE.27.008308 – volume: 29 start-page: 23381 year: 2021 end-page: 23392 ident: CR38 article-title: Evaluating the coupling efficiency of OAM beams into ring-core optical fibers publication-title: Opt. Express doi: 10.1364/OE.425419 – ident: CR40 – volume: 7 start-page: 354 year: 2013 end-page: 362 ident: CR1 article-title: Space-division multiplexing in optical fibres publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.94 – volume: 26 start-page: 20225 year: 2018 end-page: 20232 ident: CR29 article-title: 12 mode, WDM, MIMO-free orbital angular momentum transmission publication-title: Opt. Express doi: 10.1364/OE.26.020225 – volume: 2 start-page: 267 year: 2015 end-page: 270 ident: CR26 article-title: Conservation of orbital angular momentum in air-core optical fibers publication-title: Optica doi: 10.1364/OPTICA.2.000267 – volume: 8 start-page: 1236 year: 2020 end-page: 1242 ident: CR19 article-title: Mode-division multiplexed transmission of wavelength-division multiplexing signals over a 100 km single-span orbital angular momentum fiber publication-title: Photonics Res. doi: 10.1364/PRJ.394864 – ident: CR21 – volume: 23 start-page: 10553 year: 2015 end-page: 10563 ident: CR23 article-title: Design of a family of ring-core fibers for OAM transmission studies publication-title: Opt. Express doi: 10.1364/OE.23.010553 – volume: 120 start-page: 193904 year: 2018 ident: CR32 article-title: Spiral transformation for high-resolution and efficient sorting of optical vortex modes publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.193904 – ident: CR3 – volume: 21 start-page: 2705 year: 2003 end-page: 2714 ident: CR36 article-title: Optical carrier supply module using flattened optical multicarrier generation based on sinusoidal amplitude and phase hybrid modulation publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2003.819147 – ident: CR13 – ident: CR11 – ident: CR9 – volume: 43 start-page: 1890 year: 2018 end-page: 1893 ident: CR22 article-title: 18 km low-crosstalk OAM + WDM transmission with 224 individual channels enabled by a ring-core fiber with large high-order mode group separation publication-title: Opt. Lett. doi: 10.1364/OL.43.001890 – ident: CR34 – volume: 340 start-page: 1545 year: 2013 end-page: 1548 ident: CR15 article-title: Terabit-scale orbital angular momentum mode division multiplexing in fibers publication-title: Science doi: 10.1126/science.1237861 – volume: 20 start-page: B445 year: 2012 end-page: B451 ident: CR35 article-title: The validity of “Odd and Even” channels for testing all-optical OFDM and Nyquist WDM long-haul fiber systems publication-title: Opt. Express doi: 10.1364/OE.20.00B445 – volume: 37 start-page: 1798 year: 2019 end-page: 1804 ident: CR4 article-title: 1.2 Pbps throughput transmission using a 160 μm cladding, 4-core, 3-mode fiber publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2019.2902601 – ident: CR5 – ident: CR28 – volume: 7 start-page: 354 year: 2013 ident: 889_CR1 publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.94 – volume: 21 start-page: 2705 year: 2003 ident: 889_CR36 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2003.819147 – volume: 2 start-page: 267 year: 2015 ident: 889_CR26 publication-title: Optica doi: 10.1364/OPTICA.2.000267 – ident: 889_CR18 doi: 10.1364/OFC.2019.W3F.3 – volume: 34 start-page: 4252 year: 2016 ident: 889_CR33 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2016.2594698 – volume: 11 start-page: 873 year: 2022 ident: 889_CR41 publication-title: Nanophotonics doi: 10.1515/nanoph-2021-0471 – ident: 889_CR2 doi: 10.1364/OFC.2017.Th5B.1 – ident: 889_CR11 doi: 10.1364/ECEOC.2012.Th.3.C.1 – ident: 889_CR9 doi: 10.1109/ECOC.2015.7341686 – ident: 889_CR34 doi: 10.1109/ECOC.2017.8345969 – volume: 54 start-page: 0700118 year: 2018 ident: 889_CR17 publication-title: Electronics – volume: 23 start-page: 10553 year: 2015 ident: 889_CR23 publication-title: Opt. Express doi: 10.1364/OE.23.010553 – ident: 889_CR13 – volume: 31 start-page: 423 year: 2013 ident: 889_CR12 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2012.2234083 – ident: 889_CR40 doi: 10.1364/CLEO_SI.2020.SF1J.5 – volume: 29 start-page: 23381 year: 2021 ident: 889_CR38 publication-title: Opt. Express doi: 10.1364/OE.425419 – volume: 105 start-page: 153601 year: 2010 ident: 889_CR31 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.153601 – ident: 889_CR3 doi: 10.1364/CLEO_AT.2020.JTh4A.7 – volume: 340 start-page: 1545 year: 2013 ident: 889_CR15 publication-title: Science doi: 10.1126/science.1237861 – volume: 43 start-page: 1890 year: 2018 ident: 889_CR22 publication-title: Opt. Lett. doi: 10.1364/OL.43.001890 – volume: 12 year: 2021 ident: 889_CR7 publication-title: Nat. Commun. doi: 10.1038/s41467-021-24409-w – volume: 26 start-page: 20225 year: 2018 ident: 889_CR29 publication-title: Opt. Express doi: 10.1364/OE.26.020225 – volume: 8 start-page: 1236 year: 2020 ident: 889_CR19 publication-title: Photonics Res. doi: 10.1364/PRJ.394864 – ident: 889_CR8 doi: 10.1364/OFC.2020.Th3H.1 – volume: 27 start-page: 8308 year: 2019 ident: 889_CR24 publication-title: Opt. Express doi: 10.1364/OE.27.008308 – ident: 889_CR6 doi: 10.1364/FIO.2012.FW6C.3 – ident: 889_CR16 doi: 10.1364/OFC.2021.W7D.5 – ident: 889_CR39 doi: 10.1364/ACPC.2020.M4A.175 – volume: 35 start-page: 650 year: 2017 ident: 889_CR37 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2016.2609002 – volume: 26 start-page: 594 year: 2018 ident: 889_CR20 publication-title: Opt. Express doi: 10.1364/OE.26.000594 – volume: 36 start-page: 1362 year: 2018 ident: 889_CR10 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2018.2792484 – volume: 20 start-page: B445 year: 2012 ident: 889_CR35 publication-title: Opt. Express doi: 10.1364/OE.20.00B445 – volume: 37 start-page: 1798 year: 2019 ident: 889_CR4 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2019.2902601 – ident: 889_CR5 doi: 10.1109/ECOC.2015.7341685 – ident: 889_CR28 doi: 10.1364/CLEO_SI.2017.SW4I.3 – volume: 34 start-page: 3365 year: 2016 ident: 889_CR25 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2016.2564991 – volume: 120 start-page: 193904 year: 2018 ident: 889_CR32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.193904 – volume: 34 start-page: 1464 year: 2016 ident: 889_CR14 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2015.2508928 – ident: 889_CR21 doi: 10.1364/OFC.2018.W4C.4 – volume: 22 start-page: 18044 year: 2014 ident: 889_CR27 publication-title: Opt. Express doi: 10.1364/OE.22.018044 – volume: 24 start-page: 18938 year: 2016 ident: 889_CR30 publication-title: Opt. Express doi: 10.1364/OE.24.018938 |
SSID | ssj0000941087 ssib052855617 ssib038074990 ssib054953849 |
Score | 2.606334 |
Snippet | Space-division multiplexing (SDM), as a main candidate for future ultra-high capacity fibre-optic communications, needs to address limitations to its... A 1-Pbps orbital-angular-momentum fibre-optic transmission system that combines space-division multiplexing and wavelength-division multiplexing in a 34 km... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 202 |
SubjectTerms | 639/624/1075 639/624/1075/187 Lasers Microwaves Optical and Electronic Materials Optical Devices Optics Photonics Physics Physics and Astronomy RF and Optical Engineering Signal processing Wavelength |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS-QwFA4iCF5EXcWqu3RhbxpMmrTJHN1FkYVdPCh4C_nJrmhHnM7_73tpZ7SCevHapLT58vLyJXn5HiE_NBOBMasoA25ApUyeukpZ6qSUUQDF5hLvO__521xcy9839c2LVF8YE9bLA_fAnSDF0FzEUAcvWRCOM-sCtyII6xoV0PvCnPdiMXXbx8txptVwS4YJfTKTqK1HMXid5dAeMZqJsmD_iGW-jpF8dVCa55_zTbIxEMfytP_hLbIS222ylgM4_ewL0ZxeuodZOX10mAakxG1IWLSW96iw0M3vywTr4kin4CF82eEEBR2MO2U75Pr87OrXBR2yIlBfc9VRmYQTobE1wC8c0K9J1LVPMkllraiYt8mqCDQvaN5EoFPgQoJtWKpCJX0KYpesttM27pFyAjB6WA-FiKwoche8blywPPGkK8sKwhcIGT9IhmPmijuTj66FNj2qBlA1GVUjCnK0fOehF8x4t_ZPBH5ZE8Wu8wMwATOYgPnIBApyuOg2M4zAmUEVG6Um4G4K8n1ZDNDigYht43Se66AWUaXqgqhRd49-aFzS_v-XVbgnQBZVBS04XhjG88ffbvD-ZzT4gKxX2ZDBnutDsto9zuNX4Ead-5aHwRNx6wqV priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA9aEXwp1g9cW8sKvmlossluck9FxVIExQcL9xbyqYLdPW_3_v_O5HJXtmBfN1k2OzNJfpmZ_IaQd5qJwJhVlAE2oFImT12jLHVSyigAYnOJ952_fe8ur-TXZbssDrexpFXu1sS8UIfBo4_8DFlJlFqA-Zyv_lGsGoXR1VJC4yF5hNRlaNVqqfY-Fji6cKZVuSvDhD4bJTLsUUxhZznBR8z2o0zbP8OadzMl74RL8y508ZQcFvhYf9zq-4g8iP0z8jincfrxOdGc_nCrsR7WDouB1OiMhKNrfY08C9Pmuk5wOo50gHXC1xNuU6Bm9Je9IFcXX35-vqSlNgL1LVcTlUk4ETrbghKEAxC2iLr1SSaprBUN8zZZFQHsBc27CKAKFpJgO5aa0EifgnhJDvqhj69IveBWeDgVhYjYKHIXvO5csDzxpBvLKsJ3EjK-EIdj_Yq_JgewhTZbqRqQqslSNaIi7_fvrLa0Gff2_oSC3_dEyuv8YFj_MmUGGcSamosY2uAlC8JxZl2AsQdhXadCRU52ajNlHo7m1moq8nbfDKLFsIjt47DJfZCRqFFtRdRM3bMBzVv6P78zF_cCIKNq4A8-7Azj9uP__-HX94_1mDxpsomCpbYn5GBab-IbwD6TO80GfgOpJgGl priority: 102 providerName: ProQuest |
Title | 1-Pbps orbital angular momentum fibre-optic transmission |
URI | https://link.springer.com/article/10.1038/s41377-022-00889-3 https://www.proquest.com/docview/2684779794 https://www.proquest.com/docview/2685445275 https://pubmed.ncbi.nlm.nih.gov/PMC9256723 https://doaj.org/article/0519813ed5dc40d3b10abd1a3d3ab67d |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7yoNBLSV_UTbq40FsrKlmypT1uloSw0BDaBvYm9GwLjR328f870tpbHNpCTwZ5hKXRePSNNPoE8E5R7ik1klDEBkSI6IitpCFWCBE4Qmwm0nnnT9fN1a1YLOvlAVTDWZictJ8pLbObHrLDPq5FosYjKfec5swcfgjHiaodbft4Nlt8WexXVjBgYVTJ_oQM5eoPlUezUCbrHyHMh_mRDzZJ89xzeQJPetBYznbNfAoHoX0Gj3Lypls_B8XIjb1fl93KpitAyrQEiQFreZfYFTbbuzJiTBxIh97BlZs0OeHgplWyF3B7efF1fkX6GxGIq5ncEBG55b4xNaqeW4Re06BqF0UU0hheUWeikQEhnlesCQil0H1409BY-Uq46PlLOGq7NryCcsoMdxgL-ZAQUWDWO9VYb1hkUVWGFsAGDWnX04WnWyt-6rxtzZXeaVWjVnXWquYFvN_Xud-RZfxT-jwpfi-ZiK5zQbf6pvuB1wlhKsaDr70T1HPLqLEe2-65sY30BZwNw6b7v2-tE4ONlFN0NQW83b9G1abNENOGbptlEg9RJesC5Gi4Rw0av2l_fM8M3FMEirLCHnwYDOP3x__e4df_J34Kj6tssmi59RkcbVbb8AYR0MZO4FAu5aQ3fHyeX1zffMbSeTOf5FWFX4hIBPU |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4qmGFggSnMCqHTtx9oAQr2pLH-LQSnszfgWQaLLdZIX4U_xGZrzJVqlEb73GTmKPP9vfjMczhLwsmfCMGUUZcAMqZeWozZShVkoZBFBsLvG-89FxMT2VX2b5bIP8He7CoFvlsCbGhdo3Dm3kuxiVRKkJwOfd_Jxi1ig8XR1SaKxgcRD-_AaVrX27_wnG91WW7X0--TilfVYB6nKuOiorYYUvTA7NFxboyySUuatkJZUxImPOVEYFoEm-5EUAOgJT0JuCVZnPpKu8gO_eIDdh42Wo7KmZWtt0QFXirFT93Rwmyt1WYkQ_ii7zLDoUidH-F9MEjLjtZc_MS8ezcdfbu0fu9nQ1fb_C132yEeoH5FZ0G3XtQ1Jy-tXO27RZWEw-kqLxE1Tl9AzjOnTLs7QCbTzQBtYll3a4LQKs0D73iJxei9Qek826qcMWSSfcCAdamA_IxQK33pWF9YZXvCozwxLCBwlp1wcqx3wZv3Q8MBelXklVg1R1lKoWCXm9fme-CtNxZe0PKPh1TQyxHR80i--6n7EauW3JRfC5d5J5YTkz1kPbvTC2UD4hO8Ow6X7et_oCpQl5sS4G0eIxjKlDs4x1MAJSpvKEqNFwjxo0Lql__oixvydAUVUGPXgzAOPi5__v8JOr2_qc3J6eHB3qw_3jg21yJ4twBdTmO2SzWyzDU-BdnX0WwZ6Sb9c9u_4BS8M_sA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKViAuiKcIFAgSnMBaO3bi7AEhSrtqKaxWiEq9GT-hUrtZ9iHEX-PXMeNNttpK9NZr7CT2-LP9zXg8Q8irmgnPmFGUATegUkZHbaEMtVLKIIBic4n3nb-MqoNj-emkPNkif7u7MOhW2a2JaaH2jUMbeR-jkig1APj0Y-sWMd4bvp_-ophBCk9au3QaK4gchT-_QX2bvzvcg7F-XRTD_W8fD2ibYYC6kqsFlVFY4StTQleEBSozCHXpooxSGSMK5kw0KgBl8jWvAlATmI7eVCwWvpAuegHfvUG2FWpFPbK9uz8af11beEBx4qxW7U0dJur-XGJ8P4oO9Cy5F4mN3TAlDdhgupf9NC8d1qY9cHiX3GnJa_5hhbZ7ZCtM7pObyYnUzR-QmtOxnc7zZmYxFUmOplBQnPNzjPKwWJ7nEXTzQBtYpVy-wE0SQIbWuofk-Frk9oj0Js0kPCb5gBvhQCfzAZlZ4Na7urLe8MhjXRiWEd5JSLs2bDlmzzjT6fhc1HolVQ1S1UmqWmTkzfqd6Spox5W1d1Hw65oYcDs9aGY_dDt_NTLdmovgS-8k88JyZqyHtnthbKV8Rna6YdPtKjDXF5jNyMt1MYgWD2XMJDTLVAfjIRWqzIjaGO6NBm2WTE5_pkjgAyCsqoAevO2AcfHz_3f4ydVtfUFuwczSnw9HR0_J7SKhFUBb7pDeYrYMz4CELezzFu05-X7dE-wflQFFSw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=1-Pbps+orbital+angular+momentum+fibre-optic+transmission&rft.jtitle=Light%2C+science+%26+applications&rft.au=Liu%2C+Junyi&rft.au=Zhang%2C+Jingxing&rft.au=Liu%2C+Jie&rft.au=Lin%2C+Zhenrui&rft.date=2022-07-05&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2047-7538&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41377-022-00889-3&rft.externalDocID=10_1038_s41377_022_00889_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-7538&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-7538&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-7538&client=summon |