1-Pbps orbital angular momentum fibre-optic transmission

Space-division multiplexing (SDM), as a main candidate for future ultra-high capacity fibre-optic communications, needs to address limitations to its scalability imposed by computation-intensive multi-input multi-output (MIMO) digital signal processing (DSP) required to eliminate the crosstalk cause...

Full description

Saved in:
Bibliographic Details
Published inLight, science & applications Vol. 11; no. 1; pp. 202 - 11
Main Authors Liu, Junyi, Zhang, Jingxing, Liu, Jie, Lin, Zhenrui, Li, Zhenhua, Lin, Zhongzheng, Zhang, Junwei, Huang, Cong, Mo, Shuqi, Shen, Lei, Lin, Shuqing, Chen, Yujie, Gao, Ran, Zhang, Lei, Lan, Xiaobo, Cai, Xinlun, Li, Zhaohui, Yu, Siyuan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.07.2022
Springer Nature B.V
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Space-division multiplexing (SDM), as a main candidate for future ultra-high capacity fibre-optic communications, needs to address limitations to its scalability imposed by computation-intensive multi-input multi-output (MIMO) digital signal processing (DSP) required to eliminate the crosstalk caused by optical coupling between multiplexed spatial channels. By exploiting the unique propagation characteristics of orbital angular momentum (OAM) modes in ring core fibres (RCFs), a system that combines SDM and C + L band dense wavelength-division multiplexing (DWDM) in a 34 km 7-core RCF is demonstrated to transport a total of 24960 channels with a raw (net) capacity of 1.223 (1.02) Peta-bit s −1 (Pbps) and a spectral efficiency of 156.8 (130.7) bit s −1 Hz −1 . Remarkably for such a high channel count, the system only uses fixed-size 4 × 4 MIMO DSP modules with no more than 25 time-domain taps. Such ultra-low MIMO complexity is enabled by the simultaneous weak coupling among fibre cores and amongst non-degenerate OAM mode groups within each core that have a fixed number of 4 modes. These results take the capacity of OAM-based fibre-optic communications links over the 1 Pbps milestone for the first time. They also simultaneously represent the lowest MIMO complexity and the 2nd smallest fibre cladding diameter amongst reported few-mode multicore-fibre (FM-MCF) SDM systems of >1 Pbps capacity. We believe these results represent a major step forward in SDM transmission, as they manifest the significant potentials for further up-scaling the capacity per optical fibre whilst keeping MIMO processing to an ultra-low complexity level and in a modularly expandable fashion. A 1-Pbps orbital-angular-momentum fibre-optic transmission system that combines space-division multiplexing and wavelength-division multiplexing in a 34 km 7-core ring-core fibre is demonstrated utilizing low-complexity 4 × 4 MIMO equalization.
AbstractList Space-division multiplexing (SDM), as a main candidate for future ultra-high capacity fibre-optic communications, needs to address limitations to its scalability imposed by computation-intensive multi-input multi-output (MIMO) digital signal processing (DSP) required to eliminate the crosstalk caused by optical coupling between multiplexed spatial channels. By exploiting the unique propagation characteristics of orbital angular momentum (OAM) modes in ring core fibres (RCFs), a system that combines SDM and C + L band dense wavelength-division multiplexing (DWDM) in a 34 km 7-core RCF is demonstrated to transport a total of 24960 channels with a raw (net) capacity of 1.223 (1.02) Peta-bit s-1 (Pbps) and a spectral efficiency of 156.8 (130.7) bit s-1 Hz-1. Remarkably for such a high channel count, the system only uses fixed-size 4 × 4 MIMO DSP modules with no more than 25 time-domain taps. Such ultra-low MIMO complexity is enabled by the simultaneous weak coupling among fibre cores and amongst non-degenerate OAM mode groups within each core that have a fixed number of 4 modes. These results take the capacity of OAM-based fibre-optic communications links over the 1 Pbps milestone for the first time. They also simultaneously represent the lowest MIMO complexity and the 2nd smallest fibre cladding diameter amongst reported few-mode multicore-fibre (FM-MCF) SDM systems of >1 Pbps capacity. We believe these results represent a major step forward in SDM transmission, as they manifest the significant potentials for further up-scaling the capacity per optical fibre whilst keeping MIMO processing to an ultra-low complexity level and in a modularly expandable fashion.Space-division multiplexing (SDM), as a main candidate for future ultra-high capacity fibre-optic communications, needs to address limitations to its scalability imposed by computation-intensive multi-input multi-output (MIMO) digital signal processing (DSP) required to eliminate the crosstalk caused by optical coupling between multiplexed spatial channels. By exploiting the unique propagation characteristics of orbital angular momentum (OAM) modes in ring core fibres (RCFs), a system that combines SDM and C + L band dense wavelength-division multiplexing (DWDM) in a 34 km 7-core RCF is demonstrated to transport a total of 24960 channels with a raw (net) capacity of 1.223 (1.02) Peta-bit s-1 (Pbps) and a spectral efficiency of 156.8 (130.7) bit s-1 Hz-1. Remarkably for such a high channel count, the system only uses fixed-size 4 × 4 MIMO DSP modules with no more than 25 time-domain taps. Such ultra-low MIMO complexity is enabled by the simultaneous weak coupling among fibre cores and amongst non-degenerate OAM mode groups within each core that have a fixed number of 4 modes. These results take the capacity of OAM-based fibre-optic communications links over the 1 Pbps milestone for the first time. They also simultaneously represent the lowest MIMO complexity and the 2nd smallest fibre cladding diameter amongst reported few-mode multicore-fibre (FM-MCF) SDM systems of >1 Pbps capacity. We believe these results represent a major step forward in SDM transmission, as they manifest the significant potentials for further up-scaling the capacity per optical fibre whilst keeping MIMO processing to an ultra-low complexity level and in a modularly expandable fashion.
Space-division multiplexing (SDM), as a main candidate for future ultra-high capacity fibre-optic communications, needs to address limitations to its scalability imposed by computation-intensive multi-input multi-output (MIMO) digital signal processing (DSP) required to eliminate the crosstalk caused by optical coupling between multiplexed spatial channels. By exploiting the unique propagation characteristics of orbital angular momentum (OAM) modes in ring core fibres (RCFs), a system that combines SDM and C + L band dense wavelength-division multiplexing (DWDM) in a 34 km 7-core RCF is demonstrated to transport a total of 24960 channels with a raw (net) capacity of 1.223 (1.02) Peta-bit s −1 (Pbps) and a spectral efficiency of 156.8 (130.7) bit s −1 Hz −1 . Remarkably for such a high channel count, the system only uses fixed-size 4 × 4 MIMO DSP modules with no more than 25 time-domain taps. Such ultra-low MIMO complexity is enabled by the simultaneous weak coupling among fibre cores and amongst non-degenerate OAM mode groups within each core that have a fixed number of 4 modes. These results take the capacity of OAM-based fibre-optic communications links over the 1 Pbps milestone for the first time. They also simultaneously represent the lowest MIMO complexity and the 2nd smallest fibre cladding diameter amongst reported few-mode multicore-fibre (FM-MCF) SDM systems of >1 Pbps capacity. We believe these results represent a major step forward in SDM transmission, as they manifest the significant potentials for further up-scaling the capacity per optical fibre whilst keeping MIMO processing to an ultra-low complexity level and in a modularly expandable fashion. A 1-Pbps orbital-angular-momentum fibre-optic transmission system that combines space-division multiplexing and wavelength-division multiplexing in a 34 km 7-core ring-core fibre is demonstrated utilizing low-complexity 4 × 4 MIMO equalization.
A 1-Pbps orbital-angular-momentum fibre-optic transmission system that combines space-division multiplexing and wavelength-division multiplexing in a 34 km 7-core ring-core fibre is demonstrated utilizing low-complexity 4 × 4 MIMO equalization.
Space-division multiplexing (SDM), as a main candidate for future ultra-high capacity fibre-optic communications, needs to address limitations to its scalability imposed by computation-intensive multi-input multi-output (MIMO) digital signal processing (DSP) required to eliminate the crosstalk caused by optical coupling between multiplexed spatial channels. By exploiting the unique propagation characteristics of orbital angular momentum (OAM) modes in ring core fibres (RCFs), a system that combines SDM and C + L band dense wavelength-division multiplexing (DWDM) in a 34 km 7-core RCF is demonstrated to transport a total of 24960 channels with a raw (net) capacity of 1.223 (1.02) Peta-bit s−1 (Pbps) and a spectral efficiency of 156.8 (130.7) bit s−1 Hz−1. Remarkably for such a high channel count, the system only uses fixed-size 4 × 4 MIMO DSP modules with no more than 25 time-domain taps. Such ultra-low MIMO complexity is enabled by the simultaneous weak coupling among fibre cores and amongst non-degenerate OAM mode groups within each core that have a fixed number of 4 modes. These results take the capacity of OAM-based fibre-optic communications links over the 1 Pbps milestone for the first time. They also simultaneously represent the lowest MIMO complexity and the 2nd smallest fibre cladding diameter amongst reported few-mode multicore-fibre (FM-MCF) SDM systems of >1 Pbps capacity. We believe these results represent a major step forward in SDM transmission, as they manifest the significant potentials for further up-scaling the capacity per optical fibre whilst keeping MIMO processing to an ultra-low complexity level and in a modularly expandable fashion.A 1-Pbps orbital-angular-momentum fibre-optic transmission system that combines space-division multiplexing and wavelength-division multiplexing in a 34 km 7-core ring-core fibre is demonstrated utilizing low-complexity 4 × 4 MIMO equalization.
Space-division multiplexing (SDM), as a main candidate for future ultra-high capacity fibre-optic communications, needs to address limitations to its scalability imposed by computation-intensive multi-input multi-output (MIMO) digital signal processing (DSP) required to eliminate the crosstalk caused by optical coupling between multiplexed spatial channels. By exploiting the unique propagation characteristics of orbital angular momentum (OAM) modes in ring core fibres (RCFs), a system that combines SDM and C + L band dense wavelength-division multiplexing (DWDM) in a 34 km 7-core RCF is demonstrated to transport a total of 24960 channels with a raw (net) capacity of 1.223 (1.02) Peta-bit s −1 (Pbps) and a spectral efficiency of 156.8 (130.7) bit s −1 Hz −1 . Remarkably for such a high channel count, the system only uses fixed-size 4 × 4 MIMO DSP modules with no more than 25 time-domain taps. Such ultra-low MIMO complexity is enabled by the simultaneous weak coupling among fibre cores and amongst non-degenerate OAM mode groups within each core that have a fixed number of 4 modes. These results take the capacity of OAM-based fibre-optic communications links over the 1 Pbps milestone for the first time. They also simultaneously represent the lowest MIMO complexity and the 2nd smallest fibre cladding diameter amongst reported few-mode multicore-fibre (FM-MCF) SDM systems of >1 Pbps capacity. We believe these results represent a major step forward in SDM transmission, as they manifest the significant potentials for further up-scaling the capacity per optical fibre whilst keeping MIMO processing to an ultra-low complexity level and in a modularly expandable fashion.
ArticleNumber 202
Author Lan, Xiaobo
Gao, Ran
Yu, Siyuan
Zhang, Jingxing
Mo, Shuqi
Cai, Xinlun
Lin, Zhenrui
Lin, Shuqing
Huang, Cong
Zhang, Lei
Shen, Lei
Li, Zhaohui
Liu, Jie
Li, Zhenhua
Chen, Yujie
Liu, Junyi
Zhang, Junwei
Lin, Zhongzheng
Author_xml – sequence: 1
  givenname: Junyi
  surname: Liu
  fullname: Liu, Junyi
  organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University
– sequence: 2
  givenname: Jingxing
  surname: Zhang
  fullname: Zhang, Jingxing
  organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University
– sequence: 3
  givenname: Jie
  surname: Liu
  fullname: Liu, Jie
  email: liujie47@mail.sysu.edu.cn
  organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University
– sequence: 4
  givenname: Zhenrui
  surname: Lin
  fullname: Lin, Zhenrui
  organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University
– sequence: 5
  givenname: Zhenhua
  surname: Li
  fullname: Li, Zhenhua
  organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University
– sequence: 6
  givenname: Zhongzheng
  surname: Lin
  fullname: Lin, Zhongzheng
  organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University
– sequence: 7
  givenname: Junwei
  surname: Zhang
  fullname: Zhang, Junwei
  organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University
– sequence: 8
  givenname: Cong
  surname: Huang
  fullname: Huang, Cong
  organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University
– sequence: 9
  givenname: Shuqi
  surname: Mo
  fullname: Mo, Shuqi
  organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University
– sequence: 10
  givenname: Lei
  surname: Shen
  fullname: Shen, Lei
  organization: Yangtze Optical Fibre and Cable Joint Stock Limited Company, State Key Laboratory of Optical Fibre and Cable Manufacture Technology
– sequence: 11
  givenname: Shuqing
  surname: Lin
  fullname: Lin, Shuqing
  organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University
– sequence: 12
  givenname: Yujie
  orcidid: 0000-0002-0778-419X
  surname: Chen
  fullname: Chen, Yujie
  organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University
– sequence: 13
  givenname: Ran
  surname: Gao
  fullname: Gao, Ran
  organization: School of Information and Electronics, Beijing Institute of Technology
– sequence: 14
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
  organization: Yangtze Optical Fibre and Cable Joint Stock Limited Company, State Key Laboratory of Optical Fibre and Cable Manufacture Technology
– sequence: 15
  givenname: Xiaobo
  surname: Lan
  fullname: Lan, Xiaobo
  organization: Yangtze Optical Fibre and Cable Joint Stock Limited Company, State Key Laboratory of Optical Fibre and Cable Manufacture Technology
– sequence: 16
  givenname: Xinlun
  orcidid: 0000-0002-5544-7307
  surname: Cai
  fullname: Cai, Xinlun
  organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University
– sequence: 17
  givenname: Zhaohui
  surname: Li
  fullname: Li, Zhaohui
  organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University
– sequence: 18
  givenname: Siyuan
  surname: Yu
  fullname: Yu, Siyuan
  email: yusy@mail.sysu.edu.cn
  organization: State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University
BookMark eNp9UUtv1DAYtFARLUv_AKdIXLgE_IztCxKqeFSqBAc4W59fS1aJvdgJEv8eb1MB7aG-2LJn5hvPPEdnKaeA0EuC3xDM1NvKCZOyx5T2GCule_YEXVDMZS8FU2f_nc_RZa0H3JbmBCv5DJ0zITWWFF8gRfqv9li7XOy4wNRB2q8TlG7Oc0jLOndxtCX0-biMrlsKpDqPtY45vUBPI0w1XN7tO_T944dvV5_7my-frq_e3_ROELn0PDLL_AAi2MCsZlQHJVzkkUsARrGDCDIILL0iQyCEMjl4GHCknnIXPduh603XZziYYxlnKL9NhtHcXuSyN1CauSkYLIhWhAUvvOPYM0swWE-AeQZ2kCetd5vWcbVz8K79sMB0T_T-Sxp_mH3-ZTQVg6SsCby-Eyj55xrqYloaLkwTpJDXauigBOeCtth36NUD6CGvJbWoTigupZaaNxTdUK7kWkuIf80QbE49m61n03o2tz2bkwv1gORad0srpZkep8epbKPWNiftQ_nn6hHWH7_6vUc
CitedBy_id crossref_primary_10_1364_JOSAB_501917
crossref_primary_10_7498_aps_72_20231521
crossref_primary_10_1002_lpor_202400113
crossref_primary_10_3788_COL202321_110008
crossref_primary_10_1364_OL_511252
crossref_primary_10_1515_nanoph_2023_0947
crossref_primary_10_1016_j_optcom_2024_130587
crossref_primary_10_1364_OE_551143
crossref_primary_10_1016_j_optcom_2024_130462
crossref_primary_10_1109_JLT_2024_3355177
crossref_primary_10_1364_OL_525505
crossref_primary_10_1515_nanoph_2022_0493
crossref_primary_10_1364_OL_515570
crossref_primary_10_1109_JLT_2024_3496519
crossref_primary_10_1021_acsphotonics_4c00461
crossref_primary_10_1002_lpor_202200536
crossref_primary_10_1364_OE_506944
crossref_primary_10_1364_OE_511524
crossref_primary_10_1364_JOCN_531337
crossref_primary_10_1002_lpor_202300549
crossref_primary_10_1364_OL_528496
crossref_primary_10_1364_OE_544885
crossref_primary_10_1038_s41566_024_01421_2
crossref_primary_10_1364_OE_545732
crossref_primary_10_1063_5_0166876
crossref_primary_10_1364_OE_529506
crossref_primary_10_1063_5_0242874
crossref_primary_10_1364_OL_477168
crossref_primary_10_1364_OL_533911
crossref_primary_10_1126_sciadv_adt9159
crossref_primary_10_1063_5_0222120
crossref_primary_10_1364_PRJ_494864
crossref_primary_10_1016_j_optcom_2025_131487
crossref_primary_10_1186_s43074_023_00114_3
crossref_primary_10_1364_OPTICA_502144
crossref_primary_10_1364_OE_555581
crossref_primary_10_3389_fphy_2023_1225346
crossref_primary_10_1002_andp_202400169
crossref_primary_10_1021_acsphotonics_4c01862
crossref_primary_10_1109_JLT_2023_3236766
crossref_primary_10_1364_OE_543887
crossref_primary_10_1002_lpor_202300837
crossref_primary_10_1364_OL_515916
crossref_primary_10_1002_lpor_202402238
crossref_primary_10_1109_JLT_2024_3350655
crossref_primary_10_1364_OE_535286
crossref_primary_10_1515_nanoph_2022_0710
crossref_primary_10_1016_j_optcom_2023_130120
crossref_primary_10_1364_OE_473030
crossref_primary_10_1109_JPHOT_2023_3297594
crossref_primary_10_1364_OE_555127
crossref_primary_10_1038_s41377_023_01241_z
crossref_primary_10_1007_s11082_024_07050_x
crossref_primary_10_1364_PRJ_533993
crossref_primary_10_1364_AOP_507558
crossref_primary_10_1109_JLT_2024_3520981
crossref_primary_10_1515_nanoph_2024_0338
crossref_primary_10_1007_s11433_024_2609_9
crossref_primary_10_1002_lpor_202300489
crossref_primary_10_1002_inf2_12550
crossref_primary_10_1364_OE_506843
crossref_primary_10_1364_OL_485302
crossref_primary_10_3390_photonics10040352
crossref_primary_10_1038_s41467_024_50439_1
crossref_primary_10_1109_JLT_2022_3218828
crossref_primary_10_1002_lpor_202200631
crossref_primary_10_1364_PRJ_543744
crossref_primary_10_1109_JLT_2023_3306600
crossref_primary_10_1109_LPT_2024_3371496
crossref_primary_10_1063_5_0207349
crossref_primary_10_1109_JLT_2022_3229172
crossref_primary_10_1016_j_ijleo_2023_171156
crossref_primary_10_1021_acsphotonics_4c01852
crossref_primary_10_1002_lpor_202401954
crossref_primary_10_37188_lam_2023_040
crossref_primary_10_1007_s12648_024_03378_y
crossref_primary_10_1364_OPTICA_486582
crossref_primary_10_1016_j_yofte_2022_103142
crossref_primary_10_1038_s41377_024_01460_y
crossref_primary_10_1515_nanoph_2022_0466
crossref_primary_10_1002_lpor_202300460
crossref_primary_10_1364_OE_507169
crossref_primary_10_1109_JLT_2023_3312720
crossref_primary_10_1109_LPT_2023_3346452
crossref_primary_10_3788_COL202422_030602
crossref_primary_10_1016_j_rinp_2023_106800
crossref_primary_10_1038_s41467_024_45845_4
crossref_primary_10_1364_OL_528585
crossref_primary_10_1021_acsphotonics_4c00357
crossref_primary_10_1109_JLT_2024_3425903
crossref_primary_10_1364_OL_474307
crossref_primary_10_3389_fphy_2023_1225360
Cites_doi 10.1103/PhysRevLett.105.153601
10.1109/JLT.2015.2508928
10.1515/nanoph-2021-0471
10.1038/s41467-021-24409-w
10.1109/JLT.2018.2792484
10.1109/JLT.2016.2594698
10.1109/JLT.2016.2609002
10.1109/JLT.2016.2564991
10.1109/JLT.2012.2234083
10.1364/OE.22.018044
10.1364/OE.26.000594
10.1364/OE.24.018938
10.1364/OE.27.008308
10.1364/OE.425419
10.1038/nphoton.2013.94
10.1364/OE.26.020225
10.1364/OPTICA.2.000267
10.1364/PRJ.394864
10.1364/OE.23.010553
10.1103/PhysRevLett.120.193904
10.1109/JLT.2003.819147
10.1364/OL.43.001890
10.1126/science.1237861
10.1364/OE.20.00B445
10.1109/JLT.2019.2902601
10.1364/OFC.2019.W3F.3
10.1364/OFC.2017.Th5B.1
10.1364/ECEOC.2012.Th.3.C.1
10.1109/ECOC.2015.7341686
10.1109/ECOC.2017.8345969
10.1364/CLEO_SI.2020.SF1J.5
10.1364/CLEO_AT.2020.JTh4A.7
10.1364/OFC.2020.Th3H.1
10.1364/FIO.2012.FW6C.3
10.1364/OFC.2021.W7D.5
10.1364/ACPC.2020.M4A.175
10.1109/ECOC.2015.7341685
10.1364/CLEO_SI.2017.SW4I.3
10.1364/OFC.2018.W4C.4
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41377-022-00889-3
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2047-7538
EndPage 11
ExternalDocumentID oai_doaj_org_article_0519813ed5dc40d3b10abd1a3d3ab67d
PMC9256723
10_1038_s41377_022_00889_3
GrantInformation_xml – fundername: Ministry of Science and Technology of the People's Republic of China (Chinese Ministry of Science and Technology)
  grantid: 2019YFA0706300; 2018YFB1801800
  funderid: https://doi.org/10.13039/501100002855
– fundername: ;
  grantid: 2019YFA0706300; 2018YFB1801800
GroupedDBID 0R~
3V.
5VS
7X7
88A
88I
8FE
8FH
8FI
8FJ
AAJSJ
ABUWG
ACGFS
ACSMW
AFKRA
AJTQC
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DWQXO
EBLON
EBS
FYUFA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
KQ8
LK8
M0L
M2P
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c517t-4f3b3d6a5ebe3b9329e85cf4f47aa320cafa7e507d816e112376da60f2d24cfd3
IEDL.DBID AAJSJ
ISSN 2047-7538
2095-5545
IngestDate Wed Aug 27 01:31:45 EDT 2025
Thu Aug 21 14:33:38 EDT 2025
Fri Jul 11 16:56:12 EDT 2025
Wed Aug 13 07:01:36 EDT 2025
Tue Jul 01 03:45:17 EDT 2025
Thu Apr 24 23:04:39 EDT 2025
Fri Feb 21 02:38:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-4f3b3d6a5ebe3b9329e85cf4f47aa320cafa7e507d816e112376da60f2d24cfd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0778-419X
0000-0002-5544-7307
OpenAccessLink https://www.nature.com/articles/s41377-022-00889-3
PMID 35790720
PQID 2684779794
PQPubID 2041947
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_0519813ed5dc40d3b10abd1a3d3ab67d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9256723
proquest_miscellaneous_2685445275
proquest_journals_2684779794
crossref_primary_10_1038_s41377_022_00889_3
crossref_citationtrail_10_1038_s41377_022_00889_3
springer_journals_10_1038_s41377_022_00889_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-05
PublicationDateYYYYMMDD 2022-07-05
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Light, science & applications
PublicationTitleAbbrev Light Sci Appl
PublicationYear 2022
Publisher Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Nature Publishing Group
References Brunet (CR23) 2015; 23
Matsuo (CR14) 2016; 34
Ung (CR27) 2014; 22
Rojas-Rojas (CR38) 2021; 29
Jin (CR25) 2016; 34
Soma (CR10) 2018; 36
Liu (CR17) 2018; 54
CR18
CR39
CR16
Nejad (CR33) 2016; 34
Luís (CR4) 2019; 37
Zhu (CR20) 2018; 26
CR13
CR34
CR11
Maruyama (CR37) 2017; 35
Fujiwara (CR36) 2003; 21
Du, Lowery (CR35) 2012; 20
Ingerslev (CR29) 2018; 26
Gregg, Kristensen, Ramachandran (CR30) 2016; 24
Zhang (CR19) 2020; 8
Zhang (CR41) 2022; 11
Richardson, Fini, Nelson (CR1) 2013; 7
Rademacher (CR7) 2021; 12
CR2
CR3
Arik, Askarov, Kahn (CR12) 2013; 31
CR6
CR5
Bozinovic (CR15) 2013; 340
Guerra (CR24) 2019; 27
CR8
Zhu (CR22) 2018; 43
CR28
CR9
CR21
Gregg, Kristensen, Ramachandran (CR26) 2015; 2
CR40
Berkhout (CR31) 2010; 105
Wen (CR32) 2018; 120
N Bozinovic (889_CR15) 2013; 340
J Liu (889_CR17) 2018; 54
D Soma (889_CR10) 2018; 36
889_CR28
RS Luís (889_CR4) 2019; 37
SÖ Arik (889_CR12) 2013; 31
889_CR21
XQ Jin (889_CR25) 2016; 34
889_CR40
S Matsuo (889_CR14) 2016; 34
LB Du (889_CR35) 2012; 20
G Guerra (889_CR24) 2019; 27
RM Nejad (889_CR33) 2016; 34
GX Zhu (889_CR20) 2018; 26
889_CR8
C Brunet (889_CR23) 2015; 23
R Maruyama (889_CR37) 2017; 35
889_CR6
889_CR5
JX Zhang (889_CR41) 2022; 11
P Gregg (889_CR26) 2015; 2
GCG Berkhout (889_CR31) 2010; 105
S Rojas-Rojas (889_CR38) 2021; 29
889_CR9
P Gregg (889_CR30) 2016; 24
889_CR18
M Fujiwara (889_CR36) 2003; 21
889_CR3
889_CR2
889_CR39
889_CR16
889_CR11
YH Wen (889_CR32) 2018; 120
889_CR13
889_CR34
G Rademacher (889_CR7) 2021; 12
K Ingerslev (889_CR29) 2018; 26
B Ung (889_CR27) 2014; 22
DJ Richardson (889_CR1) 2013; 7
JW Zhang (889_CR19) 2020; 8
L Zhu (889_CR22) 2018; 43
References_xml – ident: CR18
– volume: 105
  start-page: 153601
  year: 2010
  ident: CR31
  article-title: Efficient sorting of orbital angular momentum states of light
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.153601
– volume: 34
  start-page: 1464
  year: 2016
  end-page: 1475
  ident: CR14
  article-title: High-spatial-multiplicity multicore fibers for future dense space-division-multiplexing systems
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2015.2508928
– volume: 11
  start-page: 873
  year: 2022
  end-page: 884
  ident: CR41
  article-title: SDM transmission of orbital angular momentum mode channels over a multi-ring-core fibre
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2021-0471
– volume: 54
  start-page: 0700118
  year: 2018
  ident: CR17
  article-title: Mode division multiplexing based on ring core optical fibers.
  publication-title: Electronics
– ident: CR39
– ident: CR2
– volume: 12
  year: 2021
  ident: CR7
  article-title: Peta-bit-per-second optical communications system using a standard cladding diameter 15-mode fiber
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24409-w
– ident: CR16
– volume: 36
  start-page: 1362
  year: 2018
  end-page: 1368
  ident: CR10
  article-title: 10.16-peta-B/s dense SDM/WDM transmission over 6-mode 19-core fiber across the C+L band
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2018.2792484
– volume: 34
  start-page: 4252
  year: 2016
  end-page: 4258
  ident: CR33
  article-title: Mode division multiplexing using orbital angular momentum modes over 1.4 km ring core fiber
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2016.2594698
– volume: 35
  start-page: 650
  year: 2017
  end-page: 657
  ident: CR37
  article-title: Relationship between mode coupling and fiber characteristics in few-mode fibers analyzed using impulse response measurements technique
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2016.2609002
– volume: 34
  start-page: 3365
  year: 2016
  end-page: 3372
  ident: CR25
  article-title: Mode coupling effects in ring-core fibers for space-division multiplexing systems
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2016.2564991
– ident: CR6
– volume: 31
  start-page: 423
  year: 2013
  end-page: 431
  ident: CR12
  article-title: Effect of mode coupling on signal processing complexity in mode-division multiplexing
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2012.2234083
– volume: 22
  start-page: 18044
  year: 2014
  end-page: 18055
  ident: CR27
  article-title: Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes
  publication-title: Opt. Express
  doi: 10.1364/OE.22.018044
– volume: 26
  start-page: 594
  year: 2018
  end-page: 604
  ident: CR20
  article-title: Scalable mode division multiplexed transmission over a 10 km ring-core fiber using high-order orbital angular momentum modes
  publication-title: Opt. Express
  doi: 10.1364/OE.26.000594
– volume: 24
  start-page: 18938
  year: 2016
  end-page: 18947
  ident: CR30
  article-title: 13.4km OAM state propagation by recirculating fiber loop
  publication-title: Opt. Express
  doi: 10.1364/OE.24.018938
– ident: CR8
– volume: 27
  start-page: 8308
  year: 2019
  end-page: 8326
  ident: CR24
  article-title: Analysis of modal coupling due to birefringence and ellipticity in strongly guiding ring-core OAM fibers
  publication-title: Opt. Express
  doi: 10.1364/OE.27.008308
– volume: 29
  start-page: 23381
  year: 2021
  end-page: 23392
  ident: CR38
  article-title: Evaluating the coupling efficiency of OAM beams into ring-core optical fibers
  publication-title: Opt. Express
  doi: 10.1364/OE.425419
– ident: CR40
– volume: 7
  start-page: 354
  year: 2013
  end-page: 362
  ident: CR1
  article-title: Space-division multiplexing in optical fibres
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.94
– volume: 26
  start-page: 20225
  year: 2018
  end-page: 20232
  ident: CR29
  article-title: 12 mode, WDM, MIMO-free orbital angular momentum transmission
  publication-title: Opt. Express
  doi: 10.1364/OE.26.020225
– volume: 2
  start-page: 267
  year: 2015
  end-page: 270
  ident: CR26
  article-title: Conservation of orbital angular momentum in air-core optical fibers
  publication-title: Optica
  doi: 10.1364/OPTICA.2.000267
– volume: 8
  start-page: 1236
  year: 2020
  end-page: 1242
  ident: CR19
  article-title: Mode-division multiplexed transmission of wavelength-division multiplexing signals over a 100 km single-span orbital angular momentum fiber
  publication-title: Photonics Res.
  doi: 10.1364/PRJ.394864
– ident: CR21
– volume: 23
  start-page: 10553
  year: 2015
  end-page: 10563
  ident: CR23
  article-title: Design of a family of ring-core fibers for OAM transmission studies
  publication-title: Opt. Express
  doi: 10.1364/OE.23.010553
– volume: 120
  start-page: 193904
  year: 2018
  ident: CR32
  article-title: Spiral transformation for high-resolution and efficient sorting of optical vortex modes
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.193904
– ident: CR3
– volume: 21
  start-page: 2705
  year: 2003
  end-page: 2714
  ident: CR36
  article-title: Optical carrier supply module using flattened optical multicarrier generation based on sinusoidal amplitude and phase hybrid modulation
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2003.819147
– ident: CR13
– ident: CR11
– ident: CR9
– volume: 43
  start-page: 1890
  year: 2018
  end-page: 1893
  ident: CR22
  article-title: 18 km low-crosstalk OAM + WDM transmission with 224 individual channels enabled by a ring-core fiber with large high-order mode group separation
  publication-title: Opt. Lett.
  doi: 10.1364/OL.43.001890
– ident: CR34
– volume: 340
  start-page: 1545
  year: 2013
  end-page: 1548
  ident: CR15
  article-title: Terabit-scale orbital angular momentum mode division multiplexing in fibers
  publication-title: Science
  doi: 10.1126/science.1237861
– volume: 20
  start-page: B445
  year: 2012
  end-page: B451
  ident: CR35
  article-title: The validity of “Odd and Even” channels for testing all-optical OFDM and Nyquist WDM long-haul fiber systems
  publication-title: Opt. Express
  doi: 10.1364/OE.20.00B445
– volume: 37
  start-page: 1798
  year: 2019
  end-page: 1804
  ident: CR4
  article-title: 1.2 Pbps throughput transmission using a 160 μm cladding, 4-core, 3-mode fiber
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2019.2902601
– ident: CR5
– ident: CR28
– volume: 7
  start-page: 354
  year: 2013
  ident: 889_CR1
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.94
– volume: 21
  start-page: 2705
  year: 2003
  ident: 889_CR36
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2003.819147
– volume: 2
  start-page: 267
  year: 2015
  ident: 889_CR26
  publication-title: Optica
  doi: 10.1364/OPTICA.2.000267
– ident: 889_CR18
  doi: 10.1364/OFC.2019.W3F.3
– volume: 34
  start-page: 4252
  year: 2016
  ident: 889_CR33
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2016.2594698
– volume: 11
  start-page: 873
  year: 2022
  ident: 889_CR41
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2021-0471
– ident: 889_CR2
  doi: 10.1364/OFC.2017.Th5B.1
– ident: 889_CR11
  doi: 10.1364/ECEOC.2012.Th.3.C.1
– ident: 889_CR9
  doi: 10.1109/ECOC.2015.7341686
– ident: 889_CR34
  doi: 10.1109/ECOC.2017.8345969
– volume: 54
  start-page: 0700118
  year: 2018
  ident: 889_CR17
  publication-title: Electronics
– volume: 23
  start-page: 10553
  year: 2015
  ident: 889_CR23
  publication-title: Opt. Express
  doi: 10.1364/OE.23.010553
– ident: 889_CR13
– volume: 31
  start-page: 423
  year: 2013
  ident: 889_CR12
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2012.2234083
– ident: 889_CR40
  doi: 10.1364/CLEO_SI.2020.SF1J.5
– volume: 29
  start-page: 23381
  year: 2021
  ident: 889_CR38
  publication-title: Opt. Express
  doi: 10.1364/OE.425419
– volume: 105
  start-page: 153601
  year: 2010
  ident: 889_CR31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.153601
– ident: 889_CR3
  doi: 10.1364/CLEO_AT.2020.JTh4A.7
– volume: 340
  start-page: 1545
  year: 2013
  ident: 889_CR15
  publication-title: Science
  doi: 10.1126/science.1237861
– volume: 43
  start-page: 1890
  year: 2018
  ident: 889_CR22
  publication-title: Opt. Lett.
  doi: 10.1364/OL.43.001890
– volume: 12
  year: 2021
  ident: 889_CR7
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24409-w
– volume: 26
  start-page: 20225
  year: 2018
  ident: 889_CR29
  publication-title: Opt. Express
  doi: 10.1364/OE.26.020225
– volume: 8
  start-page: 1236
  year: 2020
  ident: 889_CR19
  publication-title: Photonics Res.
  doi: 10.1364/PRJ.394864
– ident: 889_CR8
  doi: 10.1364/OFC.2020.Th3H.1
– volume: 27
  start-page: 8308
  year: 2019
  ident: 889_CR24
  publication-title: Opt. Express
  doi: 10.1364/OE.27.008308
– ident: 889_CR6
  doi: 10.1364/FIO.2012.FW6C.3
– ident: 889_CR16
  doi: 10.1364/OFC.2021.W7D.5
– ident: 889_CR39
  doi: 10.1364/ACPC.2020.M4A.175
– volume: 35
  start-page: 650
  year: 2017
  ident: 889_CR37
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2016.2609002
– volume: 26
  start-page: 594
  year: 2018
  ident: 889_CR20
  publication-title: Opt. Express
  doi: 10.1364/OE.26.000594
– volume: 36
  start-page: 1362
  year: 2018
  ident: 889_CR10
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2018.2792484
– volume: 20
  start-page: B445
  year: 2012
  ident: 889_CR35
  publication-title: Opt. Express
  doi: 10.1364/OE.20.00B445
– volume: 37
  start-page: 1798
  year: 2019
  ident: 889_CR4
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2019.2902601
– ident: 889_CR5
  doi: 10.1109/ECOC.2015.7341685
– ident: 889_CR28
  doi: 10.1364/CLEO_SI.2017.SW4I.3
– volume: 34
  start-page: 3365
  year: 2016
  ident: 889_CR25
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2016.2564991
– volume: 120
  start-page: 193904
  year: 2018
  ident: 889_CR32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.193904
– volume: 34
  start-page: 1464
  year: 2016
  ident: 889_CR14
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2015.2508928
– ident: 889_CR21
  doi: 10.1364/OFC.2018.W4C.4
– volume: 22
  start-page: 18044
  year: 2014
  ident: 889_CR27
  publication-title: Opt. Express
  doi: 10.1364/OE.22.018044
– volume: 24
  start-page: 18938
  year: 2016
  ident: 889_CR30
  publication-title: Opt. Express
  doi: 10.1364/OE.24.018938
SSID ssj0000941087
ssib052855617
ssib038074990
ssib054953849
Score 2.606334
Snippet Space-division multiplexing (SDM), as a main candidate for future ultra-high capacity fibre-optic communications, needs to address limitations to its...
A 1-Pbps orbital-angular-momentum fibre-optic transmission system that combines space-division multiplexing and wavelength-division multiplexing in a 34 km...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 202
SubjectTerms 639/624/1075
639/624/1075/187
Lasers
Microwaves
Optical and Electronic Materials
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
RF and Optical Engineering
Signal processing
Wavelength
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS-QwFA4iCF5EXcWqu3RhbxpMmrTJHN1FkYVdPCh4C_nJrmhHnM7_73tpZ7SCevHapLT58vLyJXn5HiE_NBOBMasoA25ApUyeukpZ6qSUUQDF5hLvO__521xcy9839c2LVF8YE9bLA_fAnSDF0FzEUAcvWRCOM-sCtyII6xoV0PvCnPdiMXXbx8txptVwS4YJfTKTqK1HMXid5dAeMZqJsmD_iGW-jpF8dVCa55_zTbIxEMfytP_hLbIS222ylgM4_ewL0ZxeuodZOX10mAakxG1IWLSW96iw0M3vywTr4kin4CF82eEEBR2MO2U75Pr87OrXBR2yIlBfc9VRmYQTobE1wC8c0K9J1LVPMkllraiYt8mqCDQvaN5EoFPgQoJtWKpCJX0KYpesttM27pFyAjB6WA-FiKwoche8blywPPGkK8sKwhcIGT9IhmPmijuTj66FNj2qBlA1GVUjCnK0fOehF8x4t_ZPBH5ZE8Wu8wMwATOYgPnIBApyuOg2M4zAmUEVG6Um4G4K8n1ZDNDigYht43Se66AWUaXqgqhRd49-aFzS_v-XVbgnQBZVBS04XhjG88ffbvD-ZzT4gKxX2ZDBnutDsto9zuNX4Ead-5aHwRNx6wqV
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA9aEXwp1g9cW8sKvmlossluck9FxVIExQcL9xbyqYLdPW_3_v_O5HJXtmBfN1k2OzNJfpmZ_IaQd5qJwJhVlAE2oFImT12jLHVSyigAYnOJ952_fe8ur-TXZbssDrexpFXu1sS8UIfBo4_8DFlJlFqA-Zyv_lGsGoXR1VJC4yF5hNRlaNVqqfY-Fji6cKZVuSvDhD4bJTLsUUxhZznBR8z2o0zbP8OadzMl74RL8y508ZQcFvhYf9zq-4g8iP0z8jincfrxOdGc_nCrsR7WDouB1OiMhKNrfY08C9Pmuk5wOo50gHXC1xNuU6Bm9Je9IFcXX35-vqSlNgL1LVcTlUk4ETrbghKEAxC2iLr1SSaprBUN8zZZFQHsBc27CKAKFpJgO5aa0EifgnhJDvqhj69IveBWeDgVhYjYKHIXvO5csDzxpBvLKsJ3EjK-EIdj_Yq_JgewhTZbqRqQqslSNaIi7_fvrLa0Gff2_oSC3_dEyuv8YFj_MmUGGcSamosY2uAlC8JxZl2AsQdhXadCRU52ajNlHo7m1moq8nbfDKLFsIjt47DJfZCRqFFtRdRM3bMBzVv6P78zF_cCIKNq4A8-7Azj9uP__-HX94_1mDxpsomCpbYn5GBab-IbwD6TO80GfgOpJgGl
  priority: 102
  providerName: ProQuest
Title 1-Pbps orbital angular momentum fibre-optic transmission
URI https://link.springer.com/article/10.1038/s41377-022-00889-3
https://www.proquest.com/docview/2684779794
https://www.proquest.com/docview/2685445275
https://pubmed.ncbi.nlm.nih.gov/PMC9256723
https://doaj.org/article/0519813ed5dc40d3b10abd1a3d3ab67d
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7yoNBLSV_UTbq40FsrKlmypT1uloSw0BDaBvYm9GwLjR328f870tpbHNpCTwZ5hKXRePSNNPoE8E5R7ik1klDEBkSI6IitpCFWCBE4Qmwm0nnnT9fN1a1YLOvlAVTDWZictJ8pLbObHrLDPq5FosYjKfec5swcfgjHiaodbft4Nlt8WexXVjBgYVTJ_oQM5eoPlUezUCbrHyHMh_mRDzZJ89xzeQJPetBYznbNfAoHoX0Gj3Lypls_B8XIjb1fl93KpitAyrQEiQFreZfYFTbbuzJiTBxIh97BlZs0OeHgplWyF3B7efF1fkX6GxGIq5ncEBG55b4xNaqeW4Re06BqF0UU0hheUWeikQEhnlesCQil0H1409BY-Uq46PlLOGq7NryCcsoMdxgL-ZAQUWDWO9VYb1hkUVWGFsAGDWnX04WnWyt-6rxtzZXeaVWjVnXWquYFvN_Xud-RZfxT-jwpfi-ZiK5zQbf6pvuB1wlhKsaDr70T1HPLqLEe2-65sY30BZwNw6b7v2-tE4ONlFN0NQW83b9G1abNENOGbptlEg9RJesC5Gi4Rw0av2l_fM8M3FMEirLCHnwYDOP3x__e4df_J34Kj6tssmi59RkcbVbb8AYR0MZO4FAu5aQ3fHyeX1zffMbSeTOf5FWFX4hIBPU
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4qmGFggSnMCqHTtx9oAQr2pLH-LQSnszfgWQaLLdZIX4U_xGZrzJVqlEb73GTmKPP9vfjMczhLwsmfCMGUUZcAMqZeWozZShVkoZBFBsLvG-89FxMT2VX2b5bIP8He7CoFvlsCbGhdo3Dm3kuxiVRKkJwOfd_Jxi1ig8XR1SaKxgcRD-_AaVrX27_wnG91WW7X0--TilfVYB6nKuOiorYYUvTA7NFxboyySUuatkJZUxImPOVEYFoEm-5EUAOgJT0JuCVZnPpKu8gO_eIDdh42Wo7KmZWtt0QFXirFT93Rwmyt1WYkQ_ii7zLDoUidH-F9MEjLjtZc_MS8ezcdfbu0fu9nQ1fb_C132yEeoH5FZ0G3XtQ1Jy-tXO27RZWEw-kqLxE1Tl9AzjOnTLs7QCbTzQBtYll3a4LQKs0D73iJxei9Qek826qcMWSSfcCAdamA_IxQK33pWF9YZXvCozwxLCBwlp1wcqx3wZv3Q8MBelXklVg1R1lKoWCXm9fme-CtNxZe0PKPh1TQyxHR80i--6n7EauW3JRfC5d5J5YTkz1kPbvTC2UD4hO8Ow6X7et_oCpQl5sS4G0eIxjKlDs4x1MAJSpvKEqNFwjxo0Lql__oixvydAUVUGPXgzAOPi5__v8JOr2_qc3J6eHB3qw_3jg21yJ4twBdTmO2SzWyzDU-BdnX0WwZ6Sb9c9u_4BS8M_sA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKViAuiKcIFAgSnMBaO3bi7AEhSrtqKaxWiEq9GT-hUrtZ9iHEX-PXMeNNttpK9NZr7CT2-LP9zXg8Q8irmgnPmFGUATegUkZHbaEMtVLKIIBic4n3nb-MqoNj-emkPNkif7u7MOhW2a2JaaH2jUMbeR-jkig1APj0Y-sWMd4bvp_-ophBCk9au3QaK4gchT-_QX2bvzvcg7F-XRTD_W8fD2ibYYC6kqsFlVFY4StTQleEBSozCHXpooxSGSMK5kw0KgBl8jWvAlATmI7eVCwWvpAuegHfvUG2FWpFPbK9uz8af11beEBx4qxW7U0dJur-XGJ8P4oO9Cy5F4mN3TAlDdhgupf9NC8d1qY9cHiX3GnJa_5hhbZ7ZCtM7pObyYnUzR-QmtOxnc7zZmYxFUmOplBQnPNzjPKwWJ7nEXTzQBtYpVy-wE0SQIbWuofk-Frk9oj0Js0kPCb5gBvhQCfzAZlZ4Na7urLe8MhjXRiWEd5JSLs2bDlmzzjT6fhc1HolVQ1S1UmqWmTkzfqd6Spox5W1d1Hw65oYcDs9aGY_dDt_NTLdmovgS-8k88JyZqyHtnthbKV8Rna6YdPtKjDXF5jNyMt1MYgWD2XMJDTLVAfjIRWqzIjaGO6NBm2WTE5_pkjgAyCsqoAevO2AcfHz_3f4ydVtfUFuwczSnw9HR0_J7SKhFUBb7pDeYrYMz4CELezzFu05-X7dE-wflQFFSw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=1-Pbps+orbital+angular+momentum+fibre-optic+transmission&rft.jtitle=Light%2C+science+%26+applications&rft.au=Liu%2C+Junyi&rft.au=Zhang%2C+Jingxing&rft.au=Liu%2C+Jie&rft.au=Lin%2C+Zhenrui&rft.date=2022-07-05&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2047-7538&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41377-022-00889-3&rft.externalDocID=10_1038_s41377_022_00889_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-7538&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-7538&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-7538&client=summon